pgmoneta

Developer Guide

pgmoneta

Contents
1 Introduction
11 Features o o o e
1.2 Platforms o e e e
2 Installation
2.1 Fedora. e e e e e e e e e e e e
2.2 RHEL8/RockyLinux8 e e e e
2.3 RHEL9/RockyLinux9 e e e e e e
2.4 Compilingthesource e
241 RHEL/RockyLinux i e e
242 FreeBSD e
243 Build e e e
2.5 Compilingthedocumentation
251 Build e
3 Gitguide
3.1 Basicsteps e e e e e e e
3.1.1 Startbyforkingtherepository. o
3.2 Cloneyourrepositorylocally. e
3.2.1 Addupstream L e e e e
3.22 Doaworkbranch
3.23 Makethechanges
3.24 Multiplecommits. e e
325 Rebase
3.26 Forcepush e e e
3.27 Formatsourcecode
3.2.8 Repeat e
3229 Undo . .. e e
4 Architecture
4.1 OVErVIEW . . . o o e e e e e e
4.2 Shared memory e e e e e e e e
4.3 Networkandmessages. o o i i i i e
44 MEMOIY . . . i o e e e e e e e e e e e e e
4.5 Management L e e e e e e e e e e e
4.5.1 Remotemanagement e
4.6 libevusage

10
10
10
10
10
10

12
12
12
12
13
13
13
13

pgmoneta

4.7 Signals . .. e e e e e e e
4.8 Reload. e e e e e
4.9 Prometheus e e e
4.10 LOGEING . . . o o o e e e e
4.11 Protocol oo e e e e e

5 Encryption

51 OVerVIEW . . . o i e e e e e e e e e
5.2 Encryption Configuration
5.3 Encryption/DecryptionCLICommands

5.3.1 decrypt . . . e e e e e

532 encrypt . . .o e
54 Benchmark e

6 RPM

6.1 Requirements e e e e
6.2 SetupRPMdevelopment e
6.3 Createsourcepackage e e e e
6.4 CreateRPMpackage e

7 Troubleshooting
7.1 Couldnnotgetversionforserver

8 Acknowledgement

8.1 AUthOrs e e e s

8.2 Contributing e
9 License

9.1 libart . . . e e e e e

16
16
16
16
16
17
17

21
21
21
21
21

22
22

23
23
23

24

pgmoneta

1 Introduction

pgmoneta is a backup / restore solution for PostgreSQL.

Ideally, you would not need to do backups and disaster recovery, but that isn’t how the real World
works.

Possible scenarios that could happen

« Data corruption
« System failure
+ Human error

« Natural disaster

and then itis up to the database administrator to get the database system back on-line, and to the
correct recovery point.

Two key factors are

+ Recovery Point Objective (RPO): Maximum targeted period in which data might be lost from an
IT service due to a major incident

+ Recovery Time Objective (RTO): The targeted duration of time and a service level within which a
business process must be restored after a disaster (or disruption) in order to avoid unacceptable
consequences associated with a break in business continuity

You would like to have both of these as close to zero as possible, since RPO of 0 means that you won’t
lose data, and RTO of 0 means that your system recovers at once. However, that is easier said than
done.

pgmoneta is focused on having features that will allow database systems to get as close to these goals
as possible such that high availability of 99.99% or more can be implemented, and monitored through
standard tools.

pgmoneta is named after the Roman Goddess of Memory.

1.1 Features

Full backup
Restore
Compression (gzip, zstd, z4, bzip2)

AES encryption support

Symlink support
WAL shipping support

https://github.com/pgmoneta/pgmoneta
https://www.postgresql.org
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta

pgmoneta

« Hot standby

« Prometheus support

+ Remote management

« Offline mode

« Transport Layer Security (TLS) v1.2+ support
« Daemon mode

+ Uservault

1.2 Platforms

The supported platforms are

+ Fedora 32+

RHEL 8 / RockyLinux 8
RHEL 9 / RockyLinux 9
FreeBSD

OpenBSD

https://getfedora.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.freebsd.org/
http://www.openbsd.org/

pgmoneta

2 Installation

2.1 Fedora

You need to add the PostgreSQL YUM repository, for example for Fedora 40

dnf dinstall -y https://download.postgresql.org/pub/repos/yum/reporpms/F
-40-x86_64/pgdg-fedora-repo-latest.noarch.rpm

and do the install via

dnf dinstall -y pgmoneta

Additional information

» PostgreSQL YUM
« Linux downloads

2.2 RHEL 8/ RockyLinux 8

dnf dinstall -y https://dl.fedoraproject.org/pub/epel/epel-release-latest
-8.noarch.rpm

dnf dinstall -y https://download.postgresql.org/pub/repos/yum/reporpms/EL
-8-x86_64/pgdg-redhat-repo-latest.noarch.rpm

and do the install via

dnf dinstall -y pgmoneta

2.3 RHEL 9/ RockyLinux 9

dnf dinstall -y https://dl.fedoraproject.org/pub/epel/epel-release-latest
-9.noarch.rpm

dnf dinstall -y https://download.postgresql.org/pub/repos/yum/reporpms/EL
-9-x86_64/pgdg-redhat-repo-latest.noarch.rpm

and do the install via

dnf dinstall -y pgmoneta

https://yum.postgresql.org/
https://yum.postgresql.org/howto/
https://www.postgresql.org/download/linux/redhat/

pgmoneta

2.4 Compiling the source

We recommend using Fedora to test and run pgmoneta, but other Linux systems, FreeBSD and MacOS
are also supported.

pgmoneta requires

+ gcc 8+ (C17)
+ cmake

+ make

« libev

« OpenSSL
« zlib

« zstd

o z4

» bzip2

» systemd
« rst2man
« libssh

« libcurl

« libarchive

dnf dinstall git gcc cmake make libev libev-devel \
openssl openssl-devel \
systemd systemd-devel zlib zlib-devel \
libzstd libzstd-devel \
1z4 1z4-devel libssh libssh-devel \
libcurl libcurl-devel \
python3-docutils libatomic \
bzip2 bzip2-devel \
libarchive libarchive-devel

Alternative clang 8+ can be used.

2.4.1 RHEL | RockyLinux

On RHEL / Rocky, before you install the required packages some additional repositories need to be
enabled or installed first.

First you need to install the subscription-manager

dnf dinstall subscription-manager

https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta
https://gcc.gnu.org
https://cmake.org
https://www.gnu.org/software/make/
http://software.schmorp.de/pkg/libev.html
http://www.openssl.org/
https://zlib.net
http://www.zstd.net
https://lz4.github.io/lz4/
http://sourceware.org/bzip2/
https://www.freedesktop.org/wiki/Software/systemd/
https://docutils.sourceforge.io/
https://www.libssh.org/
https://curl.se/libcurl/
http://www.libarchive.org/
https://clang.llvm.org/

pgmoneta

Itis ok to disregard the registration and subscription warning.

Otherwise, if you have a Red Hat corporate account (you need to specify the company/organization
name in your account), you can register using

subscription-manager register --username <your-account-email-or-login> --
password <your-password> --auto-attach

Then install the EPEL repository,

dnf dinstall epel-release

Then to enable powertools

On RHEL 8 / Rocky 8

dnf config-manager --set-enabled codeready-builder-for-rhel-8-rhui-rpms

dnf config-manager --set-enabled powertools

dnf dinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.
noarch.rpm

On RHEL 9 / Rocky 9, PowerTools is called crb (CodeReady Builder)

dnf config-manager --set-enabled codeready-builder-for-rhel-9-rhui-rpms

dnf config-manager --set-enabled crb

dnf dinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.
noarch.rpm

Then use the dnf command for pgmoneta to install the required packages.

2.4.2 FreeBSD

On FreeBSD, pkg is used instead of dnf or yum.
Use pkg install <package name> toinstall the following packages

git gcc cmake libev openssl libssh zlib-ng zstd 1iblz4 bzip2 curl \
py39-docutils libarchive

2.4.3 Build

2.4.3.1 Release build The following commands will install pgmoneta in the /usr/local hierar-
chy.

git clone https://github.com/pgmoneta/pgmoneta.git
cd pgmoneta

mkdir build

cd build

cmake -DCMAKE_INSTALL_PREFIX=/usr/local ..

https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta

pgmoneta

make
sudo make install

See RPM for how to build a RPM of pgmoneta.

2.4.3.2 Debugbuild The following commands will create a DEBUG version of pgmoneta.

git clone https://github.com/pgmoneta/pgmoneta.git
cd pgmoneta
mkdir build

cd build
cmake -DCMAKE_BUILD_TYPE=Debug ..
make

2.5 Compiling the documentation

pgmoneta’s documentation requires

» pandoc
. texlive

dnf dinstall pandoc texlive-scheme-basic \
’tex(footnote.sty)’ ’tex(footnotebackref.sty)’ \
’tex(pagecolor.sty)’ ’tex(hardwrap.sty)’ \
"tex(mdframed.sty)’ ’tex(sourcesanspro.sty)’ \
"tex(lylenc.def)’ ’tex(sourcecodepro.sty)’ \
’tex(titling.sty)’ ’tex(csquotes.sty)’ \
’tex(zref-abspage.sty)’ ’tex(needspace.sty)’

You will need the Eisvoge'l template as well which you can install through
wget https://github.com/Wandmalfarbe/pandoc-latex-template/releases/
download/2.4.2/Eisvogel-2.4.2.tar.gz
tar -xzf Eisvogel-2.4.2.tar.gz

mkdir -p SHOME/.local/share/pandoc/templates
mv eisvogel.latex SHOME/.local/share/pandoc/templates

where $HOME is your home directory.

2.5.1 Build

These packages will be detected during cmake and built as part of the main build.

https://github.com/pgmoneta/pgmoneta/blob/main/doc/RPM.md
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta
https://pandoc.org/
https://www.tug.org/texlive/

pgmoneta

3 Git guide

Here are some links that will help you

« How to Squash Commits in Git
+ ProGit book

3.1 Basic steps
3.1.1 Start by forking the repository

This is done by the “Fork” button on GitHub.

3.2 Clone your repository locally

This is done by

git clone git@github.com:<username>/pgmoneta.git

3.2.1 Add upstream

Do

cd pgmoneta
git remote add upstream https://github.com/pgmoneta/pgmoneta.git

3.2.2 Do awork branch

git checkout -b mywork main

3.2.3 Make the changes

Remember to verify the compile and execution of the code.
Use

[#xyz] Description

as the commit message where [#xyz] is the issue number for the work, and Descriptionisa
short description of the issue in the first line

https://www.git-tower.com/learn/git/faq/git-squash
https://github.com/progit/progit2/releases

pgmoneta

3.2.4 Multiple commits

If you have multiple commits on your branch then squash them

git rebase -i HEAD~2

for example. It is p for the first one, then s for the rest

3.2.5 Rebase

Always rebase

git fetch upstream
git rebase -i upstream/main

3.2.6 Force push

When you are done with your changes force push your branch

git push -f origin mywork

and then create a pull request for it

3.2.7 Format source code

Use

./uncrustify.sh

to format the source code

3.2.8 Repeat

Based on feedback keep making changes, squashing, rebasing and force pushing

3.2.9 Undo

Normally you can reset to an earlier commit using git reset <commit hash> --hard.

But if you accidentally squashed two or more commits, and you want to undo that, you need to know
where to reset to, and the commit seems to have lost after you rebased.

10

pgmoneta

But they are not actually lost - using git reflog, you can find every commit the HEAD pointer has
ever pointed to. Find the commit you want to reset to,anddo git reset --hard.

11

pgmoneta

4 Architecture

4.1 Overview

pgmoneta use a process model (fork()), where each process handles one Write-Ahead Log (WAL)
receiver to PostgreSQL.

The main process is defined in main.c.

Backup is handled in backup.h (backup.c).

Restore is handled in restore.h (restore.c) with linking handled in link.h (link.c).
Archive is handled in achv.h (archive.c) backed by restore.

Write-Ahead Log is handled in wal.h (wal.c).

Backup information is handled in info.h (info.c).

Retention is handled in retention.h (retention.c).

Compression is handled in gzip.h (gzip.c) and zstandard.h (zstandard.c).

4.2 Shared memory

A memory segment (shmem.h) is shared among all processes which contains the pgmoneta state
containing the configuration and the list of servers.

The configuration of pgmoneta (struct configuration)and the configuration of the servers
(struct server) isinitialized in this shared memory segment. These structs are all defined in
pgmoneta.h.

The shared memory segment is created using the mmap () call.

4.3 Network and messages

All communication is abstracted using the struct message data type defined in messge.h.
Reading and writing messages are handled in the message.h (message.c) files.

Network operations are defined in network.h (network.c).

12

https://github.com/pgmoneta/pgmoneta
https://www.postgresql.org
https://github.com/pgmoneta/pgmoneta/blob/main/src/main.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/backup.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/backup.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/restore.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/restore.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/link.h
https://github.com/pgmoneta/pgmoneta/blob/main/libpgmoneta/link.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/achv.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/archive.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/wal.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/wal.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/info.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/info.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/retention.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/retention.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/gzip.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/gzip.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/zstandard.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/zstandard.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/shmem.h
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/pgmoneta.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/message.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/message.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/message.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/network.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/network.c

pgmoneta

4.4 Memory

Each process uses a fixed memory block for its network communication, which is allocated upon
startup of the process.

That way we don’t have to allocate memory for each network message, and more importantly free it
after end of use.

The memory interface is defined in memory.h (memory.c).

4.5 Management

pgmoneta has a management interface which defines the administrator abilities that can be performed
when it is running. This include for example taking a backup. The pgmoneta-cl1 program is used
for these operations (cli.c).

The management interface use Unix Domain Socket for communication.

The management interface is defined in management.h. The management interface uses its own
protocol which always consist of a header

Field Type Description

id Byte The identifier of the message type

The rest of the message is depending on the message type.

4.5.1 Remote management

The remote management functionality uses the same protocol as the standard management method.

However, before the management packet is sent the client has to authenticate using SCRAM-SHA-256
using the same message format that PostgreSQL uses, e.g. StartupMessage, AuthenticationSASL, Au-
thenticationSASLContinue, AuthenticationSASLFinal and AuthenticationOk. The SSLRequest message
is supported.

The remote management interface is defined in remote.h (remote.c).

4.6 libev usage

libev is used to handle network interactions, which is “activated” upon an EV_READ event.

13

https://github.com/pgmoneta/pgmoneta/blob/main/src/include/memory.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/memory.c
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta/blob/main/src/cli.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/management.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/remote.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/remote.c
http://software.schmorp.de/pkg/libev.html

pgmoneta

Each process has its own event loop, such that the process only gets notified when data related only to
that process is ready. The main loop handles the system wide “services” such as idle timeout checks
and so on.

4.7 Signals

The main process of pgmoneta supports the following signals STGTERM, SIGINT and SIGALRM as a
mechanism for shutting down. The SIGABRT is used to request a core dump (abort()).

The SIGHUP signal will trigger a reload of the configuration.

It should not be needed to use SIGKILL for pgmoneta. Please, consider using SIGABRT instead,
and share the core dump and debug logs with the pgmoneta community.

4.8 Reload

The SIGHUP signal will trigger a reload of the configuration.

However, some configuration settings requires a full restart of pgmoneta in order to take effect. These
are

hugepage
+ Llibev

log_path
+ log_type
« unix_socket_dir
« pidfile

The configuration can also be reloaded using pgmoneta-cli -c pgmoneta.conf conf
reload. The command is only supported over the local interface, and hence doesn’t work
remotely.

4.9 Prometheus

pgmoneta has support for Prometheus when the metrics portis specified.

The module serves two endpoints

« /- Overview of the functionality (text/html)
« /metrics-The metrics (text/plain)

14

https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta
https://prometheus.io/

pgmoneta

All other URLs will result in a 403 response.

The metrics endpoint supports Transfer-Encoding: chunked to account for a large amount of
data.

The implementation is done in prometheus.h and prometheus.c.

4,10 Logging

Simple logging implementation based on a atomic_schar lock.

The implementation is done in logging.h and logging.c.

4.11 Protocol

The protocol interactions can be debugged using Wireshark or pgprtdbg.

15

https://github.com/pgmoneta/pgmoneta/blob/main/src/include/prometheus.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/prometheus.c
https://github.com/pgmoneta/pgmoneta/blob/main/src/include/logging.h
https://github.com/pgmoneta/pgmoneta/blob/main/src/libpgmoneta/logging.c
https://www.wireshark.org/
https://github.com/jesperpedersen/pgprtdbg

pgmoneta

5 Encryption

5.1 Overview

AES Cipher block chaining (CBC) mode and AES Counter (CTR) mode are supported in pgmoneta. The
default setup is no encryption.

CBC is the most commonly used and considered save mode. Its main drawbacks are that encryption is
sequential (decryption can be parallelized).

Along with CBC, CTR mode is one of two block cipher modes recommended by Niels Ferguson and
Bruce Schneier. Both encryption and decryption are parallelizable.

Longer the key length, safer the encryption. However, with 20% (192 bit) and 40% (256 bit) extra
workload compare to 128 bit.

5.2 Encryption Configuration

none: No encryption (default value)

aes | aes-256 | aes-256-chbc: AES CBC (Cipher Block Chaining) mode with 256 bit key
length

aes-192 | aes-192-cbc: AES CBC mode with 192 bit key length
aes-128 | aes-128-cbc: AES CBC mode with 128 bit key length
aes-256-ctr: AES CTR (Counter) mode with 256 bit key length
aes-192-ctr: AES CTR mode with 192 bit key length

aes-128-ctr: AES CTR mode with 128 bit key length

5.3 Encryption [Decryption CLI Commands
5.3.1 decrypt

Decrypt the file in place, remove encrypted file after successful decryption.
Command

pgmoneta-cli decrypt <file>

16

https://github.com/pgmoneta/pgmoneta

pgmoneta

5.3.2 encrypt

Encrypt the file in place, remove unencrypted file after successful encryption.
Command

pgmoneta-cli encrypt <file>

5.4 Benchmark

Check if your CPU have AES-NI
cat /proc/cpuinfo | grep aes
Query number of cores on your CPU
lscpu | grep ’~CPU(s):’
By default openssl using AES-NI if the CPU have it.

openssl speed -elapsed -evp aes-128-cbc

Speed test with explicit disabled AES-NI feature

OPENSSL_1a32cap="~0x200000200000000" openssl speed -elapsed -evp aes-128-
cbc

Test decrypt

openssl speed -elapsed -decrypt -evp aes-128-cbc

Speed test with 8 cores

openssl speed -multi 8 -elapsed -evp aes-128-chc

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 39 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 12
On-line CPU(s) list: 0-11
Vendor ID: GenuinelIntel
Model name: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
CPU family: 6
Model: 158

Thread(s) per core: 2
Core(s) per socket: 6
Socket(s): 1

https://en.wikipedia.org/wiki/AES_instruction_set

pgmoneta

Stepping: 10
BogoMIPS: 5183.98
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr

pge mca cmov pat pse36 clflush mmx fxsr sse sse2 s

s ht syscall nx pdpelgb rdtscp lm constant_tsc
rep_good nopl xtopology cpuid pni pclmulqdq
Vmx ssse

3 fma cx16 pcid sse4_1 ssed4_2 movbe popcnt aes
xsave avx fl6c rdrand hypervisor lahf_1m abm 3
dnowpr

efetch dinvpcid_single pti ssbd ibrs ibpb stibp
tpr_shadow vnmi ept vpid ept_ad fsgsbase bmil
avx2 s

mep bmi2 erms +invpcid rdseed adx smap clflushopt
xsaveopt xsavec xgetbvl xsaves flush_11d

arch_capa
bilities
Virtualization features:
Virtualization: VT-x
Hypervisor vendor: Microsoft

Virtualization type: full
Caches (sum of all):

Lid: 192 KiB (6 instances)

L14: 192 KiB (6 instances)

L2: 1.5 MiB (6 instances)

L3: 12 MiB (1 instance)

Vulnerabilities:

Itlb multihit: KVM: Mitigation: VMX disabled

L1tf: Mitigation; PTE Inversion; VMX conditional cache
flushes, SMT vulnerable

Mds: Vulnerable: Clear CPU buffers attempted, no
microcode; SMT Host state unknown

Meltdown: Mitigation; PTI

Spec store bypass: Mitigation; Speculative Store Bypass disabled via

prctl and seccomp

Spectre vl: Mitigation; usercopy/swapgs barriers and __user
pointer sanitization

Spectre v2: Mitigation; Full generic retpoline, IBPB
conditional, IBRS_FW, STIBP conditional, RSB filling

Srbds: Unknown: Dependent on hypervisor status

Tsx async abort: Not affected

openssl version: 3.0.5

built on: Tue Jul 5 00:00:00 2022 UTC

options: bn(64,64)

compiler: gcc -fPIC -pthread -m64 -Wa,--noexecstack -02 -flto=auto -ffat-
lto-objects —-fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=
format-security -Wp,-D_FORTIFY_SOURCE=2 -Wp,-D_GLIBCXX_ASSERTIONS -
specs=/usr/1lib/rpm/redhat/redhat-hardened-ccl -fstack-protector-strong
-specs=/usr/lib/rpm/redhat/redhat-annobin-ccl -m64 -mtune=generic -
fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -

18

pgmoneta

02 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -
pipe -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -Wp,-

D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-ccl -

fstack-protector-strong -specs=/usr/1lib/rpm/redhat/redhat-annobin-ccl -

m64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-
protection -fcf-protection -Wa,--noexecstack -Wa,--generate-missing-

build-notes=yes -specs=/usr/lib/rpm/redhat/redhat-hardened-1d -specs=/
usr/lib/rpm/redhat/redhat-annobin-ccl -DOPENSSL_USE_NODELETE -DL_ENDIAN

—-DOPENSSL_PIC -DOPENSSL_BUILDING_OPENSSL -DZLIB -DNDEBUG -DPURIFY -

DDEVRANDOM="\"/dev/urandom\"" -DSYSTEM_CIPHERS_FILE="/etc/crypto-
policies/back-ends/openssl.config"
The ’numbers’ are in 1000s of bytes per

type 16 bytes 64 bytes
bytes 16384 bytes

AES-128-CBC * 357381.06k 414960.06k
416175.45k 416268.29k

AES-128-CBC 902160.83k 1496344.68k

1542537.22k
AES-128-CBC d
6365967.70k

AES-128-CBC 8 3912786.36k 8042348.

1569259.52k

909710.79k 2941259.

6349198.68k

10653332.82k 10310331.05k

AES-128-CBC 8d 4157037.26k 12337480.

32306793.13k 31440366.25k

AES-128-CTR =
676448 .94k

AES-128-CTR
6431110.49k

AES-128-CTR d
6480090.45k

AES-128-CTR 8 3833975.47k 10832239.

146971.83k
668139.52k

887783.06k 2255074.

6376062.98k

793432.63k 2181439.

6271221.76k

30514317.99k 30092356.27k

AES-128-CTR 8d 3456838.44k 9749773.

30703026.18k 29387025.07k

AES-192-CBC
1272591.70k
AES-192-CBC d
5442652 .84k
AES-192-CTR
5422994.77k
AES-192-CTR d
5257865.90k

AES-256-CBC
1130657.11k

AES-256-CBC d
4557821.27k

AES-256-CTR
4640549.55k

853380.50k 1238507.

1271840.77k

876094.29k 2843770.

5372559.36k

869039.84k 2285946.

5309748.57k

789470.51k 2177050.

5323046.91k

834298.24k 1100648.

1097285.63k

843079.68k 2714917.

4594783.57k

811325.74k 2222582.

4554828.46k

165696.

46k

31k

36k

94k

22k

06k

55k

91k

90k

82k

18k

05k

64k

67k

89k

second processed.
256 bytes

416301.

1514778.

5167110.

9870507.

26613686.

574871.

4800168.

4541298.

23757293

22107652.

1299788.

4523019.

4229439.

4194812.

1117826.

4084088.

3749333

23k

62k

31k

86k

27k

64k

19k

09k

.40k

18k

12k

52k

91k

76k

90k

23k

.08k

1024 bytes

416687.

1555236.

5927086.

10254096.

29902703.

634507.

5930596.

5743022.

28413146.

27229352,

1257189.

5177496.

5049118.

4935891.

1104301.

4510005.

4412143.

10k

52k

76k

38k

27k

61k

01k

42k

79k

28k

03k

92k

04k

63k

40k

59k

27k

8192

19

pgmoneta

AES-256-CTR d 730844.97k 2081179.20k 3673258.15k 4346793.64k
4515722 .58k 4594335.74k

*: AES-NI disabled; 8: 8 cores; d: decryption

20

pgmoneta

6 RPM

pgmoneta can be built into a RPM for Fedora systems.

6.1 Requirements

dnf dinstall gcc rpm-build rpm-devel rpmlint make python bash coreutils
diffutils patch rpmdevtools chrpath

6.2 Setup RPM development

rpmdev-setuptree

6.3 Create source package

git clone https://github.com/pgmoneta/pgmoneta.git
cd pgmoneta

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release ..

make package_source

6.4 Create RPM package

cp pgmoneta-$VERSION.tar.gz ~/rpmbuild/SOURCES
QA_RPATHS=0x0001 rpmbuild -bb pgmoneta.spec

The resulting RPM will be located in ~/ rpmbu-ild/RPMS/x86_64/,if your architecture is x86_64

21

https://github.com/pgmoneta/pgmoneta
https://getfedora.org/

pgmoneta

7 Troubleshooting

7.1 Could not get version for server
If you get this FATAL during startup check your PostgreSQL logins
psql postgres

and

psql -U repl postgres

And, check the PostgreSQL logs for any error.

Setting Llog_Tlevel to DEBUGS5 in pgmoneta.conf could provide more information about the

error.

22

pgmoneta

8 Acknowledgement

8.1 Authors

pgmoneta was created by the following authors:

Jesper Pedersen <jesper.pedersen@comcast.net>

David Fetter <david@fetter.org>

Will Leinweber <will@bitfission.com>

Luca Ferrari <flucal978@gmail.com>

Nikita Bugrovsky <nbugrovs@redhat.com>

Mariam Fahmy <mariamfahmy66@gmail.com>

Jichen Xu <kyokitisin@gmail.com>

Saurav Pal <resyfer.dev@gmail.com>

Bokket <bokkett@gmail.com>

Haoran Zhang <andrewzhr9911@gmail.com>

Hazem Alrawi <hazemalrawi7@gmail.com>

Shahryar Soltanpour <shahryar.soltanpour@gmail.com>
Shikhar Soni <shikharish@5@gmail.com>

Nguyen Cong Nhat Le <lenguyencongnhat200l@gmail.com>
Chao Gu <chadraven369@gmail.com>

Luchen Zhao <lucian.zlc@gmail.com>

Joan Jeremiah J <joanjeremiah04@gmail.com>

Tury Santos <iuryroberto@gmail.com>

Palak Chaturvedi <palakchaturvedi2843@gmail.com>
Jakub Jirutka <jakub@jirutka.cz>

8.2 Contributing

Contributions to pgmoneta are managed on GitHub

« Ask a question

Raise an issue
» Feature request
Code submission

Contributions are most welcome!
Please, consult our Code of Conduct policies for interacting in our community.

Consider giving the project a star on GitHub if you find it useful. And, feel free to follow the project on
Twitter as well.

23

https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta
https://github.com/pgmoneta/pgmoneta/discussions
https://github.com/pgmoneta/pgmoneta/issues
https://github.com/pgmoneta/pgmoneta/issues
https://github.com/pgmoneta/pgmoneta/pulls
https://github.com/pgmoneta/pgmoneta/blob/main/CODE_OF_CONDUCT.md
https://github.com/pgmoneta/pgmoneta/stargazers
https://github.com/pgmoneta/pgmoneta
https://twitter.com/pgmoneta/

pgmoneta

9 License

Copyright (C) 2024 The pgmoneta community

Redistribution and use 1in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

BSD-3-Clause

9.1 libart

Our adaptive radix tree (ART) implementation is based on The Adaptive Radix Tree: ARTful Indexing for
Main-Memory Databases and libart which has a 3-BSD license as

Copyright (c) 2012, Armon Dadgar
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

24

https://opensource.org/licenses/BSD-3-Clause
http://www-db.in.tum.de/~leis/papers/ART.pdf
http://www-db.in.tum.de/~leis/papers/ART.pdf
https://github.com/armon/libart
https://opensource.org/licenses/BSD-3-Clause

pgmoneta

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the organization nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARMON DADGAR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

25

	Introduction
	Features
	Platforms

	Installation
	Fedora
	RHEL 8 / RockyLinux 8
	RHEL 9 / RockyLinux 9
	Compiling the source
	RHEL / RockyLinux
	FreeBSD
	Build

	Compiling the documentation
	Build

	Git guide
	Basic steps
	Start by forking the repository

	Clone your repository locally
	Add upstream
	Do a work branch
	Make the changes
	Multiple commits
	Rebase
	Force push
	Format source code
	Repeat
	Undo

	Architecture
	Overview
	Shared memory
	Network and messages
	Memory
	Management
	Remote management

	libev usage
	Signals
	Reload
	Prometheus
	Logging
	Protocol

	Encryption
	Overview
	Encryption Configuration
	Encryption / Decryption CLI Commands
	decrypt
	encrypt

	Benchmark

	RPM
	Requirements
	Setup RPM development
	Create source package
	Create RPM package

	Troubleshooting
	Could not get version for server

	Acknowledgement
	Authors
	Contributing

	License
	libart

