{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "import time\n", "\n", "import hbp_knowledge\n", "import pybel\n", "import pybel_jupyter\n", "from pybel.struct import remove_pathologies" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.7.2 (default, Jan 13 2019, 12:50:15) \n", "[Clang 10.0.0 (clang-1000.11.45.5)]\n" ] } ], "source": [ "print(sys.version)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Thu Feb 21 16:33:08 2019\n" ] } ], "source": [ "print(time.asctime())" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PyBEL Version: 0.13.2-dev\n", "PyBEL-Jupyter Version: 0.2.1-dev\n", "HBP Knowledge Version: 0.0.3\n" ] } ], "source": [ "print(f'PyBEL Version: {pybel.get_version()}')\n", "print(f'PyBEL-Jupyter Version: {pybel_jupyter.get_version()}')\n", "print(f'HBP Knowledge Version: {hbp_knowledge.VERSION}')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "graphs = hbp_knowledge.repository.get_graphs()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "proteostasis_graphs = {\n", " path: graph\n", " for path, graph in graphs.items()\n", " if 'proteostasis/' in path\n", "} " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Proteostasis Subgraph v1.0.0\n", "Number of Nodes: 652\n", "Number of Edges: 1312\n", "Number of Citations: 5\n", "Number of Authors: 27\n", "Network Density: 3.09E-03\n", "Number of Components: 10\n", "Number of Warnings: 0\n" ] } ], "source": [ "proteostasis_graph = pybel.union(proteostasis_graphs.values())\n", "proteostasis_graph.name = 'Proteostasis Subgraph'\n", "proteostasis_graph.summarize()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "remove_pathologies(proteostasis_graph)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "application/javascript": [ "function init_d3_force(d3, graph, chart, width, height, function_colors) {\n", " var focus_node = null;\n", " var highlight_node = null;\n", "\n", " // Highlight color variables\n", "\n", " // Highlight color of the node boundering\n", " const highlight_node_boundering = \"#4EB2D4\";\n", "\n", " // Highlight color of the edge\n", " const highlighted_link_color = \"#4EB2D4\";\n", "\n", " // Text highlight color\n", " const highlight_text = \"#4EB2D4\";\n", "\n", " // Size when zooming scale\n", " var size = d3.scalePow().exponent(1)\n", " .domain([1, 100])\n", " .range([8, 24]);\n", "\n", " // Simulation parameters\n", " const linkDistance = 100;\n", " const fCharge = -1000;\n", " const linkStrength = 0.7;\n", " const collideStrength = 1;\n", "\n", " // Simulation defined with variables\n", " var simulation = d3.forceSimulation()\n", " .force(\"link\", d3.forceLink()\n", " .distance(linkDistance)\n", " .strength(linkStrength)\n", " )\n", " .force(\"collide\", d3.forceCollide()\n", " .radius(function (d) {\n", " return d.r + 10\n", " })\n", " .strength(collideStrength)\n", " )\n", " .force(\"charge\", d3.forceManyBody()\n", " .strength(fCharge)\n", " )\n", " .force(\"center\", d3.forceCenter(width / 2, height / 2))\n", " .force(\"y\", d3.forceY(0))\n", " .force(\"x\", d3.forceX(0));\n", "\n", " // Pin down functionality\n", " var node_drag = d3.drag()\n", " .on(\"start\", dragstarted)\n", " .on(\"drag\", dragged)\n", " .on(\"end\", dragended);\n", "\n", " function dragstarted(d) {\n", " if (!d3.event.active) simulation.alphaTarget(0.3).restart();\n", " d.fx = d.x;\n", " d.fy = d.y;\n", " }\n", "\n", " function dragged(d) {\n", " d.fx = d3.event.x;\n", " d.fy = d3.event.y;\n", " }\n", "\n", " function dragended(d) {\n", " if (!d3.event.active) simulation.alphaTarget(0);\n", " }\n", "\n", " function releasenode(d) {\n", " d.fx = null;\n", " d.fy = null;\n", " }\n", "\n", " //END Pin down functionality\n", "\n", "\n", " /**\n", " * Gets the best name for a node object\n", " * @param {object} d object\n", " * @returns {str} canonical name of the node\n", " */\n", " function getCanonicalName(d) {\n", " if (d.name && !(d.variants || d.reactants || d.products || d.members)) {\n", " return d.name\n", " } else if (d.bel) {\n", " return d.bel\n", " } else {\n", " console.log('Undefined node: ' + d);\n", " return 'UNDEFINED'\n", " }\n", " }\n", "\n", " const color_circunferencia = \"black\";\n", " const default_link_color = \"#AAAAAA\";\n", " const nominal_base_node_size = 8;\n", "\n", " // Normal and highlighted stroke of the links (double the width of the link when highlighted)\n", " const nominal_stroke = 1.5;\n", "\n", " // Zoom variables\n", " const min_zoom = 0.1;\n", " const max_zoom = 10;\n", "\n", " var svg = d3.select(chart).append(\"svg\")\n", " .attr(\"width\", width)\n", " .attr(\"height\", height);\n", "\n", " // // Create definition for arrowhead.\n", " svg.append(\"defs\").append(\"marker\")\n", " .attr(\"id\", \"arrowhead\")\n", " .attr(\"viewBox\", \"0 -5 10 10\")\n", " .attr(\"refX\", 20)\n", " .attr(\"refY\", 0)\n", " .attr(\"markerUnits\", \"strokeWidth\")\n", " .attr(\"markerWidth\", 6)\n", " .attr(\"markerHeight\", 6)\n", " .attr(\"orient\", \"auto\")\n", " .append(\"path\")\n", " .attr(\"d\", \"M0,-5L10,0L0,5\");\n", "\n", " // // Create definition for stub.\n", " svg.append(\"defs\").append(\"marker\")\n", " .attr(\"id\", \"stub\")\n", " .attr(\"viewBox\", \"-1 -5 2 10\")\n", " .attr(\"refX\", 15)\n", " .attr(\"refY\", 0)\n", " .attr(\"markerUnits\", \"strokeWidth\")\n", " .attr(\"markerWidth\", 6)\n", " .attr(\"markerHeight\", 6)\n", " .attr(\"orient\", \"auto\")\n", " .append(\"path\")\n", " .attr(\"d\", \"M 0,0 m -1,-5 L 1,-5 L 1,5 L -1,5 Z\");\n", "\n", " // Background\n", " svg.append(\"rect\")\n", " .attr(\"width\", \"100%\")\n", " .attr(\"height\", \"100%\")\n", " .attr(\"fill\", \"#ffffff\")\n", " .style(\"pointer-events\", \"all\")\n", " // Zoom + panning functionality\n", " .call(d3.zoom()\n", " .scaleExtent([min_zoom, max_zoom])\n", " .on(\"zoom\", zoomed))\n", " .on(\"dblclick.zoom\", null);\n", "\n", "\n", " function zoomed() {\n", " g.attr(\"transform\", d3.event.transform);\n", " }\n", "\n", " // g = svg object where the graph will be appended\n", " var g = svg.append(\"g\");\n", "\n", " var linkedByIndex = {};\n", " graph.links.forEach(function (d) {\n", " linkedByIndex[d.source + \",\" + d.target] = true;\n", " });\n", "\n", " function isConnected(a, b) {\n", " return linkedByIndex[a.index + \",\" + b.index] || linkedByIndex[b.index + \",\" + a.index] || a.index == b.index;\n", " }\n", "\n", " function ticked() {\n", " link.attr(\"x1\", function (d) {\n", " return d.source.x;\n", " })\n", " .attr(\"y1\", function (d) {\n", " return d.source.y;\n", " })\n", " .attr(\"x2\", function (d) {\n", " return d.target.x;\n", " })\n", " .attr(\"y2\", function (d) {\n", " return d.target.y;\n", " });\n", "\n", " node\n", " .attr(\"transform\", function (d) {\n", " return \"translate(\" + d.x + \", \" + d.y + \")\";\n", " });\n", " }\n", "\n", "\n", " simulation\n", " .nodes(graph.nodes)\n", " .on(\"tick\", ticked);\n", "\n", " simulation.force(\"link\")\n", " .links(graph.links);\n", "\n", " // Definition of links nodes text...\n", "\n", " var link = g.selectAll(\".link\")\n", " .data(graph.links)\n", " .enter().append(\"line\")\n", " .style(\"stroke-width\", nominal_stroke)\n", " .style(\"stroke\", default_link_color)\n", " .style(\"stroke-dasharray\", function (d) {\n", " if (['decreases', 'directlyDecreases', 'increases', 'directlyIncreases', 'negativeCorrelation',\n", " 'positiveCorrelation'].indexOf(d.relation) >= 0) {\n", " return \"none\"\n", " } else {\n", " return \"4, 4\"\n", " }\n", " })\n", " .attr(\"marker-start\", function (d) {\n", " if ('positiveCorrelation' == d.relation) {\n", " return \"url(#arrowhead)\"\n", " }\n", " else if ('negativeCorrelation' == d.relation) {\n", " return \"url(#stub)\"\n", " }\n", " else {\n", " return \"\"\n", " }\n", " })\n", " .attr(\"marker-end\", function (d) {\n", " if (['increases', 'directlyIncreases', 'positiveCorrelation', 'isA', 'partOf'].indexOf(d.relation) >= 0) {\n", " return \"url(#arrowhead)\"\n", " } else if (['decreases', 'directlyDecreases', 'negativeCorrelation'].indexOf(d.relation) >= 0) {\n", " return \"url(#stub)\"\n", " } else {\n", " return \"\"\n", " }\n", " });\n", "\n", " var node = g.selectAll(\".nodes\")\n", " .data(graph.nodes)\n", " .enter().append(\"g\")\n", " .attr(\"class\", \"node\")\n", " // Next two lines -> Pin down functionality\n", " .on('dblclick', releasenode)\n", " .call(node_drag);\n", "\n", " var circle = node.append(\"path\")\n", " .attr(\"d\", d3.symbol()\n", " .size(function (d) {\n", " return Math.PI * Math.pow(size(d.size) || nominal_base_node_size, 2);\n", " })\n", " )\n", " .attr(\"class\", function (d) {\n", " return d.function\n", " })\n", " .style('fill', function (d) {\n", " return function_colors[d.function]\n", " })\n", " .style(\"stroke-width\", nominal_stroke)\n", " .style(\"stroke\", color_circunferencia);\n", "\n", " var text = node.append(\"text\")\n", " .attr(\"class\", \"node-name\")\n", " // .attr(\"id\", nodehashes[d])\n", " .attr(\"fill\", \"black\")\n", " .attr(\"dx\", 12)\n", " .attr(\"dy\", \".35em\")\n", " .text(function (d) {\n", " return getCanonicalName(d)\n", " });\n", "\n", " // Highlight on mouseenter and back to normal on mouseout\n", " node.on(\"mouseenter\", function (d) {\n", " set_highlight(d);\n", " })\n", " .on(\"mousedown\", function () {\n", " d3.event.stopPropagation();\n", " }).on(\"mouseout\", function () {\n", " exit_highlight();\n", " });\n", "\n", " function exit_highlight() {\n", " highlight_node = null;\n", " if (focus_node === null) {\n", " if (highlight_node_boundering != color_circunferencia) {\n", " circle.style(\"stroke\", color_circunferencia);\n", " text.style(\"fill\", \"black\");\n", " link.style(\"stroke\", default_link_color);\n", " }\n", " }\n", " }\n", "\n", " function set_highlight(d) {\n", " if (focus_node !== null) d = focus_node;\n", " highlight_node = d;\n", "\n", " if (highlight_node_boundering != color_circunferencia) {\n", " circle.style(\"stroke\", function (o) {\n", " return isConnected(d, o) ? highlight_node_boundering : color_circunferencia;\n", " });\n", " text.style(\"fill\", function (o) {\n", " return isConnected(d, o) ? highlight_text : \"black\";\n", " });\n", " link.style(\"stroke\", function (o) {\n", " return o.source.index == d.index || o.target.index == d.index ? highlighted_link_color : default_link_color;\n", " });\n", " }\n", " }\n", "\n", "\n", " // Freeze the graph when space is pressed\n", " function freezeGraph() {\n", " // Space button Triggers STOP\n", " if (d3.event.keyCode == 32) {\n", " simulation.stop();\n", " }\n", " }\n", "\n", " // Call freezeGraph when a key is pressed, freezeGraph checks whether this key is \"Space\" that triggers the freeze\n", " d3.select(window).on(\"keydown\", freezeGraph);\n", "}\n", "\n", "require.config({\n", " paths: {\n", " d3: '//cdnjs.cloudflare.com/ajax/libs/d3/4.5.0/d3.min'\n", " }\n", "});\n", "\n", "var elementInnerHTML = \"
\";\n", "\n", "element.append(elementInnerHTML);\n", "\n", "require(['d3'], function (d3) {\n", " return init_d3_force(d3, {\"directed\": true, \"graph\": {\"annotation_list\": {}, \"annotation_pattern\": {\"Species\": \"^\\\\d+$\"}, \"annotation_url\": {\"Anatomy\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/anatomy/anatomy-20170511.belanno\", \"Cell\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/cell/cell-20170511.belanno\", \"CellLine\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/cell-line/cell-line-20170511.belanno\", \"CellStructure\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/cell-structure/cell-structure-20170511.belanno\", \"Confidence\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/confidence/confidence-1.0.0.belanno\", \"Disease\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/disease/disease-20170511.belanno\", \"MeSHAnatomy\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/mesh-anatomy/mesh-anatomy-20170511.belanno\", \"MeSHDisease\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/mesh-diseases/mesh-diseases-20170511.belanno\", \"Subgraph\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/neurommsig/neurommsig-1.0.3.belanno\", \"TextLocation\": \"https://arty.scai.fraunhofer.de/artifactory/bel/annotation/text-location/text-location-1.0.1.belanno\"}, \"document_metadata\": {\"authors\": \"Esther Wollert\", \"contact\": \"charles.hoyt@scai.fraunhofer.de\", \"copyright\": \"Copyright © 2018 Fraunhofer Institute SCAI, All rights reserved.\", \"description\": \"\", \"licenses\": \"CC BY 4.0\", \"name\": \"Proteostasis Subgraph\", \"version\": \"1.0.0\"}, \"namespace_pattern\": {\"DBSNP\": \"rs[0-9]+\", \"PUBCHEM\": \"^\\\\d+$\", \"TAXONOMY\": \"^\\\\d+$\", \"UNIPROT\": \"^([A-N,R-Z][0-9]([A-Z][A-Z, 0-9][A-Z, 0-9][0-9]){1,2})|([O,P,Q][0-9][A-Z, 0-9][A-Z, 0-9][A-Z, 0-9][0-9])(\\\\.\\\\d+)?$\"}, \"namespace_url\": {\"CHEBI\": \"https://raw.githubusercontent.com/pharmacome/terminology/b46b65c3da259b6e86026514dfececab7c22a11b/external/chebi-names.belns\", \"CTO\": \"https://arty.scai.fraunhofer.de/artifactory/bel/namespace/clinical-trial-ontology/clinical-trial-ontology-1.0.0.belns\", \"DO\": \"https://arty.scai.fraunhofer.de/artifactory/bel/namespace/disease-ontology/disease-ontology-20170725.belns\", \"DRUGBANK\": \"https://raw.githubusercontent.com/pharmacome/terminology/b46b65c3da259b6e86026514dfececab7c22a11b/external/drugbank-names.belns\", \"ECCODE\": \"https://raw.githubusercontent.com/pharmacome/terminology/b46b65c3da259b6e86026514dfececab7c22a11b/external/ec-code.belns\", \"FPLX\": \"https://raw.githubusercontent.com/sorgerlab/famplex/e8ae9926ff95266032cb74f77973c84939bffbeb/export/famplex.belns\", \"GO\": \"https://raw.githubusercontent.com/pharmacome/terminology/a5b84013a08880975ca84f40999e4404b14a97e2/external/go-names.belns\", \"HBP\": \"https://raw.githubusercontent.com/pharmacome/terminology/cf4d8bb88754f036b943b4d94ad96e103dcb7149/export/hbp-names.belns\", \"HGNC\": \"https://raw.githubusercontent.com/pharmacome/terminology/b46b65c3da259b6e86026514dfececab7c22a11b/external/hgnc-names.belns\", \"HGNCGENEFAMILY\": \"https://raw.githubusercontent.com/pharmacome/terminology/3074b85b858455d8eeb76cfcdef685ced19bbe11/external/hgnc.genefamily-names.belns\", \"HP\": \"https://arty.scai.fraunhofer.de/artifactory/bel/namespace/hp/hp-20171108.belns\", \"INTERPRO\": \"https://raw.githubusercontent.com/pharmacome/terminology/f2f993e599694ab5ce989cc39d789a499f75db99/external/interpro-names.belns\", \"MESH\": \"https://raw.githubusercontent.com/pharmacome/terminology/01c9daa61012b37dd0a1bc962521ba51a15b38f1/external/mesh-names.belns\", \"MGI\": \"https://raw.githubusercontent.com/pharmacome/terminology/f2f993e599694ab5ce989cc39d789a499f75db99/external/mgi-names.belns\", \"MIRBASE\": \"https://raw.githubusercontent.com/pharmacome/terminology/b46b65c3da259b6e86026514dfececab7c22a11b/external/mirbase-names.belns\", \"NCBIGENE\": \"https://raw.githubusercontent.com/pharmacome/terminology/b46b65c3da259b6e86026514dfececab7c22a11b/external/entrez.belns\", \"PFAM\": \"https://raw.githubusercontent.com/pharmacome/terminology/8ccfed235e418e4c8aa576f9a5ef0f838e794c7f/external/pfam-names.belns\", \"RGD\": \"https://raw.githubusercontent.com/pharmacome/terminology/f2f993e599694ab5ce989cc39d789a499f75db99/external/rgd-names.belns\"}, \"namespaces_uncached\": [], \"path\": \"proteostasis/brehme2014.bel\", \"pybel_version\": \"0.13.2-dev\"}, \"links\": [{\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Concomitant cleavage of APP by beta and gamma secretase at specific sites can result in fragments (Abeta1-40 or Abeta1-42) that can misfold and form extracellular fibrils.\", \"key\": \"4f2326c5ee18a22527873786a64d2e80a4226644d9a9665e5374d10ddb1567e94cffd680e20b4660291498dc47e789c7337e45ffc326ac9600382982bd62e752\", \"line\": 666, \"relation\": \"increases\", \"source\": 4, \"target\": 34}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"The ATP-dependent chaperones are comprised of the 5 HSP90s, 17 HSP70s, 14 HSP60s, 6 ER-specific, and 8 MITO-specific Hsp100/AAA+ ATPases, respectively.\", \"key\": \"e16a4ad53ea0a6726cc9c0d9c456acd748dcc4ca052b6f5d927e5ee0bb826240ba80768d2dc21ffd00d0ce4cb0e5de070cd42f58afbb0e36d0c2b693a91d392e\", \"line\": 87, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"association\", \"source\": 10, \"target\": 360}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"The ATP-dependent chaperones are comprised of the 5 HSP90s, 17 HSP70s, 14 HSP60s, 6 ER-specific, and 8 MITO-specific Hsp100/AAA+ ATPases, respectively.\", \"key\": \"86bfeeece2bca97bf63b174d41e49c57bb9fe8e6a456960c12cd4ba149dff34f09114b638b90facb19b52e2e00bbd1fed91b75e009e236c3bcd5794bb7f349ba\", \"line\": 88, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"association\", \"source\": 10, \"target\": 361}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"The ATP-dependent chaperones are comprised of the 5 HSP90s, 17 HSP70s, 14 HSP60s, 6 ER-specific, and 8 MITO-specific Hsp100/AAA+ ATPases, respectively.\", \"key\": \"abd0c930b954363134e575e69bf251fda8449b3ba653a2e700e2fac83db0e7d964533ea0c6179329b777a27ada8303610346e64702757e70f03a55fa5af8a24b\", \"line\": 89, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"association\", \"source\": 10, \"target\": 458}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Another key early finding was that the cleavage of the ubiquitin chain from the substrate was ATP-dependent and was coupled to the translocation of the protein substrate into the 20S core\", \"key\": \"5ef77aaebbf96e346bd843643f9d2da4bd6ee8231b1059c2d6888bd054b93830da26ed6f9129d7bc804698eb019f7128dd1886f0bb93385777b41a2fc709aefc\", \"line\": 282, \"relation\": \"decreases\", \"source\": 10, \"target\": 178}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Another key early finding was that the cleavage of the ubiquitin chain from the substrate was ATP-dependent and was coupled to the translocation of the protein substrate into the 20S core\", \"key\": \"db4ac17a482200bd98637e96c0c4439a5028d80ab73beb44ba225abd4b0772d3ecf070bc2ce8d5fab628e1f5a69e8f9ecc27157feb8432f10ec9c71ad7b0410f\", \"line\": 283, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}, \"toLoc\": {\"name\": \"20 S Proteasome\", \"namespace\": \"HBP\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 10, \"target\": 61}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Proteome fidelity is maintained by the protein homeostasis (proteostasis) network (PN), a multi-compartmental system that coordinatesprotein synthesis, folding, disaggregation, and degradation (1).\", \"key\": \"06ca84e0c9005f672d726671ac51908c9363099d804795cd2235244e005b9abf3949dcf9ff1c9f10fa8cb5a0ff83092999cb502bc27e1e3fe9b065e1db7888e6\", \"line\": 82, \"relation\": \"association\", \"source\": 106, \"target\": 133}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"TPR proteins tend to be induced, whereas HSP40s are repressed (Figure 1B).\", \"key\": \"7f93aba6fc54ed42cc18ac4b9cf0b0821eff5212969fecd650d40dafd869aeae64c928e76dbabf02e7d0d617c0a4e0a47c449f529596bf55590feacaf818f590\", \"line\": 94, \"relation\": \"increases\", \"source\": 147, \"target\": 566}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Ranked by decreasing median aging correlation, the induction of sHSPs and TPR genes consistently ranked high and the HSP60s, HSP40s, and HSP70s were consistently repressed.\", \"key\": \"d7a2e03dc4920d68b2f3a1f31679198abe16c6d874a50707853e3059ef0e8aadabd0089ee20e247afcf51f86193643fca341e83235b470671ca9d012b0309a10\", \"line\": 110, \"relation\": \"increases\", \"source\": 147, \"target\": 566}, {\"annotations\": {\"MeSHDisease\": {\"Alzheimer Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Among the genes that are induced in brain aging and disease are sHSPs and TPR-containing chaperone genes (Figures S3A–S3D).\", \"key\": \"70177340a1f665d8af60dab8c80a0b5902c25120ede1b22a5d451642bb667fb13c3fc6cbd91e8faa8b039df878eb44ba9496bbafb6f164fc101068f6dc6b2df6\", \"line\": 128, \"relation\": \"increases\", \"source\": 147, \"target\": 566}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"TPR proteins tend to be induced, whereas HSP40s are repressed (Figure 1B).\", \"key\": \"b5de91aa4eaec8ec02cfb6f6a75e90a99334dd5263221328f8779fcb38db7eacfa438b7262956cac1aac3a9450683da0160d73a843d69b758a804db4fc57ec69\", \"line\": 95, \"relation\": \"decreases\", \"source\": 147, \"target\": 590}, {\"annotations\": {\"MeSHDisease\": {\"Alzheimer Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Among the genes that are repressed in both aging and AD, the HSP70- HSP40 system corresponds to 36% of the 58 genes (Table S3D).\", \"key\": \"182e13134901f17a973a0f4a383fa06b67366332b8d98d67b38b1f16b45ba5e76da88ceb992cf16142efb2a918e0ddb5055c633647704adffba8dfd15c9dc2e0\", \"line\": 102, \"relation\": \"decreases\", \"source\": 147, \"target\": 590}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Ranked by decreasing median aging correlation, the induction of sHSPs and TPR genes consistently ranked high and the HSP60s, HSP40s, and HSP70s were consistently repressed.\", \"key\": \"7f0b4ee63eb12541dbda29a337180f5b0219234dcdd5ae4907922679c060e48d71d7a62d74b8c33200aeffcb314bed8830f74538ee88da7cdca916053814fc67\", \"line\": 112, \"relation\": \"decreases\", \"source\": 147, \"target\": 590}, {\"annotations\": {\"MeSHDisease\": {\"Alzheimer Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Among repressed genes, the HSP40s exhibited significant change (p = 0.04875), with 62% of 48 HSP40 genes repressed in aging (p < 0.05) and 51% repressed in AD.\", \"key\": \"46dc97d074a230d45882af5e52c3428a37bbe1bf0dfcac073ba6d0e4af8d142bbd2f7b0b56914366479ab188f904404e168b4004a7c8544a6202f289342d1be6\", \"line\": 120, \"relation\": \"decreases\", \"source\": 147, \"target\": 590}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Additionally, an investigation of chaperone and cochaperone gene expression in young (36±4 years of age) and aged (73 ±4 years of age) human brain tissue revealed that of 332 genes examined, 101 are significantly repressed with age, including HSP70, HSP40, HSP90, and TRiC genes (113). Furthermore, 62 chaperone genes, including several small HSPs, were found to be significantly induced, likely as a result of the cellular response to accumulating protein damage with age (113).\", \"key\": \"9cea6c5f2b08d8f92eccf9a143036be2d85bb8e88f38b7d9ace0bb2bf3cf1349c10357374bb80454669f66d49aa620f20e79dfb0356d55cbe3ce5c08b4c18f8a\", \"line\": 314, \"relation\": \"decreases\", \"source\": 147, \"target\": 590}, {\"annotations\": {\"MeSHDisease\": {\"Alzheimer Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Among the genes that are repressed in both aging and AD, the HSP70- HSP40 system corresponds to 36% of the 58 genes (Table S3D).\", \"key\": \"c43c15032fda93b6d8dafa8bd6e9885366489f58f9f7540b4ab3a9155ea9a909fbe85a0d2616b16013c1a37b92f0a8ee7ecee5e33c7daa2c1d33c02fe0b18c54\", \"line\": 101, \"relation\": \"decreases\", \"source\": 147, \"target\": 361}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Ranked by decreasing median aging correlation, the induction of sHSPs and TPR genes consistently ranked high and the HSP60s, HSP40s, and HSP70s were consistently repressed.\", \"key\": \"bbc3649e7916036725da1381cb8cfacf9bd07571e92644c6f71789b00c747121c00f1662ff8b1c9369bff7d984143dcf4a7364a279979f7b69ac87d893c83270\", \"line\": 113, \"relation\": \"decreases\", \"source\": 147, \"target\": 361}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Additionally, an investigation of chaperone and cochaperone gene expression in young (36±4 years of age) and aged (73 ±4 years of age) human brain tissue revealed that of 332 genes examined, 101 are significantly repressed with age, including HSP70, HSP40, HSP90, and TRiC genes (113). Furthermore, 62 chaperone genes, including several small HSPs, were found to be significantly induced, likely as a result of the cellular response to accumulating protein damage with age (113).\", \"key\": \"d03eeb670a1fd169ab30c267966a4bfbae46b09b5f69de579dcc599bb4581ecd0064b207a232ed70952f1887db2765fd5bdc660b04b050e74ba5999124bfd313\", \"line\": 312, \"relation\": \"decreases\", \"source\": 147, \"target\": 361}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Ranked by decreasing median aging correlation, the induction of sHSPs and TPR genes consistently ranked high and the HSP60s, HSP40s, and HSP70s were consistently repressed.\", \"key\": \"eb97d9b654aa3d3c4b3c050cf17e92d97786e9ec2a2d94373b496da41e4cb704c1119b3aa004eb8f099cb1229940d04477d6e8f9c04dd958b13ebf4a4fcc3664\", \"line\": 109, \"relation\": \"increases\", \"source\": 147, \"target\": 362}, {\"annotations\": {\"MeSHDisease\": {\"Alzheimer Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Among the genes that are induced in brain aging and disease are sHSPs and TPR-containing chaperone genes (Figures S3A–S3D).\", \"key\": \"777eb9d4729f68b97a1fee28b0f247e5309c8cd4ee93a9ce910ab568648e5df909595dcaba4a264b5194799f2d19b137d29e5502f549a139c570b296ee139c2e\", \"line\": 127, \"relation\": \"increases\", \"source\": 147, \"target\": 362}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Additionally, an investigation of chaperone and cochaperone gene expression in young (36±4 years of age) and aged (73 ±4 years of age) human brain tissue revealed that of 332 genes examined, 101 are significantly repressed with age, including HSP70, HSP40, HSP90, and TRiC genes (113). Furthermore, 62 chaperone genes, including several small HSPs, were found to be significantly induced, likely as a result of the cellular response to accumulating protein damage with age (113).\", \"key\": \"ad38cfb43a22b54516bde3c30925ee281181b426202aec6a7fa0bf0825e479d420e827b1dba46c65ed563840cff15c56b34f1b6a2dc42c6e44c812d5835cdc21\", \"line\": 315, \"relation\": \"increases\", \"source\": 147, \"target\": 362}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Ranked by decreasing median aging correlation, the induction of sHSPs and TPR genes consistently ranked high and the HSP60s, HSP40s, and HSP70s were consistently repressed.\", \"key\": \"0d6de566a28638f93d6a206aee7e47432749432b0dbda0f73dc559f21a6476c14a43b8e5762897c532572507cc6b2f2dfd7d66ea8645f87838fa33a6bfc44753\", \"line\": 111, \"relation\": \"decreases\", \"source\": 147, \"target\": 458}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"For example, concordantly aggravated expression pat- terns for the aging-induced genes HSPA2 (HSP70) and DNAJB2 (HSP40) and the aging-repressed HSPA12A (HSP70) and TOMM70A (TPR) were observed in brain biopsies from AD, HD, and PD patients (Figure 2C).\", \"key\": \"a9952d574beae00db14141ea019a018baa88e0180a5479ccb227c48e168d2e8ba92f90834680728186b14d388f0f571d010b2f15a46aa84a4481deb16f7512e5\", \"line\": 138, \"relation\": \"increases\", \"source\": 147, \"target\": 451}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"For example, concordantly aggravated expression pat- terns for the aging-induced genes HSPA2 (HSP70) and DNAJB2 (HSP40) and the aging-repressed HSPA12A (HSP70) and TOMM70A (TPR) were observed in brain biopsies from AD, HD, and PD patients (Figure 2C).\", \"key\": \"b8621f342fbcf40bf9449d09ccd6c0d5d3fd3642f3b5510094fba59ac6c349915c05e43a1717186f9a02ef508fddfa0f968552f57ef89a24ed251eb5b90c2dc5\", \"line\": 139, \"relation\": \"increases\", \"source\": 147, \"target\": 423}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"For example, concordantly aggravated expression pat- terns for the aging-induced genes HSPA2 (HSP70) and DNAJB2 (HSP40) and the aging-repressed HSPA12A (HSP70) and TOMM70A (TPR) were observed in brain biopsies from AD, HD, and PD patients (Figure 2C).\", \"key\": \"0840c533cd69b0ed395e3affc6e0dd059ab60b84bd1e43821c8f5134d513e08e6a668bf2c6be737b7c61db78d13d55043cf72365df9012a0ead025cb7c187f84\", \"line\": 140, \"relation\": \"decreases\", \"source\": 147, \"target\": 447}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"For example, concordantly aggravated expression pat- terns for the aging-induced genes HSPA2 (HSP70) and DNAJB2 (HSP40) and the aging-repressed HSPA12A (HSP70) and TOMM70A (TPR) were observed in brain biopsies from AD, HD, and PD patients (Figure 2C).\", \"key\": \"cee4264242a512bbca30494cd8c3b232b3c729ac09c150d390450fc18602e63d3c7e9c40f0bbe2599502d66c9549326fe31267267f5dfc9a3dc58a6810cc6d6d\", \"line\": 141, \"relation\": \"decreases\", \"source\": 147, \"target\": 564}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Four genes that are significantly repressed both in AD and HD (HSP90AB1, HSPA8, HSPA14, and TCP1) are also repressed in aging (Figure 6B).\", \"key\": \"c94d54ff2dfe89f47529d5a0c614f4e4157226110007f636dbc038cacd3c8a9f48e25881e00ebe6fd1e681d0bab29c576272fad6c1006926e51b2bf8a5f5737e\", \"line\": 192, \"relation\": \"decreases\", \"source\": 147, \"target\": 446}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Four genes that are significantly repressed both in AD and HD (HSP90AB1, HSPA8, HSPA14, and TCP1) are also repressed in aging (Figure 6B).\", \"key\": \"ef79f937f80c044832e7612a1e7c22dd9936d5c875c1440b5a6e568658aecaee766d146bc24f7cec4d6e698f4d576bccf94a88719986daa311b076d383d87404\", \"line\": 193, \"relation\": \"decreases\", \"source\": 147, \"target\": 454}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Four genes that are significantly repressed both in AD and HD (HSP90AB1, HSPA8, HSPA14, and TCP1) are also repressed in aging (Figure 6B).\", \"key\": \"1ce0c1c4c78432cac72871381447dc6d9dee276009069181af7e85767fa6af3aa32e3121a50c2787c0f1b6dd62735878a61b0b4cddbd316a2d5b353ed1d24010\", \"line\": 194, \"relation\": \"decreases\", \"source\": 147, \"target\": 448}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"Four genes that are significantly repressed both in AD and HD (HSP90AB1, HSPA8, HSPA14, and TCP1) are also repressed in aging (Figure 6B).\", \"key\": \"41be69ccb70f0032928f350e2f63ad466cec4198a26880fbdbba40029354e4bc91c42a1fe548e3f7c5c3c13e342be4873798370297e0ee86ed9937757071a027\", \"line\": 195, \"relation\": \"decreases\", \"source\": 147, \"target\": 561}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Furthermore, the activity of the PN can be altered permanently or transiently by development and aging, alterations in physiology, or exposure to environmental stress (1).\", \"key\": \"467da8ad5e7a27aa808bb09249e830a29060df4e751a9d868b542e5755a9a8124cce770facc10e85c384769bb181923c7768ed75de1b67b3b129902991425608\", \"line\": 90, \"relation\": \"regulates\", \"source\": 147, \"target\": 133}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Additionally, an investigation of chaperone and cochaperone gene expression in young (36±4 years of age) and aged (73 ±4 years of age) human brain tissue revealed that of 332 genes examined, 101 are significantly repressed with age, including HSP70, HSP40, HSP90, and TRiC genes (113). Furthermore, 62 chaperone genes, including several small HSPs, were found to be significantly induced, likely as a result of the cellular response to accumulating protein damage with age (113).\", \"key\": \"d478cb7b2c9a695b62d7f610bc9489d7c05dc4f9ddab6073993bc20e80f22fa69f97df9e55c9e940ecd76340ff8f8cbdf7eceb71034768a98d2f57294f2f7ad9\", \"line\": 313, \"relation\": \"decreases\", \"source\": 147, \"target\": 360}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"This functional screen identified 18 genes (Figure 3D), corresponding to ten ATP-dependent chaperones, HSC70 (hsp-1), HSP90 (daf-21), and eight subunits of the CCT/TRiC chaperonin complex; the co-chaperones, HSP40 (dnj-12) and CDC37 (cdc-37); and the TPR-domain pro- tein STI1 that upon knockdown significantly enhanced A b 42 pro- teotoxicity (Figure 3D).\", \"key\": \"e2900e7a7712c7cfeb757049b10e890c572762aec764cbbc9e7e8c7a40ab45b1b333318808d68a1dca3ac79c3447d6878aa2a0619ed68c87d69235f32eb191f6\", \"line\": 152, \"relation\": \"decreases\", \"source\": 357, \"target\": 4}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"These included all subunits of the CCT/TRiC complex (except CCT5); HSP40 and HSP70 family members DNAJA1 (HDJ-2), DNAJA4, HSPA8 (HSC70), and HSPA14 (Figures 5B and 5C); and the TPR-domain APC/C subunits CDC23 and CDC27 that, upon knockdown, led to significantly elevated aggregation (Figure S5B).\", \"key\": \"08b814872bf8157eb5680402205108d550925158409ebe4c6566c18e8dd90c274ba986bc1550352b887a3eecfff673a68e9df8245bc64469c8b2dfa9a4692d1f\", \"line\": 172, \"relation\": \"increases\", \"source\": 357, \"target\": 35}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" TRiC is essential for proper posttranslational folding of the cytoskeletal components actin and tubulin and is therefore essential for cell structure, division, and cargo delivery (11).\", \"key\": \"c7c81abb3f5513941e4b1aa48950a8a48028f40cc8444e2eb7dbff6c6f9c3962c5bc4e56435990652c44ce7c91df3aa9c9904a21549efa55400d5c2a24fdc904\", \"line\": 130, \"relation\": \"association\", \"source\": 357, \"target\": 43}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" TRiC is essential for proper posttranslational folding of the cytoskeletal components actin and tubulin and is therefore essential for cell structure, division, and cargo delivery (11).\", \"key\": \"fcfd568bcacefbf0591a9fa1794c5c5fd5c6501ae3cbbd4d4e4d6a7654833f8d2a28c4dc99baa3baa68540dd7b458ac5351ccd1bdd414ea41d6554b1bc6833a9\", \"line\": 131, \"relation\": \"association\", \"source\": 357, \"target\": 82}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" TRiC is essential for proper posttranslational folding of the cytoskeletal components actin and tubulin and is therefore essential for cell structure, division, and cargo delivery (11).\", \"key\": \"c00060f815267532b7bf811b7a55f2d45f30318e81cc173faca0777fd20c453dc107b1fa95ee08c6278e37d93ed564202eccf0829f301d29cdece149297fc0fb\", \"line\": 132, \"relation\": \"association\", \"source\": 357, \"target\": 94}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"HSF1A suppresses toxicity in cell and tissue culture models of HD and SCA-3/MJD and appears to activate HSF1 by impairing the activity of TRiC, a recently discovered negative regulator of HSF1.\", \"key\": \"a9a44cf30b4b3e911a50c9f697cb391a96be66b59589c3750beb27fac2a117819996eb8daf10b9915c748d9fcfca6ab60772e0bd850ba214947b792b962d9abd\", \"line\": 347, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 357, \"target\": 444}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"The ATP-dependent chaperones are comprised of the 5 HSP90s, 17 HSP70s, 14 HSP60s, 6 ER-specific, and 8 MITO-specific Hsp100/AAA+ ATPases, respectively.\", \"key\": \"7e02a3d6056c35aa855e52fb6c96c3d0a19144fecdece19e4738cf2e4c3b8c9f1bac6b74bb595719e5d1ab2339b4a1ed6262c45d7b40a3e24f062b7eecd8ea1d\", \"line\": 87, \"relation\": \"association\", \"source\": 360, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 10}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"This functional screen identified 18 genes (Figure 3D), corresponding to ten ATP-dependent chaperones, HSC70 (hsp-1), HSP90 (daf-21), and eight subunits of the CCT/TRiC chaperonin complex; the co-chaperones, HSP40 (dnj-12) and CDC37 (cdc-37); and the TPR-domain pro- tein STI1 that upon knockdown significantly enhanced A b 42 pro- teotoxicity (Figure 3D).\", \"key\": \"3026c41bfc95808bd2a1319c8c19b7f32dbb4bd6e6645bfd31ea9f0334a6ccf162b251134a18f1f161610963e518efe2538dc4acc10190fb49e4b89e9d2f705c\", \"line\": 151, \"relation\": \"decreases\", \"source\": 360, \"target\": 4}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \" Knockdown of daf-21 (HSP90) or hsp-1 (HSC70) led to increased paralysis in 45% and 44% of day 6 animals, respectively, and knockdown of TPR co-chaper- ones tpr-1 and dnj-12 resulted in 70% impairment (Figure S4D).\", \"key\": \"ced04efdb335c62b8415ace3144e8fa06c0a92428ce947060baf3fb04f78963f92a3676abd944c3c466ed4cbcfe749b62912d27d760c80ca11037994f6ecc0df\", \"line\": 161, \"relation\": \"increases\", \"source\": 360, \"target\": 106}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" As such, HSP70 and HSP90 are central to the process of triaging proteins for refolding or elimination.\", \"key\": \"9d0448cbcbece6dd98fb1a93cac966e9f34ee799f934a6360620dbd181320b140dfb8f9619059ab6f85bfac1dc79e7b31007828974400b8307c97bfceec9debe\", \"line\": 111, \"relation\": \"regulates\", \"source\": 360, \"target\": 106}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Molecular chaperones are central to the function of the PN and can be broadly grouped into the HSP70, HSP90, DNAJ/HSP40, chaperonin/HSP60, and small HSP (sHSP) families (10, 11).\", \"key\": \"0568fe2ff61c8accd758891078ea2bdeb5214cbd049eeb932bb0198224f48caf34b8407c9324b6c1e8677152b080ea08e45c66abb6ef2c33f83e329d86d6f7b3\", \"line\": 97, \"relation\": \"isA\", \"source\": 360, \"target\": 49}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" As such, HSP70 and HSP90 are central to the process of triaging proteins for refolding or elimination.\", \"key\": \"1daeeea7ec8f3b23fa8814014af5233408556a60e097e461ea5e66b5c59a3faa27f17d49c422fb05a2153988bb6fec639765abda2d8eb57353b42677352393e7\", \"line\": 112, \"relation\": \"regulates\", \"source\": 360, \"target\": 148}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"One strategy is to directly activate HSF1, thereby increasing the expression of multiple molecular chaperones simultaneously. This approach has been traditionally achieved by inhibition of HSP90 with compounds that bind the N-terminal ATP-binding pocket, such as radicicol, geldanamycin, or 17-AAG (64, 132–134). \", \"key\": \"d038c69f6e6fc34e178e553cdbb4a01973b7dc4dfa10d3b9d1ac8502ff5221e446852c96b9087e6abfb92796be9ae1f80800c99d87b071bfee163a5d35ea5091\", \"line\": 333, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 360, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 444}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"The ATP-dependent chaperones are comprised of the 5 HSP90s, 17 HSP70s, 14 HSP60s, 6 ER-specific, and 8 MITO-specific Hsp100/AAA+ ATPases, respectively.\", \"key\": \"f5fd78850c54f760afadca0bb1bf49d16beab03c51203ce124e64351e7061f8e739246dad57882eb95cacae14001242d7008aa2260d5cb86ac3a98f94a36ec5e\", \"line\": 88, \"relation\": \"association\", \"source\": 361, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 10}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The affinity of the polyglutamine fragment to Parkin was increased by Hsp70, in agreement with the hypothesis that molecular chaperones may play a role in the recruitment of misfolded proteins to the conjugation machinery (see, for example, Bercovich et al., 1997).\", \"key\": \"50c27270a4817c689e3d0b0ebcf27cf3f52ed213e3924defc9198d36b7ec3d27b2ab749902ffd2cd5d977d5eac902678a8d958a7b6579aab73009074064412c1\", \"line\": 450, \"relation\": \"increases\", \"source\": 361, \"target\": 215}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of the chaperone HSP70 has been found to reduce aggregate formation and death in nonneuronal cultured cells expressing mutant SOD1 (Bruening et al.,1999).\", \"key\": \"1347fe62c96a6524ab74b6c5629a47f64522ecd33c35992be41286932ecbed0860b46556e00ed044f8f970846064673679532616421c573dc4e2da529df44b64\", \"line\": 843, \"relation\": \"increases\", \"source\": 361, \"target\": 37}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of the chaperone HSP70 has been found to reduce aggregate formation and death in nonneuronal cultured cells expressing mutant SOD1 (Bruening et al.,1999).\", \"key\": \"f19deaad1eaf251e76a2fe1fdc2a878ca03ef0f16bb2599cba3ebdee974af6294de3ff8b825fbb3efaa297287ef5b652e39edd0ad3f24cb2e60b0b461a66fd4f\", \"line\": 844, \"relation\": \"increases\", \"source\": 361, \"target\": 80}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Molecular chaperones are central to the function of the PN and can be broadly grouped into the HSP70, HSP90, DNAJ/HSP40, chaperonin/HSP60, and small HSP (sHSP) families (10, 11).\", \"key\": \"851c8774c01ed2831e3b8655c5c4de286606cf349178beed0db574d9235b9c0f6f90197bc07eae042471c7596a178eef09ffd2085d1d0a3c2c2138825fed06a3\", \"line\": 96, \"relation\": \"isA\", \"source\": 361, \"target\": 49}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" As such, HSP70 and HSP90 are central to the process of triaging proteins for refolding or elimination.\", \"key\": \"3e8efd73e8b6ef94f564e0d554217689bad28e08953a1ec0e3e7c46b6ef177023b4494f34698e87a85916e4cba1e0e9cb0424b9a4d4f360b769fcd1417ba5cee\", \"line\": 109, \"relation\": \"regulates\", \"source\": 361, \"target\": 106}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" As such, HSP70 and HSP90 are central to the process of triaging proteins for refolding or elimination.\", \"key\": \"b785457927f73987fad05fa72da972014e05d47ba9fa64ecc4a7728cb227408e6b59c5b3d46ece70e8b62e932fcbf23ec43ae8d3330d8f530324da087a162f67\", \"line\": 110, \"relation\": \"regulates\", \"source\": 361, \"target\": 148}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Molecular chaperones are central to the function of the PN and can be broadly grouped into the HSP70, HSP90, DNAJ/HSP40, chaperonin/HSP60, and small HSP (sHSP) families (10, 11).\", \"key\": \"b9c9751bbb36844dd23775f55ba95b248fd903eb094588616a874335e9cecc0614bc5a7e159a2b57ea9f18e729fe9d4d0fbb4bec793b3139f4f997c3dd005da3\", \"line\": 100, \"relation\": \"isA\", \"source\": 362, \"target\": 49}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"These included all subunits of the CCT/TRiC complex (except CCT5); HSP40 and HSP70 family members DNAJA1 (HDJ-2), DNAJA4, HSPA8 (HSC70), and HSPA14 (Figures 5B and 5C); and the TPR-domain APC/C subunits CDC23 and CDC27 that, upon knockdown, led to significantly elevated aggregation (Figure S5B).\", \"key\": \"6d5b0510b3c31a4b14b6620b209a285cb1e8f7bccb428cf9a00451fcf50dc8782627c6710235bced5996c39e977dcbf3e164f0e7d52f8fdc95e7e44c16ed7c60\", \"line\": 173, \"relation\": \"causesNoChange\", \"source\": 400, \"target\": 35}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"These included all subunits of the CCT/TRiC complex (except CCT5); HSP40 and HSP70 family members DNAJA1 (HDJ-2), DNAJA4, HSPA8 (HSC70), and HSPA14 (Figures 5B and 5C); and the TPR-domain APC/C subunits CDC23 and CDC27 that, upon knockdown, led to significantly elevated aggregation (Figure S5B).\", \"key\": \"1e08086ebf57b46f9f4e7ba6b4f68f681ba0fe89fc05d920dba29f068dc50302f0addf89f7f2a1010b43ff30a7f973800dd195e60272c4237134a4430bcb152f\", \"line\": 178, \"relation\": \"increases\", \"source\": 401, \"target\": 35}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"These included all subunits of the CCT/TRiC complex (except CCT5); HSP40 and HSP70 family members DNAJA1 (HDJ-2), DNAJA4, HSPA8 (HSC70), and HSPA14 (Figures 5B and 5C); and the TPR-domain APC/C subunits CDC23 and CDC27 that, upon knockdown, led to significantly elevated aggregation (Figure S5B).\", \"key\": \"b9cbcfd3730f1828baba14c70955d44a58a6e87456964ea63d07585e8884fcf2cddd1539f9bb2acaf25642029f286420dd201d3e20420c87bc87205661895d89\", \"line\": 179, \"relation\": \"increases\", \"source\": 402, \"target\": 35}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"This functional screen identified 18 genes (Figure 3D), corresponding to ten ATP-dependent chaperones, HSC70 (hsp-1), HSP90 (daf-21), and eight subunits of the CCT/TRiC chaperonin complex; the co-chaperones, HSP40 (dnj-12) and CDC37 (cdc-37); and the TPR-domain pro- tein STI1 that upon knockdown significantly enhanced A b 42 pro- teotoxicity (Figure 3D).\", \"key\": \"3cfd4fa8c1e2f93c362c932d6d7bc84f566928ec55ab6389efb650d0b57a8f8160c5e4af82cef2bbc221b309284b3ebdb86d76ca7fd38ae8db9b8b3acfc68650\", \"line\": 153, \"relation\": \"decreases\", \"source\": 420, \"target\": 4}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \" Knockdown of daf-21 (HSP90) or hsp-1 (HSC70) led to increased paralysis in 45% and 44% of day 6 animals, respectively, and knockdown of TPR co-chaper- ones tpr-1 and dnj-12 resulted in 70% impairment (Figure S4D).\", \"key\": \"1ccaba662ec7eba564233f33fb915e30320e2f704b3358327f41b30c17638342c70f0303cc2e17a661b09cb578cb7f903fbd458e0e787e88410b4cc6bd7b76b9\", \"line\": 163, \"relation\": \"increases\", \"source\": 420, \"target\": 106}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"These included all subunits of the CCT/TRiC complex (except CCT5); HSP40 and HSP70 family members DNAJA1 (HDJ-2), DNAJA4, HSPA8 (HSC70), and HSPA14 (Figures 5B and 5C); and the TPR-domain APC/C subunits CDC23 and CDC27 that, upon knockdown, led to significantly elevated aggregation (Figure S5B).\", \"key\": \"271092916f87bbf6a6fcf272ca3c669bff4c7afd4e9d8326bbb2e57315b36cf87652c6bc13e18fc5cfc13ea1d75cb692cae2c6a59f72d551dc18c9bf48796293\", \"line\": 174, \"relation\": \"increases\", \"source\": 420, \"target\": 35}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"These included all subunits of the CCT/TRiC complex (except CCT5); HSP40 and HSP70 family members DNAJA1 (HDJ-2), DNAJA4, HSPA8 (HSC70), and HSPA14 (Figures 5B and 5C); and the TPR-domain APC/C subunits CDC23 and CDC27 that, upon knockdown, led to significantly elevated aggregation (Figure S5B).\", \"key\": \"ba25840e8490594e6f63b26be7bcc137947b3ac3b10fc34bbdd0e3574d40aab19bda6c000e32274ad298a44fe6adb784e7ce92eb991389cae6fd3bfa9e3720e6\", \"line\": 175, \"relation\": \"increases\", \"source\": 421, \"target\": 35}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Hsp90beta interacted particularly strongly with kinases (Figure 5B, filled blue circles), whereas the transcription factors p53 and HSF1 were among the most Hsp70-biased interactors (Figure 5B,green circles)\", \"key\": \"d71bb5c83877d6cb86b64119612995d0fad09ca56a79c6ff30c0f18ecb25ae9a562727590a6acf5357e188a2f52231ff120c2eaae51a98944aff3e816db552ce\", \"line\": 327, \"relation\": \"directlyIncreases\", \"source\": 446, \"target\": 176}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"These included all subunits of the CCT/TRiC complex (except CCT5); HSP40 and HSP70 family members DNAJA1 (HDJ-2), DNAJA4, HSPA8 (HSC70), and HSPA14 (Figures 5B and 5C); and the TPR-domain APC/C subunits CDC23 and CDC27 that, upon knockdown, led to significantly elevated aggregation (Figure S5B).\", \"key\": \"d868b0807f7f5dfb7ef53846db3bbb0cebaff0539235e1378c01997585cde4c3cb6508cf688aa735c99aaed9a842f774ff9be194a8cf3b4c0d49e6795e8ffe1f\", \"line\": 177, \"relation\": \"increases\", \"source\": 448, \"target\": 35}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"This functional screen identified 18 genes (Figure 3D), corresponding to ten ATP-dependent chaperones, HSC70 (hsp-1), HSP90 (daf-21), and eight subunits of the CCT/TRiC chaperonin complex; the co-chaperones, HSP40 (dnj-12) and CDC37 (cdc-37); and the TPR-domain pro- tein STI1 that upon knockdown significantly enhanced A b 42 pro- teotoxicity (Figure 3D).\", \"key\": \"fe81059f40ebd01f914958ff5bfe8d58154a42c99a902912a59729bf027b3a8db6524ed65a255f76da3444f99481a2dca62ab6b9ab5fd4446e0cb6d7611dd2d1\", \"line\": 150, \"relation\": \"decreases\", \"source\": 454, \"target\": 4}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \" Knockdown of daf-21 (HSP90) or hsp-1 (HSC70) led to increased paralysis in 45% and 44% of day 6 animals, respectively, and knockdown of TPR co-chaper- ones tpr-1 and dnj-12 resulted in 70% impairment (Figure S4D).\", \"key\": \"fba43b75c4e915e13e24b02879cc75831d20effb878a9ca8f845ca4eafd61f4182bf29c330d8af2f48500d2fd2a827b088d8e9c81eb4fc506060352d204d09e5\", \"line\": 162, \"relation\": \"increases\", \"source\": 454, \"target\": 106}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"These included all subunits of the CCT/TRiC complex (except CCT5); HSP40 and HSP70 family members DNAJA1 (HDJ-2), DNAJA4, HSPA8 (HSC70), and HSPA14 (Figures 5B and 5C); and the TPR-domain APC/C subunits CDC23 and CDC27 that, upon knockdown, led to significantly elevated aggregation (Figure S5B).\", \"key\": \"e2e72c755986ed5d85f9f0601fd25ab1038e8cfdba8be8d9ced3aaa39e4096f2734583617756aaca8bd237d6479d968da5be1841b1e336c072643db399e83385\", \"line\": 176, \"relation\": \"increases\", \"source\": 454, \"target\": 35}, {\"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"The ATP-dependent chaperones are comprised of the 5 HSP90s, 17 HSP70s, 14 HSP60s, 6 ER-specific, and 8 MITO-specific Hsp100/AAA+ ATPases, respectively.\", \"key\": \"64229570a5cc58d069d4c681074b93d7efe2e560c65b0d7e9f0bd29211e158a8e106bebb1bd3e6dc17f67374c9502855c6d025eea38aea177896f1cc1ff6ce31\", \"line\": 89, \"relation\": \"association\", \"source\": 458, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 10}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Molecular chaperones are central to the function of the PN and can be broadly grouped into the HSP70, HSP90, DNAJ/HSP40, chaperonin/HSP60, and small HSP (sHSP) families (10, 11).\", \"key\": \"d0a6f0180426b905549946a303324277c36d142714851547b7b7c52a6d8b2277e8b7f6a72df4baeddfaee63be33cedf6c6ebc70d90520080a6f02d609cece147\", \"line\": 99, \"relation\": \"isA\", \"source\": 458, \"target\": 49}, {\"annotations\": {\"MeSHAnatomy\": {\"Mitochondria\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" HSP60 is essential for maturation and maintenance of the mitochondrial proteome and is therefore intimately linked to energy production.\", \"key\": \"c2603fa4245c9166d1e077bd79cb680dba594a62572f055c4eced76e5c4da7c77dd730ab5b3278fa1d61abfcd109135276600b9711af645a78473ba853778812\", \"line\": 123, \"relation\": \"increases\", \"source\": 458, \"target\": 133}, {\"annotations\": {\"MeSHAnatomy\": {\"Mitochondria\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" HSP60 is essential for maturation and maintenance of the mitochondrial proteome and is therefore intimately linked to energy production.\", \"key\": \"013a36db042a1285aa8758480491d47992fe53e36cd84bd790c5583011549f54273c881e0820a5a594086643bdb51941c86d2fc5bfcd4eb470c5ad9d8808d635\", \"line\": 124, \"relation\": \"association\", \"source\": 458, \"target\": 137}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \"This functional screen identified 18 genes (Figure 3D), corresponding to ten ATP-dependent chaperones, HSC70 (hsp-1), HSP90 (daf-21), and eight subunits of the CCT/TRiC chaperonin complex; the co-chaperones, HSP40 (dnj-12) and CDC37 (cdc-37); and the TPR-domain pro- tein STI1 that upon knockdown significantly enhanced A b 42 pro- teotoxicity (Figure 3D).\", \"key\": \"057ec4293be21ca030b0adb942e755d62d75a49b25f9020c78645a97fc0d473e984ee7af70b8d259195770873993cb005a08ac92a0f95f7149c5e4aea0bd1eac\", \"line\": 154, \"relation\": \"decreases\", \"source\": 553, \"target\": 4}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Two subnetworks emerged within this central network, corresponding to known Hsp90 and Hsp70 chaperone complexes (Figure 2, blue and orange squares, respectively). These two subnetworks were bridged by a unique set of cochaperones (Figure 2, tan squares). Among these were the wellknown bridging factors HOP/STIP1, TPR2/DNAJC7, and CHIP/ STUB1, validating our approach (Brychzy et al., 2003; Schmid et al., 2012; Xu et al., 2002). Other bridging factors in this first tier of organization included members of the Hsp40 chaperone family (DNAJB1 and DNAJB6), HSP70-binding protein 1 (HSPBP1), the TPR domain protein EDRF1, and the E3 ligase NRDP1/RNF41\", \"key\": \"7155bf2b6f6e41511dc6cf90fc3a0202cb1843920fb1603a2ab2d96e8e979bbfadea1472e6686f3e87071f60df86bcbd0b27716d79782c88fa15a579e90c3884\", \"line\": 89, \"relation\": \"increases\", \"source\": 553, \"target\": 336}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}, \"MeSHDisease\": {\"Alzheimer Disease\": true, \"Huntington Disease\": true, \"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brehme M\", \"Garza D\", \"Ge H\", \"Morimoto RI\", \"Orton K\", \"Rolland T\", \"Soper JH\", \"Vidal M\", \"Villella A\", \"Voisine C\", \"Wachi S\", \"Zhu Y\"], \"date\": \"2014-11-06\", \"first\": \"Brehme M\", \"last\": \"Morimoto RI\", \"name\": \"Cell reports\", \"pages\": \"1135-50\", \"reference\": \"25437566\", \"title\": \"A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease.\", \"type\": \"PubMed\", \"volume\": \"9\"}, \"evidence\": \" Knockdown of daf-21 (HSP90) or hsp-1 (HSC70) led to increased paralysis in 45% and 44% of day 6 animals, respectively, and knockdown of TPR co-chaper- ones tpr-1 and dnj-12 resulted in 70% impairment (Figure S4D).\", \"key\": \"70cd5279c623a609b889dfe4509021ffd844a2dd0395a09283069fb2090c42951804b6cb48304273d3c730bff5eb55c869ebf693feac786329160306e93d34cb\", \"line\": 164, \"relation\": \"increases\", \"source\": 567, \"target\": 106}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Molecular chaperones are central to the function of the PN and can be broadly grouped into the HSP70, HSP90, DNAJ/HSP40, chaperonin/HSP60, and small HSP (sHSP) families (10, 11).\", \"key\": \"9c1c1a35e9ed2731f45c4034f548db3fe2f49164fbf1bca19a9842e87ff7530e864bb4565dc4e632bf5b33a139e99b2aae992a6f10633cf973a38c2abd79ecc7\", \"line\": 98, \"relation\": \"isA\", \"source\": 590, \"target\": 49}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"If oligomerization of mutant Huntingtin is inhibited by administration of Congo red starting at this age, no aggregates can be detected in the brain 5weeks later (Sanchez et al., 2003).\", \"key\": \"549a03f7815c5332e45e3eb3a8e971ad913392d17c959d8224390d53881a84eb126ceb341fb9d27f57576ecb2f93b52612749d5e59adfc7bf3c39c4d84a207d0\", \"line\": 961, \"relation\": \"decreases\", \"source\": 0, \"target\": 35}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In a parallel experiment using a cell culture model, Congo red was found to increase proteasomal activity in cells expressing a polyglutamine protein but not in cells expressing a control protein (Sanchez et al., 2003).\", \"key\": \"96ea9841f44a5523817a3b31ea0ad9bd9a36db5adb396625ac8686cb22fe2808312ff17838e1f95628543b3b9c63199c67e68c7a6fb17da6b576a88ff9b2b0e9\", \"line\": 967, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 0, \"target\": 155}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Parkin can rescue cells from the UPR elicited by a variety of stresses, such as exposure to H2O2, DNA alkylating agents, short-wavelength UV light, high osmolarity, and heat shock (Imai et al., 2000)\", \"key\": \"ab01161721f6f7797592aba6e2f0d4a542daab849d8b1662fc95082d311b86b288daee24e3c2b04da9fc6a17137926aa4136f4ef88493e46961aef196c1beae6\", \"line\": 401, \"relation\": \"increases\", \"source\": 2, \"target\": 116}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Concomitant cleavage of APP by beta and gamma secretase at specific sites can result in fragments (Abeta1-40 or Abeta1-42) that can misfold and form extracellular fibrils.\", \"key\": \"6cc125a8aa458f04db1a62ded4e36bc6147dd4bfeb399443321293cf82e219630ffe3f72a0fd8f0ab57a1ebab22cd64f354fe7f37d2cf60690c68e2a3d456548\", \"line\": 665, \"relation\": \"increases\", \"source\": 3, \"target\": 34}, {\"annotations\": {\"MeSHAnatomy\": {\"Reticulocytes\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, Abeta has been demonstrated to reduce proteasome activity in reticulocyte lysates (Gregori et al., 1995), suggesting that increased levels of the peptide could underlie the reduction in UPS function observed in the AD brain.\", \"key\": \"15850b74f0ea3804dc9a0d2c940fc1063c27331561e8507b65df9a543579bdadd65cbca083357f7b0275140011d463df97c30ee2de0d4f9e69bf1689024ecfed\", \"line\": 748, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 5, \"target\": 155}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Experiments examining the effects of Aβ on proteasomal activity in vitro revealed an inhibitory effect on the chymotrypsin-like properties of the 20S core (73), consistent with observations of impaired proteasome function in AD patient brains (74). \", \"key\": \"d34b0ac8e667876b55a4f33f61236d9f7239d336ed1bc2cd85b5eaa789d5278be638e403d4d4068bdc604d818e7cee62d12bb1a96be8ccc4681fca6db6f64874\", \"line\": 249, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 5, \"target\": 363}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Parkin can rescue cells from the UPR elicited by a variety of stresses, such as exposure to H2O2, DNA alkylating agents, short-wavelength UV light, high osmolarity, and heat shock (Imai et al., 2000)\", \"key\": \"ffe5b479502012200c08704bc4697395812377e46c3ee83d09df59714d96cc0c6f82b8acd023ae050b00dc676cae41b02e02a2299c2b17925a9b77b32fb8cb5c\", \"line\": 400, \"relation\": \"increases\", \"source\": 9, \"target\": 116}, {\"annotations\": {\"Cell\": {\"astrocyte\": true, \"neuron\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It has been shown that Abeta can be degraded by the proteasome in cultured neurons and astrocytes, and reatment with the proteasome inhibitor lactacystin decreased viability of cells exposed to Abeta (Lopez Salon et al., 2003).\", \"key\": \"c9f4722fae323c847e0b17209ddcb1e64c6347fda418d2930388a77cbd6278225c4fa075a06d1abb17fe986a833c34920568197a9dcf57516b64569d5c855c74\", \"line\": 714, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 15, \"target\": 155}, {\"annotations\": {\"Cell\": {\"astrocyte\": true, \"neuron\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It has been shown that Abeta can be degraded by the proteasome in cultured neurons and astrocytes, and reatment with the proteasome inhibitor lactacystin decreased viability of cells exposed to Abeta (Lopez Salon et al., 2003).\", \"key\": \"09ecfb2235993ae6d9df32dd4964fc69779dc9c2082ae09f7124540491c926bba9f82de9394a4991434e97d29e86db0d88b5452ae359fe035f9d32673f601df5\", \"line\": 715, \"relation\": \"increases\", \"source\": 15, \"target\": 80}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, Synaptotagmin XI has also recently been reported to be a substrate of Parkin (Huynh et al., 2003). It is possible that ubiquitination of this substrate affects synaptic vesicle transport and/or transmitter release.\", \"key\": \"7585e471b81e948ad992111b8301731e5198135cd59f2914dbc1b036ac1a6421da57edcaa8d004058301af2bf5bef7fbed0ac90c3abaef3f5690d875324ed502\", \"line\": 489, \"relation\": \"association\", \"source\": 17, \"subject\": {\"effect\": {\"fromLoc\": {\"name\": \"intracellular\", \"namespace\": \"bel\"}, \"toLoc\": {\"name\": \"extracellular space\", \"namespace\": \"bel\"}}, \"modifier\": \"Translocation\"}, \"target\": 559}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"7cf27f75941c79317a440c760f64f450479106c36a70a618edd990e1d1e60b927d044e0a9d3b09022c5cd9819aaa419253a4fe35890e93651c62d37a87f0aa95\", \"line\": 249, \"relation\": \"positiveCorrelation\", \"source\": 22, \"target\": 172}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"4d940bf686868acd7ec658ccab1905a70078aeeae6d4a8eab96786fced4831fdbb12c5e7b331de19a1af3e9ee57ac907badb7e1174f6be664f83039442ed029a\", \"line\": 250, \"relation\": \"positiveCorrelation\", \"source\": 22, \"target\": 161}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Parkin has been reported also to associate with actin filaments but not with microtubules (Huynh et al., 2000).\", \"key\": \"3fe6d90ea57da2b75d186d80975873dc56dcceecbeb0bff2995cc2477ab03fa8d8060a9633e722d70f904e10a562db023271469f8b6d2a5cfb1f2dbca375d87d\", \"line\": 493, \"relation\": \"association\", \"source\": 25, \"target\": 503}, {\"annotations\": {\"MeSHAnatomy\": {\"Pars Compacta\": true}, \"MeSHDisease\": {\"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In the vast majority of patients, some of the remaining nigral dopaminergic neurons exhibit aggregated proteins in the form of cytoplasmic LB inclusions\", \"key\": \"cdaaffe58019967b126f51967a3ae98655a7a1818c1e0f8f6888be05acd37001b1a3d4f7f4acabfbf2312c7392b554c8fa671a2f01c0393fcf1516c5f8766fe3\", \"line\": 278, \"relation\": \"association\", \"source\": 26, \"target\": 48}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In contrast, the neurofibrillary tangles are intracellular and are rich in tau, a structural protein that is normally associated with microtubuli\", \"key\": \"7ccd10bb44db7fc81420c424f9f51a3ce0330353af97d7a99af080b91b0dc6fba886b2ad5bd32a8c665e21790e61fd54ff3bdf0cd48b6b951705df1d17022adf\", \"line\": 671, \"relation\": \"association\", \"source\": 29, \"target\": 471}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The protofibrils can further aggregate and precipitate as amyloid fibrils that are present in Lewy bodies, the hallmark of sporadic, late-onset PD\", \"key\": \"c81dc3b3f1d666a36a3211e984450e8e71fa47efea4c1a743aaa61896f60b0721fe87fea4176e783744f728b31b7621540dd76f8e15b15bb75efa8c7ef00e863\", \"line\": 555, \"relation\": \"association\", \"source\": 31, \"target\": 48}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Thus, aggregation, which is the primary event, may lead to secondary damage by inhibiting the UPS (Bence et al., 2001).\", \"key\": \"5b78ea70f41538ca03211f484536a30e6a0a87435d82655212ae32dbc71f052f6e6896555b606efefbadb95483872346f7b87d58cb31f2c3b6f93d5efd591fe7\", \"line\": 598, \"relation\": \"decreases\", \"source\": 31, \"target\": 101}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The protofibrils can further aggregate and precipitate as amyloid fibrils that are present in Lewy bodies, the hallmark of sporadic, late-onset PD\", \"key\": \"9bd347733fa9cc862985cbd2c920f02da97d656ea445e43f5381f128f0ae13150d0d07d93ce77fd58b3a64615f00ef9cd1a6ea0dc9676351be3bc3708ee8379e\", \"line\": 554, \"relation\": \"increases\", \"source\": 32, \"target\": 31}, {\"annotations\": {\"MeSHDisease\": {\"Alzheimer Disease\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"They present evidence that paired helical filaments obtained from AD brain or generated in vitro can inhibit proteasome function and that in AD brain tissue these filaments coimmunoprecipitate with the proteasome (Keck et al., 2003).\", \"key\": \"882e645c30f22d0f64d498b66e04883d800edc0a12852fffbc33bea284c93fdd88e25aea7b46a628403c72db4c5c6b7a6252bec98a2f5253dfb615bdc9e7b100\", \"line\": 722, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 36, \"target\": 155}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Recent findings demonstrate that soluble aggregated proteins can inhibit the ubiquitin system (Bence et al., 2001)\", \"key\": \"4ea3ae388a3cf9602632c7bf2f86a3b8e4e963ad73cc2c42c8256062feea533feef34359931aa265209b81a03b95ac6058ac38348fe79e93136ccbc6439e7b44\", \"line\": 264, \"relation\": \"decreases\", \"source\": 37, \"target\": 101}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Three different proteases, called alpha, beta, and gamma secretases, can cleave APP at specific sites and generate products that are well characterized.\", \"key\": \"c1a6d846260f37a0afc10fcd55ed1ccc8f8df350cf795431fde4d25b724301054913338b23a10044e801e3e55498cd172af7252ec2ee07b95d9803a640b0baf1\", \"line\": 659, \"relation\": \"increases\", \"source\": 38, \"target\": 623}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, mice homozygous for both UCH-L1 and UCH-L3 deletions die early due to dysphagia and display degeneration of the nucleus tractus solitarius and area postrema in addition to the degeneration of the gracile tract that is observed in GAD mice that only have a UCH-L1 deletion\", \"key\": \"7f10c0005e5ee03c8351a5786f9f74260f161bcfab71396e5e8e628ef8c8313561449119ac48561666eb805881b380a328a64c7202f93bec09ec26a25adc4d34\", \"line\": 538, \"relation\": \"positiveCorrelation\", \"source\": 40, \"target\": 577}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, mice homozygous for both UCH-L1 and UCH-L3 deletions die early due to dysphagia and display degeneration of the nucleus tractus solitarius and area postrema in addition to the degeneration of the gracile tract that is observed in GAD mice that only have a UCH-L1 deletion\", \"key\": \"d36f74ff23d1235ab7f40ea078705212f6dbf94926aa7d53ab9ad1ab3a21314adfd4414c278f5973d53576d19705014adbf4d1e1579971f7fe2fe85a0be6c70d\", \"line\": 539, \"relation\": \"positiveCorrelation\", \"source\": 40, \"target\": 580}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The overriding hypothesis is that a defect in Parkin will result in accumulation of this protein(s), which is toxic to the dopaminergic neurons\", \"key\": \"afea59a735d7d2ce3871fff3742ba965c1625e0f0aed3ed33b3dac2ac1d5b99afd322995d823551a405b70a82b4c020cb048f884ddf627683a2a4538bacf7f94\", \"line\": 336, \"relation\": \"negativeCorrelation\", \"source\": 45, \"target\": 503}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In addition, other proteins, e.g., alphaSYN (Waelter et al., 2001) and the transcriptional cofactor CREB binding protein (CBP) (Jiang et al., 2003),colocalize with the protein inclusions\", \"key\": \"70ad29a586c4578486adf6adcfb98b1be94a71e0d7115173f7091afc6dce8227e9ef0f4746243c072d5af6789945cbe72f83469345f4bfd83cb04a5a50ef6002\", \"line\": 906, \"relation\": \"association\", \"source\": 46, \"target\": 536}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In addition, other proteins, e.g., alphaSYN (Waelter et al., 2001) and the transcriptional cofactor CREB binding protein (CBP) (Jiang et al., 2003),colocalize with the protein inclusions\", \"key\": \"d0bd95adb0ccdc9358e046eb3b47740fbf75fbdb9a6962572bb691055182875af2ffe45ddbb4f3f6b05a3a7b65170be0cc451174737e6c9b0793486b54b4f668\", \"line\": 907, \"relation\": \"association\", \"source\": 46, \"target\": 414}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain Stem\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"0678d0a76f70e8614c52f0ded0ff808c18c5449465d4cffb39a776e25a9fd4e766830184667b45cd2e2629e1d29af343af3a0e40f4b7dd431adc4365f0aff0f8\", \"line\": 258, \"relation\": \"positiveCorrelation\", \"source\": 48, \"target\": 172}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain Stem\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"88e884c585daa9a6b2443bb3bab9732b6aab90138661d3a36bcdf440838b9f10943e1a07bc19b4c50b3ce348dec3d0db967ae975705fd87cb1e72865ac384ee4\", \"line\": 259, \"relation\": \"positiveCorrelation\", \"source\": 48, \"target\": 161}, {\"annotations\": {\"MeSHAnatomy\": {\"Pars Compacta\": true}, \"MeSHDisease\": {\"Parkinson Disease\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In the vast majority of patients, some of the remaining nigral dopaminergic neurons exhibit aggregated proteins in the form of cytoplasmic LB inclusions\", \"key\": \"521f0be1bfa291ff8cd3aa8fe744e3f7491c1713b58011ff5df601c28d5836f9a24392fe9c188d163158d724708ba0406c453f322131b3d208fd752b7fb44d17\", \"line\": 278, \"relation\": \"association\", \"source\": 48, \"target\": 26}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The protofibrils can further aggregate and precipitate as amyloid fibrils that are present in Lewy bodies, the hallmark of sporadic, late-onset PD\", \"key\": \"4ea044b8902d87d3298d748de8f8efff42974e841f2d206770ecf520a97aa7dbd9db7e7d41cfdd1bd5c5344c44e002c05733a037f247df51353ee2f01b79fe00\", \"line\": 555, \"relation\": \"association\", \"source\": 48, \"target\": 31}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"b5a08f64b6b168d44fb0a71568b538cf0cf8277851775ba7f63cef770f254cb04c87f1257108fb6c3f6917dc29b4e8437b557d59a91ba1c343e2e0b1b26ef46e\", \"line\": 247, \"relation\": \"positiveCorrelation\", \"source\": 50, \"target\": 172}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"ea7ec77137e1ff1cf43cd92f4aec5b84ef85b11fd514e861568caf8a07ed11fdd64dbe171e8f63e56a0b90784923b275dd40725cb7d33171661eb0c58a1e1c8f\", \"line\": 248, \"relation\": \"positiveCorrelation\", \"source\": 50, \"target\": 161}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In contrast, the neurofibrillary tangles are intracellular and are rich in tau, a structural protein that is normally associated with microtubuli\", \"key\": \"ffe607dab276804401fc33acd0172158aa7f2ca3850601adfa38a55550559a112f6069f5a32462a90be91fdd9709f496ea07b7327feb40b71ed5cb2b661d9e28\", \"line\": 670, \"relation\": \"association\", \"source\": 50, \"target\": 471}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In conjunction with the formation of neurofibrillary tangles, the synthesis of the tau protein increases, and it undergoes an abnormal posttranslational modification characterized by hyperphosphorylation\", \"key\": \"8ea693af8384c39c0e8e95de26a8b281b9cbed9cbb95bd632e5200ff021596ae8009aa4fd3041478f7cdbd2879ee1ef711c2d9aca8c8dbf3f269e16ec23082bf\", \"line\": 675, \"relation\": \"increases\", \"source\": 50, \"target\": 471}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In conjunction with the formation of neurofibrillary tangles, the synthesis of the tau protein increases, and it undergoes an abnormal posttranslational modification characterized by hyperphosphorylation\", \"key\": \"7759a25826470898dc4d4dfa0559a9ac8a967e316291987c9cdb081b6e1d3f3201b62d1bc64b8a89acdd6bac631e6d02bbe5934e799510ad6b629fe9a6e5b1c2\", \"line\": 676, \"relation\": \"increases\", \"source\": 50, \"target\": 472}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, mice homozygous for both UCH-L1 and UCH-L3 deletions die early due to dysphagia and display degeneration of the nucleus tractus solitarius and area postrema in addition to the degeneration of the gracile tract that is observed in GAD mice that only have a UCH-L1 deletion\", \"key\": \"7a0eb2358936b12099b1a569e9e849dd011947f2182fb2de82fe0ee82c61521b9de5967a7f088107c210e33efdb594f67fe006f294d13c59a636afd6e9f293c7\", \"line\": 536, \"relation\": \"positiveCorrelation\", \"source\": 54, \"target\": 577}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, mice homozygous for both UCH-L1 and UCH-L3 deletions die early due to dysphagia and display degeneration of the nucleus tractus solitarius and area postrema in addition to the degeneration of the gracile tract that is observed in GAD mice that only have a UCH-L1 deletion\", \"key\": \"3f61b547123774e85d67d79731c1a62a1a0eb5b4947c1c8dba7df0c8517c362f45eef31f52a448b950a2cd11adeb710aa3eee1da02794d2cc8e35ca1060b2e79\", \"line\": 537, \"relation\": \"positiveCorrelation\", \"source\": 54, \"target\": 580}, {\"annotations\": {\"MeSHAnatomy\": {\"Muscle, Skeletal\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"For example, upregulation of the pathway is observed during massive degradation of skeletal muscle proteins that occurs under normal fasting but also under pathological conditions such as cancer-induced cachexia, severe sepsis, metabolic acidosis, or following denervation\", \"key\": \"e2ef5f116efae5efa434a814a87f1b23cbfad147a248b1aba98babb04bfcf36596159f34edcb547e99f3dadfb0e5d5f784b448400eeb34b0821ff8a83badeb36\", \"line\": 222, \"relation\": \"increases\", \"source\": 57, \"target\": 105}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Thus, the binding of substrate to the 26S and its concomitant translocation into the 20S results in the activation of Rpn11 through a conformational change.\", \"key\": \"43df63d1f7370a929f75c3021f195bbb2870941fd9dab45a27302453df855976769367a8d0385e8fd1c0fc83843145ec6ece14848c9767ab0f0783555618e96f\", \"line\": 290, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 61, \"subject\": {\"effect\": {\"fromLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}, \"toLoc\": {\"name\": \"20 S Proteasome\", \"namespace\": \"HBP\"}}, \"modifier\": \"Translocation\"}, \"target\": 522}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Initially, the ubiquitin-activating enzyme E1 activates ubiquitin in an ATP-requiring reaction to generate a high-energy thiol ester intermediate, E1-S~ubiquitin, where ubiquitin is bound to an internal E1 Cys residue\", \"key\": \"450d7bc47035617eb7329ec0acf999e905466cd40fc474792c9ba8ee7405887d04cd0a4ea36b728f115c755c49eb5f7f8e69676d998c97b22078b489903e0791\", \"line\": 87, \"relation\": \"increases\", \"source\": 62, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 184}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"For instance, ubiquitin can recruit other factors to mediate various cellular responses such as signaling, gene regulation, endocytosis, macro-autophagy, and DNA repair\", \"key\": \"ad84f019699ebb054e8da5fb89316bfb50c246236df739af5b3a7c49faeeda5ad01f71848c3e9815df2e2cab33f1db99b794c84829bd49e89e8ae4b62f470fd1\", \"line\": 100, \"relation\": \"regulates\", \"source\": 62, \"target\": 130}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"For instance, ubiquitin can recruit other factors to mediate various cellular responses such as signaling, gene regulation, endocytosis, macro-autophagy, and DNA repair\", \"key\": \"2729ada3ead03ad388f65532154582972200737d4a580f7a7092b268f23edf5d63beb410f3a3cd73881b704bd0606c2018ec6f2db173f528d1a7fad8f15d2fc6\", \"line\": 101, \"relation\": \"regulates\", \"source\": 62, \"target\": 126}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"For instance, ubiquitin can recruit other factors to mediate various cellular responses such as signaling, gene regulation, endocytosis, macro-autophagy, and DNA repair\", \"key\": \"099ec28251770da5a8a92cddba1d71d1e5be812cdea6d3216b68707454e6dbd534eb0a9a03f1c3a0dd3bf869e783cfa9d38bc90a1070f6244b866881247d2906\", \"line\": 102, \"relation\": \"regulates\", \"source\": 62, \"target\": 128}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"For instance, ubiquitin can recruit other factors to mediate various cellular responses such as signaling, gene regulation, endocytosis, macro-autophagy, and DNA repair\", \"key\": \"a514d838956e6d2f45679d72cb4c212a414a4a7905956f2ff7822a970a013da47c23799540284f53d05c677b68566e8c373c989b01f2e6d60aaba53f6c8412b1\", \"line\": 103, \"relation\": \"regulates\", \"source\": 62, \"target\": 72}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"This function is crucial for cellular homeostasis because failure to activate ubiquitin, as seen by the chemical inhibition of E1 activity in the cell, results in the almost immediate shutdown of the entire UPS\", \"key\": \"7b4e800587fa62842b1efd40de3e900f3324ace3b426fba420df1c2ede5aa216ffe166d5ec516d3fc128823cfb9cda862ffc596d1cbe81eca0cd9b6c1daca3bf\", \"line\": 114, \"relation\": \"regulates\", \"source\": 62, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 83}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It should be noted that CFTR degradation is mediated by Endoplasmic Reticulum Associated Degradation (ERAD—a quality control mechanism that eliminates, via the UPS, misfolded/mutated/abnormal membrane or lumenal ER proteins following their retrotranslocation to the cytosol via the Sec61 translocation channel).\", \"key\": \"6a26ea336b300795817fd106e7fdd9a9bebd887731a29ef361e0770407c24c84100e827dc8b2f9bb23a224ca8b16bd460cba1ef3b5a487f0c49c33b2db411779\", \"line\": 638, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"regulates\", \"source\": 74, \"target\": 411}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Alternatively, if misfolded, it is believed to be directed to degradation via ERAD (Yedidia et al., 2001).\", \"key\": \"5bbafcef570a7ffebf042d8ba818d73ba88e8a17168b412c2276aba732470542c73ed825f204e684e33e548d54ecc85645184543c40e279877ba988e5c0fb066\", \"line\": 787, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 74, \"target\": 508}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Specifically, Bag6 recognizes and binds to long hydrophobic stretches of the polypeptide chain of misfolded proteins targeted by the ERAD (endoplasmic reticulum associated protein degradation) pathway [56–58]\", \"key\": \"f750824c6b6958995b22153f769bd42815306e6d67ddaf82380010395406df7b06ea6f5cf36e99340d2862f8b987df7398b5c967e6b740de484de05e5c0984e3\", \"line\": 207, \"relation\": \"association\", \"source\": 74, \"target\": 243}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It then aggregates, and the insoluble protein elicits cell death via the Unfolded Protein Response (UPR).\", \"key\": \"0ee28663f4af2e2a5c2580db8aa2d8d220a648638fdc9666e1ceae57b6025302c621bc12eeba1917f00d03e755952bbe1b1e37973819eaecb5e64c25373fe241\", \"line\": 370, \"relation\": \"positiveCorrelation\", \"source\": 80, \"target\": 442}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" TRiC is essential for proper posttranslational folding of the cytoskeletal components actin and tubulin and is therefore essential for cell structure, division, and cargo delivery (11).\", \"key\": \"01ad65ed81b457aac391ce6dda421d5d5f6474fca54d99bd7be133dcc40111b3a254cf2aac41f244bc4e17f4303f00d3323c617b9382e5e116817918afe06eba\", \"line\": 131, \"relation\": \"association\", \"source\": 82, \"target\": 357}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"5f289547e5be07030511281806f4ce3b2fde3ac6393e472c25b4e624df4478dadc483688fae508981b90d9f2380307faa51b35eefb25250943d30f904833980f\", \"line\": 252, \"relation\": \"association\", \"source\": 90, \"target\": 416}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"7beae7a8a94a1b00331cc5209af9fd2588c9e2451e2ceaf44d4143b9b24adef6f0f6600b3c9dfc0648e7bf9d20512993218a826cbbffcbaa64476dec335d1671\", \"line\": 254, \"relation\": \"association\", \"source\": 90, \"target\": 426}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"693e5e57d5d09030bd3aa0e2c0b3bbefa7d8c4f67331e137b09ed90c7e9882f3dc56915ea59ff5804029fab16d63e249176147e753040959bacbdb8984a4c9dc\", \"line\": 256, \"relation\": \"association\", \"source\": 90, \"target\": 419}, {\"annotations\": {\"MeSHAnatomy\": {\"Neurons\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Consistent with the notion that cyclin E is targeted by the Parkin ligase complex is the finding that Parkin deficiency leads to accumulation of cyclin E in cultured postmitotic neurons exposed to the glutamatergic excitotoxin kainite and promotes their apoptosis.\", \"key\": \"505e2d889a1edc238023bd9c07975a754b1a1b807933b2568f36acd83b32660fad629630b910b5daa24aae053500a3ca5771f64926bf796b9033f5c8fb626b1e\", \"line\": 463, \"relation\": \"positiveCorrelation\", \"source\": 97, \"target\": 398}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Miller and colleagues (Miller et al., 2003) have recently shown that this mutation destabilizes DJ-1 via promotion of its rapid, UPS-mediated degradation\", \"key\": \"ead28b1660e7d5dc8ad1cb83fd2ae444b3b5849f92284629e552b067f8c6eb82c2ebca4a347145300ad8c3d4711026427d5570300ea0d5b7a3c694bf28029ed3\", \"line\": 626, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 101, \"target\": 492}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Lindquist and colleagues proposed that inhibition of UPS, which can be caused by ageing or following a pharmacological treatment, can lead to accumulation of PrPc in the cytoplasm where it is spontaneously converted into a PrPsc-like species because it is not rapidly degraded by the UPS (Hooper, 2003; Ma and Lindquist,2002;Ma et al., 2002).\", \"key\": \"6dfc6fcc47748d7a2feda6620f34f531e8bd5d72d3d3f554b07b245ffbbe19857816ea1c8ae1e6cfa7b1d25fda48a04b7f7c14cb6b0c789d9c065bfe34dd40b8\", \"line\": 796, \"relation\": \"negativeCorrelation\", \"source\": 101, \"target\": 124}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Once in the cytoplasm, the PrPc would be efficiently degraded by the UPS via the ERAD pathway, but this does not occur in the presence of the proteasome inhibitors\", \"key\": \"0ecd2a998f2ba9871054c81aed80efda9606b9d2955e275f1244c045e09343edf4c7233e3be3be23a2599bf7186492961dd54ca20653c390da47c7af7f4c49c7\", \"line\": 802, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 101, \"target\": 507}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The mutant SOD1 proteins, unlike the wild-type form, are degraded by the UPS (Hoffman et al., 1996;Johnston et al., 2000).\", \"key\": \"f001c9820d2c793fddb89e5038b63aecf9b5ea46da2e6990ed09b360b77c70ec575d0c8a8c2ef1041fb8a8747786896313750d9ef7042b2759732c1159a3f3bd\", \"line\": 839, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 101, \"target\": 550}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Similarly, overexpression of the putative SOD1 E3 ligase dorfin can inhibit cell death induced by the mutant protein (Niwa et al., 2002), presumably by promoting its removal via the UPS.\", \"key\": \"a7a62c9417c8d23519b5b5806fb7826fc6e5ca10ff36f268924ee5a1491a0d1726abc2d99b4115dc336b2b2c3e0855b4b50589dae63f37e8f5af64167dfe2edb\", \"line\": 851, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 101, \"target\": 550}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Urushitani and coworkers (Urushitani et al., 2002) showed that mutant SOD1 is degraded by the UPS in cultured cells and that oxidative damage increases the degree of ubiquitination of mutant but not of wild-type SOD1.\", \"key\": \"b032b3b0a3291f6959f58856448393542c3b24c53965951af52d9b760f6e1b7c6209289fe4d857cdd0064846b8be277dd1a0e73805b053c64cb376235ee959ad\", \"line\": 868, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 101, \"target\": 550}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Consequently, the formation of aggregates may increase when the UPS fails\", \"key\": \"4af1bf090f9f6516842ec26b1cd5e0ab9bda20dc417dc05cc614e21404cadb24147f66aaad5e06c0df2a3f12e4c3fe3b80aa692ceaefffd81a3dfc0783a77c08\", \"line\": 970, \"relation\": \"decreases\", \"source\": 101, \"target\": 37}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"This indicates that the truncated fragments are normally processed via the UPS, and therefore the disposal of fragments of mutant proteins will be impaired.\", \"key\": \"ecc259a8dd07bbe9257d10c3b397c24dab3266b2bb47965c44a006673e7265d353393dedf5173ccfd1f7da90e8a321aeefe4af440adee1f3ee55a9f37e951ee8\", \"line\": 981, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 101, \"target\": 461}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The degradation signal that is recognized by the 26S proteasome complex is made of a Lys48 polyubiquitin chain.\", \"key\": \"f5e79c999cb68068e1b36886ee8fb05f7a0ad156811ffb748f1765baa62bc9b4db05e2f79d917ceb31b9a707d903ced04b5d010426c029972f8ec884ec22cca4\", \"line\": 117, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 102, \"target\": 155}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Conjugation to other Lys residues, Lys63 for example, serves nonproteolytic functions of the system, such as activation of transcription\", \"key\": \"b9cfc34d6228385b33c0a0c2417df5600a990b4cc3f9caefc668c55c8a547220db20529770e6d0f105a7e9ed7f304542e91d73016440e7afaa32418030f18d2c\", \"line\": 122, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 103, \"target\": 155}, {\"annotations\": {\"MeSHAnatomy\": {\"Muscle, Skeletal\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"For example, upregulation of the pathway is observed during massive degradation of skeletal muscle proteins that occurs under normal fasting but also under pathological conditions such as cancer-induced cachexia, severe sepsis, metabolic acidosis, or following denervation\", \"key\": \"a0c702068c9a8ffed473032b3fdbbb0c7e97f35aadda7bf7a21351b8b1bcd0efe9f404720c94c0c94c01a0677de93d96f79ee109d37eac47d3f4196d84db2f80\", \"line\": 218, \"relation\": \"increases\", \"source\": 105, \"target\": 101}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In many of these cases, the modification leads to targeting of the tagged substrate for degradation in the lysosome/vacuole\", \"key\": \"193f94b36787d2bd37e68972bfa583985da6d1a13b64650eb49d6e6f762c5d49586185f478dae269187d091b4f12bedcc66b6760c679c8306b046e8509ebaf79\", \"line\": 132, \"relation\": \"increases\", \"source\": 110, \"target\": 96}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In many of these cases, the modification leads to targeting of the tagged substrate for degradation in the lysosome/vacuole\", \"key\": \"758de1de975c12a964ee94278f4d0d557dd62d140d3582b321171dd4f3a4210cd85aabe2215f4cfa1083e5f38a3c0df52c6c8b47c3111bb79e2553121548b2cf\", \"line\": 133, \"relation\": \"increases\", \"source\": 110, \"target\": 104}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The UPS can be regulated at the level of ubiquitination or at the level of proteasome activity\", \"key\": \"717cd8e70d949bbc30ff4a02d986d1c5b664a0e6860346baa941f02d1e6dbc31c53217031f7b37b7f12b4d2f00497667a4f4ee437c24424bfba816c40bc0d19b\", \"line\": 212, \"relation\": \"regulates\", \"source\": 110, \"target\": 101}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Urushitani and coworkers (Urushitani et al., 2002) showed that mutant SOD1 is degraded by the UPS in cultured cells and that oxidative damage increases the degree of ubiquitination of mutant but not of wild-type SOD1.\", \"key\": \"7ceac0e6af6791792ae8398c99108cc799aa9b14f4791fb8ca66c2da550524edbaf16daf062d6d4066d528177ae4a6c8f28bc0b10c7bcb54a86fbe4214f1554e\", \"line\": 869, \"relation\": \"increases\", \"source\": 115, \"target\": 549}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Consequently, due to the increased stress, mutant SOD1 will misfold more rapidly\", \"key\": \"b65511786ed1cafbb35dca158b2f53d07685eeb7a13690948e8238f664bbb6cb06ee839e8720913fe6f8b48bb5591fe6c8455db2c852cb7fc236063313849030\", \"line\": 877, \"relation\": \"increases\", \"source\": 115, \"target\": 548}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It then aggregates, and the insoluble protein elicits cell death via the Unfolded Protein Response (UPR).\", \"key\": \"d63a104f6dd0c15156c3df22757fc401aaca4adf1dcb50d610fc9ae8031f14f6f2e2d145961264b03e579ec965070c19cd2d39aeae06d019e92ad52ccc9c8143\", \"line\": 371, \"relation\": \"increases\", \"source\": 116, \"target\": 80}, {\"annotations\": {\"MeSHAnatomy\": {\"Endoplasmic Reticulum\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The UPR is a mechanism that involves a stress response in the ER, including increased biosynthesis of ER chaperones, in response to accumulation of misfolded/denatured/mutated proteins in this organelle (for a recent review on UPR, see Kaufman, 2002).\", \"key\": \"bd05e9d7b68a5063a415264c5ae01edd75be3df7e239f3a4928bc21b49ca9063be2a724bfb992f141f56500c3303893126efa18ca9623d40f6102bde25a0636f\", \"line\": 377, \"relation\": \"increases\", \"source\": 116, \"target\": 113}, {\"annotations\": {\"MeSHAnatomy\": {\"Endoplasmic Reticulum\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The UPR is a mechanism that involves a stress response in the ER, including increased biosynthesis of ER chaperones, in response to accumulation of misfolded/denatured/mutated proteins in this organelle (for a recent review on UPR, see Kaufman, 2002).\", \"key\": \"c806ec2eb761a1e103c2410f63aea58e6d4b9735d2fdbe59c29e18411daf682454c73c27fa8dfebeb2092460b17fdc6f3d9d7e54e7328fe0cf7c3db67b024083\", \"line\": 378, \"relation\": \"increases\", \"source\": 116, \"target\": 49}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Parkin can rescue cells from the UPR elicited by a variety of stresses, such as exposure to H2O2, DNA alkylating agents, short-wavelength UV light, high osmolarity, and heat shock (Imai et al., 2000)\", \"key\": \"4e823c81a6a881133d40f8d18957f8e0f8639a93c98507df48dd6122c47ff08f52257a16113e4d7c593aecf80307d1f0c68cea4b2da31d3e238cf4da3048c487\", \"line\": 403, \"relation\": \"positiveCorrelation\", \"source\": 116, \"target\": 141}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, Synaptotagmin XI has also recently been reported to be a substrate of Parkin (Huynh et al., 2003). It is possible that ubiquitination of this substrate affects synaptic vesicle transport and/or transmitter release.\", \"key\": \"045c67f7edfd1f71c9c73d2e9b350c116f9da0d65b7f15dececc9d7b6ae04bf32902122c3afd61554e3c7a6e0998c049ce7b8c4eb6f0fcbb7ca7896b1126484f\", \"line\": 488, \"relation\": \"association\", \"source\": 122, \"target\": 559}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"88264f92f3963e86ecfeefd3a004e1fad28710d6f9678a4cf030cb52f6cfa53bfe64223ed62041cb1631eae08e4aaacbc968d3ebe8db39fc0cd2ea9765461068\", \"line\": 193, \"relation\": \"regulates\", \"source\": 123, \"target\": 79}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"a8a24981c6e47fbdf58f237ad62200a1bd7c2a6527fb002f734df122be39e41c007b03670ca0f337e43c03f83799492a6f16ad4383bc0c724d11e383a33b4278\", \"line\": 194, \"relation\": \"regulates\", \"source\": 123, \"target\": 82}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"cfa2aeabe38d823e3d3fcfd89c9baa734918d9547991585da4fd1fc7e27a008b14ac121e472328d6f408c554f14387ebb5d74e40b97c314edf66e6a413a4cc33\", \"line\": 195, \"relation\": \"regulates\", \"source\": 123, \"target\": 81}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"d049be7d1717d298ffb9f9ad38e5503d22624cfbd2f10a2f5bfefc52d47478fb270fe97f026fa84050f9ffcad50379334e40726f751dd83f3973865cd56d3b5a\", \"line\": 196, \"relation\": \"regulates\", \"source\": 123, \"target\": 135}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"187da1ac787e7620f300b2bda75d049323a7ffd3adf790575ab25be5974ce259c2af049a5238117f2f53d1fdf0fceaabe7a4c7437500ae38012f1a203ab5ade2\", \"line\": 197, \"relation\": \"regulates\", \"source\": 123, \"target\": 86}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"e5e872c4db316863c3186792986a07becb7cc7fff0ed7c2ded5b9e4891d62c19dc4c455383a64d58ae0f220d6d3583b0995a8fcf55d4dd843fe0a856ddb7243d\", \"line\": 198, \"relation\": \"regulates\", \"source\": 123, \"target\": 53}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"2cacd95b36c0295181a972467c57f4140e2e741f1bd439a341edfba8484a448ae5f2fa61c09d86f61900eea8f60af196b1c109768724db6ddd8d1460113b82ef\", \"line\": 199, \"relation\": \"regulates\", \"source\": 123, \"target\": 47}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"59fabfaadd2aa06fe9db69ce186b3f44e0ca496443d65352dab42de984600922039077773131fdfad0b15b95c83d2bd9d902d95fef1a8624963e705af76bb21e\", \"line\": 200, \"relation\": \"regulates\", \"source\": 123, \"target\": 143}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"4a3b60c431b0ccd8b0e46e8b400eae756b75b10eb204cc0749899122d0c76f2f427a3a792ed9f98e8b65a950a87ab61c3d8744cead058fcf556509104d3ad878\", \"line\": 201, \"relation\": \"regulates\", \"source\": 123, \"target\": 72}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"1a6033b5b79f026aa9c3221a86957aa8358edd2bbc9d26cf7efc7d1a14f5380abfafd3ec8f55dc45203ac7b5c13e9d8ce1e15fe252715bab65f9a39eec60acf2\", \"line\": 202, \"relation\": \"regulates\", \"source\": 123, \"target\": 90}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"468d345e6577f6a5be03d0bdf47a80fa332ef4c714283f0e4371c22f2561c0a1a97a235eff0c67f233a4ebc1ce744037a745fb8374d175dd1fdab71ed95c04fa\", \"line\": 203, \"relation\": \"regulates\", \"source\": 123, \"target\": 95}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"3bb544b3d8e7dc27f5f832d4da87e440417dcb9b11984c428398bcf1e42bd32183ba21abe84efa32e44136898752d020fc832dd9d1c2b20d6cd5fd98a2104324\", \"line\": 204, \"relation\": \"regulates\", \"source\": 123, \"target\": 87}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"75b4f81586c933e8a7ca3b2099642bcdb5a860b9ffe9beb3b2e3927e59649f035cc1a64765468e1b0bb00db1f47c71348faafbf9df7b8e8747db50445165b3b5\", \"line\": 205, \"relation\": \"regulates\", \"source\": 123, \"target\": 92}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"8f45e8c66ed9f7494f16ed8aaa42a6dcc6ee572b40a7431c9c2d174c875fcac2043c0220ea5b6c1833f74700e182fe3c738e9b9384709c392d7388fa015dfbff\", \"line\": 206, \"relation\": \"regulates\", \"source\": 123, \"target\": 93}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Ubiquitin-mediated proteolysis of a variety of cellular proteins plays an important role in many basic cellular processes. Among these are regulation of cell cycle and division, differentiation and development, involvement in the cellular response to stress and extracellular effectors, morphogenesis of neuronal networks, modulation of cell surface receptors, ion channels and the secretory pathway, DNA repair, transcriptional regulation, transcriptional silencing, long-term memory, circadian rhythms, regulation of the immune and inflammatory responses,and biogenesis of organelles\", \"key\": \"f3e3b29f620b50303f0fdb759aefaf6d43c8e9f793de3699a7707ae230dfad32422d2368d395334de89078a12c11bedc12e24af721de6e82ef5b12797b46158d\", \"line\": 207, \"relation\": \"regulates\", \"source\": 123, \"target\": 99}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The proteasome activity in the mammalian brain decreases with increasing age (Keller et al., 2002), suggesting that the aged brain is less able to handle the aberrantly folded Abeta\", \"key\": \"3aa6a5ff9f438183c900e99630882bccb5201f0f918fbab17a500f516e7862ba471cd9d167ffa07540c9191e746c2fcf10a81ce99d7b69346ef98c356ba4df28\", \"line\": 742, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"negativeCorrelation\", \"source\": 124, \"target\": 155}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Lindquist and colleagues proposed that inhibition of UPS, which can be caused by ageing or following a pharmacological treatment, can lead to accumulation of PrPc in the cytoplasm where it is spontaneously converted into a PrPsc-like species because it is not rapidly degraded by the UPS (Hooper, 2003; Ma and Lindquist,2002;Ma et al., 2002).\", \"key\": \"db1fbc8e35c678345ca7442734a7e77fc65c7ca6640e11203dc5efcda809e4b1a516ed9df0bba48f5ac2c31e84fb2d05671ebc0fbd34d92256a87d0e781cc562\", \"line\": 796, \"relation\": \"negativeCorrelation\", \"source\": 124, \"target\": 101}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Lindquist and colleagues proposed that inhibition of UPS, which can be caused by ageing or following a pharmacological treatment, can lead to accumulation of PrPc in the cytoplasm where it is spontaneously converted into a PrPsc-like species because it is not rapidly degraded by the UPS (Hooper, 2003; Ma and Lindquist,2002;Ma et al., 2002).\", \"key\": \"240a23c9a307de3c800d97a8e44b7af238d8c988bed6193a5f99ba580c0cbfc1e96697b8c4b4a9692bd6def3edcfbb95e62607250039f5be833796c548aa5139\", \"line\": 797, \"relation\": \"increases\", \"source\": 124, \"target\": 507}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It appears that E3s play a key role in the ubiquitin-mediated proteolytic cascade since they serve as the specific substrate recognition factors of the system\", \"key\": \"384b03c955f3d78e09c755c8e3117aae750a75391e7d63ac874fd129a6fbaaa37e3ecdb21393d1ad18ea1c4b57e9a8a91f6f65f8e403fea9e210242517e37eb3\", \"line\": 126, \"relation\": \"association\", \"source\": 129, \"target\": 570}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Wild-type alphaSYN is monomeric, but at high concentration, it oligomerizes to beta-pleated sheets known as protofibrils\", \"key\": \"a03e3763909f2ac2143ae3be9cab98838679fb7597264f52cb157f0c4ac7d4c6405e3cf8075aec91b0db184e1a19fbb9919436138fa9a9dbb02c074a1633f010\", \"line\": 548, \"relation\": \"positiveCorrelation\", \"source\": 131, \"target\": 536}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Wild-type alphaSYN is monomeric, but at high concentration, it oligomerizes to beta-pleated sheets known as protofibrils\", \"key\": \"cb18ea4520dd52482283f01283d13d83d9f2e967104302808401a3175d72842491197ca10d7bbb5c96ee0fc2b9f55f2002d61df42b65be12b1fe3e5d982f28e2\", \"line\": 549, \"relation\": \"increases\", \"source\": 131, \"target\": 32}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Parkin can rescue cells from the UPR elicited by a variety of stresses, such as exposure to H2O2, DNA alkylating agents, short-wavelength UV light, high osmolarity, and heat shock (Imai et al., 2000)\", \"key\": \"3a0b8bc679c3263bae08edb5d170f8dcec0a9c1a25aab13dac28f4f7276d875b3701874fca6939d7d964e555d9abdeadf91aef513c0d1d8c790d125b0c898a1d\", \"line\": 404, \"relation\": \"increases\", \"source\": 139, \"target\": 116}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Parkin can rescue cells from the UPR elicited by a variety of stresses, such as exposure to H2O2, DNA alkylating agents, short-wavelength UV light, high osmolarity, and heat shock (Imai et al., 2000)\", \"key\": \"c5e7c5160ca26524629fb2d337aae7c722a5aee544da2f5ffc801433fc2f148ddbdb55674ecfe23a10e465a1f5fcfbf913ac62ed32049b45d33e3136729e30dc\", \"line\": 403, \"relation\": \"positiveCorrelation\", \"source\": 141, \"target\": 116}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"On the other hand, Parkin appears to have a role in synaptic transmission that has not been described previously and that was not possible to observe in patients.\", \"key\": \"542a36a4109bf16918d9f4f93ab861a47c61fd1c7d3571a6cea1c1c5176a97bd5ab427fa439f5a5f753adc0834cdcc86b1ecb398f6d900ec893b0cae361d3bc7\", \"line\": 331, \"relation\": \"association\", \"source\": 145, \"target\": 503}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Parkin can rescue cells from the UPR elicited by a variety of stresses, such as exposure to H2O2, DNA alkylating agents, short-wavelength UV light, high osmolarity, and heat shock (Imai et al., 2000)\", \"key\": \"2191f2b6badaae2ca817989799b91b08de2881f1bc6fa97d5f97b541b486b2a1be6eb8e2237634ad25912415ea31e1bca27757f7576214d8c2d5d1516d878e72\", \"line\": 402, \"relation\": \"increases\", \"source\": 146, \"target\": 116}, {\"key\": \"2e5a34434267e0f0d6394e5a95f92697399b7780c4dccf1ee2f62bf7c00b3f7f3837e0a908f7003ae6de288b16fac46bb3f4f73c49ab604811e1cecc68e5a7b0\", \"relation\": \"hasComponent\", \"source\": 152, \"target\": 436}, {\"key\": \"ab03770a7251f38cbe4dfaed762963cdff522ac7a40c957082154b9014ac69492c93452311db240c3dd9c614201b260c4d317367ad35b4b4dd9c9f42a5fe4cdd\", \"relation\": \"hasComponent\", \"source\": 152, \"target\": 503}, {\"key\": \"25f479ff00f1db25964432dedcc41cd1b26cd037168784e6ef281df7f6b52f806c20f0c8c2a3c227952d846498e7b2283a262ede4aeb0bc4e77990c7c7acee75\", \"relation\": \"hasComponent\", \"source\": 152, \"target\": 415}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A rather surprising, recently discovered substrate of Parkin is cyclin E (Staropoli et al., 2003) that is ubiquitinated by the SCF complex that contains Parkin.\", \"key\": \"7758b3885171f411a2152ef8d494c958a803fa3a983757dbc616da61372a455bc1995744ade427015cb66ae13d603c0e2c112bda005f6f8b26b890f5a8d43768\", \"line\": 455, \"relation\": \"increases\", \"source\": 152, \"target\": 399}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Concomitant cleavage of APP by beta and gamma secretase at specific sites can result in fragments (Abeta1-40 or Abeta1-42) that can misfold and form extracellular fibrils.\", \"key\": \"cd0e84e99671d7046717911ab5dfad67e8795822f574d4a2de484cd3b77e67bdf1dad789b329344309130d5af5bbaefd2c4cd822b3a2572b7ffebe32e5079346\", \"line\": 664, \"relation\": \"increases\", \"source\": 153, \"target\": 622}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, some patients express mutant presenilin proteins 1 and 2 (PS1 and PS2) that can change the processing of APP by altering gamma secretase activity, thereby promoting the generation of amyloidogenic Abeta (Hardy and Selkoe, 2002).\", \"key\": \"77c716996e58e20a41331e53d143600f499faba8306cee09d8a6418f4574611a7c39df9a68432e410d313b8cba0a9f7f7189c11a3907ec45adc841bc78ddc113\", \"line\": 703, \"relation\": \"association\", \"source\": 153, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 513}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, some patients express mutant presenilin proteins 1 and 2 (PS1 and PS2) that can change the processing of APP by altering gamma secretase activity, thereby promoting the generation of amyloidogenic Abeta (Hardy and Selkoe, 2002).\", \"key\": \"ac7fdd80ac26e06b38c14377631ff16db87f92d35d04bee56747a3a64650dbb5ae12cb56989d6db53702f54f358dcdcdf1dbc693e454f7e3511c850ffafe65c0\", \"line\": 705, \"relation\": \"association\", \"source\": 153, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 515}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Degradation of polyubiquitinated substrates is carried out by a large protease complex, the 26S proteasome that does not generally recognize nonmodified substrates\", \"key\": \"d01834fcd23b1fe6a04955539921ed876ac16f1900cbaf9c0833d760769475a726f93d0a309ccbb19892d9357501acec9c11d71218a4071979e82ec05e0aa9a3\", \"line\": 145, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 155, \"target\": 613}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Degradation of polyubiquitinated substrates is carried out by a large protease complex, the 26S proteasome that does not generally recognize nonmodified substrates\", \"key\": \"26e2e91f64b0cfdbfe08f0ecf57098f84a76d73c69fde94a29b4829752d9da1d85f3ed86948d2c89d4d1ce5783d5d6e709bcd55dc86a302af0f73a7766b6eb9a\", \"line\": 146, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 155, \"target\": 614}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In one established and exceptional case, however that of the polyamine synthesizing enzyme ornithine decarboxylase (ODC), the proteasome recognizes and degrades the substrate following its association with another protein, antizyme, without prior ubiquitination\", \"key\": \"71bbe6f1f763f83d6695eb98c7c1ed260667342eb3fb0ae96459132e7fa87f1b6ee49fd380c5aceb067149d80806ae99906d3a63f7f7acc9cbbed23e552d25ba\", \"line\": 152, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 155, \"target\": 303}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The proteasome is a large, multicatalytic protease that degrades polyubiquitinated proteins to small peptides\", \"key\": \"fdc7da16ada5b13efb812d7450e0fef6569a251a8b4304fa783341c4a891d3851a96466221a44d3373b4dafec36d6c5f3ae1bb171a0f8d292edf8db038145d80\", \"line\": 156, \"relation\": \"increases\", \"source\": 155, \"target\": 18}, {\"key\": \"ecb68e206ff0ce993b8a4121595ac849ba96670294e6912ada36fe572fa01d124a3f7036fed2cbc5072552535e12417b2de7cd8cb06d354926c018fa34d79351\", \"relation\": \"hasComponent\", \"source\": 155, \"target\": 365}, {\"key\": \"2427ce639a5381f683e2871c51669b8ee912d68dd3580cc513e186f53fd191d365e5b737cd750e16401af8efd9f2b72fd1e289d3fb8d9556ce79c4ccdf688a15\", \"relation\": \"hasComponent\", \"source\": 155, \"target\": 156}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The UPS can be regulated at the level of ubiquitination or at the level of proteasome activity\", \"key\": \"2e77e94c1f5923f5dee0c780482f414860338f72e0cac99537d1d1682cd59514ee45ca957a63b0ecd42f5a9baace65fc157465fdb41982d34cb2efa00b0ced4f\", \"line\": 211, \"relation\": \"regulates\", \"source\": 155, \"target\": 101}, {\"annotations\": {\"Cell\": {\"astrocyte\": true, \"neuron\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It has been shown that Abeta can be degraded by the proteasome in cultured neurons and astrocytes, and reatment with the proteasome inhibitor lactacystin decreased viability of cells exposed to Abeta (Lopez Salon et al., 2003).\", \"key\": \"becb2740c7cd5016e2e30754a1d16c4b0a025f21bf3ee7f41017033a2c425d76a99f30c4520ec5e4bfcfce095113a2921e2d23f92c08169c670db10c4ffda54e\", \"line\": 713, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 155, \"target\": 5}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The proteasome activity in the mammalian brain decreases with increasing age (Keller et al., 2002), suggesting that the aged brain is less able to handle the aberrantly folded Abeta\", \"key\": \"b9bc110a9fda7caa42d2af2ca95bd640a071cc6ecb28fa8f2f56a1c81a4bf32ce0d79e262c07b3950f43cf90c87a7f820055bd79b198c17c40545c226deafd78\", \"line\": 742, \"relation\": \"negativeCorrelation\", \"source\": 155, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 124}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"They found that the proteasome catalytic activity was decreased in neuroblastoma cells following 1 week of expression of a mutant SOD1 gene.\", \"key\": \"e3d724e437f183c7a0ea134eda1e4286365b621ae29b3eb36e7da7a7a3e4605271fcca19d3cec02d294deb631bf0cd5d4a3fa361432d7711b787fe8deb764409\", \"line\": 873, \"relation\": \"negativeCorrelation\", \"source\": 155, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 550}, {\"annotations\": {\"MeSHAnatomy\": {\"Neurons\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Neuronal autophagy has been found to occur following chronic, low-grade proteasomal inhibition in cultured neuroblastoma cells (Ding et al., 2003) and may reflect activation of the lysosomal system as cells try to protect themselves during stress (Larsen and Sulzer, 2002).\", \"key\": \"80c9c21e08fc091d276103ac697b4e5f6846624fcaaeb3acb9c1cdbe44d935a5291923e6c9aca57a4b64ca6637dc17aacc254dd924f700a850b17887cbd38b69\", \"line\": 948, \"relation\": \"decreases\", \"source\": 155, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 125}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Lunkes and colleagues demonstrated that truncated Huntingtin, which has undergone proteolytic cleavage in the cytoplasm, accumulates more rapidly if the proteasome is pharmacologically inhibited (Lunkes et al., 2002).\", \"key\": \"fb68450c958bb2cc1047f7654c8bd3540ab24626c2fb5166de1b05be02caca1b1318c80462baeaf9e64ebfac97393b43a709d289461ceb0ab09b43560123842e\", \"line\": 975, \"relation\": \"decreases\", \"source\": 155, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 461}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"This observation suggests that chain binding and cleavage from the protein substrate are tightly coordinated by the proteasome, and may help to prevent situations such as premature chain cleavage by Rpn11, which could result in the release of the substrate before it becomes actively engaged to the proteasome.\", \"key\": \"437520226f0729d418c565f02f62cb5f2872a75a2c3c4ca95a7713ea5159473d65f0a6d973de1f2ddbf75f6a8e43b4b5d8278b7a2d58e880b65d6501ee510f37\", \"line\": 275, \"relation\": \"regulates\", \"source\": 155, \"target\": 178}, {\"key\": \"7f038dd0f82457e46b7dc4c70617f842ea8dd978edfe9b1fa417f445ef699203b6409344b76e505e4da3e44dcb478f9efdbd24e7fdceffd28994ebdfbd150468\", \"relation\": \"hasComponent\", \"source\": 156, \"target\": 524}, {\"key\": \"c92baeb58da3d521a5b958d76a82a0bd22284c5f7bd64f8064d2f81dbc7d926fd4ab6fb6d4e5fd2501c157758443f4fa8ab3e114454910b6d117b7e24c5092f0\", \"relation\": \"hasComponent\", \"source\": 156, \"target\": 519}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Also, since a folded protein would not be able to fit through the narrow proteasomal channel, it is assumed that the 19S particle unfolds substrates and inserts them into the 20S CP\", \"key\": \"6de557f0867a72c8a4e3c3505eb18ca8929acfa4bf212caa69c4dbe1759fc0c4c9f2bd7854f9ee368457b5d8f26c001984242d8c4998098759fb763427b5b84c\", \"line\": 175, \"relation\": \"increases\", \"source\": 156, \"target\": 111}, {\"key\": \"573cfc51245bf21bab57fca637dcbe4d33d237f572ef3cf48af64ae4bf2fd3e01c9c74f40ad729662dd6662379c6fb4a998aff0c9edde3989fc0ad676e6deb6e\", \"relation\": \"hasComponent\", \"source\": 157, \"target\": 6}, {\"key\": \"01dc8829a3119f870a6297ce7c2fd456a84282208671cf53e11be5f0ac75cf93a1c8f7a42c1f36d4a0a31e8c6da43d668fb4f3473e6084a09d892ab809116c33\", \"relation\": \"hasComponent\", \"source\": 157, \"target\": 507}, {\"key\": \"9a3de4c5947d3d930a3859de3b3f91115851135aaa4172d98829be95400268c47bc6208462431a08ba7c7fdf752bbd7d11c395b9ff14df3ad3ef18a152d56b7b\", \"relation\": \"hasVariant\", \"source\": 507, \"target\": 508}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"PrPc is abundant in many cells throughout the body, particularly in the immune and nervous systems, and is typically anchored to the outer cell membrane, where it may act as a copper binding protein with antioxidant properties (Brown,2002).\", \"key\": \"b2b2e068f4801c49747a7537fd26e803419221c99227a7a507a717a0a123fb7939a5456d74b5e939fdcecc56e50811ef3d9219af3b35e2cce19792f6b031152a\", \"line\": 780, \"relation\": \"increases\", \"source\": 507, \"target\": 157}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Once in the cytoplasm, the PrPc would be efficiently degraded by the UPS via the ERAD pathway, but this does not occur in the presence of the proteasome inhibitors\", \"key\": \"1a262655ea360913f1b1a36de72ec515175eba96679f8b42ac9aff7787a63d9befdc3caa46efe0964046d1fa55960dc11e7dd4e162fc95e550258a66884f4347\", \"line\": 801, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 507, \"subject\": {\"effect\": {\"fromLoc\": {\"name\": \"Endoplasmic Reticulum\", \"namespace\": \"MESH\"}, \"toLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}}, \"modifier\": \"Translocation\"}, \"target\": 507}, {\"key\": \"742086e03ba10260d85b5eba2cd191279b718a14d20a9064c75f9d177d700c8db85aa7522e97a309856f5dd980aa07919ab8af10c1c7eedc88d52fe634da8197\", \"relation\": \"hasComponent\", \"source\": 160, \"target\": 24}, {\"key\": \"5ad420fb4b4f5ee8c3065c09b824a9c8cf5a466fc5f71d462296dca36a69a313b5bb6efa9390c93df4ab8f3340857c572451acdda7955b9be574f2365c7d3e4b\", \"relation\": \"hasComponent\", \"source\": 160, \"target\": 569}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"One of several E2 enzymes (ubiquitin-carrier proteins or Ubiquitin-Conjugating enzymes [UBCs]) transfers the activated ubiquitin moiety from E1, via an additional high-energy thiol ester intermediate, E2-S~ubiquitin, to the substrate that is specifically bound to an E3, a member of the ubiquitinprotein ligase family of proteins\", \"key\": \"2caa3b36e5d081e53a7562dd3e7f44049d799069a4ca9f6eb1607913d146fe2b3f7ea11a423de6fce56f47aa158622d6b95e810fd47a211b8e3c072de9b45867\", \"line\": 95, \"relation\": \"decreases\", \"source\": 569, \"target\": 184}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"One of several E2 enzymes (ubiquitin-carrier proteins or Ubiquitin-Conjugating enzymes [UBCs]) transfers the activated ubiquitin moiety from E1, via an additional high-energy thiol ester intermediate, E2-S~ubiquitin, to the substrate that is specifically bound to an E3, a member of the ubiquitinprotein ligase family of proteins\", \"key\": \"469cd582a3ee53f1c93d92c80e1c1e56cea1197373ec8e2e1b2cf84abf4c5e175f4bad794b105e8c810a010f8e5bdae688de11b98a2679c5e261853d07076259\", \"line\": 96, \"relation\": \"increases\", \"source\": 569, \"target\": 186}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"For the Homologous to the E6-AP C Terminus (HECT) domain E3s, the ubiquitin is transferred once again from the E2 enzyme to an active site Cys residue on the E3 to generate a third high-energy thiol ester intermediate, ubiquitin-S~E3, prior to its transfer to the ligase bound substrate\", \"key\": \"8c2b985cf5350175b4c8d9dacd6e43f6947ee4e685034a0ec8770d985834776a6e560019739195d96328f5809a7d2cc3206d6fe08cf928e4c89a30e9f7c72861\", \"line\": 103, \"relation\": \"increases\", \"source\": 569, \"target\": 189}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Thus,Huntingtin was found to be ubiquitinated and also to interact with E2-25 kDa (Kalchman et al., 1996).\", \"key\": \"60dcc7ee874fd0bf1ab4daf1e7113716949068419b236bedb681d82ab0d0b6710ca7244382d6c0e73701b1e295aaef877d972b8cabf638373d641feeaa535c92\", \"line\": 925, \"relation\": \"increases\", \"source\": 569, \"target\": 462}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"These studies demonstrated that both E2s and E3s can affect the conformation of the ubiquitin on the E2 surface to promote its transfer to the substrate\", \"key\": \"18c37d428adf2a60abd541c458596f65522386bfd4a1d1e97f0cc37c0c29e90c11a3360fb2211f44552b317c5accbec8faaac7f0584d49a49ead2b621c6f1543\", \"line\": 134, \"relation\": \"increases\", \"source\": 569, \"target\": 110}, {\"key\": \"1103c1fa99cbd0f6d4144c95902afa8e14bac6fda8c719ffc8effc6d88e9a07fcc3e5cc2e46dbc144885f79727274c4bb05b8d8963657151bd8a3b4c2bdc3f99\", \"relation\": \"hasComponent\", \"source\": 161, \"target\": 27}, {\"key\": \"8812288b84913a6edacc1f3484ae547288d3f04cadef6d4ee587d6efea4520b8d0ea76e1efb1b1f24ec12274dd5fe4bbae2588f860c9370f053301e659d790e8\", \"relation\": \"hasComponent\", \"source\": 161, \"target\": 46}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"0054450cb6d9236745b09be36dacc28f82710f6ff9e9e1ea57a57fe707083a10a50d91ceca3dfc1eb7cdde7610d732dad87c691db6fda2d17f7a205c4297547d\", \"line\": 248, \"relation\": \"positiveCorrelation\", \"source\": 161, \"target\": 50}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"29dd239a9a32aa76f667640f65f31d10591b16483560d97cd471af77e2bf785dc70503318ad7ee99a95fb9db3219cde00808a23e5f886813a65aa173ca811e02\", \"line\": 250, \"relation\": \"positiveCorrelation\", \"source\": 161, \"target\": 22}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain Stem\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"1c3efa79faefea93d1f982ce8c009567681cc2718bcf30d44834f1424b9cc23f967a0e20af77011b0d115b67a4251ca97aff09ecc059b9118a775ae1dfb6340b\", \"line\": 259, \"relation\": \"positiveCorrelation\", \"source\": 161, \"target\": 48}, {\"key\": \"be0809344e0f4b0ad80a642aa98e6b0d7a5f281d1949f60afbfd13b1f15001b59e6127ffe07833342f2a2a930552c6eb724074e42cdd50c9c05ab1aa89ccdca6\", \"relation\": \"hasComponent\", \"source\": 164, \"target\": 27}, {\"key\": \"586ee5f1ff6a69b9de6c3956b844975ff39d3ad6bad60b15ebbdfa83773887d81915c0cb8ef3dbcf620984578e4d5d12cdae77db4c10cab30d4126810861acb1\", \"relation\": \"hasComponent\", \"source\": 164, \"target\": 503}, {\"key\": \"10487a8d22b323a87b2ef92474948fe9cbbd3497ae38566976f3685b17a3f09a26f540d1004db223ccacd9eef7e6d00a24383486bf7c3f9af7c6e962c6c86f2c\", \"relation\": \"hasVariant\", \"source\": 503, \"target\": 504}, {\"key\": \"23330eaf636697b8670ef1ef7676f2cd36468adffafa0bc87793b41e4bdf7e9184ae68a3e693d3f262eb9888d5db4c29e1c17ef750fa1bd8d9866f75bdf5eee5\", \"relation\": \"hasVariant\", \"source\": 503, \"target\": 505}, {\"key\": \"0966a4fed589b9ee3c6ddadb32248bed276f10a05ed691b82a4cc740daa4fbbb10fe9be53d63bdef24b34d784d0cabc81a17496da0a5110e5732b3d1802d9c16\", \"relation\": \"hasVariant\", \"source\": 503, \"target\": 506}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Indeed, it has been reported that Parkin associates with the RPN10 (S5a) subunit of the 26S proteasome (Sakata et al., 2003)\", \"key\": \"5b0ca0bf4b65edb5a56c2b41a479d136854175d6255795cd4ac6cc5c4492027653957027d9f7b4737cc5a1b711648967fbec01e693c1f918dc8b2cdf120f4484\", \"line\": 299, \"relation\": \"association\", \"source\": 503, \"target\": 524}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"On the other hand, Parkin appears to have a role in synaptic transmission that has not been described previously and that was not possible to observe in patients.\", \"key\": \"be8828f14883f4b1bb43848a93e4d0a91e9772826f2fc37fe0f3bf425a86d92e26988ca0d8c56de1ea88bfcad48bf5d3884fac6a4a10d673b849b37eb9e39114\", \"line\": 331, \"relation\": \"association\", \"source\": 503, \"target\": 145}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The overriding hypothesis is that a defect in Parkin will result in accumulation of this protein(s), which is toxic to the dopaminergic neurons\", \"key\": \"0a9ccd0aff7453cc6f7a1d55ed346036f39e443bbea8867c750ff8cdb75724032e7abb70c0cbeb79c6bc50e6cf4ee90cd1b6d198d0f3055cde8e89b76f38e1a5\", \"line\": 336, \"relation\": \"negativeCorrelation\", \"source\": 503, \"target\": 45}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"One of these substrates is Cell Division Control related protein (CDCrel-1) (Zhang et al., 2000), an ~44kDa member of the septin family of proteins that includes GTPases required for cytokinesis\", \"key\": \"d4588a5deb43ca73b42aef976454fd72bbc9a082aa38bb70e93b74a0ae063ef3d7cbb6d3c9be90411b583ba68876b901c729bfa891c2caacb09fa2358965bc89\", \"line\": 343, \"relation\": \"increases\", \"source\": 503, \"target\": 534}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A second important substrate of Parkin is the Parkin-associated endothelial-like (Pael) receptor, a putative G protein-coupled transmembrane polypeptide (Imai et al., 2001). When overexpressed in cells, the receptor becomes misfolded\", \"key\": \"81cd8d0e0329956b1207415075179598fc342fa904a0f75d618c0f5bdefcfe5c248c18e73fc4f6542e1eb528aa2dc84139b2b4d1719f0edc240672e5593a706b\", \"line\": 364, \"relation\": \"association\", \"source\": 503, \"target\": 442}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Parkin can rescue cells from the UPR elicited by a variety of stresses, such as exposure to H2O2, DNA alkylating agents, short-wavelength UV light, high osmolarity, and heat shock (Imai et al., 2000)\", \"key\": \"30965ca2ab9951cc05b6eb3b97e642add72cf7064d251d83e1818ea2e5449d3c1b9603490ba64f276d42a2833d9449586bdca8feabe0d5020a27226e3c28d687\", \"line\": 399, \"relation\": \"decreases\", \"source\": 503, \"target\": 116}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Of note is that overexpression of Parkin also suppresses alpha-synuclein (alphSYN) toxicity, suggesting that Parkin may play a role in regulating this protein as well (see below)\", \"key\": \"09b9f7559ad4bc52197b7d01482cbc7eeee19ef088b30f5b569f09fe785e8cd66fb7075fb7f7f36936bdef9d945a7f8fea62f7a5ccdac674fc52dec6ea5207a2\", \"line\": 408, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 503, \"target\": 536}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Of note is that overexpression of Parkin also suppresses alpha-synuclein (alphSYN) toxicity, suggesting that Parkin may play a role in regulating this protein as well (see below)\", \"key\": \"553aa2538c6963c811ef5019700dbcd16aa8264087af9b5a83cf3686c6ffd7281fd85342fc8e6f37c8511ffefe358b803eb2aea19be1cb3fd18339dc77b9f386\", \"line\": 409, \"relation\": \"regulates\", \"source\": 503, \"target\": 536}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Another substrate of Parkin is a novel 22 kDa form of O-glycosylated \\u0001SYN (\\u0001Sp22) (Shimura et al., 2001)\", \"key\": \"2c5cff47e9af55ce4a171eac9e2070e279aea9c45f927efdb6e0bb446f239f09e390796cf0d20c2f043e1f833dcc0499b48f0c2b2c7d638c706ea3f7aeed53c7\", \"line\": 412, \"relation\": \"association\", \"source\": 503, \"target\": 538}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Parkin also ubiquitinates Synphilin-1, a protein of hitherto unknown function that contains a coiled-coiled domain and an ATP/GTP binding motif and that associates with alphaSYN (Chung et al., 2001).\", \"key\": \"9800e6740dfb7b565cd729830eb851a7cfbc6dbc3fcb149a42e63c525419d611ffb0ce41f007bb941a97bea5be4782d7584db6c93eca12bb4b678959f15ddc41\", \"line\": 423, \"relation\": \"increases\", \"source\": 503, \"target\": 544}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Since inclusion bodies are lacking in most cases of AR-JP, it is possible that the ubiquitination of Synphilin by wildtype Parkin plays a role in their formation, by targeting ubiquitinated Synphilin to these bodies and removing it from the cytosol where it can be toxic\", \"key\": \"5834ee1379a032fae25c99f61cbf6804a4cd4c9c65d3fbc80a25abf0a3acf7ff71b5bbc01bc219afaf2e6989e5c0f3c738bb805ef284bc5130623702bbb35bfd\", \"line\": 435, \"relation\": \"increases\", \"source\": 503, \"target\": 544}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Since inclusion bodies are lacking in most cases of AR-JP, it is possible that the ubiquitination of Synphilin by wildtype Parkin plays a role in their formation, by targeting ubiquitinated Synphilin to these bodies and removing it from the cytosol where it can be toxic\", \"key\": \"20fce5684548c7fbe1fb8eb46d93739926ddea697da5e1edea0888352bd78bd12e5c97297d399bf75504f6189d4a8de383d3313d51087403067de9339d4d5b19\", \"line\": 436, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}, \"toLoc\": {\"name\": \"Inclusion Bodies\", \"namespace\": \"MESH\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 503, \"target\": 544}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Concomitantly, it reduced the inhibition of the proteasome and the activation of caspase 12 that are induced by accumulation of the polyglutamine-containing fragment\", \"key\": \"937fb00fa8cc03d06ae1cbe846b011ccb675d2b694bd67577e5f806262d74f98bc181f7719615b4be378c2375e058c12db66099b1c76e88f36b6a4eff13e6884\", \"line\": 442, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 503, \"target\": 155}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Concomitantly, it reduced the inhibition of the proteasome and the activation of caspase 12 that are induced by accumulation of the polyglutamine-containing fragment\", \"key\": \"86d1119d1f88c70eb8bb5bf9d55720f76bb2cab576b527a1d216c94fd468bf801309dfa2a53eea32ac68995376ecf58c78de26bd6db0b465437eb8510c6baf5a\", \"line\": 443, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 503, \"target\": 397}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A rather surprising, recently discovered substrate of Parkin is cyclin E (Staropoli et al., 2003) that is ubiquitinated by the SCF complex that contains Parkin.\", \"key\": \"b34f018601cd9a450e08e66cec8be6ff6318c3225be7503b4d177244277c800b45437bec6244f4d8f98b0b1aa93451c717c339606708177d9db0ec8e9549660c\", \"line\": 456, \"relation\": \"association\", \"source\": 503, \"target\": 398}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Parkin is reported to attenuate cyclin E accumulation and rescue the cells from apoptosis\", \"key\": \"ef3ebfb379a45d1b2b8ad05fa03cb063c8c782ae0b1dd6490196f15129d07dfeb989f6a7ca670c7aeb34d01126f3facb404e6eecca3d1a44b9b4c0d3e20fcd3e\", \"line\": 468, \"relation\": \"decreases\", \"source\": 503, \"target\": 398}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Parkin is reported to attenuate cyclin E accumulation and rescue the cells from apoptosis\", \"key\": \"fce42292675ace4fdbcd94f722d7f678cd1d7ea68c9bbc6ecfed186a5c9476d17532b79f3422be07c969ed536a12e178592bfb0021475eea4d5964dad50de05d\", \"line\": 469, \"relation\": \"decreases\", \"source\": 503, \"target\": 97}, {\"annotations\": {\"CellLine\": {\"SH-SY5Y\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In the dopamine-producing neuroblastoma cell line SH-SY5Y, Parkin rescued the cells from p38-induced cell death\", \"key\": \"cdeea24f59a20bed1b73b67855ca7650af9af11052a6a58c27166481bcef85dffde710b58561f64a089c10cd3434057534e7cf55a1e762f2d75892d7a61fd430\", \"line\": 474, \"relation\": \"decreases\", \"source\": 503, \"target\": 80}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, Synaptotagmin XI has also recently been reported to be a substrate of Parkin (Huynh et al., 2003). It is possible that ubiquitination of this substrate affects synaptic vesicle transport and/or transmitter release.\", \"key\": \"9010f71c8ac1d2be54b579ecf227d3f5235cb60f1469bc1f59395994665c497e3b0f7c68290aafaf3da5121226587b439d7741a3a39325629a09c4da7e38a504\", \"line\": 487, \"relation\": \"increases\", \"source\": 503, \"target\": 559}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Parkin has been reported also to associate with actin filaments but not with microtubules (Huynh et al., 2000).\", \"key\": \"990283194fb53b731ee90af42f5600775c13740ec856245df57078e4c8f60c0e9c6239a0ff13e8efd60f25e8101a3bcd361450e47aaaf72645c7b835a06eb7c9\", \"line\": 493, \"relation\": \"association\", \"source\": 503, \"target\": 25}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Yet, it is possible that the ligase regulates actin activity by ubiquitinating an actin-associated protein, which in turn affects the function of actin and thereby influences the movement of synaptic vesicles\", \"key\": \"a5d7ca805be754b6f09aef8c9ec27b07612c33487d21af72ff5e0aa939bb8fb4f283feb0147b8ec9b86189249c4c08f284f6090fee12ae5daa66a319d54af6e0\", \"line\": 499, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"regulates\", \"source\": 503, \"target\": 56}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The suggestion that the glycosylated form of alphaSYN is targeted by Parkin (Shimura et al., 2001) may resolve part of the enigma\", \"key\": \"5818e4e0fc645004a0f208fc94e25d0d70149a3c27fa1d40f0cf87417bfc57424865e6570745d8ba1d3de1c23e09bfb70b805ddec8d7595e5117b6c076bcfc37\", \"line\": 580, \"relation\": \"association\", \"source\": 503, \"target\": 537}, {\"key\": \"414cf639058cca779694847ce0e40733860de19fe27592bc40dba9094763fcbe8b56d0a0e342feb4db33464b87628b2fa807f9e4e55b99c2df6be704f35c1bc1\", \"relation\": \"hasComponent\", \"source\": 168, \"target\": 31}, {\"key\": \"3c1e20d8bb1608e24db593446cb3bf7f1604f7c628ea50d8e1e603a725ff04c2dcc5a992f8d2016b2a54e1f9dd6c4f9fb85b3fcefeca27dcac631c8674eb154b\", \"relation\": \"hasComponent\", \"source\": 168, \"target\": 520}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"An important finding, however, in that respect is that aggregated and even monomeric alphaSYN bind to the S6' proteasome subunit and inhibit proteasomal function (Snyder et al., 2003).\", \"key\": \"1a55724a6a8cb827143ad37ab2bb6377c6acede318152f41eba6cfbc150d959e95f795b10e488fda33aa1a83ee12ee59cfbdb52432dcc7893a99f7f40ce50e42\", \"line\": 592, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 168, \"target\": 155}, {\"key\": \"acc49fb1090035bc520f7e2e9321163168cd6e362be334ac207611f12d279694a2a3996a663316e285c339c0f790b614c9cb04be496ccac194feb97d7468a6ab\", \"relation\": \"hasComponent\", \"source\": 169, \"target\": 37}, {\"key\": \"e01ea6820c75c92b53c415cbb509bd647511647c468f5938697076afacf421749b905b3c34bc696c5b4a420e107923a5205517255a341290375aab9051ec47b3\", \"relation\": \"hasComponent\", \"source\": 169, \"target\": 59}, {\"key\": \"de5035b3d6cc28a22e3da4759a09c9749428dfa63cd53e7041ee68a1c4029a00796a0315a0fcaaf1c8ec96d68e2e611e27e5e675869b5c838e63117138b8b197\", \"relation\": \"hasComponent\", \"source\": 172, \"target\": 46}, {\"key\": \"d16d58cac9594158c2105d3e3c5bd03188bd25722f9cb95f76b292fd6f586ca5c9eaff6eeec117d30d9491503a620a9f77ea691276a46b88b1e98410cdff55d1\", \"relation\": \"hasComponent\", \"source\": 172, \"target\": 62}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"737df8d445fc7379009f58bba7786289b937b6cb970de41816ce55ec406b0a11e7a85ce21433d90c3cfb148893e5b8d8d3cb5be0a576d71720b0db98794917a3\", \"line\": 247, \"relation\": \"positiveCorrelation\", \"source\": 172, \"target\": 50}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"edde8bce89ac654802fd16c409899952a4c0d8e60de666ac9d7f62de6fac5e17aac5a1b97eee97c26c5b166930f7dec5a65789a1bb8ac627f0184c47399af7a6\", \"line\": 249, \"relation\": \"positiveCorrelation\", \"source\": 172, \"target\": 22}, {\"annotations\": {\"MeSHAnatomy\": {\"Brain Stem\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Accumulation of ubiquitin conjugates and/or inclusion bodies associated with ubiquitin, proteasome, and certain disease-characteristic proteins have been reported in a broad array of chronic neurodegenerative diseases, such as the neurofibrillary tangles of Alzheimer’s disease (AD), brainstem Lewy bodies (LBs) (the neuropathological hallmark in Parkinson’s disease [PD]), Bunina bodies in Amyotrophic Lateral Sclerosis (ALS), and nuclear inclusions in CAG repeat expansion (polyglutamine/Q extension) disorders such as Huntington’s disease, Spinocerebellar Ataxias (SCAs), and Spinal and Bulbar Muscular Atrophy (SBMA; Kennedy’s disease) (reviewed recently by Alves-Rodrigues et al., 1998; Sherman and Goldberg, 2001) (Figure 2)\", \"key\": \"43e6deb960f15792fefd1c0ca13146251b110377485ba56d52fbcb503dd73e227814e9d26cd7634ac0cc891b6955f5c8700100e2086ef3a7530a7e96d405a3c5\", \"line\": 258, \"relation\": \"positiveCorrelation\", \"source\": 172, \"target\": 48}, {\"key\": \"609c53ecec2da536b8e06eab1d90f47a353113fdf18a16a4622877116b3595a0a8fdd10f3a059caa65706f9e0b969311654f0f8e19376667be8144365bf88567\", \"relation\": \"hasComponent\", \"source\": 173, \"target\": 49}, {\"key\": \"85c238c2ffa2e58d6895de0c8676dae99885d0d59d61daa691429427ee9a2c4a5b54b85d97dcdcae0ac6bca7b70637c0730fe72bf55338b143be6b9f9227703f\", \"relation\": \"hasComponent\", \"source\": 173, \"target\": 61}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The stability of additional proteins depends on association with ancillary proteins, such as molecular chaperones, that act as recognition elements in trans and serve as a link to the appropriate ligase.\", \"key\": \"65da41b11e646a9dc84d783370d80f82aaa53c5f941d85a21d61e50e9079f17375267bb4b431a8d3f06c5694a1cf30777f8ad8e2457267a8edc458163ee24fb0\", \"line\": 185, \"relation\": \"increases\", \"source\": 173, \"target\": 109}, {\"key\": \"461138546c1a791a994b7c460a635d0bf49ebc38660e6adfb837ea094b99169b7ad429b81798d7dca5c763bea86995a622acfaf3577d7985ec96990c763f0b88\", \"relation\": \"hasComponent\", \"source\": 178, \"target\": 61}, {\"key\": \"c1270986ad84446e63cc1a6692c22370b20da6f66672e4b8cfa5d224162b7e59a1d639ed823261f3c9628965d1541817cf13b5945ea072195e1752cbcbed907c\", \"relation\": \"hasComponent\", \"source\": 178, \"target\": 62}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Following degradation of the substrate, short peptides are released along with free and reusable ubiquitin.\", \"key\": \"777f44228481c5d0bd61ec92f78ea80b8fb43645ae287fe7d5c1190890288611bbb4c08c1882bfabe0ab3b2a19cc44d08ebe5a4fff4e26733cf3b219ee344a67\", \"line\": 180, \"relation\": \"increases\", \"source\": 178, \"subject\": {\"modifier\": \"Degradation\"}, \"target\": 62}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Following degradation of the substrate, short peptides are released along with free and reusable ubiquitin.\", \"key\": \"8e1c8349502c03887e51944b577cc7cd5b8c8b9bd4bfcad9e8eb27b19ea9b621934d5d923fd4400fd2f825e20f6ea00dbd0fff6c088084aac55c7e41feee9d22\", \"line\": 179, \"relation\": \"increases\", \"source\": 178, \"subject\": {\"modifier\": \"Degradation\"}, \"target\": 18}, {\"key\": \"d124462c67addb28ceebb679de72bb2f842e48ae0251818ff313e61899ad83ecd0e564a7d076723cc3c55cf7d65d6a4aff90a4cf8e11a44a1218da47bbaf1a97\", \"relation\": \"hasComponent\", \"source\": 180, \"target\": 61}, {\"key\": \"dfac13b808e96bed71f8bc3edb187bed073beb4057a5bf8031738bd56029caf4759d8f839a4a0df895f3ef515a6451693668264978acd6c56c560ae62f7951b8\", \"relation\": \"hasComponent\", \"source\": 180, \"target\": 62}, {\"key\": \"2a07c8ad1802efe04d1e28ea5c7ad2fbbf035fae6639b388b0e6fa26b56a5260290efd234260ff5fb9b21865c2bb1bfdc78608bd8e4afdf06fd3ab13c683c149\", \"relation\": \"hasComponent\", \"source\": 180, \"target\": 570}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"E3s catalyze the last step in the conjugation process: covalent attachment of ubiquitin to the substrate.\", \"key\": \"8fce8f6e31fe6fc5a1a1891fb34ef83e1d31cb8cd8ebf8cc01c07745935eca37ced85612429bb39dceae25baadd8f13f895c49c9092dd1a5a4a391c1b9967fcb\", \"line\": 113, \"relation\": \"increases\", \"source\": 570, \"target\": 110}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In some other cases, the first ubiquitin moiety is conjugated to the substrate by one E3, while chain elongation is catalyzed by a different ligase, often termed E4\", \"key\": \"41c300589b373330acfadcda06b87c3d83907200681529d965710214805c4741d52819ee165c4f63b9b8ba3ea3ba03d3696a25529e3ef3652e37ffee11c98e8a\", \"line\": 139, \"relation\": \"increases\", \"source\": 570, \"target\": 110}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"However, earlier biochemical investigations on the SCF (Skp, Cullin, F-box containing) ubiquitin ligase complex, the archetypal member of the cullin–RING ligases, indicated that E3s can also positively influence the rate of ubiquitin transfer from the E2 to the protein substrate [17,18].\", \"key\": \"b2fb863e35edbefe08163167e8b38b194f218e0269d5fe13f02d89ab8ede116653e16d09a508801cd5f2414417bf6a9a3e5b77ee68131d06ecc9984b556e536c\", \"line\": 121, \"relation\": \"increases\", \"source\": 570, \"target\": 110}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"These studies demonstrated that both E2s and E3s can affect the conformation of the ubiquitin on the E2 surface to promote its transfer to the substrate\", \"key\": \"a7df84c005cd75b453bed69feb901a29fb9ae3c010e820e03250f0fe9c081e8a87049a6ff6bade3ee06d0c09739bc92f8736cb6974933c119a78d4ddb10509f4\", \"line\": 133, \"relation\": \"increases\", \"source\": 570, \"target\": 110}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Some E3s can also stabilize the conformation between ubiquitin and the E2, thereby accelerating further the rate of conjugation of ubiquitin to proteins\", \"key\": \"62fb50927730942e9f23bdb9e4d0ec707bce64f916b1cedc41923707e4aa88cee44bf3a727ddbd9941ef743162fa10f5993a7ca5abd2d53455aa73fbcd3d2886\", \"line\": 156, \"relation\": \"increases\", \"source\": 570, \"target\": 110}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It appears that E3s play a key role in the ubiquitin-mediated proteolytic cascade since they serve as the specific substrate recognition factors of the system\", \"key\": \"db5d12d73698d0d1d70e61506ed3a85f8da1f067bcfc58e7bcde73984ddac45483c6426dba9c2ee20e4540dc2e697850ae702801caa24e3da555d8ccdd3a2024\", \"line\": 126, \"relation\": \"association\", \"source\": 570, \"target\": 129}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Indeed, recent studies have provided insight into the mechanism of E3-mediated activation of E2s by trapping and either co-crystallizing or characterizing by nuclear magnetic resonance (NMR) the unstable and transient complexes between E2~ubiquitin and E3.\", \"key\": \"0c5f05e28553746c8e29d32490d62e0fbeafd45ab76ec44441eb5f416c6e548614b6cd195dfc379139055e72bbd6db0d858cb3ebb4c16fb53d2bceb082e54b3f\", \"line\": 128, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 570, \"target\": 569}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Some E3s can also stabilize the conformation between ubiquitin and the E2, thereby accelerating further the rate of conjugation of ubiquitin to proteins\", \"key\": \"2d361465eaec1a087f82f87a98a268c08caef5614783d127f859c27caf96339663f50b20d068b354b3decd74681ff3c42c73eb7591868732e5d27ce85650be7a\", \"line\": 155, \"relation\": \"regulates\", \"source\": 570, \"target\": 185}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"One key take-home message is that many E3 ligases likely evolved to be processive, meaning that they can conjugate multiple ubiquitins onto a substrate before it is released from enzyme\", \"key\": \"6cb887202457c939cdb150523213efb223148dc48b5e77ee21f9b3c5f9647b8ecc0ad369ea41e33e35ba8c64d6d779a8414bff340b5b22afdf05cf8fefa3262c\", \"line\": 182, \"relation\": \"regulates\", \"source\": 570, \"target\": 107}, {\"key\": \"b8c670319f347de1fc473d3c26ba5fea9844aa7c4f66a2b519d2deb76390e1586058b2f98865aa1300ff1de939c8d7f680c5b122f2c1b99907da9c9d22fedd6b\", \"relation\": \"hasComponent\", \"source\": 182, \"target\": 62}, {\"key\": \"353c5756aeee08ba0bf933fa6f874b3e368d25871e557babe5ba4bc0fde318126116f955e1e3c1129783691e553e3af07635cb170a4636d517633923fcd9c1e1\", \"relation\": \"hasComponent\", \"source\": 182, \"target\": 519}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Two ubiquitin binding subunits of the 19S RP have been identified, Rpn10 (S5a in mammalian cells) and Rpt5 (S6'); however, their essential role and mode of action have not been discerned\", \"key\": \"520ecb9d8d5a624156d8e0c1a99634115519d140522a496973b77d15ac335fe288b5f55596e993909fc3fa14a2361e26434d5d44a9e26e3106fb7ad7cc60a5ba\", \"line\": 170, \"relation\": \"increases\", \"source\": 519, \"target\": 182}, {\"key\": \"44250a704e95e7d994d328a626584f304e223908ccdd3edf63ceef8cfda9263246781fc924ea025d16de312ed1ddcda9699ba066bc923a07a95dcd20caaf3c49\", \"relation\": \"hasComponent\", \"source\": 183, \"target\": 62}, {\"key\": \"ec752d7f3d82da071688f798f0705e12f60e4b07281b08eeb0ca3473bf9bf640175c2242097438cd1e9b1ea2729093ae2c3b494c721241288848a4adf9d8f282\", \"relation\": \"hasComponent\", \"source\": 183, \"target\": 524}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Two ubiquitin binding subunits of the 19S RP have been identified, Rpn10 (S5a in mammalian cells) and Rpt5 (S6'); however, their essential role and mode of action have not been discerned\", \"key\": \"1bfcb03ab787ef7251d3e9ee68bbaa23cce3d17bb9d164f75dfe3d0f214c4bc60e7008aa78cb7aebef79046a835b8f6e120a182cec5610247bb620a989d492ee\", \"line\": 169, \"relation\": \"increases\", \"source\": 524, \"target\": 183}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Indeed, it has been reported that Parkin associates with the RPN10 (S5a) subunit of the 26S proteasome (Sakata et al., 2003)\", \"key\": \"6359561190e500b1aa792b1d2f3825ad9cbadb63454f712129ffe8918fdffb8d9169d0ebbe15e74d3ffe7be11789f409c0bbeebac89f8bd56e9b62d1223541fe\", \"line\": 299, \"relation\": \"association\", \"source\": 524, \"target\": 503}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"First, ubiquitinated proteins are docked to the proteasome through receptors associated to the 19S [67,68], including the proteasome proteins Rpn10 (proteasome regulatory particle base subunit; also known as Psmd4 – proteasome 26S subunit, non- ATPase, 4) and Rpn13 (also known as Adrm1, adhesion regulating molecule 1), that bind to the poly-ubiquitin chains [69,70].\", \"key\": \"672274530ec25ce07ea68e857857af12c5ade41ac828c6ccfb88d7867088e661b234c416841ec0d5e094066d4f86e9bce0d6e5988e599711ef980be36543fc66\", \"line\": 254, \"relation\": \"increases\", \"source\": 524, \"target\": 167}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Similarly, three components of the proteasome regulatory particle (PSMD4, PSMC1, and ADRM1) clustered together, as did the two subunits of the prefoldin complex, PFDN2 and PFDN5 (Figure 5A)\", \"key\": \"c5c4c92e93c78a729c2e78c1816742abec841fb03bc60e5f589a39206287b9f63b370189fd80d14d043a3e49717d405cd01e16e6b0b6731601eac2163c56aa5b\", \"line\": 320, \"relation\": \"directlyIncreases\", \"source\": 524, \"target\": 200}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"1f039e41bb82d08c6e9acc01e283c347c5e7c3523b1ba86ae4b5ff67b23b390669813741d923fdc4a6f5f222926dd066a14d5967b0dd2ae8aa1ac5be27867e8e\", \"line\": 361, \"relation\": \"directlyIncreases\", \"source\": 524, \"target\": 331}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"fd784eee309a75f737f8d9da9954015c72a61cf91d44c9930b7463473571324320146fd7d943dab96120116b236d0590f8c277aa248cda28b852a764516dd43b\", \"line\": 362, \"relation\": \"directlyIncreases\", \"source\": 524, \"target\": 326}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"804187bda71f77b63ace391b308bcbfca2ed50700e7553b54bdf14f08bc151c5479f3d69efa752f814c9a9915d146dac129fef345d6c9da1229620737de701ff\", \"line\": 363, \"relation\": \"directlyIncreases\", \"source\": 524, \"target\": 328}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"6c90698f3123445c5933509a996363b042e8adefd21efcc67c3f2b5c684ca509c6f254bf58873392d8c62b5a4b890d1d1e37ef3d05eeb65ce7e8a52d882dabbf\", \"line\": 364, \"relation\": \"directlyIncreases\", \"source\": 524, \"target\": 322}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"7280a906d8cc8d1f3944228de7a7b739e33a591ecad2cebfb662b1dfbdc97c1820f9c38f6fde87b01294b13519666616d9201b043b01b9717379d7cb5a3c8ac3\", \"line\": 365, \"relation\": \"directlyIncreases\", \"source\": 524, \"target\": 323}, {\"key\": \"9d9b19556c36b495b90d64177ad3f2540c59d10a8ef6e0d1c4d6376cf7beeb887561b4503e930b63768a7df4c7ed102aeb723513315af0d88d2cc13de144ec02\", \"relation\": \"hasComponent\", \"source\": 184, \"target\": 62}, {\"key\": \"d2614795c7e622a21017468a369e752fcebc8160042fb4ff7b5fa8b2fe1ea4cf5791735be101818285f18a50cfbbce8f3ae9db7e7f84b233b7e8db46b5611116\", \"relation\": \"hasComponent\", \"source\": 184, \"target\": 568}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"The thioesterified ubiquitin passes from the E1 active site to the next member of the cascade, the E2 or ubiquitin-conjugating enzyme\", \"key\": \"a688adb4e505e01ff1833f4f901191bb63865dacc58e4433344c31dcfcfbb035bd078ffcead0be8eb73e756b2431f59796a55c0e08e96b13813e4b380d225d73\", \"line\": 90, \"relation\": \"increases\", \"source\": 184, \"target\": 185}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"E1s are multidomain enzymes that must activate ubiquitin and efficiently transfer it to the E2 active site\", \"key\": \"06947a923f8a67f5269e0887c2b2308cf22a881111cfa3a93cf4abcf5271a2732d47fd2f9485ed9820c7923c7f9edbf80374fdf77e4e683810ee41e568b4f714\", \"line\": 108, \"relation\": \"increases\", \"source\": 184, \"target\": 185}, {\"key\": \"87158155a4d87c2b690590fc9099de0036e5a7393ce84a6184319c514e1e3b2b992fe85cceed0aa13db952431acf5c53d5cf9029acac14dc8492409382474cf8\", \"relation\": \"hasComponent\", \"source\": 185, \"target\": 62}, {\"key\": \"214ea125b8c6bf84dfe20d0f4d4184e178cf73693a2b74296e378b46d459c3e357f8f3e3bada662cc6376bca23cf5f89fefd40ef02765ee4828eb2ee5eb7c715\", \"relation\": \"hasComponent\", \"source\": 185, \"target\": 569}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"In summary, mechanisms of E2 activation involve the binding of ubiquitin to surfaces on the E2 and/or E3, thereby allowing an optimal conformation of ubiquitin on the E2 surface\", \"key\": \"18ed2710da4c01d7fd24f42fe0f30f94e4d78b50d6e637682e9fb19d7040c49efde1ef08d33eba822deb035efa8aa3ffddf8f807348df5e0f09e3c0c6aa260b1\", \"line\": 169, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 185, \"target\": 569}, {\"key\": \"b7d5a5e883ed3f2f8d4f958441c3aa6911ec2d0c9f212019520e403d8658abc39f32c365a56084fe9084b05a4415650db2da30f3a6d5deb0ad34a9255884b70f\", \"relation\": \"hasComponent\", \"source\": 186, \"target\": 62}, {\"key\": \"edaf0049e8f25c8383ae58350ba63fa98a4af9b47c0c35df8a5a8f6ef6f534d8ca11db5d5f5f9c7b2a6f138820dcb40d0ccddaaf176870778923158a640490e6\", \"relation\": \"hasComponent\", \"source\": 186, \"target\": 570}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"In summary, mechanisms of E2 activation involve the binding of ubiquitin to surfaces on the E2 and/or E3, thereby allowing an optimal conformation of ubiquitin on the E2 surface\", \"key\": \"8d670ad140460a5406f070acd221535c3231c21c29d5808a6517f80adfe53e788db7762443aa06347022041972c448f2749eb834b5f19956602d5025e1c9b39e\", \"line\": 170, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 186, \"target\": 569}, {\"key\": \"f0ba8fb8b35262bf44304ec23e9f2420f4896720bf2d7877dce21c1d58b0d3e4204bfaad4ba9a637f5f2f0cc880f5b1405f850703f27d8e55cf02b6244477382\", \"relation\": \"hasComponent\", \"source\": 189, \"target\": 62}, {\"key\": \"7c264c07b492f08e23f4ef7e0585d0ff381008b34854b2fc44862142243bd8f736ff195767043df90c36bdca2db2c1824cc3dcd976a647bf2be3b1a263017af1\", \"relation\": \"hasComponent\", \"source\": 189, \"target\": 597}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Both HECT and RBR E3s are unique in comparison to the RING ligases because they catalyze an additional transthioesterification step, where ubiquitin is transferred from the E2 to the E3 before its conjugation to the protein substrate (Figure 1A)\", \"key\": \"c0c77e45e3848c579aa032c95239253453d9b75fcf22dd14645f202bf93413ec084c2eb21e4fd5ad1b4e967d8b1c223e29bdd5fa054f5f8977ae56912df08986\", \"line\": 176, \"relation\": \"increases\", \"source\": 597, \"target\": 186}, {\"key\": \"6725580633bd4cf3ab4599c8955080137a4a1ba104c809b25e53733b70ea4894a4bbc5db64b6d8c9fad9738ead91628c3dae4f5ca83d1464782c3ff6aca597cb\", \"relation\": \"hasComponent\", \"source\": 214, \"target\": 385}, {\"key\": \"3ca545ff17a3aeb560975a009d477b7013994675f2722d812e7488fead88c5b4e617f4dd654ee213a2f88fcc67689a9201e73a2359f77d795f663f51d2ebaeed\", \"relation\": \"hasComponent\", \"source\": 214, \"target\": 527}, {\"key\": \"4d3a2f566d3f98ac849cd53d45f7aa476619f0ae9cc792e9fff7a1f967fe595e30d2a2368c367adf532b205f5ca35f91657c111c4f25d5d647039fe0959b9ba4\", \"relation\": \"hasVariant\", \"source\": 385, \"target\": 386}, {\"key\": \"5404e9598334c41bd5e0700c86e37ff5a22052d99f5c56c609c6f107aa908381cf0228b699edfc35597c234c7faa72fae73be5786da68e2f15de690c91165d26\", \"relation\": \"hasVariant\", \"source\": 385, \"target\": 387}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It interacts with the human homolog of Rad23, a cytosolic protein that binds polyubiquitinated proteins and is involved, most probably, in shuttling them to the proteasome.\", \"key\": \"12d46819f31254c91fe7ab0984aafb6d62788b0e98c1e11ad0e9e2075d94c77fc35e060b9ce7b49234c23a30e28a7ed8dabd6cd21ebac8151bf4f202113cd8eb\", \"line\": 931, \"relation\": \"increases\", \"source\": 385, \"target\": 214}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It interacts with the human homolog of Rad23, a cytosolic protein that binds polyubiquitinated proteins and is involved, most probably, in shuttling them to the proteasome.\", \"key\": \"adf304abe680c2d5896b9def132ad21ad937a4fe32f763c0b32b435ad4dbbc59dc6445e45c43ee72aa4cffd5014f5df16490f8fb0c03d3e735f64ae3671ae2a7\", \"line\": 932, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}, \"toLoc\": {\"name\": \"proteasome complex\", \"namespace\": \"GO\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 527, \"target\": 387}, {\"key\": \"e833f9d0e5f4792952369844b100e77a037c3e2a09575ad5eb4b1026cc5d003049c88c713c01d4cd422706f0828bf60c3f91210268c29dbcb33ae0902042058f\", \"relation\": \"hasComponent\", \"source\": 215, \"target\": 386}, {\"key\": \"0c30b13a7d3df4fffd260451e6ce4cf4ab64c906a33fa4b778dc45a242e680beb0751b61464e1e44cbe0e711b36f45f3a24bcaddb8dd8ff5b0ba5e2fdbdc92a5\", \"relation\": \"hasComponent\", \"source\": 215, \"target\": 503}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Concomitantly, it reduced the inhibition of the proteasome and the activation of caspase 12 that are induced by accumulation of the polyglutamine-containing fragment\", \"key\": \"3783c956978e93ed903edce7f88bda345919b0e65e0777df580a95b8d005268445fdcf9887155b9580c3349ae4fc0567128c0990193f38f8039574e7f1475e7d\", \"line\": 444, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 386, \"target\": 155}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Concomitantly, it reduced the inhibition of the proteasome and the activation of caspase 12 that are induced by accumulation of the polyglutamine-containing fragment\", \"key\": \"fb6dd2dbd7dc9b2bda2eb6d815979a36e612c6a13fe6c56083f5121b6813aa89e54a21afda1b2d615a6f4345ec23440a792d3d56e9f6e94ccd4117e123ea1812\", \"line\": 445, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 386, \"target\": 397}, {\"key\": \"9d5587f57ddb965ce29f8cd34b6d2b4c67c80f1c16c8b6656710699ec274ec15a587b9ada0f9e987c2f3b4c7de3499956da833f4b16fe00b4c3502d173b96270\", \"relation\": \"hasComponent\", \"source\": 282, \"target\": 452}, {\"key\": \"a88f769b4765b57b518e4ffe09f302fbf6e5f4129572f0a2f9382d200f0aa79536fe981a7cdbbe4b5b5f90b855ab62eb7643c3532f103238bb4e0dd4f79e6ab1\", \"relation\": \"hasComponent\", \"source\": 282, \"target\": 507}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The Prion protein normally interacts with the chaperone BiP and undergoes assisted folding (Jin et al., 2000).\", \"key\": \"94e0780b3f5ba91170b59054174d58e925ddfbf6be7b83bca012848005f3e305e7646f8e2ac5ce289299ed92c322961d2942e18981d68d1290ed32e3112db1bd\", \"line\": 783, \"relation\": \"increases\", \"source\": 282, \"target\": 106}, {\"key\": \"0c84f0bedb568f71895c10a2d70b8ec45ce9829be943f2b99a30941bc5ef98db0bee0817af46d14f83ee8f88f1afc5126a288d427087f95f78aa9d2002b88a77\", \"relation\": \"hasComponent\", \"source\": 288, \"target\": 460}, {\"key\": \"dece46bc7547720f1245ae16015ae60e7d0fb4e80a80f415aee57f35ca1b980ae10c849f7630c3323742f8ee4ac9d1f69946653cd4fd2c62895c1dc4745a82f4\", \"relation\": \"hasComponent\", \"source\": 288, \"target\": 569}, {\"key\": \"b42ad1b8e9597c423c725b75c4086729a97204b2b559865d4a6ad337d474de0d31fcbf6f5cd1b378fab26ffaa9207436362424447e799777b4dd78852565af35\", \"relation\": \"hasVariant\", \"source\": 460, \"target\": 461}, {\"key\": \"7420f8526a1e0f09dd47204df1b2dccd48e82b77cbe0a3ccdc36b1b5ae8b7f37341f1f9b7d4e31701ab13ba7c2a4e0f0f6965b951cb67e0e447ebbb3bbdd2b74\", \"relation\": \"hasVariant\", \"source\": 460, \"target\": 462}, {\"key\": \"a3ac61ee6ec4e9b3af47845dbe04b3de658393e1d87be866f3fc491ce0722391f8d21e748e8816d98859b534dff8a41ea1d7df7603199741e1d45d50c1675f96\", \"relation\": \"hasVariant\", \"source\": 460, \"target\": 463}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Thus,Huntingtin was found to be ubiquitinated and also to interact with E2-25 kDa (Kalchman et al., 1996).\", \"key\": \"65a6c766e16126ec647e303254bfa1b28686b2ef94c9d1db11b5028a180b406a5a95386e4b749015569b2eba7d3a86c58913eb79c262dd430a3471b1e6cc67ba\", \"line\": 926, \"relation\": \"increases\", \"source\": 460, \"target\": 288}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In a cell culture model, they overexpressed mutant Huntingtin and observed proteasomal inhibition accompanied by cell cycle arrest\", \"key\": \"fe9fc33b0a4479e5bf4f0c2efb1357afbab7e74aaa7e2b19fa7a30dfc4323c3cd1e8e0800873c88a3d3d198dce58dfa28ab9234d2c729f323c4ca3090fe73af2\", \"line\": 936, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 460, \"target\": 155}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In a cell culture model, they overexpressed mutant Huntingtin and observed proteasomal inhibition accompanied by cell cycle arrest\", \"key\": \"e4517d2ad0543e6b95c1eca02a183737f4b08147c898e2a8b1b20aba5b80dc5b67bb887832117d9a8ad7dddfa3e51760acd9cc7f3def993db6f8b388ef0b562f\", \"line\": 937, \"relation\": \"increases\", \"source\": 460, \"target\": 78}, {\"key\": \"31fd0ec124f0f54abc5952db86ae14596a8e71ca3affb7c7a7ebe1773e4b7eca4d43fc1b345f65b1f1f89de7d383b973812804f0db42b456315f0d3d1912cf5e\", \"relation\": \"hasComponent\", \"source\": 303, \"target\": 489}, {\"key\": \"373fcd44ae2f9f10d6f4dacc1d3b86bd1809fe78061700429963cfdc51d34e8370ce14b71ae60928bc8d0dd7aa19f5e2a1d134df26127f35735d655e9afc06dd\", \"relation\": \"hasComponent\", \"source\": 303, \"target\": 490}, {\"key\": \"ec5b51340207adab6e458744f49d4b304423f7c32ba86fe2ee719427998ab02bd64e4b757936da51939c7b4f8a410bf0781d95d196efefb4b40146bdaddba604\", \"relation\": \"hasComponent\", \"source\": 304, \"target\": 492}, {\"key\": \"76e3bd4fbc676f84463670c9808802ba305c422fcabbf94de74be6fd21e4759a36a8d7a7cc1484f5ae028287b3c685bcc1466f195a307c10adb3aee07964f8b0\", \"relation\": \"hasComponent\", \"source\": 304, \"target\": 500}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"DJ-1 activity may be regulated by SUMOylation, as it was found that it binds to the SUMO E3 PIASx (Takahashi et al., 2001).\", \"key\": \"3a2b136cf134c5660f58024077594b5926adf980a02f3f58bdc427a93178d42b17991dafbae919c64dbbb19e6f9452f5090fa855906ed732ed87c701254ee6c6\", \"line\": 616, \"relation\": \"increases\", \"source\": 304, \"target\": 493}, {\"key\": \"c683b2182b32f1503e1c6d591745f6fd48768461e75e9dea2ee49845f7f8b7af4fb5f7369341278b1d82e9295d4f22e976197e174b5c8a9dc3e32d3198a9fae0\", \"relation\": \"hasVariant\", \"source\": 492, \"target\": 493}, {\"key\": \"9dfcf0f46c2bcc66c35e9efe1d2d665636929719a571b7eb9d89093fe50e0013e9b9a3d8c5a2b58a5483ac328e4b867ca4b7538f0acf860a8e3641aede68f017\", \"relation\": \"hasVariant\", \"source\": 492, \"target\": 494}, {\"key\": \"2525cd443ef515d80c55c75f39f0d492ff50a68414d17ff4ffeee7de4d08ca00ca03ba2769e50de35ca920cbe30d70917b9c3fdf89108f06feaaa8df5edd446f\", \"relation\": \"hasComponent\", \"source\": 321, \"target\": 503}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Such a partner can be, for example, the cochaperone CHIP (Carboxy terminus of the Hsc70-Interacting Protein) that was found to increase the activity of Parkin, possibly by acting as an E4 (Imai et al., 2002) or the proteasome (see above).\", \"key\": \"b9ae3a52274fae3973266da5fb9df2835b30eae06b54a2ecd2a4730961e1b9252cf8cbabb0b8bceefc70002fb7185d33bc62061e9fec1dd8a71bec94da1f6a49\", \"line\": 327, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 321, \"target\": 503}, {\"key\": \"9fa44d769765b9b85b7c13756878a14ca7eb500bb6c6563239322bc8cbb746c0e6b814c21e5442ccc4e1210d1e2174019569b2ae1c64d57a36ab5b0329d76b79\", \"relation\": \"hasComponent\", \"source\": 321, \"target\": 554}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Two subnetworks emerged within this central network, corresponding to known Hsp90 and Hsp70 chaperone complexes (Figure 2, blue and orange squares, respectively). These two subnetworks were bridged by a unique set of cochaperones (Figure 2, tan squares). Among these were the wellknown bridging factors HOP/STIP1, TPR2/DNAJC7, and CHIP/ STUB1, validating our approach (Brychzy et al., 2003; Schmid et al., 2012; Xu et al., 2002). Other bridging factors in this first tier of organization included members of the Hsp40 chaperone family (DNAJB1 and DNAJB6), HSP70-binding protein 1 (HSPBP1), the TPR domain protein EDRF1, and the E3 ligase NRDP1/RNF41\", \"key\": \"6163c42e32a86c93c619e062339cbd83ad79b111d0b00535c90d994a81c955e9f7950653830aff262ff51c675c5ebe46c32d3368fbcbe52f1a1823eaa10a3d89\", \"line\": 91, \"relation\": \"increases\", \"source\": 554, \"target\": 338}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"CHIP binds Hsp90 and Hsp70 with similar affinities and can regulate the degradation of chaperone clients (Kundrat and Regan, 2010).\", \"key\": \"975b36158af828b01c3aa0e93965d38b627b02b3cf1e8b796bf30981e07469362f44e2c0811368e14ff1de3d2c262b6267b786fc03db0e37f0a3e878348c4ae5\", \"line\": 382, \"relation\": \"directlyIncreases\", \"source\": 554, \"target\": 337}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"CHIP binds Hsp90 and Hsp70 with similar affinities and can regulate the degradation of chaperone clients (Kundrat and Regan, 2010).\", \"key\": \"ca63d29d78208fdc29a1bc13e1911e549b02cbccba3dcb8822e176f175e3bdc936513c2ffe352f89a93688759550807d154ed0382cc9a3e209c8290dc7075d09\", \"line\": 383, \"relation\": \"directlyIncreases\", \"source\": 554, \"target\": 193}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"CHIP binds Hsp90 and Hsp70 with similar affinities and can regulate the degradation of chaperone clients (Kundrat and Regan, 2010).\", \"key\": \"3a64a4417ba957b1a33a44f58008646b67b5a1fa29c1a28a01c75309d523cb4fc13a006a25095f3bc5575c9c5091b81f262f8b05a56d2743cf35aa0bdaf59579\", \"line\": 384, \"relation\": \"regulates\", \"source\": 554, \"target\": 84}, {\"key\": \"8e712d4262046ae6f9b7e81dd69b8647c14112540a2266dd5b45edf21fdb603ca66f1da2baaf9c03612161bc500429bbd154a74a1674ee8f75da5863e07a83b9\", \"relation\": \"hasComponent\", \"source\": 327, \"target\": 520}, {\"key\": \"fcfeb6df9220678048f5e92d71d2ca514e64821e9725a801b64f3eaeb68c5140a75d1e420bb1f0d8c2e0eca7b188b4a8faca270afac3ae21b02b49e50864c3fd\", \"relation\": \"hasComponent\", \"source\": 327, \"target\": 536}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"An important finding, however, in that respect is that aggregated and even monomeric alphaSYN bind to the S6' proteasome subunit and inhibit proteasomal function (Snyder et al., 2003).\", \"key\": \"a476264bef88661c5d231ce486194c0cf21414baae84272b7e43e704244f57750c2f2b6bd31e61a1098369054e3f256202f0909cb44e6624d8ecdf40873da48c\", \"line\": 593, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 327, \"target\": 155}, {\"key\": \"fd9027a023e01d2c24112c989e7bc6cb2be7323cefa310aa0b5bb1b6767be47eb33578f034622e192a49d10627132e3970ba3cb57a093b07c39cd9725a03ee5f\", \"relation\": \"hasVariant\", \"source\": 536, \"target\": 537}, {\"key\": \"80d698dc4ccdbd85231ff18aa2de6e9c05cfab89627384423eb38b1dee2c8644f1573db080d68e6183e345708d4bee65d3168a5e2a8bea42d1b821c1d1e77d24\", \"relation\": \"hasVariant\", \"source\": 536, \"target\": 538}, {\"key\": \"aae3cb4a5909e620a5f6501396eb6316bc732c4712ffe93ad7b966b7120ea138ee0918c69628416bb72ea4a6823366e3f9476792de6b09046f45e22c7bb3135b\", \"relation\": \"hasVariant\", \"source\": 536, \"target\": 539}, {\"key\": \"892d371737b8a859289caced4c4d763309650497f2e73b58bc379b64d1f7a3a19962c0ee817a361a6bbbcfb96d11c59e50167d5baa9b2fe04a181b6576d47322\", \"relation\": \"hasVariant\", \"source\": 536, \"target\": 540}, {\"key\": \"d7fd63af4e3f7cfae7a2b90e0640eb9e32d7d438c80a40b935d1b4c063e700a98f91942bafcfb9e978093c0c678b1875a13dc8e6ce459a7df6f0dedb0be84748\", \"relation\": \"hasVariant\", \"source\": 536, \"target\": 541}, {\"key\": \"be326115b03b23c8f9535c21a847d21c9d71e9ca0a6e59ec5908fdafce0eaeeec33010beead981cf64164710a885bfd84590f8605663c0c087fcfebbf7ab6580\", \"relation\": \"hasVariant\", \"source\": 536, \"target\": 542}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Parkin also ubiquitinates Synphilin-1, a protein of hitherto unknown function that contains a coiled-coiled domain and an ATP/GTP binding motif and that associates with alphaSYN (Chung et al., 2001).\", \"key\": \"a33b873a755ccc2b0d5e3168006d57e58094cd138086c67df8417454f02e98fd10c4575919833836d803af357ef55c4806b43c2bf02df0db2925f18601490fbd\", \"line\": 424, \"relation\": \"association\", \"source\": 536, \"target\": 543}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"alphaSYN is a small, 140 amino acid residue protein that is thought to regulate/participate in dopamine neurotransmission/release via effects on vesicular storage\", \"key\": \"50aa61258816a88e8c7d443fa276d62d941318c360833beec06636315f61e57d7593e6630079ed924241f083249cb21b14712ede137daf26c91a558920f0c278\", \"line\": 543, \"relation\": \"regulates\", \"source\": 536, \"target\": 89}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"alphaSYN is a small, 140 amino acid residue protein that is thought to regulate/participate in dopamine neurotransmission/release via effects on vesicular storage\", \"key\": \"cce477b724ff3f96ece061054301f630d7f5c102fd6e4d85f4908fb96e3c0ddb0af4d42fee25aeca3fd1d615f9935b427a8975425f768103ecdd741f3e746701\", \"line\": 544, \"relation\": \"regulates\", \"source\": 536, \"target\": 88}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Wild-type alphaSYN is monomeric, but at high concentration, it oligomerizes to beta-pleated sheets known as protofibrils\", \"key\": \"77ec3bd1480a51b1e13f33af27587bb199e041d9a072ba2c81c64035528f586de02c30366157918e86a4f3accff1b3661969f02cddaedfdbfc979f57ba12a093\", \"line\": 548, \"relation\": \"positiveCorrelation\", \"source\": 536, \"target\": 131}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of wild-type, but in particular mutant alphaSYN in many cell types but not in all, induces apoptosis or sensitizes the cells to toxic agents, including proteasome inhibitors (see, for example, Lee et al.,2001a).\", \"key\": \"feeb51e93e3e2ca1d804984c23d0a2834cfc48eef6ad2c0facf5a2a8b62c5b93df9815ce449a5ad5258e868b062b3e55c6b2b97561a98b230789b5e906c43969\", \"line\": 571, \"relation\": \"increases\", \"source\": 536, \"target\": 76}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Instead, impairment of alphaSYN function may disturb ubiquitination of alphaSYN-associated proteins, such as Synphilin (Chung et al., 2001) and tyrosine hydroxylase (Doskeland and Flatmark, 2002), and thereby perturb neuronal homeostasis\", \"key\": \"31706c5323078c6c0349ddfbb174ec412fbaf403e8260b71b5a238d102e376ec8e15cd3cd42d5f644465a93257909f2133a6735d56689b46fd50350fa699b6dc\", \"line\": 603, \"relation\": \"increases\", \"source\": 536, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 544}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Instead, impairment of alphaSYN function may disturb ubiquitination of alphaSYN-associated proteins, such as Synphilin (Chung et al., 2001) and tyrosine hydroxylase (Doskeland and Flatmark, 2002), and thereby perturb neuronal homeostasis\", \"key\": \"8e32aa490aa8bd3b84bb7071bf59c888b8a8eb2d7bf16cdc879ef3bfae8d89fb256cf27a5f69955fc07c3d4ee2be1bf398058778c7077cf1be426a3625379aa1\", \"line\": 604, \"relation\": \"increases\", \"source\": 536, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 563}, {\"annotations\": {\"MeSHAnatomy\": {\"Neurons\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Instead, impairment of alphaSYN function may disturb ubiquitination of alphaSYN-associated proteins, such as Synphilin (Chung et al., 2001) and tyrosine hydroxylase (Doskeland and Flatmark, 2002), and thereby perturb neuronal homeostasis\", \"key\": \"a3414b648935b13475ff4fc8df10f852e5a18444ab15a33394007b9e165289bd2679559bf9e532c30647cbd57fd84c4b259fa7bcfb878598b90b69637f516d21\", \"line\": 606, \"relation\": \"regulates\", \"source\": 536, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 91}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In addition, other proteins, e.g., alphaSYN (Waelter et al., 2001) and the transcriptional cofactor CREB binding protein (CBP) (Jiang et al., 2003),colocalize with the protein inclusions\", \"key\": \"36c2c27eb5e615267c981f81aca8f64ba63d6fbf5b7f9f7b7413297fed9c06c9275d41438112695562865c1ed8640111188f9f3f19d4d9f4d5bc1bf4c1d8ee97\", \"line\": 906, \"relation\": \"association\", \"source\": 536, \"target\": 46}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"In contrast, α-synuclein overexpression impairs autophagy in mammalian cells and mice through reduced expression of RAB1A, thereby inhibiting autophagosome formation (88). \", \"key\": \"f73a89bf3e316d6e89d12b3cff016b4a74f8e0cf7119e7ed5062c39fe843a8420dfbc06b5062bf2781e41e621d0a14eb7952c9aa8869c481df5f32843c3200e4\", \"line\": 270, \"relation\": \"decreases\", \"source\": 536, \"target\": 125}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"In contrast, α-synuclein overexpression impairs autophagy in mammalian cells and mice through reduced expression of RAB1A, thereby inhibiting autophagosome formation (88). \", \"key\": \"2a891c06ddea91312c3c5056360015c4363906b010c42f02030611ef2e96d436be8efde689c6f0e2eab6a24d5a33e01694ca2967cc61c775b6615dbbfbf3582f\", \"line\": 271, \"relation\": \"decreases\", \"source\": 536, \"target\": 526}, {\"key\": \"f1da39aa7696871a7e7e7195b7d2d7f017401c52217f7121e1a3d4c8a5c6b77f59007b692dc392006877d1e5c1dbf0e75f47e6aa0fd038efb58f209df496e6b2\", \"relation\": \"hasComponent\", \"source\": 335, \"target\": 533}, {\"key\": \"fafce9a0040e01c1bd281d4c83bc5fb59da5fea800e4231d57293775568b4fefedfb8c8b4f7377c7775cb8a77b8138ca0c2172914a1c524b9ff89e4497054cc7\", \"relation\": \"hasComponent\", \"source\": 335, \"target\": 555}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"CDCrel-1 has been implicated in the inhibition of exocytosis through its interactions with syntaxin\", \"key\": \"7c85fe21b4797d667e76f77ddc897173938ad079eab7c57ebf231fa2cb7a4ea75cc069797495ac4c34e0ce8c8c69a46eb610ce3b0b30d0bcb5286a34b06b0b44\", \"line\": 346, \"relation\": \"decreases\", \"source\": 335, \"target\": 127}, {\"key\": \"aa4fc52f785441eb08398871f5b1cdcae90cff94a4ba0bfc2f9ccbef2843ac4094265277fb4ee1938ba9a6fda988226f15cc9c030ce2a92ad8fe298829511fe6\", \"relation\": \"hasVariant\", \"source\": 533, \"target\": 534}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Following transfection to a cell line, wild-type CDCrel-1 inhibits secretion of growth hormone, while the dominant-negative species increases secretion (Beites et al., 1999\", \"key\": \"aeabd65e2dd3004cf7fe124383866b140135a9c4f20e5570cb3553551781062f3a9b6ba03681a1793cf45d8da415e17ebbf1ec314d19981dc44df0905c827096\", \"line\": 351, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"intracellular\", \"namespace\": \"bel\"}, \"toLoc\": {\"name\": \"extracellular space\", \"namespace\": \"bel\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"decreases\", \"source\": 533, \"target\": 8}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It is possible that CDCrel-1 is involved in regulating transmitter release via its role in regulating synaptic vesicle dynamics, and its accumulation in patients with a mutation in Parkin perturbs the process.\", \"key\": \"8c856e425b3be7a242802bf21d90b63407481fe6de6dd32780e3852fcee8946e04fd110442b64e9a5fa15e4e897b86485381b3afef9c896a0146cb707605ad91\", \"line\": 357, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"intracellular\", \"namespace\": \"bel\"}, \"toLoc\": {\"name\": \"extracellular space\", \"namespace\": \"bel\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"regulates\", \"source\": 533, \"target\": 17}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It is possible that CDCrel-1 is involved in regulating transmitter release via its role in regulating synaptic vesicle dynamics, and its accumulation in patients with a mutation in Parkin perturbs the process.\", \"key\": \"1f41cc6aaf2a1d8778691221ef2a3c08a79f2b724c815cc064fbcf77c8ae13b812d3ddc09bf583be3fcf31dd1299861415691e54c5866bddfd6bd64d55eb5fae\", \"line\": 358, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"regulates\", \"source\": 533, \"target\": 28}, {\"key\": \"c4933423b28a6c8473e5b33033ac3a7ffdee506f54d082f3f25655a2dc0bbb4b38b221ed2f5c603757e3af6ff962118a677ee62e67da4ce74238ac23996b78ae\", \"relation\": \"hasComponent\", \"source\": 341, \"target\": 577}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It has been reported recently that while the monomeric form of UCH-L1 catalyzes deubiquitination, the dimers display a ubiquitin ligase activity that generates ubiquitin-K63 bonds (Liu et al., 2002).\", \"key\": \"0909688e4aa5f7732d6da79cfe7ae911f198fc74bf1f735a74840b9f4859d25d012b612df800a65a2a5646e126db3517560d315a5648694a62543389a8327569\", \"line\": 524, \"relation\": \"increases\", \"source\": 341, \"target\": 103}, {\"key\": \"cbfc6c45191acbfc7db7266d3b5c1a4d03b31defd8a53408d80956a1897d31e2b30d957c7e4638e20d6cc7bb9db50ec7deeb42a862bc055087b2cdbf72f8cee5\", \"relation\": \"hasVariant\", \"source\": 577, \"target\": 578}, {\"key\": \"df5e8ce3e66dce5ea7b52efb0bba980c4ae7692c48408aa8d037f800613980cc7fa781f15fd63757457338168f38d5acce6c2257f715a84b5a8b1ca8568e75cf\", \"relation\": \"hasVariant\", \"source\": 577, \"target\": 579}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It has been reported recently that while the monomeric form of UCH-L1 catalyzes deubiquitination, the dimers display a ubiquitin ligase activity that generates ubiquitin-K63 bonds (Liu et al., 2002).\", \"key\": \"af594deaa6a3053223806d95406386dbce2054fe64bf8c27aee6b6997812c2539bbcfac82f63da27a60baf4bd045ef6bc27178b54a94e212014063b01357f591\", \"line\": 523, \"relation\": \"decreases\", \"source\": 577, \"target\": 110}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Mono- and diubiquitinated alphaSYN were polyubiquitinated by the enzyme, suggesting that it acts as an E4 (Koegl et al., 1999)\", \"key\": \"30e9e5173a1ec6190581e93d0791102486eb2cb25f2a60241a9bf608db4fed0f0f7b953f360d859a173226707bc795cd63785ee237339fcff1f963563c8b5155\", \"line\": 529, \"relation\": \"increases\", \"source\": 577, \"target\": 539}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, mice homozygous for both UCH-L1 and UCH-L3 deletions die early due to dysphagia and display degeneration of the nucleus tractus solitarius and area postrema in addition to the degeneration of the gracile tract that is observed in GAD mice that only have a UCH-L1 deletion\", \"key\": \"c6a2b40ff7a04331c1b78b8841caf66a0c0f1f761bc833ee2c54d4752c3cba6ad8a17c3022b87148e996f250ca1a2e94a500348f913d4b37517bc295369632e2\", \"line\": 536, \"relation\": \"positiveCorrelation\", \"source\": 577, \"target\": 54}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, mice homozygous for both UCH-L1 and UCH-L3 deletions die early due to dysphagia and display degeneration of the nucleus tractus solitarius and area postrema in addition to the degeneration of the gracile tract that is observed in GAD mice that only have a UCH-L1 deletion\", \"key\": \"d5ef05ec83f14a62d9c8ac1ea81cc67db20704241d2b384a8c1fea94b8618ee93bc3fc5f56c757d314d6d0d5c6892cadfa49f98fd423696bd9f18a3d191a31df\", \"line\": 538, \"relation\": \"positiveCorrelation\", \"source\": 577, \"target\": 40}, {\"key\": \"0225a8f78671893fbdd5e4326d7c0308ad1f764955fed0a76d4dc83f6584fded4eda57318a9f20108e499fe719bd8e62dba233e50681df9b598be4be9bef9832\", \"relation\": \"hasComponent\", \"source\": 342, \"target\": 5}, {\"key\": \"94070a53030834f17cb688ef9e461d1c1f13ede220b8450d470cacd394d3d3be77039760f2566eaf90d92d52c8e72731362889f645b3bcc9bb6e8e79db6692be\", \"relation\": \"hasComponent\", \"source\": 342, \"target\": 473}, {\"key\": \"1f9bd7c2867036707fe963649511c37811b9c55d8f86d32aaf19a2b9ae43692126867debd9355b90aee88e793e854340f6276fe41c9492d1abb3c766f366e2e5\", \"relation\": \"hasVariant\", \"source\": 471, \"target\": 473}, {\"key\": \"9fbd9218812f1cd82827e2d73f3b6af04acbe1f408aaedcdc53c6fc17a36272c67cdcc254874f5473ba4443fa19971fe4877420e735c04f4f7353480d8e1f8b2\", \"relation\": \"hasVariant\", \"source\": 471, \"target\": 472}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In contrast, the neurofibrillary tangles are intracellular and are rich in tau, a structural protein that is normally associated with microtubuli\", \"key\": \"133de7b50f060644fc95baac9cf3bd171fec9fb2bf2e235f89996d3f97ade61344e6218deccbb1d55c53c57c00a068955e1aec1c855270d5966cae48384b10db\", \"line\": 670, \"relation\": \"association\", \"source\": 471, \"target\": 50}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Proteolytic processing/degradation of tau is also believed to be important for the formation of the neurofibrillary tangles,although the molecular pathways involved in this process are not fully understood\", \"key\": \"9694d26d0b9cb47fa815b3522611abe54d098ee731bfb58a013cb894fb362469b02e85c323c9e60fb699e1be89e2539dc9ed10f57accce99dca6204f7e83fe0b\", \"line\": 681, \"relation\": \"increases\", \"source\": 471, \"subject\": {\"modifier\": \"Degradation\"}, \"target\": 50}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In contrast, the neurofibrillary tangles are intracellular and are rich in tau, a structural protein that is normally associated with microtubuli\", \"key\": \"17dae5c4512dfa4188043af71acd66bdf6b2b20f8d419bc896cabc1bd97c91b99b5e79a60c40a992e90887e877aac62e323633941e069f86d8651b57bcc5f3fc\", \"line\": 671, \"relation\": \"association\", \"source\": 471, \"target\": 29}, {\"key\": \"3b5d367fbc2b59ff3fe7b23f31556959355942e1aa88c9845772c10164f610aa0fd335ad98472411c8076e0eef17ec897c52096ae34ffef53b624718d5b9479d\", \"relation\": \"hasComponent\", \"source\": 343, \"target\": 10}, {\"key\": \"c3ab8015e36845344c3cdc10d4a1f7138fa66206d6fd5581ac7135e20559c1fc10a4b63c61d4e72f29431dac411951eb0f24be76fd95c8b5adf00b7c79bdc2a7\", \"relation\": \"hasComponent\", \"source\": 343, \"target\": 568}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Initially, the ubiquitin-activating enzyme E1 activates ubiquitin in an ATP-requiring reaction to generate a high-energy thiol ester intermediate, E1-S~ubiquitin, where ubiquitin is bound to an internal E1 Cys residue\", \"key\": \"cf8202f45d6ae81acdd446ee24e7064471e578874fcb1b81226a7ae70b2621d157cc24f001cd3d19f2c3def0667656c0ad0dc488000510c3ead93b8122e6e2cb\", \"line\": 86, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 343, \"target\": 62}, {\"key\": \"1eb0336f5a106ff6930b55b001dbdc3444a581ad1cd81b4b3e03d75e10835da39b6ac0d69e9379d17178dcd590c088cb758289140798dfc7564567af39cc6a31\", \"relation\": \"hasComponent\", \"source\": 344, \"target\": 12}, {\"key\": \"1669561917cfd5c0f5ef055db925d7aaef1bc89bad20f88e1b84847500f6c771b4027b830bfa760efc13bf7888f710f80b7fce07f3c7fca504380b03e743c1cc\", \"relation\": \"hasComponent\", \"source\": 344, \"target\": 378}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Administration of cystamine, a transglutaminase inhibitor, can reduce aggregate formation and death in cells expressing atrophin-1 (DRPLA model) (Igarashi et al., 1998) and in cells expressing mutant androgen receptor (SBMA model) (Mandrusiak et al., 2003).\", \"key\": \"31d3c7b001eaccac6fcaaa7730b35e48c5d5437f574a254f1005653373d6ba4097d538372e68130785aa83605c2318fb2f0b86c357e54b9cdbda6a0b36c558d5\", \"line\": 956, \"relation\": \"decreases\", \"source\": 344, \"target\": 37}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Administration of cystamine, a transglutaminase inhibitor, can reduce aggregate formation and death in cells expressing atrophin-1 (DRPLA model) (Igarashi et al., 1998) and in cells expressing mutant androgen receptor (SBMA model) (Mandrusiak et al., 2003).\", \"key\": \"e8c253447a8375399d87c4ca65d89af7fd480f3783bb90b049183b44aaf31631bed949f4041cbb67437fad0aa1e5a39dac2b59125aa10baf2d88e295a90132eb\", \"line\": 957, \"relation\": \"decreases\", \"source\": 344, \"target\": 80}, {\"key\": \"6a630a77b6e1d7ca738c4a06854ac4d9d7308ff26e2693b198f4957983f3d7de667f8bf44e2592e733956609b4774b8890c5030dd595af0c3a048b641c17b5dd\", \"relation\": \"hasVariant\", \"source\": 377, \"target\": 378}, {\"key\": \"41c9b19d678ecf5a56f1bd8156f3e87ff2223ab982a30f66a298cd15da52ba201e158316eeb173ae818b851b56267b8a0526facec14c8d84fdf11b4a06e612e2\", \"relation\": \"hasComponent\", \"source\": 345, \"target\": 12}, {\"key\": \"02dcfeedc2c784a3c8eb500c488091fcb8911c4824dc778d550b48d2c29514e8866848702f3b747a18eb8ba9d805f28805031fd03c3a9238117ab45244091d48\", \"relation\": \"hasComponent\", \"source\": 345, \"target\": 382}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Administration of cystamine, a transglutaminase inhibitor, can reduce aggregate formation and death in cells expressing atrophin-1 (DRPLA model) (Igarashi et al., 1998) and in cells expressing mutant androgen receptor (SBMA model) (Mandrusiak et al., 2003).\", \"key\": \"b2a7e9f1586eca493498700f8d3d5b09703ec24cbd0305ea00af5b089d57fefad3e5412ff1a43076cc715827337b545440d213e49602bcc9404e089369e24189\", \"line\": 954, \"relation\": \"decreases\", \"source\": 345, \"target\": 37}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Administration of cystamine, a transglutaminase inhibitor, can reduce aggregate formation and death in cells expressing atrophin-1 (DRPLA model) (Igarashi et al., 1998) and in cells expressing mutant androgen receptor (SBMA model) (Mandrusiak et al., 2003).\", \"key\": \"72b34c4fe1bbfbe58e03a001071ac6d96ea97e66190f1267362a88712feaf4d1ebf8e6682f484364fc4021eab688c2e64a1579e6d014229642e59956f448de16\", \"line\": 955, \"relation\": \"decreases\", \"source\": 345, \"target\": 80}, {\"key\": \"0c8b5c5d8df1067c1054bc0539dd20c036edcbf20e0e7231fa13afbd3b3683a4723c476c1756c67b471fb82179500e155145959538a3a79eecc5d59973f38728\", \"relation\": \"hasComponent\", \"source\": 346, \"target\": 15}, {\"key\": \"353f862889c9f180c72aaefe154b085e02aff55789e5457df07f35e917ff18a06c646eb6c253d469ba43829eb6e2fa6c17aedcdeb287634b844a3fa74aaa5b9f\", \"relation\": \"hasComponent\", \"source\": 346, \"target\": 550}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Thus, exposure to lactacystin resulted in increased cell death in human cell lines expressing mutant SOD1 (Aquilano et al., 2003; Hyun et al., 2003).\", \"key\": \"97bb79802c1d40da270a1cd3989e8bd584c2383811e39f8e3d4239841e0778b43173dbaa2f4619900b67047d87e6aecebd1f66705ed8bb160784f36c6c94b67a\", \"line\": 882, \"relation\": \"increases\", \"source\": 346, \"target\": 80}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The first is that the mutant protein promotes oxidative stress through a gain-of-function mechanism where improper handling of copper may lead to the enzyme catalyzing aberrant pro-oxidant reactions (Cleveland and Liu, 2000).\", \"key\": \"9b5c9e39fd4a99a5e913a3f9b75b40aaaaf81c9cde06ce4ab3b383f9d9b3da19c8a38734647b719d392c50ddd149a35676fbf9eccdd36d26c5bdbf9b5259be88\", \"line\": 828, \"relation\": \"increases\", \"source\": 550, \"target\": 115}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In the other model, the expression of mutant SOD1 alone was sufficient to induce oxidative stress, giving rise to increased proteasome activity, possibly due to the need to remove oxidatively damaged proteins (Hyun et al., 2003).\", \"key\": \"edacfb58eebf101f4639c6541d5ace247e43f796f1874915a723ac4cbc639fc6150656a0d95584cd4a71f04ed385e890e16d9398a96261330984da07d0ac471a\", \"line\": 887, \"relation\": \"increases\", \"source\": 550, \"target\": 115}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Similarly, overexpression of the putative SOD1 E3 ligase dorfin can inhibit cell death induced by the mutant protein (Niwa et al., 2002), presumably by promoting its removal via the UPS.\", \"key\": \"45864c974115bd07614042256d57f53d5c8f4111df537346065a9d647daaf08f78615a44005110da02d45018941a27c931af1b9c7169dd3ff4c813df7eeb613f\", \"line\": 849, \"relation\": \"increases\", \"source\": 550, \"target\": 80}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"They found that the proteasome catalytic activity was decreased in neuroblastoma cells following 1 week of expression of a mutant SOD1 gene.\", \"key\": \"7fc8e2fbd7f2fa9ab3d3df84fbb614db2b68013d50edcdfd78a7627448ce78a8cf000c4f9ea9625d22106fe82ddce99b2e6e97a710cc21e805d944c042e2df11\", \"line\": 873, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"negativeCorrelation\", \"source\": 550, \"target\": 155}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In the other model, the expression of mutant SOD1 alone was sufficient to induce oxidative stress, giving rise to increased proteasome activity, possibly due to the need to remove oxidatively damaged proteins (Hyun et al., 2003).\", \"key\": \"94b1e8c5735b168b9c26181ce76eea24978017494399311eef702f7890ca787e2848798be11a93201b62cddaa9e1f23d00f11761d6156689e49835869c7ccc11\", \"line\": 888, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 550, \"target\": 155}, {\"key\": \"ac635f17f31ec93b9300cee1d38cdeeed57dee8049983c025a490f45198a7ce226ce24152230546583247d61980363aab127361f19888b49910296c9d4b46dbb\", \"relation\": \"hasVariant\", \"source\": 546, \"target\": 550}, {\"key\": \"13b143b4fa837529936979411d29f986ad181a624458e2160183bea81568229ba74bc38a0b710763f4c2aacf4047b53060b579781370bbe8dcd93b05f6024212\", \"relation\": \"hasVariant\", \"source\": 546, \"target\": 547}, {\"key\": \"6db8f550e9209183fddf34403f22b2b07e11b14cee16be8a46a8fd1ece452484b9660c03f0b067fc51edac013fa1b04482f0e23ed3411ddd62c43639448dac1a\", \"relation\": \"hasVariant\", \"source\": 546, \"target\": 548}, {\"key\": \"fc3a249818eb87cb09f2203aca83bb2620c83c3642fffe5868e94b2ece1d658f1effc3f5a95ca202c450a074ec52de242293b05eb6a04255ac3cc0892d4629b1\", \"relation\": \"hasVariant\", \"source\": 546, \"target\": 549}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The normal function of SOD1 is to scavenge oxygen radicals and prevent oxidative stress.\", \"key\": \"2535cc03d7d97a7c905e8a6005324e699689783fc5c5bf89dccaf3afd4fa0a7b75822857ae29d603ba13410a4ec638349fb309d312e5b16ca8c6f11f4635b6e2\", \"line\": 822, \"relation\": \"decreases\", \"source\": 546, \"target\": 115}, {\"key\": \"b00f0606576dca101e29f64a13c9d1aafbdee7e3c60d2001b9cd98f812f41c835645035c529358a57ffd023df5eac8b125f8d0e7c4e53383df1c9caa1cf977ec\", \"relation\": \"hasVariant\", \"source\": 546, \"target\": 551}, {\"key\": \"a80b657719a5c3bc59fdb56725403c807f1b884eeeba76e0d8d05f8ff21dad82453a749744d61c6c0185acf4c2546c88c7132c3e618f506afa75d92043817629\", \"relation\": \"hasComponent\", \"source\": 350, \"target\": 65}, {\"key\": \"c73ad939f98b45ce16cdfee8ea1191e33796acbc5ba84e0891dbde827dea9a264341209d4898c99568f084778f786e0707c15c525276de944d3e3bbb1bb61a69\", \"relation\": \"hasComponent\", \"source\": 350, \"target\": 503}, {\"annotations\": {\"MeSHAnatomy\": {\"Neurons\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Consistent with the notion that cyclin E is targeted by the Parkin ligase complex is the finding that Parkin deficiency leads to accumulation of cyclin E in cultured postmitotic neurons exposed to the glutamatergic excitotoxin kainite and promotes their apoptosis.\", \"key\": \"f1b2c7e8941bfed46a0e593b9ee3133f1c028eeab409d87d8759694c46f361a683934bac3fd5cdc8d28323d94812f54daf88d9aabcdee49096fcc29689401248\", \"line\": 462, \"relation\": \"decreases\", \"source\": 350, \"target\": 398}, {\"key\": \"a80ea58bde3a2f132aef77299104f7543ac0e24fafed400b93d8e7b3393410efa56d6b7ebd480616b8dce6c2624314ed9531441cd148b445783b60e1e5de5d2e\", \"relation\": \"hasComponent\", \"source\": 351, \"target\": 503}, {\"key\": \"c2ff9984b8e4bbc1ba0cf37c26bd5e7d6b0bf0a2c7ff04b239a5a475b90f61bf2f24fd93f2653d407ac65488f9b23aaee08599b8f43ef1f35b2f6987f248fcc2\", \"relation\": \"hasComponent\", \"source\": 351, \"target\": 571}, {\"key\": \"05deab4d588af2f6e207ab50527f897300b1a685a792873db49895eaa1e8b9220dabccc2ed7052f662de782e2dae5bfcb5f696504012b021e080e18c79388efd\", \"relation\": \"hasComponent\", \"source\": 351, \"target\": 572}, {\"annotations\": {\"MeSHAnatomy\": {\"Endoplasmic Reticulum\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Parkin ubiquitinates and promotes the degradation of the insoluble Pael receptor, acting in this reaction along Ubc6 and Ubc7, two E2s located in the ER\", \"key\": \"805dbb60b47abab73463c1ebab57c3ad1bf8f30643dbbb2c09969e81e7f26b264b784457d09f95caecdc959e25fdc79613e596eee438cc392d34ebe1e73e3d2c\", \"line\": 386, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 351, \"target\": 442}, {\"key\": \"5b65149f406856793a502eb9921e375c988fc6c04c643bdf4a7afdc9e65c832dfdfa5bafe46e4ed96c33f3284a4337a711293ce9fbc3d5fe136945e20d3d84bc\", \"relation\": \"hasComponent\", \"source\": 352, \"target\": 536}, {\"key\": \"c4a722eec879cedf66145b71af74972c84fb7a64b7baeb78d1e70b0b6d89db334ea5f085e31a58cb5bcddc3fe647d523fce67ee86715b97b56ebb8011789f9f7\", \"relation\": \"hasComponent\", \"source\": 352, \"target\": 543}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of Synphilin-1 with alphaSYN results in the formation of protein inclusions, yet the function of Synphilin in this process as well as the role of its ubiquitination are still elusive\", \"key\": \"c2fd001630f19f7cae408d1e3056ad4b8be1f74f021a28271c937802d09295524a41adbdae7665f51e04c780e7af570d75109f1ddf87c18430d1d66901d113d2\", \"line\": 429, \"relation\": \"increases\", \"source\": 352, \"target\": 46}, {\"key\": \"004f6c54747be65d8eba569b3a63b38764644a822df92b73d81ef2b718a527829216cbf1ce79de5f4f2a460ade329f17d0cfbec78475e8ad83017008889aafdc\", \"relation\": \"hasVariant\", \"source\": 543, \"target\": 544}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Parkin also ubiquitinates Synphilin-1, a protein of hitherto unknown function that contains a coiled-coiled domain and an ATP/GTP binding motif and that associates with alphaSYN (Chung et al., 2001).\", \"key\": \"2912a3730ab7aab9cfb631c2edc9f4e5bf058cd1c3fe7c2ceb710ad332c0c413c0593c688f82925677035c92d7c7886f7f41d9d0e6bb5b35712121f7aee13285\", \"line\": 424, \"relation\": \"association\", \"source\": 543, \"target\": 536}, {\"key\": \"3971a78e600fad1272995e2d2164cf3c2a406959b7f0dffa57155af6d8b03e4360e42b1c4c255be0240ff0d2fbd88317fb7d91d4bad0ddaadd2e74bc1c429c4c\", \"relation\": \"hasVariant\", \"source\": 353, \"target\": 354}, {\"key\": \"e03db45ac8ec3ef2e7fe4c677a422ef4f4aa17b78a0c91588d478d34d17079432beef21aa42ff7f0bfcd626d0578807193087a770fe7f7126713bd962258f554\", \"relation\": \"hasVariant\", \"source\": 355, \"target\": 356}, {\"key\": \"dd3b66dd9c99998d92658e717ebb6db96732c10172d3e5614146ce359f8eb24ffbd38fb8b13d720bf20415d5efeea80a27cbab9ee218f213ce21473b0dc64b6d\", \"relation\": \"hasVariant\", \"source\": 372, \"target\": 373}, {\"annotations\": {\"CellLine\": {\"SH-SY5Y\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In the dopamine-producing neuroblastoma cell line SH-SY5Y, Parkin rescued the cells from p38-induced cell death\", \"key\": \"a0cc1489f920d6efca9851819824f4383954540c2ede0f8160e85e214ab08b07a662570e3f1800cea2bbc135442e5c2341832993789b0efbfb4ebc0c89ec419e\", \"line\": 475, \"relation\": \"increases\", \"source\": 372, \"target\": 80}, {\"key\": \"8893441bf847ca8627f0d6e6e004adb4d22ca3062730faa03bc4ecccf2a42452cdb0af8629d8b42554b473bf98b2d0f53474a15d5b670134313c7114a6a6fa73\", \"relation\": \"hasVariant\", \"source\": 375, \"target\": 376}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The plaques in AD are rich in amyloid beta peptides (Abeta) that are produced by proteolytic cleavage of the amyloid precursor peptide (APP), a glycolipid located in the outer cell membrane\", \"key\": \"a14fe6b70e543bb36ada094dcd9dbcf3f5c29ee1147ce7b30fd65ba03d53a4f223d3a86cf6cfa2f5500e79e95157652a7adafd9d5f989abfe95c6e88e321c85f\", \"line\": 655, \"relation\": \"increases\", \"source\": 375, \"target\": 39}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"They have demonstrated that AD can be caused by mutations in the APP gene, either in the vicinity of the secretase cleavage sites, causing abnormal APP processing, or in the sequence coding for Abeta, giving rise to a peptide that is more likely to self-aggregate\", \"key\": \"c7e2abccbe5b342e23b20f8e6db2f41e74e21acafd4120327b0d0ca1008f5155dcb0fb72cd49d28b3bb5f1a9e83417688e528d9df025995c8bb95d55ad446f44\", \"line\": 696, \"relation\": \"increases\", \"source\": 376, \"target\": 33}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Concomitant cleavage of APP by beta and gamma secretase at specific sites can result in fragments (Abeta1-40 or Abeta1-42) that can misfold and form extracellular fibrils.\", \"key\": \"697e462c17ae4bccce3f51aa29827d5ccaa17da0dab89527c1f1343482b8384722db0e0f1b26cda905eca5978742432c5b9e4232528cb57ed3e2fff321a565b9\", \"line\": 663, \"relation\": \"increases\", \"source\": 389, \"target\": 623}, {\"key\": \"5bdd8f5ed68160d3a9f6490d14336c6d43e012d97126c3019eaa251a474bd29e4ccbcf2e93ce85171183f0109292a5d3734005620f1c7bfc350e7905238af375\", \"relation\": \"hasVariant\", \"source\": 398, \"target\": 399}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A rather surprising, recently discovered substrate of Parkin is cyclin E (Staropoli et al., 2003) that is ubiquitinated by the SCF complex that contains Parkin.\", \"key\": \"bc861c9887314ebb8aa2cd9f1ee77e963f4df8fddd420d1451c24c0476459a8fe88c2904301532c3f13e229aa093faebebc1f95a2f0a1a9c4a507bbd8f2056e7\", \"line\": 456, \"relation\": \"association\", \"source\": 398, \"target\": 503}, {\"annotations\": {\"MeSHAnatomy\": {\"Neurons\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Consistent with the notion that cyclin E is targeted by the Parkin ligase complex is the finding that Parkin deficiency leads to accumulation of cyclin E in cultured postmitotic neurons exposed to the glutamatergic excitotoxin kainite and promotes their apoptosis.\", \"key\": \"49ae9a16fda8c45eb21ee904fea1d416402489e54256f9391914ccfc10ec3957f77702155fb4f76d493484b4f2a64da5208455748fc8dd811159ac551de88846\", \"line\": 463, \"relation\": \"positiveCorrelation\", \"source\": 398, \"target\": 97}, {\"key\": \"d645a310f6da2e572382bafb2d8ccc4bab3366e54d283929cf36069110fe6e9c2764aae9936b3f0bb64ec5ed53f56990895dfeb049c2556ecdb4dea28e07f123\", \"relation\": \"hasVariant\", \"source\": 403, \"target\": 404}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Recent work has shown that the E2s Cdc34 (cell division cycle 34) and Ube2S (ubiquitin-conjugating enzyme E2S) also form noncovalent interfaces with ubiquitin in addition to the covalent thioester bond [23,24], suggesting that E2s catalyze ubiquitin transfer at least in part by holding ubiquitin against an interface on the E2 surface that optimizes the position of the thioester bond in the active site\", \"key\": \"f69c138ae8b3d8915b0f68a8082142be3cc20499bc53582400aa932e31a6176f114dd6b13d89ae43fcf435b7973cecb54b09562199ab5dd58a5b2b6fd7e4dc3b\", \"line\": 149, \"relation\": \"increases\", \"source\": 403, \"target\": 181}, {\"annotations\": {\"MeSHDisease\": {\"Huntington Disease\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Tentative support for this idea was obtained in a cell model of HD, where expression of a dominant-negative variant of the E2 Cdc34p decreased the formation of intranuclear inclusions but increased the likelihood of cell death (Saudou et al., 1998).\", \"key\": \"231053ecd2d601b4a8dc1c37eabdb6416e0197ae05e593e45c1e55213dae9d16936eedcc1b074c72cccffc0035025d2bf7f1be8cf258eefe46ee9256cad4bfa2\", \"line\": 914, \"relation\": \"decreases\", \"source\": 404, \"target\": 46}, {\"annotations\": {\"MeSHDisease\": {\"Huntington Disease\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Tentative support for this idea was obtained in a cell model of HD, where expression of a dominant-negative variant of the E2 Cdc34p decreased the formation of intranuclear inclusions but increased the likelihood of cell death (Saudou et al., 1998).\", \"key\": \"d1cbd7a9c6ce9cefb83bdbeb49922f953b2d66f868d262a0de60e6208c9eff0ad214f6e49796f5fa75f4ddd06b685c890f13a0b5a0382c691488f889d41205dd\", \"line\": 915, \"relation\": \"increases\", \"source\": 404, \"target\": 80}, {\"key\": \"23b12b64b5df8a51e813189927331afab2e5183161ab7fb3d27243bb16a99bdc9e8f9b19066827c5e98b16e7fd648036942de701ec6ef60b3292ca8fee1358d9\", \"relation\": \"hasVariant\", \"source\": 411, \"target\": 412}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"This case may be analogous to the loss of function observed during the rapid degradation of mutated ΔF508 Cystic Fibrosis Transmembrane conductance Regulator (CFTR), which is also an active protein, and that the rapid degradation of which contributes to the pathogenesis of cystic fibrosis (CF) in patients carrying the mutation\", \"key\": \"d084eed9384377dd3c6fa8ae6324686237f69781846a12a334fffab33187c73fe026749d88ddb8610ebf662b85b362dd414f64948068eafa87a765ec1a9a4451\", \"line\": 632, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 412, \"target\": 411}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In addition, other proteins, e.g., alphaSYN (Waelter et al., 2001) and the transcriptional cofactor CREB binding protein (CBP) (Jiang et al., 2003),colocalize with the protein inclusions\", \"key\": \"fe8a726ebb3738c6ead6be277f9ade3ae47a36e1cc7b75a2bfa9832ee517233ccebec7721f35125f8221c94339c640972eb6386730eccdc07a827a2f8bccee27\", \"line\": 907, \"relation\": \"association\", \"source\": 414, \"target\": 46}, {\"key\": \"1cfa03098a53a23f7fff6c470a0a3cf1e0c2e5e7487a8ba530d8708d5abc43d4c9900d22c28f0daaf1d437601b95effdd59688ba88806a7a8f070817061a5f4a\", \"relation\": \"hasVariant\", \"source\": 442, \"target\": 443}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A second important substrate of Parkin is the Parkin-associated endothelial-like (Pael) receptor, a putative G protein-coupled transmembrane polypeptide (Imai et al., 2001). When overexpressed in cells, the receptor becomes misfolded\", \"key\": \"55285cb3584a3d25ae2a824fddb9d45443413de8ce1e35d15c26c34dffa958a5b21a0c4cab851a779df86847be5a469e8a8aeedb5c7a1d6498b7bb985426e85c\", \"line\": 365, \"relation\": \"increases\", \"source\": 442, \"target\": 443}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A second important substrate of Parkin is the Parkin-associated endothelial-like (Pael) receptor, a putative G protein-coupled transmembrane polypeptide (Imai et al., 2001). When overexpressed in cells, the receptor becomes misfolded\", \"key\": \"0c37a02d0472b92d7c9455e6edc0fc7a3a3aa96cbab7cdfcfdff9b03765a46c0c5e4ee4994a0b78212e101449d18bd9beb6d39d44fe8592801067f337dfc8c69\", \"line\": 364, \"relation\": \"association\", \"source\": 442, \"target\": 503}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It then aggregates, and the insoluble protein elicits cell death via the Unfolded Protein Response (UPR).\", \"key\": \"050a623f0b2303509b1709ed6f23771ec3227457e8e1f26e8e1d894a511c80f32509aaafe67b7257d94fb3fc6f731c8d8cb70ec5a5139a791eaff587e92c0b59\", \"line\": 370, \"relation\": \"positiveCorrelation\", \"source\": 442, \"target\": 80}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, a contribution to the pathogenesis by loss of function of Huntingtin encoded from the wild-type allele has not been excluded in HD (Cattaneo et al., 2001), since the mutant protein not only aggregates itself but can also promote aggregation of the wild-type protein (Busch et al.,2003).\", \"key\": \"c84aa3b1f03004da83d051d813e3a11b1388373f7aae18b502aa224f20b09f0a3369bc8bbb73ace653a3970072e7161e41edc0e8f16830b6abe198f5b95772ac\", \"line\": 902, \"relation\": \"increases\", \"source\": 463, \"target\": 35}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Another study has also demonstrated that UPS inhibition is only revealed under conditions of increased stress in cells expressing mutant Huntingtin (Ding et al., 2002)\", \"key\": \"7b698f5b3fcf1031cdd74a550be8e78160c7f4251f7878f78bbd673df22ca47482b49fee9f376c5228d739c48d2f21024d93ee5b94cc4ccdef3490d63d794a3c\", \"line\": 942, \"relation\": \"decreases\", \"source\": 463, \"target\": 101}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A study in cultured mouse neuroblastoma cells showed that N-terminal mutant Huntingtin inhibited the 20S proteasome catalytic activity, in turn causing impaired proteasomal degradation of p53, subsequent loss of mitochondrial membrane potential, release of cytochrome c, caspase activation, and apoptosis (Jana et al., 2001) (Figure 2).\", \"key\": \"f3d0f2ef01fffac9d37433f569c1575476aca2ba0121cb51bd3d53758a3267209da15cee7112101fab3ed3153da5ebd3105e4702868112439c246b9b3604c0b1\", \"line\": 988, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 463, \"target\": 365}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A study in cultured mouse neuroblastoma cells showed that N-terminal mutant Huntingtin inhibited the 20S proteasome catalytic activity, in turn causing impaired proteasomal degradation of p53, subsequent loss of mitochondrial membrane potential, release of cytochrome c, caspase activation, and apoptosis (Jana et al., 2001) (Figure 2).\", \"key\": \"560b0bae61bf334af61ca426ea40ce317ba3821fe2da5f1783599c3dd431384c038428512dd5ef9009a5b3b9ab41743bf15b04720906bd6e3c22b9d600627a80\", \"line\": 989, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"decreases\", \"source\": 463, \"target\": 565}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A study in cultured mouse neuroblastoma cells showed that N-terminal mutant Huntingtin inhibited the 20S proteasome catalytic activity, in turn causing impaired proteasomal degradation of p53, subsequent loss of mitochondrial membrane potential, release of cytochrome c, caspase activation, and apoptosis (Jana et al., 2001) (Figure 2).\", \"key\": \"a3cf35615dea4dc995e285c90fa49b12beb10a94ae5b7cb956eed3f8e502bb54060f88a04eaf041c81dbcb04e2e22f522e7c3ebb4e298232994fcae06d308310\", \"line\": 990, \"relation\": \"decreases\", \"source\": 463, \"target\": 140}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A study in cultured mouse neuroblastoma cells showed that N-terminal mutant Huntingtin inhibited the 20S proteasome catalytic activity, in turn causing impaired proteasomal degradation of p53, subsequent loss of mitochondrial membrane potential, release of cytochrome c, caspase activation, and apoptosis (Jana et al., 2001) (Figure 2).\", \"key\": \"71785d013da8634eb3063a92b740463e09d033e8a5bcea71b627e7f75ced42af58e920982d33a39eef17365c9873fa9b8899c127194315e8f60fd0dfc2321164\", \"line\": 991, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"intracellular\", \"namespace\": \"bel\"}, \"toLoc\": {\"name\": \"extracellular space\", \"namespace\": \"bel\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 463, \"target\": 7}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A study in cultured mouse neuroblastoma cells showed that N-terminal mutant Huntingtin inhibited the 20S proteasome catalytic activity, in turn causing impaired proteasomal degradation of p53, subsequent loss of mitochondrial membrane potential, release of cytochrome c, caspase activation, and apoptosis (Jana et al., 2001) (Figure 2).\", \"key\": \"dc2e097f93a097b39243e2d9f19f9ee7eb15dadce490207dbb76b42ac46d46fdf327b6910d014aaf35858794b6142481b33a28e3a72a4525bfdb19c96a0968a7\", \"line\": 992, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 463, \"target\": 359}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"A study in cultured mouse neuroblastoma cells showed that N-terminal mutant Huntingtin inhibited the 20S proteasome catalytic activity, in turn causing impaired proteasomal degradation of p53, subsequent loss of mitochondrial membrane potential, release of cytochrome c, caspase activation, and apoptosis (Jana et al., 2001) (Figure 2).\", \"key\": \"8c37b54c2e1b2fe2f0273ba40611a7454f0b7bd1d243655b03e029d21ab16fdb7c0c8a5073eea96f06cb40b153e45b1209b61a98bdb483186fb2d52ab93097f6\", \"line\": 993, \"relation\": \"increases\", \"source\": 463, \"target\": 76}, {\"annotations\": {\"Cell\": {\"cerebellar granule cell\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Cerebellar granular neurons were found to express high levels of HSP70 in response to mHTT expression but not mAtaxin-1.\", \"key\": \"f9390f636ddf8e74c606c458771ac2e309edecd9710c102bdf60bea499dd3881d43f97373e15fc710da192682dc3e0b51dbadab72678220b7ce5157281aacc4d\", \"line\": 218, \"relation\": \"increases\", \"source\": 463, \"target\": 361}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"In some other cases, the first ubiquitin moiety is conjugated to the substrate by one E3, while chain elongation is catalyzed by a different ligase, often termed E4\", \"key\": \"3a275434b6c90ee7746cc02668e746946ffcef3ad9879f5d891eccf98f48bf0dc918e3e8f41a3ef658881f361421bc333019c95ee714f7c10d4711aba9a12afc\", \"line\": 140, \"relation\": \"increases\", \"source\": 481, \"target\": 107}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"For example, modification of the Cullin component of the SCF E3 complexes by the ubiquitin-like protein NEDD8 increases the affinity of the ligases to the E2 component of the conjugation machinery\", \"key\": \"d637c8fd24a15496224154b2648a89582319cda78592e6d72daf1ab44145caf3c6462ed6ef4c26c680d96ae43b977a1285a6dfd156cfb58a1023ab6a5c69e7da\", \"line\": 228, \"relation\": \"increases\", \"source\": 482, \"target\": 160}, {\"key\": \"f84ff7b4b14b49569e3c4ebbe43e9c7826e61d5de874d9c9ed7cb61ddda4713995704af98fbef24d801e338bd6c849015bb75d40ab73361f8fb383d171662404\", \"relation\": \"hasVariant\", \"source\": 483, \"target\": 484}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"For example, in the case of IkBalpha,the inhibitor of the transcriptional regulator NF-kB, modification by SUMO-1 was shown to protect the substrate from ubiquitination\", \"key\": \"aa4e3462082f9bd97c714a7cbcda17d0fb1199617913cfc37afef6a2717a4c220f098e7fcae46fa2f92451c9b742625c061c021d3c30553e26f52cb9b9c3f4cf\", \"line\": 234, \"relation\": \"decreases\", \"source\": 484, \"target\": 110}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"DJ-1 activity may be regulated by SUMOylation, as it was found that it binds to the SUMO E3 PIASx (Takahashi et al., 2001).\", \"key\": \"24fa65d2f922023000ae83cb289d7e5d6fa86422cad9e3bf094207fa611eefeffcdb9754ccb164b190cf79830d4040996e1cab0ee256bff8f09a35c82e67b769\", \"line\": 615, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"regulates\", \"source\": 493, \"target\": 492}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Miller and colleagues (Miller et al., 2003) have recently shown that this mutation destabilizes DJ-1 via promotion of its rapid, UPS-mediated degradation\", \"key\": \"60d6b2a616aef2376799186de59d4ae27c90dbd908c26593bda1c7de201a6f34d00f4e43957dacd5b2ecc5f000d253ec321c0b8ef72b68e76b1ea3750ea47aca\", \"line\": 625, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 494, \"target\": 492}, {\"annotations\": {\"MeSHDisease\": {\"Parkinsonian Disorders\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"An interesting finding is that not all mutations found in Parkin in AR-JP patients are inactivatingmutations (see,for example, Chung et al., 2001; Corti et al., 2003; Imai et al., 2001\", \"key\": \"4e9cdf52aad526f951fe259c97f6ec32a9571de9cecbeabe6cb13c1eb56c6432218eb7c99572e724deb5005b3472a3032f9ab95951b844fc27fd60abe367a3e3\", \"line\": 320, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 504, \"target\": 503}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The overriding hypothesis is that a defect in Parkin will result in accumulation of this protein(s), which is toxic to the dopaminergic neurons\", \"key\": \"47aab319107d8629585984dea3fc5c7c1c7d948c82b6ccf6c7cb1d93a6a5537d6b4cfc7096aa99b81d1c8f734257f78c9d773e1cf8d71d8cb5a2b38aa1a39ccc\", \"line\": 335, \"relation\": \"increases\", \"source\": 504, \"target\": 503}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It is possible that CDCrel-1 is involved in regulating transmitter release via its role in regulating synaptic vesicle dynamics, and its accumulation in patients with a mutation in Parkin perturbs the process.\", \"key\": \"59037158aa73bc5ecb906b09e609c0e6cec63edf0354857732f36aaf689296d2eb5f47b0c7b82430d9fee37f9e444ae91b8260683871ce993c6fbb74b49faf35\", \"line\": 359, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 504, \"target\": 533}, {\"annotations\": {\"MeSHDisease\": {\"Parkinsonian Disorders\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Therefore, patients with AR-JP—who cannot degrade it because of the mutation in the Parkin E3 (see above)—develop neurodegeneration\", \"key\": \"620e6d230651b59b1fff88a957f7ff2cb6cb3ac1ef43037ab65c0cc7367a20b6ee226631f7bc50c46abe572ab8edcc41ef0f07a768a47cdb4b6872d49b262279\", \"line\": 586, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"causesNoChange\", \"source\": 504, \"target\": 536}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Interestingly, mutation at R42 abrogates the binding of Parkin to the proteasome, suggesting that it can cause AR-JP.\", \"key\": \"c9e7cf86bf15e7b9765ed8f7b559259288a199954bd621654262cbe75ece0884e11fe04e43350695a4c8863c09afc7faeeedbaceb3a1b5eae4678b54da76a90b\", \"line\": 303, \"relation\": \"decreases\", \"source\": 505, \"target\": 164}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"An interesting point is that the mutated Parkin species K161N, which is associated with AR-JP, could still ubiquitinate p38, suggesting that it is not loss of function that underlies the human disease (see above).\", \"key\": \"41cab071acff88e45140d4889d1ee678a9b13a6f285b0bf7f5b0f8025e3c1617d9213e4a5e816df0e9b2a9cc82e8e7c49543b7ebb1a48ac99f9317bdd917b85f\", \"line\": 482, \"relation\": \"increases\", \"source\": 506, \"target\": 373}, {\"key\": \"c9690646bde8d672e5a27708b6c6f6740294ef24e6786daa4da316d2f2aa19198eceb138a372072866cd35adcb1833054b463269fcedaed111b2b2078bce484d\", \"relation\": \"hasVariant\", \"source\": 512, \"target\": 513}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, some patients express mutant presenilin proteins 1 and 2 (PS1 and PS2) that can change the processing of APP by altering gamma secretase activity, thereby promoting the generation of amyloidogenic Abeta (Hardy and Selkoe, 2002).\", \"key\": \"079349a2ed0fc126e7f420b1450bbdde4e8d92ce2e84fa9f06929ebf98b5c1741bd51a18c0a986f006901543173ddcef0d0593107846a4e59a63434f8616e127\", \"line\": 703, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"association\", \"source\": 513, \"target\": 153}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, some patients express mutant presenilin proteins 1 and 2 (PS1 and PS2) that can change the processing of APP by altering gamma secretase activity, thereby promoting the generation of amyloidogenic Abeta (Hardy and Selkoe, 2002).\", \"key\": \"529c6f6184f24f8468a477975fb9f1deab457fb9b7cba1f9fa07fbec9cbba75923c2ef6aa46d2162890cd2c1635dcae9e2b46d098fec9acd590bad740e82a93b\", \"line\": 704, \"relation\": \"increases\", \"source\": 513, \"target\": 5}, {\"key\": \"a8eab37cee7e2869b0088029dbb921855d7b0b5c22c2fa145d29220067496f5836d02b40e64f8ec5c37b1b0ca1bbfbb3e49a1bfae887f3553c0ebd153c17f870\", \"relation\": \"hasVariant\", \"source\": 514, \"target\": 515}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, some patients express mutant presenilin proteins 1 and 2 (PS1 and PS2) that can change the processing of APP by altering gamma secretase activity, thereby promoting the generation of amyloidogenic Abeta (Hardy and Selkoe, 2002).\", \"key\": \"379fc9719603ba9e21d78ef81b652463ab64a874d7279b37dcf5270346cf4aa01a7e721e04dcdc076bdcc886adf7c22b3062a74063c1eb1b17e7b9949bd61785\", \"line\": 705, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"association\", \"source\": 515, \"target\": 153}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, some patients express mutant presenilin proteins 1 and 2 (PS1 and PS2) that can change the processing of APP by altering gamma secretase activity, thereby promoting the generation of amyloidogenic Abeta (Hardy and Selkoe, 2002).\", \"key\": \"921717df0f0b1e8206bdc30a6a583caaf8579f559b8ec0cab3ee33b2f324ade14ca59b499d1dade28565e4cbd4e252a3cdd111edaf9d0e3c5d55240c3a5e52c2\", \"line\": 706, \"relation\": \"increases\", \"source\": 515, \"target\": 5}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Similarly, overexpression of the putative SOD1 E3 ligase dorfin can inhibit cell death induced by the mutant protein (Niwa et al., 2002), presumably by promoting its removal via the UPS.\", \"key\": \"9964ed16146b83dd419950bc5b4c54e9031d0ccbcb94b0e0b82bac817c8d3b33ca17766d96d554de8f816bfdaa5ebf19ce07178cd97a386de539cae5ad7565c7\", \"line\": 848, \"relation\": \"decreases\", \"source\": 529, \"target\": 80}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Similarly, overexpression of the putative SOD1 E3 ligase dorfin can inhibit cell death induced by the mutant protein (Niwa et al., 2002), presumably by promoting its removal via the UPS.\", \"key\": \"e45824702c7c8de093889110a9886afbd7661aaa578cea659f98e5a2c70af29212fc2c3cce199723f227bebb097a89c84af331fa7fe8c79839f7cdc09eaf13bf\", \"line\": 850, \"relation\": \"increases\", \"source\": 529, \"target\": 101}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Interestingly, dorfin expression is increased in the spinal cord of ALS patients (Ishigaki et al., 2002), which may suggest that the expression of the E3 ligase is increased in an attempt to enhance clearance of the mutant SOD1.\", \"key\": \"1bfe37f92ca227576af2c864b0b2642c1ac50a13f2db4f55fb3798afdf1fb5b211e619affeba49efe64450e0b7eca8ded10452b70101649428a839584cd8fe63\", \"line\": 857, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 529, \"target\": 550}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"It should be noted that CFTR degradation is mediated by Endoplasmic Reticulum Associated Degradation (ERAD—a quality control mechanism that eliminates, via the UPS, misfolded/mutated/abnormal membrane or lumenal ER proteins following their retrotranslocation to the cytosol via the Sec61 translocation channel).\", \"key\": \"fdfee6641bf4e85d01214689a99d81c83787907a6d21a235d24d7c003aeb0160ce554f29fa2199ad0ea15b4ccd6adcf5b5fb79e7975002180e69681dec0080f7\", \"line\": 639, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"endoplasmic reticulum lumen\", \"namespace\": \"GO\"}, \"toLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 532, \"target\": 615}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The suggestion that the glycosylated form of alphaSYN is targeted by Parkin (Shimura et al., 2001) may resolve part of the enigma\", \"key\": \"a9518dc80b8ebd1818d3fd3332409fb88fc71110783fd726066eaebfd5d728fd762b7ee681362871cf3d317629a8e527dfb7403426407f43ebdda19f5da71307\", \"line\": 580, \"relation\": \"association\", \"source\": 537, \"target\": 503}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Another substrate of Parkin is a novel 22 kDa form of O-glycosylated \\u0001SYN (\\u0001Sp22) (Shimura et al., 2001)\", \"key\": \"d769370e5f1e3a094f683daa4572d0c9c7dbb99d1768b93bf3cc9a7c098d8cf1195c0f25f8d807edee41249d697cbb43d66cfecc429f5427f43599ac85680bd6\", \"line\": 412, \"relation\": \"association\", \"source\": 538, \"target\": 503}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Overexpression of wild-type, but in particular mutant alphaSYN in many cell types but not in all, induces apoptosis or sensitizes the cells to toxic agents, including proteasome inhibitors (see, for example, Lee et al.,2001a).\", \"key\": \"d49a38fa64ce48acbe76f0608aafa8b4c5cda6f32d927f518ff532dc2c91c9a9fe8bb1a4ac5799f872ac46c8b1834e16966521bccbd60840ec99f04f7418e1c8\", \"line\": 572, \"relation\": \"increases\", \"source\": 540, \"target\": 76}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The mutant proteins have a higher tendency to generate protofibrils\", \"key\": \"b784934181a1f3c5b97355ea806f866cbd1ed8d80b4233912e98b868a23fd7d22b190411d950446e9fb304152a55419d802a9902e11111db1b15a909f0deec8d\", \"line\": 566, \"relation\": \"increases\", \"source\": 541, \"target\": 32}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The mutant proteins have a higher tendency to generate protofibrils\", \"key\": \"6ab89c0669b23dbdbcc19506575be71647729eef0c6f2a47268a31e5029b3031f3fe6a03aae866f6062df8f8ae0f166988bb1ed9c3f77cd153605f57a012f23b\", \"line\": 567, \"relation\": \"increases\", \"source\": 542, \"target\": 32}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Alternatively, the enzyme itself may misfold and generate protein aggregates, thereby implicating a role for the UPS in disease pathogenesis (Cleveland and Liu, 2000; Julien, 2001;Valentine and Hart, 2003).\", \"key\": \"e4e03510306a5ef2213a99c87bc18e1cd1a654c3bea097039b53e6bf4548b486f17cabe8dd6a759dc10fe8cc05c38d472741937a50816d464013a35df141ddb3\", \"line\": 835, \"relation\": \"increases\", \"source\": 547, \"target\": 37}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"For example, in the case of IkBalpha,the inhibitor of the transcriptional regulator NF-kB, modification by SUMO-1 was shown to protect the substrate from ubiquitination\", \"key\": \"0aab47bf9eb35b344dc80731988387f1eae19a0aba239922ef2e3bf4d26a0dab846a7d2c6b44e2a814886c9a9317faece27c39061144b5fe6baa69d259000364\", \"line\": 233, \"relation\": \"increases\", \"source\": 557, \"target\": 484}, {\"key\": \"b54bf799765bf864abf977e9627adf28d7fd5cfaf8df3b787e0cde582924ff82c8ed01776f67b66bc0213fd95f3cc1d84861086fcbf906dcdbe9557b675302dc\", \"relation\": \"hasVariant\", \"source\": 558, \"target\": 559}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, Synaptotagmin XI has also recently been reported to be a substrate of Parkin (Huynh et al., 2003). It is possible that ubiquitination of this substrate affects synaptic vesicle transport and/or transmitter release.\", \"key\": \"ae208bdb2b303a4c0dee10f160f6c31a400e02c96f1895383dc2dda1c9afb66af785e2e0d2db59258cbfbc2a92ee3975e12248acb6772e39360b53beacfa9330\", \"line\": 488, \"relation\": \"association\", \"source\": 559, \"target\": 122}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Finally, Synaptotagmin XI has also recently been reported to be a substrate of Parkin (Huynh et al., 2003). It is possible that ubiquitination of this substrate affects synaptic vesicle transport and/or transmitter release.\", \"key\": \"f883fcd9b7c8c80625e8fe7f4d6cb38ef78d59cbba51e808ba3a79cefa081a961e9e9e9f97c233113c3a95e3e5d65da255453c943a6120f39758e85745598eac\", \"line\": 489, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"intracellular\", \"namespace\": \"bel\"}, \"toLoc\": {\"name\": \"extracellular space\", \"namespace\": \"bel\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"association\", \"source\": 559, \"target\": 17}, {\"key\": \"900978981fc3156d53af3ff1438297373fd2a636d45e244e192df6d7bde9640de5e2afbe569387b9d445c6ae92a2025f3852d4af7df08bb6fef912367af2e1b2\", \"relation\": \"hasVariant\", \"source\": 562, \"target\": 563}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Further supporting this hypothesis is the finding of Cummings and collaborators (Cummings et al., 1999) that inactivation of the gene coding for the E6-AP (Ube3a) ligase in a transgenic model of SCA-1 resulted in a reduced number of neurons containing intranuclear aggregates (see below).\", \"key\": \"5472770156545d81fe2a34ce531cd6ae4f336d944e3e2ecde5b82bd334c39cb7e9cee2f91f3593052418fdea2f1c75ac484c00f4db2e63991ec1fecac9a93b3b\", \"line\": 504, \"relation\": \"increases\", \"source\": 575, \"target\": 169}, {\"annotations\": {\"Cell\": {\"Purkinje cell\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Interestingly, the expression of the inactive E3 increased the number of the dying Purkinje cells\", \"key\": \"f5081a083e4c8e4505e29c1f4152c533f6fe9eaa99ccba8f11396bcbb291eb1d67dd3ba732eea3c1c2630e53944ad2535451d66b12faf57aedbd8a79f1516679\", \"line\": 920, \"relation\": \"decreases\", \"source\": 575, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 80}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The simple explanation is that the mutation leads to a shortage in free ubiquitin that should have been recycled from conjugates, which results in general impairment of the function of the UPS.\", \"key\": \"3f1af396df8c63f9c8f35088a33f071290d15dde1687d50c1ad307dae9f8f981c3cbb4bc66f09058e3f637a7813e5d4f1a04480e0f759d26ac1127f569d6dca1\", \"line\": 514, \"relation\": \"decreases\", \"source\": 578, \"target\": 101}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, mice homozygous for both UCH-L1 and UCH-L3 deletions die early due to dysphagia and display degeneration of the nucleus tractus solitarius and area postrema in addition to the degeneration of the gracile tract that is observed in GAD mice that only have a UCH-L1 deletion\", \"key\": \"0faa9a310e92a2e462eac2cc1ea19dc79e5ce187803cb3cba345455a2836bf7b6078cdd66fda9ed8e849d7af751fa1e1d8d73d47b4bdaef1ad5ba82e2ce14e55\", \"line\": 537, \"relation\": \"positiveCorrelation\", \"source\": 580, \"target\": 54}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"However, mice homozygous for both UCH-L1 and UCH-L3 deletions die early due to dysphagia and display degeneration of the nucleus tractus solitarius and area postrema in addition to the degeneration of the gracile tract that is observed in GAD mice that only have a UCH-L1 deletion\", \"key\": \"dea736c8d6c4154ca1afbef638ac96368958f0866b3d8ffd45f283c4074d360dcf249614f4515560acaf0bd83c5d440711b4b2e58429daeb88cd0aeddc5525e8\", \"line\": 539, \"relation\": \"positiveCorrelation\", \"source\": 580, \"target\": 40}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"On the other hand, RING finger-containing E3s catalyze, most probably, direct transfer of the activated ubiquitin moiety from E2 to the E3 bound substrate\", \"key\": \"ef571c9d25ee40208257e47b7c15c467172c0264e6db9228caa9321db78bc89c65fe514107ca70677114555565c08f82073dd9b064725016c04cf1d244e49090\", \"line\": 108, \"relation\": \"decreases\", \"source\": 595, \"target\": 185}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"On the other hand, RING finger-containing E3s catalyze, most probably, direct transfer of the activated ubiquitin moiety from E2 to the E3 bound substrate\", \"key\": \"aa3d726b38def1d486386fd507de1ce369fdb84be8256e7b4e0559be50c3ea08a7d0c76cfbc11e65f30cc2b4293c78645a1915b306971c3ef429f47af1ffef80\", \"line\": 109, \"relation\": \"increases\", \"source\": 595, \"target\": 180}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Both HECT and RBR E3s are unique in comparison to the RING ligases because they catalyze an additional transthioesterification step, where ubiquitin is transferred from the E2 to the E3 before its conjugation to the protein substrate (Figure 1A)\", \"key\": \"615b11bf47d038965529d86ac901a95f31592a2006c377e7f7a0f8c224618a16971ee42e231121290b87751cdb1aedc4e1f5149406aea8f6495b5bba2d37b392\", \"line\": 177, \"relation\": \"increases\", \"source\": 595, \"target\": 186}, {\"key\": \"5b85bc1d16213eee82690ca7508c7d83f80b6818aee8f5967656b83585220e7ff670ca835bdeed9ff37583d30693106587b3b3200efb2ecbf9e5ae3daa28100f\", \"relation\": \"hasVariant\", \"source\": 600, \"target\": 601}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Most of the point mutations described in Parkin reside in its RING-IBR-(In Between- RINGS)-RING domain and result in its inactivation (Lucking et al., 2000).\", \"key\": \"4c28483f7a8a7c34f5933743e088de6e7e8a13ec190a2d6c380e5f1e5e938f3e910c1b829c6f78318f1f4b897a2961f5e3501b7182deb7a9700a56552b62e247\", \"line\": 314, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 601, \"target\": 503}, {\"key\": \"87a6cb5967046640fdea7944110a375bc1b925a52ca9422fd268adc062c8e583c549662c1d572fc4a780d1fc2c55d3418a2822f2ea0f91c4e2bd3d3cb2cb5bf0\", \"relation\": \"hasVariant\", \"source\": 612, \"target\": 613}, {\"key\": \"9488233b8be1f8b6ef3b51a76ea7c9cb3e1be62337227207373c9119c5c0db2dc9519aaa0ed0437dff9b0c21c7d7713e360e3ae4b74829397858e50e5d4c3f46\", \"relation\": \"hasVariant\", \"source\": 612, \"target\": 614}, {\"key\": \"2bb4375c2cd2d37fee717086cddcaf922ba3c7693a580d1e6115c63d84dab0bea7fd4c2c845940b23878412695cd5bd6cbcb761749830a28c0702dc72ef1190c\", \"relation\": \"hasVariant\", \"source\": 612, \"target\": 615}, {\"key\": \"fe93ded75ed8d4e455e62ecb78ec5d2dc1a6fb2ee44ffee156b3b8da8936a393121374afadf49aa455ed7c5f0056fa23194995b95d12b39ae15fb727537e13b1\", \"relation\": \"hasVariant\", \"source\": 612, \"target\": 616}, {\"key\": \"017f4c597d4fde8e42800f62e063a63fbce4df74acc7c7e92a22ae1889aabe2548a44f26207153eee316ba7ca05ff4775a64fb1118c8820ec7eb687f2bc2d274\", \"relation\": \"hasVariant\", \"source\": 612, \"target\": 617}, {\"annotations\": {\"MeSHAnatomy\": {\"Endoplasmic Reticulum\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The UPR is a mechanism that involves a stress response in the ER, including increased biosynthesis of ER chaperones, in response to accumulation of misfolded/denatured/mutated proteins in this organelle (for a recent review on UPR, see Kaufman, 2002).\", \"key\": \"13033cf3b5d77ee8df13f867ab0d37064f6c4793a45cd6dd60e98d05a099970e6d25b6a81b13087fb85ba710368da5e342617a34ed80deaf9ebcb83bafee402f\", \"line\": 379, \"relation\": \"increases\", \"source\": 615, \"target\": 116}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Misfolded proteins can aggregate with time, and protein quality-control pathways are tasked with their ubiquitination and subsequent degradation [46,47].\", \"key\": \"361457031094f35f4bdf21044feaf03eba4d490a67b1a9d818438b7c9492af3c7555f6ac7f62042c3921f45fe13703c78bf974f1a6820169a17cc67a83fb39b0\", \"line\": 186, \"relation\": \"increases\", \"source\": 615, \"target\": 132}, {\"annotations\": {\"MeSHAnatomy\": {\"Endoplasmic Reticulum\": true}}, \"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"The UPR is a mechanism that involves a stress response in the ER, including increased biosynthesis of ER chaperones, in response to accumulation of misfolded/denatured/mutated proteins in this organelle (for a recent review on UPR, see Kaufman, 2002).\", \"key\": \"1b62e9ea47605b825b5776ed74e8539ce83fe3f5667223ef4043b29a9ed562d4206f8913e3ad917c3738d17557b4acfb9b49049af9b17b2fb400bccc434420dd\", \"line\": 380, \"relation\": \"increases\", \"source\": 617, \"target\": 116}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Thus, Rad23 and Dsk2 in yeast are believed to bind polyubiquitinated substrates in the cytosol and target them to the proteasome\", \"key\": \"59e96ab2c82a5a991f0f41dfd00d02d02fb9f1aa3a93a49c7f8bcf2f1b3ae4a371dd91cc2617810b81e0e388d897077d1cf216fb615719e2547fbc128392110d\", \"line\": 238, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}, \"toLoc\": {\"name\": \"proteasome complex\", \"namespace\": \"GO\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 620, \"target\": 616}, {\"citation\": {\"authors\": [\"Brundin P\", \"Ciechanover A\"], \"date\": \"2003-10-09\", \"first\": \"Ciechanover A\", \"last\": \"Brundin P\", \"name\": \"Neuron\", \"pages\": \"427-46\", \"reference\": \"14556719\", \"title\": \"The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.\", \"type\": \"PubMed\", \"volume\": \"40\"}, \"evidence\": \"Thus, Rad23 and Dsk2 in yeast are believed to bind polyubiquitinated substrates in the cytosol and target them to the proteasome\", \"key\": \"efc6f1dcb2a599116b41cae5c5ce051f5f0a26cad2844ce3a51c03be86b4bfe1a582528728b3ab33f31658d203fee5ca3e8ff30f6117be338c03c794732cd969\", \"line\": 239, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}, \"toLoc\": {\"name\": \"proteasome complex\", \"namespace\": \"GO\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 621, \"target\": 616}, {\"key\": \"c063621c8e7d9e741644bc2f5c43b327f449337dfa4485177ec6d7be0253a2f9e0244959d6dab7c50bd096919b04058d2969050375ab33f2be3b22dae1208e34\", \"relation\": \"hasReactant\", \"source\": 622, \"target\": 375}, {\"key\": \"ff1fd9316698f7e47bba40031f3a48dc0e169400673d962b773746eff5a0379561e0eaf9fb5166fb3a1a6cb7b5dd873b68b872865adcc56f6364b27f3d6afedf\", \"relation\": \"hasProduct\", \"source\": 622, \"target\": 3}, {\"key\": \"a9ec8f41f3574f27e283ae177be09ad6df20044578acae4e16834c60e14116c9c44244b19dc35de5f49459532869de09b3c2f624aa4fd5278fe6f1777c6c9c98\", \"relation\": \"hasProduct\", \"source\": 622, \"target\": 4}, {\"key\": \"2f11a2b16637d42998c18f4b267b38d57f8f7ed8cfa797906cac079103fe7000fef22420ada49f87aac778f711884a6f47062f0dbcdb2a0642969d63239256d5\", \"relation\": \"hasReactant\", \"source\": 623, \"target\": 375}, {\"key\": \"232219ba6023fc7ce65170c9d612faa20835636a164524fd1c6d265740c7c3ab8d3eeab3080372f421365e0b4c2ac252ac40021b6d3e080ca69da1dfb4e862a7\", \"relation\": \"hasProduct\", \"source\": 623, \"target\": 39}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"These enzymes, referred to as deubiquitinases (DUBs), cleave ubiquitin from conjugated proteins or edit ubiquitin chains by trimming their lengths [62]\", \"key\": \"04809baf24ac538b13f293d5abc74060ae8a40713b29434209bbbbbd16351c168e6cbdea450791bf6e7c79804652a0194ba911f458f6a853ad1b6f9ec44beaf0\", \"line\": 223, \"relation\": \"decreases\", \"source\": 44, \"target\": 178}, {\"key\": \"1b5775f41a1d416b94197936d1e1301e501f1f403c8a86e9a12612e5c7fb31724452cd54ad3cddeaac32c3c4d95f3839e6f83e407e56cfc5a7c0ade02e6987de\", \"relation\": \"hasComponent\", \"source\": 158, \"target\": 10}, {\"key\": \"b97c7a7ae91bd0812547378bd984436e08e0190ea0172eb697bd6a6637030546d3239b94ba752d2b0ca1177eca1ceaa619c5dc939329ccd82cc69c8a98c13564\", \"relation\": \"hasComponent\", \"source\": 158, \"target\": 568}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"An E1 enzyme must first activate ubiquitin, a highly conserved, 76 amino acid polypeptide, in an ATP-dependent manner.\", \"key\": \"6af9a070e7f0835c8ee3bc3b381f4eaad01a7bb8f3403ae27f598e546f12453fdc96780c167ed7df24e877488b87c879e0aced88e8a9ecebbebf9f73726d2e9f\", \"line\": 85, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 158, \"target\": 62}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"E1s are multidomain enzymes that must activate ubiquitin and efficiently transfer it to the E2 active site\", \"key\": \"5d91bafd7277b69b637f87e9835504d0802e47a0e5f980168d655f25d5b32ace491ee220de376c30346d3a743501f11cde9160e6ad07e3e9af94c8f03a0482cf\", \"line\": 107, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 158, \"target\": 62}, {\"key\": \"18d3ed39ff9b72ebec020ef7a84f403f9896bb92e500791052aa6e4161e428e2d666705d3c14447790119c6e0eaaf2f5729d90fa7e18b492f8ce4fd4471d1640\", \"relation\": \"hasComponent\", \"source\": 162, \"target\": 27}, {\"key\": \"9aadae2fd7f0442aba474e128c174ef6d5562afc88a2d9abc1bf832bc88edeb4a3bd4165b0ece57106a695472423575a3cca0ad5f0e09fec6056bb9fa6713763\", \"relation\": \"hasComponent\", \"source\": 162, \"target\": 61}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Thus, the binding of substrate to the 26S and its concomitant translocation into the 20S results in the activation of Rpn11 through a conformational change.\", \"key\": \"697cf55d0d8e7bcd0ac84e271fc03aa14325079b654653347ab9bdc5220780cb753aeefaf8acd6f4351fb669710a53890fd47b9ccec67f6b39a00ec58d386d45\", \"line\": 289, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}, \"toLoc\": {\"name\": \"20 S Proteasome\", \"namespace\": \"HBP\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 162, \"target\": 61}, {\"key\": \"f4dae868f323d194b83c281dd51465c8ab4008bf4732a4b4188d8e62b02676ba521f9922dd802f7d65a549ff45ff1cf07c7a445c278b1545f915d01642286a8a\", \"relation\": \"hasComponent\", \"source\": 163, \"target\": 27}, {\"key\": \"01840e20f18d720cbb01c1f4d0dbd40ff6b159d04083c04f0564a23f481f95dd5b0d23eed98fb1f6b73104921b6d88f219a9e61fc7b898d416539ffb3858a3b4\", \"relation\": \"hasComponent\", \"source\": 163, \"target\": 396}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Because Bag6 interacts with both E3 ligases as well as the proteasome [57,58,60], it may promote both the ubiquitination and delivery of misfolded proteins to the proteasome while preventing their aggregation\", \"key\": \"0b708172de1fc5fed06ee17575c84e7e2068d3a389035ddd1930b8d358cd18efdc20fe9ecd482290df77f34b078296ea26f9af944a78e57a9d782338bce218a0\", \"line\": 216, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 163, \"target\": 615}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Because Bag6 interacts with both E3 ligases as well as the proteasome [57,58,60], it may promote both the ubiquitination and delivery of misfolded proteins to the proteasome while preventing their aggregation\", \"key\": \"54196ea73766b7b559602c7f380b8620dd2ed1060ce11d1c620af080c3fdeba460744662f569194755d5f5116baffe079f4a6dbfc2e524b084008bdb91c5a099\", \"line\": 217, \"relation\": \"decreases\", \"source\": 163, \"target\": 132}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Because Bag6 interacts with both E3 ligases as well as the proteasome [57,58,60], it may promote both the ubiquitination and delivery of misfolded proteins to the proteasome while preventing their aggregation\", \"key\": \"8e5b666f0c0163465d0f266b55b8e85daf9f6c4efd8318716b7996e33f86eac72d57966d1e56c33d1e4ca0524920b76d41af2008f8e6d7e4496bfda12b3928b1\", \"line\": 218, \"relation\": \"increases\", \"source\": 163, \"target\": 110}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Specifically, Bag6 recognizes and binds to long hydrophobic stretches of the polypeptide chain of misfolded proteins targeted by the ERAD (endoplasmic reticulum associated protein degradation) pathway [56–58]\", \"key\": \"68bf6be5fe2be2c9f77e08b60a6cc1c3c700d4e3ba614e69ba65434f799e5b812591db66737baccbd663b2937e2689c262f104ce7717558cb2c29c54352c00ec\", \"line\": 206, \"relation\": \"increases\", \"source\": 396, \"target\": 243}, {\"key\": \"66cd0d7e8b15a553c362c9aeb27ee927f1ea44e9a01b6f62f4a785a235e81ac7d43b175bddb5cf63f5a0395c4bdc2c437bef4d7b7f69c32c119a18c47aa4b6a5\", \"relation\": \"hasComponent\", \"source\": 165, \"target\": 27}, {\"key\": \"c763e0a332a98af9eeea451d455156947de55d3f7a25acae5ca43ee3901a2a90264aee305731f4d92344cbfa21a0262636d4ae624b384f0134952094ff1f5649\", \"relation\": \"hasComponent\", \"source\": 165, \"target\": 581}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"It was initially believed that the presence of DUBs at the proteasome (such as Uch37/UchL5 and Usp14) would promote the degradation of proteins through facilitating substrate processing (see also the next section)\", \"key\": \"f641f1218dccf8ac236da653575281588a39b5a4ce397c29b5eb7bf3044491f2b2bb607f6277446313bbc24f813b0f2e9cbdfdec10c328d7390d76e6d3b851fb\", \"line\": 229, \"relation\": \"increases\", \"source\": 165, \"target\": 105}, {\"key\": \"de3f59f579f0e8a49bac1ea4a40af7217fef7b03479280ca84d26e49c4253969d896bf1d9a85586220202ab7614faf5b38b12d761499fe37dee558350cb30ead\", \"relation\": \"hasComponent\", \"source\": 166, \"target\": 27}, {\"key\": \"d7e9bec2dbf0ee02c2f1146cf57687c306af907b2b06288c76c54898681582beb9a8a18ffccd59b412a720812849cbe9f9bd5006956423fdcdede7a202fb6bc7\", \"relation\": \"hasComponent\", \"source\": 166, \"target\": 584}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"It was initially believed that the presence of DUBs at the proteasome (such as Uch37/UchL5 and Usp14) would promote the degradation of proteins through facilitating substrate processing (see also the next section)\", \"key\": \"855045efc81d069296440f38348d06cdfb96f54f8c462237ab9041ee638fa73d1f53798a1da582daf6c22d2c811ca5120ab0d41f348b85f9de2997c55879dee5\", \"line\": 230, \"relation\": \"increases\", \"source\": 166, \"target\": 105}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"However, recent studies have shown that, by contrast, upon chemical inhibition of the proteasome-bound DUB Usp14, the degradation of aggregation-prone substrates in mammalian tissue culture cells significantly increased [65]\", \"key\": \"83be6cc82be03eae19f919dcf120bfa859efb849111185ff053c0e754baa929be2feb93d96ac38a5a4b61fefe48bf0c7bec5b7978a9138a0aa8e17e5ddfe4ca6\", \"line\": 237, \"relation\": \"decreases\", \"source\": 166, \"target\": 105}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"CellLine\": {\"MEF cell line\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"The DUB USP14 suppresses turnover of Tau and TDP-43 in mouse embryonic fibroblasts (MEFs) by impairing the protea-some;\", \"key\": \"a271b444ef5d70877bc879a12d941bbc1f7656841a6eefffff8b4c5389a1768ece521c6da1647cfc56f0f09cbf7f2c5ef0857694ae678c785b9cc22a38fa82af\", \"line\": 398, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"decreases\", \"source\": 584, \"target\": 471}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"CellLine\": {\"MEF cell line\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"The DUB USP14 suppresses turnover of Tau and TDP-43 in mouse embryonic fibroblasts (MEFs) by impairing the protea-some;\", \"key\": \"33f2cdf65bcf8b07a3f6395471fd7a9be33a6fd2547ec08ee494481b0e5fba2a670779c2bf9f13aa272194ee7c8212b892062e3cffa8785daba579fc0744d55e\", \"line\": 399, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"decreases\", \"source\": 584, \"target\": 560}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"CellLine\": {\"MEF cell line\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"The DUB USP14 suppresses turnover of Tau and TDP-43 in mouse embryonic fibroblasts (MEFs) by impairing the protea-some;\", \"key\": \"9bfbeaad5917361b228761eab530df9a3e5b582492024cfb8b8937bf16037d41f0b2d5c94c1a7a0cb6d880c309ccb7af2a96bd40f62a437aa8cd83836be3bdcb\", \"line\": 400, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 584, \"target\": 363}, {\"key\": \"5ef1d25d7b767c78f3e9235936391fbcb5e487362928c0fa0855b61bb560fda09375d80bd8c753a85e5fe9fd3441b3d30c12b925c5967b39f65a1027666dc35c\", \"relation\": \"hasComponent\", \"source\": 167, \"target\": 27}, {\"key\": \"9007341518477e33dc92fb0ba826fb2f5f87a74a199cc7a52ae676a04eba929748475e5890723572051ec655c3f7f2042e2d7edf6733e65e7cca2ca3ea10fc29\", \"relation\": \"hasComponent\", \"source\": 167, \"target\": 616}, {\"key\": \"ebd9eda8aeccc929fb2a28fc48a12d1c375472bd4600a5c713ab832e60cfc207758839796d45a817e5d05b8c3e83b6839e065b0b469efe3fa549adce713927e2\", \"relation\": \"hasComponent\", \"source\": 179, \"target\": 61}, {\"key\": \"a61246153831e07d70d789adadf9ef81b0ed4015072a45b2539a5e0662231c9ffc8d77367f2ef66d40403703cbdc4756c6a3792ac93da97fe933beea453a9e1a\", \"relation\": \"hasComponent\", \"source\": 179, \"target\": 62}, {\"key\": \"1defd376bf95ef65d678a49ac94841ee1052e9b2b9d6d27fd58b73440ee4b62a66fcef979f14c1525ef5ea04b90b4ea7555731cc481d8f9b8cd6a802893aab6f\", \"relation\": \"hasComponent\", \"source\": 179, \"target\": 569}, {\"key\": \"adddd06a71d909b53f7e6aa41d5e0fce1f975923e772f8632242dfc0c5969378fb3fb6889fe1ead2951d6c207518c7841e8efd1d1678e3019d4ddcf67fba5b60\", \"relation\": \"hasComponent\", \"source\": 179, \"target\": 570}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Finally, the E3 ubiquitin ligase binds to both the E2-bound ubiquitin and the protein substrate, promoting the transfer of ubiquitin onto the substrate\", \"key\": \"d26b491023047ac5cc5ebded40aab7923ea79b17c7937e05509fbd5fbbdd4b767e77fefeb24b53f3d64726f64e6b17f0a1c91c891ed7f3485772e89c4c359bcc\", \"line\": 95, \"relation\": \"increases\", \"source\": 179, \"target\": 110}, {\"key\": \"e29359bbafce5a0a7e52aa37b9635cd242af45b02f78d20b7ae08c7cf7c79950da550a21054da553fb18ac214b53db56a157c999630cebbccadf4fb36a6b8a87\", \"relation\": \"hasComponent\", \"source\": 181, \"target\": 62}, {\"key\": \"a561584bf10d592aa6e7120aecbedc578593054acec05ac4f43154c7076849de1b770d4065ef40727c13bda675d3ddc497a82958d711d4d2f7abe92855992ef0\", \"relation\": \"hasComponent\", \"source\": 181, \"target\": 403}, {\"key\": \"7b03468ff7f6296d78c9b47b8dde34ffb15520bac5b881673ecaab5cd7d9de60f84953cd823753b34905574854cb153893a6459a0d1e8e732fcaa5346b2721ee\", \"relation\": \"hasComponent\", \"source\": 187, \"target\": 62}, {\"key\": \"b816288465870639eef797cb3fe2619936645249d97684447215c77e50f7cd2334c2d9c972208c306ba10452b6b034eb0964f1e6a8c27fa992e9a6a20930f844\", \"relation\": \"hasComponent\", \"source\": 187, \"target\": 573}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"It was originally shown that the E2 Ubc1 (ubiquitin-conjugating enzyme E2 1) can form a non-covalent interface with a ubiquitin that is thioesterified to the active site [22]\", \"key\": \"ee854e9fbd9ceec287a1d2dfa45f4d4dc6872c9a1bf20d5ac494d0bc1256be07fdb6700968aabc19d97d7d1ea7b5c7ea6b22cfcf522ff2d4c7c66d86b6abaa0a\", \"line\": 139, \"relation\": \"increases\", \"source\": 573, \"target\": 187}, {\"key\": \"847f3bf64f539cad65a3278f8c08b10a8c3731ac1b821a6884d60f1d8cc89650f25f54c1b2b5da336338f9b80a34673c639f21ce32c9272d03fa78911e6529e6\", \"relation\": \"hasComponent\", \"source\": 188, \"target\": 62}, {\"key\": \"b5cf7a6aad7994af9bebe5b8b142751e049890eeb34f55c07d8079fa5e067bb95cf6003ed9fee963eef8f5682d0afc36b2b0dffa73b3d2f0788849c2fdc96497\", \"relation\": \"hasComponent\", \"source\": 188, \"target\": 574}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Recent work has shown that the E2s Cdc34 (cell division cycle 34) and Ube2S (ubiquitin-conjugating enzyme E2S) also form noncovalent interfaces with ubiquitin in addition to the covalent thioester bond [23,24], suggesting that E2s catalyze ubiquitin transfer at least in part by holding ubiquitin against an interface on the E2 surface that optimizes the position of the thioester bond in the active site\", \"key\": \"2a42b77e1836304d3a2535c2691b02802f2e29a45c5c62b1cdb71347a51a18eabae003342eba4fcf28a08270266dcf7c57621c28ebba44aa40ea7fd8391f89f8\", \"line\": 150, \"relation\": \"increases\", \"source\": 574, \"target\": 188}, {\"key\": \"8249cfdddbcd97b7a179866b66ed6109fa3fc29bacf97ffcbc3d3d08d058643bc04eda6719e29dea8e870890ca79e13463f1773a30b90b961de3a9ef3ec7efca\", \"relation\": \"hasComponent\", \"source\": 190, \"target\": 62}, {\"key\": \"2f386ee9e51f9f6e3be83701bb3f285034723958f4ecc2369637ad8a7bdbecd28747eff6e6c1bb7dd5d9fc02e54d8fd78379dabae7770f39f0e9ced016eaa3f8\", \"relation\": \"hasComponent\", \"source\": 190, \"target\": 615}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Misfolded proteins can aggregate with time, and protein quality-control pathways are tasked with their ubiquitination and subsequent degradation [46,47].\", \"key\": \"7853e5cf85fe667a2d670bebc37b3d350d2920dd1a2ff46b9e5311f269d56669f4e112f33d65da65c07fd1590238588768315d107d4ab3ba9e3c5692ddecee51\", \"line\": 187, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 190, \"target\": 615}, {\"key\": \"35fbd512003adfc3af42da4c11da80d9e2ccecc0f8748e1a8ab78cb4100325fb4c0002e36c5ac731f0c50e2f34b1839afb5f448ed1b2caa26826dc506e739637\", \"relation\": \"hasComponent\", \"source\": 242, \"target\": 396}, {\"key\": \"3eaa39d79bcc1757a075e45fc7e2e575efa0afac4cf32cce58380cbb00d200df54b139f25aca6e9c34ec4f8f4a5f2f81763f1d2706301f6962ac9afe89bd0542\", \"relation\": \"hasComponent\", \"source\": 242, \"target\": 570}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Because Bag6 interacts with both E3 ligases as well as the proteasome [57,58,60], it may promote both the ubiquitination and delivery of misfolded proteins to the proteasome while preventing their aggregation\", \"key\": \"a7c11924c52576f75ddb816c210359b9175cc643eec10d49b7355a3c2c4859be259b17acea52341adc707357563601190bc3ca9f81d3992fc043513ad045cc44\", \"line\": 213, \"object\": {\"modifier\": \"Degradation\"}, \"relation\": \"increases\", \"source\": 242, \"target\": 615}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Because Bag6 interacts with both E3 ligases as well as the proteasome [57,58,60], it may promote both the ubiquitination and delivery of misfolded proteins to the proteasome while preventing their aggregation\", \"key\": \"c560e09b38aee972f7a8c96def80ee9eda8f9229c961f3c2f4b8aee7bf0862852df433f4b155014ef2076764315600e5aa319989d6aa19e5ed92019cbd0d6ff0\", \"line\": 214, \"relation\": \"increases\", \"source\": 242, \"target\": 110}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Because Bag6 interacts with both E3 ligases as well as the proteasome [57,58,60], it may promote both the ubiquitination and delivery of misfolded proteins to the proteasome while preventing their aggregation\", \"key\": \"0eabd85ad11fe7c939cfce8cf284df7ea1b0bf90499c2ac59a441a4f7a5fa68fa30d4d03d46686d74d1068b08c67af0d744ba6dbd9bd29ec327d5e62282329f1\", \"line\": 215, \"relation\": \"decreases\", \"source\": 242, \"target\": 132}, {\"key\": \"d6298e5fafd1f9125adfd3b2b36e53c17ceb39c4af424e97428aa9a096c4195d416cee81cd76e988faae2ab016358d7498e9172d2a17271d3ae26f78416e28c2\", \"relation\": \"hasComponent\", \"source\": 243, \"target\": 396}, {\"key\": \"778ca680b25fb46f413b634a27e04ade282ed91c9dcdaa49706d3e5775105df2fcc6b4ed8250fc121c48f662ea63083300e25a02d4c2a920a535740561a277ef\", \"relation\": \"hasComponent\", \"source\": 243, \"target\": 615}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Specifically, Bag6 recognizes and binds to long hydrophobic stretches of the polypeptide chain of misfolded proteins targeted by the ERAD (endoplasmic reticulum associated protein degradation) pathway [56–58]\", \"key\": \"8d349760f81f89af17d0c0fefa3ba669a3ac146ad961439c08cde734c523f737a3dc3b2ab57ac111577627377c27c8458343a5f536fad770cfdb621f835aed3c\", \"line\": 207, \"relation\": \"association\", \"source\": 243, \"target\": 74}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"First, ubiquitinated proteins are docked to the proteasome through receptors associated to the 19S [67,68], including the proteasome proteins Rpn10 (proteasome regulatory particle base subunit; also known as Psmd4 – proteasome 26S subunit, non- ATPase, 4) and Rpn13 (also known as Adrm1, adhesion regulating molecule 1), that bind to the poly-ubiquitin chains [69,70].\", \"key\": \"dd585c3b9071ea960c4e6232e52bd00f8022d1a1d744e70e8d983c51d08527aa58e233f96e23e1b08ca26033284ba088cad611678c96a470d3c30bddeac7e953\", \"line\": 255, \"relation\": \"increases\", \"source\": 368, \"target\": 167}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"7b3ea8f78d18c72315a8861fe587f1b7d71afe6b5e9addd35e34bc9f29166305e2c62221498aba06120b19344396d218cfc76ea1a3c13ab6f8f893d712d089b4\", \"line\": 366, \"relation\": \"directlyIncreases\", \"source\": 368, \"target\": 198}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"35dcfbdaf8d6f9434898fff0099ee69964853117fd4416921ccd26e8207dd9114ed29280338332f3555065a5147482a7d16d5995b66037b42d56127b0243c212\", \"line\": 367, \"relation\": \"directlyIncreases\", \"source\": 368, \"target\": 199}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"0ff775ac7743e7a07bdac34be3f95c442ab19f1f46804e50d981924b1985079768a57011efed82635114670be9d249c6081ad8921058bfd1e3d0adc2471be783\", \"line\": 368, \"relation\": \"directlyIncreases\", \"source\": 368, \"target\": 201}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"4fbdcb5e8513525284d13cbc9e3543425208617ed03864a36cc2ee95d73fead852a5de3726173d52179347e4717411688e32cc31ac5f969f4ac586dc82690a46\", \"line\": 369, \"relation\": \"directlyIncreases\", \"source\": 368, \"target\": 202}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Second, Rpn11/Poh1 (also known as Psmd14) is a subunit in the 19S regulatory particle that cleaves the entire, intact ubiquitin chain from the protein substrate [71,72].\", \"key\": \"49d72edcc84f59557b382a3ec63f77eee4328cd8a6ce1c8322660eb7b85d0c013e18c768525940d14c7a42076cb1dc400a2146f3fc193779321143142ef21a94\", \"line\": 261, \"relation\": \"decreases\", \"source\": 522, \"target\": 178}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"This observation suggests that chain binding and cleavage from the protein substrate are tightly coordinated by the proteasome, and may help to prevent situations such as premature chain cleavage by Rpn11, which could result in the release of the substrate before it becomes actively engaged to the proteasome.\", \"key\": \"0f5e9d3f117e996c1e4e6d1fff1fc70cef67ae273bc5652a37f27c8fd4384d3225ad2a1c68f26c1c66a025b2156943527200c2a3ea1cb35bcd35d981c0441db4\", \"line\": 276, \"relation\": \"decreases\", \"source\": 522, \"target\": 178}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"This activity promotes both the recycling of chains back into the free cellular pool of ubiquitin and creates space for the protein substrate to enter the 20S core.\", \"key\": \"2cfd535543566a13fdb02dbc70889c5474477231f24f3be027af033758cf6fb313a16a9aab54160590efa1dc64e30a187e0f0066f44cf3b27a1544573d579c31\", \"line\": 267, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"cytosol\", \"namespace\": \"GO\"}, \"toLoc\": {\"name\": \"20 S Proteasome\", \"namespace\": \"HBP\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 522, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 61}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"For example, yeast Cdc48 (p97 in mammalian cells) is a conserved multisubunit enzyme that plays a major role in dissociating ubiquitinated proteins from their binding partners to promote their degradation by the proteasome [52]\", \"key\": \"a39b0c4b6d9b8082d5c67ded2b792c0f8c09966f9dee7ebd307042552e201084ffe777eca287030ada48641c04252fca54bfeb4b2e962785881b13e88e1cf791\", \"line\": 193, \"relation\": \"increases\", \"source\": 588, \"target\": 100}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Cdc48/p97 generally acts downstream of ubiquitin ligases, although its activity may also promote ubiquitination in some cases; a major challenge is to delineate further the mechanism of action of this multipurpose enzyme\", \"key\": \"17e79a3e2255dfeb7194f2103200871f2e0023fbfce4de463eb29b8e80e8157d815b6dea7c5901c0d55099a200b0311689d215607a0dc82628b9a355734fc760\", \"line\": 200, \"relation\": \"increases\", \"source\": 588, \"target\": 110}, {\"citation\": {\"authors\": [\"Kleiger G\", \"Mayor T\"], \"date\": \"2014-06-01\", \"first\": \"Kleiger G\", \"last\": \"Mayor T\", \"name\": \"Trends in cell biology\", \"pages\": \"352-9\", \"reference\": \"24457024\", \"title\": \"Perilous journey: a tour of the ubiquitin-proteasome system.\", \"type\": \"PubMed\", \"volume\": \"24\"}, \"evidence\": \"Indeed, three recent structural studies observed the E2~ubiquitin conformation in the presence of either RING domains or the structurally related U-box domain [19–21]\", \"key\": \"bd3954388fe77d29e8912fe8ee70046a90c990630e587aa39af9b6196b8452da538de0876cd725090b1966ee44d40ee4e60f69fc2d367394f26ba210f33dfff9\", \"line\": 163, \"relation\": \"increases\", \"source\": 608, \"target\": 185}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Reduced levels of lipofuscin, LC3, and p62 have been observed in motor neurons of SOD1(G85R) mice (92). Treatment with the autophagy inhibitor chloroquine restored lipofuscin, LC3, and p62 levels in motor neurons, suggesting that mutant SOD1 causes hyperactive autophagy in mice (92). \", \"key\": \"1fde55b04c9c1adf5bb0ef1eeb8901ec80cff307f69d973930558b212a138e47320967357ac64573d9194fffbddeff1ec8218e63d6504291d10939da35fa358b\", \"line\": 290, \"relation\": \"decreases\", \"source\": 11, \"target\": 125}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Reduced levels of lipofuscin, LC3, and p62 have been observed in motor neurons of SOD1(G85R) mice (92). Treatment with the autophagy inhibitor chloroquine restored lipofuscin, LC3, and p62 levels in motor neurons, suggesting that mutant SOD1 causes hyperactive autophagy in mice (92). \", \"key\": \"07bb21d7561ab5f70ad77b573afbd594f7438ef2bfd17abeb580872eb2163ac93ebfa3ba53c11e5169c3533baf9bc662847bdee575c9b34f915a142cfa15491b\", \"line\": 291, \"relation\": \"increases\", \"source\": 11, \"target\": 1}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Reduced levels of lipofuscin, LC3, and p62 have been observed in motor neurons of SOD1(G85R) mice (92). Treatment with the autophagy inhibitor chloroquine restored lipofuscin, LC3, and p62 levels in motor neurons, suggesting that mutant SOD1 causes hyperactive autophagy in mice (92). \", \"key\": \"268b7b35b5eee32f34d85ffacc6fac0f139c93ead23a8276ecb34425820c705666e3a4f019dae622d48961d4de03178f1512b27dcd7c5f04c1a1b14b8abaa3cf\", \"line\": 292, \"relation\": \"increases\", \"source\": 11, \"target\": 470}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Reduced levels of lipofuscin, LC3, and p62 have been observed in motor neurons of SOD1(G85R) mice (92). Treatment with the autophagy inhibitor chloroquine restored lipofuscin, LC3, and p62 levels in motor neurons, suggesting that mutant SOD1 causes hyperactive autophagy in mice (92). \", \"key\": \"0d04f5e4ae17de542d0043efbd72e0ceb4e09eb4738a4c5df4cfae4b1b2a4b28f236f4c10cdf8e9643ae8eb837cc31f45e5574a93c696540e20f8780b68bf496\", \"line\": 293, \"relation\": \"increases\", \"source\": 11, \"target\": 552}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"An in silico screen based on the structure of 10-NCP, an Akt inhibitor that potently induces autophagy (144), identified the molecules FPZ and MTM as potent activators of autophagic flux and clearance of TDP-43 in mammalian cells (145).\", \"key\": \"daab80b854a0a7dc2097d822a1275dc6b2ad1d53bb0e76c17b41396f9c4ae4f357f1e883bb6176548b0f1f8b00619cfa78245f1fc06dd85594e5020c5ff80528\", \"line\": 366, \"relation\": \"increases\", \"source\": 13, \"target\": 125}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"An in silico screen based on the structure of 10-NCP, an Akt inhibitor that potently induces autophagy (144), identified the molecules FPZ and MTM as potent activators of autophagic flux and clearance of TDP-43 in mammalian cells (145).\", \"key\": \"ca299957233c9e5694bc3d448b30df061c7a50419e45be49fddf7ee1db4161440e46e667297332e9ce731a42f5db0198bace19309be4e9c331692392f17d5659\", \"line\": 369, \"relation\": \"decreases\", \"source\": 13, \"target\": 560}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"One strategy is to directly activate HSF1, thereby increasing the expression of multiple molecular chaperones simultaneously. This approach has been traditionally achieved by inhibition of HSP90 with compounds that bind the N-terminal ATP-binding pocket, such as radicicol, geldanamycin, or 17-AAG (64, 132–134). \", \"key\": \"68954281ceb0c191e55202c1279f6f574e20ca6f053aa2d7d5bb0b6e23def4819ece0c71453a68087462090d70d1d0da12f43c417e9af5b6c68ee32aaa5f9438\", \"line\": 335, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 14, \"target\": 360}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"An in silico screen based on the structure of 10-NCP, an Akt inhibitor that potently induces autophagy (144), identified the molecules FPZ and MTM as potent activators of autophagic flux and clearance of TDP-43 in mammalian cells (145).\", \"key\": \"077459ffe3254e6df75e84ad65e0ca56eef81b60df99452635f87f390ba44333bbd8d8be3740c4aee4e8583983ea13c3898b9e06330ee135b0fa59d58427cd5c\", \"line\": 367, \"relation\": \"increases\", \"source\": 16, \"target\": 125}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"An in silico screen based on the structure of 10-NCP, an Akt inhibitor that potently induces autophagy (144), identified the molecules FPZ and MTM as potent activators of autophagic flux and clearance of TDP-43 in mammalian cells (145).\", \"key\": \"42127f86aacc556de3e4f828e735e8307005961d84b7b3b4dc9a082014e0725926fe47124f4ad2650a790f5907d1222a185bb0cde79d8d0b342122924b06b9af\", \"line\": 370, \"relation\": \"decreases\", \"source\": 16, \"target\": 560}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"One strategy is to directly activate HSF1, thereby increasing the expression of multiple molecular chaperones simultaneously. This approach has been traditionally achieved by inhibition of HSP90 with compounds that bind the N-terminal ATP-binding pocket, such as radicicol, geldanamycin, or 17-AAG (64, 132–134). \", \"key\": \"4eaf7dea93cb9f538b3f343d164f7f845f67b31b8c22c978f52584619945977831e7e7550d78005a2bb2039a7cd17816574fa6e6ed6289fd1e68bf2497f5b709\", \"line\": 334, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 19, \"target\": 360}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment of cell, Drosophila, and mouse models of HD, SCA3/MJD, AD, PD, and ALS with the mTOR inhibitor rapamycin (or a derivative) reduces aggregation and suppresses disease (140– 143).\", \"key\": \"b515bdacae597100ea3f24d68c7c3cd8948e82b42375c39826dbf332cc7304deda547c90e0172fc35e220fefbfb41bb6c451b8756670cde00fd176b20f0d3557\", \"line\": 353, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 20, \"target\": 364}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"One strategy is to directly activate HSF1, thereby increasing the expression of multiple molecular chaperones simultaneously. This approach has been traditionally achieved by inhibition of HSP90 with compounds that bind the N-terminal ATP-binding pocket, such as radicicol, geldanamycin, or 17-AAG (64, 132–134). \", \"key\": \"cc5d4bde30b43ab7743d72c914689f70bd6e5718bb59ebb62e7ab50b43a0fc9ea09aff763186b76b1aec67396f59aa91757aed183f4ba408c32c7fa48c97a9e7\", \"line\": 336, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 21, \"target\": 360}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" TRiC is essential for proper posttranslational folding of the cytoskeletal components actin and tubulin and is therefore essential for cell structure, division, and cargo delivery (11).\", \"key\": \"49e016e6b28d34b5fdcda1712f06dd242ceffa5d933fa77c71ca37f6b606f270ad9ae4ccdce6086a9f0e336bfd5dd52bb42dcd048b4f561f0b4e7dc85e3c6a21\", \"line\": 130, \"relation\": \"association\", \"source\": 43, \"target\": 357}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \". Proteins can be degraded either individually or en masse by proteasomes (20) or lysosomes (21), respectively. \", \"key\": \"aca20b8f7097b061d4f0b781bc55475500b2c14f870e11cccb34f50d8fa2f9e8469ce5cec865a99c722d13daffdec5ef399fae15caf8a603e9065260b50421dd\", \"line\": 138, \"relation\": \"increases\", \"source\": 58, \"target\": 148}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"An in silico screen based on the structure of 10-NCP, an Akt inhibitor that potently induces autophagy (144), identified the molecules FPZ and MTM as potent activators of autophagic flux and clearance of TDP-43 in mammalian cells (145).\", \"key\": \"e3b8df1a028e0632e9e5f339f2e650f9087f85928016b57deee4e28ad3bbe6d95772033c95a7af17299c9d8669900e239267f65d864d03c73c908989546579de\", \"line\": 364, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 63, \"target\": 358}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"An in silico screen based on the structure of 10-NCP, an Akt inhibitor that potently induces autophagy (144), identified the molecules FPZ and MTM as potent activators of autophagic flux and clearance of TDP-43 in mammalian cells (145).\", \"key\": \"90a6de17dc2ec2036a22858ee2daa3985127f9367a9f48d95f9606e93ddeaa51d5a2f88c29febec1437edb2c9bb00c7a7ba1cb56fbbc89fc281fa272b94b0049\", \"line\": 365, \"relation\": \"increases\", \"source\": 63, \"target\": 125}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"A screen for autophagy inducers in yeast identified the molecules SMER-10, -18, and -28 as TOR-independent activators of autophagy (146). \", \"key\": \"ff03cd1588dace53e33c1891e96ea9e0b8e0456990a28f86e91844eb7b23f7850e9c7726b8d8a3bf4ea54c941b3a6e06d9dff7dbe892a4dc5a556f0cbc89b509\", \"line\": 376, \"relation\": \"increases\", \"source\": 64, \"target\": 125}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment of PC12 cells stably expressing mutant α-synuclein (A53T) with SMER-10, -18, or-28 significantly reduced levels of mutant α-synuclein, an effect that was enhanced by cotreatment with rapamycin (146).\", \"key\": \"a7d2d36af4ab4cabed894d3c9a92fb7f7753ad996d0751607f065f8cccbf344d635eba0cee74567f79075b39047f05c90fe408624bb151a5c7ac7a344b3f7cf3\", \"line\": 383, \"relation\": \"decreases\", \"source\": 64, \"target\": 542}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"In addition, SMER-10, -18, and -28 were effective at suppressing mHTT aggregation and toxicity in COS-7 cells and flies (146).\", \"key\": \"89f8fb281f095f1314472b4f1329c91bb6364c2c860a23200d67c7219b3ca5ce7b19bed29671b163aeab4c300e3ca3840bc1d84025bc1e89606d4f7c155b6c23\", \"line\": 392, \"relation\": \"decreases\", \"source\": 64, \"target\": 35}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"High-throughput screens in yeast and HeLa cells identified HSF1A and F1, respectively, as two small molecules that activate HSF1 independently of HSP90 inhibition (136, 137). \", \"key\": \"0dc5770c31d4d021305a520616c8efe1978be217400957cbfa81c8851f5854bf999ed27fe5938cf0b900299f27e051cf537628b22fdfb9f89537ecbfb358051e\", \"line\": 341, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 67, \"target\": 444}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"HSF1A suppresses toxicity in cell and tissue culture models of HD and SCA-3/MJD and appears to activate HSF1 by impairing the activity of TRiC, a recently discovered negative regulator of HSF1.\", \"key\": \"9d36374bc3cc7e5b4e471a3512bce5b505886baaeb362a9adefdfb225e9533cb7fea4a400d6ff2529410473e8a792c54e151bd548fc6203a8253f437c0eae7de\", \"line\": 346, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 67, \"target\": 357}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"CellLine\": {\"MEF cell line\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment with IU1 reduced the levels of Tau, TDP-43, and ataxin-3 in MEFs in a USP14-dependent manner and independently of changes in proteasome levels or composition (147).\", \"key\": \"ac7a8ed03a9c339fa2b4ece85cf05d1f7f1a1ee27564908e16875980bc80cc3f0b32e25427a1363e02cc187deffb0d28b642f08ea7593adb945e0ddccb3a51ca\", \"line\": 405, \"relation\": \"decreases\", \"source\": 68, \"target\": 471}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"CellLine\": {\"MEF cell line\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment with IU1 reduced the levels of Tau, TDP-43, and ataxin-3 in MEFs in a USP14-dependent manner and independently of changes in proteasome levels or composition (147).\", \"key\": \"559760c55692ede2d76983c867bfec094156585c18deae2d21dfbc30caf9b38cafe2b2ba3de044ba1eab1c183d6bf44d00db24ddd6149c3670d6c515cfd00182\", \"line\": 406, \"relation\": \"decreases\", \"source\": 68, \"target\": 560}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"CellLine\": {\"MEF cell line\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment with IU1 reduced the levels of Tau, TDP-43, and ataxin-3 in MEFs in a USP14-dependent manner and independently of changes in proteasome levels or composition (147).\", \"key\": \"b3ae6cd624102893c6cae3fe3c67f7f852b83eab54f339940b6302b6886978276301e5dab2662a00801b3ecfc72f65b6ca48540b5526ae633f31363c9d9aa2d0\", \"line\": 407, \"relation\": \"decreases\", \"source\": 68, \"target\": 385}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"CellLine\": {\"MEF cell line\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment with IU1 reduced the levels of Tau, TDP-43, and ataxin-3 in MEFs in a USP14-dependent manner and independently of changes in proteasome levels or composition (147).\", \"key\": \"c0082c0115cd7681492126d003b67dc6037b3c8f93c9d793c7ab584267fd394ff333cb43e54fb60f4f6810384833ce4f7c8ec717350dc55f37957fea60efd408\", \"line\": 408, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 68, \"target\": 584}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"CellLine\": {\"MEF cell line\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment with IU1 reduced the levels of Tau, TDP-43, and ataxin-3 in MEFs in a USP14-dependent manner and independently of changes in proteasome levels or composition (147).\", \"key\": \"8c3c06ef1c933f5f40a0db06fd95503e8dc3ed7b3ddbb3bb64de2fd102d3959ea24fb06d8c463ea43387368523e6527b5656803e4fc4adcb025c0a84858a2718\", \"line\": 409, \"relation\": \"causesNoChange\", \"source\": 68, \"target\": 363}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"A screen for autophagy inducers in yeast identified the molecules SMER-10, -18, and -28 as TOR-independent activators of autophagy (146). \", \"key\": \"d02e4a2c616178550bfccb86348cc57dbe8f3c82a02f3fcbcc7384b0a2fa16bc97c9b054d7f098cc3514527cff4defabd1d11575bc0bbd44d2336e3b5d325a22\", \"line\": 374, \"relation\": \"increases\", \"source\": 69, \"target\": 125}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment of PC12 cells stably expressing mutant α-synuclein (A53T) with SMER-10, -18, or-28 significantly reduced levels of mutant α-synuclein, an effect that was enhanced by cotreatment with rapamycin (146).\", \"key\": \"09f471e07a0cab41925ecdf144d295454189b06e7b378e00715e3229a758c6a1ea85cd1d0d6a6a74163c9e23f5b56d4e0eb715dbc5ab5bc5072511ae10a40265\", \"line\": 381, \"relation\": \"decreases\", \"source\": 69, \"target\": 542}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"In addition, SMER-10, -18, and -28 were effective at suppressing mHTT aggregation and toxicity in COS-7 cells and flies (146).\", \"key\": \"9e37029ffbff27d4337f5cfd0bc8679537e069ffe6170a1c30e2d15cb85a6b6be362047f21516c226b6b34d2332d5f2f0e72463861c90a5ecd5d01d748412b83\", \"line\": 390, \"relation\": \"decreases\", \"source\": 69, \"target\": 35}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"A screen for autophagy inducers in yeast identified the molecules SMER-10, -18, and -28 as TOR-independent activators of autophagy (146). \", \"key\": \"456d9daaa095dad122ed1c7484b93716c64d59c79ee911f61cd2dc66b2fb2537c32db998be751f113935ff50e01f47a4f76124af93f7f287a1767698b309ba98\", \"line\": 375, \"relation\": \"increases\", \"source\": 70, \"target\": 125}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment of PC12 cells stably expressing mutant α-synuclein (A53T) with SMER-10, -18, or-28 significantly reduced levels of mutant α-synuclein, an effect that was enhanced by cotreatment with rapamycin (146).\", \"key\": \"d2018e2579cef268e711e5c2a2ba0451bc2633f9db2afd67dd4ac683d0b3a6e5074056aee62a78744c373475f63a4f3027b67a1472b6ec1e97c239b547799fca\", \"line\": 382, \"relation\": \"decreases\", \"source\": 70, \"target\": 542}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"In addition, SMER-10, -18, and -28 were effective at suppressing mHTT aggregation and toxicity in COS-7 cells and flies (146).\", \"key\": \"64e5d2c8478f3c274d0c331bf35921cfec41716f814176146a6888ff64d3faeee3a8dc78d3dc9c5652f73f68fa2c4a4655c407febf403b0132f407d06974abdb\", \"line\": 391, \"relation\": \"decreases\", \"source\": 70, \"target\": 35}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"ATP hydrolysisis essential for the chaperone activity of HSP70 and HSP90, causing conformational changes that result in substrate binding (11).\", \"key\": \"7b3d8e217c4eeea6ecc0533940beaf1fe9bd480c12c52bc84e1e4897cb5a3da891aecc978174b5395beeb5bb9ba0ee53d9b0d9dc92e54ac6b4cb1102456f7be1\", \"line\": 104, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 71, \"target\": 361}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"ATP hydrolysisis essential for the chaperone activity of HSP70 and HSP90, causing conformational changes that result in substrate binding (11).\", \"key\": \"a5fb2c9d464593506531e1b0771735259e97212ea1d65c1f19a0f0f436843e849e038d5197c2d23e5565e595dd27fcbb90ff2e506d4a144756468bf250b6a75c\", \"line\": 105, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 71, \"target\": 360}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" TRiC is essential for proper posttranslational folding of the cytoskeletal components actin and tubulin and is therefore essential for cell structure, division, and cargo delivery (11).\", \"key\": \"9e543cc3e6678709837c7d7d69a60e9991e5714e5a81c4c28c43cde07279d9c1d8002d007e5c551560e61a3ac6a97f7023b62145e51f5581036810b1dd58e8db\", \"line\": 132, \"relation\": \"association\", \"source\": 94, \"target\": 357}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Upon increased levels of nonnative proteins, HSF1 is released from its repressive complex, acquires DNA-binding activity through homotrimerization, and rapidly translocates to the nucleus to induce expression of genes encoding molecular chaperones (7, 35).\", \"key\": \"a591607356485c43b9df92bf5e9f7d39fbf1112aec6d928a64f60f3aa4db92c313bb12394796a83021ebc74594033c87e800b7e7143d2f3c3014dac1599df6cb\", \"line\": 154, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 114, \"target\": 444}, {\"annotations\": {\"MeSHAnatomy\": {\"Endoplasmic Reticulum\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" IRE1 is a transmembrane protein with kinase and endoribonuclease (RNase) activity that senses misfolding in the ER directly, leading to autophosphorylation, oligomerization, and acquisition of RNase activity (8).\", \"key\": \"e03a30d7e31cd2330645534c0ffc6cedd1e97a9caf6a070b28581ebc1178a3791f8d68734eb4699feace0023682f4bf55e2dacbd0ee4955b706e62435ceec3a1\", \"line\": 168, \"object\": {\"effect\": {\"name\": \"kin\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 114, \"target\": 433}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Proteome fidelity is maintained by the protein homeostasis (proteostasis) network (PN), a multi-compartmental system that coordinatesprotein synthesis, folding, disaggregation, and degradation (1).\", \"key\": \"0dc6b0bf09f35cfbc4fbe22ebb2756296f0d0ea301ba01971888c7a1d5004857e9729289e9697ff440b0003042170d9b6805cbe4933fecca3dc68bcbd053cc12\", \"line\": 81, \"relation\": \"association\", \"source\": 133, \"target\": 142}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Proteome fidelity is maintained by the protein homeostasis (proteostasis) network (PN), a multi-compartmental system that coordinatesprotein synthesis, folding, disaggregation, and degradation (1).\", \"key\": \"15bf1b3254a4f48876d957249e4a3b5f5df10702de2f1f468876045365373ce13af15b5ba21317b51922da8d19f8be112f37b8755d225bc69c105105a0bcdc03\", \"line\": 82, \"relation\": \"association\", \"source\": 133, \"target\": 106}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Proteome fidelity is maintained by the protein homeostasis (proteostasis) network (PN), a multi-compartmental system that coordinatesprotein synthesis, folding, disaggregation, and degradation (1).\", \"key\": \"6b738c14555190f0f6b42a559cbded50a6fa715f0f995c279cf7bdc68fd1cac4a10b3734714521b4c61b86d56ce9fe67bc46db759753b9c79d4873227ffd5c09\", \"line\": 84, \"relation\": \"association\", \"source\": 133, \"target\": 148}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"As such, it is feasible that any reduction in the protein degradation capacity of a cell could contribute to proteostasis collapse and promote aging.\", \"key\": \"a2e905621e2cbc5a7988acaa894cca3a4c4b4ab2e9acd01df74408177b5379871c1cfef2001907328612b958918d47f7765eb274824de26fcbe8d4f50720a189\", \"line\": 326, \"relation\": \"decreases\", \"source\": 133, \"target\": 147}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" In parallel, ER stress promotes the relocation of ATF6 from the ER membrane to the Golgi apparatus, where it is cleaved by SP1 and SP2 proteases.\", \"key\": \"c230e06e6d025b114fd85b0d3fefaa2d7ffda44c502a122e890b823119047b6794f458d532cf0ab723bf3a6fd10770b24bf5f912fc4026b903b350e2a6c01405\", \"line\": 183, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"Endoplasmic Reticulum\", \"namespace\": \"MESH\"}, \"toLoc\": {\"name\": \"Golgi Apparatus\", \"namespace\": \"MESH\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 136, \"target\": 381}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Finally, a third ER transmembrane protein, PERK, promotes translation of the TF ATF4 by phosphorylating the translation initiation factor eIF2α in response to ER stress.\", \"key\": \"a60bba917b200f81e52bce5553252a382f3362e30b9159001cedc6860528a362eb0d92e3a97e3d4a4652c86ce2778309a1f8aa1275015fc586affe164fa07fa9\", \"line\": 202, \"object\": {\"effect\": {\"name\": \"kin\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 136, \"target\": 429}, {\"annotations\": {\"MeSHAnatomy\": {\"Mitochondria\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" HSP60 is essential for maturation and maintenance of the mitochondrial proteome and is therefore intimately linked to energy production.\", \"key\": \"7f23d6973ab47d7f69fe5337f052aa85dae4a51b8fa77a4230e41e15ff41f7fcf413364656fa965dbbea7344130f86cbe872e0a8a7c9206ebaef96817ef63e93\", \"line\": 124, \"relation\": \"association\", \"source\": 137, \"target\": 458}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Furthermore, the activity of the PN can be altered permanently or transiently by development and aging, alterations in physiology, or exposure to environmental stress (1).\", \"key\": \"4953a507711281ac41396666204d74c8edd2f4797bbb8e98965534779660ce1702455ad4dfcbbb13ba2a08c4eacd4f21eb8d56b06671589b16c13de8c000a476\", \"line\": 89, \"relation\": \"regulates\", \"source\": 138, \"target\": 133}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Proteome fidelity is maintained by the protein homeostasis (proteostasis) network (PN), a multi-compartmental system that coordinatesprotein synthesis, folding, disaggregation, and degradation (1).\", \"key\": \"de4c1f4586a300e7d66c4ef611e1073b133da945fea7c9647aaa23cf408eb9056127582be21e09fc609856ba8300f52165011aa8103352be0f9ca3511f85af86\", \"line\": 81, \"relation\": \"association\", \"source\": 142, \"target\": 133}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Furthermore, the activity of the PN can be altered permanently or transiently by development and aging, alterations in physiology, or exposure to environmental stress (1).\", \"key\": \"9eb856115814f16a9358916a9ff4f75c82aa2389c20f123ee3676ebd628ff6bd7425e651c233c808fedf019d231bb6ebede5d82b48bec1aace79d64aba61bbc6\", \"line\": 91, \"relation\": \"regulates\", \"source\": 144, \"target\": 133}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Proteome fidelity is maintained by the protein homeostasis (proteostasis) network (PN), a multi-compartmental system that coordinatesprotein synthesis, folding, disaggregation, and degradation (1).\", \"key\": \"48be401861f90fb65a9ba55202052896dc684f23f987da0919d32307681af2c7765aaa943d13bc4ac453f48eb64df06c8a8b1f6dc7930dc7441f6919e3ea5e61\", \"line\": 84, \"relation\": \"association\", \"source\": 148, \"target\": 133}, {\"key\": \"b131113064d83d595658389361a96657347bc2461e8a55718d6bce679638335506ffbb2023d25ec4bbf2ccdec9fb1a26e6c311c0e755f230c7c7fbb069dba589\", \"relation\": \"hasComponent\", \"source\": 174, \"target\": 49}, {\"key\": \"625f6daa78599f89cf28e1874c2b819709bee5bd07810014adbdb3974263a3d39956a5c38ad1b731e296d02773a7538f2681aa64859779727ff326f537345c7f\", \"relation\": \"hasComponent\", \"source\": 174, \"target\": 444}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Once stress has been relieved, HSF1 activity is repressed through acetylation and binding to molecular chaperones (34, 36, 37).\", \"key\": \"db031c7a04019b6176309c6c00a29b71c51ad728e04c3e31e60eb6064f582b9da5ecac2ccbb6dbf90627e50a21799944fbfc232311d8ba6acdd52bac2dd188d2\", \"line\": 162, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 174, \"target\": 444}, {\"key\": \"a9b04ed68ca42e4f99853ccee33cfad36d05949ebae1a4901b4b8d408ddb6a9e86bc18de7db951d234ce6714b4c2c4f80fda843ac9003cf9c905c631c1193a8f\", \"relation\": \"hasVariant\", \"source\": 444, \"target\": 445}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Upon increased levels of nonnative proteins, HSF1 is released from its repressive complex, acquires DNA-binding activity through homotrimerization, and rapidly translocates to the nucleus to induce expression of genes encoding molecular chaperones (7, 35).\", \"key\": \"b9cbb6e016275ccfd74e6eb7b0513702137bc10a70a3c98cd52f2d45b546c541b33e98377fe893e339093d1dabfa635108fb67d2f64cbb4ae065a62ea89e5702\", \"line\": 155, \"object\": {\"effect\": {\"fromLoc\": {\"name\": \"Cytosol\", \"namespace\": \"MESH\"}, \"toLoc\": {\"name\": \"Cell Nucleus\", \"namespace\": \"MESH\"}}, \"modifier\": \"Translocation\"}, \"relation\": \"increases\", \"source\": 444, \"subject\": {\"modifier\": \"Activity\"}, \"target\": 444}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Upon increased levels of nonnative proteins, HSF1 is released from its repressive complex, acquires DNA-binding activity through homotrimerization, and rapidly translocates to the nucleus to induce expression of genes encoding molecular chaperones (7, 35).\", \"key\": \"82c430acf5312e41d42db930022d573b25d772d69921f624c033d30669d39817b7b852af553ceff1f7fabaefbcfa098708840ddac0ccb3fdf61baa5c6429520b\", \"line\": 156, \"relation\": \"increases\", \"source\": 444, \"subject\": {\"effect\": {\"name\": \"tscript\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"target\": 49}, {\"key\": \"1fa5a2aa4307a93aecf5eb6c7799330a5449ccca43e139a5e7994e4c9d109e3bf8309b0ceb7df50c2b649cbe7f54a3657ae6392dd7c2decfce5d76295edf04f7\", \"relation\": \"hasComponent\", \"source\": 195, \"target\": 361}, {\"key\": \"0691a8dec409ce22f615e530f3057743679b6f1f4b27ea40eee50321215525cd65fcb49f1e458d8f1332adb1c570ab18cf12b09a725c4a3f12ae6fa7d95dc3c6\", \"relation\": \"hasComponent\", \"source\": 195, \"target\": 422}, {\"key\": \"1650e7e9a8c8e8fd67e0414f21b6538ad53887fb10e9fd9b3d99f0989b9caf53b527274d03a1040bb8045eccdacd1c19a4b74f6dde53f6aa0fea718d2e305204\", \"relation\": \"hasComponent\", \"source\": 195, \"target\": 459}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Two subnetworks emerged within this central network, corresponding to known Hsp90 and Hsp70 chaperone complexes (Figure 2, blue and orange squares, respectively). These two subnetworks were bridged by a unique set of cochaperones (Figure 2, tan squares). Among these were the wellknown bridging factors HOP/STIP1, TPR2/DNAJC7, and CHIP/ STUB1, validating our approach (Brychzy et al., 2003; Schmid et al., 2012; Xu et al., 2002). Other bridging factors in this first tier of organization included members of the Hsp40 chaperone family (DNAJB1 and DNAJB6), HSP70-binding protein 1 (HSPBP1), the TPR domain protein EDRF1, and the E3 ligase NRDP1/RNF41\", \"key\": \"ddf45e8bbeaa80dac42f12441382a1db28955167ccbd7eae01cd7e6ab38feb4dc6f7b9a22c080cad297ca9b763a0902fbcf409277db744f4a6913df2826a7a70\", \"line\": 92, \"relation\": \"increases\", \"source\": 422, \"target\": 259}, {\"key\": \"3260ed39ab71c9bb907b4c807b31bc9be047e746c1d055d74c7db856a3b9b9b3633c51b3819a0677587a493fe3a5a8235415c2ef6e4c5abb74dfbc25e95f53dd\", \"relation\": \"hasComponent\", \"source\": 347, \"target\": 20}, {\"key\": \"c7c4bae309b61fc400b67439beb3fdf65ee54906c4a5a6e6b40ce7efa51e4b92e22cab11057938d34adc6e2f0cae3c9b77089d8f59db3c32221e55ce706a2803\", \"relation\": \"hasComponent\", \"source\": 347, \"target\": 64}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment of PC12 cells stably expressing mutant α-synuclein (A53T) with SMER-10, -18, or-28 significantly reduced levels of mutant α-synuclein, an effect that was enhanced by cotreatment with rapamycin (146).\", \"key\": \"aba44e843945f88f7d48b660fd77c131e3334fa9d8d1f1eccfe9ebb1627194229c03cc827c60e991d363a061598ccba162c0cecbb08c0bc420a2b13ddc202f59\", \"line\": 386, \"relation\": \"decreases\", \"source\": 347, \"target\": 542}, {\"key\": \"4e9f6a797a194a1dd3cea77744b6f233ecdc7d2b9a32a21b8755bdbaecc541f1681cbec0f9f519539b7f2e0ae079b8bdea0d624cd4fddea0c3055826498a00aa\", \"relation\": \"hasComponent\", \"source\": 348, \"target\": 20}, {\"key\": \"a8726f0d36e66b5ab4f55ae96bf8baf3ee62f4c56419371b1f22c18560ae9749bcdbe533c018f176ad20b49f4eb8fe319e56178f0269a273f6ca169a1990976c\", \"relation\": \"hasComponent\", \"source\": 348, \"target\": 69}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment of PC12 cells stably expressing mutant α-synuclein (A53T) with SMER-10, -18, or-28 significantly reduced levels of mutant α-synuclein, an effect that was enhanced by cotreatment with rapamycin (146).\", \"key\": \"4ac77235908e29aafdf35e166d79bd0b9617e77a791e43c4b7f790df5106fee497bb05feec60448be15c7085fae529d0fdf925d141ed6461715f0e6fb090ca43\", \"line\": 384, \"relation\": \"decreases\", \"source\": 348, \"target\": 542}, {\"key\": \"0b4ce24ab43b500276c78618bc2b446e291ad4a9078ff3bb4debbb9fb2dd6e9202b7a607f89f0b17b9cf84d8ce4847884dde20cebe3f6b1f4f7bf574086782bd\", \"relation\": \"hasComponent\", \"source\": 349, \"target\": 20}, {\"key\": \"242050e0e6ba69706d7459dd123d8f9b17f9bf4c42636588f918392671968063bef38686f6b52be3b2f806d0365d34d8381076abf5a1d8f858ea64f06db8972c\", \"relation\": \"hasComponent\", \"source\": 349, \"target\": 70}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Treatment of PC12 cells stably expressing mutant α-synuclein (A53T) with SMER-10, -18, or-28 significantly reduced levels of mutant α-synuclein, an effect that was enhanced by cotreatment with rapamycin (146).\", \"key\": \"66527e1d8a00d4a088dda36d23de2836b781af74a7bfc4b3021da327e7e23eabef4bb60880017ded9ebdd679724907cac89ff63cb0100e2fdef413be5fb03b6e\", \"line\": 385, \"relation\": \"decreases\", \"source\": 349, \"target\": 542}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \". Proteins can be degraded either individually or en masse by proteasomes (20) or lysosomes (21), respectively. \", \"key\": \"917a2a508597dd892389b3acbadb23cdf8098d0b0a9883d699b5466026e2e87de57153a7acea1d8d3ec80477dd5dc873db46398d052c1616d5f64bf987f17603\", \"line\": 137, \"relation\": \"increases\", \"source\": 363, \"target\": 148}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"The cytosolic N-terminal fragment of ATF6 that is generated translocates to the nucleus, binds DNA, and drives expression of a complementary set of UPR genes (8).\", \"key\": \"26412a48f50a4cb57863bcc25fa13d20e5db687beaf943e01758877dbd5f9e52c6d6864a4094078eac2ccbcb51f5e31be83c226f9c01f78f5351a77fb99faed8\", \"line\": 194, \"object\": {\"effect\": {\"name\": \"tscript\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 366, \"subject\": {\"effect\": {\"fromLoc\": {\"name\": \"Cytosol\", \"namespace\": \"MESH\"}, \"toLoc\": {\"name\": \"Cell Nucleus\", \"namespace\": \"MESH\"}}, \"modifier\": \"Translocation\"}, \"target\": 366}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"The cytosolic N-terminal fragment of ATF6 that is generated translocates to the nucleus, binds DNA, and drives expression of a complementary set of UPR genes (8).\", \"key\": \"bb550cb7daceb77fac6611aa7e85613ca55e0a22ceac4fddbec971dd4bd105d5814ec01ae5fb7de6bbfa35f0209cf2f199999dd8372f9e525b4a5631571aec88\", \"line\": 195, \"relation\": \"increases\", \"source\": 366, \"subject\": {\"effect\": {\"name\": \"tscript\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"target\": 114}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Under these conditions, ATF4 mRNA is preferentially translated, leading to selective expression of the proapoptotic TF CHOP, which elicits apoptosis if ER stress is not resolved, presumably to ensure that irreversibly damaged cells are removed from the population.\", \"key\": \"0bec13103d1b6726a5491b6ad0dae0c64d9b5370c21fd9ab417c42eeea821326711ddc8af440684b4a29a7563fa9036a285badf48609e65f5089796fc39d5b66\", \"line\": 212, \"relation\": \"increases\", \"source\": 380, \"target\": 418}, {\"key\": \"3205016a15d660315762ef963f74ff78524eaacf1cab8e6a48cd3bbdbda859a98498f5b4897ef4f80411cd4cb59e1a21a958a1a933aab466d8468d0fb558c363\", \"relation\": \"hasVariant\", \"source\": 383, \"target\": 384}, {\"annotations\": {\"Cell\": {\"cerebellar granule cell\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Cerebellar granular neurons were found to express high levels of HSP70 in response to mHTT expression but not mAtaxin-1.\", \"key\": \"ff0d7fcc54c6dc1a0be19baafb7f297bf8ac3af456f11f1f3163ddcd31358911c564ed16bf42369eb15936526a27b4d78e4e2e3b87661a013bcaf5e3aac80478\", \"line\": 219, \"relation\": \"causesNoChange\", \"source\": 384, \"target\": 361}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Under these conditions, ATF4 mRNA is preferentially translated, leading to selective expression of the proapoptotic TF CHOP, which elicits apoptosis if ER stress is not resolved, presumably to ensure that irreversibly damaged cells are removed from the population.\", \"key\": \"9b22195696808b548852b9ca0d03b07137265097282859a9311a2edfc40d4ed8ccc45598327e3993e6b073f6600c486de93735b9a6ffa4407ab2bcdb6c913bf2\", \"line\": 213, \"relation\": \"increases\", \"source\": 418, \"target\": 76}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Finally, a third ER transmembrane protein, PERK, promotes translation of the TF ATF4 by phosphorylating the translation initiation factor eIF2α in response to ER stress.\", \"key\": \"968284b2db4c679c9ed45cdc9bbb0da814eb2e14c5c830f15d54d2c82c235ec80b047553a7c1e7e01a2eed777adf89082901daf8bdc5bb1d308300a0cf276513\", \"line\": 203, \"relation\": \"increases\", \"source\": 429, \"subject\": {\"effect\": {\"name\": \"kin\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"target\": 431}, {\"key\": \"e16ce97626ff0848c0e3a6a250b01d22525b3eb8963e68259e8930ae75d8bfbbc3de54568705254d0b61a215a6932ec17ada476ca7355f25b10639066d7c9cb0\", \"relation\": \"hasVariant\", \"source\": 430, \"target\": 431}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Finally, a third ER transmembrane protein, PERK, promotes translation of the TF ATF4 by phosphorylating the translation initiation factor eIF2α in response to ER stress.\", \"key\": \"78737903c8eba44b58fe2a67e9362e0eae9769cc24866ae8d4c83b5eae5b4dca552e5838fc1f70ac2f0f7d97cf7752f29dd53e8e75c71a627b60e20b48f4e1f8\", \"line\": 205, \"relation\": \"increases\", \"source\": 430, \"subject\": {\"effect\": {\"name\": \"tscript\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"target\": 380}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Finally, a third ER transmembrane protein, PERK, promotes translation of the TF ATF4 by phosphorylating the translation initiation factor eIF2α in response to ER stress.\", \"key\": \"bc70ec14e97268b86b94937c63e5c0505eae64fe65e8d5ac2aca0f1dc55462bc4edb48b58712ac33a2fcdadffdedd65df6bdaa80de60b2e5f34e4e361fd82c13\", \"line\": 204, \"object\": {\"effect\": {\"name\": \"tscript\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 431, \"target\": 430}, {\"key\": \"1ece4ee92251290a51d0749b5d678b72035e53809fc9348e5947547a0cb97a742342aa62f0d56c2222c3d0508b6a438b394d7effb7b181205e473592a54abc84\", \"relation\": \"hasVariant\", \"source\": 433, \"target\": 434}, {\"annotations\": {\"MeSHAnatomy\": {\"Endoplasmic Reticulum\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" IRE1 is a transmembrane protein with kinase and endoribonuclease (RNase) activity that senses misfolding in the ER directly, leading to autophosphorylation, oligomerization, and acquisition of RNase activity (8).\", \"key\": \"6212ccbd7fb4bb91cfa9eb38f239670442191f601fecbbb5830f6e5b0c21d544159fbae67fc8bf9fdda6fb9681a8bf8a83e262dd93b093d02e9fc606ca7baebe\", \"line\": 169, \"relation\": \"increases\", \"source\": 433, \"subject\": {\"effect\": {\"name\": \"kin\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"target\": 434}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"This process allows active IRE1 to cleave XBP1 messenger RNA (mRNA), thereby generating a spliced transcript (XBP1s) that encodes a stable form of XBP1 that binds DNA and induces transcription of UPR target genes (8).\", \"key\": \"fc89cc3a842c322401261ee1eda811bc75fbb352ff7bb0448bf68579a77cba122937768035ee04d594b631154d8b2be26ae020664eda6ee6a66d5100a65f4220\", \"line\": 177, \"relation\": \"increases\", \"source\": 433, \"subject\": {\"effect\": {\"name\": \"ribonuclease activity\", \"namespace\": \"GO\"}, \"modifier\": \"Activity\"}, \"target\": 589}, {\"annotations\": {\"MeSHAnatomy\": {\"Endoplasmic Reticulum\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" IRE1 is a transmembrane protein with kinase and endoribonuclease (RNase) activity that senses misfolding in the ER directly, leading to autophosphorylation, oligomerization, and acquisition of RNase activity (8).\", \"key\": \"d6bdeb971f53f473fb6d3dabad2036c414bb8bc99c1a25bf02e1f2e75063ebf31587350560417815ca72fb1816a3221b10c8a4563ec4e52ccfd2e1b3183c542a\", \"line\": 170, \"object\": {\"effect\": {\"name\": \"ribonuclease activity\", \"namespace\": \"GO\"}, \"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 434, \"target\": 433}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"Once stress has been relieved, HSF1 activity is repressed through acetylation and binding to molecular chaperones (34, 36, 37).\", \"key\": \"a2b4d2fe65b709a29da88ee64e78fd13954a7290a15039a07f8f9b2e5a3d81dab01a37c93f633666d17821a3c835c2f1056a7874ae01e8911817194225b489cd\", \"line\": 161, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 445, \"target\": 444}, {\"annotations\": {\"MeSHAnatomy\": {\"Golgi Apparatus\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" In parallel, ER stress promotes the relocation of ATF6 from the ER membrane to the Golgi apparatus, where it is cleaved by SP1 and SP2 proteases.\", \"key\": \"7473f76be56222126f24d695c007e9e836b7c1b96969ccfe467132a66afe067596f97c2ce5f77ab2eb327f9bbb472e644d8e8f76956f5781e8756c4b3da1708c\", \"line\": 185, \"relation\": \"decreases\", \"source\": 510, \"target\": 381}, {\"annotations\": {\"MeSHAnatomy\": {\"Golgi Apparatus\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" In parallel, ER stress promotes the relocation of ATF6 from the ER membrane to the Golgi apparatus, where it is cleaved by SP1 and SP2 proteases.\", \"key\": \"738b30c5de2e787bf46701e72c1786a6a52bae810520a4894e4fbfdcfac47d749cd0d6c48f4ac30440fbb7a45076a60addb3cb84ecf5a1182af125360713754c\", \"line\": 187, \"relation\": \"increases\", \"source\": 510, \"target\": 366}, {\"annotations\": {\"MeSHAnatomy\": {\"Golgi Apparatus\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" In parallel, ER stress promotes the relocation of ATF6 from the ER membrane to the Golgi apparatus, where it is cleaved by SP1 and SP2 proteases.\", \"key\": \"803d7c4f53727dad19da083a8c4046413156d7ea5866c1aae3056d941d9d9639bbbb97e6fa603b3fb5d0a3159fb701095c327271a42220e257e2aeb37220a7f2\", \"line\": 186, \"relation\": \"decreases\", \"source\": 511, \"target\": 381}, {\"annotations\": {\"MeSHAnatomy\": {\"Golgi Apparatus\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" In parallel, ER stress promotes the relocation of ATF6 from the ER membrane to the Golgi apparatus, where it is cleaved by SP1 and SP2 proteases.\", \"key\": \"37752ef173d426da48d03329fab3662941cec3adbec4bbd644735320d9e1b3662f75876f5ef36b5622fa8ef819c09cd609d711c8bf698a5fda399d0d686f6898\", \"line\": 188, \"relation\": \"increases\", \"source\": 511, \"target\": 366}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"In contrast, α-synuclein overexpression impairs autophagy in mammalian cells and mice through reduced expression of RAB1A, thereby inhibiting autophagosome formation (88). \", \"key\": \"fc9cf650b90419a9a86546a3879f4fe52142db3435cf427fff6788a3ed09c66b9c728b993faf394efa85ba02f241f021471c1f41a9615ea4ee8e8862adbaa199\", \"line\": 272, \"relation\": \"increases\", \"source\": 526, \"target\": 77}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Reduced levels of lipofuscin, LC3, and p62 have been observed in motor neurons of SOD1(G85R) mice (92). Treatment with the autophagy inhibitor chloroquine restored lipofuscin, LC3, and p62 levels in motor neurons, suggesting that mutant SOD1 causes hyperactive autophagy in mice (92). \", \"key\": \"5d5af5a17ae195d3064d39bef88f80d877074ce7437f3190ed12b56bfe35ef4e01a5bb46ec09dcbcba198184eb1cc442e21cc96b0156bd5d4de35df1128a4be8\", \"line\": 287, \"relation\": \"decreases\", \"source\": 551, \"target\": 1}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Reduced levels of lipofuscin, LC3, and p62 have been observed in motor neurons of SOD1(G85R) mice (92). Treatment with the autophagy inhibitor chloroquine restored lipofuscin, LC3, and p62 levels in motor neurons, suggesting that mutant SOD1 causes hyperactive autophagy in mice (92). \", \"key\": \"149772b460239bca0e6d6b80ac1e4d4304a7b85910e304f0a967d59941fc090ca460e41673bae7e78c2f3e051d5044661aaa863af9766c17ec03411f03e4b5eb\", \"line\": 288, \"relation\": \"decreases\", \"source\": 551, \"target\": 470}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Reduced levels of lipofuscin, LC3, and p62 have been observed in motor neurons of SOD1(G85R) mice (92). Treatment with the autophagy inhibitor chloroquine restored lipofuscin, LC3, and p62 levels in motor neurons, suggesting that mutant SOD1 causes hyperactive autophagy in mice (92). \", \"key\": \"03379113bcc6a4aed345d8b912374bd1085f6c1cee232f791e1819bee40f37df78b1e44cc52e65a0c64e65aaffee86540f11e1950d6f08cb886e600424627ac3\", \"line\": 289, \"relation\": \"decreases\", \"source\": 551, \"target\": 552}, {\"annotations\": {\"Cell\": {\"motor neuron\": true}, \"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Reduced levels of lipofuscin, LC3, and p62 have been observed in motor neurons of SOD1(G85R) mice (92). Treatment with the autophagy inhibitor chloroquine restored lipofuscin, LC3, and p62 levels in motor neurons, suggesting that mutant SOD1 causes hyperactive autophagy in mice (92). \", \"key\": \"a0a4f7b45b2d99e4ff0c378bbfc04141ccf719fae3824f6b12663d74aaff7abf433c008f2327df2394f02da11b873ad40c4945cb79ca2fe710a68ee514af3919\", \"line\": 294, \"relation\": \"increases\", \"source\": 551, \"target\": 125}, {\"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \"This process allows active IRE1 to cleave XBP1 messenger RNA (mRNA), thereby generating a spliced transcript (XBP1s) that encodes a stable form of XBP1 that binds DNA and induces transcription of UPR target genes (8).\", \"key\": \"a1ead0c9149de76af67b0683d6e5033ea9a4b0fd2f73ad09f1c5610d1d60a9fade6cb37a3969aff062abb44f823d9cb5f8a691bf24cdf4fb538f42b1778a1a0f\", \"line\": 178, \"relation\": \"increases\", \"source\": 589, \"subject\": {\"effect\": {\"name\": \"tscript\", \"namespace\": \"bel\"}, \"modifier\": \"Activity\"}, \"target\": 114}, {\"annotations\": {\"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Mice deficient for the autophagy-related genes Atg5 and Atg7 exhibit severe neurodegeneration (84, 85), and the expression of disease- associated proteins is reported to exert differential inhibitory effects on autophagic pathways.\", \"key\": \"4bbf3bc98caa82e9e8e26abcab32f3462f1af5aaf89288f3daded943d22be836349e91d681b81ae272bc9b233e4d4283015aaab41e076c5f2f558ae33c161769\", \"line\": 259, \"relation\": \"decreases\", \"source\": 618, \"target\": 134}, {\"annotations\": {\"Species\": {\"10090\": true}}, \"citation\": {\"authors\": [\"Labbadia J\", \"Morimoto RI\"], \"date\": \"2015-01-01\", \"first\": \"Labbadia J\", \"last\": \"Morimoto RI\", \"name\": \"Annual review of biochemistry\", \"pages\": \"435-64\", \"reference\": \"25784053\", \"title\": \"The biology of proteostasis in aging and disease.\", \"type\": \"PubMed\", \"volume\": \"84\"}, \"evidence\": \" Mice deficient for the autophagy-related genes Atg5 and Atg7 exhibit severe neurodegeneration (84, 85), and the expression of disease- associated proteins is reported to exert differential inhibitory effects on autophagic pathways.\", \"key\": \"9b98d4041d99d08d8111abb6bab2da8cd332f0de883ffd6a7ddcec6606a72cde79cd8acee8eef4e2ce7c3ac2f49b1474046d84023806cc241156f6f1845ccac0\", \"line\": 260, \"relation\": \"decreases\", \"source\": 619, \"target\": 134}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"However, AP-MS and LUMIER revealed that it did interact strongly with multiple DEAH/DEAD box RNA helicases and several subunits of the COPI complex, which regulates retrograde signaling between Golgi compartments (Figures 2 and 6E)\", \"key\": \"3ebfc95d84b3725e72ffaa371aaeaa7c3a78baeb1e3768599f09e95ab5d6f4c8cdf4477c7472b5e8f45c8bf2faf6dec76672ff32aafb281f52078971a8cd4f07\", \"line\": 479, \"relation\": \"regulates\", \"source\": 23, \"target\": 117}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Indeed, OSW-1 treatment led to the dissociation of OSBP from FKBP36 (Figure 3C)\", \"key\": \"defdb26ddbf8e3162efa97367fcab664ce0c64b38769fdd9f38d819acfd3f36510fdfce333c954d32d5cb3a6163318747483209fdfb4a23c5ba9d381605d3a27\", \"line\": 214, \"relation\": \"decreases\", \"source\": 30, \"target\": 275}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"LRR proteins interacted particularly strongly with the SGT1 cochaperone, whereas Argonaute proteins bound the protein phosphatase PP5 and p23, both of which are well-characterized Hsp90 cochaperones (Figure 6A)\", \"key\": \"6a935affdc02fa0f00a9f20bb952d316efd3574af4bb6e764044a66ae2831f659471c4ec63e81906d0c428ee8d0df7824cff73069ecf98af0d97e8db533da363\", \"line\": 421, \"relation\": \"directlyIncreases\", \"source\": 41, \"target\": 170}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"LRR proteins interacted particularly strongly with the SGT1 cochaperone, whereas Argonaute proteins bound the protein phosphatase PP5 and p23, both of which are well-characterized Hsp90 cochaperones (Figure 6A)\", \"key\": \"0d4eaddc5670d5465a0e6a5b4ca2a6d56cd8ecb80c301edc4f86597e8955c252ff5ec069ad4e9b66fb6c40565373cd2b030315125c867ab99f4b5387a7298610\", \"line\": 422, \"relation\": \"directlyIncreases\", \"source\": 41, \"target\": 171}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Ganetespib treatment had a strong effect on most Hsp90- client interactions. Of the 630 unique proteins that we detected by LUMIER assay, 46% significantly decreased their interaction with Hsp90beta (change in LUMIER score > 1.5, adjusted p value <0.05; Figure 4A)\", \"key\": \"aaf985929750cece53f1ada7765043c5cdaa34f495136b0a54f47d12f641ef0df276e7c4d963e1cbb700a1b45a9495e1458ad6e3ed409c868567a60d01fa5b43\", \"line\": 277, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"decreases\", \"source\": 66, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Ganetespib treatment had a strong effect on most Hsp90- client interactions. Of the 630 unique proteins that we detected by LUMIER assay, 46% significantly decreased their interaction with Hsp90beta (change in LUMIER score > 1.5, adjusted p value <0.05; Figure 4A)\", \"key\": \"374371c612e3680f912571f47748ae22f1ad772999959e6608d0bfb2dde82ef1006be1137a6a830bcbeedc8d1c68346cf2232db9999d4a71ec73c220d1153d21\", \"line\": 278, \"relation\": \"decreases\", \"source\": 66, \"target\": 278}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Ganetespib treatment had a strong effect on most Hsp90- client interactions. Of the 630 unique proteins that we detected by LUMIER assay, 46% significantly decreased their interaction with Hsp90beta (change in LUMIER score > 1.5, adjusted p value <0.05; Figure 4A)\", \"key\": \"02eab9ce4745f9f4b642261ef34a23e5d2bf4d2678d99405556ee4aa95825fb3495f77dedd75c7b3a0093043170f1374845635c0f446f7b8e7943a752482bf72\", \"line\": 279, \"relation\": \"decreases\", \"source\": 66, \"target\": 280}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"A few, mostly cochaperones, decreased their interaction with both Hsp90b and Hsc70 (blue circles, Figure 4C).\", \"key\": \"c285f30d1b20ca407a8bd7c7e365701e1b6537db539432d2442dc9c765ab82825ad5ac283ca5aa3fb80ea42b541287a6407dfe33a3e10c21652941c172eab152\", \"line\": 294, \"relation\": \"decreases\", \"source\": 66, \"target\": 280}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Ganetespib treatment had a strong effect on most Hsp90- client interactions. Of the 630 unique proteins that we detected by LUMIER assay, 46% significantly decreased their interaction with Hsp90beta (change in LUMIER score > 1.5, adjusted p value <0.05; Figure 4A)\", \"key\": \"2b5288b19ebe3edbd0f7c4f274ad582cc7d767f059f60ae13dfe4327ababc2efb02eb443aae4d3f129b880b3f3bcc06506fcf89aaa2b211147c2cd6fea660e2e\", \"line\": 280, \"relation\": \"decreases\", \"source\": 66, \"target\": 267}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"A few, mostly cochaperones, decreased their interaction with both Hsp90b and Hsc70 (blue circles, Figure 4C).\", \"key\": \"9ab278098b28229e482a86d765d179afc73593eab7644be91959e493e03f5d604ec4536a376a8bb46d79906001af5b0697951fffccf154b7a65d7f9b53a7e881\", \"line\": 295, \"relation\": \"decreases\", \"source\": 66, \"target\": 267}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The effect of ganetespib on Hsc70 interactions was more subtle but still clearly detectable: 16% of the tested proteins increased their interaction with Hsc70 upon ganetespib treatment. This was particularly noticeable for proteins that interacted strongly with Hsc70 (Figure 4B).\", \"key\": \"ce1ba024fbc22bada98110e35c371b0c0fed9f2667ebc2bbd9fdd30a356abd1cb3e6d1a099d2877791ed766424d2f52ac37bfa29ee25c65292155caa82ebed30\", \"line\": 286, \"relation\": \"increases\", \"source\": 66, \"target\": 227}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The effect of ganetespib on Hsc70 interactions was more subtle but still clearly detectable: 16% of the tested proteins increased their interaction with Hsc70 upon ganetespib treatment. This was particularly noticeable for proteins that interacted strongly with Hsc70 (Figure 4B).\", \"key\": \"a71600a75dc11ff41b80a4dea0b13696d261f15c750853522d0f07d3a9c720cbcf47fa5b73fddd8d019dcd5034945203412b13d283f0387c468bf8d81167e4b3\", \"line\": 287, \"relation\": \"increases\", \"source\": 66, \"target\": 218}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The effect of ganetespib on Hsc70 interactions was more subtle but still clearly detectable: 16% of the tested proteins increased their interaction with Hsc70 upon ganetespib treatment. This was particularly noticeable for proteins that interacted strongly with Hsc70 (Figure 4B).\", \"key\": \"a034a126f8571cb5bd610390216c0347aabdf77a3994250bbc975478fdd80e4f8e21e51c5c142af6c57aa2970ff05e65ef8844488b4cf15ce0861fb64307cf32\", \"line\": 288, \"relation\": \"increases\", \"source\": 66, \"target\": 235}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The effect of ganetespib on Hsc70 interactions was more subtle but still clearly detectable: 16% of the tested proteins increased their interaction with Hsc70 upon ganetespib treatment. This was particularly noticeable for proteins that interacted strongly with Hsc70 (Figure 4B).\", \"key\": \"f2075651d6ad21758581db57bc58beea0d11336f38424ce1863c76ba504bf20254f02cb59e4edb3c3dd1cad919590114988af9e292c5f08890f65dd2474069c1\", \"line\": 289, \"relation\": \"increases\", \"source\": 66, \"target\": 238}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"A few, mostly cochaperones, decreased their interaction with both Hsp90b and Hsc70 (blue circles, Figure 4C).\", \"key\": \"9049da04664835db84e3e169fa34c18ad11b9f4cbdb3f6f4f84404113c878caa49f322e19e36fca75b460a205501cf45c52649578daacb3249751b347d50ec26\", \"line\": 296, \"relation\": \"decreases\", \"source\": 66, \"target\": 269}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"A few, mostly cochaperones, decreased their interaction with both Hsp90b and Hsc70 (blue circles, Figure 4C).\", \"key\": \"83de256c133db73efd6566347d3bbfbd68352403e188464d17e51c00f4b3b42083940f11b0f20d2b351c0c72e9f1c7216e4db4b30480c9eba76f7fbd7dfa03a7\", \"line\": 297, \"relation\": \"decreases\", \"source\": 66, \"target\": 285}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"A few, mostly cochaperones, decreased their interaction with both Hsp90b and Hsc70 (blue circles, Figure 4C).\", \"key\": \"f68e2cb29e787b48ba026e4a67fb305172712481079879451b9e18bc4bbd2c76d500756a39e65e612d6d79491a045a1fb057b97af665ea48914e79ded43397ba\", \"line\": 298, \"relation\": \"decreases\", \"source\": 66, \"target\": 268}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"A few, mostly cochaperones, decreased their interaction with both Hsp90b and Hsc70 (blue circles, Figure 4C).\", \"key\": \"2a8e6eddb1b5fdf3d5a1e9a80084da060fc8f663ee9072e46387b6046d6a2218100df3b54664fbf4d72b1bed567406155fceec75b5b3a4fa13ba77056b292e2b\", \"line\": 299, \"relation\": \"decreases\", \"source\": 66, \"target\": 270}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Interestingly, five proteins increased their interaction with both Hsp90 and Hsp70 after drug treatment (orange circles,Figure 4C)\", \"key\": \"4a84cd0af6bc452393165a3779ee0e3948af027f125b037597f4dffd7e670d54252b3db9b0fdb3c8cc6c1804ee193868d96d14ca31913fc6930ff0d665b379f5\", \"line\": 304, \"relation\": \"increases\", \"source\": 66, \"target\": 279}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Interestingly, five proteins increased their interaction with both Hsp90 and Hsp70 after drug treatment (orange circles,Figure 4C)\", \"key\": \"6a0dba2630a37783a63c30938363a188b00ee24b827986f73d0b1511213c548c79aeb0e942afb1f718463cc387c00d598c284f226632607d57f97787b3efd56b\", \"line\": 305, \"relation\": \"increases\", \"source\": 66, \"target\": 209}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Interestingly, five proteins increased their interaction with both Hsp90 and Hsp70 after drug treatment (orange circles,Figure 4C)\", \"key\": \"fb258c4042505186573040c4f018c1a382718ed4474cb1dd52dfbe8dd448a2d700942d1383ed61c87f943cfca674fc7897715074306e217197411b54e3e76666\", \"line\": 306, \"relation\": \"increases\", \"source\": 66, \"target\": 284}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Interestingly, five proteins increased their interaction with both Hsp90 and Hsp70 after drug treatment (orange circles,Figure 4C)\", \"key\": \"7252db0f86511f08bef9005694997e32f6d97ea2a91d3e2744a0d6c4faca61d2ea5d9eaf24c5bef4aee9c5ff098b545775cd7110888e15ec27fdec789cab430f\", \"line\": 307, \"relation\": \"increases\", \"source\": 66, \"target\": 210}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, the FKBP38 (aka FKBP8) interactome suggested a link to G protein signaling through interaction with PDCL, which acts as a chaperone for G protein g subunits (Lukov et al., 2006; Figure 3B).\", \"key\": \"9640f756ec24f5c6e162f057058b635a05ac855a8e1f5304a8aed659b1dd5987b90c8248eb41f0389e7583d845933bb6739ecc914725d259243a79cc7c85550d\", \"line\": 203, \"relation\": \"association\", \"source\": 75, \"target\": 441}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"11d48ebda9d4240c0d681b6b24568ae85da92a4df12a41d2fe7f8a8b5b091b5a28fa3703bc4f4681960f41b4752b929b742e6d98d1a5db3a9e371c2a466d1ff6\", \"line\": 251, \"relation\": \"association\", \"source\": 84, \"target\": 416}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"0fd801ec122757f50c86cb5b4e17b139c94f45c7a6f2719b5e040bd89d8a70e0a5d6005c5dcf56998aa0797efaebdb4e0a350919e52a401e45023981761773f7\", \"line\": 253, \"relation\": \"association\", \"source\": 84, \"target\": 426}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"54c746718c3c36629f1a27950ecb5dcc0075663425ba1f2c14d1c0da9b24feb3d92de5898459906357c69b34edf193ce9a48c73a32c29f225037ebc4eb94c3ba\", \"line\": 255, \"relation\": \"association\", \"source\": 84, \"target\": 419}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG1 interacted with the E3 ubiquitin ligase Listerin (LTN1), which is involved in ribosomal quality control (RQC) of stalled polypeptides (Bengtson and Joazeiro, 2010).\", \"key\": \"5c5f739a2bae283d6fa3458d1a35f1a4a8bc0853f1b9c59bf29a7a5219ae4e51ac10972ca636244d709c4c1d91529abd59b948ff44b9a2ebc107092341e9cc12\", \"line\": 226, \"relation\": \"association\", \"source\": 108, \"target\": 467}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Second, FKBP51 interacted with the Argonaute proteins AGO1 and AGO2, which are known Hsp90 clients involved in small RNA biogenesis (Iwasaki et al., 2010)\", \"key\": \"1c2635b5d76e14f149ecb2c29a4b70564b0b4fa2c13eaf0f0da7038a6f42506c7878238a4719b148eb1bd3c49e9230e3100da2f92642bc45c4c32a729418517e\", \"line\": 156, \"relation\": \"positiveCorrelation\", \"source\": 118, \"target\": 369}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Second, FKBP51 interacted with the Argonaute proteins AGO1 and AGO2, which are known Hsp90 clients involved in small RNA biogenesis (Iwasaki et al., 2010)\", \"key\": \"82be2199f5b6059477ebb94cb18315f5a28470d2341158e6fee4c5ae6dc3af4f731c3806a46039c6415e958e2a4fbd13a383195c19cfb4695f3f2a2a13c89a4c\", \"line\": 157, \"relation\": \"positiveCorrelation\", \"source\": 118, \"target\": 370}, {\"key\": \"d3ecb02619793d8389ea573deb9636a6b5c8a6b128b804abe5530080118e6f7babf44f402cd29befaac5d3f87b6a980cae4a057dab69c3ce57f22574004c27ec\", \"relation\": \"hasComponent\", \"source\": 149, \"target\": 476}, {\"key\": \"0db8b265466faef53a1635162275614ce2e35bd6395660e08041df34011627fb1001c15feb87f4758aa7f2e37f4a43bc6e23a01c132420c285082123bdfd53b3\", \"relation\": \"hasComponent\", \"source\": 149, \"target\": 480}, {\"key\": \"29ba1bd43bb4db8e91c1709277af619b38218885f65867e20df4156d06c5332b7e841ae8847c70fbfd0d451cd6b59a6646a9f8f75dff6c3f2f9249f0deb14aea\", \"relation\": \"hasComponent\", \"source\": 149, \"target\": 474}, {\"key\": \"5fe3fedffe80745c923ac441905a5634b376be829ed5e2f27e326a6aabc525270c68f0871a45f2c218caad40239685455d05537fe1b3070da219d3218de9ea42\", \"relation\": \"hasComponent\", \"source\": 149, \"target\": 475}, {\"key\": \"c242fa1e5e8d703ae4b0eaadfddab30a7403c8ce63d51e9398aa4b141284871a726a6355fe1ebe5b159328e530bb6e7c2961a06e4d62c02aa617c72bded0e24a\", \"relation\": \"hasComponent\", \"source\": 149, \"target\": 477}, {\"key\": \"e4171b20bbbc07c9c07e71ffafdf586313ba2868929b97b4b0d460e7e911d082f21f250fa6cef14e8411100606e6983891ee2edde9dea47f3e3d48a239dbdc1b\", \"relation\": \"hasComponent\", \"source\": 149, \"target\": 478}, {\"key\": \"b9d019eac3f4303fa9c4c5c3f342964a360be5ee5f8a8e08fb917b346807966f7ec8c658204495249818b38da9c22e57b7a1853bed993e8bec5733507793b717\", \"relation\": \"hasComponent\", \"source\": 149, \"target\": 479}, {\"annotations\": {\"CellLine\": {\"HeLa cell\": true}}, \"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Thus, BAG4 overexpression disrupted P body organization\", \"key\": \"096a7da3b015f0fbb929f92c488223229448856683ae6afeaf455aaf48ec8f6a2263c4bff0ed643556b64e9130a9af62cf34de69e56ab35ff301bee33e9894ac\", \"line\": 260, \"relation\": \"negativeCorrelation\", \"source\": 150, \"target\": 393}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"However, mutant BAG4 still localized to P bodies and disrupted P body organization at high expression levels (Figure S3H).\", \"key\": \"76764a49c0be3a25db53fd2be7d8ce1f539e116aba0fba8e9b912f2b00cae15c461e65b2f5999c8deea358c2cb3404d940c0cc960b5fb66f88fd9518a5b4b8a6\", \"line\": 269, \"relation\": \"association\", \"source\": 150, \"target\": 394}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"However, mutant BAG4 still localized to P bodies and disrupted P body organization at high expression levels (Figure S3H).\", \"key\": \"adec489f1721f0d0bee1b8eb74271af504245bfb47d9bbd4a8ea2b1f57e9f603c2c12def85467f498e2cdc11c8d6386e43fff4b8240243ef2e76a658bf0dcb5f\", \"line\": 270, \"relation\": \"negativeCorrelation\", \"source\": 150, \"target\": 394}, {\"key\": \"f22058969daa91b14665f43158243fb6efc11876a46c2ccb0d2bbbca40b5005c42d3505852c4d8516805111b3ae2a4fc823a0cbed960e433614e117fa70a9c63\", \"relation\": \"hasComponent\", \"source\": 151, \"target\": 498}, {\"key\": \"cef5306dc762a8343bd7e86d0321bf36d3dff815ca6d6e48168c3830d6551af62524db3be59dac18d24391753e2456dc716e8772ab83efc956145db090aff711\", \"relation\": \"hasComponent\", \"source\": 151, \"target\": 587}, {\"key\": \"22017e22e999cc81ce31cc5a71c83e3881151437d577969a297eb59d9e74d40faafe86c080a3f225e1f10304a8b5fe5d2dc17d9ccb9890ccd9c71610e64f074d\", \"relation\": \"hasComponent\", \"source\": 151, \"target\": 586}, {\"key\": \"837177a70ec3f75c751577f05f95ee916e5cc937460afabe5496d187781f1afc1a8486e89e1623e9e5f7cf0a4e34b17541cbfc4080dde91549ecc75963084a04\", \"relation\": \"hasComponent\", \"source\": 151, \"target\": 497}, {\"key\": \"1107eff30b2b752ccb0706e128dc0c8022b862a618016989f1ee4769d2e6be5bc2204677035b1f25c90db90e0bf2d4ceb06be26d6f79faa11fefdfbecf0eceb4\", \"relation\": \"hasComponent\", \"source\": 151, \"target\": 531}, {\"key\": \"20a9a6e1e5ce19d6800479680b853c72919521f5400b5126d15a35bed2f3133fcd249ed64bbff423c49dda9fb822ed9465faf0af054d9ddc9887000a4104f4fc\", \"relation\": \"hasComponent\", \"source\": 151, \"target\": 501}, {\"key\": \"1c8476a998fb3b24d871bbc14a4b6ded259b1254b621c20c6b3b621f5f3344324072dcad347ba3ef19848d7e66f46641e4c39f029afee69fb0f5fd63b50a8837\", \"relation\": \"hasComponent\", \"source\": 151, \"target\": 583}, {\"key\": \"43f0bbb91fe7b2f0d81b54c6df365a9620a0532ecdd2019f45419b368573c39ce68f84881bf940a196b89cdcf1b992b08dc9d7a0c84504e8c2b36c7e15a4260b\", \"relation\": \"hasComponent\", \"source\": 154, \"target\": 498}, {\"key\": \"b0263ca1f32e5890343c00c3ffe3a438162b392b3bd6747984431896afac3a5d2ab37a057a08f2d639e4044ded036f2fa49b6a51117af8ab457b4e2452a46e88\", \"relation\": \"hasComponent\", \"source\": 154, \"target\": 499}, {\"key\": \"74c2d56fa2a94f0f098603c55697676b8fd97f17f6c48526b8d742e349f9892c550681ebf29484ce3d059f6ddd8bfad4d0197ad9292e2f64276e3befb4553918\", \"relation\": \"hasComponent\", \"source\": 159, \"target\": 23}, {\"key\": \"217aa4d99e5697e1c8114776a02d19695c79f1955eec60be969ca5baa5e11ab9a24e21ffccf3b3200e28b0a31195b333c0df2e2c88d8174d35e4796bef7ab2b6\", \"relation\": \"hasComponent\", \"source\": 159, \"target\": 486}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"However, AP-MS and LUMIER revealed that it did interact strongly with multiple DEAH/DEAD box RNA helicases and several subunits of the COPI complex, which regulates retrograde signaling between Golgi compartments (Figures 2 and 6E)\", \"key\": \"246ef6936587d7e70a009195f29df5054471c4080a4deb5cc502af81f6b99ed9773a8772bda74209099da86f6a874cbc9bb55eb77356736ed45fbcec883312d3\", \"line\": 477, \"relation\": \"directlyIncreases\", \"source\": 486, \"target\": 299}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"However, AP-MS and LUMIER revealed that it did interact strongly with multiple DEAH/DEAD box RNA helicases and several subunits of the COPI complex, which regulates retrograde signaling between Golgi compartments (Figures 2 and 6E)\", \"key\": \"061c3e8b44b99b8d481908c6741e9e3f9a51cb0b785c7c100b6f25245ad76a6d98f12b93b370c521b8e40f939be216e377862187aab65bfd9b900c5c8854c8f9\", \"line\": 478, \"relation\": \"directlyIncreases\", \"source\": 486, \"target\": 159}, {\"key\": \"93b3993e9ed91e9252dbe84ff2ee0a93d868ee7b053b25e22a70ae369e1732bef9adf266aefec2148137429cbdc1f209a1ee97fb0116a7866f5134e7ec3c3b93\", \"relation\": \"hasComponent\", \"source\": 170, \"target\": 41}, {\"key\": \"885afef9e35813e1bcabdbf3ba252f5ec91b77a14f1a0c9e1cdfa892224c30b98ce19cff3c38760c41c557a37522967158d85aaa91b6434df3cd80605275338d\", \"relation\": \"hasComponent\", \"source\": 170, \"target\": 502}, {\"key\": \"8b4c5953a95c2a6b442e422023834fd16762c1ad660f96a23b385f90ec2bf6cf6a1331cfc8c06584aeaa15232fa85efa345512e75daf24442b58b3678a0cd7b7\", \"relation\": \"hasComponent\", \"source\": 171, \"target\": 41}, {\"key\": \"d87bbc32cab653763df2691ef0c7e27d142dfae27e5bc5c271afb941a06416729b2f8a7c601aa7232968c5abaee483d2bae89cf7efbb813e4ed93f317f9c32c3\", \"relation\": \"hasComponent\", \"source\": 171, \"target\": 525}, {\"key\": \"1a615af53e56e5c4ead2d54a5cd76d1ed8bc1429038bf3d8da6a0934e90b3733e7d7e1001f0fcb487d11bb36612c3987197bc5bb0790ad12e13c6809e2892d6d\", \"relation\": \"hasComponent\", \"source\": 175, \"target\": 51}, {\"key\": \"969b2c44301786e49ff9156bdd85131872f09cbf114db3a12260ee7d46aceefd1076889c3216b17a007e11e172f2f7edb050a6669b968d01c01217e0bd7ac4ba\", \"relation\": \"hasComponent\", \"source\": 175, \"target\": 405}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, we identified several protein kinases that copurified with CDC37, a known kinase-specific Hsp90 cochaperone (Taipale et al., 2012)\", \"key\": \"01371568fb174da24e1d8487f16f1094b47dbb22fd32d0313762ecfabecd07f6e5f55cf6399bb16bedcf5229dde7cedd3c5cba9e628694eb3eb2d6f47abf3e10\", \"line\": 101, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 251}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, CDC37L1 interacted with the bridging factor HOP, whereas CDC37 copurified with AHA1 (Figure 3B), but even more strikingly, CDC37L1 did not associate with any kinases in AP-MS (Figures 2 and 3B)\", \"key\": \"b32aa276218f66cb5c1230d2c6b52990cbd7cc216fd09b086889d9fcc7194bc8a2ee63ad261b0e027f24a5bfc617c0d9454f649211c064f6793bc1cc163393b8\", \"line\": 112, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 207}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"49cff0a8d68f1c8a470d609d87df1d4f9fe6e0135c1f11b65255fdf80c687490b8a4794d24ac74fd03d7941b35f7ec0f7ec0c0711deb733233b44dce41c463bc\", \"line\": 137, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 216}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"1dbe8dfee6bc39aea8b56e3bda8ef34f96b4307c9a2f52a8e08e552da2a9445a6e1e7e48756e02a5ae16109d3bf93c6b4ba9bcace3dff3b362809f721c2bafd1\", \"line\": 138, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 245}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"731eb95743cafcf378cb6f410f9a604b7edee286c84b2742e4a0fe52c8cb9fc2a09d63cec6837d825814e18e5331d0ec60229b45679c7ac0d73ee80783952fd4\", \"line\": 139, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 244}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"56e8c56c0f72bbad6579039f945ebc672d9ae0aab93a0d72f200891144ecef076e3ca14771661fd56fece4a2ed75bc61ea73551894dcd52508d2aa260fe8a1ed\", \"line\": 140, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 249}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"bdbca811e34d5fd5cac83e742ca70e56f878b7449ac05e2e4614235ed1f8979280a5e11ed91d2e2792877bb238e793109804b82ade965b222f96144e7a6dcd5b\", \"line\": 141, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 246}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"a5b5d27654b32ee9f66454cbcd01e0ae8d06d3857c8c0f2a198744aa34a4e7070efd9077dd1ad35043d954913910e737bb3eb0f6018b1628d7c5f2de0ea3475f\", \"line\": 142, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 248}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"2a86380fff0dff205a8116807872d2b0fd9664bf2494f33bce628c727e8b3b14fca1b33c45f43bab5640d62cfc3bad3805f4f652133510d6afdd681d9c4eabcc\", \"line\": 143, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 247}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"76255a59dcdee42b2366d5fe395582a1b109ee281fdb1f3ab989a6878ac8d0ef2ec9f3d8f89f8130b5bca39afe45b1d92f005502bd53f3148a789f3ebb6324a6\", \"line\": 144, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 250}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"650a1c9024355bd92db3fe8dbcc8af7733c02e434232215f8c293a399df0a87833e8f819b75b0e7453b787e6096a57fbea1303169ee3e20fb592b22cda3dc599\", \"line\": 145, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 196}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"34d77b1b9e15ceddeccba0b24faf86e8d8356d79d09828694ac2f867312dbdeac8fe6426d580c1c03579d5e12e1dc0c0805baae3579d682bb5b55ef241923b8e\", \"line\": 146, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 211}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"b18a8f42bceaa94e90d240928497b2cd99b6132e376922ade61482d282f1e28b0ce921d3a5a162c20d6ec757105f12f54db413e788a638ff72f42ee1be2a9208\", \"line\": 147, \"relation\": \"association\", \"source\": 405, \"target\": 439}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"As expected, CDC37 interacted virtually exclusively with kinases (p < 0.0001, Mann-Whitney test; Figure 7A)\", \"key\": \"7c8f7b1b078f446ca41c0488ccb6bae2a57d0dcb4f8f5e91ca061a127358a2b37e6d9529a1a7d4bceedb4bf08677c8edb1b034eba5bb33b2b659b71f0d72cd49\", \"line\": 445, \"relation\": \"directlyIncreases\", \"source\": 405, \"target\": 175}, {\"key\": \"4925139f8dee874bf7c4842ebfc0db9da364c8f6c69c7f2c491fec5f5f93c3a60378d49cb9686e0ffeb66a76f9e58ccd2f141173f11a4cc2853a61247352abc9\", \"relation\": \"hasComponent\", \"source\": 176, \"target\": 51}, {\"key\": \"d2fdc294ff0d2175faef06eb4880798b11834364abc058ac5aba0b82783f0ad2f200cd499d416f2a75a269d0af60318a4bd9b4e50fa7dda8d53917deb78ff654\", \"relation\": \"hasComponent\", \"source\": 176, \"target\": 446}, {\"key\": \"29795d5bd225ae9ed67c663548675a415ac82fc9811bcb36754c46b84e6507c7cbae1b7532dabbe13cf726103a4226fd039e16cd8866baa384726da7089aa0f3\", \"relation\": \"hasComponent\", \"source\": 177, \"target\": 55}, {\"key\": \"b05038befa1a698783fd13e99b5b34358cc72f23b24366adc21a3666310cd76efc5f27dc9ea49aa36aeee5cabb1580e26560b6cc5905e7f8ad2d993441287939\", \"relation\": \"hasComponent\", \"source\": 177, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDC proteins have been found to associate with the Hsp90 complex, but the biological roles of these cochaperones are largely unknown (Zheng et al., 2011)\", \"key\": \"5e582846fc1f2c9ff68ecac184eb5e052b42c16c1fb753396586e69d78e8956239e576a177bf97d72f22887d44bba399ef10b94c1a8532cf6878c8f4f1e5cb65\", \"line\": 427, \"relation\": \"association\", \"source\": 599, \"target\": 605}, {\"key\": \"9b1e0390a0cc07910dccaa4673f74a9b2bb5deef5153a6a0b12b6cbbb2acb9e5d32e8ed6fb07dc214210e18a8c411524ccb5929a75ca4305affbe9381f07a41f\", \"relation\": \"hasComponent\", \"source\": 191, \"target\": 360}, {\"key\": \"646cffa6f0b06a1e6f46ccdd6f2e7c5f78542f980aa7bb432d2810dde0dccabf7408d52ca713b435eb8d34725ea56672b6baea32d52e1b51fab18f990d9acf93\", \"relation\": \"hasComponent\", \"source\": 191, \"target\": 501}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, seven members of the cytoplasmic RNA polymerase assembly complex R2TP interacted with the prefoldin subunits PFDN2 and PFDN5\", \"key\": \"4683b7257253e46910967c951d37876f8248bd7b89f5c1be9ffe509892c0a1585ca68d31c789e3cc7a49c385a0ec0bd71b64e941d8b2ca2da8f224f202d61263\", \"line\": 394, \"relation\": \"directlyIncreases\", \"source\": 501, \"target\": 311}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The second cluster (URI1, POLR3A, and RPAP3) interacted also with RPAP3 and Hsp90 in addition to the prefoldins (Figure 6B)\", \"key\": \"1d38e41d61f8fab456db1f001bc1c9ff37a930dd031f5330ac2bee1515aefc0b8d9cc458576b22be5669b2ee5859d6e25f7f6c3144cae4542718a53547cf7118\", \"line\": 412, \"relation\": \"directlyIncreases\", \"source\": 501, \"target\": 320}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The second cluster (URI1, POLR3A, and RPAP3) interacted also with RPAP3 and Hsp90 in addition to the prefoldins (Figure 6B)\", \"key\": \"480a4e6c9a0c6de33e762bf6cc366779202ed4e1282459a3369cd74931b498b6aaf5a766c50b5ce6f434c7ddf483f169328f2c3719986b004b2095445fbe9811\", \"line\": 413, \"relation\": \"directlyIncreases\", \"source\": 501, \"target\": 191}, {\"key\": \"b97ad6deac36b2125db3cf55bd18b098f59363612d906d24b1dd3b68b495a525f71af5f0c06820f777afbab5b7660139132ab3a498e5cb27523b907dbfb6a8cf\", \"relation\": \"hasComponent\", \"source\": 192, \"target\": 360}, {\"key\": \"828ad9c3fdef2b6aee45140cf718f4ae305ae27b44361de5c64104db9a74d6f8067ca5bde73dfa2be3e31175688df36856b4ede07c969ba860c42519643a0cc2\", \"relation\": \"hasComponent\", \"source\": 192, \"target\": 531}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, seven members of the cytoplasmic RNA polymerase assembly complex R2TP interacted with the prefoldin subunits PFDN2 and PFDN5\", \"key\": \"dd6c804c8a30581c088f79598ef00321a573a3512eee8ac72784c0ef7a7153481bb2e919607ce9163cb9187d35d82a7b288a769f267daeb67974a41ea04dbe3f\", \"line\": 393, \"relation\": \"directlyIncreases\", \"source\": 531, \"target\": 312}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The second cluster (URI1, POLR3A, and RPAP3) interacted also with RPAP3 and Hsp90 in addition to the prefoldins (Figure 6B)\", \"key\": \"67e19075128e69cc53453eac673f734ae6e177422ccdf8c9705c7a6d462ea1702436f851b6a5c5f401c00df768afbd9d54272a006b531cc06fc68d5d78f79bac\", \"line\": 414, \"relation\": \"directlyIncreases\", \"source\": 531, \"target\": 333}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The second cluster (URI1, POLR3A, and RPAP3) interacted also with RPAP3 and Hsp90 in addition to the prefoldins (Figure 6B)\", \"key\": \"900c939c2aebc9c3a6096310042798e60a59a70417d69782605c37cfb117ac4bda75ed8ac693b029a80886023b38ef8697ab55190bbd6e3c5bbd6a6364c1fc0b\", \"line\": 415, \"relation\": \"directlyIncreases\", \"source\": 531, \"target\": 192}, {\"key\": \"5433f289e23aec202b14e6cedce9a024fab118970464177bc5e3d45d92e5172bed2ea579a2c4a5175b07fe0180ed0b6a7845487537a98c92d57057b0115dabba\", \"relation\": \"hasComponent\", \"source\": 193, \"target\": 360}, {\"key\": \"5b692be8cd948f29d0b8f03aa521542447aa9b83a37ce778b3b417a0a4192b7d6b4539a3b996810f23450380b504d88eb3edf77680cb8f229ba9316ada5d17ae\", \"relation\": \"hasComponent\", \"source\": 193, \"target\": 554}, {\"key\": \"47445e8ba2006e94871a7e5572871099d6f7a5792033a761f677f819bd79388c50209a0ec38929abe3ad74446f888d0b7a714dbe0d05ff0f207a986ab49c3722\", \"relation\": \"hasComponent\", \"source\": 194, \"target\": 360}, {\"key\": \"99a9592665edf2c2d01971a017844d6559be1977d0e13e18325f8e69d7898f5d10885293f670b0b8744e6289d21935a68dbee29242e003801fcd213cf92e0467\", \"relation\": \"hasComponent\", \"source\": 194, \"target\": 583}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, seven members of the cytoplasmic RNA polymerase assembly complex R2TP interacted with the prefoldin subunits PFDN2 and PFDN5\", \"key\": \"a6d79d6a0ba4af1215db0c5f36a365eb9d8c7b90099a767ac5d62633bbff61ce43303c4c292832a9f155a7b6f89720c46bbd937fa8cb1aac891af668a3509962\", \"line\": 395, \"relation\": \"directlyIncreases\", \"source\": 583, \"target\": 313}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The second cluster (URI1, POLR3A, and RPAP3) interacted also with RPAP3 and Hsp90 in addition to the prefoldins (Figure 6B)\", \"key\": \"c090f46541ecea5041b0fffdb4b5cdb13b60f1f7ff35cff05d1b7011c705a28c71a3fc50eeb9e4cb6d609518c3abbf1a36094524857203aab4420cc16d2f1610\", \"line\": 410, \"relation\": \"directlyIncreases\", \"source\": 583, \"target\": 334}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The second cluster (URI1, POLR3A, and RPAP3) interacted also with RPAP3 and Hsp90 in addition to the prefoldins (Figure 6B)\", \"key\": \"95a3cf48ba2d22612abca092570a9bc10900fce21320ed040ec221117ccf3a0b366c91eb1c79b3d59de3d1f5093d165926ec7714a1e8c75ca4ac144f1dc89ed3\", \"line\": 411, \"relation\": \"directlyIncreases\", \"source\": 583, \"target\": 194}, {\"key\": \"8577be77a8a75e6a3d547650545d4916c4a9b7fd2ea189e0d2e0cab40ceab90f562938d5d80c583fe53045236a4db72685b0900b9f676ae0a4e9300b1803725c\", \"relation\": \"hasComponent\", \"source\": 196, \"target\": 367}, {\"key\": \"27c92beb25e8b64d6bba48a47b5dea054212340b7cdb7b5c073f4302fbcb396c7edf27a4284b1eeb586e6b7092a9b16b46cffbc9a8c394348242e6eae2500a7e\", \"relation\": \"hasComponent\", \"source\": 196, \"target\": 405}, {\"key\": \"c8934cbe8dd7af9752abed757888e14df3d108905d00180a294151587b6bde6310504e890072b739fd9040d14595e8e80126f0e935eaa61b0829b725f9ed2653\", \"relation\": \"hasComponent\", \"source\": 197, \"target\": 367}, {\"key\": \"f8de65742c04d28c0576ccdb5dfd86d17ac792e3d4c55a5efaffb306b22319f7c0fa7a28e91b3a8c4148d6abe1250ba6051857420646ee453c15a137002b9b54\", \"relation\": \"hasComponent\", \"source\": 197, \"target\": 439}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"7e16a1a2121ce7b1e7b2141742c678fe31ff438b27fb594dd5bc8844bba6c2ea5009b82f16156739655e08b33804e3e77566424b56b3ca5bf0fa7d181bd9795b\", \"line\": 127, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 217}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"2acc0b4867474a446782ccd860287757ef204f0cd5095a2bfc21b5a693788d29f3351740b9037b41db735d3a8a4c30160143b2250612a231126245b64648329f\", \"line\": 128, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 256}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"946fb2942a60331e6e7eec4d990cf589e41cfde96ac8090835a7577d7fa9aba49ca373dff8754cdffc81a025db3e957cef0eb47b2a1ed6fb5c66e1d134e20808\", \"line\": 129, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 255}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"970f0bf69eb5ac507f26ed7804fa2ecd45e202e351eb440ccbe1b5a1a25838e3a608b63a37195c22d08338b77eb0907a21602ca96fd94e0dcb244953ad333537\", \"line\": 130, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 271}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"000ac910a2d2003e48ec150556fcf610cdb32ca09e4af37a0eac66c88bd9d86b0d3c97ea51887cdf6fe4686a3dba9897733dc903308dbf420001432779b480bd\", \"line\": 131, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 257}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"e6d73422a73c84e527f62d5d692e7f237eaed8ca14665ff864c02bd2124f33f79dedeb0c1e872102011c6e837685494f2fa183648a9b79b1532b624026a140f4\", \"line\": 132, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 266}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"52540a770c46ea13b607519e3e6f57a71a6123eb8abe05a7f52f6d64c48b44e69768b05b1af985ccc8f6aef2bd2cdcfe8fd3cf1234a83765cc34921d6c9a5416\", \"line\": 133, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 258}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"234cb42bb8ad851629f6d44047af22fa73ea7dfb2a7c501ffc200d812dc0d023172f49e369b200954ba4af19ac0f0ff54f572cd7f4269ee5f7e525b99503faf5\", \"line\": 134, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 274}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"6fe8a42df16e6176a3cfe650d6bafaa1c309aa91e1e4494de3b3b2e2a06c26f67713f9bc290bd8a189395b231d668a987f5123deedb56d30e7ec92d4b89e2d83\", \"line\": 135, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 197}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"96b4b5eb4160085c0f9471dc0da55de6f96e2e5737e5ec8f0baaa371ba413efc905df11a56072ab62684220c50cd9eac00a3708f8d9a664ef7b68a81e16a74b9\", \"line\": 136, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 213}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"First, FKBP51 interacted with a subset of the kinases that interacted with CDC37 (Figure 3B)\", \"key\": \"15b04bd62137ae058f4428d292bfe631093146f1707d043bee356ab9e8880967ed981ed7bc956c5553f9f2d0d25e2dfdc26200cb34c3ce1b843cad57223ec90e\", \"line\": 147, \"relation\": \"association\", \"source\": 439, \"target\": 405}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Second, FKBP51 interacted with the Argonaute proteins AGO1 and AGO2, which are known Hsp90 clients involved in small RNA biogenesis (Iwasaki et al., 2010)\", \"key\": \"56867d8b7fb439b54c9bee40e3545c8fda8d383653bea5f447cda1c67f3a15425e718ae6c85f8843d7702cdaa1f0baeeab6cdb4030a44b200556ccd715182033\", \"line\": 152, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 203}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Second, FKBP51 interacted with the Argonaute proteins AGO1 and AGO2, which are known Hsp90 clients involved in small RNA biogenesis (Iwasaki et al., 2010)\", \"key\": \"2d6c97e7d6c46956f9e0aa1114e443d098dd490410485e9f1c35e03770cbf9ce97495a518eca3c23d3740b8008b5532907e89169e32eaf58b234a5bc92237351\", \"line\": 153, \"relation\": \"directlyIncreases\", \"source\": 439, \"target\": 205}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"14a23bad8e2e46c5c7193fe539da8ffdbec029eb23d8c296f4649ec49246f7860462f98161f1db44eaa427cfeadf996548c7329a9565164c8fcbfb07da1081e3\", \"line\": 162, \"relation\": \"association\", \"source\": 439, \"target\": 428}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"929d551369c3198dfc0c68ef0e710d3a63d845eee8e6131e68724e6539c3b42fc30b935967121e33cdd6461a27e542bd62ab84e5330be2be47b285927cf398d0\", \"line\": 165, \"relation\": \"association\", \"source\": 439, \"target\": 495}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"77c58f6a3445e0620335eb9049b969df2454c0740a1d4ff3cd9f322f1a950d18d4d17f69a2a284bd65686156377f1a90ecf6b9bf4de8101e7a4ec2012258ee03\", \"line\": 168, \"relation\": \"association\", \"source\": 439, \"target\": 374}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Perhaps most surprisingly, we found that FKBP51 interacted with MCM4 and MCMBP (Figure 3B), two subunits of the MCM complex that are involved in DNA replication initiation and fork progression\", \"key\": \"ed228556d1e5b9ad061590b3882ecb66c6fa26023344c5ac3a137272fb0d9b1925d8217befb7acc834f58bb7daa685c13b1628a5ccd39024b65a75c5d73ef0cd\", \"line\": 175, \"relation\": \"increases\", \"source\": 439, \"target\": 272}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Perhaps most surprisingly, we found that FKBP51 interacted with MCM4 and MCMBP (Figure 3B), two subunits of the MCM complex that are involved in DNA replication initiation and fork progression\", \"key\": \"7ba55d362339be172bba8cdec2e97c9f95a78e8315f4175bcec1177ec71b5aecb8f3fd1aba21ee7d554d1bf70cb5489006287042a58bf74019a7e31f89d8c2f8\", \"line\": 176, \"relation\": \"increases\", \"source\": 439, \"target\": 273}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Corroborating our results, a recent systematic small interfering RNA (siRNA) screen identified FKBP51 as a factor in modulating the cellular response to DNA damage (Cotta-Ramusino et al., 2011)\", \"key\": \"b7c0846b854b445646b12bb628824ed0e972be011afb4deb36a821dbba1048a816ac08b1259925f4b43b41ee35fb8ab5cbf0cdfd5c6eb75dd25aafc89d190819\", \"line\": 197, \"relation\": \"regulates\", \"source\": 439, \"target\": 85}, {\"key\": \"7163b0e838ddf69ae760f3bc49fbefd17471cb997a49bf4ff4f7098ee7837ca88bc40f2ed611860d5f25776909e5423b4c30526c911ba87b141e35825aadec5b\", \"relation\": \"hasComponent\", \"source\": 198, \"target\": 368}, {\"key\": \"3609c1a3ae54b8d2619b7050977ee0290b258737028fd783ff6acc9b86b897c0a1d5e32bc41fb1591e58b8cb22f024f8f915f1785a4a65dea01c297b9c4077a6\", \"relation\": \"hasComponent\", \"source\": 198, \"target\": 516}, {\"key\": \"a93b1391a97dc829f5173f02c5e7a7b63914dea32f50ba3c24dd06cd73e9f60d5668985c778bdd306ab6b555a3461d23c861f1f703650eb0046952d548148abf\", \"relation\": \"hasComponent\", \"source\": 199, \"target\": 368}, {\"key\": \"98faa3756b0694134be23ff21f4ee5ae76b20777737768b6f4312f3813c352b4c394d84272725a97fec2d1d9d04fa3671a589b382319c3e24cbcd69ed5a12c20\", \"relation\": \"hasComponent\", \"source\": 199, \"target\": 517}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"9ec1abefb5c525550a125b57e8945f64da9214e8c38af028a72ef33ece7d3ce3c6cde4de50736aa68e2fabf4e6f97b9f38caf524ddb52aa98b63844d3133cc91\", \"line\": 370, \"relation\": \"directlyIncreases\", \"source\": 517, \"target\": 324}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"e8f1d9072f46f3564b8e64afe48b6ef63d9f9e7d1ce599f11580b6260fe661be38e092cebce756da0367caa0b6fdf124a6add1189c3498a06ff0259fe57e143e\", \"line\": 371, \"relation\": \"directlyIncreases\", \"source\": 517, \"target\": 325}, {\"key\": \"c3ac9636c08107dad6e8481bef6f2d3bfb5fc982fd2acd9a14f3b6e51b9851061d595ecbfb7be2972da69a87cd0436c326e4763c6edd9101bef7a6fddf1191b5\", \"relation\": \"hasComponent\", \"source\": 200, \"target\": 368}, {\"key\": \"223f855d3d7d030e53720e614570d70fd96cc3be1a18ed896e83b259b1f6a3b482f66c6fa231e2fdc944cdb20042c11ad0121e03b2abf60b39c90b18428dc3b0\", \"relation\": \"hasComponent\", \"source\": 200, \"target\": 517}, {\"key\": \"682c9888a524c7a06c611bd04ada93587b629c668af26e1295594a66fa71614f7015ad088010877c93dc09b2130ac3c7c05488e8c34b2bd99545a982a4b20fd1\", \"relation\": \"hasComponent\", \"source\": 200, \"target\": 524}, {\"key\": \"c318437aab91d92bfc058dc5321684be4441af494e303d92f7672b12b268cb408827f466cdadb570148c7d1ab13d7ad6d3123c2da93daf8c29480284242a37ef\", \"relation\": \"hasComponent\", \"source\": 201, \"target\": 368}, {\"key\": \"dbea3ac87f7fcd39ae1b23779dd72332812a661ad90f39d13fb1faf27e3dc4f7ace083651a85768823bad96d61394a0c11c888244e58348bcc45616d1f7b3141\", \"relation\": \"hasComponent\", \"source\": 201, \"target\": 521}, {\"key\": \"97c7ea09e6ff868a0e778dbc90a9163770b83cc67b189f398e4bf44d85572aad5f324dfc5e7a4fb907fcd389da90010e928896e01191ac65c997b2ee29861143\", \"relation\": \"hasComponent\", \"source\": 202, \"target\": 368}, {\"key\": \"72a6602a88ae8c2bf23dd0ac8ddbe319775f98e6817f9f0ecf2a11b1249581ba23284ba95502b6581e3fb16513a40b9b4631d6a39283f4530ca412b6c6013f93\", \"relation\": \"hasComponent\", \"source\": 202, \"target\": 524}, {\"key\": \"982c392e71b27b2a6d1847ed6b459f60837564b104f4a24453c95d914f3dacdbdfb5c3e3c67b8b836805da196d7a15a640d9f988956be495d65483b79a866696\", \"relation\": \"hasComponent\", \"source\": 203, \"target\": 369}, {\"key\": \"46d926c18c2fee8cbb913e5c69ff5d62e78a06c0f92b0a449e1e14e3a605df3d50dec201f1f1137d04bd7ca1bc36ca973839730b4d1ffc5db23ca61ed6d95bb4\", \"relation\": \"hasComponent\", \"source\": 203, \"target\": 439}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Second, FKBP51 interacted with the Argonaute proteins AGO1 and AGO2, which are known Hsp90 clients involved in small RNA biogenesis (Iwasaki et al., 2010)\", \"key\": \"dadaa58cb686223554e523187f8f8ab331a209cfd48fe9c760b6af147a1de468d455b231bdb132e2f56fc47689647b070f55c135c0cbd46c8712d81a1b7e8197\", \"line\": 154, \"relation\": \"directlyIncreases\", \"source\": 369, \"target\": 204}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Second, FKBP51 interacted with the Argonaute proteins AGO1 and AGO2, which are known Hsp90 clients involved in small RNA biogenesis (Iwasaki et al., 2010)\", \"key\": \"43dcdcd43007059566c95c445907990efef45c0b84c20dcb5538f4b57c021e27a5ec5dca0fa0e98677f9dd37397b9da611c2b4d55facd5378059c437d3b6f2c7\", \"line\": 155, \"relation\": \"directlyIncreases\", \"source\": 369, \"target\": 206}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Second, FKBP51 interacted with the Argonaute proteins AGO1 and AGO2, which are known Hsp90 clients involved in small RNA biogenesis (Iwasaki et al., 2010)\", \"key\": \"37f1671059599c9a8091f6f75e491ce7411a970b95b3fa9634fc5e01dd1a9e426f15f7e7252e24492e080e52eec407ac00ace62273534867d1e87977f270f5b9\", \"line\": 156, \"relation\": \"positiveCorrelation\", \"source\": 369, \"target\": 118}, {\"key\": \"58fffb4f35183865467eb0e23347c517d957ac081cd81bed12eff1e9c1aa603b4fd0de056e0d4e8eecbabe0c62b999b3e632dcddd354b0382db7025e17213770\", \"relation\": \"hasComponent\", \"source\": 204, \"target\": 369}, {\"key\": \"6bde51c6a8637bc99588f68b018faa1b8d69d306da5b7b1e56ad06c1dc45625da7f699f048508258ad07e8efe79d73510b0e6de8d430cfc0d13ef201210eecc7\", \"relation\": \"hasComponent\", \"source\": 204, \"target\": 599}, {\"key\": \"2e3a044cebfd08f449ec7c93373bf09a8d986c5f506ee44ae742bc06f29d139c81c011f4b7c40f65baaf0fddf3609b50e3d7af466bf2907efbc56c637ae03991\", \"relation\": \"hasComponent\", \"source\": 205, \"target\": 370}, {\"key\": \"58adf53a407e39371b89128fbc4c66f16612c3484a6134875f0c2b88a7970c1a07d8ae1c8298bf7982e67085ff59572c57614ff973bed6e2617fe501e698f699\", \"relation\": \"hasComponent\", \"source\": 205, \"target\": 439}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Second, FKBP51 interacted with the Argonaute proteins AGO1 and AGO2, which are known Hsp90 clients involved in small RNA biogenesis (Iwasaki et al., 2010)\", \"key\": \"c14cb88b5a27f6566fe898c015b1839de8b5fa80d9f099cc59ec294dc7b8c84c5301e1f6a994ef3bd1a0fdb19d6298902663a188c7581dede080b61a0c533ce7\", \"line\": 157, \"relation\": \"positiveCorrelation\", \"source\": 370, \"target\": 118}, {\"key\": \"56c388914de260c648421adebb2452fd1844fae63ee280ca632f76369ab268efaba2c615f8335fa7904445ef568696f5dc6aa343d4806e2a1134cc15a02b654c\", \"relation\": \"hasComponent\", \"source\": 206, \"target\": 370}, {\"key\": \"d55f086d5dc73e3f2f414b3e810b97fc88c8462eb808ef325310f9f90a5fa63457c1daaf39185f73ae8d6679c33a4c7044a085adfae5c3b817f66c154c11b991\", \"relation\": \"hasComponent\", \"source\": 206, \"target\": 599}, {\"key\": \"ea7e520695989e03343361ab6c77e9d323d9a604a0a757e8b3f8556cfb7969982e4676ef8f96f735baa7043cd02b41a980dcb24ccd4c2d66fc34fea7ca800d49\", \"relation\": \"hasComponent\", \"source\": 207, \"target\": 371}, {\"key\": \"9871b6cc825ba3c688285e90934726a87af943cdd605a49aba4514e6e1e73ee384604f7e68558f5794a95cde38dd7480a29285365312bd925096b0a11f2c6ae7\", \"relation\": \"hasComponent\", \"source\": 207, \"target\": 405}, {\"key\": \"e85da3fc820491c9d3c2f555e6875aa2ee9a8000ae9aff34719f6ccb33a3bb84bc52ef14f9e0ea4be1cfcdfc9bc229f05c178ca9870c3b485bd483ab39f5f84f\", \"relation\": \"hasComponent\", \"source\": 208, \"target\": 374}, {\"key\": \"c70c16748016a9678164d66c5d425aa7934dbc93603e2fb672abb418199e97ab5c3d9ac68423cf3055fed275c6cf8f258689e12a6cbe64bd1776d9931ef95301\", \"relation\": \"hasComponent\", \"source\": 208, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"162e368df74b1c1ac4e942a189729edc2bf43aad4fe9cf10dd159a145b3b24ebcf897cc9d89a203eb51e816a4b97335c3b4ad6fca65082fbc6e5906bfd26adbe\", \"line\": 168, \"relation\": \"association\", \"source\": 374, \"target\": 439}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"54106d4a2a9fe348379fd2199afc4ca6f504bdc21b908fb08ed3a9d6246262d1935542a15ed72976b7db5024b4f3abf49ac5ef0c3fbe54f6d935b35e9825e454\", \"line\": 169, \"relation\": \"association\", \"source\": 374, \"target\": 611}, {\"key\": \"6ea8fe080b8a1613698c29d5aa4055105194731698622a93fcb73af3c82b62ae52eec2161e52764c787bbf37b5a93972046131f1def81d4f22c834f5fdf09422\", \"relation\": \"hasComponent\", \"source\": 209, \"target\": 377}, {\"key\": \"58ddfa83b96df0bed59a9430d430d2d0e606f5652997641c9514c58a818666fd1b7b2e019a51a4d2c0017773e07a63e7d0fb8e65540447e0f336f0d5649afdac\", \"relation\": \"hasComponent\", \"source\": 209, \"target\": 446}, {\"key\": \"395f07125841e5be5c0d670a95f7057664cf07d9ac34034f9ed19450c74cba3a63d8a8cef10c7c139488da60f85591dfff506f2f82d1a675c5f8c2b246ab4d6f\", \"relation\": \"hasComponent\", \"source\": 210, \"target\": 377}, {\"key\": \"20844538b9ccebc31329be978dff0053f93709b8d0b07a5d5568d983e831b231e1486f04e96d60a722178322cbd626a5f3b3059275218cd1d4b6958913e7d2cd\", \"relation\": \"hasComponent\", \"source\": 210, \"target\": 454}, {\"key\": \"312dbaa3a0fcc5bb86731951641a78867ebff2ad8cf2240bc904776eb9d2f300f6615dfdd9ad0ea63cf15adecbfef70d2dc1a891dc8bb5a1bd6baea9ff2a4019\", \"relation\": \"hasComponent\", \"source\": 211, \"target\": 379}, {\"key\": \"da54cb79aef87e874a63d055a480f2b4193b8b74c809e4bb3a389550befa4d055f55d24d0a537c711f973912e07de6d67195b049ca7aaa2e65b31412ed543c31\", \"relation\": \"hasComponent\", \"source\": 211, \"target\": 405}, {\"key\": \"a9f7300aa8dbccc0132bb7ea1771a3e0856498d65e1f4044b186bbfcc7f6f3b6d38a3dbdab9d2cbc71f8c4073e609583b463a0c9de8a54b627836195d4c7179d\", \"relation\": \"hasComponent\", \"source\": 212, \"target\": 379}, {\"key\": \"b1930187e66876bbbef94f2027d0fe33bf1453f9d5715a981673569783f3f79aa7e65109a9c1aae328e0e8d0639872a4e557ae2e2dd44402668a733e6633de18\", \"relation\": \"hasComponent\", \"source\": 212, \"target\": 406}, {\"key\": \"2b6e3b74f2fb408dd7145839bed51788abf5032b31adc40d890e17a9c38a4c611a36e83af9138d86bf1eb7d828ea438c95501116096ddf01babefe042b077302\", \"relation\": \"hasComponent\", \"source\": 212, \"target\": 593}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"CDC37L1/Harc, a protein that is 62% similar to CDC37 (Figure S3A; Scholz et al., 2001), similarly interacted very strongly with Hsp90 and several of its cochaperones (Figures 2 and 3B)\", \"key\": \"0e7585a890227534fbe56fcf6be061dd9d40a368c65e3f1b307e69b525ddd5ac49971bb39429aa87f2f29c7dd1f24bd47526206f82b940f6e3ee4cec2c207130\", \"line\": 106, \"relation\": \"directlyIncreases\", \"source\": 406, \"target\": 254}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, CDC37L1 interacted with the bridging factor HOP, whereas CDC37 copurified with AHA1 (Figure 3B), but even more strikingly, CDC37L1 did not associate with any kinases in AP-MS (Figures 2 and 3B)\", \"key\": \"a34e3236c81b9b54ed820c88cb9f4172e650acc28fc88342e6875e014792e7bdc23112e0cf7efa3fae491cb77abde6f01507dd93d3452eee6a530ce453e01ebb\", \"line\": 111, \"relation\": \"directlyIncreases\", \"source\": 406, \"target\": 252}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"CDC37L1 lacks the very N terminus of CDC37, which is required for kinase interaction and the cellular function of CDC37 (Shao et al., 2003), and is able to mediate strong interaction with ARAF when fused to CDC37L1 (Figure S3B)\", \"key\": \"d21e474ec69413853f85f5a73c5a56106ecc6d3b7849e2f416c2703f8f134f90c3d40c0e134084297e363e94b73cae6c9332fead6960f5fd79702c085a723108\", \"line\": 118, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"increases\", \"source\": 593, \"target\": 405}, {\"key\": \"7dc9562047979af5752b17e3b79c960e9ec363952994ecb5bd2d426210300829bb68f57a9849e48ca0f2ee11c6b87ef686c74f4d69c14d387d84d52ad3d35835\", \"relation\": \"hasComponent\", \"source\": 213, \"target\": 379}, {\"key\": \"18d09f0589d4d6340eb2bf37b4a51e399aa3f842a4ffbc7804296ba9a7a02e062a4d7569c88d731ab66456577522293b5e1b948946b1837c3414a95071883f9a\", \"relation\": \"hasComponent\", \"source\": 213, \"target\": 439}, {\"key\": \"8be6acb4b0212c3e7320b5af95efc11b02ccddffeed2a5451d29c975d721982f392bfdb81b4af77dbc1f2574911ed4b0d19ed20daca8499fa17cb148e85a2cc6\", \"relation\": \"hasComponent\", \"source\": 216, \"target\": 388}, {\"key\": \"964565dda224a72e225501e67f702600f1939a4a2bae06e52bd96d5a6bb36d21cd7cad5a860dd25c485cd88399d6aeb6ab5ac04c760446dc54b5754a46fe6cc8\", \"relation\": \"hasComponent\", \"source\": 216, \"target\": 405}, {\"key\": \"a9ea4296b9e923d5e93ce0e2bcec91c754f599bc00a3dd0fa77ba99e7c4fa5118f6a4b14423659f48f6e34facd32cc3ce309f372fef1f349094b89f07ec22ded\", \"relation\": \"hasComponent\", \"source\": 217, \"target\": 388}, {\"key\": \"741f7d74b31c79dbca64804b79514db212ef092167e1dff5a4673eaf377bc5fe37f7f101b29f504b9fef015eaae4a24448288feadb3cb5038b2e15d2a7423d64\", \"relation\": \"hasComponent\", \"source\": 217, \"target\": 439}, {\"key\": \"7afcdebdabb926662fa07f6d2e4df9db32bcef071a0af5b4be3438168cb2361dd9130953d0a79f5b1d96086d9621f80b3e44bea272800cf326fdd778b8f36019\", \"relation\": \"hasComponent\", \"source\": 218, \"target\": 390}, {\"key\": \"c767ca2a551933ba23048cff5abc07e422e140923227bfde413ed29e83e9cbc39e19c67380c435c50f7a0abf9ad54b13565444ea9b4c4fe06aa8deb042db0228\", \"relation\": \"hasComponent\", \"source\": 218, \"target\": 454}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG1 interacted with the E3 ubiquitin ligase Listerin (LTN1), which is involved in ribosomal quality control (RQC) of stalled polypeptides (Bengtson and Joazeiro, 2010).\", \"key\": \"48b810be2b82f38d4d0692df7d0e07b1003cf72f5770a6b06e75677176f95562c2eadc7b3e09e9ebebad39151ebfbc29349008127f623cc2293c4173d1928c9a\", \"line\": 225, \"relation\": \"increases\", \"source\": 390, \"target\": 219}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG3 and BAG4 showed a strong association only with the small heat shock protein Hsp27 (Figure 5F) and the mRNA decapping complex member DCP1B, respectively (Figure 5G), whereas BAG1 interacted with several proteasome subunits (Figure S4C)\", \"key\": \"c8794a56fed4622428ffb662665984be51f2003585d4fe065897e9b4505bf4ca30acaddbdb3c6bb56fd8081daa8bd61d0fd672a62ad3225b53023d6e75bb174e\", \"line\": 349, \"relation\": \"directlyIncreases\", \"source\": 390, \"target\": 220}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG3 and BAG4 showed a strong association only with the small heat shock protein Hsp27 (Figure 5F) and the mRNA decapping complex member DCP1B, respectively (Figure 5G), whereas BAG1 interacted with several proteasome subunits (Figure S4C)\", \"key\": \"30a0686cbb93184597ec8a15718e562e46f27e938656c85f4feb7af0922cbc81cb0b8a640c7dd9bd578d2984d3f188b8dc7bd0d9d7322eff618a3c8c72b8cf21\", \"line\": 350, \"relation\": \"directlyIncreases\", \"source\": 390, \"target\": 221}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG3 and BAG4 showed a strong association only with the small heat shock protein Hsp27 (Figure 5F) and the mRNA decapping complex member DCP1B, respectively (Figure 5G), whereas BAG1 interacted with several proteasome subunits (Figure S4C)\", \"key\": \"943aaf4b8f94dd0f7be3f2cc88c564e7a38a983773bb0731262f6e912bd8f78ac823f97da1399cc1397f77f428cec94ecb4baec68328560199ae583ec05dd190\", \"line\": 351, \"relation\": \"directlyIncreases\", \"source\": 390, \"target\": 222}, {\"key\": \"d166c6df183829eafca0bf6fbdab7f07dee40b1a8e8438eac7d5193253b444a0c8569d02d541df8c51f8e4e5f6470225aa882fcdafa18bb9f83a00b232db0fd6\", \"relation\": \"hasComponent\", \"source\": 219, \"target\": 390}, {\"key\": \"d448afff72e57098162d45e1c50e8f1207d4a4eb83a5326a6b52a898f961ed63d83793134c039ed88e6cff8198f6e586a6005e69c144dc4656b6c5ff1ccbb002\", \"relation\": \"hasComponent\", \"source\": 219, \"target\": 467}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG1 interacted with the E3 ubiquitin ligase Listerin (LTN1), which is involved in ribosomal quality control (RQC) of stalled polypeptides (Bengtson and Joazeiro, 2010).\", \"key\": \"aae1c74eddde72a7341a1b62c8de06ea0766e16e1e30bece026e1004a74fa7ab9da253596955fc89416ddf3a78926f8839724aa5e0bc09d929417fb9f3d942e1\", \"line\": 226, \"relation\": \"association\", \"source\": 467, \"target\": 108}, {\"key\": \"eefe61ed14f5d8b96a8c34401c4c90e6e7f7c929145429969072c2dba9b8d07564b299145186b7e1f86a41777c32635e80e17367c416ade36d420fe1a2ec6bad\", \"relation\": \"hasComponent\", \"source\": 220, \"target\": 390}, {\"key\": \"f1ca3c785b24b88b84f4c3cef86d56307634a968b495e81c561ae48e8837afbb0f0a1e8e31bc82f6cb4eeafa1655abfc9b6f2b1c8394ff38b4dc6c8a63fb6b82\", \"relation\": \"hasComponent\", \"source\": 220, \"target\": 516}, {\"key\": \"69ebe0fa5485f12f8ee5a5589d559947c07830cc9dd2b5d2677e74d0869e85f94b4c3eb362f3add7ac17e67f36ca6352580a26dcd95c87705c5e0e91196715e2\", \"relation\": \"hasComponent\", \"source\": 221, \"target\": 390}, {\"key\": \"7f2de8f5084296ee08b843ddaace6688e4b3c78dac7943d9424421a7cb97d8400a5ffd1e9eadf61c4f2aafc3628ca9d9ae84c7e465f4042fbcdccb0b2b604e72\", \"relation\": \"hasComponent\", \"source\": 221, \"target\": 520}, {\"key\": \"48111e8ba0fce9bd7fcce3cfffc3f8bb1f69cd444853e41c0bdec7c0d7a1acdb9f37d774551b51790bae8034d1b9f70ed3251041fff11bd08be871cb793c4d3b\", \"relation\": \"hasComponent\", \"source\": 222, \"target\": 390}, {\"key\": \"a11a1bd754092accaaa7f88faab877fea674aa2e0608d9327a0f4131838501223428a08e2ea3a4730024f81b7594f0c4ee82a4945c3724a7f19e26f04509bd17\", \"relation\": \"hasComponent\", \"source\": 222, \"target\": 523}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"7bf27f983d19452d5e59056eb6e28e7d4ef0002b2387ecbecf76ed0240d900a005679f7c104c2923f70c1cbe3f8a4237f617a8863361ef4411d81c9ae7b19dfc\", \"line\": 356, \"relation\": \"directlyIncreases\", \"source\": 523, \"target\": 222}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"1bfc22c39e413da57a8fbe2ab7c09150bd23c7299a0144305661013806ce3c49ed3e87e72f33d1dadbda16fccaa82ff0bd45b92bb373afb362b6a7e0d280edd9\", \"line\": 357, \"relation\": \"directlyIncreases\", \"source\": 523, \"target\": 224}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"8e418e43fd5e139196951a8e56b46123dc1ceb0af616f1603f9a5a8df3f57b1a87a2f939cf89697d0f024c51232e7ffa8bac36cc19d9945ad9acc964ac6b84e1\", \"line\": 358, \"relation\": \"directlyIncreases\", \"source\": 523, \"target\": 230}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"ffd9d1ce768852aff6909e46bbc938e1d31167379fd5e9729f104cab1d2d827302546704d97050e5367773a9e7dd82a719b8c9aa0e6f5d1d892fa1c21ed0da0c\", \"line\": 359, \"relation\": \"directlyIncreases\", \"source\": 523, \"target\": 241}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"RPN1 interacted strongly with four BAG proteins and with the ubiquitin ligase CHIP. This was in contrast to the three other subunits (RPN10, RPN13, and RPT2) that primarily interacted with other proteasome subunits (Figures 5I, 5J, and S4E)\", \"key\": \"19bd31515ab9f96462d9e6e877775a795639db3b4f0b597d754216764fa547e249509711501f5bf679001ce9b2321475b5fced4bf43aafc510b6d5d57240cfd3\", \"line\": 360, \"relation\": \"directlyIncreases\", \"source\": 523, \"target\": 329}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Although all four subunits are part of the base of the proteasome regulatory particle (Lander et al., 2012), RPN1 clustered together with Hsp70 rather than with the other proteasome subunits (Figure 5A)\", \"key\": \"ae83bbb91c674ff42ed19f997cc969137a5efc6774dbfcda3f0dd11bee4ae4f6f3833d4492cc56ec00ce09f2fe7ca229af47a05f40c52384a4389c7063cc4ba1\", \"line\": 377, \"relation\": \"directlyIncreases\", \"source\": 523, \"target\": 330}, {\"key\": \"2ca88e4082ea9525a2940cf24c1f882439497bfb298557d314fd919ed736bd1c4d519816d40fdb908b25996d16c2d4a8932984f64ca11215ff66411081dd2d50\", \"relation\": \"hasComponent\", \"source\": 223, \"target\": 391}, {\"key\": \"df733dee8587b3add2bf93c612ce3f66ec974662aa24875e8d6ed10e0968243331d0bb588b3caaeb05dfd001ec5923f084c4813ed651ca9a2081d844dab5dfc0\", \"relation\": \"hasComponent\", \"source\": 223, \"target\": 454}, {\"key\": \"a70f5a49a56156339fc60f07abcd15e0ad5b057eb1b487bbccabbb4234700fdf6f5205bd42ae5aa27e25520717ed06e0472df94bb3a5dccd4efd950116da2ab9\", \"relation\": \"hasComponent\", \"source\": 223, \"target\": 554}, {\"key\": \"a614bbd3a29446c42d9fb37776217f4a004bf50daaeaf737f0fcf1e80f59ccdc67b0281f09cc80c4d34eba76beca0beacbf30b1ba48e8880b87d1de49b933873\", \"relation\": \"hasComponent\", \"source\": 223, \"target\": 598}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, Hsp70 and Hsp90 machineries formed distinct clusters: Hsp70 clustered together with Hsc70, their nucleotide-exchange factor BAG2, and the E3 ligase CHIP (Figure 5A, orange cluster), whereas Hsp90 and many of its cochaperones formed a separate group (Figure 5A, blue cluster)\", \"key\": \"fa834ed59d03ae6c6e641258c8e8e0a4ded923de1d3dc4c9d6836ad9d0db6f6a1d3de5ce8ebee8f0858a6926175fd3197dfa2d1acf721672ed954d5a928bd780\", \"line\": 314, \"relation\": \"directlyIncreases\", \"source\": 598, \"target\": 223}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Hsp90beta interacted particularly strongly with kinases (Figure 5B, filled blue circles), whereas the transcription factors p53 and HSF1 were among the most Hsp70-biased interactors (Figure 5B,green circles)\", \"key\": \"fcc489f951638c123ba051909fa0ce502f62bce38076f5301b42f1d8adac872be9f1112a8d139fe76e8a83eb63d68097d477ee856440192db26aaa11d29882fc\", \"line\": 328, \"relation\": \"directlyIncreases\", \"source\": 598, \"target\": 277}, {\"key\": \"30e8f8fe7d42fc2189024b856aa04d1af7b63341e45408027b2cd6fc23b623ef073c4d65eae0d53e04174d5856938744bd0227d89443a327da57cc9bedd1a5ca\", \"relation\": \"hasComponent\", \"source\": 224, \"target\": 391}, {\"key\": \"3e5c6e990a4231292232a831f107a70d906a96c1cab5089e797725df4c6b04cdc1d8598139360d1478b2c91a4641288b9dad39d1d5fe5333def1052a521c986f\", \"relation\": \"hasComponent\", \"source\": 224, \"target\": 523}, {\"key\": \"03e74f0d75f6819eeee4809c91fe97e7c1e5e257706c0dd7cf368721fc6a3ce4ec1b1d80428bb5f92c60e5a4df4ea32b07bb4ffbe822b41436f47ccc508941f0\", \"relation\": \"hasComponent\", \"source\": 225, \"target\": 392}, {\"key\": \"ac2dd155c8d67cf8eb757dbcc0b2fa0b283677f17a0c52e4ca2eca29ef008fbe0be93b4691b0e3ee55df645b6744c9b7b64f9551229a2874f38ec865b01178f1\", \"relation\": \"hasComponent\", \"source\": 225, \"target\": 417}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"As previously reported (Fuchs et al., 2010), BAG3 associated with the small heat shock proteins Hsp22/HSPB8 and Hsp27/HSPB1. In addition, we detected a robust interaction with HSF1, the master regulator of the heat-shock response (Figure 3E)\", \"key\": \"db1ddbb753aedbf46c669b615bb2fc4e135f802683398eb43e5309b44de51510daed3eea1c81c514f1c0ae26d67c2147ca747f2d249466fd6a9bd68ab24f2a47\", \"line\": 232, \"relation\": \"increases\", \"source\": 392, \"target\": 229}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"As previously reported (Fuchs et al., 2010), BAG3 associated with the small heat shock proteins Hsp22/HSPB8 and Hsp27/HSPB1. In addition, we detected a robust interaction with HSF1, the master regulator of the heat-shock response (Figure 3E)\", \"key\": \"795987fc1feeb7439b031a9d12d821d60b1fa2eed7dcb32d951bdcd1ca7328bd3867ac341e3eb87ff997556ad9c7dd2e4d4eb377f68b9af74cad7b68cc0722b1\", \"line\": 233, \"relation\": \"increases\", \"source\": 392, \"target\": 228}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG3 and BAG4 showed a strong association only with the small heat shock protein Hsp27 (Figure 5F) and the mRNA decapping complex member DCP1B, respectively (Figure 5G), whereas BAG1 interacted with several proteasome subunits (Figure S4C)\", \"key\": \"36b88f4414be9b5154f9874823a31c8c7b9fbabd9ce33418418ab9f4a026853cd5611a888a16271afe19335dfd040764024e5b9c6fbb99ea7e5ef4ce3658f0e1\", \"line\": 345, \"relation\": \"directlyIncreases\", \"source\": 392, \"target\": 228}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"As previously reported (Fuchs et al., 2010), BAG3 associated with the small heat shock proteins Hsp22/HSPB8 and Hsp27/HSPB1. In addition, we detected a robust interaction with HSF1, the master regulator of the heat-shock response (Figure 3E)\", \"key\": \"5264ad30223856f4f7a4bed38ae860d8565385be00d4681ad9f2b77d837c013c16a9ed17cfd78b65e9123e0e0e2cdca3182ae47b948f743f80d9235ff1016b75\", \"line\": 234, \"relation\": \"increases\", \"source\": 392, \"target\": 226}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG3 and BAG4 showed a strong association only with the small heat shock protein Hsp27 (Figure 5F) and the mRNA decapping complex member DCP1B, respectively (Figure 5G), whereas BAG1 interacted with several proteasome subunits (Figure S4C)\", \"key\": \"943586938de59f2bce7a9422129a49415bee5a660df41b3f3a098a2f67fd2be9decc897a0c5e54d53cd5718b8988ca354523eaa902601f86f1a010eb775f9cb4\", \"line\": 346, \"relation\": \"directlyIncreases\", \"source\": 392, \"target\": 225}, {\"key\": \"83d7e483183128ed8a4f55ef91e05bf340ad49c0f0404f4342038df21e831924dc8fa0c18ad07def261ec710c4aaef7b8896b8ae95e2c647e08c741694437187\", \"relation\": \"hasComponent\", \"source\": 226, \"target\": 392}, {\"key\": \"60d50679383b3d14d289885970c49ebe949962674a1a15ab62a3fed41b4b0839264c5eccaaf2a6869247f2cffeada7f6c5f83594c40373ad0ec13a2bdd430119\", \"relation\": \"hasComponent\", \"source\": 226, \"target\": 444}, {\"key\": \"aae80be0f42e1da05d09eac7cd9ecca1b93f62deb40957f0e9c45177fb960083e1b024c9b6eb95bc11d8c6fce0654924a6e740f28873c27e6b75310584b6edf6\", \"relation\": \"hasComponent\", \"source\": 227, \"target\": 392}, {\"key\": \"244e20f60ceead63d689caba68428c27ed56268baf6ed5b24364d48a38cd894c5933749bb4ab76da250356fd30c129580f0871631f831166499fa928da012472\", \"relation\": \"hasComponent\", \"source\": 227, \"target\": 454}, {\"key\": \"d7126bd945169d1ea1f1876194c882691d3c4a9706b846322096c36c5e1be3eceb0f95bd5800197faa150adf7456c61163e604c18ba90ff191b05b6d52a649b6\", \"relation\": \"hasComponent\", \"source\": 228, \"target\": 392}, {\"key\": \"656b80c0fea410ca8d2d5eb37cd80df71e3ed085b6d4ec86944d31fc90f71a2e3344f2fb94574437fa4e69bd1c18d483d8d69294d235e456c23f9d8d386f33d8\", \"relation\": \"hasComponent\", \"source\": 228, \"target\": 455}, {\"key\": \"458b24ed496ecef03efc2dd51320fbbcf91ce91b08eabdd5b96c8495066447c15b569191a31ee9e703e0f606d060f5caa97d5e1e9a602790e651445c82ea9342\", \"relation\": \"hasComponent\", \"source\": 229, \"target\": 392}, {\"key\": \"eef50eb6a3ae7ee66fbd36b1fc1a7ca3c91ee586b5f9fd1be2c98c4c6acf7e5124734adf75afb5ab13f6722c7e4d93280601ffddfbd3db6bb56fabd45f7de2cc\", \"relation\": \"hasComponent\", \"source\": 229, \"target\": 456}, {\"key\": \"e62abf58ddaee37596fa552d2e2d510e51fe4056a4ca754ea0295cf2c5fa8e0b854370abaeab5a9c40bb5892a87bacf9af47608768c8e34966346f717985a2d1\", \"relation\": \"hasComponent\", \"source\": 230, \"target\": 392}, {\"key\": \"767b8f75ace1cd6a7a588c8ff23ebe1074643114753a330f95179c9324474ffdd60e6f5bced3431896166846f54b9da2e76ccc86b7ba79d3b5a648b4449b93fb\", \"relation\": \"hasComponent\", \"source\": 230, \"target\": 523}, {\"key\": \"0276ae3ecb6c4b63c9cbcd03cf88f021b10ace50d95f64cd9bbac4cc0426361c6a811e4063da41e3390daa5d97f3c4423957a6a1633809a19eb8e15ef0f8be58\", \"relation\": \"hasComponent\", \"source\": 231, \"target\": 393}, {\"key\": \"b0f8b6d5fbea2032946b8e9caa2d158d4a41f1f0d8938756a36e0aabb14ade9b00d41ba2b95e4478fe67ce8cc0c3ba91a9d38d9ec8932f8f442f022d2e0492da\", \"relation\": \"hasComponent\", \"source\": 231, \"target\": 416}, {\"key\": \"4b5df9eb4cbd3b9a322dfc2587b4d3dc661463492bfb7ba2a044bd026b543a4e9db1490eaf1e2aaf763efc97da60c1a84883e3d7f1590b8cf7793a9f61e81858\", \"relation\": \"hasVariant\", \"source\": 393, \"target\": 394}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG4, in contrast, interacted with three central components of the These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007): DCP1A, EDC3, and DDX6 (Figure 3E)\", \"key\": \"343a0bd33f007980a4626694dc468fa6610bf6034a3e334c110310690dc7f23787965bd1156e15f5de06bebc0ccc9e97cc1dfd37f7f067bccb0a3e1ac77ea6de\", \"line\": 244, \"relation\": \"increases\", \"source\": 393, \"target\": 231}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG4, in contrast, interacted with three central components of the These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007): DCP1A, EDC3, and DDX6 (Figure 3E)\", \"key\": \"d3464da7e450720ebf6bfea56c2fd7032250fcfb8811e34e1fe48ac855ef36143d64678c9d216249ad81a3872d1d3a6b3cf5e2c5ad710791964fb12b90a0d391\", \"line\": 245, \"relation\": \"increases\", \"source\": 393, \"target\": 234}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG4, in contrast, interacted with three central components of the These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007): DCP1A, EDC3, and DDX6 (Figure 3E)\", \"key\": \"9f5ba7cd55af970e98837715eb201adaa29acc672cff2a2f2412f0143860cc9926186b310f089169edbd6dc2ae78ef49e21b814deeed6e29d012b1d20f3fa326\", \"line\": 246, \"relation\": \"increases\", \"source\": 393, \"target\": 233}, {\"annotations\": {\"CellLine\": {\"HeLa cell\": true}}, \"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Thus, BAG4 overexpression disrupted P body organization\", \"key\": \"9b4c61f47c6f06ebf439f6e63618ec51cfc00cb3d96113dabadb191e3e8863dfc7bacb21a8c3abd3012aa9f0d64377fa358a7f7ef172ca5f1034eae4b28c3df4\", \"line\": 260, \"relation\": \"negativeCorrelation\", \"source\": 393, \"target\": 150}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG3 and BAG4 showed a strong association only with the small heat shock protein Hsp27 (Figure 5F) and the mRNA decapping complex member DCP1B, respectively (Figure 5G), whereas BAG1 interacted with several proteasome subunits (Figure S4C)\", \"key\": \"d860a191d96acd84897a80d2ece03646aa5ade96aa003679795ffc5ac6a4fa90d636d59a4b73ca1aa0b2df9cab73d48bb6c2f1e270e863a178199db839e98fc0\", \"line\": 347, \"relation\": \"directlyIncreases\", \"source\": 393, \"target\": 236}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG3 and BAG4 showed a strong association only with the small heat shock protein Hsp27 (Figure 5F) and the mRNA decapping complex member DCP1B, respectively (Figure 5G), whereas BAG1 interacted with several proteasome subunits (Figure S4C)\", \"key\": \"f36145a3236169bf5d8b0016e78756669a05e239a1956fda6c53af3fd981f4c4b1d3e68dc6686268951759df05348c01be16cb18b59e5e49b577487c300f6e4e\", \"line\": 348, \"relation\": \"directlyIncreases\", \"source\": 393, \"target\": 232}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"4af64190da0a1a2f79396d981f0a138862e27221d8c0371ea652ef15410aedd5d5becf10b869c99da26d85b8880e5e048b55cc3469e98b6be005b1ed8112ad06\", \"line\": 251, \"relation\": \"association\", \"source\": 416, \"target\": 84}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"f08d9c781303512c58eb717dc0c21e9292e10bd147dd08137adc8b35b6213e45e64171ca09b0d2fd9de8e3101fcbf6df785a6b60b53b373ab5ea0b4d50a7ae87\", \"line\": 252, \"relation\": \"association\", \"source\": 416, \"target\": 90}, {\"key\": \"bb1cdda40149eec1a3d36726706738b7e73dc98eeb0eb75787b6d2680d14da185b25b1a59ff4070902afbe6a2990bad050c67dc1151bd990d333e6caa512a31f\", \"relation\": \"hasComponent\", \"source\": 232, \"target\": 393}, {\"key\": \"66df32d7b12591bce18731cb06db585704917cf8c6f1b5bee86dfebe215c8b682deeb6c35b10fff300943da359f58b5123dbdec51f9e326440fae8ae149c1d7b\", \"relation\": \"hasComponent\", \"source\": 232, \"target\": 417}, {\"key\": \"985486057bcbc01a196b19691ca2bda22d810acd2aa579e473037d033f9effb10170486b9ef51e5ff19c1b9495bea9ce0e9e7b0fa60001743a57c564007a51b7\", \"relation\": \"hasComponent\", \"source\": 233, \"target\": 393}, {\"key\": \"f50448bf38dcd8c1084b4fb913107da6be31185893b91667a5a655b72db1f84650596565e460c37f3f93a3b0f3f3ff17ea765dba3339c02526ec4df7f4bcc8ac\", \"relation\": \"hasComponent\", \"source\": 233, \"target\": 419}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"0899a9249ec291f657ef19912b5da40eaf4266beac885dc732e699c30a9cf6adb30edb7e92c56374ce536fc653bd371e4c9e7f7bfe391ff157004c1633cf0910\", \"line\": 255, \"relation\": \"association\", \"source\": 419, \"target\": 84}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"57a3c1f41cb8a6405d8b55fd3f7869d77d379993c6d907fdd97e5c780332006bf13de5624453cece8f4cd883aa51693d01f2d0f87f4e2ba982f1d3055e12048d\", \"line\": 256, \"relation\": \"association\", \"source\": 419, \"target\": 90}, {\"key\": \"c4df96de599cd49bba60727e808dc5e89e83811434b7ce62f4415a73fa8082fa97180599bd456432af295bf96f067b94eba2210bd2a78edf54ced7bf12507b0e\", \"relation\": \"hasComponent\", \"source\": 234, \"target\": 393}, {\"key\": \"d217ed3dba870cc6d32f889d1ada160599489ae61324d8907bb27b6423ded7b6d8714647f32bbbcf40d22126ace2d0cadf4406845de193312b40cd14067229be\", \"relation\": \"hasComponent\", \"source\": 234, \"target\": 426}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"9d824de181323ba1e67430fc1fe8acf3af00c2e20ec912d6a67189388d0c51b85e33fdfc9a5434472607853789da1dca82d5d1c360cb11e86bfa553c2cdd378a\", \"line\": 253, \"relation\": \"association\", \"source\": 426, \"target\": 84}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These three proteins localize to cytoplasmic structures known as processing bodies, or P bodies, which are involved in mRNA decapping, degradation, and translational silencing (Eulalio et al., 2007)\", \"key\": \"4aa35fba3f01d10cacdf924589e8b4ab870d498ffe96ef5ce3eac196b6b139f2ce246dd11f8fc16add30d99bbe81f41e9e80b4ed66f772a807a571c9206681f3\", \"line\": 254, \"relation\": \"association\", \"source\": 426, \"target\": 90}, {\"key\": \"0eb5c090c4b6672b013e8f6153d793d54eea7f993fcb122545b19c097ca4aece93cf675c0a89fefaec73683787d51a9561befb9ba8e665254cae6fb41c975283\", \"relation\": \"hasComponent\", \"source\": 235, \"target\": 393}, {\"key\": \"bfacfefa993bd7ef35fd70bd445febf9c7de67535456a8669ecaa57f322c6106f6fd776d549b6d62986b076099514ce3a41619fcf5826809a189d78a97e4ff93\", \"relation\": \"hasComponent\", \"source\": 235, \"target\": 454}, {\"key\": \"2cd97f048c5f2a9f2e0255d3d88d89f7b394322d7436a859d67952a0d6ce75f5580ae1617e9eec08dcea195463b9abe721b84002e811ce0e4de37eb7e1aa2901\", \"relation\": \"hasComponent\", \"source\": 236, \"target\": 393}, {\"key\": \"3b8dfb7edd3cd8c4f2bbab11b72cfd39bdf6cd3bd0ea324e858aa997b2a18722a3f7e41ba01a5f5b6e2c3d690a211e00d9ab03d01575c312c6107a9c2079d07b\", \"relation\": \"hasComponent\", \"source\": 236, \"target\": 455}, {\"key\": \"266164e4ad41b44ead16b0a74732397e75e7bb6cc2ba78efe7bc7eb38bf8ff7ba3b960ee6d4becf15376d082a840fba74a64200f20ceec5820583efac40765bc\", \"relation\": \"hasComponent\", \"source\": 237, \"target\": 394}, {\"key\": \"f07d56db9ed0e2e039d371439094e620b2a495995588030d889ea94a7965548c3364d394756f2b6a4ebc844a3509bd4426e0b1e9851c90539b7bd7430cc3ac3d\", \"relation\": \"hasComponent\", \"source\": 237, \"target\": 598}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"We introduced a point mutation in the BAG domain of BAG4 (D424A) that disrupts its association with Hsp70 (Briknarova et al., 2002; Figure S3G)\", \"key\": \"1b7b57070d9c0d4d789ed32b35a071c88f9752d5172ca220360aef3c0e371f96aa7044bff8b6ee7db44eedb28fc588b26a99cdef226dcd801c792b85e254327f\", \"line\": 265, \"relation\": \"decreases\", \"source\": 394, \"target\": 237}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"However, mutant BAG4 still localized to P bodies and disrupted P body organization at high expression levels (Figure S3H).\", \"key\": \"d6e17133d28d20e314bda6d7f7c4d214612e4b73725cb5fbb5485013e7b0016a343570008415f97b12ed20796e90e09965fc748d7bdffa9a5021dfceadc1827f\", \"line\": 269, \"relation\": \"association\", \"source\": 394, \"target\": 150}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"However, mutant BAG4 still localized to P bodies and disrupted P body organization at high expression levels (Figure S3H).\", \"key\": \"ab36efc1df9051671d2a7f90a7d6c196e9157b19bb7ad470a733c731c0fe2004dc308d9c1413a666eff2fd6e0bcfeee0f56c60d83d6fedb2a99f7e48f5f4c1ec\", \"line\": 270, \"relation\": \"negativeCorrelation\", \"source\": 394, \"target\": 150}, {\"key\": \"423d238cc9d15c32df047d5a3d448393934c8be8c462254ed8628d372c7751b2c928d81fe106f6a9009533cc7c7e65af2d7070cf383dfb9b689513d5cd2ffde6\", \"relation\": \"hasComponent\", \"source\": 238, \"target\": 395}, {\"key\": \"54197a5eb21ca8c68baae5781af4f191a3626e8e136e758d50644aebc21ac2887e27e21a94366520913c141ab5b3ac33691cf67c8e884969799d8bb1e154a53b\", \"relation\": \"hasComponent\", \"source\": 238, \"target\": 454}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG5 purification revealed the spindle checkpoint components Mad1/ MAD1L1 and Mad2/MAD2L1 as the most prominent interactors (Schuyler et al., 2012).\", \"key\": \"4fa8de9e911a2e09a80ef22a29ac9e24ba2ba141881d302ce29545df5a2abade5be3d43cf920ac1805a5d6641a1bff9f3c5582c747175dba2009a0d3aa41111d\", \"line\": 238, \"relation\": \"increases\", \"source\": 395, \"target\": 239}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG5 purification revealed the spindle checkpoint components Mad1/ MAD1L1 and Mad2/MAD2L1 as the most prominent interactors (Schuyler et al., 2012).\", \"key\": \"97d30b4977b336999920ec55713d012855073bfc283a3dc26dff13040f9f5f0bb458c979d94d2949d9f497b4ac34d953584effb897741be217bc34a90365b351\", \"line\": 239, \"relation\": \"increases\", \"source\": 395, \"target\": 240}, {\"key\": \"1bd388347a805e8db9eb072f2ba70b1e94aef6c100e8a4152f556c3e1d99cc5e39d55abe8697174138b93d66bd2762c091ea623c93767ac9757ab7b1f3455cc9\", \"relation\": \"hasComponent\", \"source\": 239, \"target\": 395}, {\"key\": \"88c29f19d498f4144589d2163f63ce19a01099b9ee7c4a40859ea567316ffa3937e49da2923f7be0747451da19c7dcf998f5ef976d117727795e31ff00a460cb\", \"relation\": \"hasComponent\", \"source\": 239, \"target\": 468}, {\"key\": \"bd76295273f5f2901d405732523dccfc64cd7edac289856ce51e23626150b87253e26d22af184e912cf90ec7f09a7f37f215a70c14cee2a9a4a00c713126dc3e\", \"relation\": \"hasComponent\", \"source\": 240, \"target\": 395}, {\"key\": \"4b7db369feeda9df04bc487ca4220b34b60a686b238c542a5ce9fed784167f5f245d28a5999ba236f8ddade71df2f0458ea10e2eb813b6a4af03d5aafe0915fd\", \"relation\": \"hasComponent\", \"source\": 240, \"target\": 469}, {\"key\": \"c1a984a7661614354f74bfcf00bd51cf1998ec255d7670140e86ddddf546be750f9dbcecc2d6224a287a6f5925ae3fe83413ba0f3a8dde6b1b0bd82e7fc66ed0\", \"relation\": \"hasComponent\", \"source\": 241, \"target\": 395}, {\"key\": \"b59366a1df5fbc76a618ccf790e624d2cd69ea09ca4e4dd36dfd602d73f1c6721001e43a507e318b8f0851e14c2dc8cd355178f64309c52552f93dc7b0786407\", \"relation\": \"hasComponent\", \"source\": 241, \"target\": 523}, {\"key\": \"cae1eac43a31c816c2be0be8e277ab33562c9a9e9d0832738a53d5d6f316b39e99a16df9215801d0f1bd9b2f21af92b7109848fa1b2681a845cc4c58d77dcac7\", \"relation\": \"hasComponent\", \"source\": 244, \"target\": 405}, {\"key\": \"848ddbf55333d7108251169dacbade9867ec8b5324531f2088427f824665d8f670c62903ffe2b0f762a65301d07cf7c90ae25d6eddb0538d44d57c7cafeb8652\", \"relation\": \"hasComponent\", \"source\": 244, \"target\": 407}, {\"key\": \"d29c311bf308b34c0b6233b63abbb29aa91b1d3038308545baef17841aa09e6b1e02495552bed6df9a76c516ee5698156cb2edd2feed73c9298dd47a04028cbc\", \"relation\": \"hasComponent\", \"source\": 245, \"target\": 405}, {\"key\": \"57d48a7cb940cb130581a7df843ea97a41a43cff84b4006822285612cc960c216181514a84bd7bcb0de0926a0dfee873e9bd160dfaf2dfe4890edfe4be38dfa1\", \"relation\": \"hasComponent\", \"source\": 245, \"target\": 408}, {\"key\": \"77486f8b1ba09a0c5a5f4ef018fdf958b52507ebc63ad7b4c7f706494c3327f27c9b22978096bb45ec505dc90efa0d1877d6b44a714e8dcb00d97e63cfd101fb\", \"relation\": \"hasComponent\", \"source\": 246, \"target\": 405}, {\"key\": \"a25e0c2692831ab6dc898617efb53b3b6e22f1a97be49231a01493f68a98a808d0ee825e9d3c854856179bd605427d73552a23a3ac02a8669690b8c35b12757c\", \"relation\": \"hasComponent\", \"source\": 246, \"target\": 409}, {\"key\": \"2fad30829bdcc37e60ff2549ebf0a4c81fde6b03873c5b5d3fd3b097b3480234241cd4bc3e70fc4e89c761b89d44418c2eb48d1ea72a951c73fa1fc83a3a123e\", \"relation\": \"hasComponent\", \"source\": 247, \"target\": 405}, {\"key\": \"f3eb704fcb460a79e294bc34f0c2ef002924622c9188690a11f9a02e85624d0c5e781975cdde3b5ab3147f0a4ce34208c527a0d6cae61907f6d68bb618ef31a0\", \"relation\": \"hasComponent\", \"source\": 247, \"target\": 413}, {\"key\": \"5e75a19f3db3822af9017b28cf52dc4c1f0a96087e2e62d7e26d1351d20de9e5cd1ae5c3da11abd19eaf34c64915ef5c2b3ac9d56746f3fe8fb66df8a3655c17\", \"relation\": \"hasComponent\", \"source\": 248, \"target\": 405}, {\"key\": \"8af650da9c0a5092972ec69bb6e23906f28b1f9656747bc2494a971c6ca834a32825bb390d08d8c39f62ac21c87f032b7638421c739aff51b98905603f26a245\", \"relation\": \"hasComponent\", \"source\": 248, \"target\": 437}, {\"key\": \"ad991130db7452de9b5e92808e6ee9429d9a4589b3886d83c03e334c5e20c7e2504acde6fdcbf274b0f90a3166ee8dae45d22545d61df66766d248836c014152\", \"relation\": \"hasComponent\", \"source\": 249, \"target\": 405}, {\"key\": \"92bbccaae006a01a9b86d1b86ed1102d94db5d6c890f57bee4a3874437905bd43e998cc8c95bc40922d1d6e40e73777c1cfb3883f97cb39aa06d67b10c22ac8c\", \"relation\": \"hasComponent\", \"source\": 249, \"target\": 464}, {\"key\": \"6f2f6dee0dcc8f82bb12e705bce2f8b298661f9bdab94d3e6991b3ffbeedd5d944e6b4a7ced2c166d8c95671763b480a9b487ae51af182135dffd412c0679456\", \"relation\": \"hasComponent\", \"source\": 250, \"target\": 405}, {\"key\": \"086599df3fa58cde56a9781e62f9157923fc0ca620bf13ebcdcc8e437116ed06b59d7d22e9f5a2d4689a19d27a963be779b4054df25a873a7f6de9403eb84601\", \"relation\": \"hasComponent\", \"source\": 250, \"target\": 528}, {\"key\": \"a5ad29f1fe6bb406cc2c3251f1df33c816844b5deec6d1c3c2e415b62cd2ff0fc907abc027e48ecb45a86afca01ac9f6c43ca3e1415cfda3bf0f49d9bb44c707\", \"relation\": \"hasComponent\", \"source\": 251, \"target\": 405}, {\"key\": \"f5c7a07bc41379c2e5d5589bb25ea3ecd76c1a6bc38bf3696d895d856f6b2578d48e58dc2b1986f89926302cb0ac4724ee8e484d9d56ecd3542aa60224d10d64\", \"relation\": \"hasComponent\", \"source\": 251, \"target\": 599}, {\"key\": \"3e11c7dd4dd7370c0ac5365a1f9aac57bc9aa4b0fa2ceec5fda0c4d27c6d0758ee9f4cddd26538b42bac7fab320656085fb41b206764286ac67b560b287c5bf7\", \"relation\": \"hasComponent\", \"source\": 252, \"target\": 406}, {\"key\": \"9a3ef3728747b327eb3d66d22aa8f827f1a1ba968cbda88237c756926d7867940e3cbf7f56af76e212be96f6f0551e78b1408a0cdacc101037209d3028b6a989\", \"relation\": \"hasComponent\", \"source\": 252, \"target\": 553}, {\"key\": \"92b58b8332ed62d632900e7018ba9149c6847934aab02f941ce4cfc6ccde43e99b1a15d4f09f3aa697b319313369c3a0d19ffcafb30166fb28ef65e4435d9931\", \"relation\": \"hasComponent\", \"source\": 253, \"target\": 406}, {\"key\": \"d646cf5f26564f2ed73823979a2b4c92db2ac43218b3ec2c6ea8e0ecdfe3631efba7211e04f5ac53f26061601198cffd2ea6bac120a671b33f4ea5dee28c0a47\", \"relation\": \"hasComponent\", \"source\": 253, \"target\": 593}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"CDC37L1 lacks the very N terminus of CDC37, which is required for kinase interaction and the cellular function of CDC37 (Shao et al., 2003), and is able to mediate strong interaction with ARAF when fused to CDC37L1 (Figure S3B)\", \"key\": \"6fec9d3238abf6e7a71bbdccbe8222b41d8c44355c961a72de5c769f6f5725c3b4c265585af9a352c3d21dd765a73bc482be5acb15dd0a0d6d7d861bc1f76b46\", \"line\": 119, \"relation\": \"regulates\", \"source\": 253, \"target\": 212}, {\"key\": \"167a1054c8afb72cea33ed1341019e83075a4eba2d1e46dacc36f9504bf498fdd0cdae7ec172e3f318c331a506b0965e062a05f90b63f5fca445c9e419ebbd67\", \"relation\": \"hasComponent\", \"source\": 254, \"target\": 406}, {\"key\": \"7627b0b3b6a2aa456f39eeed74a89fba8a5f4384aae221466ee8d5b66790ce9f4b5e0f7b2aeec4a01610767fdeba40e4632c7e4f4cc144bb4ea85d96400da62d\", \"relation\": \"hasComponent\", \"source\": 254, \"target\": 599}, {\"key\": \"e311e3b9457741966845840e10c9ae0be012d62cc53a8162773e3365d32ee44c508b59ec7bc3a96198184e8bb70fb2fc11109ab4fba7075e6632be77be3eab10\", \"relation\": \"hasComponent\", \"source\": 255, \"target\": 407}, {\"key\": \"813c8ef0dd9af4f5cd7c415bc90a298753f9d38273971b8126e8545d70af72463ef3857523e954d9f9b83119744c351233f256044c583754040f2ef618861ea2\", \"relation\": \"hasComponent\", \"source\": 255, \"target\": 439}, {\"key\": \"121889251c2f909cf7011b663391d92f1bb8c5fda342dc646432b0379031db42cc7276429d0444a912fd27c03d67649a61b8dc48eacbd627a36956ed26877296\", \"relation\": \"hasComponent\", \"source\": 256, \"target\": 408}, {\"key\": \"882f965ca9efc545fd3917269f9da7db3e449cb9c4e0d2c4c15ff60961cad539b9e5d32b1dd561b54c99d69169bfd002a0f50eb82123ac4c3a727c2231ebf210\", \"relation\": \"hasComponent\", \"source\": 256, \"target\": 439}, {\"key\": \"fddfd399b7434890d1ee1da97d7880ceb5725bb16d1b8a04e8bc3931c24c9691ef609271d1c2365cf345cf8e6aa23265af5e0a59ec2c0095c4ec0a10975619af\", \"relation\": \"hasComponent\", \"source\": 257, \"target\": 409}, {\"key\": \"59031d7c68fbab6eb4a23e5531c63fe2648654175203a562c494102368a0a7c2a81876bdcb7641f26955ef9cff3bf86cd1031c0c110424b4f6290db9287cb2c6\", \"relation\": \"hasComponent\", \"source\": 257, \"target\": 439}, {\"key\": \"93ca8a5b46221b8b92263fb9abf1fa724f1a3e420d1677f9ffa77938f6761343700dac9ec2c33843126f51a14e20bb98ecd77b439d68da462e0250619fed1063\", \"relation\": \"hasComponent\", \"source\": 258, \"target\": 413}, {\"key\": \"9bc6c9e49fe4bafafe871aced709fac64d27940b628080ec6e6936da4b2307bba91c39a641fb0b516ff93decb10d7d80aff37a7e3ae20a0278b684b31deddf4d\", \"relation\": \"hasComponent\", \"source\": 258, \"target\": 439}, {\"key\": \"1f9f49d96a2de0c2b831ec9debd03b8ff36af425c8fa0ed596148a743f7bc780cbefcc0eb17e8afcf74269afb8dfd56cf8f00c125c8cc99d74e9b94b6e8d8b19\", \"relation\": \"hasComponent\", \"source\": 259, \"target\": 422}, {\"key\": \"99037726e93b68a65a5a22f9ee9d3b5a3bd4338fda6b80b09bfced8c0f7ce8d04d9c06f505e81e253ade5187e18ed42c75fee9966f59f7d49f3aeb1c54f2c58e\", \"relation\": \"hasComponent\", \"source\": 259, \"target\": 598}, {\"key\": \"8efb75a9ff5dd8832b2b2dc05e31820369c05835f028b607332978cd2def8af2a2fdc80c5fef63ad9e853ce644f0a55f8c01e6503ba0fbeb9f0fdc660202b57c\", \"relation\": \"hasComponent\", \"source\": 259, \"target\": 599}, {\"key\": \"ac7e0562c632fba16740d161d8605414b9fe7135e9ccf717abbd8fc1d44dce2357b8762d8c061af3ebed0a35b04f7435c7bca5af2bc93a41c8bc888197d1ed37\", \"relation\": \"hasComponent\", \"source\": 260, \"target\": 424}, {\"key\": \"452e663c0eebf139009cda5af2b3745964bd1d2dfb3f105f0bb96a4ff0900f2c5025af4ecae39f8670726b05ae126c43a43028f681dc573bfd954030a886bdda\", \"relation\": \"hasComponent\", \"source\": 260, \"target\": 598}, {\"key\": \"e21ca02aacb5878b8bdef446b0c710e5781f49e1fc674480276c245556624a8cee7aba475f757539244895c48cfc1052022c72d755395ebf4207794d68e38685\", \"relation\": \"hasComponent\", \"source\": 260, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Two subnetworks emerged within this central network, corresponding to known Hsp90 and Hsp70 chaperone complexes (Figure 2, blue and orange squares, respectively). These two subnetworks were bridged by a unique set of cochaperones (Figure 2, tan squares). Among these were the wellknown bridging factors HOP/STIP1, TPR2/DNAJC7, and CHIP/ STUB1, validating our approach (Brychzy et al., 2003; Schmid et al., 2012; Xu et al., 2002). Other bridging factors in this first tier of organization included members of the Hsp40 chaperone family (DNAJB1 and DNAJB6), HSP70-binding protein 1 (HSPBP1), the TPR domain protein EDRF1, and the E3 ligase NRDP1/RNF41\", \"key\": \"40e9289832fcda2fa6d3dd367bba9073b6e8c15d5d8a1a7dcb06750ffbfa77c6671c332be4f4b0f8cb61ce3d61d4d4fcd17f75420a1b08738d29d8c41a70d219\", \"line\": 93, \"relation\": \"increases\", \"source\": 424, \"target\": 260}, {\"key\": \"a05e979caafc5e90bc10f16419c8ef9790c397963a0f2f3d37395b70e52d0b7c3df5ee65dbcd1407adafb10ce0201d1632718babe83c647a488b49cb31ee1c2d\", \"relation\": \"hasComponent\", \"source\": 261, \"target\": 425}, {\"key\": \"0621dec79b900358a5a287ee62c5a4db90e556880a3a6732db7dc4febe78f47ba14128266a0f9f4e001f6af9d40f094148b1824034f0587bb06a62f8265125c2\", \"relation\": \"hasComponent\", \"source\": 261, \"target\": 598}, {\"key\": \"53609d8886255b380e069f168be85558f45228ab78d357ebc3f6a7139fa871f1c119631bafb211a2b548018d592c3a58db1799c40f63723dcaae2d1763784c9e\", \"relation\": \"hasComponent\", \"source\": 261, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Two subnetworks emerged within this central network, corresponding to known Hsp90 and Hsp70 chaperone complexes (Figure 2, blue and orange squares, respectively). These two subnetworks were bridged by a unique set of cochaperones (Figure 2, tan squares). Among these were the wellknown bridging factors HOP/STIP1, TPR2/DNAJC7, and CHIP/ STUB1, validating our approach (Brychzy et al., 2003; Schmid et al., 2012; Xu et al., 2002). Other bridging factors in this first tier of organization included members of the Hsp40 chaperone family (DNAJB1 and DNAJB6), HSP70-binding protein 1 (HSPBP1), the TPR domain protein EDRF1, and the E3 ligase NRDP1/RNF41\", \"key\": \"3a7826cd7e19a56867f8be37ff3386c3886cbe5ecb606ab225ac4d267060a2999e61be1fd3b5e0313b6a9e7d235ecdf82e0cbbb410147b83ac318898f1395476\", \"line\": 90, \"relation\": \"increases\", \"source\": 425, \"target\": 261}, {\"key\": \"7e6fdc0990b1e09e6c4f985b9921a128823c764542dc4fa832a0e77934be8694472e0dc9e25ca6f7bff3be2ed77108c0fe5700fba334c3d10eeadcac2744743c\", \"relation\": \"hasComponent\", \"source\": 262, \"target\": 427}, {\"key\": \"074bd148c51ea57a36611c87c1f27b97f64383483b1d58dee301d86bdf602818eb3420dc18727df8a389aedeef2f4a7af9335bcd9c361d1e9d97ee857ac8143d\", \"relation\": \"hasComponent\", \"source\": 262, \"target\": 598}, {\"key\": \"289bd4f2eef60efa9c9d5a668dcb8cab08ebce9ccc5b3214614172c6331a41af7098e75e27da99de71574d6381bba48d13adfa74078c46e904547084fe84a9c6\", \"relation\": \"hasComponent\", \"source\": 262, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Two subnetworks emerged within this central network, corresponding to known Hsp90 and Hsp70 chaperone complexes (Figure 2, blue and orange squares, respectively). These two subnetworks were bridged by a unique set of cochaperones (Figure 2, tan squares). Among these were the wellknown bridging factors HOP/STIP1, TPR2/DNAJC7, and CHIP/ STUB1, validating our approach (Brychzy et al., 2003; Schmid et al., 2012; Xu et al., 2002). Other bridging factors in this first tier of organization included members of the Hsp40 chaperone family (DNAJB1 and DNAJB6), HSP70-binding protein 1 (HSPBP1), the TPR domain protein EDRF1, and the E3 ligase NRDP1/RNF41\", \"key\": \"978d25819ccb400f29e400d3c2c6cdc19166c5dac67c1f38112c913ace37ecaf935612bca6e469c368df6d78ffee0826ca9361b07fa4993c96730925e0b484c3\", \"line\": 95, \"relation\": \"increases\", \"source\": 427, \"target\": 262}, {\"key\": \"3f08b060a45072dda96aa4a61437acdf3c0f3ac22ddb8b00b65bb1761d075dbdc2fe0191a540307a58b5614e38253bcd6b45d8f91980cfdc02bc63e13621fc76\", \"relation\": \"hasComponent\", \"source\": 263, \"target\": 428}, {\"key\": \"c33b3ab47143700f4d30cd9963e32f11413896065de06214d25db2a3fdbd517c64fc53e58759d051014f546723d6735cebee183cd89f637f40d77c0c76ce21de\", \"relation\": \"hasComponent\", \"source\": 263, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"f19f8a2238df596098a5cf647241c05a19c3653f37f6c1a0bc0432d4f0f27ff98be84db0a386cc7bb070c2552dac6acc86d9878037efbdffc6e34e60600ca5e8\", \"line\": 162, \"relation\": \"association\", \"source\": 428, \"target\": 439}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"90a8a74f1d821148ddd4545bb08bc503ef40d6926defdc9f085a0b31d88c918f4d376cdde0f876150a78562cc17d0fffc0cd1fb1cd94b7caa39e0b47082602e6\", \"line\": 163, \"relation\": \"association\", \"source\": 428, \"target\": 611}, {\"key\": \"8af806f23333f0ab00f1f828a59f32ecb2a006f69d0a3bc8faa26888b47b95631cae947d0702501cd9dd758d0dcf67a47967c366780d129e5a8fbd1219084f3f\", \"relation\": \"hasComponent\", \"source\": 264, \"target\": 432}, {\"key\": \"279108165a83e6197b6cc0e1d5d7233714f7b1c85f130d2bc6bd9ca367301fd6e3a9ef85f253423c1ddf414be6a4b8ba74cd4b10ef5b535659915bdee95b2e79\", \"relation\": \"hasComponent\", \"source\": 264, \"target\": 488}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDCD3, in contrast, interacted with proteins with Kelch domains (Figure 6G; Table S1)\", \"key\": \"3720aad2c11319893c9fb442cefdf2668df4ebfcac932dfeecee17ec50a008056b62e44a8abf14cbfe53bce0632f2375c63313bd4f9f7e4ce04b443bc14ebe68\", \"line\": 433, \"relation\": \"directlyIncreases\", \"source\": 488, \"target\": 290}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDCD3, in contrast, interacted with proteins with Kelch domains (Figure 6G; Table S1)\", \"key\": \"bb5dd2b64689d1dc93f348364fff15f6c928cfec3d470d924886249e88e2c4ff9479e79b317cd60e0113ba0ddd9b766842b9200d761755216a32a517d8280887\", \"line\": 434, \"relation\": \"directlyIncreases\", \"source\": 488, \"target\": 289}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDCD3, in contrast, interacted with proteins with Kelch domains (Figure 6G; Table S1)\", \"key\": \"99c7ced5add69ba96001b21fb68764e282f3b3bc74bec11dbdca2560dc603426c79cf6898e6b89b05493ef6ac9a5bf6b0ece0770e93c65ff08021e070733e4af\", \"line\": 435, \"relation\": \"directlyIncreases\", \"source\": 488, \"target\": 264}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDC selectively associated with WD40 repeats, NUDCD2 with RCC1 repeats, and NUDCD3 with Kelch domains (p < 0.0001 for each; Figure 7A)\", \"key\": \"05a02657ecfc15dd301c71b167f2715ff5da5610ccb5e9081467ae3e3e5bc6749b9b113e3ee43a9072fff8dcb82e3618c7b873b6f3f1b1e7f3428a4c3acd47c1\", \"line\": 457, \"relation\": \"directlyIncreases\", \"source\": 488, \"target\": 302}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDC interacted with the WD40 domain of FBXW2, NUDCD2 interacted with the RCC1 domain of FBXO24, and NUDCD3 interacted with the Kelch domain of KLHL38 (Figure 7B)\", \"key\": \"b02a0a8be66041f4b2f62727c6df7fd79b7a6d79169051e08db33b4b4385544237c6f768122724cf92a7b973b928137f170d8eb4862ab8b91f7dd6b8bdd9ae4a\", \"line\": 470, \"relation\": \"directlyIncreases\", \"source\": 488, \"target\": 302}, {\"key\": \"5934b8ba510eb693018fdcd4db8a2c232fdcd8b0279beafb44bcc52655075df99722766059728bc122bf80c33781d2ff4d555c200e38541648dd2f0d468b8a6e\", \"relation\": \"hasComponent\", \"source\": 265, \"target\": 435}, {\"key\": \"af0a9120b85d61a3c3d2303611836959d1b135a05c0b6b0ce038bbe4c6aa914fc102a45c89c013378fd9f46e70284bbaf4779239d436f3fbafc5d5c5b46c332b\", \"relation\": \"hasComponent\", \"source\": 265, \"target\": 487}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For NUDCD2, the most significant interacting protein was FBXO24, an RCC1 repeat protein (Figure 6I)\", \"key\": \"eaec41737033b19e0114f0ad4f61a85f721ece45b5ca3f7f923c405a2a1fb005fcd3585887127c11719e18cec24007b1ab34878ab43edb679daec68a1ead3816\", \"line\": 440, \"relation\": \"directlyIncreases\", \"source\": 487, \"target\": 265}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For NUDCD2, the most significant interacting protein was FBXO24, an RCC1 repeat protein (Figure 6I)\", \"key\": \"964816b0b76f56863ab655d039a0c04d036fab5808d292ece21f598a2be6169f054d684c7121a1884a69425a76c2c9d48a11ea77a5284c7534c8423953ede84a\", \"line\": 441, \"relation\": \"directlyIncreases\", \"source\": 487, \"target\": 300}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDC selectively associated with WD40 repeats, NUDCD2 with RCC1 repeats, and NUDCD3 with Kelch domains (p < 0.0001 for each; Figure 7A)\", \"key\": \"c823d27dcca5149f57404655092081ce736672986e34b64c979ab15605197a19d25638bb6a80fa8accaaca1288427952171179aae96dbd3529f01cee0e017f39\", \"line\": 456, \"relation\": \"directlyIncreases\", \"source\": 487, \"target\": 301}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDC interacted with the WD40 domain of FBXW2, NUDCD2 interacted with the RCC1 domain of FBXO24, and NUDCD3 interacted with the Kelch domain of KLHL38 (Figure 7B)\", \"key\": \"06325d433e3a8659b75868f6d1421a1de96da48dad7022ec2431a2518ddd921207d05ddf68d56da48eccaa49e4f948b3df58f64b8f21c8c950d1447362742d73\", \"line\": 469, \"relation\": \"directlyIncreases\", \"source\": 487, \"target\": 301}, {\"key\": \"137841e4a98190f13afd50b4ee9dfca02527449ab0d2de78756dfa8c34a07aaa444489133891baf39c717f94af7777ff5f14dc8ebfd928565fd635ec760e1108\", \"relation\": \"hasComponent\", \"source\": 266, \"target\": 437}, {\"key\": \"82eb6ad4d0bbf4c2ecaa8407663c979b21a4cbccd15152a6295c4c45419dcfbf332988a37abe454acd99c6f3e9e81ea96039b5db6d276d38f689472001868cb5\", \"relation\": \"hasComponent\", \"source\": 266, \"target\": 439}, {\"key\": \"68b3075a1d95bb82198e5f25f36af8f221abf51ee41a83fb61ccb37ab91cef4fd1c4fe11298fb5813b3a6e69f19624457a8b5770d97ba89077aa59b9aaa3beea\", \"relation\": \"hasComponent\", \"source\": 267, \"target\": 438}, {\"key\": \"c87f98326aa1e6fd8719e249943155a15371733fc42873580bfe7ae67e79c63828fc6e9c340a55f98b497ff22886a47efefcbc36659c498a0f1981caf331b940\", \"relation\": \"hasComponent\", \"source\": 267, \"target\": 446}, {\"key\": \"6091dfa7ae65374ca3cb0e66f814846c7d6f2f7a9222a7032b8c791216f7e67ef44c1f0d98c05f6461ab95228e86c33c3c4b61e9a5b44e4c6f28d41037a1b7ae\", \"relation\": \"hasComponent\", \"source\": 268, \"target\": 438}, {\"key\": \"4ac9d778e8f26b873a81b29bb33f3cb322cad5213084d215972c8b02262e736e1451acda7fa6cf19028cacd15df85741740938683071d7f2f403150fb1702d4c\", \"relation\": \"hasComponent\", \"source\": 268, \"target\": 454}, {\"key\": \"6ca25882c0dc1e1b34a9c54732b201508210d91060411efcfc80fb4722c8091c6e8ee6df9a8d84dec45158984e2ba01a19d8097d2287f6720b4f8fe7d0c691dd\", \"relation\": \"hasComponent\", \"source\": 269, \"target\": 439}, {\"key\": \"f91d6ca0792d74d877a289c11ffd81167a4b3ff484fd151cf2f264f43b3d140df1ef1df906f34075802b1cff3d4d8ba77856edcf9c7684f349d50a755d72b057\", \"relation\": \"hasComponent\", \"source\": 269, \"target\": 446}, {\"key\": \"a1dec16e5e812af30688ecc30fb6873387f05877a0120a7ccc25c2f0daf3e9398eb5d61fcd865706607b08a630f97438a07518365d0a3b276dd02343de52f4c3\", \"relation\": \"hasComponent\", \"source\": 270, \"target\": 439}, {\"key\": \"3d48e4f9424e9ca1796f90e74595215a10bfa9f381887d836206ef73a670c3c4c7fbf5136979b1232562256a275b3fa11b47f6a5475483c38ad9f9b4a2575f1e\", \"relation\": \"hasComponent\", \"source\": 270, \"target\": 454}, {\"key\": \"ced534332509c12047120e5ace644ac1b780c645d1113d6d25a9e1687d7be02bedb0debb2b4b1a53e24aace4f3e9feb8e24dc15d3d2a936a6fbc0bc1ea63b23b\", \"relation\": \"hasComponent\", \"source\": 271, \"target\": 439}, {\"key\": \"6879b98ad5e6988211b483f62119f6e6548f94c4b8192c16bfd21fd4fa7b97e44e6f6072b02396a5a11d442693bf6e4819eb9141343f56f42c860303d7b4ff45\", \"relation\": \"hasComponent\", \"source\": 271, \"target\": 464}, {\"key\": \"76ed3cb12e757a434dc65ee56f03727edd55d54f22bb8e3d26688ffb1b87a9af653db1b8aa99258e0701b42c40d19d6ade41be85fcf58537fe58090cf9c27984\", \"relation\": \"hasComponent\", \"source\": 272, \"target\": 439}, {\"key\": \"69ff93432bffd9d76a7803ace7b47e12da030f0ddfac90c6ff5d71953254587d256c0e4f523266787b2e618f11a9f0b2648cea38905601d100b5f5a6fcb8b774\", \"relation\": \"hasComponent\", \"source\": 272, \"target\": 476}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Perhaps most surprisingly, we found that FKBP51 interacted with MCM4 and MCMBP (Figure 3B), two subunits of the MCM complex that are involved in DNA replication initiation and fork progression\", \"key\": \"4f75db4c723d0dbdd7bb6b409be4061dbaaec6dd15267a1046ff172e40f19cb440a4bdf8c908569cab9316cc69de7c9b31da94bf3c1ef2e84d98f1ef2f41a583\", \"line\": 180, \"relation\": \"increases\", \"source\": 476, \"target\": 73}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Perhaps most surprisingly, we found that FKBP51 interacted with MCM4 and MCMBP (Figure 3B), two subunits of the MCM complex that are involved in DNA replication initiation and fork progression\", \"key\": \"c5158903044f19cffa4820216b6e5b34fc03e8aa898b19a80b4d1671a1c71f0c229bc1285f0e3fd748f538582262190b968c767a2ef2d7f9b7472f9186ffd4c0\", \"line\": 181, \"relation\": \"increases\", \"source\": 476, \"target\": 112}, {\"key\": \"0fb64621abbb5a40bcff268a909f0eabc945b1d4b1fcc31789a35133722dcd0218809e9424ae8277783216e66000868ad7ec4c038c583b5843d07f84877ce57a\", \"relation\": \"hasComponent\", \"source\": 273, \"target\": 439}, {\"key\": \"3ef215c4177cd86d62eae852e866951d54d0e2ac4520e3edb0557b648f9a363b7646830a6bbaad31a9245bd28625a426f03ff058e646bb393c104ba04328967d\", \"relation\": \"hasComponent\", \"source\": 273, \"target\": 480}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Perhaps most surprisingly, we found that FKBP51 interacted with MCM4 and MCMBP (Figure 3B), two subunits of the MCM complex that are involved in DNA replication initiation and fork progression\", \"key\": \"1ca8e7425d2b14974285c3aa135a0b631ce3916a78cde636170b2bf55e433d9b3acbda3035a6a7575da85b377f638cdabb56f45c8e2be15553fd5fda66ae6cd3\", \"line\": 178, \"relation\": \"increases\", \"source\": 480, \"target\": 73}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Perhaps most surprisingly, we found that FKBP51 interacted with MCM4 and MCMBP (Figure 3B), two subunits of the MCM complex that are involved in DNA replication initiation and fork progression\", \"key\": \"fcd45c70ff66dfac44c72f3db72c6e89f3b4611f96321290f43c2eb623844217cb7a4155b568c65970e3a9f94ae03879fa3359935e02d2e191c5b757a197be6c\", \"line\": 179, \"relation\": \"increases\", \"source\": 480, \"target\": 112}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Indeed, MCMBP interacted with all members of the MCM complex and with FKBP51 (Figure S3C)\", \"key\": \"18d948116e227123ec64d2179af33e310b7db73d778c70ad7b83a2c6ccfe3ce362b961a7738a85ecd9e748c848a36a2856aec56f4a7398e4186de0c3938c88e6\", \"line\": 186, \"relation\": \"increases\", \"source\": 480, \"target\": 291}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Indeed, MCMBP interacted with all members of the MCM complex and with FKBP51 (Figure S3C)\", \"key\": \"8f9e5d41fd1b57f01acc2c89b7367e9d2b92c69ae1f9e8913acd4c464728bc7f55aa95012d572bccb01a0f2f984a72e010b7365c22dd13f886f7809d567cdb7e\", \"line\": 187, \"relation\": \"increases\", \"source\": 480, \"target\": 292}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Indeed, MCMBP interacted with all members of the MCM complex and with FKBP51 (Figure S3C)\", \"key\": \"5f5e1fdbb2d66386ef3d341a489d4c5e60f9290ad31268cf0ff74cd4ddd87d39f3449a2f06058a57ff82e79308ab0c7a76864e0c18a9972e27fc9267f5e9845a\", \"line\": 188, \"relation\": \"increases\", \"source\": 480, \"target\": 293}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Indeed, MCMBP interacted with all members of the MCM complex and with FKBP51 (Figure S3C)\", \"key\": \"f524c9156bb52c102127968644d11b45f1d11e236545f24a594481191d78b481613c25b2b11ef37d51c1589c94623ed7e5bfd8f28d2b608d6450fe52edd3f21b\", \"line\": 189, \"relation\": \"increases\", \"source\": 480, \"target\": 294}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Indeed, MCMBP interacted with all members of the MCM complex and with FKBP51 (Figure S3C)\", \"key\": \"f7d0a5c3d200feab5f48548eefed17245a9a58cc0d54ed79684467f399183be3f7025694cb4742da79dbcc795415d0261f01e07e6dd70c56a2a018fffbdffaa4\", \"line\": 190, \"relation\": \"increases\", \"source\": 480, \"target\": 295}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Indeed, MCMBP interacted with all members of the MCM complex and with FKBP51 (Figure S3C)\", \"key\": \"4d7a54a21568602fa23da5fc006dc3e8769167f77205e2cbeeab96181bc1e681d0798b561c8482dad75f8c07933371afb55683fb44765b7aeb23851e06598a25\", \"line\": 191, \"relation\": \"increases\", \"source\": 480, \"target\": 296}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Indeed, MCMBP interacted with all members of the MCM complex and with FKBP51 (Figure S3C)\", \"key\": \"343141b34ce4ba842c3baa3f6ebde38f9cd8460724e2c8e883b6bb3704b9f8294d36d45b9831b56e4b91690f6e2368804de5be0cbcae9b645167ed3bb2edcec7\", \"line\": 192, \"relation\": \"increases\", \"source\": 480, \"target\": 273}, {\"key\": \"618fad298708332c3335456782c7fe54df0406788cd1b791417fc9e64782f541d73f72de5781a12ee355ae9ea8d47cc21f7dadf495ab5540cfa02eb63f4826a5\", \"relation\": \"hasComponent\", \"source\": 274, \"target\": 439}, {\"key\": \"aa81d8926c837fd4742ee4959dcf7435c7db369e61aa03a0994fe13683a25fae0818f0579c59cd1aafe767d33081118198cc63c36b7b43a62ba6acd2d71c2f93\", \"relation\": \"hasComponent\", \"source\": 274, \"target\": 528}, {\"key\": \"d3c8128116e06d516575110f19bb0a9fdba1c4fad01504a9a7ab46c5c88a7e6987d86f8303d8480c8c35d28e12afda0f46bcd0b1fbc1d5a004904d8ce420d010\", \"relation\": \"hasComponent\", \"source\": 275, \"target\": 440}, {\"key\": \"36e8b5ec9369679b89e06222fa69bf61c66e60b3eac217a378ae12072c9ff3d982452eaa358b2f26547e3ed504e0b1fbe1377a22216f045de19f3857b011b861\", \"relation\": \"hasComponent\", \"source\": 275, \"target\": 491}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"In contrast, the highly homologous cochaperone FKBP36 (aka FKBP6) did not interact with PDCL, but instead associated with the oxysterol-binding protein OSBP (Burgett et al., 2011;Figure 3B)\", \"key\": \"c10b42c44cdd5c4530caf3318879e6d61263fda7555bd8d263d2154dc8d40edc84108303c5f453e1cb78d106369754f8ae2ffd4358c983d329d6e91965991724\", \"line\": 210, \"relation\": \"increases\", \"source\": 440, \"target\": 275}, {\"key\": \"ba0e01eb21819c6174e6962cf7165129dbf187bb2d35d2da84815fb5b40f65c6d55e274c942ccb41b76062630df5c57221fddd34e520af94b180963169bccba6\", \"relation\": \"hasComponent\", \"source\": 276, \"target\": 441}, {\"key\": \"040c40601a3223ca58ea03c1d24f07915e6a6e14a71e21c22a7d2d028174dc602e5e937b370da4f34a12f2742c36576ce31ef9d978c82560ac99b02906940390\", \"relation\": \"hasComponent\", \"source\": 276, \"target\": 496}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, the FKBP38 (aka FKBP8) interactome suggested a link to G protein signaling through interaction with PDCL, which acts as a chaperone for G protein g subunits (Lukov et al., 2006; Figure 3B).\", \"key\": \"441da061219c1de42308f08e84ae08f6ea4aea569be91b44f73f95e755569b1f401120420297ff8bfabb612abce99e7f9fcac54edadc4ceb08a4f710ef777d83\", \"line\": 202, \"relation\": \"increases\", \"source\": 441, \"target\": 276}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, the FKBP38 (aka FKBP8) interactome suggested a link to G protein signaling through interaction with PDCL, which acts as a chaperone for G protein g subunits (Lukov et al., 2006; Figure 3B).\", \"key\": \"3778e5b57d5fb6febc2b6ecc6706c265cff02caf940f1513fe8ef07671b7bf502f24ef4805038163ce66e1507868e1dad8b83a08ad6e9cfda4834956037fccc1\", \"line\": 203, \"relation\": \"association\", \"source\": 441, \"target\": 75}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, the FKBP38 (aka FKBP8) interactome suggested a link to G protein signaling through interaction with PDCL, which acts as a chaperone for G protein g subunits (Lukov et al., 2006; Figure 3B).\", \"key\": \"4b149553b82254eadb254b6b27703a4c50e08f4e399c8c52ce7fe349cc58a31ab8a6eae4c005ad04e3dd9f69928a181d0587a23947aae20b9fafccd8679c315c\", \"line\": 204, \"relation\": \"association\", \"source\": 496, \"target\": 596}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, the FKBP38 (aka FKBP8) interactome suggested a link to G protein signaling through interaction with PDCL, which acts as a chaperone for G protein g subunits (Lukov et al., 2006; Figure 3B).\", \"key\": \"1704bd0dce84fa8dec6d0bf5417449fdb7f9398588ac69d4d8d7aa59fb7f8b6fc5c5fcfa0a786455de3f34b3351a24d229a9746c54db6aa8601a315568aaba96\", \"line\": 205, \"relation\": \"isA\", \"source\": 496, \"target\": 49}, {\"key\": \"de9ff1c7abe850b54a42e7a5718f76e9e6f33258586fb148725c78887431116526f630917fae0435a6b226bfa24a2035a01b836544c7e3594d6c841ca881b448\", \"relation\": \"hasComponent\", \"source\": 277, \"target\": 444}, {\"key\": \"4b78f295cefb7f3a77ac1ccbf8d7ece4e7dc6d42ea19b62fe074f1bb305419f8ab0df5438640b46009eb6e29dc869bf3cc702124d30ee583478c817c899d1bbd\", \"relation\": \"hasComponent\", \"source\": 277, \"target\": 565}, {\"key\": \"34278323b3df27b5b8b7148c5a205400d1ed34e59e2a4242b2b5178fb51510398f15316225be428381a74821aa03ce53c5065ba1f376a8ca2b1999ddf9b73271\", \"relation\": \"hasComponent\", \"source\": 277, \"target\": 598}, {\"key\": \"c8a729fde1a35c42dbe86c804a2af3b2904adb9037f5e024df745329d00e1072f2897fb1f97cf89c1c5f2eb95ebfdb9b35026b1fe89618ae7ea827a29b7ae9fe\", \"relation\": \"hasComponent\", \"source\": 278, \"target\": 446}, {\"key\": \"86d9c7f19b0e0e1b2cac33777342ff03c404ac3c3f8347725c31163197e86b90adb76cf7a3dc9fd43165662bc5373140d7144429cddd825a2750e8016b706089\", \"relation\": \"hasComponent\", \"source\": 278, \"target\": 531}, {\"key\": \"a3fac07e4713eb0ab1d11cf9803a6e84a24b42ac56d909b39d5cb39ed344d70dc2fbb54aa73ab6be1406864319c4a64bd42ba6f22be2f29c6d2d696cdf331017\", \"relation\": \"hasComponent\", \"source\": 279, \"target\": 446}, {\"key\": \"589f380ea5a7b600a53c87479e4c1f5d7c6b79a7da1ee6297063870ebdea5e6f6140630251384161da68e5506a083532257375743c81992220f375b932ac043f\", \"relation\": \"hasComponent\", \"source\": 279, \"target\": 535}, {\"key\": \"5063cfd51c2019657504b89ec0032dc2e646bbd95461e87483e54191f0ea8ea0861441460972f0de87b8a1d841c9150d956c8819165c6e66ab3228390476a81d\", \"relation\": \"hasComponent\", \"source\": 280, \"target\": 446}, {\"key\": \"9e36e15ad90885d1cd4d023be1f0ae69a1453d49318befd93eea4ee0f6b8de7d8a8c0d142ad42db9ed01160ca75b6af8df12b959afaf1580501cfe9047daa000\", \"relation\": \"hasComponent\", \"source\": 280, \"target\": 556}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Similarly, although SGT1 interacted with some non-LRR proteins, it had significantly stronger interactions with LRR proteins than with other domains (p <0.0001)\", \"key\": \"ea6fa61b35f372d45ac201b7bfaa9ab9daa1129da86369ebb14cef8bf717f4ef26f6b4877464e0592f6a0b09f13cb084b67a2363a57ce7c2d670e025025d6974\", \"line\": 450, \"relation\": \"directlyIncreases\", \"source\": 556, \"target\": 339}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"As reported before (Taipale et al., 2012), CDC37 interacted with the kinase domain of ARAF, and SGT1 interacted with the LRR domain of FBXL2 (Figure 7B)\", \"key\": \"545a9104a012ff44fe067d320bc2b8b444a914f3dff5be4387d4602d7f6b396f0f49d24b49d6dfc27b7a2bfbb00b8ee8da929882244276cebccf9876527b6021\", \"line\": 463, \"relation\": \"directlyIncreases\", \"source\": 556, \"target\": 340}, {\"key\": \"9cdf97a3d50018537e1ca1bee1afdf95f393442eade7c569362148331d5a1b55a607cf5e5b87ac8c08b88b83828898b853629acbd94ba9b25aeb5e181c919b96\", \"relation\": \"hasComponent\", \"source\": 281, \"target\": 446}, {\"key\": \"b0eaa9e41dff04c0832956586ea4641552bdb96d6c58c3cab8d66e8bc270d3f89d2f030846b9204fd718e8d9424684724daa6e7a1911d66ace01d86c1105f435\", \"relation\": \"hasComponent\", \"source\": 281, \"target\": 582}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The Hsp90 cochaperone UNC45A, but not its homolog UNC45B, were previously described as an Hsp90beta-specific cochaperone (Chadli et al., 2008) and this held true in our assay. We detected a similar preference for sFKBP38 (Figure 5D)\", \"key\": \"dfa668565291880bca17686d1a78e55443eeadcd240d5ae8534837712e9ec4e241dbedca7fb2e3b89e9889b5f64b4fa64627fed8d9b4df9c709da0746742d565\", \"line\": 339, \"relation\": \"directlyIncreases\", \"source\": 582, \"target\": 281}, {\"key\": \"3b027638a9c2eb9d910504a39abb298dcd8689db4462c27d00c4e7aa89a8f78dc7c03222dd24f4aeb9e21db5c05dfd49c520ae1810608c543289d68d91594a55\", \"relation\": \"hasComponent\", \"source\": 283, \"target\": 453}, {\"key\": \"13917ff5ff49e18d5ca8a01c5209a2f215b4a23252e514a0d393423c3ea347f2ef508d4b5fa5dbd60c550cc362efe54736617f3e61cdab92540b334fa4309973\", \"relation\": \"hasComponent\", \"source\": 283, \"target\": 591}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG proteins interacted more strongly with Hsp70B' than with Hsp70 or Hsc70 (Figure S4B and data not shown)\", \"key\": \"0f6f4164a22015e56a3d262924c6fff474e3820bedf40a58d00c8ee0fcfb0348d37667cdb16528b2351a21a8039e44935f75d22cda4f48f3629036ded77a4439\", \"line\": 332, \"relation\": \"directlyIncreases\", \"source\": 591, \"target\": 283}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG proteins interacted more strongly with Hsp70B' than with Hsp70 or Hsc70 (Figure S4B and data not shown)\", \"key\": \"980f907257bf8985923538bd6f8cd8bd304bc37368710447c71b09b6ae9059abfc45feb7e569ea77783fb73ba66ffebc3c9134f119c08bf827c2174a2fd07429\", \"line\": 333, \"relation\": \"directlyIncreases\", \"source\": 591, \"target\": 286}, {\"key\": \"7cb8d2e6e9a6fb4a087ff251a6894a89e55f154464d3c7ca2b1a1cf1c39875ec0fb2825f15aba3c92c1990135874c37bb01b9e605b1cf08e450a804d73c66c4a\", \"relation\": \"hasComponent\", \"source\": 284, \"target\": 454}, {\"key\": \"397962fc20db3dbc122f4b3556ca681ecfb53e0d599a7a8733d3b0f6d9f027948a0780aad5051a8b4cd0ae58837081f98ea48480d7c76d048675f73678463a51\", \"relation\": \"hasComponent\", \"source\": 284, \"target\": 535}, {\"key\": \"a000b5db2a0c1eba310d108933c491705e1725f5922e883d63e3c992edab86922bc3c6d3030ed56272bacfd605aa307ba5836aca60ab64cdd0a4bbab140f5d27\", \"relation\": \"hasComponent\", \"source\": 285, \"target\": 454}, {\"key\": \"645bfafbdef90af7bbb864f86d1237352bf99fad3f49be1077aefdb77d35faf46893f3c80e14d19bae0de705702b53de2c94b9a03c39e82a1b50285e752abf2b\", \"relation\": \"hasComponent\", \"source\": 285, \"target\": 556}, {\"key\": \"701a0d4e20c262fb511f991402ca44450a4df9251421b88a78790c31554a77548060247d1662bc153f2830880a7d2271a7403d2d4f661a5c5e7eefe158d615ab\", \"relation\": \"hasComponent\", \"source\": 286, \"target\": 454}, {\"key\": \"554dce8a8d4b4ea2c93906dce5a596375e1852fcf881fe83655133bd413fbe1d3d4114708b93f90b5b20ba3a802c491b039158212f7040010eb4ea96ffd79e95\", \"relation\": \"hasComponent\", \"source\": 286, \"target\": 591}, {\"key\": \"f546e7299baa5a73d9306eee390c165c1ba09f3b9ed3a44f6bf6de1cd4ed897decccf5f4eecae26cae0ed69f61aad6f5124d41b47770ee22a951781fd69a378b\", \"relation\": \"hasComponent\", \"source\": 287, \"target\": 457}, {\"key\": \"e5f7c79f281a5a74953e3ebcb4735ff1a0dcd1ad9da17fdd5af11ed62ab79129c6a30ef81c6630b1013bf4a6807dea6156bcc8bb761dbc6b7734d981a74b756f\", \"relation\": \"hasComponent\", \"source\": 287, \"target\": 598}, {\"key\": \"da44b7e36f5a36b4e8422bdca4e0de34a6f2a5f7c3ef08130aa2d30f227316461719e2a8c2386edb0f7d7fc1e01137895ff2722dab03c352eaed13377d411f45\", \"relation\": \"hasComponent\", \"source\": 287, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Two subnetworks emerged within this central network, corresponding to known Hsp90 and Hsp70 chaperone complexes (Figure 2, blue and orange squares, respectively). These two subnetworks were bridged by a unique set of cochaperones (Figure 2, tan squares). Among these were the wellknown bridging factors HOP/STIP1, TPR2/DNAJC7, and CHIP/ STUB1, validating our approach (Brychzy et al., 2003; Schmid et al., 2012; Xu et al., 2002). Other bridging factors in this first tier of organization included members of the Hsp40 chaperone family (DNAJB1 and DNAJB6), HSP70-binding protein 1 (HSPBP1), the TPR domain protein EDRF1, and the E3 ligase NRDP1/RNF41\", \"key\": \"a2d584d9b5d51735e3808c5c1d5bd8738a6c998061a0eb18a4d5bbfcc0eeb1e969de5a1790a12f9697f8ee2b83ab52af1d2faba57f585e6b24433c5390abf470\", \"line\": 94, \"relation\": \"increases\", \"source\": 457, \"target\": 287}, {\"key\": \"d5907d28eae8c1bd8e331860299218ef5f5381a26dcc68c57b985faf88b1ee1957fd170863eb1df3413496e6451caf0772a84dd5cd4eff952a3734a8793742af\", \"relation\": \"hasComponent\", \"source\": 289, \"target\": 465}, {\"key\": \"deadacf9b22f345b45db23f005ab0e4493b9890f4319399d7d92261228fe47c96f291862827f0751b5ada5b05404e850afd00795708d968de81a0031b9fe0cb0\", \"relation\": \"hasComponent\", \"source\": 289, \"target\": 488}, {\"key\": \"53e729ce7dfad1e3448d5b0356723f82f2030e1ae3e5de0a4d6ec7ff0ebae712e3a9ab028e27405faf26a6ab60df83401ecfa5d3120f03b23419fc7615e67705\", \"relation\": \"hasComponent\", \"source\": 290, \"target\": 466}, {\"key\": \"8bcd75cd42a5cb2507a566dcf6b7bde9c1c959d3db84853f56c1722f8d066245722de72f968a9cf65ba4116261ae7f175f1a3add43f9d9e7f61fa887ccd0d712\", \"relation\": \"hasComponent\", \"source\": 290, \"target\": 488}, {\"key\": \"d308259d28cf015665f5467e5ea4c80605da8ee9fee41a9ea4830434a980ea98fddf9adc30e82b5bcc4525bbdc256e0f1eed43aa9753b6bb1a69ae5dc29f3374\", \"relation\": \"hasComponent\", \"source\": 291, \"target\": 474}, {\"key\": \"17c20c21660ac8c10615f22d512f93366329b77ad98050c3f6eac36fb179f7a5c225835ddf809591e7497bdeea1b3bbce8f3cf8c48998e9f6d7cc62c6f28553a\", \"relation\": \"hasComponent\", \"source\": 291, \"target\": 480}, {\"key\": \"c0ae810f79051e8977aedede9a96b3d8f7429484765afe904884122f40f76c99d247eb8d0ad6392efbfb59035f6404079f2a2356f895625e8e62d893524e9cfc\", \"relation\": \"hasComponent\", \"source\": 292, \"target\": 475}, {\"key\": \"0f3394e407ca95440efe807f341bab3a20f745a32f2e510a62f2519a0c5f0881000c3c11d5839c80ff98b46707a0aae319af1b63cd0cad8dd470fac0806b0c4f\", \"relation\": \"hasComponent\", \"source\": 292, \"target\": 480}, {\"key\": \"c4a53fbe8826c8dcca8ad3aa6793797d131027295ef302c6ff97d08290b79502ace72fb2994d47bc86e508dffd70f50d7d4e3cef72be355ed8f735bed6634d66\", \"relation\": \"hasComponent\", \"source\": 293, \"target\": 476}, {\"key\": \"e71ea7b255c65820d06b68997eeb8335688b40695395dad39cf572df2f7234f89d2c30f32e0078150112b8264c030b2d124c0ad94b0e9c3a5821482173a943d4\", \"relation\": \"hasComponent\", \"source\": 293, \"target\": 480}, {\"key\": \"a303c917f5339cf3a5fa17b99633c94851aae2625014dfce921f6809a36b830da6071c856b577b773963d99e6612760b2e617f9c04dc8516c27018c5ca756c38\", \"relation\": \"hasComponent\", \"source\": 294, \"target\": 477}, {\"key\": \"3e703f3125a0750cc95a70bc0202a7699387506061a18648d1a5373f1a69f05eb6ba34d2c8bbeb14a560fc18a4365e161c2b612ddd3df32f83ba07a8b90def7d\", \"relation\": \"hasComponent\", \"source\": 294, \"target\": 480}, {\"key\": \"ffa703bdd5cf155c8b6f2d0dda5683b07ae099c6014d7a676f0a11ab4f51ea77b0a1cc3d0d99a45b12e28a639abaa14171e4c73c4a0262c41c5b883ca758a1fd\", \"relation\": \"hasComponent\", \"source\": 295, \"target\": 478}, {\"key\": \"027e5f8543304a09e0fd3d0b79251cf1524e12cf1c6fe30a083a0eec8561abb9c971f75eb989686a1a6e7eb4102917a1df306e0a3c583d8741a302ed70353192\", \"relation\": \"hasComponent\", \"source\": 295, \"target\": 480}, {\"key\": \"221a6acc74a0fca419bd8fa0dd8e275a3ea839753805e07f547162a50e972d3307a88f2e851f40db083c6f1c5b33a7c6e143af2ac8c75d4794931c265c595f78\", \"relation\": \"hasComponent\", \"source\": 296, \"target\": 479}, {\"key\": \"a8cf30067b82220b2fa81187f999795a9a2146a6de94fe449eea409aaed54c35bc051b9a3c738a7178400fc44651cb17a740461f57efecbe5a75eec0be6834b0\", \"relation\": \"hasComponent\", \"source\": 296, \"target\": 480}, {\"key\": \"9b2da1e3e35a6dea2365829dcc3f23e4ad9907c652a279606ea9068b210c2a7c13bc79b0bcf3ecfe3ff12e4e572ff779701719327e37911bf26b5f9fc0a4afe9\", \"relation\": \"hasComponent\", \"source\": 297, \"target\": 485}, {\"key\": \"b3682f109437c4eaea5523caaf36ad92664619fa12393fa5bd6903abaf45d034a0441501ac96ec58817fb86ab242cd6221fd4a8844c0c1206a54ddf8e02615b9\", \"relation\": \"hasComponent\", \"source\": 297, \"target\": 609}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDC interacted strongly with WD40 repeat proteins (Table S1)\", \"key\": \"b196c923f245567f612fc671bda7476020f85141c8050c4c991c97bbdd02a5ba6af4f43160ce12418d6fb57da00da8e47f42229ebf07b0480cd64fa64c6c8477\", \"line\": 430, \"relation\": \"directlyIncreases\", \"source\": 485, \"target\": 297}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDC selectively associated with WD40 repeats, NUDCD2 with RCC1 repeats, and NUDCD3 with Kelch domains (p < 0.0001 for each; Figure 7A)\", \"key\": \"8d21f8e7ca245847914b31116a095c7dc0b418d460d585fa493a1032354957afdf19ef5e6612a7023b6495d935f60ef13b610733824281f1f6e04b27bc0cda03\", \"line\": 455, \"relation\": \"directlyIncreases\", \"source\": 485, \"target\": 298}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDC interacted with the WD40 domain of FBXW2, NUDCD2 interacted with the RCC1 domain of FBXO24, and NUDCD3 interacted with the Kelch domain of KLHL38 (Figure 7B)\", \"key\": \"69f34ae613d0361be3b79c7699981ea80027b19a025ba7211481e06f114851a8112fd1cee1fe7c38a9073a112c02c6c55833b801c92fc58aa7240d576447801f\", \"line\": 468, \"relation\": \"directlyIncreases\", \"source\": 485, \"target\": 298}, {\"key\": \"927bc03c8b6c234fb0c6f4bf3278aa1f5ad74041b18ae530c8838baf15f050de07c8cfea242c098a57afba0c04f9b4ff435c1d16660ec0a1e2f693e232dff864\", \"relation\": \"hasComponent\", \"source\": 298, \"target\": 485}, {\"key\": \"f5ae06d9a7233e88a42a704f9f3dec44d37faf2b9f000996469c56c4041f7aa1c409f5c4379217ff9187f9d8c15b0ed5bd644d356a11bc9d612f666a4adc400d\", \"relation\": \"hasComponent\", \"source\": 298, \"target\": 610}, {\"key\": \"3d710533bb0907f6d8cf7b678d3d64d5c49787f048d4ca4bce5d2101b8149c672ab12e19bc6f7cddb61730bd0ce18c7fe5e925759c107ef6af782ed2615766be\", \"relation\": \"hasComponent\", \"source\": 299, \"target\": 486}, {\"key\": \"558d4b78cf6c65edfcb94e531a3e4c667a439b6ca79f6a951ed63e8f1d869e838db78bf1c2a6066376f73b44d03880fee0ae36ef31ae0171abcbfd18007f8c90\", \"relation\": \"hasComponent\", \"source\": 299, \"target\": 594}, {\"key\": \"f686e96b298712fb70c004fb831bd4e662eaf89f93464a6648185956f35c03e17b2607bc0c9b832d4022eca9354cfbf617de42900360f3ad022a50d02af0b8ea\", \"relation\": \"hasComponent\", \"source\": 300, \"target\": 487}, {\"key\": \"02c02172c9096debba8bf2bf23ce6b1ba12f86f0dff19f364d28b3888836d4878cb4b27b711ba73c263d42da017ee3d0d2bb080d80712e5b294b8559e35dc6d8\", \"relation\": \"hasComponent\", \"source\": 300, \"target\": 545}, {\"key\": \"b4fb5db2156c650ac2c4ebb45fbcea455cfae4386f42493fb909c6c7a05af6bb06095488cb554796e776d99ec2727898f2065e1a0f138b586ee35c575b06b700\", \"relation\": \"hasComponent\", \"source\": 301, \"target\": 487}, {\"key\": \"d1cf81faf96e3f66c2734a120089bfd2553a82bcc8c697c37d5bc22691fc9a0275db9593d3d46b4473dab82f84f3fc369aff086bcda0f301b3d11f6f1c003e36\", \"relation\": \"hasComponent\", \"source\": 301, \"target\": 606}, {\"key\": \"19ff4325f385f117b566d679b24d96fe95668cbae88607fcb8cb7dfde603198ddfdb1be0e099bc32a8a0175b23f5a0dd934aef57801236d8a52655a4f1e9b637\", \"relation\": \"hasComponent\", \"source\": 302, \"target\": 488}, {\"key\": \"408e28e1356bc69294c65e6c4b7ed564fa740a305f288d8130482a8af37b0a1838664d6392b29d72c1873446d1731504f0678971014ff1964e9a462bf2ade096\", \"relation\": \"hasComponent\", \"source\": 302, \"target\": 602}, {\"key\": \"9067e522cab7c75142764dfc93ec2a76e048be3d1089e9fdb24a64f06cc744878d61427b0c65f342a5d56a49a3984ac4547d1e2b8bf3054dc908afa53a3216c5\", \"relation\": \"hasComponent\", \"source\": 305, \"target\": 495}, {\"key\": \"32ece6907b3887a60c9a19359f7e49a9ae078644604105979c7a1b0394a3f8a0f847711d62743bdeb45cc8dba6d626fb658b03189cbf1a36a5421df6be47e7eb\", \"relation\": \"hasComponent\", \"source\": 305, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"5906f3d4da86349654f8d9b99038a053a1bdea1341fc630b61a04d3d333111689b464ab9bb29d16616c91845a13ea8ee45b0366a984e01272ef55b20dce38a95\", \"line\": 165, \"relation\": \"association\", \"source\": 495, \"target\": 439}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"927527e28d6355bf5ecd5fe78c35d59ceb230544881e757eb9b9dcbbc26b2e0f20f33bed5e71c96e8e98dae62d440871542ed679bad7b582146ed0c5fdb9489a\", \"line\": 166, \"relation\": \"association\", \"source\": 495, \"target\": 611}, {\"key\": \"ef51b1254da1e8278af487b462e1393f02050410fec4afb443c360f566fa242c97e0789079c8bac0c02357db22b84652f34aba0daa5ec1a8fc33c4d47fc9f91b\", \"relation\": \"hasComponent\", \"source\": 306, \"target\": 497}, {\"key\": \"5e992114399fb848865027dbb311029488ab1a7d86d82c64ca40087d4d57a3360e33db09786fba09f38b79ebb2678f6fb6445a2bb07a60ffc891ae3ae0597833\", \"relation\": \"hasComponent\", \"source\": 306, \"target\": 498}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, seven members of the cytoplasmic RNA polymerase assembly complex R2TP interacted with the prefoldin subunits PFDN2 and PFDN5\", \"key\": \"fc83ad246a4edd7b30cd811081431e4df02371914c5023e44be8041cc62a1c109f9b5604c5898d7729971d0b27d1b68ea98974f39de14153a89d2ba5f746dc94\", \"line\": 392, \"relation\": \"directlyIncreases\", \"source\": 497, \"target\": 307}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The four proteins in the first cluster (PFDN2 itself, VBP1, UXT, and PDRG1) are all prefoldin-like proteins and interacted primarily with PFDN2 and PFDN5.\", \"key\": \"bc31f1a314a61fcf13e8c243b5982ab913d18917eccf7a90ba5b7f2606fc68423fccb6d6f170564d9ef77721fd036f7babaf55acfde6b64d52a78fe2d096dff5\", \"line\": 405, \"relation\": \"directlyIncreases\", \"source\": 497, \"target\": 306}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The four proteins in the first cluster (PFDN2 itself, VBP1, UXT, and PDRG1) are all prefoldin-like proteins and interacted primarily with PFDN2 and PFDN5.\", \"key\": \"a76c1987bcba70e08ca1f28f3de744ccc94892d825bbbaada341ec2dbd9df7fe373b5966899e533d403ba77dd9615520282cece7f81099808e440adeec261e8c\", \"line\": 406, \"relation\": \"directlyIncreases\", \"source\": 497, \"target\": 308}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Similarly, three components of the proteasome regulatory particle (PSMD4, PSMC1, and ADRM1) clustered together, as did the two subunits of the prefoldin complex, PFDN2 and PFDN5 (Figure 5A)\", \"key\": \"d0105b4557f1d6310f1e631fa32b0980a5aecca7110a0e1e0b08264c2b60cea535db10085a8271a995a2fb472aa1d2bcd5ff73a790cd3cd267b4647d487cf568\", \"line\": 322, \"relation\": \"directlyIncreases\", \"source\": 498, \"target\": 310}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, seven members of the cytoplasmic RNA polymerase assembly complex R2TP interacted with the prefoldin subunits PFDN2 and PFDN5\", \"key\": \"cad321f92d94f6d84477bf88b8186c394cbe3adfb29ceb2c5fdf740a098aa2c1c275cb53c4cdb3519ec983ba32cadea44d1371ef05834df559677c25e5b75c82\", \"line\": 390, \"relation\": \"directlyIncreases\", \"source\": 498, \"target\": 310}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The four proteins in the first cluster (PFDN2 itself, VBP1, UXT, and PDRG1) are all prefoldin-like proteins and interacted primarily with PFDN2 and PFDN5.\", \"key\": \"ec9d336d97210df5fba09a8102ccb38dcace85b9c10138906dbb7bd580e3b81d547cba2811f642c9499bb82fe82ac79e2b11c2badee21a0ca2476a39562b9300\", \"line\": 399, \"relation\": \"directlyIncreases\", \"source\": 498, \"target\": 310}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The four proteins in the first cluster (PFDN2 itself, VBP1, UXT, and PDRG1) are all prefoldin-like proteins and interacted primarily with PFDN2 and PFDN5.\", \"key\": \"3e2545734cfef7cc47be2bfe7238910112a089d61b0cadafe0f5fc954577cfde957870d96e156005ebc813af935af8e3311d0108bd82153b1d55ce4e189f4eb8\", \"line\": 400, \"relation\": \"directlyIncreases\", \"source\": 498, \"target\": 309}, {\"key\": \"65220d201401f4bd32795ef641214d2f67afc8e58133c706d61368ea0ef2d43ee36100dc87643a81ea038007c1e813d4cd96656f969e3af6de9a9e7fb5f226ee\", \"relation\": \"hasComponent\", \"source\": 307, \"target\": 497}, {\"key\": \"915133ae1a9f1a770435d276d3194d7780b6d9c996977fbf01d6ddfad80829a06cd5117d0f4c23188f044b7236fd0b0ea44266fd8095ee57a9c657e9b228693e\", \"relation\": \"hasComponent\", \"source\": 307, \"target\": 498}, {\"key\": \"a5baf616334350817a9a91c855c5bcb81c9ff44b38b73bcf678c31f7e2afc4a0680c9e7ccb401f953a9238c206ecc6e6b0fe67aa5236397818b4b51b1223d32b\", \"relation\": \"hasComponent\", \"source\": 307, \"target\": 499}, {\"key\": \"5ef6219aaf1cd6cbe20ccf6473c180c21fa17bc7a9f8c7b1442998d6b37d0a53341dc61d231acacbf4dd7d7cba13c9a5a62cd9954c4d282e450531c12169d982\", \"relation\": \"hasComponent\", \"source\": 308, \"target\": 497}, {\"key\": \"a47320dfb72f023b528b510670640dae9d9fce15a537021269818fe4679c2b81b0de446f41f89a3853e40a3200e7ec78acca784beb61b510e10ed29dc1c79272\", \"relation\": \"hasComponent\", \"source\": 308, \"target\": 499}, {\"key\": \"5d31e0e9ade71015353a1debe00447c3c88c149579580ee179ba71d63b73c010d86ad424b3c7b1f0f862f21e3ed5608b9c9c826e5ee63e7cc4c378d3bc3656eb\", \"relation\": \"hasComponent\", \"source\": 309, \"target\": 498}, {\"key\": \"c497e16d9bb2367c082fa8357eec9c74b9f7fe866513a2df9bec2c9893857f338763d7adea74ce5e87b2b662ea579f6a873586ccdda0741d8a116ce78a2c076f\", \"relation\": \"hasComponent\", \"source\": 310, \"target\": 498}, {\"key\": \"caf945687f2cb42e2c48f018226314f9cdea284ae8aa06a9cc757112d2dd5d37a5d6b5a06e3de72b49dbb094c26dd1b4120d88480569c6c22540f15ef1b3a3b8\", \"relation\": \"hasComponent\", \"source\": 310, \"target\": 499}, {\"key\": \"f3b7ffee4cae52a00064c0b793a68ff58b32203beb7b7528acb0ac430ddf512c5a0740372ff5bacdbfb479da202b64b455958d89066c7d93ae322f6ad10933e9\", \"relation\": \"hasComponent\", \"source\": 311, \"target\": 498}, {\"key\": \"a313d0488caf21eb10adf8bf76673f63f4529a3292aa16679bb94b3e69f9fee907805cee2c8acadee1b2b34a7a7451f9a43124ecca854dc8b01b521b63280c1b\", \"relation\": \"hasComponent\", \"source\": 311, \"target\": 499}, {\"key\": \"23e8e5a9fc525f5ce72c6859fb0ff13d458f4721a668ccac8ce7ca1a72921e13a8c5b3898a85f8019ddc4df423d0ef3e096bfe29fffa6e31fe4a9b5b79d14c11\", \"relation\": \"hasComponent\", \"source\": 311, \"target\": 501}, {\"key\": \"bbc8bfaa3dc3617fd59388d734efe799dedd68cd9f49e7cec5f599a255173b5465a782c4fb59a03b4cc2fc44645e897af4e19e8a05ebc4310f039be7a2b1366f\", \"relation\": \"hasComponent\", \"source\": 312, \"target\": 498}, {\"key\": \"5176a717a68ad63b3e5ec2e9eae6780c16f135a6ca6d83a4bc184ef7559b88bc02d4fb4474645cc45c09cb69aa4df207c2d3ca42d359ac3be335797b974821a0\", \"relation\": \"hasComponent\", \"source\": 312, \"target\": 499}, {\"key\": \"296cc0326bfd96592903420882c1850c7b920aa4acb2341695ea01b27d50e740ff726a46611e0d485360569f0e9dd8194f92f7658f0171b8677308dfffdbde53\", \"relation\": \"hasComponent\", \"source\": 312, \"target\": 531}, {\"key\": \"beff22243af3e744658fcc767ea84e14d8159a5f09d2752cca82d5ad0506170e6cd80a683fa1e9b06de95db2325659b09cf3a4567a0e5a5f3893751b7efd9efa\", \"relation\": \"hasComponent\", \"source\": 313, \"target\": 498}, {\"key\": \"40173b56006e91bf0671e820fbe01d8ca7f304ab59537b6d130a2f806b026f30b59b034574bf11d3c3df66bc50cf9a36ab3ce2b6c028857925b9e3877679ed4d\", \"relation\": \"hasComponent\", \"source\": 313, \"target\": 499}, {\"key\": \"5155361bce6cf9a463299d5186f3a2fdff10415d271c30e8f899f6c6ba71ac9d80e720b0cc4e57ccf416fe902434933ad54b4698bd4d65a5867200e345b3b5a2\", \"relation\": \"hasComponent\", \"source\": 313, \"target\": 583}, {\"key\": \"dbab03fec16d9252985da603d18c7d19c6e5f1883ef3b8610fc41d5cb92089e8ad2675971c3af352fa435bc9cd1ce1f03c151e51abcba14ffd572b2b0d0cb465\", \"relation\": \"hasComponent\", \"source\": 314, \"target\": 498}, {\"key\": \"bf7c3dbe88be10950978eab958d0ca2ba41fa41b473911ec404301023fae08ad1696fe9ae62d51fb5e1492e712f521c56bebd79a485deafa6c790b677a46e9e1\", \"relation\": \"hasComponent\", \"source\": 314, \"target\": 499}, {\"key\": \"541c52682961af654131ae245bf16ea40cac7251ae882d2b9f7bcf960ee751a4527040b46cec53ac127458677272d816e3e16a201d42c680d41f10b405214b79\", \"relation\": \"hasComponent\", \"source\": 314, \"target\": 586}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, seven members of the cytoplasmic RNA polymerase assembly complex R2TP interacted with the prefoldin subunits PFDN2 and PFDN5\", \"key\": \"7942105df2e7999ad41ea0d7cc16f7b5ff103addcffbf5bc3595418bfdf123635b24ec164bd69d9538d5fb772b3ea69b3df9270b58d1a16fa957ccd6444296d8\", \"line\": 391, \"relation\": \"directlyIncreases\", \"source\": 586, \"target\": 314}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The four proteins in the first cluster (PFDN2 itself, VBP1, UXT, and PDRG1) are all prefoldin-like proteins and interacted primarily with PFDN2 and PFDN5.\", \"key\": \"79a289096c4f34e4b6a36f67cfe7306835bf64f85329e8bdf7727ebc86bb6d7a9acae0e7997e086681c26c72d32d38fa2d49f6ac661f88d0164849ed22e7d874\", \"line\": 403, \"relation\": \"directlyIncreases\", \"source\": 586, \"target\": 316}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The four proteins in the first cluster (PFDN2 itself, VBP1, UXT, and PDRG1) are all prefoldin-like proteins and interacted primarily with PFDN2 and PFDN5.\", \"key\": \"32b814a58484d78ee662b27fe961b4c1047de1f0d7bd815c23d7a128effdf2a7bc5d5d5d87b7a2c8fe014597801780605073aab702a3a7bb15f4dcfd72d76a11\", \"line\": 404, \"relation\": \"directlyIncreases\", \"source\": 586, \"target\": 318}, {\"key\": \"0e08288ce5c6876b7d16e7684715c30562ee527315acdffcf97a7aaf9b5e91739e1e648a802cbb69a15e6b0306c5e3dac35b33a5dfc574733d04f69805ebc758\", \"relation\": \"hasComponent\", \"source\": 315, \"target\": 498}, {\"key\": \"f8ac849e874e266c2c38cf1371f9c6864a66510b8e880b807bb18bf79befbb38efeab45c8e5009200914b0ba251fd9e3b6c37cfcd831fc7ba8fe63899ec1915b\", \"relation\": \"hasComponent\", \"source\": 315, \"target\": 499}, {\"key\": \"4c5e0fa17fd2c07c0763671d9a208d1f6cae864b28e024ced9e26522ae68f5b3c9fe88471b830463902c0a59ff6c0f25d09135b021c7ef36654c790b78de0704\", \"relation\": \"hasComponent\", \"source\": 315, \"target\": 587}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, seven members of the cytoplasmic RNA polymerase assembly complex R2TP interacted with the prefoldin subunits PFDN2 and PFDN5\", \"key\": \"279be819ba4a9baf3c48afb52563d106ee6f561a36f7e402f813fa4610eb5da760d798736949dce37e17cef4f7310fe39f0111bedf2f15452fdf601b4b4322bd\", \"line\": 389, \"relation\": \"directlyIncreases\", \"source\": 587, \"target\": 315}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The four proteins in the first cluster (PFDN2 itself, VBP1, UXT, and PDRG1) are all prefoldin-like proteins and interacted primarily with PFDN2 and PFDN5.\", \"key\": \"b15fec9b6048cf3236968d60b862c1e6888707eb00d797528151eb7365d23e6cfa9e70794adb9470c0323ca1c81973298a72afa338a5b6a4e032509299d08048\", \"line\": 401, \"relation\": \"directlyIncreases\", \"source\": 587, \"target\": 317}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"The four proteins in the first cluster (PFDN2 itself, VBP1, UXT, and PDRG1) are all prefoldin-like proteins and interacted primarily with PFDN2 and PFDN5.\", \"key\": \"6156c8ce4c86b95dde0dc279b8e8b2b120702070824c9b1c4154ad28cd9ffcb1b3239d6899eeb517c5f8aa14a7d776b2c8b4296e9662083f8d0e4c4cba2d2feb\", \"line\": 402, \"relation\": \"directlyIncreases\", \"source\": 587, \"target\": 319}, {\"key\": \"f0ecdd5fa5811ae7ac620b995c4cc034f9e93139ed09c608102d2aedd9cb3b982c04cd245bfcfe4cf39b4f89c32b8b46ad762203965a3f19957a75e185f5bbaf\", \"relation\": \"hasComponent\", \"source\": 316, \"target\": 498}, {\"key\": \"ccb67b1f2414abbe8d8badb88f0cba2b159524bba1bfb08e55fd488c53e8422d0e1f05ec5678e4595d2a95fe8866c4f66aa5b37f02b9f6ca38bf7eaf99858871\", \"relation\": \"hasComponent\", \"source\": 316, \"target\": 586}, {\"key\": \"97bc272d639ad853746971de221cc7192c2c013d9f5618abf680345a3840c99c852a6d6ebad1b2160770c8bcb7af5396759307a45cbbac89c0614632e1b24931\", \"relation\": \"hasComponent\", \"source\": 317, \"target\": 498}, {\"key\": \"bea65b3bbc0350bafbe6b9e77cb5e2b38582293e9b713fb01e9ce9e171105174578fffd09575a3271612b2923d4a438f397d4f76e4aaf5b3c2c23adaf462ad8d\", \"relation\": \"hasComponent\", \"source\": 317, \"target\": 587}, {\"key\": \"a18070d7f88d931f41bb275df61d8adab4dbd96fc9c5a66013b12e9ec401ca11caf62124803461afe1c5729e0d83deff451fd505e23974963228d87855e43d96\", \"relation\": \"hasComponent\", \"source\": 318, \"target\": 499}, {\"key\": \"ca14fa92159e16d667a374a8fe0a71f98ba68c38051935e0127de40d3259ae959fb366e9ee989233f682503808a698dd0e4a651267002327372edfeda1b110dc\", \"relation\": \"hasComponent\", \"source\": 318, \"target\": 586}, {\"key\": \"411d4a8498623a3005c044132642d736b0ada6a90cc71cf677cf571efd54cbad67f7fd9a7aba6665f5fc6c1254b687ca0d899171701b4ab0dd85c4459eb293f8\", \"relation\": \"hasComponent\", \"source\": 319, \"target\": 499}, {\"key\": \"1457e0c01e7863d6a924487e7c252946678e453edc665e01ed4d56855c75a08c18780e2573fff953b50677a656d785464eab61637ca98249aedbd15f53e477fa\", \"relation\": \"hasComponent\", \"source\": 319, \"target\": 587}, {\"key\": \"ae75634ce666bf8f809084cc8b467a4ab3f53f0d5083809a1ddb96ea2749c5dbf691a977d97d5f3a018261dfa5469779191005e4aa1cf5bdeb0bb8a9ca142a42\", \"relation\": \"hasComponent\", \"source\": 320, \"target\": 501}, {\"key\": \"f2e316803e8319ec97e43f7913f07246022c1d5b1018e411b25a1a6059e5624d5bde221053bee0699a701bc75ee7b0b9df74cfd68e5540dcc9f5481ebc6c1128\", \"relation\": \"hasComponent\", \"source\": 320, \"target\": 531}, {\"key\": \"f3d75d0ebfadae7993535171097cb458dfd1c14a3d93e950a25b9435ff222cd41f721dc8eceeb85ab877bf94be8dd65d8e2a89b2d4dd4aca9791d69fa89382fe\", \"relation\": \"hasComponent\", \"source\": 322, \"target\": 509}, {\"key\": \"77d578bf0f709e45877865577af399e4acc978e8e8b36d2fdd50c6fad123321f387de05da8c456f64e8c871503dd5f1b432099132d87818df18c9d188f543ef0\", \"relation\": \"hasComponent\", \"source\": 322, \"target\": 524}, {\"key\": \"ec64a0aca5f893dd565e8f1936923e6ef0f062be5b93213fb406e657078c5c7b2a0709f974ab0288a43f4d412ecd059c13b75a84a7e53332fe52c00ef69d2963\", \"relation\": \"hasComponent\", \"source\": 323, \"target\": 516}, {\"key\": \"6c0fd08c2beafa5a90080ea519b0dd8591a01f3f4a2d14f41918f378e9104e25b78b6d92e739764083adfdf6cba3a045bf9d6c461005ac97ce4f0918fe979771\", \"relation\": \"hasComponent\", \"source\": 323, \"target\": 524}, {\"key\": \"41648c105844aed8f45296931b4888cc6eb039bf593b0d480952eecc368ca29ba10db37ee54bb3c4232fe5f82c30675cd14d324880548b1c44e9e78a3225f68e\", \"relation\": \"hasComponent\", \"source\": 324, \"target\": 517}, {\"key\": \"64aaeedcc040b21bd4f178d913c87d196a054e0c1ca42b1a5bdebb4d84b0f0d21a1b0fc515e2cf8797c64820332c862d7dac833bb2a7ac7dc2ee8528a9bfa204\", \"relation\": \"hasComponent\", \"source\": 324, \"target\": 518}, {\"key\": \"0e8af4855d5da2968f6cabb0f4c0a2bbec3d9672a1e05622389cb01439f878d26bc3965e452c983445b6565014312e030c8ef07de5cb00cc03594ca2c3e2fc4b\", \"relation\": \"hasComponent\", \"source\": 325, \"target\": 517}, {\"key\": \"c3ef6e89b2a1f6b28859649dbe7aa664a0256432efbc2fd5a2e66ccfa2e11a1c861ca671ed094744a71b83b98f12e32c6dc6b00d6483622b299098aced06dea1\", \"relation\": \"hasComponent\", \"source\": 325, \"target\": 523}, {\"key\": \"bff8c6dcb03767cd57c6ca9a07eb66f95534ef14bd7f021f6774f25ce42947d182124f997400c066bdfe31e91994aca47f10eb2cf5d4920c1db86b3deb3ef66a\", \"relation\": \"hasComponent\", \"source\": 326, \"target\": 517}, {\"key\": \"a4524bd77b47d8d466729ccea34daab1bb07088e695499f1a2e869102ace489ab330d20e0f1df0ae02e59b636142850d383b3e3a516d3a8d598542bca3e4df6d\", \"relation\": \"hasComponent\", \"source\": 326, \"target\": 524}, {\"key\": \"b31283fc90c1da5410eb5bdfac07716d2a5aa8d4ecf0840677d07c5c79e68fd5c0835ced7d38e0e974734a40fb79bfca9de8fe75f523a74323654bcee10a3ecb\", \"relation\": \"hasComponent\", \"source\": 328, \"target\": 523}, {\"key\": \"eebd4dd61a98cee42d167521feda3d8c94405391dd51c9ed07d5a2a8fb8489294ec48cf668491b07443cf414fbd18d586cb4b42323d28a0201343d166da02c27\", \"relation\": \"hasComponent\", \"source\": 328, \"target\": 524}, {\"key\": \"35e251987ee4525fd45322a7101fe061df65e8b026f1b7ad330e60c97b4cf8e8fcd6161c72fdcf571b64ec2f8be948b0f19e347350f43a9f0338d4d1a96258e4\", \"relation\": \"hasComponent\", \"source\": 329, \"target\": 523}, {\"key\": \"f9775eacf52ec7d15b8066e38fab651ca25251dfe65e0c906424f48a7bd86092137937705926123ffb358cb25163d0f325934920671e61d14b3dbc40f1941284\", \"relation\": \"hasComponent\", \"source\": 329, \"target\": 554}, {\"key\": \"1a9fcf97ad518ba682c14b6dcd0698b00e13f520a6c915a6e455f2d398d8cd91deb00f88571eb078fc344441d8d552ba90a0af85b225e482f7b64f23a351accd\", \"relation\": \"hasComponent\", \"source\": 330, \"target\": 523}, {\"key\": \"8ea3b9db783e56ec984156fbfac51b1bedbdf4679c9769c42b194be4e89cf6f5d7f308077c4614329ff55eb3f43b5e788516520b70c291c7aa366939d98ca3a5\", \"relation\": \"hasComponent\", \"source\": 330, \"target\": 598}, {\"key\": \"a85f3b3cf64dd97b81cb99cc4d96d577d471cf2a6e1311070cf268d58026ee988deebc11e6561568558a8baa0b60bf0117fe3bb1c92aa620de129a0d0b4b1a5d\", \"relation\": \"hasComponent\", \"source\": 331, \"target\": 524}, {\"key\": \"3b2ad5ee6888c4e611e8c326d42e93ef6809edea1e867fe2a2cffa3b5c289b543ae5003d5fa86dc3e0d0f07bf20684a742abf8063bbad14776633a086ab786e9\", \"relation\": \"hasComponent\", \"source\": 331, \"target\": 584}, {\"key\": \"30f9335efcaa5318c2e04810927d0ea18fb419bf7164e7caa06c6f9008fa20063f6cc562ee5537594fe58c550f87bed5f4fb7bd19ea77c611a2cf1ca35bdacd1\", \"relation\": \"hasComponent\", \"source\": 332, \"target\": 530}, {\"key\": \"214e5a85addf26f5f584b60e63382c27b5728b81bb4d98463af52a70a7e5f255999bcca3e6cbc822829bdf02980356a6c7c851be98679ed65aae13f7b7429815\", \"relation\": \"hasComponent\", \"source\": 332, \"target\": 598}, {\"key\": \"88f78183fae3dbd450be20c0ca08123ba3ce69b137d5854aacdb1fdb63fde159a27ad1fda675c7673bbb2440d5f459ac5a9fb1c89c9bf32d5d13315b9aba3318\", \"relation\": \"hasComponent\", \"source\": 332, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Two subnetworks emerged within this central network, corresponding to known Hsp90 and Hsp70 chaperone complexes (Figure 2, blue and orange squares, respectively). These two subnetworks were bridged by a unique set of cochaperones (Figure 2, tan squares). Among these were the wellknown bridging factors HOP/STIP1, TPR2/DNAJC7, and CHIP/ STUB1, validating our approach (Brychzy et al., 2003; Schmid et al., 2012; Xu et al., 2002). Other bridging factors in this first tier of organization included members of the Hsp40 chaperone family (DNAJB1 and DNAJB6), HSP70-binding protein 1 (HSPBP1), the TPR domain protein EDRF1, and the E3 ligase NRDP1/RNF41\", \"key\": \"0b5b98722eeabaa061b4f41541213c96d4b0656d4e6c4422ce1680e34483322f867aa7113f3fc0ba4b9964e428ebba20ef03f16f7da579361818ead7b5eb5a55\", \"line\": 96, \"relation\": \"increases\", \"source\": 530, \"target\": 332}, {\"key\": \"89a974c0c65c70ac819a3813cafbd8d857dd63b95ca1f0a55a84762b1e6ce51c1100110df1ce4ebef27c658e67decc3aab56ac054252c1fc730357241a087810\", \"relation\": \"hasComponent\", \"source\": 333, \"target\": 531}, {\"key\": \"16a793a8a536ef37f374d106226de62374d8824c010119bce934dbaf0b1cf0b6f23cfedf0c2aaa3cdf071e13b409775e44271db7fff951c478d55876560581a9\", \"relation\": \"hasComponent\", \"source\": 334, \"target\": 531}, {\"key\": \"ef385ff1a4a6fc4461d28caee1f64350033ccbdaedc91cc796e69b9384894211e00fc38c206b7147f1735c7fc6b9a1776e8d84fa51f13f70cba2d071caf67dc7\", \"relation\": \"hasComponent\", \"source\": 334, \"target\": 583}, {\"key\": \"1194a69e2fe4fdd8b5e07f5edf65b513dd491502701f6f483c3c45cf055dfe6b6b4c663ee7739389fc3e9361e496b3c49f29069404a847426a1d30cadd3b2a6e\", \"relation\": \"hasComponent\", \"source\": 336, \"target\": 553}, {\"key\": \"00b0f937360eee483f5a2a64d79997cae5ff30ef53e431d73795bd854139f53a4d61dd95d8f5bb1eace192422d8340903ba6cf9813409f1b94a76b4e5153e740\", \"relation\": \"hasComponent\", \"source\": 336, \"target\": 598}, {\"key\": \"ae648409e8ef8e83fbbce78ce31c06c0eadc1ca4824d29b0c1ac21bbc96c25f36e72437ed9972a2eeb9a530aac1376cd7adf726e4b22f64d4c4573b27af5e331\", \"relation\": \"hasComponent\", \"source\": 336, \"target\": 599}, {\"key\": \"6ebb4de3c8b7e0cac8c13ba81574ad8d6b8be3ea28b9dcf534dfb0422a5dfec34595f81b656e4a4da87cde6dd5f9fe39dcf8f8d5a20bd276f2ca38f962c92ae0\", \"relation\": \"hasComponent\", \"source\": 337, \"target\": 554}, {\"key\": \"6d0be17db392d9bb885316cef41d210b6a5d8ed68e69389dd29020df1415a910b9a5774b9bf7dfb280fc2f7f5961749f975672a6cec1d82cb88493dc59eb3164\", \"relation\": \"hasComponent\", \"source\": 337, \"target\": 598}, {\"key\": \"b2f0c6bb6917bef521d38c5a42d0d6a5e39e4041a7a17e17fa8268f37649d6a73aea58c2f67eb1d06d301f0dd761d14163c6c645ce90ffeea431b6116eebd74f\", \"relation\": \"hasComponent\", \"source\": 338, \"target\": 554}, {\"key\": \"f8bf17c567e4712b428c1eb67e77ea2c2ac8efc279cc1fbfad59cf5f7ea1ce96cae36af176ae99faea86f5b71b76c36536689ce742ff9b65907359c2bc4f43dd\", \"relation\": \"hasComponent\", \"source\": 338, \"target\": 598}, {\"key\": \"676813224340a7348253157f8c6b8ccc284630c7c0572254ff27aab04f3e7e71e5b158e8c44d64854af043e5f1a160ceb781e32cb0003848a4fc5ae93be438de\", \"relation\": \"hasComponent\", \"source\": 338, \"target\": 599}, {\"key\": \"0e002f665fb9cd62072de8a84e1ba88c83f4f709359135a508c79eb93634b84cdd0d0ce9f29de704a7de10cb101d17d111d35a80f45c9361314ed983cfaa04f2\", \"relation\": \"hasComponent\", \"source\": 339, \"target\": 556}, {\"key\": \"92890c07fceef8de34ade94186872023b1cd0e7b1b53b6cf5851d380862a12ac45fd19640e3c286bee5170a529c2ceac241ebbded95d94a2893927cdee3adbcf\", \"relation\": \"hasComponent\", \"source\": 339, \"target\": 603}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"LRR proteins interacted particularly strongly with the SGT1 cochaperone, whereas Argonaute proteins bound the protein phosphatase PP5 and p23, both of which are well-characterized Hsp90 cochaperones (Figure 6A)\", \"key\": \"915599115eea62e27f934b06d54031836f99af3f7a97e604881115f59f7fe6f1dcdd7d17f0097f4db1857d58b130eda876123f4cdc1febc6d6991415ef40c113\", \"line\": 420, \"relation\": \"directlyIncreases\", \"source\": 603, \"target\": 339}, {\"key\": \"a382846abf840ba4159bf080a8a73f1276dfa877b202dd602b6507f675940234727f03457245a0898a6bf3d030291e1c3aac5d6e5435d3706c3fde0e601f7df0\", \"relation\": \"hasComponent\", \"source\": 340, \"target\": 556}, {\"key\": \"9576fb0a0b9692272bfadddb2c79ad7fadc0b18ee6b07e882c95abe4a1f99c678ee4979cf4e8df91f02d55c0824d539e8e0980b29880a8ab69bc46bedb63344a\", \"relation\": \"hasComponent\", \"source\": 340, \"target\": 604}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"As reported before (Taipale et al., 2012), CDC37 interacted with the kinase domain of ARAF, and SGT1 interacted with the LRR domain of FBXL2 (Figure 7B)\", \"key\": \"c74bf51a559668194fdfd679efca837745fbbe1ba1ab2cdf048752a50036d0ed9a60c7480a52fc4b59039e98948a487fc6d9d778b34b4dcc72f8a5e9328ddcb7\", \"line\": 462, \"relation\": \"directlyIncreases\", \"source\": 410, \"target\": 211}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"BAG proteins comprise a family of homologous cochaperones for Hsp70. All of these proteins regulate Hsp70’s ATPase activity, interacting with Hsp70 through a conserved BAG domain in their C termini (Figure 3D; Kampinga and Craig, 2010)\", \"key\": \"c1c2f64b855bc6a65f8b44be4bbcc7af454587c61039027fa853862f7546c4708f86d0d647ea3780dabbd01d97e4d45455d74b052ae0abd03f230517005db416\", \"line\": 220, \"object\": {\"modifier\": \"Activity\"}, \"relation\": \"regulates\", \"source\": 592, \"target\": 598}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"For example, the FKBP38 (aka FKBP8) interactome suggested a link to G protein signaling through interaction with PDCL, which acts as a chaperone for G protein g subunits (Lukov et al., 2006; Figure 3B).\", \"key\": \"1cef002a04c49d8a862b5422f3127d9370ba0d80438111a5fe267816b54d2c8be45483a6c7f0c27086203ebc5b9909a8a0f3fddf4d0c51117a5ff37fd22e349a\", \"line\": 204, \"relation\": \"association\", \"source\": 596, \"target\": 496}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"NUDC proteins have been found to associate with the Hsp90 complex, but the biological roles of these cochaperones are largely unknown (Zheng et al., 2011)\", \"key\": \"fc506de57d0a7e49d5f265d6171206925d16adc549d630cada163b8c24ad4f58b687bcc18955f692128ed2eb6425861456ff6fd02e17854a63ce6718ac9550bb\", \"line\": 427, \"relation\": \"association\", \"source\": 605, \"target\": 599}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"These proteins share an FK506-binding domain and one or more TPR domains, which confer interaction with Hsp90 (Figure 3A).\", \"key\": \"969b07e6d7998cd0669389cec638bb1fecccd642b4e504e67366b9a528ceaf97c3b8f357afd0f8d34cb0ae5dc422050016b3239df22c4e70c03674a38a1ee070\", \"line\": 124, \"relation\": \"increases\", \"source\": 607, \"target\": 177}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"67bf93cbe9f1c6865249e08bc662012d008fb5c27c03990b6572f3f8df142b5d50249b065576c16c166240146f6722f6a34c813456af3c5e2d85e96546837938\", \"line\": 163, \"relation\": \"association\", \"source\": 611, \"target\": 428}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"a3ec9dae2c69988ccf4133684450f090c408cfdc2567d89367899f691ec84ab9dd29f2f7a96b56e2c3398c530e536e2589b538c6cc3ed5f107dd0c99b7188445\", \"line\": 164, \"relation\": \"increases\", \"source\": 611, \"target\": 263}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"cf73afc883b49fe9316523cc3fef1b0dfc7754f248dd7592bf425efdb213eddb62fa5561b1ed01f32d7d272b2f61b2e208e6b685d47c8c6e38a2b4cb18ccb076\", \"line\": 166, \"relation\": \"association\", \"source\": 611, \"target\": 495}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"b6f0f3f27eb4219ec07077a30b273f3390f5364839b6933a3e7be981accb15563f4ed4a14af2c6c8fdc8bf55c0d4308121365de8cb4158761308fe00ce5e6826\", \"line\": 167, \"relation\": \"increases\", \"source\": 611, \"target\": 305}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"7d9b82b5d4001d5a3747121e99bcf43909b46875eabfc89455bf80227973a29415a831e41ddc38feb3d4cc66653d619871371ce71f3af2a2d2d8b9570d8f04c4\", \"line\": 169, \"relation\": \"association\", \"source\": 611, \"target\": 374}, {\"citation\": {\"authors\": [\"Berger B\", \"Choi H\", \"Gingras AC\", \"Krykbaeva I\", \"Larsen B\", \"Lin ZY\", \"Lindquist S\", \"Peng J\", \"Taipale M\", \"Tucker G\"], \"date\": \"2014-07-17\", \"first\": \"Taipale M\", \"last\": \"Lindquist S\", \"name\": \"Cell\", \"pages\": \"434-448\", \"reference\": \"25036637\", \"title\": \"A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways.\", \"type\": \"PubMed\", \"volume\": \"158\"}, \"evidence\": \"Third, FKBP51 associated with three transcription factors (EGLN1, PDCD2, ANKMY2), all of which contain an MYND zinc finger domain, suggesting that this domain represents an Hsp90-interacting protein fold\", \"key\": \"873e0bf50a5350224f0e68e3cafa09e105751084a37e6d8e79aa65163937ba43c024c5ddef1092257864be346aee51b34c1f27db492e19a1ac4d88fa568e31d2\", \"line\": 170, \"relation\": \"increases\", \"source\": 611, \"target\": 208}], \"multigraph\": true, \"nodes\": [{\"bel\": \"a(CHEBI:\\\"Congo Red\\\")\", \"function\": \"Abundance\", \"id\": \"53fe7c35f4d28b0cee3fe184537f608a829aff757f7ba061fe3136c48603e7f802b94915282a1e353a97050aa8ad4271f21bf64f558cb65e5c1b85431bec5f6a\", \"name\": \"Congo Red\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"N-retinylidene-N-retinylethanolamine\\\")\", \"function\": \"Abundance\", \"id\": \"39d6d1f63226a54177cf597f62bec75145297c58206aad7f8d5c07436074904aaf4630dcc1ebad742fd971beb6167df696c3a2cf8655725650af9867dcc02a14\", \"name\": \"N-retinylidene-N-retinylethanolamine\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"alkylating agent\\\")\", \"function\": \"Abundance\", \"id\": \"f80ad80b4cb9e9b5a07ae5257ca66f55ec0701d556f2a5f842edbae717f31729936e3cd1b0946debe2546ead2b00b15223df8c5d82ab2cdccd24c80cb1b10342\", \"name\": \"alkylating agent\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"amyloid-beta polypeptide 40\\\")\", \"function\": \"Abundance\", \"id\": \"2ca2eb795438fe9e0f24c1e9d332717de5e344ddfee00ce8df89c5b901d85db5994d6ffd383e40a90bde264f33e75b220476b3de86c89f0658bf281c872f0bb6\", \"name\": \"amyloid-beta polypeptide 40\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"amyloid-beta polypeptide 42\\\")\", \"function\": \"Abundance\", \"id\": \"c2da54109c90719396dfdfb558be74582b8522863849a50f3f5029b7d60f4d53df3cfa1a97b787e760a2f74ea1f74012eb49273beeded42a2873d788953b4a13\", \"name\": \"amyloid-beta polypeptide 42\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"amyloid-beta\\\")\", \"function\": \"Abundance\", \"id\": \"a9487b29439483c6840095610dd3e496e3ca9cccc3a8d71e0385a39b570f3c0a26965ac06d83265e1c08deaae7998272d4f4c21ec0534f8be3fd8e4e57dbb3a2\", \"name\": \"amyloid-beta\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"copper(2+)\\\")\", \"function\": \"Abundance\", \"id\": \"14ead2ae871c8e415828e6ad4287fa4ff903d12c9fa5c12eeb36ac2b73b287beccc5511e4ffc19c059cc45ab16188f560d4d71fa03eefda3cd971f7c87adfbf3\", \"name\": \"copper(2+)\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"cytochrome c\\\")\", \"function\": \"Abundance\", \"id\": \"2c9a5f77ef3857776ec29a4f75c963736864544dfd4b8bac83c2a905b4389e6004b567963aa8e8dc90a2974a3ea0173bc92ae4aa1b7b5b945f3b7047e1ae64b5\", \"name\": \"cytochrome c\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"growth hormone\\\")\", \"function\": \"Abundance\", \"id\": \"738564ee0b2b9fbafbb500375ab22b7b0744f0bb07c939c053d25143ef53f014c90eaad60f812cc06e1f47c932cebab11b068d0abf8b4d9a4a7984a790d28035\", \"name\": \"growth hormone\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"hydrogen peroxide\\\")\", \"function\": \"Abundance\", \"id\": \"4d65b5d180890b98afe0bc10614fde44ee750b2d1af6fdd925fc31ead7ee9a7248bda3d67c52aebf220b8c048d999f2d878a97a70b0e027a7294cbd3c7bf61bf\", \"name\": \"hydrogen peroxide\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:ATP)\", \"function\": \"Abundance\", \"id\": \"dbc5553fb6213ed82215c03a89950a37045e23683ffa96b44532f3e75d204cc547a974025c2799c6a189ad0c5045d96b16d1f5f7ac9296473ba1c647499bb3b2\", \"name\": \"ATP\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:chloroquine)\", \"function\": \"Abundance\", \"id\": \"54ff8c0fd55de959bde4ed782b53c9b265cf77bf65e2e2699df50a45db8470c5ad523a73c04c2318c497d290b48a642481f8a78e90bfd8e4fbcac9ce3a010327\", \"name\": \"chloroquine\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:cystamine)\", \"function\": \"Abundance\", \"id\": \"f853439c9ff57d61c89c3d2d7a31acc0de9cfae43accb753a68465af2469ca4e07f6c9efa4171387ab6ce39ec7b4af0a40ace0c335126e64a84750150ba962f1\", \"name\": \"cystamine\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:fluphenazine)\", \"function\": \"Abundance\", \"id\": \"16b0f4140c07b0b9c2d7e15796b0088250a69ce5979a76394c31c4736887b54e9190b99a67c90a9bec3e8d959f5588117119ceba1c4728ae43aded4e7f7d1d8e\", \"name\": \"fluphenazine\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:geldanamycin)\", \"function\": \"Abundance\", \"id\": \"495a46f0ccb373f38cd5fc5172590ae53a0619efd473182ef38981d4f2d7d2e6631c171ef484aac26e3891e0d5ef27e716420629b6f3c62aed15ac224ad41430\", \"name\": \"geldanamycin\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:lactacystin)\", \"function\": \"Abundance\", \"id\": \"d9aec05f15495c9a5dbb8d06a6a0cae56615f27eca5e96aa34e7cb317c611920c1e47f82387e051ee436974c9d6edf0e178f5b1354417132d44661b1896617ed\", \"name\": \"lactacystin\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:methotrimeprazine)\", \"function\": \"Abundance\", \"id\": \"bbbb171bbd433b71632378fe1ab58c3b1ca98634e9047be609371bc2b1f61fcc560d954a1f23396ae85dae748dddaf326d6101b3575fc8e8f15023228523d278\", \"name\": \"methotrimeprazine\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:neurotransmitter)\", \"function\": \"Abundance\", \"id\": \"bece6d10e96b69785dbd4c8bab8cbdcd754ff9a5139cabd93dab71c006f16c4b150a518aa934dc852c07fe26a629610104fdc8695476b406a886a07b935c6ccd\", \"name\": \"neurotransmitter\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:peptide)\", \"function\": \"Abundance\", \"id\": \"4cccb0e6134f0d77e106ae0d3d7074781aaa23707288077f8c9909298b2c7f511901028dc65f0c4da859b6d9b2657f82b03d8d12afc3ca17f61d8d261c386cf1\", \"name\": \"peptide\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:radicicol)\", \"function\": \"Abundance\", \"id\": \"15ee26986060541275b04ff0d23cd5eaaeb7544dfe879b82097c282e7bf5ef0a9f71eb7104cd85f1f0019f7428965ce9b6cd2ecd2faa002aa5a214fe1833be48\", \"name\": \"radicicol\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:sirolimus)\", \"function\": \"Abundance\", \"id\": \"102b031a00eed78fd9e5c4236defb90a8995463980f9060493bb5fd3159a3eb666cbb2b6a33a213c749a2b279ef6d149796b4f0b568e03b82eb5c89b0da77426\", \"name\": \"sirolimus\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:tanespimycin)\", \"function\": \"Abundance\", \"id\": \"409d39722f4d5c9457a215c12a920d2bf82d03e7f143571a2ce44293d3b8a741f96f61f35a43f0580f6588e3a11c62fc1888fcdc048311e8b3180dc20f703944\", \"name\": \"tanespimycin\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(GO:\\\"Bunina body\\\")\", \"function\": \"Abundance\", \"id\": \"4943463a72fc3d80b33b337b3a26e27b9611b1cebf05ae4cd6064fc9ca2a6023a5f63d3afe8ca9620f1a6dd3aa35b1cac167510a9e09573b66f5071ea8a2a2d5\", \"name\": \"Bunina body\", \"namespace\": \"GO\"}, {\"bel\": \"a(GO:\\\"COPI-coated vesicle\\\")\", \"function\": \"Abundance\", \"id\": \"444c6d250927ac4a426307982d0dd8b3c7fdfadae8ad670802e92bc610d9c1b724eb5a56d4b15b279abde319bb2a4a34dfa82f49ef62e82bf660e0f8b7e4b457\", \"name\": \"COPI-coated vesicle\", \"namespace\": \"GO\"}, {\"bel\": \"a(GO:\\\"SCF ubiquitin ligase complex\\\")\", \"function\": \"Abundance\", \"id\": \"c1c475c3f3fc54317b032cf08f778bf261e7e2bc6d00503f0b70406ba0af3dc40d775fb498dd02f39af90bb1cef72317eb121fdbfaaa9a8919905a30956031fd\", \"name\": \"SCF ubiquitin ligase complex\", \"namespace\": \"GO\"}, {\"bel\": \"a(GO:\\\"actin filament\\\")\", \"function\": \"Abundance\", \"id\": \"9bc648441389c1478718c675971f7d6587e85c5d0c0d00d2a99a7d96f21a3af7554df0d3794af377b52593ac80877098e342f8245f994922d4e89f057e7a2519\", \"name\": \"actin filament\", \"namespace\": \"GO\"}, {\"bel\": \"a(GO:\\\"dopaminergic synapse\\\")\", \"function\": \"Abundance\", \"id\": \"e591477dfd0bb750386f45332f85513f38d02cad9b8808308355a8c88978583164add6292b65b6ea87b3531efd13cc94dc759e8cf88d93c9635a7d923a947d5b\", \"name\": \"dopaminergic synapse\", \"namespace\": \"GO\"}, {\"bel\": \"a(GO:\\\"proteasome complex\\\")\", \"function\": \"Abundance\", \"id\": \"5a846e71cf1dfd8b03168b68e954fd8718816110f7b45deb9e0db5486385d62729c26d6530e0566519d1b0c506b4d1baa8b4603cb4e6701b049bb7267e9d1144\", \"name\": \"proteasome complex\", \"namespace\": \"GO\"}, {\"bel\": \"a(GO:\\\"synaptic vesicle\\\")\", \"function\": \"Abundance\", \"id\": \"d145f42b1cf3732a644e504e8c09e68f21a2a7456136505a45e9eb8938e9f8279c86b95caa6feb96f8aa2d4771f263ca1f9820bd13f66df04f9ea377f1581406\", \"name\": \"synaptic vesicle\", \"namespace\": \"GO\"}, {\"bel\": \"a(GO:microtubule)\", \"function\": \"Abundance\", \"id\": \"0c753f37efe0eb149a47a1dd700eda093a03b462374275c68480b6aed3be0f81aa9793a179dfd97f8e0834f1fb9be4b4a6cff2165b176d9e8a8744f5e0d5bc2c\", \"name\": \"microtubule\", \"namespace\": \"GO\"}, {\"bel\": \"a(HBP:\\\"OSW-1\\\")\", \"function\": \"Abundance\", \"id\": \"e815b01e0bc722006537d6de04c83400d1592f8ddd660e9f11b98c4e400eda8beb4b61d5774493148fb83b75c0897d2dba1fb79ce0de946a90aaf3934ea66678\", \"name\": \"OSW-1\", \"namespace\": \"HBP\"}, {\"bel\": \"a(HBP:\\\"alpha-synuclein aggregates\\\")\", \"function\": \"Abundance\", \"id\": \"4ffe86a09eab120b36e016ef7b19c9d01be6656ede07fd078714196fcc814ae0586e60fc52bb1a087f53639ba2004c175d46d511472d216e386711c2d05dcb21\", \"name\": \"alpha-synuclein aggregates\", \"namespace\": \"HBP\"}, {\"bel\": \"a(HBP:\\\"alpha-synuclein fibrils\\\")\", \"function\": \"Abundance\", \"id\": \"e7d37ca7db3a392fb57741b397c3d2a199341ad03918944c91543eee061dbff1f594f28a341323fa8d0501bcbb8aa00baf48f75c055a2cb8e62d899d73cbc101\", \"name\": \"alpha-synuclein fibrils\", \"namespace\": \"HBP\"}, {\"bel\": \"a(HBP:\\\"amyloid-beta aggregates\\\")\", \"function\": \"Abundance\", \"id\": \"1d739f6eba3532950fc068e81f7aea675ce76d42a049b5a301ad8bccf2f503d6c2a79c9d417d4d35cc760c340b5db2513536b3c420156a92bda3605be3537740\", \"name\": \"amyloid-beta aggregates\", \"namespace\": \"HBP\"}, {\"bel\": \"a(HBP:\\\"amyloid-beta fibrils\\\")\", \"function\": \"Abundance\", \"id\": \"67b4c76bd9f06b116883a58eaa40e8453f2fda318ae9313477ebc24c6d04613ea373fdf611fd8a740de5a090826662d88c39f2ab166bca226cc8237cb0c71a1a\", \"name\": \"amyloid-beta fibrils\", \"namespace\": \"HBP\"}, {\"bel\": \"a(HBP:\\\"huntingtin aggregates\\\")\", \"function\": \"Abundance\", \"id\": \"b002c83453fb9ff3e295ad07a36f9afee91ab00c52c321dee1b31e9b1ae80e79109adf64b9b235ba967d89545d80f66dbe86856bd4751018f2e0bf2c07ff477e\", \"name\": \"huntingtin aggregates\", \"namespace\": \"HBP\"}, {\"bel\": \"a(HBP:\\\"paired helical filaments\\\")\", \"function\": \"Abundance\", \"id\": \"8d87710f8ebf7593b6b0020396d36a868362a39b367908774a967b0efb7397212d51216da225ac3218af26e6abb0338cdd1d676c9db11cf8e6c16c127fd2305b\", \"name\": \"paired helical filaments\", \"namespace\": \"HBP\"}, {\"bel\": \"a(HBP:\\\"protein aggregates\\\")\", \"function\": \"Abundance\", \"id\": \"533b3e60c1750c5e68afd65f806826d6270b7b71fb004dcfdec5117162a8e42668bd32008dfbc8e982d0c9632fa5faa6a7ecd024b6841f6c35e563e9877da786\", \"name\": \"protein aggregates\", \"namespace\": \"HBP\"}, {\"bel\": \"a(MESH:\\\"Amyloid Precursor Protein Secretases\\\")\", \"function\": \"Abundance\", \"id\": \"e5dba1c4bad02dc976d1f20721664d15bb41a252b81651e0af45702b2bae4eee08a93f702d9aca34394ee6533849b56a6cb30da31d0a3a042b3725a02c4cfb9c\", \"name\": \"Amyloid Precursor Protein Secretases\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Amyloid beta-Peptides\\\")\", \"function\": \"Abundance\", \"id\": \"3561a0e32ad8cad6085b532574f73a3cce1d90648f557d9658ffd734fa10825a5ee8e45f868eb74a3ea6acb478fc4145667df43b0f1205da1a00ea642995747a\", \"name\": \"Amyloid beta-Peptides\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Area Postrema\\\")\", \"function\": \"Abundance\", \"id\": \"64a857fb5a1a9250336df036e7c6f30dc80b75ec84729a1d6f77514313ddcaab648ad27fffee4ddb7573f4d1f7bd6cbf2dee567d37dc8725921c3f4c6d9a7541\", \"name\": \"Area Postrema\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Argonaute Proteins\\\")\", \"function\": \"Abundance\", \"id\": \"7e269d576699e55ef71f7643ab74467f6c1d8cabb797d31c0d04d68c0f21095765d158babf289ba393d644dc768e97747781bbd6b16eccaf43afbd37f188828e\", \"name\": \"Argonaute Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Brain Stem\\\")\", \"function\": \"Abundance\", \"id\": \"e4e3763947d241d5dacf473e5a4fb41cfaf80ab5416e8e39f51eaf8a4b58f167028000a0813892731b5214803cd65dbe4ed022deb44aea5a7777f43959dd24a5\", \"name\": \"Brain Stem\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Cellular Structures\\\")\", \"function\": \"Abundance\", \"id\": \"62baaee5825138fe4a3dd5b9c757e91396a888844d473025c054a87d7694dd327ca74ef2365b83f072cd8a107630910f46590ffc68b7bf459833fe8ea40bb7d4\", \"name\": \"Cellular Structures\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Deubiquitinating Enzymes\\\")\", \"function\": \"Abundance\", \"id\": \"1fc317300cf37502c9c36169da0241fe3771e45ec9eec6cb4206b662034c98f038b8f247daf989ccd82bd56d8992818384e93ffad42f98085a04a8d14235a177\", \"name\": \"Deubiquitinating Enzymes\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Dopaminergic Neurons\\\")\", \"function\": \"Abundance\", \"id\": \"33bf5a667c04792d6dbea2f308ab342792bd66ea8986863564b45b8ad252462f5ea440b2c9f2f12b90b991b1a11c0291fe2dc4b4afcad8e9442d3950ed576f6b\", \"name\": \"Dopaminergic Neurons\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Inclusion Bodies\\\")\", \"function\": \"Abundance\", \"id\": \"2e07919b535d542543efd04274244d18a5133920c150d26ad5a33d7007766e36470eec9d477e60c75b50dcd63af5c95bed51b9ef9a28a4dea4b69a3229017f7f\", \"name\": \"Inclusion Bodies\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Ion Channels\\\")\", \"function\": \"Abundance\", \"id\": \"5d18aa69556b0ee1bc6e62c486d2fdb103ab46f8f3efaa335925c2bc8087a311b1ba2062efccc91585dad46ec1ea90f10d46eddcc365e130013be3eb08beff68\", \"name\": \"Ion Channels\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Lewy Bodies\\\")\", \"function\": \"Abundance\", \"id\": \"f3fc684f4c2a1eb83e9724fc078dbca5bdd5d2cd7d2228bd700bc00cca47e2e9376ca938e5f2d4e77b4c4ff3324f9e864527c6eabcb8803fd310aaceb9eb9c41\", \"name\": \"Lewy Bodies\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Molecular Chaperones\\\")\", \"function\": \"Abundance\", \"id\": \"cbd4d8183b7cd578b96afa148739bb4ae10720d38c4936bc957976341d71ff395011e8e37ffcd1b58bfee79d1fe5a0b7306d8c6555580cec4dcc22fa2949a56c\", \"name\": \"Molecular Chaperones\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Neurofibrillary Tangles\\\")\", \"function\": \"Abundance\", \"id\": \"3d83c65a7f42e71c4a115c5beea8400b29c090a6f7cf81c3efd0ebadf5e1fcc2605b24f0d4e381f1625802594fc6c4bdc3a07a222f58e34aee7c3125b1b037db\", \"name\": \"Neurofibrillary Tangles\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Protein Kinases\\\")\", \"function\": \"Abundance\", \"id\": \"bcc3ab5135893f48487ec8b16c65ea8f2f3403ba605039eda51558927532d79f188b700478c499806780ed8630bef6e8a71842549089884ee74a72fa1130b0d1\", \"name\": \"Protein Kinases\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Pyramidal Tracts\\\")\", \"function\": \"Abundance\", \"id\": \"0cd6764c36238d75077fc9d93270ce7274baf9d7fcc6671dab7c9dd12fe2f4608b7e7095b1e7944fec3c0d1bedaa5239c8b12d9d7e624cb3364744b383e48df9\", \"name\": \"Pyramidal Tracts\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Receptors, Cell Surface\\\")\", \"function\": \"Abundance\", \"id\": \"ead56724679ae3267c8fcc0c54d962e1b914a8a2f737027950a260dc2115721fa0fc73f20c607891d87c9e4cc2769314c1cc144b7c9590bf5003c5a525681f3b\", \"name\": \"Receptors, Cell Surface\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Solitary Nucleus\\\")\", \"function\": \"Abundance\", \"id\": \"cc61b514521a1da10f8401cb71dcf0988233199f43d787836672b2a328c78bff366400741cbe8f39a7f0f01e6697bd2938c3c00d84a133f08d65367551bce2c0\", \"name\": \"Solitary Nucleus\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:\\\"Tacrolimus Binding Proteins\\\")\", \"function\": \"Abundance\", \"id\": \"086c968a8424d50ffd1c64fb3355f9894f1de4449217eeae141de1db49834e08c428a1682b94d06bc68abbd411afc41aa59da39c0540fe48addb1e437573eb34\", \"name\": \"Tacrolimus Binding Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Actins)\", \"function\": \"Abundance\", \"id\": \"862200ff31493e4d10c53a98d76a02636aa7bee5e8e2194a9b3e6c9450307e08f32a0534c01c984f703640b802f28e4417f810275cf9e24ae71b0c179c1db426\", \"name\": \"Actins\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Denervation)\", \"function\": \"Abundance\", \"id\": \"2c2c362410789702370000c5efe8cbb46e7334c6b342991cefaff546ce3e5c014072df25c61e6285a4dc0b59655aecff84ccd2e4cfcddabd75f0db29179cd616\", \"name\": \"Denervation\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Lysosomes)\", \"function\": \"Abundance\", \"id\": \"5bdc4f001303328428ac361a58c2c115c993a633bc703abff8f4f5a892f1674a1f4612a541e30ab897fb789fa8698fd11eac180236847f483cec9bc7ca9daa45\", \"name\": \"Lysosomes\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Neurons)\", \"function\": \"Abundance\", \"id\": \"130131072f276d163b9e361a4ca4814f1d254907d297db502ccb4f6e75dff10db1f2b384bb435c9b46e91310d585aea1db3108e00905a31bb1388ccda1f0c643\", \"name\": \"Neurons\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Prions)\", \"function\": \"Abundance\", \"id\": \"f2ff328fc515faddcdc9b5788fface632d8cd18f7823d4a2af0bc809fdc5be0e3890d1e2e947d2d5f8fa17d2abcef4ce6826e159e0b008d08f04e9dd31e4737b\", \"name\": \"Prions\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Proteins)\", \"function\": \"Abundance\", \"id\": \"8b165e851c3ea69aa634bbc6f5137eb6852df9a3878bbd9c138e52900e368f72dbeca872f9d93b2c79fbc1a1124d69b2d52415ae3548bb591e0a0c898416981a\", \"name\": \"Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"a(PUBCHEM:10521421)\", \"function\": \"Abundance\", \"id\": \"a8eaf0faa5eaf41eb32b825f303b657eb690df128f356ee74d94d293a654156b8b0314a15ee52c8fe172534ee43523d619e3012e71d61497ecc7c88a69b13370\", \"name\": \"10521421\", \"namespace\": \"PUBCHEM\"}, {\"bel\": \"a(PUBCHEM:1560402)\", \"function\": \"Abundance\", \"id\": \"2217f86ce31e5423d655f89888f91d17117a5861aafce36ea2f85e09b923cf82d88c2d975f3a571e6f981c79a5fb673f3057c79ae9db137cad7b3e88cdf15000\", \"name\": \"1560402\", \"namespace\": \"PUBCHEM\"}, {\"bel\": \"a(PUBCHEM:164810)\", \"function\": \"Abundance\", \"id\": \"783f72b01dea1b55fb0ad44f88c102e8a2b996fe04fc6ed34db09148c177dd026d6accfc713d92a9ecacb8b65f6fc257dfadfa9872f8119980672417df5f5650\", \"name\": \"164810\", \"namespace\": \"PUBCHEM\"}, {\"bel\": \"a(PUBCHEM:23624255)\", \"function\": \"Abundance\", \"id\": \"d249048d375df3376031dd977403b95f2141d316e6c73e3ec40f7e8e05b201182c0c4f6fd405270f7268c96b5a95c2712f83a9ebe44fb22712f19a8c2aaf91a5\", \"name\": \"23624255\", \"namespace\": \"PUBCHEM\"}, {\"bel\": \"a(PUBCHEM:377503130)\", \"function\": \"Abundance\", \"id\": \"0c5be332d05561addbed95431647b6e3687d261a7b281115495a454fbb848132366e552f10b4d687ae3ed6eee778a97537e002e20627ca110e15cec1f247b5b7\", \"name\": \"377503130\", \"namespace\": \"PUBCHEM\"}, {\"bel\": \"a(PUBCHEM:675434)\", \"function\": \"Abundance\", \"id\": \"3445a70f2fec86b1ee954f9bdf09e6eb81b69b849dd43bf50707d9c795bea1d5ff475dda76a10a188b9e70aa3d11ba6d2c3b9e1a07d4d78a4a062e19a5e6ec05\", \"name\": \"675434\", \"namespace\": \"PUBCHEM\"}, {\"bel\": \"a(PUBCHEM:799645)\", \"function\": \"Abundance\", \"id\": \"b1223361448acc2542be17f305955ac74f04032ad0a7df5d197e9e7138a556eb23a8cff6793994a06873888b074dde6cd2b386cebd38caca9956e5fd8e8d6bf5\", \"name\": \"799645\", \"namespace\": \"PUBCHEM\"}, {\"bel\": \"a(PUBCHEM:877863)\", \"function\": \"Abundance\", \"id\": \"93e0bc5d24bc60e63eb38dfdea1d8fa22a7d9ed79c923da54effa48ff2491c5f424bb0fc4e7e60cdf5913ff47e487dd249c68b19126a6c69c1793fd60c6e390b\", \"name\": \"877863\", \"namespace\": \"PUBCHEM\"}, {\"bel\": \"bp(GO:\\\"ATP metabolic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"6fa41f38953b19caed3b9495a93b66582242b79e5ad97c32d96cd971eefd925ee5866079bd60ed0d35fd62f092da34091555cbcb9ddfb3371026649547241370\", \"name\": \"ATP metabolic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"DNA repair\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"61e48d02fce025c0e74544ef7812ed2580696f8d667929f011f513ca271b272c48e05f1d68f23b12d25b4b05a50eabebfd7821be4cbc7b0ec4ac48547d8956f7\", \"name\": \"DNA repair\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"DNA replication initiation\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"9b67b910fa93ce48203a83f38c9a017abbbc64933c6fdccac2193b0bc8ff57ff7400a33b14cd666dfd3c40c9a64e5258aefae2e9270554666278e89bc7a4ab59\", \"name\": \"DNA replication initiation\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"ERAD pathway\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"f04c2c759dab181d5ae68cc2a3da229a239672f171f6922f07887d3ea15f013a818d049805c9cd1d05c529def6e1a5085f2040c721d60c32a09de1aa400680a8\", \"name\": \"ERAD pathway\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"G protein-coupled receptor signaling pathway\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"0bfb10ed37e7e38ee631a12c5e1c701fc801b9513d75e0b4fcb7e5c1e18ffb8fddbaf129d33568c09dad54ae9fae59edea69afd2a6b23197783f117e0cc05809\", \"name\": \"G protein-coupled receptor signaling pathway\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"apoptotic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"1c5172472cbecf29eeb8e86a4cac2d13123fe572356f00e2f98302422560bbda2854e3b1f8fdf85396655393cf5ddb42e0db210c3d3fc146fa358cc8d0ed0254\", \"name\": \"apoptotic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"autophagosome assembly\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"c89c44d07abdeace0ea42e4bf8d32258af4c2a8d95d7b9c27cd0306d2efe69133503f24a6fd40784a4d845f7e0c1a6b0ff04bb029ae9a91dfc8ef483dd4f55c5\", \"name\": \"autophagosome assembly\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"cell cycle arrest\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"924812ea7349584b470a4985c4ce6672a686341bb8b4e1faa0d42f516fa8f28a623f24999bf62553718b59be66d102c493b3a972f4ccb0b7b541af755e35efa2\", \"name\": \"cell cycle arrest\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"cell cycle\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"6094aee83bf2073fe7567b4ba384def1579341a05c17348c519813bb3152436b15f8c1f9857f2cef179021a268ce84b9ebf55383c957560041f4d60a0d20bd4c\", \"name\": \"cell cycle\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"cell death\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"b2ecb9d87645a0a7d5efbe2c9eeeaa14a705a36b6cdf787e071ba334fdd12b4caaf12b88508b99a8974005549b3c8123c9481c5d969630df072082b07e4dc586\", \"name\": \"cell death\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"cell differentiation\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"e378d5bbe8a52a68fc572bd2030fce8979ad5c9d2607670a975071a85c3d9fddb232efc8c4bdec36ff80b89256692aa5f9f3bba798b570d2cb31da7e81e05181\", \"name\": \"cell differentiation\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"cell division\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"138e09942af5fc2acd4076eca7bd3a91b4d4efc84eb0fbb876a985b2e6a01d5d00b9771ed6b007402fb9cb61b1efccebc268d14458c7ece82e84c1696c7e61a6\", \"name\": \"cell division\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"cellular homeostasis\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"7209f7ce26683468aca76761cf299a3284794959fb32b550b526fb435eedf41b142657d93d437ca416cd4080c1af6d9bf6cc31b278ab812390d51be44a030f4a\", \"name\": \"cellular homeostasis\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"cellular protein catabolic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"53e1ce91df4a6c0bb18af8c466ed2a7fb89432f1c6fc27110310e22d3924871064d9c86d62393a54938eaa4711d55d339a13dba33f38db0ac2c32320f6c04811\", \"name\": \"cellular protein catabolic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"cellular response to DNA damage stimulus\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"4284ad530b0893668dc1cc0b671f37103248a01c93f71465f5218968cbf0e84bf0bab5ae642aa8ac6fc2b566d9b73bb9b6fc809c90983672d3f8bc8cbec48386\", \"name\": \"cellular response to DNA damage stimulus\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"cellular response to stress\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"17b440601895ddd41c357a1f0c874ad6aeaa564360ec69b92f35d826edc7f90148d84803628f7bd8da62e6e19cfc294f09fd43348a97fbf57f0b1c21ab37ea48\", \"name\": \"cellular response to stress\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"circadian rhythm\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"823c9520fd21c742b4d3612a62cc33e61c0ba244e727090a3a7c6c7000584c47727a9229704e201c833b26d1a23977fc2d5694105048b58eb8dee37ffb5ca11c\", \"name\": \"circadian rhythm\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"dopamine secretion\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"677a4a705049f2c365df0ce1891506f776505e8e9936b96c1a6dbae1fbfac951848b0de2762d7bcfdb5b6ac451251927ead172a83d29522d73c4f0b51801010c\", \"name\": \"dopamine secretion\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"dopamine secretion, neurotransmission\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"52a41364e5d8b0d9e1cd9d7d77d5afeb6f60e5a594fe5fc80681ad0988708fbb83197c7049f4b9ca9357ed8eeb84b045b66abbead4a7707cd1f5fbe5ec95c2a0\", \"name\": \"dopamine secretion, neurotransmission\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"gene silencing\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"577fd00f3b0654941b30de58e85ec922ff53b061e523ee3213a6b6cd5cf47612ee53f09899c448d3e73377e49c41c56a0b17fd4d4a004dcadda2c8e0a62da606\", \"name\": \"gene silencing\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"homeostatic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"fcd3650900f14c5c732b0192397654225982cb2a69ba5fdbb33f37288228f454543b34332e7c2f7dd7f787d68a0c9f2cd571e0f0f1f3bf240d6e9d4922483119\", \"name\": \"homeostatic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"immune response\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"a56336bcf1d272660c4df62619baeb3275ea70803101c0e7425352a38d156313665dbb269ce986ddf239611b5f71571388596eb6d585ad4217801e83a0c4e377\", \"name\": \"immune response\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"inflammatory response\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"422dfc2db00b1d942862470cbabe1e8312bf97b25050190db5ae19636adae95f4fa18c512574526825bd377b16c2278899435eb759e951ba850ad476e14f9900\", \"name\": \"inflammatory response\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"intracellular transport\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"f356cfd4258ea10054d1fe208e3f6a1bcf3b4778065bc45839b76bd56d1177499d1d09ebb1a8241fd1e4801b51e2a4a287a8d0d04f7b25dc139e38f3cea94fbb\", \"name\": \"intracellular transport\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"long-term memory\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"de64bd41a57dd3d1b89821bbd8bed1e2d510c7633a0ba0703a73d175dddb26e1ef6dd1e7cdc956929dc91258155b11d6e1892b1d1641bdcbd9da10224bdc71d8\", \"name\": \"long-term memory\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"lysosomal protein catabolic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"f691a7068a5f6762a48b8d6afb0c1d23c24debe9f27cf7ae375714bd004dcf730fa27c61f5629045d0621e1e89c94eb6106b92cfc78476363b212c1d3ae72267\", \"name\": \"lysosomal protein catabolic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"neuron apoptotic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"b9dabb1ef70e6265bcd2b24c2109961235bb35268bf9525a7ce468bd3244274273d156fc8c743c001d71896f7e3fc4dd9cf8a2e06ecf33e2f55fba778d2fa6d7\", \"name\": \"neuron apoptotic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"neuron death\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"ad7c90f2bc746a5118759fd1c8857478c02207d574a26faaac9d6e4d6fa4661d8d87446139db0024a4011aae26027d3cabdfba663aec0ac0a8242868efb81dcd\", \"name\": \"neuron death\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"organelle organization\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"9c6be11f82ae0f03d7ebf5b25848a953d87e23f0a4312200ab309b5ae04821b5bf62a96da4e4908d9bf742f121d4dfa380d952735916c04cdf5e3c5365aceb2a\", \"name\": \"organelle organization\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"proteasomal protein catabolic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"324086c86308e796be8d2ae554cb050d6b8e76fee968291bd1fb3369778f50d22bdfa1b56bc1b1987d5c75f119311e55eb2a0b2809f440341177c8fe7b879576\", \"name\": \"proteasomal protein catabolic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"proteasome-mediated ubiquitin-dependent protein catabolic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"e31884054bf49e8c01cd68d025871de0290da5ccc81a412fdbd2a8926cf48c1aeaeeb16165f6d77ef1a7f647fdb4623057028cc40cadb2e5e4eeb5c45e00ae56\", \"name\": \"proteasome-mediated ubiquitin-dependent protein catabolic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein K48-linked ubiquitination\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"5f7fee4106ef49a1a5b6da5206331562bf4aeb815207b71e85da0e4ca0ac1307b6a1e5c8d6fa2331fabc6189179f632a1c1dbbcc7fcaecdb1dc81801aefdbb94\", \"name\": \"protein K48-linked ubiquitination\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein K63-linked ubiquitination\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"d5779ec24dd6bc44c690d1840f41d3ee7d7d45b1d5d048784a224c7a233b7c5df0be70caa0f102f77281864087bb20bba37dec639c79cff8c0f45deabbc52983\", \"name\": \"protein K63-linked ubiquitination\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein catabolic process in the vacuole\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"5d4a135ca3581c772633c3b38b107bb16034674319bed3d8e43167891617788a6975e03a8e8672e86b421f84b63325baf2d5834113fcd01b78c9911fc3c2fb96\", \"name\": \"protein catabolic process in the vacuole\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein catabolic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"c5478dba7831c217ee142c87043a73b4c9f281f05f30ab857ef8fbf822d63360b5e058fdf28a457585667eaa9c68a56b7bc1ed25ed1fc8df72dad4f47d49a8d9\", \"name\": \"protein catabolic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein folding\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"3f283920a665a68c31087027b6be2cdb273deed17a908552364c1e9eb8400b4a849fe1aa46834cda0b7700391db3fe73a7603fc9b3336ee7aaf70deffee39189\", \"name\": \"protein folding\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein polyubiquitination\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"8fd510b27a99cbc0d3ea13a673fe38aba59fab56d49c14e6aca18f639d88d6078e13eaf352f5c81858de53d81c8751e928d0c1191822298ad86685ce7c0b8660\", \"name\": \"protein polyubiquitination\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein quality control for misfolded or incompletely synthesized proteins\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"2069d9480bef5baa2feb783ff61621ec755f61b5f6dd6963697bdb64216ec744cc7dd1df5ad156741a2f97ae062eb8a9dadd15d9076e54eb12e7de500edff6f0\", \"name\": \"protein quality control for misfolded or incompletely synthesized proteins\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein stabilization\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"c63a602d321d8e4a0b7388ac5f989b11a4d0006b52eb83e517dba76aa0b903e8761b9ee2a1b3adab2e0d8ceeafef9801dbb836e170525bad32b562da7a469be6\", \"name\": \"protein stabilization\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein ubiquitination\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"4d1f59fbca964269630b83815375f492f1d355816c023baa3ecb46d3bac2c2e37170b4004ef0251a1c5c207e324112746f7bd3b8ba7744df1a095e57d3f8d684\", \"name\": \"protein ubiquitination\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"protein unfolding\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"4f68c45cc5a04e89f4252f76273e08c604861ea9e18448b3c2f3bef85bd22a179e77932ac9d0c0226ec8c2709fc7a0d33e13ede9274e0cab3ad87e65753799ea\", \"name\": \"protein unfolding\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"replication fork progression beyond termination site\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"fc5f328875baae5a24c0c0a5e08cae4fc3d37f3088a0abd8c58360bd8c419e74e899fea5caa0832614258b1937be92bca7169bd1e66298c73009aa9ec1369723\", \"name\": \"replication fork progression beyond termination site\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"response to endoplasmic reticulum stress\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"5fe897eab892da6b4bbf879af4bd343aa38a7f71abf55f0bbc7df5c1d1163ec36b675abf62ca57521de4c08bf1b23a8b051a1e20bd19d7372df3bc1e24a90af1\", \"name\": \"response to endoplasmic reticulum stress\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"response to misfolded protein\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"52a687039c53465c7fcaa59aa3f2fa116ea5a970f194811f26962e292357b7c7aff63c59c694070bd9bf2478bfa77b8dcca6ddce789397506c9109b1b5b5f155\", \"name\": \"response to misfolded protein\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"response to oxidative stress\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"436a31de7bd3b1e539910821e1366f5e3b2914a38e51e40497edfe37d38d4460558b4b251b2a91eba047246d3eb0861f7d4ee9f868cdcb8c10a8e8115a302f00\", \"name\": \"response to oxidative stress\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"response to unfolded protein\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"e3e22f4bcec73abdeb2d147e96002359845a9d8343531617d15629eae92a306b986c1c6c0064ececf6bc83a4264818904edba114e07c224e711215e37d3c59f0\", \"name\": \"response to unfolded protein\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"retrograde transport, vesicle recycling within Golgi\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"3b45aa98017243c01adccf768494df14fbfe09bc38eedce8728ab083a944f9e46a7e8651193820547fa4cd484bc0f1444711ca17943cd4da414412ac1ca52699\", \"name\": \"retrograde transport, vesicle recycling within Golgi\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"ribonucleoprotein complex biogenesis\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"9ff70e1e03c50e48fa79beb10deba2c1c5fc06ab2f889103e5cf62209f78d9114275a939eb41c7e309f0aa6b18f1ff5e434a6815cac632b5dea783e716514f72\", \"name\": \"ribonucleoprotein complex biogenesis\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"short-term memory\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"925350729cb5007df192273222149c55a1b3766e0fe2baf316fb97d38fe0c72422f8bb9204bb41879c2dd684eae3ac1d3b9248936776899f018fb250a2969e93\", \"name\": \"short-term memory\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"spinal cord development\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"164415713bb4bb45daf6a879cabe51ffbaa343758c23ef27d977c1433871bc1704f932b27956b8d8945706795971e63c6e91a03d076f8721d83d96e4c80d5e1f\", \"name\": \"spinal cord development\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"synaptic transmission, dopaminergic\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"30e4d389cce3682af2cd604d08a33dd5d8aa502d5fda93a9cf7ad8ee4d033ee8e9e72d4fb7082b622fae5d7648457514171c04400da110e5eeee4f6d38b23fd8\", \"name\": \"synaptic transmission, dopaminergic\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"synaptic vesicle transport\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"8b8d69e34abfbe32312eb0ab0f121d348adb58dfdcd7285c3984edcc6370f78c9195e09fe526096f94e4bd138017c0e0a3144c7cf780788a2fc7d38856b0a3d1\", \"name\": \"synaptic vesicle transport\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:\\\"ubiquitin-dependent protein catabolic process\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"3ed4aeb4d82f7dcc8a03e49d3bef5067d73f7e02384fda77512dde746821e34d49741cbb15b6662bac9112b47bf511dd62ab69e3834566f1c987e44bc8f421bc\", \"name\": \"ubiquitin-dependent protein catabolic process\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:aging)\", \"function\": \"BiologicalProcess\", \"id\": \"e656a7a9b8877eca28efc8bcece0149b9f17b643e48c2ae605fb3977fb925968220ed9a29a1649919bd2bdbfd43e6cd082182ead002a6eb840cd3f1e4f57d213\", \"name\": \"aging\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:autophagy)\", \"function\": \"BiologicalProcess\", \"id\": \"f1a3202be460e565f65c1445ee061e99f63cc05f9ab70c5d4d8d93ba180d6a94f65cb8d1ac6c5ba53c0a4d2e153db32135e6a0bffcfdfd4d84e6727594a70b0a\", \"name\": \"autophagy\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:endocytosis)\", \"function\": \"BiologicalProcess\", \"id\": \"d580a74dbe8ecb65280a9e060125da2d040ed480f96615cffc5dc6081dae427c54fe221e576d7002fd949e7d698ebc1d49d78d004671b76e591651723811cfa3\", \"name\": \"endocytosis\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:exocytosis)\", \"function\": \"BiologicalProcess\", \"id\": \"1843850ea1149810f0d6a8bb1ca00abadba005db095807acce7876da2eb434be2c72bd7a68b145f4d992865a5c60ace8380971b0391a51b6cb6b91715ee7f7df\", \"name\": \"exocytosis\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:macroautophagy)\", \"function\": \"BiologicalProcess\", \"id\": \"568e5f70e05a1543c9a1d54019c461ab0802ff3556801ad06f2231e0687a80f2cbd21d12f808f5d72752f7cc8c484e0b32d830256321af323cfd08b1b63cc765\", \"name\": \"macroautophagy\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:proteolysis)\", \"function\": \"BiologicalProcess\", \"id\": \"c5cb63d6669895b29d4c8776c533f45767413a061701e0dc45ab1deae7914dfcd6497d44ae724d2c2a7f68d0e4d2ee8e0a7f134fd9064e1e7518392071562358\", \"name\": \"proteolysis\", \"namespace\": \"GO\"}, {\"bel\": \"bp(GO:signaling)\", \"function\": \"BiologicalProcess\", \"id\": \"924d4b84960d4a0f90bc4c56342d32163fe07e433d9b1f526ad2359e291411462d9267aaf0f53c7487aea54e16ea148eed90fff686cd3cce1196019ddd171930\", \"name\": \"signaling\", \"namespace\": \"GO\"}, {\"bel\": \"bp(HBP:\\\"Alpha-synuclein Oligomerization\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"46aa37327c1b781fcbe9118ce5103d7f524c46b253714de84ada7b9c26758586ed229000c49110824cee37c407cc2f4e6bd1412aa042112105336d5949c581be\", \"name\": \"Alpha-synuclein Oligomerization\", \"namespace\": \"HBP\"}, {\"bel\": \"bp(HBP:\\\"protein aggregation\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"2cf721b2ad0223b1d3317996665098e6b96e5ed6826c70ceaca5a8a47ec2fbb3306fa9a93d4de2c7dec4df779cfe77aae233059d02777580354ef2cdf47822ee\", \"name\": \"protein aggregation\", \"namespace\": \"HBP\"}, {\"bel\": \"bp(HBP:Proteostasis)\", \"function\": \"BiologicalProcess\", \"id\": \"f9272dc303dc1a40e183bb77429a416f78ef2b95b207dfda09c188a5789b1cf6ffcae723cc4a6f351c915509c1e9e99ebc1daab87872ce60a6cb83b2122b39f3\", \"name\": \"Proteostasis\", \"namespace\": \"HBP\"}, {\"bel\": \"bp(HP:Neurodegeneration)\", \"function\": \"BiologicalProcess\", \"id\": \"96f5a3bbd33a722b2760c6448efdaabb70ed3e96434c786a9ad70ca7eb89b9585204c9e8df72a4ab1b5c7f617a36f919bde50523c31467d62a4842b479ddd805\", \"name\": \"Neurodegeneration\", \"namespace\": \"HP\"}, {\"bel\": \"bp(MESH:\\\"Cell Proliferation\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"78774ac09ce22370c2e33a2dbfc63f5c3c0f77150811d4fbd3dbc610251398cf3f904682c0279433d5370f87af967ec9d2ec1989a027e0095363fdfb57151c4a\", \"name\": \"Cell Proliferation\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Endoplasmic Reticulum Stress\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"89273f58f970a9467557f020ba5f5af7f8eb84045d0b1fb2eeba697d56475fcb2dae9019025a1d89fab2cba9466474067ed76af341294164c040dcb7b6e90507\", \"name\": \"Endoplasmic Reticulum Stress\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Energy Metabolism\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"34ba674658457b3dbab614d7c94a9d15246c172e9111b7543b4c643547bd0c6a82222afa3f7da36ef3a10f79f530df4ad0c6d2d70e9be55151d16617e2568018\", \"name\": \"Energy Metabolism\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Growth and Development\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"19bffd21f915c1806aeb512f3553d72b001a54f6eeb865a01622efbfaae4c524567cd8fb0e058a72657ed0851a02af2c462cd8f45efa39a34d363bff127ff01e\", \"name\": \"Growth and Development\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Heat-Shock Response\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"31dc8f3ddeeaf4c3c7bfeb22b006ef703136f225d0245dd2e25811a54455006c283b73928724a81fcf059e97efcaa28b91d798764f37d833e73feda6f8a22456\", \"name\": \"Heat-Shock Response\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Membrane Potential, Mitochondrial\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"a12ba614007068f64a020e97049335ea75c9247ae8d2a11e34342262a474ad5392e47e152574125fc7ca79540925c5815c56a8663bbda1cb3c19bad9012ee130\", \"name\": \"Membrane Potential, Mitochondrial\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Osmolar Concentration\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"ce8a5e1134531cdcf045ef83b41d981165316f91b2fee4a85edbdfc11294df75b2f9856397119547b4e59127cedb8fb050f16ce119ca6dc70d6fd4a22d93d3ac\", \"name\": \"Osmolar Concentration\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Protein Biosynthesis\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"a1901823cdb2e3a674f5a2784cd1ba3c703ab26b2f9cc1687d95637882e85dd33d960b79161b6e160d0ec4cdfb663fe72aa214b36550f5b3952476ce40e141ad\", \"name\": \"Protein Biosynthesis\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Secretory Pathway\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"e4ff8e584bb7acf3d44235d405dca6f4283e8fbc58b37ebcba1a0cf1f834be60626e99d91f1f828e5ba7a2a9f496307ca1bd3641c202e50298e5ceb61aff15b3\", \"name\": \"Secretory Pathway\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Stress, Physiological\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"dcb586ca715ba7eaa753d21a8456da0b8d63fb571f7e66f6fb21ef7e543af9415216c1a9afcbe10308f2845b35d64ee9d180f84ec2e439154136976b4d790291\", \"name\": \"Stress, Physiological\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Synaptic Transmission\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"029ab128c5f88cb19d194601faa91ab7741b2fd933156dd2d47e360ce2f97abea415665dbac7bce169ccbcfd285c1628aacfeb15bb6ed2025876778dcc6b8360\", \"name\": \"Synaptic Transmission\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:\\\"Ultraviolet Rays\\\")\", \"function\": \"BiologicalProcess\", \"id\": \"9165188b1d8dbc3c1f083e7cfafdd8f8e607704a45ef7f600b999fd3bde7657863b7b4ddd7e19337e9552d5f14c58cf1fbddf4925a64da96fe386c7c79b6d112\", \"name\": \"Ultraviolet Rays\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:Aging)\", \"function\": \"BiologicalProcess\", \"id\": \"175e5d777b693461a2f6189ec21aa1f8324f054bc8acc641df82819a4c04776202053094a1c12915bdfd2244a6a5f639b7008b7f8e9a5ffea3c3b8aaa255d1b9\", \"name\": \"Aging\", \"namespace\": \"MESH\"}, {\"bel\": \"bp(MESH:Proteolysis)\", \"function\": \"BiologicalProcess\", \"id\": \"08f053829da37141585f38cef26f94f8bafbf2a652d28dbc4e952f33f072050ade09d03562130b4ee0ada625c0d484d2596c22c2d3a4bd1e5567fa9999c5df2a\", \"name\": \"Proteolysis\", \"namespace\": \"MESH\"}, {\"bel\": \"complex(GO:\\\"MCM complex\\\")\", \"function\": \"Complex\", \"id\": \"2844aa70ac5b4d67b1823329c13a1b59422036f8829c2e59828484998158229e65c50920fe686b189e777cc6172f46db92a374a57bfa2cbc7c0691200425c567\", \"name\": \"MCM complex\", \"namespace\": \"GO\"}, {\"bel\": \"complex(GO:\\\"P-body\\\")\", \"function\": \"Complex\", \"id\": \"a478e6a51e69a6c2d8ebbdd3db3cc0cb8e2cc904982ac9dff519fb34a2ea63bb062b8dfa69d8ecf60c4b3bf6f434458e36be2e648e86e3d648f0a0afbd08569a\", \"name\": \"P-body\", \"namespace\": \"GO\"}, {\"bel\": \"complex(GO:\\\"R2TP complex\\\")\", \"function\": \"Complex\", \"id\": \"86a80e1bc6c5d4912eca8ea2de9f5a7f33b78f5100194f7dfee71cce52b7f67eb1734427884231ab68c9e15dfbca3d67dc15ab238403ad76fda08fd78514e514\", \"name\": \"R2TP complex\", \"namespace\": \"GO\"}, {\"bel\": \"complex(GO:\\\"SCF ubiquitin ligase complex\\\")\", \"function\": \"Complex\", \"id\": \"6264a77df7964c104c34b0b623ce785d4dc4778610447d9e7ae201c4130a625e0cf16226da9367ebf67ee678c1f78322c360a5d4a88c3c8f10f24e2de2762291\", \"name\": \"SCF ubiquitin ligase complex\", \"namespace\": \"GO\"}, {\"bel\": \"complex(GO:\\\"gamma-secretase complex\\\")\", \"function\": \"Complex\", \"id\": \"7bcd9727bed46d51f3ecc01e8051b85695d16ed312b0b88b9f211c2d1b6335e8975d53adf7560f729ada0b8e73b168a0d5a9f25ba95097bc5f5d2b8dd7dcfa8d\", \"name\": \"gamma-secretase complex\", \"namespace\": \"GO\"}, {\"bel\": \"complex(GO:\\\"prefoldin complex\\\")\", \"function\": \"Complex\", \"id\": \"944546ffc1f736181d632041e18c406354f1deda3cf81a6b6c062b73abfdeb7b4d47a6e74cc139644b4d632ec22e434f274be1c8d1ff9cc871efbf73cb0cd706\", \"name\": \"prefoldin complex\", \"namespace\": \"GO\"}, {\"bel\": \"complex(GO:\\\"proteasome complex\\\")\", \"function\": \"Complex\", \"id\": \"5deb6bcfdcfa66f95c4979205b8144cf23a26c8da492c2d4b71750a7f8e440a3d40a37452d67ccbdccfba2bd5cea7bf1bbba3d66e18875bae3fd8abd8d3d68f4\", \"name\": \"proteasome complex\", \"namespace\": \"GO\"}, {\"bel\": \"complex(GO:\\\"proteasome regulatory particle\\\")\", \"function\": \"Complex\", \"id\": \"ef2d3d59558b274a6b70b44eb6e19212eafb23ffb69c8f70940355c47becf42a80bd35c2077a95a855f67ebb3803106e7000320f308d316c36689d36d77bdd44\", \"name\": \"proteasome regulatory particle\", \"namespace\": \"GO\"}, {\"bel\": \"complex(a(CHEBI:\\\"copper(2+)\\\"), p(HGNC:PRNP))\", \"function\": \"Complex\", \"id\": \"aa7371729ac9460c912cb84fe18fa9a7a3d5a8d06b16ce52ee31de37ff7a86c8aa03494037ee59367610a62e7be2d0ae197c2f0314a4f1934c4c7600bd8f9c47\", \"members\": [{\"bel\": \"a(CHEBI:\\\"copper(2+)\\\")\", \"function\": \"Abundance\", \"id\": \"14ead2ae871c8e415828e6ad4287fa4ff903d12c9fa5c12eeb36ac2b73b287beccc5511e4ffc19c059cc45ab16188f560d4d71fa03eefda3cd971f7c87adfbf3\", \"name\": \"copper(2+)\", \"namespace\": \"CHEBI\"}, {\"bel\": \"p(HGNC:PRNP)\", \"function\": \"Protein\", \"id\": \"97023c238092f75f952ae0785caba6d1454099f27405c7e582078f2f49f5ef146e0c8eb3a1c25a63781a21e5d83689e958397e3115d98e65cf8c5a2ad9c7bffd\", \"name\": \"PRNP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(CHEBI:ATP), p(HGNC:UBA1))\", \"function\": \"Complex\", \"id\": \"3083f1f6b8c4144b8042ff40f2836e8b3314d3290f09c7cfca567f30581d2fb0b34f831b382f7aa1fb462869e865e5354aa6dbfc56142903026ac4f8ad131584\", \"members\": [{\"bel\": \"a(CHEBI:ATP)\", \"function\": \"Abundance\", \"id\": \"dbc5553fb6213ed82215c03a89950a37045e23683ffa96b44532f3e75d204cc547a974025c2799c6a189ad0c5045d96b16d1f5f7ac9296473ba1c647499bb3b2\", \"name\": \"ATP\", \"namespace\": \"CHEBI\"}, {\"bel\": \"p(HGNC:UBA1)\", \"function\": \"Protein\", \"id\": \"64cd396bda4fbaa0048a7e4a7856637e4a4f51bf281f9a8c3ad87842bd94e66db417e85ca49c9d10c7c7b2d078492b635d9f9ac5fa6366ff7080fa3943685364\", \"name\": \"UBA1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(GO:\\\"COPI-coated vesicle\\\"), p(HGNC:NUDCD1))\", \"function\": \"Complex\", \"id\": \"0a3cb4066c4ec0efd6b3329b6e65e47fb312fe391c84ef2bb2904d520048f1ef371c33df2883fea090b9f3737eba6e865311ffa279d8f6b47586046a1143ac7a\", \"members\": [{\"bel\": \"a(GO:\\\"COPI-coated vesicle\\\")\", \"function\": \"Abundance\", \"id\": \"444c6d250927ac4a426307982d0dd8b3c7fdfadae8ad670802e92bc610d9c1b724eb5a56d4b15b279abde319bb2a4a34dfa82f49ef62e82bf660e0f8b7e4b457\", \"name\": \"COPI-coated vesicle\", \"namespace\": \"GO\"}, {\"bel\": \"p(HGNC:NUDCD1)\", \"function\": \"Protein\", \"id\": \"d6180e318184dd3e1be35332c0aef252c1fed0fc743184395165ac2856e66fe022ff405f4bc141fa3d8d026ba3caf83057b046560768ff0b22b3a11cb73d96a6\", \"name\": \"NUDCD1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(GO:\\\"SCF ubiquitin ligase complex\\\"), p(HGNC:UBA2))\", \"function\": \"Complex\", \"id\": \"8ae8c90a8b5cebf08b0f001dd16595adcc2ef83dc8b656b67b54dfc6fdd0e0e6d4b7a87a62bf433ef4b8c7b24c2f648dcbb9030398c9d1a0766399c2b4d763db\", \"members\": [{\"bel\": \"a(GO:\\\"SCF ubiquitin ligase complex\\\")\", \"function\": \"Abundance\", \"id\": \"c1c475c3f3fc54317b032cf08f778bf261e7e2bc6d00503f0b70406ba0af3dc40d775fb498dd02f39af90bb1cef72317eb121fdbfaaa9a8919905a30956031fd\", \"name\": \"SCF ubiquitin ligase complex\", \"namespace\": \"GO\"}, {\"bel\": \"p(HGNC:UBA2)\", \"function\": \"Protein\", \"id\": \"cccccfcdcc945288992b69ada8ef0074939d0284397b6662af5d047d9395b52104d31ec76fd70bf1bb9e7e654e1a814f2b7e3bea94b071ab706294ccc4a7e0ed\", \"name\": \"UBA2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(GO:\\\"proteasome complex\\\"), a(MESH:\\\"Inclusion Bodies\\\"))\", \"function\": \"Complex\", \"id\": \"9f5532790e626fbcf2b56bf0082bfe35eaacac71fdfc8a657bad14e192d1f5902d3beff1726880deec4947e74f9e268e16dc104368904b83ebdc2741d8dcb0c4\", \"members\": [{\"bel\": \"a(GO:\\\"proteasome complex\\\")\", \"function\": \"Abundance\", \"id\": \"5a846e71cf1dfd8b03168b68e954fd8718816110f7b45deb9e0db5486385d62729c26d6530e0566519d1b0c506b4d1baa8b4603cb4e6701b049bb7267e9d1144\", \"name\": \"proteasome complex\", \"namespace\": \"GO\"}, {\"bel\": \"a(MESH:\\\"Inclusion Bodies\\\")\", \"function\": \"Abundance\", \"id\": \"2e07919b535d542543efd04274244d18a5133920c150d26ad5a33d7007766e36470eec9d477e60c75b50dcd63af5c95bed51b9ef9a28a4dea4b69a3229017f7f\", \"name\": \"Inclusion Bodies\", \"namespace\": \"MESH\"}]}, {\"bel\": \"complex(a(GO:\\\"proteasome complex\\\"), a(MESH:Proteins))\", \"function\": \"Complex\", \"id\": \"e0171beca3791de64c6b09e7ef0e09473fe92a002b56bf07902cea11f8e3ff5e312da033dd0d0d2db0b4ce69c51471933760c2e962f4d4eb3a9bf471e31e3332\", \"members\": [{\"bel\": \"a(GO:\\\"proteasome complex\\\")\", \"function\": \"Abundance\", \"id\": \"5a846e71cf1dfd8b03168b68e954fd8718816110f7b45deb9e0db5486385d62729c26d6530e0566519d1b0c506b4d1baa8b4603cb4e6701b049bb7267e9d1144\", \"name\": \"proteasome complex\", \"namespace\": \"GO\"}, {\"bel\": \"a(MESH:Proteins)\", \"function\": \"Abundance\", \"id\": \"8b165e851c3ea69aa634bbc6f5137eb6852df9a3878bbd9c138e52900e368f72dbeca872f9d93b2c79fbc1a1124d69b2d52415ae3548bb591e0a0c898416981a\", \"name\": \"Proteins\", \"namespace\": \"MESH\"}]}, {\"bel\": \"complex(a(GO:\\\"proteasome complex\\\"), p(HGNC:BAG6))\", \"function\": \"Complex\", \"id\": \"ace801426330e6298bb0563ad98097fc0ba155f5be7816d7a5e332e611c435e8c3f0ffeed90ccf3495bef29a0ad8313074201e88117168ce3fd35ca25974c6cb\", \"members\": [{\"bel\": \"a(GO:\\\"proteasome complex\\\")\", \"function\": \"Abundance\", \"id\": \"5a846e71cf1dfd8b03168b68e954fd8718816110f7b45deb9e0db5486385d62729c26d6530e0566519d1b0c506b4d1baa8b4603cb4e6701b049bb7267e9d1144\", \"name\": \"proteasome complex\", \"namespace\": \"GO\"}, {\"bel\": \"p(HGNC:BAG6)\", \"function\": \"Protein\", \"id\": \"d816a85df9cca7f30b8bfb4ef5797de2db3274d7d71233acc42d164ca404c4df2ba6b594c4aec1ea1205676790a8350dbda3ebc77fb4482c1ff78d0189676f8a\", \"name\": \"BAG6\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(GO:\\\"proteasome complex\\\"), p(HGNC:PRKN))\", \"function\": \"Complex\", \"id\": \"38013bb74e4deb16517768831a9872487cc197cff874ee5b5fb54ab5a7ec203f71c1a6fb22b4e94ee470b0fecdcaf2af18e66b450cf9684e0d3c1b435e3686aa\", \"members\": [{\"bel\": \"a(GO:\\\"proteasome complex\\\")\", \"function\": \"Abundance\", \"id\": \"5a846e71cf1dfd8b03168b68e954fd8718816110f7b45deb9e0db5486385d62729c26d6530e0566519d1b0c506b4d1baa8b4603cb4e6701b049bb7267e9d1144\", \"name\": \"proteasome complex\", \"namespace\": \"GO\"}, {\"bel\": \"p(HGNC:PRKN)\", \"function\": \"Protein\", \"id\": \"c129e31246d9b635f2d39f8a0d20e11d29724b9888bc1c35e5b5f5eb721f42a8ead8ccee052e21a3c178f79c19d2fecb3360bd35d0a89f449b2d05af14ae324f\", \"name\": \"PRKN\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(GO:\\\"proteasome complex\\\"), p(HGNC:UCHL5))\", \"function\": \"Complex\", \"id\": \"0f735dcde4c39b0ed04a1102ee6ffdaa88998c9ff5025d99209d98002db0bbd559426c00e4082b7001d5b02ef684d661899e2b81a013b6b787a4a57220384979\", \"members\": [{\"bel\": \"a(GO:\\\"proteasome complex\\\")\", \"function\": \"Abundance\", \"id\": \"5a846e71cf1dfd8b03168b68e954fd8718816110f7b45deb9e0db5486385d62729c26d6530e0566519d1b0c506b4d1baa8b4603cb4e6701b049bb7267e9d1144\", \"name\": \"proteasome complex\", \"namespace\": \"GO\"}, {\"bel\": \"p(HGNC:UCHL5)\", \"function\": \"Protein\", \"id\": \"b5a193ea1cad1944f5675ad7e1e79245b77a325d97d35e38b3a27e01d091a992fdd94b76659698ad52b5b3112f0acbd8055793e27e83adfe760d4d72046ee2c5\", \"name\": \"UCHL5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(GO:\\\"proteasome complex\\\"), p(HGNC:USP14))\", \"function\": \"Complex\", \"id\": \"6f318fe8d4b197309d8861f43debb6669251491c7392bb9b15ba8aa792f8a0fa47c42647e26aa4a6794af6458864e2cabd30794f33cea707528d9f7e7ce348fa\", \"members\": [{\"bel\": \"a(GO:\\\"proteasome complex\\\")\", \"function\": \"Abundance\", \"id\": \"5a846e71cf1dfd8b03168b68e954fd8718816110f7b45deb9e0db5486385d62729c26d6530e0566519d1b0c506b4d1baa8b4603cb4e6701b049bb7267e9d1144\", \"name\": \"proteasome complex\", \"namespace\": \"GO\"}, {\"bel\": \"p(HGNC:USP14)\", \"function\": \"Protein\", \"id\": \"1470a3d143a2fd5929b833f4f8c5e0881731040826296bfe6062bd3ff1474e282150885ab09707960d7a54489ed5c13cf8251602f437c10c26dc5b0ca583a960\", \"name\": \"USP14\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(GO:\\\"proteasome complex\\\"), p(MESH:Proteins, pmod(Ub)))\", \"function\": \"Complex\", \"id\": \"5cac06a8f6c43854fdd0ae73cdc588da22e2a274c029e6f3ad61828e63f4edc354e3c787af2778825e0d176a1aa9a0d42b381a6f90ecd00e8f15578b07807ba0\", \"members\": [{\"bel\": \"a(GO:\\\"proteasome complex\\\")\", \"function\": \"Abundance\", \"id\": \"5a846e71cf1dfd8b03168b68e954fd8718816110f7b45deb9e0db5486385d62729c26d6530e0566519d1b0c506b4d1baa8b4603cb4e6701b049bb7267e9d1144\", \"name\": \"proteasome complex\", \"namespace\": \"GO\"}, {\"bel\": \"p(MESH:Proteins, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"eec7827eaf9a8c63740d8caddb124f2f9b407f08cff90cff9b204cb3886d1f03dbc8af83ba8a0c83a87b0e7d0803537125ed0137e951a2d38e656efeac1ba0f2\", \"name\": \"Proteins\", \"namespace\": \"MESH\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}]}, {\"bel\": \"complex(a(HBP:\\\"alpha-synuclein aggregates\\\"), p(HGNC:PSMC4))\", \"function\": \"Complex\", \"id\": \"0f324991cd65b205cb9716dce01b54496132f90960151765ad11d75a09496932756f4f5ae610fa177b69eadfb23773218214c815141e3db1cfef992c6e220c65\", \"members\": [{\"bel\": \"a(HBP:\\\"alpha-synuclein aggregates\\\")\", \"function\": \"Abundance\", \"id\": \"4ffe86a09eab120b36e016ef7b19c9d01be6656ede07fd078714196fcc814ae0586e60fc52bb1a087f53639ba2004c175d46d511472d216e386711c2d05dcb21\", \"name\": \"alpha-synuclein aggregates\", \"namespace\": \"HBP\"}, {\"bel\": \"p(HGNC:PSMC4)\", \"function\": \"Protein\", \"id\": \"74ba82c3efbb95f72a8beb19b2c8b389881226f550ccab8e4e87dbd9dadf162e2bda7c9574f250739e0c2bfb4856e56ed3af271f5b38938ba29d0e7dd0821419\", \"name\": \"PSMC4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(HBP:\\\"protein aggregates\\\"), a(MESH:Neurons))\", \"function\": \"Complex\", \"id\": \"71bb7d7aff9ec050650b844a40d80e0a16dbd98b808938179a953ffee8e801708d11d6286cfe6757b06fa54d1b44a23df70707ab42ddd853014b9121d6e61387\", \"members\": [{\"bel\": \"a(HBP:\\\"protein aggregates\\\")\", \"function\": \"Abundance\", \"id\": \"533b3e60c1750c5e68afd65f806826d6270b7b71fb004dcfdec5117162a8e42668bd32008dfbc8e982d0c9632fa5faa6a7ecd024b6841f6c35e563e9877da786\", \"name\": \"protein aggregates\", \"namespace\": \"HBP\"}, {\"bel\": \"a(MESH:Neurons)\", \"function\": \"Abundance\", \"id\": \"130131072f276d163b9e361a4ca4814f1d254907d297db502ccb4f6e75dff10db1f2b384bb435c9b46e91310d585aea1db3108e00905a31bb1388ccda1f0c643\", \"name\": \"Neurons\", \"namespace\": \"MESH\"}]}, {\"bel\": \"complex(a(MESH:\\\"Argonaute Proteins\\\"), p(HGNC:PPP5C))\", \"function\": \"Complex\", \"id\": \"474710e74774673eb83324157036d3f34cc4c5d724fdb1f5f8d056b060dc63e3a730c3ab8bddcbba3ebae0cfc382951e4d1423916de0caeff17c1c74ecaa0e84\", \"members\": [{\"bel\": \"a(MESH:\\\"Argonaute Proteins\\\")\", \"function\": \"Abundance\", \"id\": \"7e269d576699e55ef71f7643ab74467f6c1d8cabb797d31c0d04d68c0f21095765d158babf289ba393d644dc768e97747781bbd6b16eccaf43afbd37f188828e\", \"name\": \"Argonaute Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:PPP5C)\", \"function\": \"Protein\", \"id\": \"fb42b597325b4b19c18f87893065075af732edf8113519b1b370391d340983fca2da6f260b522019521ec0431bffff6a1b0fd09594442394f300fb69a55f70f4\", \"name\": \"PPP5C\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:\\\"Argonaute Proteins\\\"), p(HGNC:PTGES3))\", \"function\": \"Complex\", \"id\": \"a2899d28d156097ceb25faba2430916850da3a4c11dea1a9671b5ca1991d976210087697d3aca8d9f3eaf38ebd6831e232b23c945a31532ca26a562051602ddb\", \"members\": [{\"bel\": \"a(MESH:\\\"Argonaute Proteins\\\")\", \"function\": \"Abundance\", \"id\": \"7e269d576699e55ef71f7643ab74467f6c1d8cabb797d31c0d04d68c0f21095765d158babf289ba393d644dc768e97747781bbd6b16eccaf43afbd37f188828e\", \"name\": \"Argonaute Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:PTGES3)\", \"function\": \"Protein\", \"id\": \"743fd8f60493bef225875a48d1e2b407ba42f50f44599aad5c556c443395a0f89e397754ace47bfc9433603285bf7499f4ddf8a568b10821a3c260f508c7d69a\", \"name\": \"PTGES3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:\\\"Inclusion Bodies\\\"), a(MESH:Ubiquitin))\", \"function\": \"Complex\", \"id\": \"cbf30c253dff74a610c94726a5282d1ad7f80bab7af6ceeebad613ea85a99aa98dc03fda3f943dd882399732fc49f2a966143ab3da5d0da2a7a6dc07c34656d8\", \"members\": [{\"bel\": \"a(MESH:\\\"Inclusion Bodies\\\")\", \"function\": \"Abundance\", \"id\": \"2e07919b535d542543efd04274244d18a5133920c150d26ad5a33d7007766e36470eec9d477e60c75b50dcd63af5c95bed51b9ef9a28a4dea4b69a3229017f7f\", \"name\": \"Inclusion Bodies\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}]}, {\"bel\": \"complex(a(MESH:\\\"Molecular Chaperones\\\"), a(MESH:Proteins))\", \"function\": \"Complex\", \"id\": \"456886b366bf36b53e70b34e4f04ee280514166d0964472eb4b8cba78e450cec886c49ba5503aff35134652ff08c8a82d4ff5f740b9ef7ac79cec99c8dd8aae3\", \"members\": [{\"bel\": \"a(MESH:\\\"Molecular Chaperones\\\")\", \"function\": \"Abundance\", \"id\": \"cbd4d8183b7cd578b96afa148739bb4ae10720d38c4936bc957976341d71ff395011e8e37ffcd1b58bfee79d1fe5a0b7306d8c6555580cec4dcc22fa2949a56c\", \"name\": \"Molecular Chaperones\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Proteins)\", \"function\": \"Abundance\", \"id\": \"8b165e851c3ea69aa634bbc6f5137eb6852df9a3878bbd9c138e52900e368f72dbeca872f9d93b2c79fbc1a1124d69b2d52415ae3548bb591e0a0c898416981a\", \"name\": \"Proteins\", \"namespace\": \"MESH\"}]}, {\"bel\": \"complex(a(MESH:\\\"Molecular Chaperones\\\"), p(HGNC:HSF1))\", \"function\": \"Complex\", \"id\": \"bc59f2e91149f2137768f8ea956d9cdbe656720262e25a2c5bab90d504d06ef9292a16bc060367c5b323a9713a0be6a29e92a312b7434aba4296a24e3d0f546e\", \"members\": [{\"bel\": \"a(MESH:\\\"Molecular Chaperones\\\")\", \"function\": \"Abundance\", \"id\": \"cbd4d8183b7cd578b96afa148739bb4ae10720d38c4936bc957976341d71ff395011e8e37ffcd1b58bfee79d1fe5a0b7306d8c6555580cec4dcc22fa2949a56c\", \"name\": \"Molecular Chaperones\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:HSF1)\", \"function\": \"Protein\", \"id\": \"f14348a34dab846dcd69f4e44f9229a90bd3a44e5ddbcef4331d61dc959cb6e1aec7c1210063cb9d6f140de4ab55d0aa21cd9176aa9a75bd97939f364145b7b6\", \"name\": \"HSF1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:\\\"Protein Kinases\\\"), p(HGNC:CDC37))\", \"function\": \"Complex\", \"id\": \"c4b7f83402ab51ed1cad39f66b530dcdb93b3165966e76df3ba3d8ba69618e3b079d888efb1a3ec538ddc0587e8de978e397ef989e8c2ff809c0593ea24b7548\", \"members\": [{\"bel\": \"a(MESH:\\\"Protein Kinases\\\")\", \"function\": \"Abundance\", \"id\": \"bcc3ab5135893f48487ec8b16c65ea8f2f3403ba605039eda51558927532d79f188b700478c499806780ed8630bef6e8a71842549089884ee74a72fa1130b0d1\", \"name\": \"Protein Kinases\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:\\\"Protein Kinases\\\"), p(HGNC:HSP90AB1))\", \"function\": \"Complex\", \"id\": \"7ac20e71d4932be609bbe88a98296527c20141c725bde59d825d29e4fbf5ed4ff1c70170b56366bae4722f45b9684df3735ba5c4650b3caed934acd66e0d6921\", \"members\": [{\"bel\": \"a(MESH:\\\"Protein Kinases\\\")\", \"function\": \"Abundance\", \"id\": \"bcc3ab5135893f48487ec8b16c65ea8f2f3403ba605039eda51558927532d79f188b700478c499806780ed8630bef6e8a71842549089884ee74a72fa1130b0d1\", \"name\": \"Protein Kinases\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:HSP90AB1)\", \"function\": \"Protein\", \"id\": \"6aa56d18c328e87c34e870f7b02913e5d6efc404b4ceb714fa7b67f3bac9a90781af94a70ebfc3b8340d7a663779c93ee9be4635ee5e56db036a319e57fa7ffc\", \"name\": \"HSP90AB1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:\\\"Tacrolimus Binding Proteins\\\"), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"55315d0505706115de2a6bf4a959d56dc9d2f5f3d21faa2479d08d1034f92f40fb062b96403b88305badb2c8a108ec524df12176e66f2d84148f8bbccfbd5b5a\", \"members\": [{\"bel\": \"a(MESH:\\\"Tacrolimus Binding Proteins\\\")\", \"function\": \"Abundance\", \"id\": \"086c968a8424d50ffd1c64fb3355f9894f1de4449217eeae141de1db49834e08c428a1682b94d06bc68abbd411afc41aa59da39c0540fe48addb1e437573eb34\", \"name\": \"Tacrolimus Binding Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(a(MESH:Proteins), a(MESH:Ubiquitin))\", \"function\": \"Complex\", \"id\": \"24523bf7d8e8c79352c002451a98e08ee55b20134573ea9c4cb7cdea943e76dfa681ede15ad608fafa3d899a72cedea7e94139831fb160d524342646a2af1000\", \"members\": [{\"bel\": \"a(MESH:Proteins)\", \"function\": \"Abundance\", \"id\": \"8b165e851c3ea69aa634bbc6f5137eb6852df9a3878bbd9c138e52900e368f72dbeca872f9d93b2c79fbc1a1124d69b2d52415ae3548bb591e0a0c898416981a\", \"name\": \"Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}]}, {\"bel\": \"complex(a(MESH:Proteins), a(MESH:Ubiquitin), p(HGNC:UBA2), p(HGNC:UBA3))\", \"function\": \"Complex\", \"id\": \"e2bf9a70f6cf26d9d737066578fd7233344f5363286c0f0f4e4b8d51d47a5956bd564817ec11999ccaf24677483bd432b7eecb9cf836b804b7aba937774841fc\", \"members\": [{\"bel\": \"a(MESH:Proteins)\", \"function\": \"Abundance\", \"id\": \"8b165e851c3ea69aa634bbc6f5137eb6852df9a3878bbd9c138e52900e368f72dbeca872f9d93b2c79fbc1a1124d69b2d52415ae3548bb591e0a0c898416981a\", \"name\": \"Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:UBA2)\", \"function\": \"Protein\", \"id\": \"cccccfcdcc945288992b69ada8ef0074939d0284397b6662af5d047d9395b52104d31ec76fd70bf1bb9e7e654e1a814f2b7e3bea94b071ab706294ccc4a7e0ed\", \"name\": \"UBA2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBA3)\", \"function\": \"Protein\", \"id\": \"06940713789ef5ef150380929d211df089884400cfe5e265b1919f01b29f50de605ffdd0a13361cf8c02c6905a425c4c8bc6921ee25566c2b4f54f9f2b44270f\", \"name\": \"UBA3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Proteins), a(MESH:Ubiquitin), p(HGNC:UBA3))\", \"function\": \"Complex\", \"id\": \"06c880522a57ba7c5d25f2b549ea8269713875f833402e0068b287567845aee1de6ebb6349877422d832c02645a53318da9dfc027b6f6da7d3495aecf4a46bac\", \"members\": [{\"bel\": \"a(MESH:Proteins)\", \"function\": \"Abundance\", \"id\": \"8b165e851c3ea69aa634bbc6f5137eb6852df9a3878bbd9c138e52900e368f72dbeca872f9d93b2c79fbc1a1124d69b2d52415ae3548bb591e0a0c898416981a\", \"name\": \"Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:UBA3)\", \"function\": \"Protein\", \"id\": \"06940713789ef5ef150380929d211df089884400cfe5e265b1919f01b29f50de605ffdd0a13361cf8c02c6905a425c4c8bc6921ee25566c2b4f54f9f2b44270f\", \"name\": \"UBA3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(HGNC:CDC34))\", \"function\": \"Complex\", \"id\": \"d06785fb36fe5d0e8a0ff2c87af496a5d3b121927e47b82acb364c741711d2e59a52307e182b5537f1dcc8afe1c6232c2c6a924ff07128d7c2d0bc33a24e8f9b\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:CDC34)\", \"function\": \"Protein\", \"id\": \"244a2d047b94d7624ede94116364dcce34711ec18c6423615f516b755ebfe7456713942ac905d3043093e8de74af3032a68441580999f633f5c1340bee599c94\", \"name\": \"CDC34\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(HGNC:PSMC3))\", \"function\": \"Complex\", \"id\": \"4d7720d789c9bbeb440c3c71629f2802ee1023fb588823b665ab331c700480ea510fc5200916ded075c250f40553217831d1a0cad36129a4af4ac764ce02c310\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:PSMC3)\", \"function\": \"Protein\", \"id\": \"9fb3264a339c433f959e3667b96bc9d4d83ff7acc74f284b13799f0e73740845fea308b2753e6da353d8aeb98c270b64333b5fb9652f29696d3f6c9925de5a6b\", \"name\": \"PSMC3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(HGNC:PSMD4))\", \"function\": \"Complex\", \"id\": \"8ec42e40c5d017333364ecf3bb1e99decd279e05259c030224ee9fe66c6224dff433148a7da9672c14ef7ba53ad81d2a0b7713923832aa68308f6324d70c8bca\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:PSMD4)\", \"function\": \"Protein\", \"id\": \"d9d04480e2882891bc3719d84ddcda93272fc6d6bc378b44783df20c69bd4674d4f7a23967975dce3b9b16e5ffcbee22b2e15589e3609717df69409ffc5995b3\", \"name\": \"PSMD4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(HGNC:UBA1))\", \"function\": \"Complex\", \"id\": \"9b325d29976871e7e50dc6d94c70948160e4b9ec27b09214a24f971de6849327ce0539074ca33a066d6e6538b3cdcc3aa0f9a2a1913271be09351f4dd683eb33\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:UBA1)\", \"function\": \"Protein\", \"id\": \"64cd396bda4fbaa0048a7e4a7856637e4a4f51bf281f9a8c3ad87842bd94e66db417e85ca49c9d10c7c7b2d078492b635d9f9ac5fa6366ff7080fa3943685364\", \"name\": \"UBA1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(HGNC:UBA2))\", \"function\": \"Complex\", \"id\": \"2f6dfcbae273ee6444907a80d433248d55b848b78aaa8a488599b2e38c71d5afc2ff5da8ad4dd1a89d03d1b252a8778d7246581cec8e3f2de2fef1213e536618\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:UBA2)\", \"function\": \"Protein\", \"id\": \"cccccfcdcc945288992b69ada8ef0074939d0284397b6662af5d047d9395b52104d31ec76fd70bf1bb9e7e654e1a814f2b7e3bea94b071ab706294ccc4a7e0ed\", \"name\": \"UBA2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(HGNC:UBA3))\", \"function\": \"Complex\", \"id\": \"ec194a9db4dcc0437b73e2725af20dab68a1a5937619af6a47ad854a7d1d14231da7bfaa55ec7e6a23192b171e9bfe8534fb6918728402da16b04bf9fad4d518\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:UBA3)\", \"function\": \"Protein\", \"id\": \"06940713789ef5ef150380929d211df089884400cfe5e265b1919f01b29f50de605ffdd0a13361cf8c02c6905a425c4c8bc6921ee25566c2b4f54f9f2b44270f\", \"name\": \"UBA3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(HGNC:UBE2K))\", \"function\": \"Complex\", \"id\": \"f8c85aa56baf3458f29d9f9f2ac0331c6d269078b2c03b29f94c5dccbb6302726b774695b7b2fb3a1ee5af5afb89932caee8123ecc7c36426e9742fbfc7cf823\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:UBE2K)\", \"function\": \"Protein\", \"id\": \"c65a42418b44435130fbd16f310c20ebdaca221fe9bafd257c127aeafcbe956cd28f559daf152849967c36b28085274b463a1d1c8668067f995583c16fa835c4\", \"name\": \"UBE2K\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(HGNC:UBE2S))\", \"function\": \"Complex\", \"id\": \"35569770479422bf800f9523ab4889e0adf9f33b42bd290bb7580c5cec55ab50a0784bfb77cb643f5ef28b114dca06c39d20e07e460e01cfaf6c16349edae8bc\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(HGNC:UBE2S)\", \"function\": \"Protein\", \"id\": \"4b11e657c01428774f37a866ef7a12130fb07de9c13f37dc46f252bc15364c63dc8b935d203884853f64cf870ccacded4e641482b5dc936fdb7219f929d3ded2\", \"name\": \"UBE2S\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(INTERPRO:\\\"HECT domain\\\"))\", \"function\": \"Complex\", \"id\": \"9389e122a855119f0a1b6a8dc449517b8e0b3d0521f933cbcc101c8213ea5ff3b18e3ff39578f9d36f23ad34ee071d9a371d0c945d6989a495adc4e207d13722\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(INTERPRO:\\\"HECT domain\\\")\", \"function\": \"Protein\", \"id\": \"cef5748cf8a907e796306598bab98dbdb24ad47558c3c1d71b3cb6a9f428746e69d2bf05c697005a8fe2e6ee0bf2419f256a6be449dfc685108ca540b0589176\", \"name\": \"HECT domain\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(a(MESH:Ubiquitin), p(MESH:Proteins, pmod(HBP:misfolding)))\", \"function\": \"Complex\", \"id\": \"48f2d31bf3453cd41d273ee982a9c05e14c819fe1a84faae80ca41b507ccea5bb9e5f99519ba6e3a67f15b1ecc98dca161a39e54b05fa277f1b53df4fb8acb3a\", \"members\": [{\"bel\": \"a(MESH:Ubiquitin)\", \"function\": \"Abundance\", \"id\": \"d52f4bae02d9b28ad0bf343e71172d16e96d34504d998cb580daa40a421624b7379a23ad54be6da81df2e2fe7442ffe7a6972e6a3ac2dadb5bda6ae422b99956\", \"name\": \"Ubiquitin\", \"namespace\": \"MESH\"}, {\"bel\": \"p(MESH:Proteins, pmod(HBP:misfolding))\", \"function\": \"Protein\", \"id\": \"12fefccac94d80506ac923f62fc88eb55460550bfb6d4133c4832f7b198cfa89f25ec8b60b38e6bb207b6c59de82efe473a6d5859342c0e0a47458e4c3357e96\", \"name\": \"Proteins\", \"namespace\": \"MESH\", \"variants\": [{\"identifier\": {\"name\": \"misfolding\", \"namespace\": \"HBP\"}, \"kind\": \"pmod\"}]}]}, {\"bel\": \"complex(p(FPLX:HSP90), p(HGNC:POLR3A))\", \"function\": \"Complex\", \"id\": \"4b8a8a2ff66916f5f70ecf34d2208f9e3920df935dcf692aa00b715661e6177ccb2d13c6ef9c73b2626f46835bdda947f4234ee44a414c241bab2563a6945ea8\", \"members\": [{\"bel\": \"p(FPLX:HSP90)\", \"function\": \"Protein\", \"id\": \"a5bdfe1366faea602e03fefece5805427ae4af29a007d93291e6224dc74a8cab597169f580be49b50b4c24e83fa743fefa44549edb827a4dd531224d7d373245\", \"name\": \"HSP90\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(HGNC:POLR3A)\", \"function\": \"Protein\", \"id\": \"5a2f78224b5ec36c7ecf6811f7f518474182466219efba00f1c50fdc71291179f22f7efb956050450e1c7b483e38e4bdcad8c05841c62ac3d342feb666b3d3f9\", \"name\": \"POLR3A\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(FPLX:HSP90), p(HGNC:RPAP3))\", \"function\": \"Complex\", \"id\": \"8aacbcf72850e4e6a0ad15dae5c7e5e0a2b71398402ce23108160d5d5a3c4653f98b85c8fee47047242eb8c5408e6766d4d167ac75b6bd9e7fc82ff56878ada3\", \"members\": [{\"bel\": \"p(FPLX:HSP90)\", \"function\": \"Protein\", \"id\": \"a5bdfe1366faea602e03fefece5805427ae4af29a007d93291e6224dc74a8cab597169f580be49b50b4c24e83fa743fefa44549edb827a4dd531224d7d373245\", \"name\": \"HSP90\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(HGNC:RPAP3)\", \"function\": \"Protein\", \"id\": \"ef7daf05f2028269dc55b8aa4b4e66ff94062cbf2094960d9a73e92ab0f916511ed78bb32cbe8790b821392511a87bbb200a4b405f3d138b5e7573e77a291edd\", \"name\": \"RPAP3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(FPLX:HSP90), p(HGNC:STUB1))\", \"function\": \"Complex\", \"id\": \"ce20a2d4767c36314923f60070597d720e2ee30d6a5239221aa6a314cc717e6c6c6ab0eac21eafc624d429056c6e066b7a11654d5650fe5f2e0fbb0fb099e4a8\", \"members\": [{\"bel\": \"p(FPLX:HSP90)\", \"function\": \"Protein\", \"id\": \"a5bdfe1366faea602e03fefece5805427ae4af29a007d93291e6224dc74a8cab597169f580be49b50b4c24e83fa743fefa44549edb827a4dd531224d7d373245\", \"name\": \"HSP90\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(HGNC:STUB1)\", \"function\": \"Protein\", \"id\": \"7edf63ec4c2eaacc63944e79144be59c6ded86334f97e772d1e6ccbca7065106451bd7861e8acfbda8051ed22ecf6451dd68a33a35fc2d3b91083a48b53e1c68\", \"name\": \"STUB1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(FPLX:HSP90), p(HGNC:URI1))\", \"function\": \"Complex\", \"id\": \"38a1e8c0f4d1171deae85690f48826858af1c55f355a9c6a3ef58dd46c4ba3e9740c67d09579839bca5a11b4d5328ce3a3db6129ddc535fbcb998a221ae6ba01\", \"members\": [{\"bel\": \"p(FPLX:HSP90)\", \"function\": \"Protein\", \"id\": \"a5bdfe1366faea602e03fefece5805427ae4af29a007d93291e6224dc74a8cab597169f580be49b50b4c24e83fa743fefa44549edb827a4dd531224d7d373245\", \"name\": \"HSP90\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(HGNC:URI1)\", \"function\": \"Protein\", \"id\": \"c6e00b9b0d57bbd66769e285df5faaae0d71428ce82ea1ad653bd5787ee832b60418c9b9939a61933442465a6b377da81a45cf6c764e558aa1ec43a129963b75\", \"name\": \"URI1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(FPLX:HSPA), p(HGNC:DNAJB1), p(HGNC:HSPH1))\", \"function\": \"Complex\", \"id\": \"9f07d89f83bad049476a6f19b415cc6367f5d731453f93f165f3096fcae5c7ec6cec54fb942a1626043aa7f9e60eab5c8c94d39d61ff90a498d984271fdfde16\", \"members\": [{\"bel\": \"p(FPLX:HSPA)\", \"function\": \"Protein\", \"id\": \"c293d8f843520dae6cba835a86c0e958d54d4dad9658a8281d9540b21d8e39272f2548fe5c429cd97d5d9a3755643b8dc346c2aecf00d7d53ab3914574cbf62d\", \"name\": \"HSPA\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(HGNC:DNAJB1)\", \"function\": \"Protein\", \"id\": \"34ef35309926dae000c9fe717ab665b294d3130de5a7c627cf49c030f267fa793f0903f6b011359bf5e33ceced49efec114bdd891dc1b45b0850aa3c00b7996b\", \"name\": \"DNAJB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPH1)\", \"function\": \"Protein\", \"id\": \"36c67c1ca85967b0146e9447a9c41d71d942ad6468b32ae76033bafdc4254c47ea75642522d1f8a1d8c9c4f5c16fd899ad66848ace8d7f1af90aa366061346ae\", \"name\": \"HSPH1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ABL2), p(HGNC:CDC37))\", \"function\": \"Complex\", \"id\": \"4b3c134f4a2beff156a8c2f8378b35d4c2f309f80d802fe89f5d65626654e8c279f96aaa41e5abbd70c30575fb9779aaad4815b72e339a3b0fd5e8f39bc2e4f3\", \"members\": [{\"bel\": \"p(HGNC:ABL2)\", \"function\": \"Protein\", \"id\": \"2e0c74df09de6b5dd9ddad613346ae4b0f4c36d8ab26d1adb661e4b9570e2cbf006e24a5a3e473629b38ebc7732a6f0d4638c1f16d0a6a518fafd980a736fa3f\", \"name\": \"ABL2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ABL2), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"1132484fc2491ba19f478a43586fa3a6332b0e0fb08c7a22e435563e63bb4d922cb9cee2357505197716e94c9192a3cfcb1f7e297a9587a37b59065e566a240a\", \"members\": [{\"bel\": \"p(HGNC:ABL2)\", \"function\": \"Protein\", \"id\": \"2e0c74df09de6b5dd9ddad613346ae4b0f4c36d8ab26d1adb661e4b9570e2cbf006e24a5a3e473629b38ebc7732a6f0d4638c1f16d0a6a518fafd980a736fa3f\", \"name\": \"ABL2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ADRM1), p(HGNC:PSMA5))\", \"function\": \"Complex\", \"id\": \"8f62ed2a0ffc8247149497fb035aa3df9ad41b829082e9832547080947417391c5c851762eb4e5e3b29782739c1e13e4d4c5403c10c5406ce7fb6c400cf4fc63\", \"members\": [{\"bel\": \"p(HGNC:ADRM1)\", \"function\": \"Protein\", \"id\": \"0cf64c1fe24a828c985c4b876d618f54e69000ec1e8b50766c848a00d34905f0ef576102bd3ffbf657fffd8fa2e4f90db5c0f3ea29c547a7346e3d8ccc6dfad8\", \"name\": \"ADRM1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMA5)\", \"function\": \"Protein\", \"id\": \"edfb7034424d48885d2faeda9a9f7a189ba15685eeff7d60117fc5be87b14c91591eb0ca325a97c80efaf3107919e5300ccdc936756858ee9f30ea582540a376\", \"name\": \"PSMA5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ADRM1), p(HGNC:PSMC1))\", \"function\": \"Complex\", \"id\": \"0cb3508f20536500893429780994a5990f2fe1fe04c004de95f4953fe5ca33e443a74fc484f946ea17e75a0e794fac725739d72152a5165697c3e98f742d7ef6\", \"members\": [{\"bel\": \"p(HGNC:ADRM1)\", \"function\": \"Protein\", \"id\": \"0cf64c1fe24a828c985c4b876d618f54e69000ec1e8b50766c848a00d34905f0ef576102bd3ffbf657fffd8fa2e4f90db5c0f3ea29c547a7346e3d8ccc6dfad8\", \"name\": \"ADRM1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMC1)\", \"function\": \"Protein\", \"id\": \"51ff2eb19418491681267097da8216669704f5f3cd3cf8758df1d54037a14ef70b81e8697bafd1d9feb2684a2ec9c1fd192a193b2c3744b6bddcab2cf824f518\", \"name\": \"PSMC1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ADRM1), p(HGNC:PSMC1), p(HGNC:PSMD4))\", \"function\": \"Complex\", \"id\": \"f379260fe0452ae354f0d7676aaf80a3df68e8512f6762573b5979101fa0fc73a117f78990101a75a6e42362e3793e0ba5209bcd80600927600974acb1e6c91b\", \"members\": [{\"bel\": \"p(HGNC:ADRM1)\", \"function\": \"Protein\", \"id\": \"0cf64c1fe24a828c985c4b876d618f54e69000ec1e8b50766c848a00d34905f0ef576102bd3ffbf657fffd8fa2e4f90db5c0f3ea29c547a7346e3d8ccc6dfad8\", \"name\": \"ADRM1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMC1)\", \"function\": \"Protein\", \"id\": \"51ff2eb19418491681267097da8216669704f5f3cd3cf8758df1d54037a14ef70b81e8697bafd1d9feb2684a2ec9c1fd192a193b2c3744b6bddcab2cf824f518\", \"name\": \"PSMC1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD4)\", \"function\": \"Protein\", \"id\": \"d9d04480e2882891bc3719d84ddcda93272fc6d6bc378b44783df20c69bd4674d4f7a23967975dce3b9b16e5ffcbee22b2e15589e3609717df69409ffc5995b3\", \"name\": \"PSMD4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ADRM1), p(HGNC:PSMD1))\", \"function\": \"Complex\", \"id\": \"56619fb2449724833b14a52691a850866a593531124f8a7d318f6b4b548843c3675ddb7428464e4592d7028ab54228159f6903bcfe5c397ada0d741763c11971\", \"members\": [{\"bel\": \"p(HGNC:ADRM1)\", \"function\": \"Protein\", \"id\": \"0cf64c1fe24a828c985c4b876d618f54e69000ec1e8b50766c848a00d34905f0ef576102bd3ffbf657fffd8fa2e4f90db5c0f3ea29c547a7346e3d8ccc6dfad8\", \"name\": \"ADRM1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD1)\", \"function\": \"Protein\", \"id\": \"306db780e09cc385dc2ca1417f08b39eef4cf9692edfce243d63461fd7054e52546c8d69a7434f8ce8acc50cabd21660eaa40985b38ae292358e04048e438033\", \"name\": \"PSMD1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ADRM1), p(HGNC:PSMD4))\", \"function\": \"Complex\", \"id\": \"503f07ada7ac7dad78f166bc793d811ec8bfb3e7f3a41d97d1dfb33aff92724b6e301cd0203d495fb8a142a1c883a2b5c7a81ef64ade5348aa331d5af3f49324\", \"members\": [{\"bel\": \"p(HGNC:ADRM1)\", \"function\": \"Protein\", \"id\": \"0cf64c1fe24a828c985c4b876d618f54e69000ec1e8b50766c848a00d34905f0ef576102bd3ffbf657fffd8fa2e4f90db5c0f3ea29c547a7346e3d8ccc6dfad8\", \"name\": \"ADRM1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD4)\", \"function\": \"Protein\", \"id\": \"d9d04480e2882891bc3719d84ddcda93272fc6d6bc378b44783df20c69bd4674d4f7a23967975dce3b9b16e5ffcbee22b2e15589e3609717df69409ffc5995b3\", \"name\": \"PSMD4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:AGO1), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"ac5fa9682103c2aed95bbef6196e032681023e4e4b5b960f58662b7013c76532fa165eede33e04e7b5e74386cfd2ce1df7edc38a6f66f4bed04ef1dd001b23de\", \"members\": [{\"bel\": \"p(HGNC:AGO1)\", \"function\": \"Protein\", \"id\": \"4a2f085bc85ab35d092dd7a430dff12d86a8247e402931b1e6002b5d345d9d94b7065352087774c20d790d1c70a7b5e4d819c422a59e6cf1f37a1c908930da2e\", \"name\": \"AGO1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:AGO1), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"d283e484cd365fdd08772c30990c756a38391605791f229d3e3e3e1255cec0247dde95a923becd07f04535a7f9b1004f96e6e2bf399d7049544a9dece80d5e0d\", \"members\": [{\"bel\": \"p(HGNC:AGO1)\", \"function\": \"Protein\", \"id\": \"4a2f085bc85ab35d092dd7a430dff12d86a8247e402931b1e6002b5d345d9d94b7065352087774c20d790d1c70a7b5e4d819c422a59e6cf1f37a1c908930da2e\", \"name\": \"AGO1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:AGO2), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"bd882716cb3296abd030655f2a96799c72c2b38cdb565521c35f5576bdd21fa6b820f5ac3ef670cc646df394124d5e213c19fcd55d6bda532a98d04cae5a5c67\", \"members\": [{\"bel\": \"p(HGNC:AGO2)\", \"function\": \"Protein\", \"id\": \"0670f10439d6d76e183a92b1d00a51cb631060bfbc43c2d2b92ae5153465934af37591215c530d2e7bd9f186cd8890536468785dd471e34f75169a7a7f7c119b\", \"name\": \"AGO2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:AGO2), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"cc819ca9907debba79988cbc6cceec8c08fac9a1f9198c23edebe6778a16d692c22de426829ea6f230905938d5ca45623e31e5d9509082ba509c0dae780035fd\", \"members\": [{\"bel\": \"p(HGNC:AGO2)\", \"function\": \"Protein\", \"id\": \"0670f10439d6d76e183a92b1d00a51cb631060bfbc43c2d2b92ae5153465934af37591215c530d2e7bd9f186cd8890536468785dd471e34f75169a7a7f7c119b\", \"name\": \"AGO2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:AHSA1), p(HGNC:CDC37))\", \"function\": \"Complex\", \"id\": \"13ddabdca4cf145a5be2be7e760165cb3b0fda5e6b657dc326c4f438c0cf20ca44738f8c8b5a4f8914f860051155fb5a0030e3fd15d755fffe54ab96002ea1db\", \"members\": [{\"bel\": \"p(HGNC:AHSA1)\", \"function\": \"Protein\", \"id\": \"11a853fc14b77522314fab2709c38add5e956dac10acc0070da97ad317b2909a68d9795388464aa588c7e7ef51c9bb0190a3f168750c1e687b6ce1707eb4f9a0\", \"name\": \"AHSA1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ANKMY2), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"5f1239c25963d299e3e9e98544b21920cf28efdb29613fe8f2c315d2f1205ea7968c5de2b30072741663fe2a7b3cd9b729123f254ee6c21b17a5c070db04d694\", \"members\": [{\"bel\": \"p(HGNC:ANKMY2)\", \"function\": \"Protein\", \"id\": \"ccd6fe62c5abc39777b90591a953c62b8d00e10bc34c416572f6a384560013a2dc76fd890040e8dbd6e375813409140be583f8685621ce501f362530414592bc\", \"name\": \"ANKMY2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:AR), p(HGNC:HSP90AB1))\", \"function\": \"Complex\", \"id\": \"04529f1e7b66605e73217da47d2cfb214265269b07e2f72907dfcf8205f84cccf1f4b980bfee7653bec86661f8063b8ead6ad78f8c8c0f49344fa5037d7c1c63\", \"members\": [{\"bel\": \"p(HGNC:AR)\", \"function\": \"Protein\", \"id\": \"60878547f1ea9bd206acace30325a383d895de7264633382bdeaf9a3908587be2d24d753a66f2072ea329790851aff35688463694a4afe62906b3e18e1c2d643\", \"name\": \"AR\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSP90AB1)\", \"function\": \"Protein\", \"id\": \"6aa56d18c328e87c34e870f7b02913e5d6efc404b4ceb714fa7b67f3bac9a90781af94a70ebfc3b8340d7a663779c93ee9be4635ee5e56db036a319e57fa7ffc\", \"name\": \"HSP90AB1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:AR), p(HGNC:HSPA8))\", \"function\": \"Complex\", \"id\": \"438716cfd1ec1fc15317848be953786e90456d170df0cfeca978b3a84f3817e971bfcc2f0923aaef6c49f482805cd431a4abbf7757b7c4d80726be4c16d5836b\", \"members\": [{\"bel\": \"p(HGNC:AR)\", \"function\": \"Protein\", \"id\": \"60878547f1ea9bd206acace30325a383d895de7264633382bdeaf9a3908587be2d24d753a66f2072ea329790851aff35688463694a4afe62906b3e18e1c2d643\", \"name\": \"AR\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ARAF), p(HGNC:CDC37))\", \"function\": \"Complex\", \"id\": \"c9666348153b8c3ea9ffb1104d2903fa077ff3072d29036cbe0ff0c4ff2b23cc26f0b0ba82f5bbcd4500931fcfd730d7a3490b97add39bdabf92725790505e2f\", \"members\": [{\"bel\": \"p(HGNC:ARAF)\", \"function\": \"Protein\", \"id\": \"28e8f3d2fdc3c7870309432db94a4c56458b972d216946530bc81021ccfcf7afeeda879e8cceb2aab57d92e4ca0f99e391c2b03b9ad80c2e2440bd3787279a14\", \"name\": \"ARAF\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ARAF), p(HGNC:CDC37L1), p(INTERPRO:\\\"Cdc37, N-terminal domain\\\"))\", \"function\": \"Complex\", \"id\": \"744bb3bf9965b90146415b83144394558267eb6d40935ed1e445286f0f39b1c851530146ac7f5c34f4243552115515f33798af4de974d1f71192221bdd90260d\", \"members\": [{\"bel\": \"p(HGNC:ARAF)\", \"function\": \"Protein\", \"id\": \"28e8f3d2fdc3c7870309432db94a4c56458b972d216946530bc81021ccfcf7afeeda879e8cceb2aab57d92e4ca0f99e391c2b03b9ad80c2e2440bd3787279a14\", \"name\": \"ARAF\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC37L1)\", \"function\": \"Protein\", \"id\": \"b365a1df4db73ecf62b46604a0c879364c05df87fb11261055e3ffbcec939f57e5817d9d630c11b759b27f22c925368406bcfda25873d030284eb4fbe726ee15\", \"name\": \"CDC37L1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Cdc37, N-terminal domain\\\")\", \"function\": \"Protein\", \"id\": \"96f4f6366994983975c4d31334d751b8da779f289b0e0c0fdd3ba5050d86746dc82def1bd1d173e2a39bb79058b47e14a49ab7b7b952280995c146ed7f0dddca\", \"name\": \"Cdc37, N-terminal domain\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:ARAF), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"a626bfad3e89ba20796029c38a788cac057863ffd0392610871960234f7f04b5097d35484deb874bea5217bbb0236ec3e0f64a84135130595d530cf23662d585\", \"members\": [{\"bel\": \"p(HGNC:ARAF)\", \"function\": \"Protein\", \"id\": \"28e8f3d2fdc3c7870309432db94a4c56458b972d216946530bc81021ccfcf7afeeda879e8cceb2aab57d92e4ca0f99e391c2b03b9ad80c2e2440bd3787279a14\", \"name\": \"ARAF\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ATXN3), p(HGNC:RAD23A))\", \"function\": \"Complex\", \"id\": \"aeef2988298c4a3ea3707cb56cc92c5a82ae82db8552ed5578df8169b6e30f229a0813efa6874f1c00e2bd631268511bc217f8c3df54bd5df04a6b3ad57d4583\", \"members\": [{\"bel\": \"p(HGNC:ATXN3)\", \"function\": \"Protein\", \"id\": \"c6102d230a5c67109dd4fd3cfaa57f2745158769d72caa5add04724e9dfe725c935bb1ec09338262f4184baa34fb990c7287982726308939a7f9e77987c33b64\", \"name\": \"ATXN3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RAD23A)\", \"function\": \"Protein\", \"id\": \"2f0886d04f6a8df9189aef3ca924ba57b514b2c972a3ca281bbee5f1d7acb4a0e5d9dd15fe78aa78413d737b6d04f1ad4ae9fcbc0c28e0d462798eabdb37bc81\", \"name\": \"RAD23A\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:ATXN3, frag(\\\"?\\\")), p(HGNC:PRKN))\", \"function\": \"Complex\", \"id\": \"734aa3f58c18344d93a5ca262d78be3fbedf1248a39b8b3180603c68fa3093de13bd45ab27583e621466b61eefeaba89790ec023ae52a2b919a22952ed90d684\", \"members\": [{\"bel\": \"p(HGNC:ATXN3, frag(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"2ef0d6e31cb9626de1f889b4ce102b75e3448de0cec84da457953a4efcd2074c0f3111966359bdf87a27fd0adbfaa3352451f5ff82316d95a1afa6eea49698fe\", \"name\": \"ATXN3\", \"namespace\": \"HGNC\", \"variants\": [{\"kind\": \"frag\", \"missing\": \"?\"}]}, {\"bel\": \"p(HGNC:PRKN)\", \"function\": \"Protein\", \"id\": \"c129e31246d9b635f2d39f8a0d20e11d29724b9888bc1c35e5b5f5eb721f42a8ead8ccee052e21a3c178f79c19d2fecb3360bd35d0a89f449b2d05af14ae324f\", \"name\": \"PRKN\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:AURKB), p(HGNC:CDC37))\", \"function\": \"Complex\", \"id\": \"992f02b40890a90f25c9bebe9df6e52b12724b98116bcb3307bbc8ad01847a63a9257a81e3584c403a6ceefe9f19ec546d023a5da180b4ac28a19dabdc8f653d\", \"members\": [{\"bel\": \"p(HGNC:AURKB)\", \"function\": \"Protein\", \"id\": \"e140215bfac8fa1db587ac3d7263dbabb1bd51e96df94b335a2dc2ef56542ffaba4de96f132f931d5ff8bad76a86a739727d09a813f4dbb4544433a50c494392\", \"name\": \"AURKB\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:AURKB), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"615f88302d8520dc71b18dacfd099ceb59903aa25389b9a4b693de0b24d648423f02519f4402fe03ffd2c250f1a22084bf45a484172a3d4e4db7771866cf1aa0\", \"members\": [{\"bel\": \"p(HGNC:AURKB)\", \"function\": \"Protein\", \"id\": \"e140215bfac8fa1db587ac3d7263dbabb1bd51e96df94b335a2dc2ef56542ffaba4de96f132f931d5ff8bad76a86a739727d09a813f4dbb4544433a50c494392\", \"name\": \"AURKB\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG1), p(HGNC:HSPA8))\", \"function\": \"Complex\", \"id\": \"2f1ab5372c3e7edeb58d6cb176622cf238cfb6aac4a92a6ec3ca366d159b288efbe1ac09093c591ba0775108ec7b1489efcffdc9a7a6c6ddc4c2549020a8f0e5\", \"members\": [{\"bel\": \"p(HGNC:BAG1)\", \"function\": \"Protein\", \"id\": \"16010efedd909e1809b9f15337bfa512d6188fbd0ac9c2f9787342600e90ab4411f71aafe35e04dae02318d3e8bb384c0d1e32135c2e04d40712b9a3e54f3c80\", \"name\": \"BAG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG1), p(HGNC:LTN1))\", \"function\": \"Complex\", \"id\": \"d1d09df011e4226bad7e59cab0b6411abdd754de8fa04bd167a6b7fe15c15703bb5170f13c0b9ec910c6324c444d60454fa59ddbb4e3b7bb6a9124cb5e46f2d3\", \"members\": [{\"bel\": \"p(HGNC:BAG1)\", \"function\": \"Protein\", \"id\": \"16010efedd909e1809b9f15337bfa512d6188fbd0ac9c2f9787342600e90ab4411f71aafe35e04dae02318d3e8bb384c0d1e32135c2e04d40712b9a3e54f3c80\", \"name\": \"BAG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:LTN1)\", \"function\": \"Protein\", \"id\": \"9478fe63b072cc99bcc78770504fc8dbac30654d414786d1787050f6e666160da89fd8954ba788af283272c5abbc682d91ebd3135c132e9e24c91cb926276b28\", \"name\": \"LTN1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG1), p(HGNC:PSMA5))\", \"function\": \"Complex\", \"id\": \"881cc40f88beccb5f3c6501de7245c2ba27345801181a77cc4d6efecda2ebafdc08d79c6dc159b48a63aaf61a5e25ba1193cb2c0ae33d6412925d35fe34c08a8\", \"members\": [{\"bel\": \"p(HGNC:BAG1)\", \"function\": \"Protein\", \"id\": \"16010efedd909e1809b9f15337bfa512d6188fbd0ac9c2f9787342600e90ab4411f71aafe35e04dae02318d3e8bb384c0d1e32135c2e04d40712b9a3e54f3c80\", \"name\": \"BAG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMA5)\", \"function\": \"Protein\", \"id\": \"edfb7034424d48885d2faeda9a9f7a189ba15685eeff7d60117fc5be87b14c91591eb0ca325a97c80efaf3107919e5300ccdc936756858ee9f30ea582540a376\", \"name\": \"PSMA5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG1), p(HGNC:PSMC4))\", \"function\": \"Complex\", \"id\": \"525bdaab88d58cec3c2741aaca246fe127de0f36a875f8fc082d867d54384e9aca39ad8478d56048c883041dea544ba3f26536c4ceaba5270479dca392209b40\", \"members\": [{\"bel\": \"p(HGNC:BAG1)\", \"function\": \"Protein\", \"id\": \"16010efedd909e1809b9f15337bfa512d6188fbd0ac9c2f9787342600e90ab4411f71aafe35e04dae02318d3e8bb384c0d1e32135c2e04d40712b9a3e54f3c80\", \"name\": \"BAG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMC4)\", \"function\": \"Protein\", \"id\": \"74ba82c3efbb95f72a8beb19b2c8b389881226f550ccab8e4e87dbd9dadf162e2bda7c9574f250739e0c2bfb4856e56ed3af271f5b38938ba29d0e7dd0821419\", \"name\": \"PSMC4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG1), p(HGNC:PSMD2))\", \"function\": \"Complex\", \"id\": \"06a07db87fe48ea6cb1b0eeeb26fd33ac62207e3ce4c84fd3d30b21c828a73a7212af4f39592fa77860c1c7f16b0522ce155360414c469fe58ca144291677867\", \"members\": [{\"bel\": \"p(HGNC:BAG1)\", \"function\": \"Protein\", \"id\": \"16010efedd909e1809b9f15337bfa512d6188fbd0ac9c2f9787342600e90ab4411f71aafe35e04dae02318d3e8bb384c0d1e32135c2e04d40712b9a3e54f3c80\", \"name\": \"BAG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD2)\", \"function\": \"Protein\", \"id\": \"2285c9c0b9111cf13594cf58ac0a25ed904ed2b11120e7d706ddca48193986ededfa041f2e0435446e8cbadf2e3a25c5f8c27ab306a22c82a572c21741f9acc9\", \"name\": \"PSMD2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG2), p(HGNC:HSPA8), p(HGNC:STUB1), p(INTERPRO:\\\"Heat shock protein 70 family\\\"))\", \"function\": \"Complex\", \"id\": \"63998fccc009b29e729dd79f2e6c813fe4fb5e959ac1d35e8ac0f2fcdd77d600078bbe8056f4224518c409ce2e8228aa29006143e350a68d31f81a0c25d86c59\", \"members\": [{\"bel\": \"p(HGNC:BAG2)\", \"function\": \"Protein\", \"id\": \"e0d63070373e33a3cb5ada43942d4be2f50e667f839d736a14e1dad90b28e3047ee4b976bb1d86993e526ad215fa08fd0eafc89ba8c725fd9ce7888b85740177\", \"name\": \"BAG2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:STUB1)\", \"function\": \"Protein\", \"id\": \"7edf63ec4c2eaacc63944e79144be59c6ded86334f97e772d1e6ccbca7065106451bd7861e8acfbda8051ed22ecf6451dd68a33a35fc2d3b91083a48b53e1c68\", \"name\": \"STUB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:BAG2), p(HGNC:PSMD2))\", \"function\": \"Complex\", \"id\": \"582984afb948f3161c82d4929a5135624fc0d27d1ad0e421e9e643672681508a428075061dccb09adcbadeed28413f2b1761f678d45a441b60431a1dc3a0c085\", \"members\": [{\"bel\": \"p(HGNC:BAG2)\", \"function\": \"Protein\", \"id\": \"e0d63070373e33a3cb5ada43942d4be2f50e667f839d736a14e1dad90b28e3047ee4b976bb1d86993e526ad215fa08fd0eafc89ba8c725fd9ce7888b85740177\", \"name\": \"BAG2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD2)\", \"function\": \"Protein\", \"id\": \"2285c9c0b9111cf13594cf58ac0a25ed904ed2b11120e7d706ddca48193986ededfa041f2e0435446e8cbadf2e3a25c5f8c27ab306a22c82a572c21741f9acc9\", \"name\": \"PSMD2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG3), p(HGNC:DCP1B))\", \"function\": \"Complex\", \"id\": \"046005b430b727090b981ce98b2d745a3ab5c1eaa2a0a636dce5dc2f23ee797630195051f639e84db4af78ab430c48906cec28f23d44709d239d36d9c5761a09\", \"members\": [{\"bel\": \"p(HGNC:BAG3)\", \"function\": \"Protein\", \"id\": \"32dee13e3a844df0ba64e23467fcc35937e6d9a008a8959b6f9d1d75721263b054c5a9403a99e18be324a4a5e0cf873fd1123b304c3cdf85db0423c73fab3785\", \"name\": \"BAG3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DCP1B)\", \"function\": \"Protein\", \"id\": \"487588e5f3957c441e60ea071cc0742af0dcbeaeeaaf4ff316a436d969b9fb9f49a68b48cb34e4f642840dbee5f4b403083af64c7168994ecb654cdc15081007\", \"name\": \"DCP1B\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG3), p(HGNC:HSF1))\", \"function\": \"Complex\", \"id\": \"431a90b0bda359f725015444cfe2de92660b4307ad87fd2597ef2f1439743a663122f19fb8efb1ffd8c7951862c855301109f31f06f75707a2fd464e3e5d60d2\", \"members\": [{\"bel\": \"p(HGNC:BAG3)\", \"function\": \"Protein\", \"id\": \"32dee13e3a844df0ba64e23467fcc35937e6d9a008a8959b6f9d1d75721263b054c5a9403a99e18be324a4a5e0cf873fd1123b304c3cdf85db0423c73fab3785\", \"name\": \"BAG3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSF1)\", \"function\": \"Protein\", \"id\": \"f14348a34dab846dcd69f4e44f9229a90bd3a44e5ddbcef4331d61dc959cb6e1aec7c1210063cb9d6f140de4ab55d0aa21cd9176aa9a75bd97939f364145b7b6\", \"name\": \"HSF1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG3), p(HGNC:HSPA8))\", \"function\": \"Complex\", \"id\": \"c345feadd16565e9ab5086362d46d3f93acbaa77d56754023ee3df5f940a9f508071447498c2821ef29b9cdf81be96460040cfe3f72c437353455ce05f8c928a\", \"members\": [{\"bel\": \"p(HGNC:BAG3)\", \"function\": \"Protein\", \"id\": \"32dee13e3a844df0ba64e23467fcc35937e6d9a008a8959b6f9d1d75721263b054c5a9403a99e18be324a4a5e0cf873fd1123b304c3cdf85db0423c73fab3785\", \"name\": \"BAG3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG3), p(HGNC:HSPB1))\", \"function\": \"Complex\", \"id\": \"5b858921b23068a2a330d6bc87a8403b8f40313d9584de81fd4edefa05de3ef630efec46dfafbe915fa4d4a1e5db93b36f27e430f2d3f79a84c757c184562260\", \"members\": [{\"bel\": \"p(HGNC:BAG3)\", \"function\": \"Protein\", \"id\": \"32dee13e3a844df0ba64e23467fcc35937e6d9a008a8959b6f9d1d75721263b054c5a9403a99e18be324a4a5e0cf873fd1123b304c3cdf85db0423c73fab3785\", \"name\": \"BAG3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPB1)\", \"function\": \"Protein\", \"id\": \"96c2e5e8f77aed7e051078529a022b3f2749abfafa85556c562ca52d96ef14965065c600e95bd3a593a68254aee443067dbb3631852f09acc84313fc5cf9015d\", \"name\": \"HSPB1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG3), p(HGNC:HSPB8))\", \"function\": \"Complex\", \"id\": \"fe5ca78d28d922198dd9bc9c619cf5d112a04dcf8d3398cc5614155a00c741e0cfd8a1ab6ec42ffd27821bba39d53403234dbafc85b725a2e40169206689b71f\", \"members\": [{\"bel\": \"p(HGNC:BAG3)\", \"function\": \"Protein\", \"id\": \"32dee13e3a844df0ba64e23467fcc35937e6d9a008a8959b6f9d1d75721263b054c5a9403a99e18be324a4a5e0cf873fd1123b304c3cdf85db0423c73fab3785\", \"name\": \"BAG3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPB8)\", \"function\": \"Protein\", \"id\": \"d1fd1bb16aef7b55e8f140f69a2271ecd8b1508f333bb74421a45b50401b43cd777352b0eb785b8ee18c9c9c2e7318e6f59cd2a2333fd2f7501965799458eb1a\", \"name\": \"HSPB8\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG3), p(HGNC:PSMD2))\", \"function\": \"Complex\", \"id\": \"db129c1be85177a66486a34f651a38510c6a169a7b82a3047cf2a721f68e732f6ef8b3f11f956043418fbfaa672b107ef45fd5adbee99a8cd0b5c47f752ed42f\", \"members\": [{\"bel\": \"p(HGNC:BAG3)\", \"function\": \"Protein\", \"id\": \"32dee13e3a844df0ba64e23467fcc35937e6d9a008a8959b6f9d1d75721263b054c5a9403a99e18be324a4a5e0cf873fd1123b304c3cdf85db0423c73fab3785\", \"name\": \"BAG3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD2)\", \"function\": \"Protein\", \"id\": \"2285c9c0b9111cf13594cf58ac0a25ed904ed2b11120e7d706ddca48193986ededfa041f2e0435446e8cbadf2e3a25c5f8c27ab306a22c82a572c21741f9acc9\", \"name\": \"PSMD2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG4), p(HGNC:DCP1A))\", \"function\": \"Complex\", \"id\": \"ec28e98fd7c4ea3b7e94cf792ca16367847a49264517b7b284f7c36c793de3498cd6e1eb845ba84a5f24a4bcbe12629dd1562fc3c947b5ef5652dda986e3fc2b\", \"members\": [{\"bel\": \"p(HGNC:BAG4)\", \"function\": \"Protein\", \"id\": \"ad10f40ef554d547af8f72f7679bed5ff31938bc5b1f6ced3b42c0ace91c4f0a12dd68b131666e1a3949bded26a96b5293409e0eb14c28fe4d9bad71b11c4507\", \"name\": \"BAG4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DCP1A)\", \"function\": \"Protein\", \"id\": \"82b768c8845dd17cd9dbb8ec890bb19f2b834e0de4ae9458a84e48fefeac27fc54755b333894633775d9c2942b7ee989e74df298879b917f1b1f1b7df433fb88\", \"name\": \"DCP1A\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG4), p(HGNC:DCP1B))\", \"function\": \"Complex\", \"id\": \"706c477f6c1fe4fc3baf4c47fc063c5e00a2699b1ffa55b880344381cbd168c53855f19659115f1f41ada47afeb8ef8b28928ebab9455e453f5e8aed81cf10c4\", \"members\": [{\"bel\": \"p(HGNC:BAG4)\", \"function\": \"Protein\", \"id\": \"ad10f40ef554d547af8f72f7679bed5ff31938bc5b1f6ced3b42c0ace91c4f0a12dd68b131666e1a3949bded26a96b5293409e0eb14c28fe4d9bad71b11c4507\", \"name\": \"BAG4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DCP1B)\", \"function\": \"Protein\", \"id\": \"487588e5f3957c441e60ea071cc0742af0dcbeaeeaaf4ff316a436d969b9fb9f49a68b48cb34e4f642840dbee5f4b403083af64c7168994ecb654cdc15081007\", \"name\": \"DCP1B\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG4), p(HGNC:DDX6))\", \"function\": \"Complex\", \"id\": \"ce9f397118183d038e55141287b17ebc838d645938f4842da59c459be931b21fa696d187c6e5905281a9eaa30170e4287f66e21e51e278ff9287bb08bb02719c\", \"members\": [{\"bel\": \"p(HGNC:BAG4)\", \"function\": \"Protein\", \"id\": \"ad10f40ef554d547af8f72f7679bed5ff31938bc5b1f6ced3b42c0ace91c4f0a12dd68b131666e1a3949bded26a96b5293409e0eb14c28fe4d9bad71b11c4507\", \"name\": \"BAG4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DDX6)\", \"function\": \"Protein\", \"id\": \"8145e2607a62432e475774a7f4ed99537633d80d4820bacc7b9077e455c197fb6ec51357112d57eebbc23d5ae87faedb50c1e81bf5c1e4d7c3b6bfdd611ffd7d\", \"name\": \"DDX6\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG4), p(HGNC:EDC3))\", \"function\": \"Complex\", \"id\": \"cfbe334032051252ea4cbd55dc913669f6335a40867ffd8f5ca2b9a0e2558fc850f004f213e7507d6105b0482814f9cea03d478846cbd89a9154d3caf116ef09\", \"members\": [{\"bel\": \"p(HGNC:BAG4)\", \"function\": \"Protein\", \"id\": \"ad10f40ef554d547af8f72f7679bed5ff31938bc5b1f6ced3b42c0ace91c4f0a12dd68b131666e1a3949bded26a96b5293409e0eb14c28fe4d9bad71b11c4507\", \"name\": \"BAG4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:EDC3)\", \"function\": \"Protein\", \"id\": \"debdf11e72b6b1c31efc965da7df0ea1b1c1a9017a338c31e5c4d72f526dd28d5162b3fe2127deff65ed787f500bb99aa4417bdfc3934773fdab8b862a1bb912\", \"name\": \"EDC3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG4), p(HGNC:HSPA8))\", \"function\": \"Complex\", \"id\": \"785dbabe4b2d87a265de20e23cb94a6bf6cc3f4618393b89a2caf9126fc25a3b88968fa3639666f01755be80fdd402073065f9fa7c6c29ecfd22ae4bd8383a3e\", \"members\": [{\"bel\": \"p(HGNC:BAG4)\", \"function\": \"Protein\", \"id\": \"ad10f40ef554d547af8f72f7679bed5ff31938bc5b1f6ced3b42c0ace91c4f0a12dd68b131666e1a3949bded26a96b5293409e0eb14c28fe4d9bad71b11c4507\", \"name\": \"BAG4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG4), p(HGNC:HSPB1))\", \"function\": \"Complex\", \"id\": \"14cf89c85904bb2c31aab1d29d38c28a9583dd065bb92475136faa48e5fea16d67c977ae044ab3fc291b4e6e94d74de46d6d401bca7b0e01fb39761177084843\", \"members\": [{\"bel\": \"p(HGNC:BAG4)\", \"function\": \"Protein\", \"id\": \"ad10f40ef554d547af8f72f7679bed5ff31938bc5b1f6ced3b42c0ace91c4f0a12dd68b131666e1a3949bded26a96b5293409e0eb14c28fe4d9bad71b11c4507\", \"name\": \"BAG4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPB1)\", \"function\": \"Protein\", \"id\": \"96c2e5e8f77aed7e051078529a022b3f2749abfafa85556c562ca52d96ef14965065c600e95bd3a593a68254aee443067dbb3631852f09acc84313fc5cf9015d\", \"name\": \"HSPB1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG4, var(\\\"p.Asp424Ala\\\")), p(INTERPRO:\\\"Heat shock protein 70 family\\\"))\", \"function\": \"Complex\", \"id\": \"e36e0f8321fe3948994c7fb023b238dae536472c9507bc4c53f78c42ea93a77b6e9adf539c9acf3e8b137e1680a68ef9c83dfdbcad4ca359e5f07faba909d1f9\", \"members\": [{\"bel\": \"p(HGNC:BAG4, var(\\\"p.Asp424Ala\\\"))\", \"function\": \"Protein\", \"id\": \"6fcab02b439004ab5479f9725535e5bf0918359ac01b146c1a4f1692cd4e2b9fb06f1a84d14d47e84b17a76f334125b8b3dead31483e346333c77bbed0905d77\", \"name\": \"BAG4\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Asp424Ala\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:BAG5), p(HGNC:HSPA8))\", \"function\": \"Complex\", \"id\": \"6480aeb725f5a13a3c4670b990e22c08bd061f9639a5365637bff1ceacd3d23a914ea224f5605ad9447a8ded376084d3f311f2bd1a7faacaa0d29aa24af60fde\", \"members\": [{\"bel\": \"p(HGNC:BAG5)\", \"function\": \"Protein\", \"id\": \"67d4f37d394a9c5e903cc9642f2c0fcb41e0dc13f29f28aec9074cca7e294252b9c6c373402ec51c82f1bb216b1d3c5209f505e5c1b508e37684080b27d4a3dd\", \"name\": \"BAG5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG5), p(HGNC:MAD1L1))\", \"function\": \"Complex\", \"id\": \"a6d81873ae1f1f0a4fb8a7d1fb2c037bc1ef3da12d25907ef67164d753419f3ab421022163ae7b572b9a217a3f19daece97940679622f140e86a4396567dbf77\", \"members\": [{\"bel\": \"p(HGNC:BAG5)\", \"function\": \"Protein\", \"id\": \"67d4f37d394a9c5e903cc9642f2c0fcb41e0dc13f29f28aec9074cca7e294252b9c6c373402ec51c82f1bb216b1d3c5209f505e5c1b508e37684080b27d4a3dd\", \"name\": \"BAG5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MAD1L1)\", \"function\": \"Protein\", \"id\": \"369af691c9a363beeec4d770d7562a85e4d1ef4a58313e9374e6e4d5157a89ea23a9a09104e94df8ce10c8e88f1d278b346e81c48d22527be0d85e3d98599d82\", \"name\": \"MAD1L1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG5), p(HGNC:MAD2L1))\", \"function\": \"Complex\", \"id\": \"6325f2041bedf51bc6730e2517dfcf33b61ef1e6b2854f68baa7f6ff65f5b064a09fcbf02b1d76cd57a4ce8a812d2c2f1226152b68d0b4f9972502d99ad30327\", \"members\": [{\"bel\": \"p(HGNC:BAG5)\", \"function\": \"Protein\", \"id\": \"67d4f37d394a9c5e903cc9642f2c0fcb41e0dc13f29f28aec9074cca7e294252b9c6c373402ec51c82f1bb216b1d3c5209f505e5c1b508e37684080b27d4a3dd\", \"name\": \"BAG5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MAD2L1)\", \"function\": \"Protein\", \"id\": \"b620582e18594c7d9b8efd141b0c9b25c5d4d07c5ce162df61d5ad1975d2aeddb898a19866fcf8aa6b8505c7f87dfca96ce2d9a02b070cf2a2ecffd3d75032bf\", \"name\": \"MAD2L1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG5), p(HGNC:PSMD2))\", \"function\": \"Complex\", \"id\": \"30e26497a6d4b767be7fbf1f8c6fdd17b6f4b6fb580af4f954b73566b53972a6b1429510d23e8b54a0498280089f745a20e5764816f130548c66bbd3c08cc524\", \"members\": [{\"bel\": \"p(HGNC:BAG5)\", \"function\": \"Protein\", \"id\": \"67d4f37d394a9c5e903cc9642f2c0fcb41e0dc13f29f28aec9074cca7e294252b9c6c373402ec51c82f1bb216b1d3c5209f505e5c1b508e37684080b27d4a3dd\", \"name\": \"BAG5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD2)\", \"function\": \"Protein\", \"id\": \"2285c9c0b9111cf13594cf58ac0a25ed904ed2b11120e7d706ddca48193986ededfa041f2e0435446e8cbadf2e3a25c5f8c27ab306a22c82a572c21741f9acc9\", \"name\": \"PSMD2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG6), p(HGNC:UBA3))\", \"function\": \"Complex\", \"id\": \"b0e2e4a77c258b03e90a7dea3997bd873a6b18db11d618748f1d65c07cef839e5d561c3e5aeb78d4a036bef07d897a960253145ee5a509eb48e3bc2a357a648a\", \"members\": [{\"bel\": \"p(HGNC:BAG6)\", \"function\": \"Protein\", \"id\": \"d816a85df9cca7f30b8bfb4ef5797de2db3274d7d71233acc42d164ca404c4df2ba6b594c4aec1ea1205676790a8350dbda3ebc77fb4482c1ff78d0189676f8a\", \"name\": \"BAG6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBA3)\", \"function\": \"Protein\", \"id\": \"06940713789ef5ef150380929d211df089884400cfe5e265b1919f01b29f50de605ffdd0a13361cf8c02c6905a425c4c8bc6921ee25566c2b4f54f9f2b44270f\", \"name\": \"UBA3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:BAG6), p(MESH:Proteins, pmod(HBP:misfolding)))\", \"function\": \"Complex\", \"id\": \"18772c0d3522a5bffa2ddec93c0c209b84a09c2ef43ac5c22444ed1777f5a50c9d4f49860041686c44382294ac2e0facc5f65b2e9c3a2d3adc29a23373305bcb\", \"members\": [{\"bel\": \"p(HGNC:BAG6)\", \"function\": \"Protein\", \"id\": \"d816a85df9cca7f30b8bfb4ef5797de2db3274d7d71233acc42d164ca404c4df2ba6b594c4aec1ea1205676790a8350dbda3ebc77fb4482c1ff78d0189676f8a\", \"name\": \"BAG6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(MESH:Proteins, pmod(HBP:misfolding))\", \"function\": \"Protein\", \"id\": \"12fefccac94d80506ac923f62fc88eb55460550bfb6d4133c4832f7b198cfa89f25ec8b60b38e6bb207b6c59de82efe473a6d5859342c0e0a47458e4c3357e96\", \"name\": \"Proteins\", \"namespace\": \"MESH\", \"variants\": [{\"identifier\": {\"name\": \"misfolding\", \"namespace\": \"HBP\"}, \"kind\": \"pmod\"}]}]}, {\"bel\": \"complex(p(HGNC:CDC37), p(HGNC:CDK1))\", \"function\": \"Complex\", \"id\": \"7816191c9ef2a3a3075e304d6f8a8a1b64642c10023e988816b4a65badc7d4ef6e1759d9ba3bfe6bd390953cb2cb9b2e81dee93923ede633f148072dd6cc314b\", \"members\": [{\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDK1)\", \"function\": \"Protein\", \"id\": \"747cb5f5befdf836f554988dc78f239aa22c459cac15530f612c81e574e698015ce984fbf7e925106a70e03f362c9e1b812b74790a36fcc7124b05ad1e08c8b7\", \"name\": \"CDK1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDC37), p(HGNC:CDK11A))\", \"function\": \"Complex\", \"id\": \"61a405fcc0850746c32e4c6a69819bb7ecdf24b276ab0f1a36a562de5df19b97f2c0194138235c7f8e9b7953684acd4418ddaba1b2a7b746eb68af9f0b2027e9\", \"members\": [{\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDK11A)\", \"function\": \"Protein\", \"id\": \"8dc0399109d6b7f39b82e6630d98345b323dc22f58444f27994f803e98ed204c3b324232a0700a20d02c8ac8590cbd080fc9a1d2f15c57df2c8a643724639621\", \"name\": \"CDK11A\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDC37), p(HGNC:CDK4))\", \"function\": \"Complex\", \"id\": \"0f641f4a40a72f0c189d7bd18d96df9ca93d11fc408fe2c8674efd0e857ef7c3b9ae1ef8302ce3efb2f9738556e43d6eb84e59ca449f7587c3c85613d4856844\", \"members\": [{\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDK4)\", \"function\": \"Protein\", \"id\": \"80da30db4e674484ea561a52ff4186ba0d264cfa374a79a06d2084965ecd750bb15822eb65c933a8b7a89df07f331fccc952a7b5e6f8b849209f84ad91a243b0\", \"name\": \"CDK4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDC37), p(HGNC:CHUK))\", \"function\": \"Complex\", \"id\": \"3335b9db792d36a8e8acbdbba09e00e78972f2a8dce69dc0847ebcb59246503cc0ec0d81a1747d9e334c154c3262a899e4015832d966843dcc1ed998b7a46c6d\", \"members\": [{\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CHUK)\", \"function\": \"Protein\", \"id\": \"48d5f4d56eddd155ff7a85345988764054b91ceae34dc707e52ddbb4b528a41e2c51ec0bf95ff60c891aa31e7aea3647ea906ddc2d36731187e31adee9875475\", \"name\": \"CHUK\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDC37), p(HGNC:FER))\", \"function\": \"Complex\", \"id\": \"80e373b3e4dbd29fa433a70a8717529e6b950a9a22f87a08b4bc4a194e96f12fbfab8ad696ea972833c62386028f4634ea6371a1f89005b0d7b5aa77a95242f3\", \"members\": [{\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FER)\", \"function\": \"Protein\", \"id\": \"b7b5a64f9a5ddd781c36ea3b3a13df79011918a66968e1829c8f163cf5ba953a997e31c08431b72c36390146eba9e9ee5a5bee0c7404d0b3a6d54c463f771074\", \"name\": \"FER\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDC37), p(HGNC:IKBKG))\", \"function\": \"Complex\", \"id\": \"4aac5a1d994a556ce9db1e21f3a9e9d95df01740c3b787ab4528d309c65376b02445196ae45b53cd5366dc242675cfe40a4b4e7acd07923d32fc5912cf5d25ad\", \"members\": [{\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:IKBKG)\", \"function\": \"Protein\", \"id\": \"3478ba3aeeb0684569bf2cddfdf9718130fa1eda53713be43ab687a31b422d72cb0412a540289e3e84a085b335cf889f570db0775bb5b1832cc4a5c834830f04\", \"name\": \"IKBKG\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDC37), p(HGNC:RAF1))\", \"function\": \"Complex\", \"id\": \"a1966f6bd6610f3ff50044423843527dd60c48fa4d158f9b3515a8498e4a80358ff55964c7f31440a95c098c2274a69791396d745c8de346865abf181848468f\", \"members\": [{\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RAF1)\", \"function\": \"Protein\", \"id\": \"edf6926724d4c429784a197774c1f2b3b82cafc4c88f9b5ab0a85bb9f7964469f8bde553aded79f7459df94a17f2d833255d0c7db9931ce239012077f5dc6d90\", \"name\": \"RAF1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDC37), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"9f195f4924cba6f34c5e89c23fc487140c566723e8b9fc5395bf07ebb47e74425abd09272d010c52b7cd91234c0feacca059602ac4e0f0b9ff36b100e069e620\", \"members\": [{\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:CDC37L1), p(HGNC:STIP1))\", \"function\": \"Complex\", \"id\": \"12ea86397d3e1a7ba2aa5fa1cf4bc5b285aa1568284ee5f0ee5ce8a12c2934dc585c03bbc7ba75b99c62dd26302c9fded97846b27d00b1b6372535dbca6adf5d\", \"members\": [{\"bel\": \"p(HGNC:CDC37L1)\", \"function\": \"Protein\", \"id\": \"b365a1df4db73ecf62b46604a0c879364c05df87fb11261055e3ffbcec939f57e5817d9d630c11b759b27f22c925368406bcfda25873d030284eb4fbe726ee15\", \"name\": \"CDC37L1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:STIP1)\", \"function\": \"Protein\", \"id\": \"b370e8c93a9fd4a6879ea0c4467c8d4380531fd8a3f1d11edadc2f87129929639d62087b071694e5937f4278fc6fb00d65ef937930fa462de94fa83118735ead\", \"name\": \"STIP1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDC37L1), p(INTERPRO:\\\"Cdc37, N-terminal domain\\\"))\", \"function\": \"Complex\", \"id\": \"617b4e54e4088b97923f659635a2a8dd743ad2bf06ad9381002bd0baa2986b5f309ea4b1d0364ecd57efae236140f97f2607ef4219c453fc06fb8c432c7c1e3f\", \"members\": [{\"bel\": \"p(HGNC:CDC37L1)\", \"function\": \"Protein\", \"id\": \"b365a1df4db73ecf62b46604a0c879364c05df87fb11261055e3ffbcec939f57e5817d9d630c11b759b27f22c925368406bcfda25873d030284eb4fbe726ee15\", \"name\": \"CDC37L1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Cdc37, N-terminal domain\\\")\", \"function\": \"Protein\", \"id\": \"96f4f6366994983975c4d31334d751b8da779f289b0e0c0fdd3ba5050d86746dc82def1bd1d173e2a39bb79058b47e14a49ab7b7b952280995c146ed7f0dddca\", \"name\": \"Cdc37, N-terminal domain\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:CDC37L1), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"b84ba0aeb30c0b3ea78c5fb0b0e0ef3868b22360f34a737bc69fc1937a9b9bdbecde1a33e98c8bfc3a0fa52061fa5318d856bbbfd330ccb8b2cdab3436ef9a19\", \"members\": [{\"bel\": \"p(HGNC:CDC37L1)\", \"function\": \"Protein\", \"id\": \"b365a1df4db73ecf62b46604a0c879364c05df87fb11261055e3ffbcec939f57e5817d9d630c11b759b27f22c925368406bcfda25873d030284eb4fbe726ee15\", \"name\": \"CDC37L1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:CDK1), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"fda91bf6e012994546d0c818254d2c1a0b76f74cfe9bd8d131a32d2c4dab4de76acebc6adb7635286e1a0419123b997b7a42db7f37b6516623f1ef38c0a822eb\", \"members\": [{\"bel\": \"p(HGNC:CDK1)\", \"function\": \"Protein\", \"id\": \"747cb5f5befdf836f554988dc78f239aa22c459cac15530f612c81e574e698015ce984fbf7e925106a70e03f362c9e1b812b74790a36fcc7124b05ad1e08c8b7\", \"name\": \"CDK1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDK11A), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"09dd4924f14d62f6119d9ca7dbab551068946b48c7654b6cfba428b35aa86dc3203fd740f0b9603f26e261828ebf2f9a95641d05621b008d283cc25ac59cb0d7\", \"members\": [{\"bel\": \"p(HGNC:CDK11A)\", \"function\": \"Protein\", \"id\": \"8dc0399109d6b7f39b82e6630d98345b323dc22f58444f27994f803e98ed204c3b324232a0700a20d02c8ac8590cbd080fc9a1d2f15c57df2c8a643724639621\", \"name\": \"CDK11A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CDK4), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"898d68ca7920afa2a292b3c64e37417876e2448665dc009403e54383f5c46804591172aac8c908c939ac4a0cf63c0d42a47c927d5118f6ac4ef90bd8bdca3396\", \"members\": [{\"bel\": \"p(HGNC:CDK4)\", \"function\": \"Protein\", \"id\": \"80da30db4e674484ea561a52ff4186ba0d264cfa374a79a06d2084965ecd750bb15822eb65c933a8b7a89df07f331fccc952a7b5e6f8b849209f84ad91a243b0\", \"name\": \"CDK4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:CHUK), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"c93ab27e426cfed19b7cd42e2e06b41ed355417a6a418ec13d28ec30351518a81f59b264ecff84afc12f4e37802720b771c0609ecdade276eaa47446240e4ca3\", \"members\": [{\"bel\": \"p(HGNC:CHUK)\", \"function\": \"Protein\", \"id\": \"48d5f4d56eddd155ff7a85345988764054b91ceae34dc707e52ddbb4b528a41e2c51ec0bf95ff60c891aa31e7aea3647ea906ddc2d36731187e31adee9875475\", \"name\": \"CHUK\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:DNAJB1), p(INTERPRO:\\\"Heat shock protein 70 family\\\"), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"25e1f28cd9757e0f5e36b098981fe4b6c34e0fed3e2eba4d701b51170c8d0b1520c45645d69e50f4caf947417f25ffda8f181d9faf4d1640216ce471ed3fbc6d\", \"members\": [{\"bel\": \"p(HGNC:DNAJB1)\", \"function\": \"Protein\", \"id\": \"34ef35309926dae000c9fe717ab665b294d3130de5a7c627cf49c030f267fa793f0903f6b011359bf5e33ceced49efec114bdd891dc1b45b0850aa3c00b7996b\", \"name\": \"DNAJB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:DNAJB6), p(INTERPRO:\\\"Heat shock protein 70 family\\\"), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"a84e04bf0f663d490147a4d8ebe62c89eef1a506629b3c22c86f7742200d0e1d870f274adc976a9719f353d3ae5651a7a4983b555c169ee7fc6842492f9a7428\", \"members\": [{\"bel\": \"p(HGNC:DNAJB6)\", \"function\": \"Protein\", \"id\": \"a706a2875d0ae3ac0b50cf682c4d196d4ae8fa3e3ad0cf23e689d91274e28c28c5c4e34a1f8846bdcf89bd6009fe50bf384268c45a46a8e36e17bb7ad927bcbc\", \"name\": \"DNAJB6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:DNAJC7), p(INTERPRO:\\\"Heat shock protein 70 family\\\"), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"94ce6c755a53f042dc8466756891a4a4843e9d2621c61a88f86a0f504d9ea30abded4a45a4aef834b39e57c8b1a38c7f3a6c07b52aaffd6dcf9e05ba8fd8b18a\", \"members\": [{\"bel\": \"p(HGNC:DNAJC7)\", \"function\": \"Protein\", \"id\": \"04b577560e9f05b5dae9eabf2f3063873f5291bf10002f44e60a1d0e4c7b57db013e9e5c6376a3822b89882fbb78c173e21c67bfb6057a160d51f9e53b152ce4\", \"name\": \"DNAJC7\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:EDRF1), p(INTERPRO:\\\"Heat shock protein 70 family\\\"), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"5e495a9cf4cf639033e43b5081be4cad8365e3a3bc3f9df64ac61f6f6d457345c1c7e5de9576c4c339bee33c937e29ac0ef91b825658533105a01f67db6e9595\", \"members\": [{\"bel\": \"p(HGNC:EDRF1)\", \"function\": \"Protein\", \"id\": \"5619962cf05bbd0f5bbaa2785220dc5b079af520a5413d80cdc47347c9a36c1f0d047859b270f891d7907754a2c5065034472deb1a0b6448b17de3c7622f403b\", \"name\": \"EDRF1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:EGLN1), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"597a311349469966fd8a692b5d81e290a45f313426168f7a30c6de3e0045d7bfcdf826c301781e273f0c4f760007183166834f7711b28f61b2ceb51af0166771\", \"members\": [{\"bel\": \"p(HGNC:EGLN1)\", \"function\": \"Protein\", \"id\": \"7e049a55bd7da0c9401e9fbb0a90e6b286d51535564b2ecbbf10327f9888da6fcb3c84edadfaf6235f1e67f0f4bb21ae315b860bfdff6f0f1afbbbd97bb63537\", \"name\": \"EGLN1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:ENC1), p(HGNC:NUDCD3))\", \"function\": \"Complex\", \"id\": \"8c1df0d96dbd6ffbb9413689d1830827cddc529752888aa8102ff759b6470ad6a492641d5788e254d043a4cc122594f8d2b17f32b20d4187334b1a25fcc3865f\", \"members\": [{\"bel\": \"p(HGNC:ENC1)\", \"function\": \"Protein\", \"id\": \"39dd2233caac70419bd99ce8724ef2cfaa73c7af5d33def05750040ba27cf1a5b12ca5cf518a448b446720c4ced1e6ad94fbff1fdda21b0502d55addded4ef84\", \"name\": \"ENC1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NUDCD3)\", \"function\": \"Protein\", \"id\": \"2839b7c7d3e9f1eab0b1baaaf788dfea1a727ab9fd1f9024472cb733db30e62b65b5251255546098cd99c46c50634bdb8df45cba81504018480ef8d2c8e115a2\", \"name\": \"NUDCD3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FBXO24), p(HGNC:NUDCD2))\", \"function\": \"Complex\", \"id\": \"271cb82df83eb8b3b314697481681cebe5cd2dc12d599f03ea29df32fde35d203b297e430378ead1beae0627872d193328569b835762e6eb7d322c69e659ba51\", \"members\": [{\"bel\": \"p(HGNC:FBXO24)\", \"function\": \"Protein\", \"id\": \"92bbd90268e7932747a5edb58cb9e388dca72fd410f66b4169867d786b99734215fa2d35073826f6a3763e50b7392dc419c4af037ec148063d67308a2808665b\", \"name\": \"FBXO24\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NUDCD2)\", \"function\": \"Protein\", \"id\": \"d8db29a1ea84674d36095c4f2342d6ce70b081218fc82ee8c7cbe342f03ed0192501980845b73345839598e6d3024d76ec9e4e0cb4d2ef1e3820a18246092299\", \"name\": \"NUDCD2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FER), p(HGNC:FKBP5))\", \"function\": \"Complex\", \"id\": \"44b1c099460eeef64eb07fe9648c283050839ed219dd640575a5a5a5ec3fd00a5177748af464afec4f8eb6196264417481316bb46e088e2add5986173c883105\", \"members\": [{\"bel\": \"p(HGNC:FER)\", \"function\": \"Protein\", \"id\": \"b7b5a64f9a5ddd781c36ea3b3a13df79011918a66968e1829c8f163cf5ba953a997e31c08431b72c36390146eba9e9ee5a5bee0c7404d0b3a6d54c463f771074\", \"name\": \"FER\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP4), p(HGNC:HSP90AB1))\", \"function\": \"Complex\", \"id\": \"db15f9acb483d4fa150b42a220bbea5f63d435a4b79efb4146e065f616181f035b334ad41edf94840cc54ec112d3da43c692a2d4159bcdc112c94e55542e2760\", \"members\": [{\"bel\": \"p(HGNC:FKBP4)\", \"function\": \"Protein\", \"id\": \"4b4d04660cce588fae0beec1c7476117f842e4de7495fb38ca6e84a1c0e432492353d48a26d4db9d75072c260d5bbc589bc6dd97ae31fc7b65151d4655878cb1\", \"name\": \"FKBP4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSP90AB1)\", \"function\": \"Protein\", \"id\": \"6aa56d18c328e87c34e870f7b02913e5d6efc404b4ceb714fa7b67f3bac9a90781af94a70ebfc3b8340d7a663779c93ee9be4635ee5e56db036a319e57fa7ffc\", \"name\": \"HSP90AB1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP4), p(HGNC:HSPA8))\", \"function\": \"Complex\", \"id\": \"2793d029e1e4fd495b588337cf7321d870ba9d12917a8544262e764fa013b396e3b85dad315f3a631e4900b3af7de8a61e4afb1f2e47e83d2b9cbfef2f7f2024\", \"members\": [{\"bel\": \"p(HGNC:FKBP4)\", \"function\": \"Protein\", \"id\": \"4b4d04660cce588fae0beec1c7476117f842e4de7495fb38ca6e84a1c0e432492353d48a26d4db9d75072c260d5bbc589bc6dd97ae31fc7b65151d4655878cb1\", \"name\": \"FKBP4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP5), p(HGNC:HSP90AB1))\", \"function\": \"Complex\", \"id\": \"2731d0658b38d750a5e8d0c3a6cbff4ee0a0011c9b19560bace90fa75eb2cd1f7e613ad9bb4de766e81be4428055441a24e4cc7c6d448cf07efae11dad32184c\", \"members\": [{\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSP90AB1)\", \"function\": \"Protein\", \"id\": \"6aa56d18c328e87c34e870f7b02913e5d6efc404b4ceb714fa7b67f3bac9a90781af94a70ebfc3b8340d7a663779c93ee9be4635ee5e56db036a319e57fa7ffc\", \"name\": \"HSP90AB1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP5), p(HGNC:HSPA8))\", \"function\": \"Complex\", \"id\": \"0beef5eb15b4dbd5ec3915507028beed32f309454e3f87140ea31a1d75ef5b0b06bbb4fa2e116f32f52e48c45cf3efca4e8b3aba752519e2872f873e339664d5\", \"members\": [{\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP5), p(HGNC:IKBKG))\", \"function\": \"Complex\", \"id\": \"4d978705cd21bbeba6f20af83037dc86661f8f3ef67ae37ab8cd8f1580640c3c72041246363d979235b3186831c43e4b41f060ff98c9cd1895c034d2d59fe7c2\", \"members\": [{\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:IKBKG)\", \"function\": \"Protein\", \"id\": \"3478ba3aeeb0684569bf2cddfdf9718130fa1eda53713be43ab687a31b422d72cb0412a540289e3e84a085b335cf889f570db0775bb5b1832cc4a5c834830f04\", \"name\": \"IKBKG\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP5), p(HGNC:MCM4))\", \"function\": \"Complex\", \"id\": \"d514116aa22ed0a8fb7b0f658df67f99959cf1aeab7c29b335735a3ba56f53436c91dc6d18fcb559fa0fdec9fb57985d77dbfb93f646df06a891de0489ace7ed\", \"members\": [{\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCM4)\", \"function\": \"Protein\", \"id\": \"0860c13c002552200f2ffdd71c3a2dba86c23f66700637a61803f2b253470b5fbb82942af13f018653492a7a1320f3530d12697f599a986583e3395188079fda\", \"name\": \"MCM4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP5), p(HGNC:MCMBP))\", \"function\": \"Complex\", \"id\": \"1cebc1a7c2273e719feb7163ba55b07c9f7d1edb6e1be7311c2dcb373df6a4093cddc5b9bca696613f8db3d5db072e8b5a06464f2c4dbcf510145563184334b8\", \"members\": [{\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCMBP)\", \"function\": \"Protein\", \"id\": \"95b3c51df04c23197ef4982473e182ff05ec82ebb5b65f4ec9d2e8060b8bc33a0d0aaeecf9d28039357620694c4a6b9d1406a50a1ede0e18e7cd2f052c4744cd\", \"name\": \"MCMBP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP5), p(HGNC:RAF1))\", \"function\": \"Complex\", \"id\": \"2ec56a08e4f73deed7f0eeb314913da7f781186767ab6ea3f07a242c7d82b530e76ad966b8381f39fd585cdec8b3d24a9f4f6621c2dae0938c8a447c66f360f0\", \"members\": [{\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RAF1)\", \"function\": \"Protein\", \"id\": \"edf6926724d4c429784a197774c1f2b3b82cafc4c88f9b5ab0a85bb9f7964469f8bde553aded79f7459df94a17f2d833255d0c7db9931ce239012077f5dc6d90\", \"name\": \"RAF1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP6), p(HGNC:OSBP))\", \"function\": \"Complex\", \"id\": \"c7c192793b54d4d85a89c632edf793b89591a3d02efe7fb41da7e3eeeda1c24c84a90f46e0fd0a8ffa44f26077f6646bde84846b6f4324863839400740dcfb64\", \"members\": [{\"bel\": \"p(HGNC:FKBP6)\", \"function\": \"Protein\", \"id\": \"aa1183700c8e41f87b2b72493c5a0c1140abbd565a360b4774aad7116b341d7edd2d7b9068cd075ecc9d6a6faf167c3eeba95a7f0068cf856a86e7e84a84fcee\", \"name\": \"FKBP6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:OSBP)\", \"function\": \"Protein\", \"id\": \"14c0294d94d867e45674db77c5042bf6c11a8630884c3e2b329bef0f356e66006d11450b6ae03fc301edce1ab7f7b2290b4550a14ac9cdd627a57a500025fd36\", \"name\": \"OSBP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:FKBP8), p(HGNC:PDCL))\", \"function\": \"Complex\", \"id\": \"fe881065c8ef011cc674ac763b4da08a99098745f487aba555b3372d52505f7c0890124a3e316ce221dad836d5ad8706dffc871f508fe3caa704b671e4d27f92\", \"members\": [{\"bel\": \"p(HGNC:FKBP8)\", \"function\": \"Protein\", \"id\": \"ca15345ed96dca4ed1f2a02f130ceeae40d56e291a2c5f276efa9f1d03e9d4e74016496c82f296733c127907f13b8736a10ec0e1b4b000ca0396831f0e9c78af\", \"name\": \"FKBP8\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PDCL)\", \"function\": \"Protein\", \"id\": \"fccf7653f56c7b9e98b2a8bd5a534fbe6950583f84f1ec6112a4ed3aafa815f6deb144219a1a4898feea6f97c1233f784faa4deb1137fe4795b2d075950d2fb6\", \"name\": \"PDCL\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:HSF1), p(HGNC:TP53), p(INTERPRO:\\\"Heat shock protein 70 family\\\"))\", \"function\": \"Complex\", \"id\": \"b3256e1cf0bb5c55fb99ce5d39b08bd20d495a967c0e698f92e4b219b692fe6dede9ead0112ddeafca5ae2f6f9aa81f4460cfc5979f8d99de4b4c14b0ab1f78c\", \"members\": [{\"bel\": \"p(HGNC:HSF1)\", \"function\": \"Protein\", \"id\": \"f14348a34dab846dcd69f4e44f9229a90bd3a44e5ddbcef4331d61dc959cb6e1aec7c1210063cb9d6f140de4ab55d0aa21cd9176aa9a75bd97939f364145b7b6\", \"name\": \"HSF1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:TP53)\", \"function\": \"Protein\", \"id\": \"b3cf9a1d278f5ccc00d85dd03123ef42b4470914b7e279563535c5827c39437c5d9d81e76957b16054df7e83501f04de6ccfad79fcafbc2bc4d417f5c6b814ba\", \"name\": \"TP53\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:HSP90AB1), p(HGNC:RPAP3))\", \"function\": \"Complex\", \"id\": \"ee1bb9a4e4d9617c974f17b55830750bf8c8287d95c5a70e6231022a676801fe8319a880225a964af6a13bb1bf332daead8a7fb60eec898a037db9cf75e712a6\", \"members\": [{\"bel\": \"p(HGNC:HSP90AB1)\", \"function\": \"Protein\", \"id\": \"6aa56d18c328e87c34e870f7b02913e5d6efc404b4ceb714fa7b67f3bac9a90781af94a70ebfc3b8340d7a663779c93ee9be4635ee5e56db036a319e57fa7ffc\", \"name\": \"HSP90AB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RPAP3)\", \"function\": \"Protein\", \"id\": \"ef7daf05f2028269dc55b8aa4b4e66ff94062cbf2094960d9a73e92ab0f916511ed78bb32cbe8790b821392511a87bbb200a4b405f3d138b5e7573e77a291edd\", \"name\": \"RPAP3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:HSP90AB1), p(HGNC:SIRT6))\", \"function\": \"Complex\", \"id\": \"a45cf3fa4e2cf1b745c9faded70e7582eeb9dde3b944bba5319a21468fcdc615bbdc1caab11343b71160b82ccc58ded7558fb367769c5eaa56734ad2fbbd5257\", \"members\": [{\"bel\": \"p(HGNC:HSP90AB1)\", \"function\": \"Protein\", \"id\": \"6aa56d18c328e87c34e870f7b02913e5d6efc404b4ceb714fa7b67f3bac9a90781af94a70ebfc3b8340d7a663779c93ee9be4635ee5e56db036a319e57fa7ffc\", \"name\": \"HSP90AB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SIRT6)\", \"function\": \"Protein\", \"id\": \"418f976c813faf69cd959540ecaf58694237e9e61726f7cfcb130492c835980f37e622d576ae588471a23af3f3df1ea6c14bef6ca8db0e052123152a02ea9776\", \"name\": \"SIRT6\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:HSP90AB1), p(HGNC:SUGT1))\", \"function\": \"Complex\", \"id\": \"b187a4d4bd4ff727ed392f94487109a85985e2b954b88233ef5d2dc9485447681bc213f7f7397b683786621ff0666c8ea2044dea9b8fdec588bb0f68874e7169\", \"members\": [{\"bel\": \"p(HGNC:HSP90AB1)\", \"function\": \"Protein\", \"id\": \"6aa56d18c328e87c34e870f7b02913e5d6efc404b4ceb714fa7b67f3bac9a90781af94a70ebfc3b8340d7a663779c93ee9be4635ee5e56db036a319e57fa7ffc\", \"name\": \"HSP90AB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SUGT1)\", \"function\": \"Protein\", \"id\": \"4af52118121cd800414191aa793a427476930ec475743c5d685ac6c64ef53b960463c118755d73d7d0b493a637e4bebeed1084fffd34da89e7e101b7de8dd185\", \"name\": \"SUGT1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:HSP90AB1), p(HGNC:UNC45A))\", \"function\": \"Complex\", \"id\": \"c7239ae53de201d757f0bcb2cfb4d4cabf31223731ceb7ce9985908ea7fbdfed12422063ce0b378b2c7f7de75ac876d91bb7afb9a6c84a5ba870cf827448393f\", \"members\": [{\"bel\": \"p(HGNC:HSP90AB1)\", \"function\": \"Protein\", \"id\": \"6aa56d18c328e87c34e870f7b02913e5d6efc404b4ceb714fa7b67f3bac9a90781af94a70ebfc3b8340d7a663779c93ee9be4635ee5e56db036a319e57fa7ffc\", \"name\": \"HSP90AB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UNC45A)\", \"function\": \"Protein\", \"id\": \"9d2bd68e0d546dd0795d5656c8ee228c8cc8f4a1dd97eaac5686d16da3d86311310364b21b446106842a0cbce65d4fcca31ed45d90a692123a156b1b23372d20\", \"name\": \"UNC45A\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:HSPA5), p(HGNC:PRNP))\", \"function\": \"Complex\", \"id\": \"86bcc36e325a20d15111177448b71890427fb0e76ac050333525a9cdd76316b76756278441b788f4da2a88b84b6f3329b36fb373895326a8cc84a44e0fb7c466\", \"members\": [{\"bel\": \"p(HGNC:HSPA5)\", \"function\": \"Protein\", \"id\": \"91a76da7c0cb8d0d8daee288925749f2b8f33b80fca84b2f994dd939c2b2b5400a196a96b5de0c74c4c075f8c9f0de56a6de0a08a2effab9563c77caca8c5432\", \"name\": \"HSPA5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PRNP)\", \"function\": \"Protein\", \"id\": \"97023c238092f75f952ae0785caba6d1454099f27405c7e582078f2f49f5ef146e0c8eb3a1c25a63781a21e5d83689e958397e3115d98e65cf8c5a2ad9c7bffd\", \"name\": \"PRNP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:HSPA6), p(INTERPRO:\\\"BAG domain superfamily\\\"))\", \"function\": \"Complex\", \"id\": \"b856ca719f961ec743c25cddc7f5ea9fce71d9847b60070cad5a351c1456d659ca6486173cdbeb909d71642a138ee464da66ae8bf9a527a91f09abea06686632\", \"members\": [{\"bel\": \"p(HGNC:HSPA6)\", \"function\": \"Protein\", \"id\": \"c5642b35597b17ede7ffbfd3fe0dd2b1c4558149f4122c8bcd8122559ec1b738ab70f5c878770d58f00642e4105d7669e996d6eb159e750ef4d4df7c756f2525\", \"name\": \"HSPA6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"BAG domain superfamily\\\")\", \"function\": \"Protein\", \"id\": \"eb8d49d72d87fbdac26b4d5d9b0775fac39c65f15fe28d4861512fb9c522ffbd4c71b291b1708a57c60d25de7a9b7e3d5617ab8948b90bc5a9b4eb0a68589f1a\", \"name\": \"BAG domain superfamily\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:HSPA8), p(HGNC:SIRT6))\", \"function\": \"Complex\", \"id\": \"479a952b80e024c820907c4d30996bb1a5a17f96f959ce0ee7daec2f04fe5a3669fdee2f570d6e9ba17a67cefdd35e469d977df9172c5c4e9a0f9395cf8a8859\", \"members\": [{\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SIRT6)\", \"function\": \"Protein\", \"id\": \"418f976c813faf69cd959540ecaf58694237e9e61726f7cfcb130492c835980f37e622d576ae588471a23af3f3df1ea6c14bef6ca8db0e052123152a02ea9776\", \"name\": \"SIRT6\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:HSPA8), p(HGNC:SUGT1))\", \"function\": \"Complex\", \"id\": \"ad8d258eae9e3968adcc94c90f3f0bfb238265b052e76f5d0f6d178457081520f166c92eebc6dd7a8f85efdf1db0d1d51e63baaa2dc9653821fe49fddb607bbb\", \"members\": [{\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SUGT1)\", \"function\": \"Protein\", \"id\": \"4af52118121cd800414191aa793a427476930ec475743c5d685ac6c64ef53b960463c118755d73d7d0b493a637e4bebeed1084fffd34da89e7e101b7de8dd185\", \"name\": \"SUGT1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:HSPA8), p(INTERPRO:\\\"BAG domain superfamily\\\"))\", \"function\": \"Complex\", \"id\": \"d463444700c1540d520abf03a49ca64a4c88842b30a8cf47edb33f714d03df4288a0847993eb8a4f27931dc9e813263aba027bc58d2f7ebb558e4ceb6584265e\", \"members\": [{\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"BAG domain superfamily\\\")\", \"function\": \"Protein\", \"id\": \"eb8d49d72d87fbdac26b4d5d9b0775fac39c65f15fe28d4861512fb9c522ffbd4c71b291b1708a57c60d25de7a9b7e3d5617ab8948b90bc5a9b4eb0a68589f1a\", \"name\": \"BAG domain superfamily\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:HSPBP1), p(INTERPRO:\\\"Heat shock protein 70 family\\\"), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"5485c0a60cb09d1f946aacfa058d6ec08bbbbdb63f7a767a671dcb93e6c6e9820701a30caac4b363c08fdb64d12a51d38ae9128bc72706c4e41d8bf1e7624ad4\", \"members\": [{\"bel\": \"p(HGNC:HSPBP1)\", \"function\": \"Protein\", \"id\": \"e8e81f2ce99fe04a122e85bab35b0631f5fd0ae0f9b2ff9d0129f77bb8a97a7cad47212b59636a8787c20746c0c7e54343f658ea5619d0cbb18e239b275e898a\", \"name\": \"HSPBP1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:HTT), p(HGNC:UBA2))\", \"function\": \"Complex\", \"id\": \"5b4c5466065609feb1237d5c148c7cb68cff12dfbd972c6d392db45b72d05398d117637f3b9921b6c110d00fe3707dab8b46bed41f05837ab3add1681ef79da3\", \"members\": [{\"bel\": \"p(HGNC:HTT)\", \"function\": \"Protein\", \"id\": \"f3dac0d39a258f730f45800014166f0cd6e8002b0bd1f9be6aefa0958d84dc3a67a48721743405568d2c7942ea831f7bdc6cdcc7a990bb1a7d5161351e6e67b0\", \"name\": \"HTT\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBA2)\", \"function\": \"Protein\", \"id\": \"cccccfcdcc945288992b69ada8ef0074939d0284397b6662af5d047d9395b52104d31ec76fd70bf1bb9e7e654e1a814f2b7e3bea94b071ab706294ccc4a7e0ed\", \"name\": \"UBA2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:KLHL1), p(HGNC:NUDCD3))\", \"function\": \"Complex\", \"id\": \"1c03c405dc341b06350596140384ef52d648246441dc2728e56e95b8851415b883a4a8bee5e90330af21a69fee53bf7f84c50927b0b67c6ad24373515d829148\", \"members\": [{\"bel\": \"p(HGNC:KLHL1)\", \"function\": \"Protein\", \"id\": \"3b9980f7955386ad9a320049b2860d97080eb43bc6507238d8d0a16e4aaebc9ec42bb5f940d335fe71cf7677ec4b80a2abef0fa45649e21c6a399192c0c5afa8\", \"name\": \"KLHL1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NUDCD3)\", \"function\": \"Protein\", \"id\": \"2839b7c7d3e9f1eab0b1baaaf788dfea1a727ab9fd1f9024472cb733db30e62b65b5251255546098cd99c46c50634bdb8df45cba81504018480ef8d2c8e115a2\", \"name\": \"NUDCD3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:KLHL13), p(HGNC:NUDCD3))\", \"function\": \"Complex\", \"id\": \"b50ee99a514363b59469fbffed332a293c08ea1118c8945aef843b076fa23a11f1cacb6bc6696e5ae6431dc73b055c716493545eb280dd54b60805ec8bcb6bfa\", \"members\": [{\"bel\": \"p(HGNC:KLHL13)\", \"function\": \"Protein\", \"id\": \"a7e40e6db01686faa168fab1939f3f24faa981c5fafa80b317d7b33278a6f6b5024db75d065c54d602aa4c38b8d4f5d4302ca880bdd92ef879d1ccc3e10076a2\", \"name\": \"KLHL13\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NUDCD3)\", \"function\": \"Protein\", \"id\": \"2839b7c7d3e9f1eab0b1baaaf788dfea1a727ab9fd1f9024472cb733db30e62b65b5251255546098cd99c46c50634bdb8df45cba81504018480ef8d2c8e115a2\", \"name\": \"NUDCD3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:MCM2), p(HGNC:MCMBP))\", \"function\": \"Complex\", \"id\": \"2f430dd445267f8c5978e6854eb68ba78c3f197a3fc5a2bacbc5dd5c5a98122caecd9ce46a11f2e5fa9d88b049201b87acee0640b94bce5d66657f3cacb04f1c\", \"members\": [{\"bel\": \"p(HGNC:MCM2)\", \"function\": \"Protein\", \"id\": \"27e0bfeab2c65c23713aa4a9bda6aa80772d9306a17036323e4a3b846f00703877ab1becb508930ec3a33a6fc517722de031a6f329b17ca80b567720fad87b95\", \"name\": \"MCM2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCMBP)\", \"function\": \"Protein\", \"id\": \"95b3c51df04c23197ef4982473e182ff05ec82ebb5b65f4ec9d2e8060b8bc33a0d0aaeecf9d28039357620694c4a6b9d1406a50a1ede0e18e7cd2f052c4744cd\", \"name\": \"MCMBP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:MCM3), p(HGNC:MCMBP))\", \"function\": \"Complex\", \"id\": \"4e76b363e9f6515e7e29ffb42d05d809627d3510c436d10e54c359768035e2c6de748400d22497db1bc6aeb6d9c823703b37e89151c10dc0c14796bd68ea55d5\", \"members\": [{\"bel\": \"p(HGNC:MCM3)\", \"function\": \"Protein\", \"id\": \"bb6ec99877b1466fb8a537c122e12132c68c5dd3fc7156e0a4b59921d5ac09c9bd236d8ddc4751fecd9a9fdf9a829d25f6d383629dd043f1860b62d782999c7f\", \"name\": \"MCM3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCMBP)\", \"function\": \"Protein\", \"id\": \"95b3c51df04c23197ef4982473e182ff05ec82ebb5b65f4ec9d2e8060b8bc33a0d0aaeecf9d28039357620694c4a6b9d1406a50a1ede0e18e7cd2f052c4744cd\", \"name\": \"MCMBP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:MCM4), p(HGNC:MCMBP))\", \"function\": \"Complex\", \"id\": \"7ffe7b08021b6f45541665eaeafff85e57490e9546d2045eb3d88a506d6e0c5f89df59e47f77d4795644515693c196f19b8daf5dae59fc26afdfbc4d936a5a59\", \"members\": [{\"bel\": \"p(HGNC:MCM4)\", \"function\": \"Protein\", \"id\": \"0860c13c002552200f2ffdd71c3a2dba86c23f66700637a61803f2b253470b5fbb82942af13f018653492a7a1320f3530d12697f599a986583e3395188079fda\", \"name\": \"MCM4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCMBP)\", \"function\": \"Protein\", \"id\": \"95b3c51df04c23197ef4982473e182ff05ec82ebb5b65f4ec9d2e8060b8bc33a0d0aaeecf9d28039357620694c4a6b9d1406a50a1ede0e18e7cd2f052c4744cd\", \"name\": \"MCMBP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:MCM5), p(HGNC:MCMBP))\", \"function\": \"Complex\", \"id\": \"ff99f9521a70e2a07e1ef863e740ed920bbcdfca693516bb858d88e2a419be2a13b768fc1c11997cfc98c275256ae51536e7b0191bd2072ddad128d7f8ccf29a\", \"members\": [{\"bel\": \"p(HGNC:MCM5)\", \"function\": \"Protein\", \"id\": \"5bbe1745ed802efe103807ab9e881ac7eaa06702278d0d246e0eb5be34da52aa50817be0aefc87b1a28ff25a2df8d3ef36f59f303974dae9adf34342f99e425a\", \"name\": \"MCM5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCMBP)\", \"function\": \"Protein\", \"id\": \"95b3c51df04c23197ef4982473e182ff05ec82ebb5b65f4ec9d2e8060b8bc33a0d0aaeecf9d28039357620694c4a6b9d1406a50a1ede0e18e7cd2f052c4744cd\", \"name\": \"MCMBP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:MCM6), p(HGNC:MCMBP))\", \"function\": \"Complex\", \"id\": \"184f8a0340ea92aa9a2f1809a7499346ec5ffe711efad2c77788d171623a468c51cb6f3dbffc9281e78fd6bc3c775da7fc82bf5f70e515cf6f2c54ab2a56dd27\", \"members\": [{\"bel\": \"p(HGNC:MCM6)\", \"function\": \"Protein\", \"id\": \"1c500bf42ebca65dc6324c5daa1e85a5eb360fe59311041d0cd38dbc11143f4c366b10a52328c10d6904d8baca7701ebac146745e48e5f5729a2278dce087eb4\", \"name\": \"MCM6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCMBP)\", \"function\": \"Protein\", \"id\": \"95b3c51df04c23197ef4982473e182ff05ec82ebb5b65f4ec9d2e8060b8bc33a0d0aaeecf9d28039357620694c4a6b9d1406a50a1ede0e18e7cd2f052c4744cd\", \"name\": \"MCMBP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:MCM7), p(HGNC:MCMBP))\", \"function\": \"Complex\", \"id\": \"dca260f47151fc9afca06d24c831e5cf04fb08ec4c183887efc384af073c0fe9e762a17ab19347e8233f60fe439d45ead76018bef7f2b7c8bf0de68c6f071ed6\", \"members\": [{\"bel\": \"p(HGNC:MCM7)\", \"function\": \"Protein\", \"id\": \"c6ca396237b8c138ff2680cebc843e094c4d324075d28ce973fa3b23f94bf1aa96474eb186019935282ba9ec887e918f6d3893b42c15f29be4bcdd199bc6d489\", \"name\": \"MCM7\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCMBP)\", \"function\": \"Protein\", \"id\": \"95b3c51df04c23197ef4982473e182ff05ec82ebb5b65f4ec9d2e8060b8bc33a0d0aaeecf9d28039357620694c4a6b9d1406a50a1ede0e18e7cd2f052c4744cd\", \"name\": \"MCMBP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:NUDC), p(INTERPRO:\\\"WD40-repeat-containing domain superfamily\\\"))\", \"function\": \"Complex\", \"id\": \"8c3cc14e678803d45d2a9a126e88b86aedeb21b0100b4a27db4b01dc0799867dfa2875afb34d5dbe709cf96a378906ef4ff02e502c2dc7b42bca37a869acb958\", \"members\": [{\"bel\": \"p(HGNC:NUDC)\", \"function\": \"Protein\", \"id\": \"6bee2eb21a47f60b68031c0187642cd084e9ee5139277fe8febd2771423cf32470b6e7904d949243993089f07d1e9d7c11dcb8b6cf2912e821c9bab9ea6c05df\", \"name\": \"NUDC\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"WD40-repeat-containing domain superfamily\\\")\", \"function\": \"Protein\", \"id\": \"59e80e13a16be3814d8f5c496ff0e79237478e5b65c693633c37c12e3c317f4c23cb1f470c95e95c82d4eb5acaee1af9532c2ed728ebf20fdbe779bbac286ea9\", \"name\": \"WD40-repeat-containing domain superfamily\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:NUDC), p(INTERPRO:\\\"WD40-repeat-containing domain\\\"))\", \"function\": \"Complex\", \"id\": \"4ec045dbc3c8644afa7804ae6dc5a9e3cfc2c42913f551a39fa04d009d37a922f489af9bf90bb39f428232f0f4abed5e809c71f5db0e0299171a615fa7b593d9\", \"members\": [{\"bel\": \"p(HGNC:NUDC)\", \"function\": \"Protein\", \"id\": \"6bee2eb21a47f60b68031c0187642cd084e9ee5139277fe8febd2771423cf32470b6e7904d949243993089f07d1e9d7c11dcb8b6cf2912e821c9bab9ea6c05df\", \"name\": \"NUDC\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"WD40-repeat-containing domain\\\")\", \"function\": \"Protein\", \"id\": \"b2a46a7866214efa38aa39db0c2e567c41b8486ad372d12b20a2bce94647927d7b047ae52a8cf77706c931cda6ebb5454403075de98bc9388e32e2b1273df404\", \"name\": \"WD40-repeat-containing domain\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:NUDCD1), p(INTERPRO:\\\"DEAD/DEAH box helicase domain\\\"))\", \"function\": \"Complex\", \"id\": \"57645f0127a37f9c6b9b8275218f8fec45686e4a78e6b072eab5582a537c87a2e8b4652574d1c318908211af0a0cbc4fc9f4d2c9f601ea9443eddd83a1690e09\", \"members\": [{\"bel\": \"p(HGNC:NUDCD1)\", \"function\": \"Protein\", \"id\": \"d6180e318184dd3e1be35332c0aef252c1fed0fc743184395165ac2856e66fe022ff405f4bc141fa3d8d026ba3caf83057b046560768ff0b22b3a11cb73d96a6\", \"name\": \"NUDCD1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"DEAD/DEAH box helicase domain\\\")\", \"function\": \"Protein\", \"id\": \"c836e786bde3321ae54bd5bcccc556798456f42ff982c5fb7f91c38f42dbf78a0acea2e87ab6ad0e6a513cf095cf9495e5f512251dbb4ac7b7539d4d2673a323\", \"name\": \"DEAD/DEAH box helicase domain\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:NUDCD2), p(HGNC:SNX31))\", \"function\": \"Complex\", \"id\": \"6cb8ced75ebb10ebed7b8112390839db35c47b484bb9165b6c437652661a502f9a1c10a4e3543e16d0a2ea5b09e5fbc60d2555041bd693d4f1875917b61e946a\", \"members\": [{\"bel\": \"p(HGNC:NUDCD2)\", \"function\": \"Protein\", \"id\": \"d8db29a1ea84674d36095c4f2342d6ce70b081218fc82ee8c7cbe342f03ed0192501980845b73345839598e6d3024d76ec9e4e0cb4d2ef1e3820a18246092299\", \"name\": \"NUDCD2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SNX31)\", \"function\": \"Protein\", \"id\": \"707e9953e3210d35a2285b1e79cae312ee3f64af43a74d825e55017ac58b19f2f5a8790c06c3cd4e9b8afc3307c0a7f501caff830dcf68364c73cce3d05a134c\", \"name\": \"SNX31\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:NUDCD2), p(INTERPRO:\\\"Regulator of chromosome condensation, RCC1\\\"))\", \"function\": \"Complex\", \"id\": \"f5fd57e8fdad32f9971efa70a79acc9c43a6c32a3cdd6cd158956a5d35e0ae6d3f9541f318d9b017994bba84dca7ff6c40414180939827bee980fd7c8fc1e339\", \"members\": [{\"bel\": \"p(HGNC:NUDCD2)\", \"function\": \"Protein\", \"id\": \"d8db29a1ea84674d36095c4f2342d6ce70b081218fc82ee8c7cbe342f03ed0192501980845b73345839598e6d3024d76ec9e4e0cb4d2ef1e3820a18246092299\", \"name\": \"NUDCD2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Regulator of chromosome condensation, RCC1\\\")\", \"function\": \"Protein\", \"id\": \"262c9993d4ec0bb8eb3852cbc34bf667c10bce6f845827ecde5eb68bafbf9a09f97f71850f00a8a0b0ef91ffef38239f334abd5a8147b38bbc58dc8bc4a50f38\", \"name\": \"Regulator of chromosome condensation, RCC1\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:NUDCD3), p(INTERPRO:\\\"Kelch-type beta propeller\\\"))\", \"function\": \"Complex\", \"id\": \"124f5b1ff35e73192ff3d8dde8365c0e2eefb37668595924cf55ad101f446c9682ca766848edeb8a0917be151e39438588da132397fa80b3b1643b08d6311d7b\", \"members\": [{\"bel\": \"p(HGNC:NUDCD3)\", \"function\": \"Protein\", \"id\": \"2839b7c7d3e9f1eab0b1baaaf788dfea1a727ab9fd1f9024472cb733db30e62b65b5251255546098cd99c46c50634bdb8df45cba81504018480ef8d2c8e115a2\", \"name\": \"NUDCD3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Kelch-type beta propeller\\\")\", \"function\": \"Protein\", \"id\": \"de18384bc906f7f275c2543016ec3741289f42a03d80fdb9c2dd2b28a968fdcbf89a3ef612ab320c1b5f4b4f88d8a617cc58bba8582c2dcc01c0467c00c4e9f1\", \"name\": \"Kelch-type beta propeller\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:OAZ1), p(HGNC:ODC1))\", \"function\": \"Complex\", \"id\": \"da7e2c24c08de080deda1f978d4cb273223b834f850bafdae64be2e827eb1f5cfbc687aa1b0d9418e50015e33326d9bda0d66e97d019dfbacb7581e95cd7906e\", \"members\": [{\"bel\": \"p(HGNC:OAZ1)\", \"function\": \"Protein\", \"id\": \"9f911c671161ad20732743100f4d249905e81bbcae02a624b8760dd6a1ac631fee933ef87f81bf9a608082c5bed9a6687668643c167d52373bba1c325708f44e\", \"name\": \"OAZ1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ODC1)\", \"function\": \"Protein\", \"id\": \"2acc1135b0098a7e23f4b3d62b42fa61cf70c1d3c388cbb9dc3e3c62bdf635e4c5ef6b41e3509f6ebc3f80598f862a8de6fb79fd6957596b15e930465737e42a\", \"name\": \"ODC1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PARK7), p(HGNC:PIAS2))\", \"function\": \"Complex\", \"id\": \"9b1bb3569146344c72c597280f25f95bc995b179744016b2a0da727bc21a399b2e9bcf754c41318322f57c19e11bf34c29cb4e64fa901fd7a4811470e6393950\", \"members\": [{\"bel\": \"p(HGNC:PARK7)\", \"function\": \"Protein\", \"id\": \"6308bbbeea3bf1b0132b1fb284549e7e1e932c4560083ad76367b8b55d5445c0d561a9990984a4d38b18f8edace3c0a85aac78d63bad04bd71563ad265d145cc\", \"name\": \"PARK7\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PIAS2)\", \"function\": \"Protein\", \"id\": \"d139b0de2cc8f772352fd924a1661ee6d683cc147a1e0225c11adbe181701c2286a36600de7089ba45c15926136e6325dcce34e920fec542321005c55895d18c\", \"name\": \"PIAS2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PDCD2), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"65544664313d9d3f7ef1af7fac12e381d9b722629cb3afa42f2f4f41cded3d877ee6bb858db6f3e045013e2ff4851d79b3ee16acf62c6ed446c478ec3fd107c5\", \"members\": [{\"bel\": \"p(HGNC:PDCD2)\", \"function\": \"Protein\", \"id\": \"8121989e5d5b1ac963b41d56567b41c1d62cb91172de4df21d45dbb3dd0cacb1f541ece4cf69bfdee886997d8bafdff0d13070887dcded114f1f491a9e0411a9\", \"name\": \"PDCD2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:PDRG1), p(HGNC:PFDN2))\", \"function\": \"Complex\", \"id\": \"0862ee92629290386c020ea149fc0d12f9e20973fd73e3af0e2e61256b7514104018c6b917cef597eb9e4e4c9d8b098c9c9894cba31140807e152164d270e673\", \"members\": [{\"bel\": \"p(HGNC:PDRG1)\", \"function\": \"Protein\", \"id\": \"6bce0f646e0928a627cb3f93c3434cdaef11a6fa272f2920a371d4022e00d2a6dee6240218e019bd8fc6032bfd684a81e3f20585260f101389e31734bdd71da9\", \"name\": \"PDRG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PDRG1), p(HGNC:PFDN2), p(HGNC:PFDN5))\", \"function\": \"Complex\", \"id\": \"b48996776a325ce8e3c4863f46004e34d8d406295981c19d7730241e649399f11ffb8b4cdc7ed87e5bc444cdd9e4d84dad64f6e8323b7efaa14b54e2634ca326\", \"members\": [{\"bel\": \"p(HGNC:PDRG1)\", \"function\": \"Protein\", \"id\": \"6bce0f646e0928a627cb3f93c3434cdaef11a6fa272f2920a371d4022e00d2a6dee6240218e019bd8fc6032bfd684a81e3f20585260f101389e31734bdd71da9\", \"name\": \"PDRG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PDRG1), p(HGNC:PFDN5))\", \"function\": \"Complex\", \"id\": \"ff97949bddf18d46ea7180241860240a2af48b09e9a380ea48aee312bd82ba1148a5cd27d48f90b1d71dc1b80527d46d2fc5f12c77a9da71d64923ba47bbb3e4\", \"members\": [{\"bel\": \"p(HGNC:PDRG1)\", \"function\": \"Protein\", \"id\": \"6bce0f646e0928a627cb3f93c3434cdaef11a6fa272f2920a371d4022e00d2a6dee6240218e019bd8fc6032bfd684a81e3f20585260f101389e31734bdd71da9\", \"name\": \"PDRG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN2), p(HGNC:PFDN2))\", \"function\": \"Complex\", \"id\": \"5043c7c1ee31e565f7799a033ab2bafe95f5cc88c5590013e6a4daf2be92dfb95fbaf9912cc4f548a322ba2aa59895a1399325cbf88c2ca22c378d380276ab88\", \"members\": [{\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN2), p(HGNC:PFDN5))\", \"function\": \"Complex\", \"id\": \"41274fb171fe1fc649d0214692ccb663186f27e8574428d687987c0961378d9a5f069bd12d339beebae9990bf86db255710244b7aeefa4b489edb1f4ddf36f2f\", \"members\": [{\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN2), p(HGNC:PFDN5), p(HGNC:POLR3A))\", \"function\": \"Complex\", \"id\": \"793d9b7fcb5f9077adb30192376f9a8bec1e2bb2e724bcfdbb346a900e830574287c10ce8a0057249124591e4f30e930cb7400042becd4f6bc87102ccdbb23c2\", \"members\": [{\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:POLR3A)\", \"function\": \"Protein\", \"id\": \"5a2f78224b5ec36c7ecf6811f7f518474182466219efba00f1c50fdc71291179f22f7efb956050450e1c7b483e38e4bdcad8c05841c62ac3d342feb666b3d3f9\", \"name\": \"POLR3A\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN2), p(HGNC:PFDN5), p(HGNC:RPAP3))\", \"function\": \"Complex\", \"id\": \"718e95eaa9f2378ad53ef0d6b8998495e2d571d627067ae26122d5421ed8d522ffb0e28f70b19ee86e83a496681dc5b1fd65125a7a8b154e505f54d7f56354cc\", \"members\": [{\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RPAP3)\", \"function\": \"Protein\", \"id\": \"ef7daf05f2028269dc55b8aa4b4e66ff94062cbf2094960d9a73e92ab0f916511ed78bb32cbe8790b821392511a87bbb200a4b405f3d138b5e7573e77a291edd\", \"name\": \"RPAP3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN2), p(HGNC:PFDN5), p(HGNC:URI1))\", \"function\": \"Complex\", \"id\": \"7aed62dbeea900f460a21926857e9d680fad2e36e909a5e254e0bbf3678855e009bc019e69bb1f7f9961365eb9a2d11575034961b454aab05b8fccb80d962fab\", \"members\": [{\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:URI1)\", \"function\": \"Protein\", \"id\": \"c6e00b9b0d57bbd66769e285df5faaae0d71428ce82ea1ad653bd5787ee832b60418c9b9939a61933442465a6b377da81a45cf6c764e558aa1ec43a129963b75\", \"name\": \"URI1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN2), p(HGNC:PFDN5), p(HGNC:UXT))\", \"function\": \"Complex\", \"id\": \"bb1eb54a0aa26fb066fb515f11cfaed34a859a633b95b4bb1119758515f17add8fdba2839c65831259d2a4f303738eee0f59fca619c2d43ebf4afa5d6ac8c78d\", \"members\": [{\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UXT)\", \"function\": \"Protein\", \"id\": \"2afba9b5b8a5b2c948e217bbeda792fea1256638c09c818d737f219c41d91049423467c587617c613ee4b21d6a79973ac92b1e9566af29037899f22b01171b4d\", \"name\": \"UXT\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN2), p(HGNC:PFDN5), p(HGNC:VBP1))\", \"function\": \"Complex\", \"id\": \"c4b0d949bc1dda9f4b7c80a96943b4993fa9fd228c09005804f65f78eaef05e8fca0babcdb4e5219ae23b18acdc093d667e4951631d006342b54fb4210e5a4a9\", \"members\": [{\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:VBP1)\", \"function\": \"Protein\", \"id\": \"f21a1add36f3f1ccdc4148b8f6b0fcc16f3a3d47f1b3abfcf2d22537c7fe72dab8c19fee424c965a454998a88397d25f42395b162d67a6ab2e44ef3d5f4cef30\", \"name\": \"VBP1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN2), p(HGNC:UXT))\", \"function\": \"Complex\", \"id\": \"c8c5908513d4d8d7c7d515a905b4043193dfaae1bfa0cd37fe4ed3f7406755e8649f5e744c92731db163e61b9fb647cec54d0214771ba7c99bcc2f27a309e7b1\", \"members\": [{\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UXT)\", \"function\": \"Protein\", \"id\": \"2afba9b5b8a5b2c948e217bbeda792fea1256638c09c818d737f219c41d91049423467c587617c613ee4b21d6a79973ac92b1e9566af29037899f22b01171b4d\", \"name\": \"UXT\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN2), p(HGNC:VBP1))\", \"function\": \"Complex\", \"id\": \"fb00d63e53352a930ec2ff18fe103ab3f75ac4aeb60430daa9ea8540cceb6f4b7b7a231f358ef3c0fd05bf6eef0435a8a258eb6ba5c837018e8dd0394eceb987\", \"members\": [{\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:VBP1)\", \"function\": \"Protein\", \"id\": \"f21a1add36f3f1ccdc4148b8f6b0fcc16f3a3d47f1b3abfcf2d22537c7fe72dab8c19fee424c965a454998a88397d25f42395b162d67a6ab2e44ef3d5f4cef30\", \"name\": \"VBP1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN5), p(HGNC:UXT))\", \"function\": \"Complex\", \"id\": \"67471c72e0bd4079d06026713682c76491e6eb3bc0a2bbc7386ecd47a97af9dbfaddd696502d83ec6636f6de0e60b5abd22c25b38705ecb091b8a2655b504e3d\", \"members\": [{\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UXT)\", \"function\": \"Protein\", \"id\": \"2afba9b5b8a5b2c948e217bbeda792fea1256638c09c818d737f219c41d91049423467c587617c613ee4b21d6a79973ac92b1e9566af29037899f22b01171b4d\", \"name\": \"UXT\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PFDN5), p(HGNC:VBP1))\", \"function\": \"Complex\", \"id\": \"12f4f1876ed9760ffe38fe1624fdc956dbe8c141d3033fa63682af8eecd8285af32293b87990e8056acfd7ec07ec31374a4a30cd1323eaca0671273135f11c99\", \"members\": [{\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:VBP1)\", \"function\": \"Protein\", \"id\": \"f21a1add36f3f1ccdc4148b8f6b0fcc16f3a3d47f1b3abfcf2d22537c7fe72dab8c19fee424c965a454998a88397d25f42395b162d67a6ab2e44ef3d5f4cef30\", \"name\": \"VBP1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:POLR3A), p(HGNC:RPAP3))\", \"function\": \"Complex\", \"id\": \"01b5a8ed436abdc6d9a9560b6b7d3d656c81f5d2f040d544c8e0714635020d1268df60a532f531d95e926853be5676594e9f9fcb9596659be43fda78c96c4210\", \"members\": [{\"bel\": \"p(HGNC:POLR3A)\", \"function\": \"Protein\", \"id\": \"5a2f78224b5ec36c7ecf6811f7f518474182466219efba00f1c50fdc71291179f22f7efb956050450e1c7b483e38e4bdcad8c05841c62ac3d342feb666b3d3f9\", \"name\": \"POLR3A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RPAP3)\", \"function\": \"Protein\", \"id\": \"ef7daf05f2028269dc55b8aa4b4e66ff94062cbf2094960d9a73e92ab0f916511ed78bb32cbe8790b821392511a87bbb200a4b405f3d138b5e7573e77a291edd\", \"name\": \"RPAP3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PRKN), p(HGNC:STUB1))\", \"function\": \"Complex\", \"id\": \"696012def8d73c8967c8f07732fb03fe62595c2541e9c2a6711469c315651e3d13665b80f63404297e492737b23ce0467524490a96da0cee4b886453bd1f813d\", \"members\": [{\"bel\": \"p(HGNC:PRKN)\", \"function\": \"Protein\", \"id\": \"c129e31246d9b635f2d39f8a0d20e11d29724b9888bc1c35e5b5f5eb721f42a8ead8ccee052e21a3c178f79c19d2fecb3360bd35d0a89f449b2d05af14ae324f\", \"name\": \"PRKN\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:STUB1)\", \"function\": \"Protein\", \"id\": \"7edf63ec4c2eaacc63944e79144be59c6ded86334f97e772d1e6ccbca7065106451bd7861e8acfbda8051ed22ecf6451dd68a33a35fc2d3b91083a48b53e1c68\", \"name\": \"STUB1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PRPS2), p(HGNC:PSMD4))\", \"function\": \"Complex\", \"id\": \"efd65f3c8ba3b61359624de4b56d4daeb71678a9219833961b696968d43f48c5a2323846c1ea1cc04b6f116ee75d2eeb3d218ef3a87c80df7ab382b610f2e95b\", \"members\": [{\"bel\": \"p(HGNC:PRPS2)\", \"function\": \"Protein\", \"id\": \"bcbae1b417030d6cfef4874b205a28aef85b514b8e98fedb1e0f3cd3020f607a51e0752880a6546c5d910417f6f7e4712e00e6fbec148b9d8ecfe7ce27ece95b\", \"name\": \"PRPS2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD4)\", \"function\": \"Protein\", \"id\": \"d9d04480e2882891bc3719d84ddcda93272fc6d6bc378b44783df20c69bd4674d4f7a23967975dce3b9b16e5ffcbee22b2e15589e3609717df69409ffc5995b3\", \"name\": \"PSMD4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PSMA5), p(HGNC:PSMD4))\", \"function\": \"Complex\", \"id\": \"587c3ab037131f5944fd920d77a161673c124846c360014ce27171f18ec3eec0c85d13634aa5f7967b2cc8cef9c576518202d678d315ecfabe03ef016a7574fe\", \"members\": [{\"bel\": \"p(HGNC:PSMA5)\", \"function\": \"Protein\", \"id\": \"edfb7034424d48885d2faeda9a9f7a189ba15685eeff7d60117fc5be87b14c91591eb0ca325a97c80efaf3107919e5300ccdc936756858ee9f30ea582540a376\", \"name\": \"PSMA5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD4)\", \"function\": \"Protein\", \"id\": \"d9d04480e2882891bc3719d84ddcda93272fc6d6bc378b44783df20c69bd4674d4f7a23967975dce3b9b16e5ffcbee22b2e15589e3609717df69409ffc5995b3\", \"name\": \"PSMD4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PSMC1), p(HGNC:PSMC2))\", \"function\": \"Complex\", \"id\": \"a1bdb44abc3d0f00980ebfce54a747f25e37dc39a680c029d9ae4d4560d82a9151a78690c260404966a3acddcdad6fa5b049085555dd3eb0651666182f95c812\", \"members\": [{\"bel\": \"p(HGNC:PSMC1)\", \"function\": \"Protein\", \"id\": \"51ff2eb19418491681267097da8216669704f5f3cd3cf8758df1d54037a14ef70b81e8697bafd1d9feb2684a2ec9c1fd192a193b2c3744b6bddcab2cf824f518\", \"name\": \"PSMC1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMC2)\", \"function\": \"Protein\", \"id\": \"2b1ced2c49cec8b9e98d0e4c5a3274b1dd8ee25b190a71f677fcf154bafe5df8dad3ffe62a985d437883794c3e766fb36de517bb9129a92fa0805e0cdd933f76\", \"name\": \"PSMC2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PSMC1), p(HGNC:PSMD2))\", \"function\": \"Complex\", \"id\": \"d60ce211f09970b376e279f1a3447957d0283786d7a7d251ed96d2d296ae20d76f1a8ae311ecf2e319a97f5b4dc2aadfec19a64f5ec64b43fc427e17ac939380\", \"members\": [{\"bel\": \"p(HGNC:PSMC1)\", \"function\": \"Protein\", \"id\": \"51ff2eb19418491681267097da8216669704f5f3cd3cf8758df1d54037a14ef70b81e8697bafd1d9feb2684a2ec9c1fd192a193b2c3744b6bddcab2cf824f518\", \"name\": \"PSMC1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD2)\", \"function\": \"Protein\", \"id\": \"2285c9c0b9111cf13594cf58ac0a25ed904ed2b11120e7d706ddca48193986ededfa041f2e0435446e8cbadf2e3a25c5f8c27ab306a22c82a572c21741f9acc9\", \"name\": \"PSMD2\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PSMC1), p(HGNC:PSMD4))\", \"function\": \"Complex\", \"id\": \"26b46a5c550da59779fc86c656a43cfa8766138f2afe83819ae10d0903b41e6a1a17a95215848d5eaee7c600866abf71dbaccb6f49231f7915d033d4ce9804eb\", \"members\": [{\"bel\": \"p(HGNC:PSMC1)\", \"function\": \"Protein\", \"id\": \"51ff2eb19418491681267097da8216669704f5f3cd3cf8758df1d54037a14ef70b81e8697bafd1d9feb2684a2ec9c1fd192a193b2c3744b6bddcab2cf824f518\", \"name\": \"PSMC1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD4)\", \"function\": \"Protein\", \"id\": \"d9d04480e2882891bc3719d84ddcda93272fc6d6bc378b44783df20c69bd4674d4f7a23967975dce3b9b16e5ffcbee22b2e15589e3609717df69409ffc5995b3\", \"name\": \"PSMD4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PSMC4), p(HGNC:SNCA))\", \"function\": \"Complex\", \"id\": \"8a81ed894d92cf9b2271f4112c3e703297d338d728c94436890ed50321fe05c212a5fd6e74266f9edf0bce4dc753a63cea0c61b844348d18b70cb5d50ef28a10\", \"members\": [{\"bel\": \"p(HGNC:PSMC4)\", \"function\": \"Protein\", \"id\": \"74ba82c3efbb95f72a8beb19b2c8b389881226f550ccab8e4e87dbd9dadf162e2bda7c9574f250739e0c2bfb4856e56ed3af271f5b38938ba29d0e7dd0821419\", \"name\": \"PSMC4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SNCA)\", \"function\": \"Protein\", \"id\": \"4345441d1f420dc0d830377737dba9467f21b1637ed3472a697534ce698f2566b780dd52cda47c96b782242b1bcfa70e9a6147fb3bb251d1f3e1e2a0bb7038f3\", \"name\": \"SNCA\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PSMD2), p(HGNC:PSMD4))\", \"function\": \"Complex\", \"id\": \"fea3fd8f7661ef0f2741cea7e07dd2c18c1d68bdb14cc6b14a9e40bc1965ea4590b3b4c4763e52ce20446f5cde9078314347fd7b4461ad14baefd98a53d1dbbf\", \"members\": [{\"bel\": \"p(HGNC:PSMD2)\", \"function\": \"Protein\", \"id\": \"2285c9c0b9111cf13594cf58ac0a25ed904ed2b11120e7d706ddca48193986ededfa041f2e0435446e8cbadf2e3a25c5f8c27ab306a22c82a572c21741f9acc9\", \"name\": \"PSMD2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD4)\", \"function\": \"Protein\", \"id\": \"d9d04480e2882891bc3719d84ddcda93272fc6d6bc378b44783df20c69bd4674d4f7a23967975dce3b9b16e5ffcbee22b2e15589e3609717df69409ffc5995b3\", \"name\": \"PSMD4\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PSMD2), p(HGNC:STUB1))\", \"function\": \"Complex\", \"id\": \"bb48b77cad1b3363d299310fdcd21109ef4127dbd6e2220586e7ae2d609465c462aacfd0582882716d353cd9461bebbbbf73c68bce10d53b274f974690c06d88\", \"members\": [{\"bel\": \"p(HGNC:PSMD2)\", \"function\": \"Protein\", \"id\": \"2285c9c0b9111cf13594cf58ac0a25ed904ed2b11120e7d706ddca48193986ededfa041f2e0435446e8cbadf2e3a25c5f8c27ab306a22c82a572c21741f9acc9\", \"name\": \"PSMD2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:STUB1)\", \"function\": \"Protein\", \"id\": \"7edf63ec4c2eaacc63944e79144be59c6ded86334f97e772d1e6ccbca7065106451bd7861e8acfbda8051ed22ecf6451dd68a33a35fc2d3b91083a48b53e1c68\", \"name\": \"STUB1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:PSMD2), p(INTERPRO:\\\"Heat shock protein 70 family\\\"))\", \"function\": \"Complex\", \"id\": \"bb1b8f1c180c09cebd55a300db82c6fc159b45dd3ed0af9e4c7c9624430bfa01221537bef79acea53c42bf8f3954efc3f4b1cf73334a1070782ddb86672c94e3\", \"members\": [{\"bel\": \"p(HGNC:PSMD2)\", \"function\": \"Protein\", \"id\": \"2285c9c0b9111cf13594cf58ac0a25ed904ed2b11120e7d706ddca48193986ededfa041f2e0435446e8cbadf2e3a25c5f8c27ab306a22c82a572c21741f9acc9\", \"name\": \"PSMD2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:PSMD4), p(HGNC:USP14))\", \"function\": \"Complex\", \"id\": \"5e146a25ffd50f06fef5dafd68ca669bdec89f8364efcbdd142c9c88b50b186649f3ec807a0941b6a45950bc4b6430d7764eecb2449530d9f0e482da9d21eb8b\", \"members\": [{\"bel\": \"p(HGNC:PSMD4)\", \"function\": \"Protein\", \"id\": \"d9d04480e2882891bc3719d84ddcda93272fc6d6bc378b44783df20c69bd4674d4f7a23967975dce3b9b16e5ffcbee22b2e15589e3609717df69409ffc5995b3\", \"name\": \"PSMD4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:USP14)\", \"function\": \"Protein\", \"id\": \"1470a3d143a2fd5929b833f4f8c5e0881731040826296bfe6062bd3ff1474e282150885ab09707960d7a54489ed5c13cf8251602f437c10c26dc5b0ca583a960\", \"name\": \"USP14\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:RNF41), p(INTERPRO:\\\"Heat shock protein 70 family\\\"), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"ab71a829a84c174cd75171ba2c6c63087ed2a11870a6a09513284d7d4629407f5421e6a405cc0c1808ec800171e086b12be46bb561be959c92b29816c1ea16e5\", \"members\": [{\"bel\": \"p(HGNC:RNF41)\", \"function\": \"Protein\", \"id\": \"d7045b461a72897ba6dcb6cedffc20920fa9d5bc8808a87c2ed61a94d6df0d773615b3f289e69dc6da35929bcaae8fe36b4deb69198c6d45ce33c429acb59a04\", \"name\": \"RNF41\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:RPAP3), p(HGNC:RPAP3))\", \"function\": \"Complex\", \"id\": \"c5781deaa7bcf3fb476a42de168877ec7dd239a100ab1963a2c18114cdde73007cf667b4f11e5c1eb213c6f1a82a1de62a0461caeffc714b515fe6092a1c7e92\", \"members\": [{\"bel\": \"p(HGNC:RPAP3)\", \"function\": \"Protein\", \"id\": \"ef7daf05f2028269dc55b8aa4b4e66ff94062cbf2094960d9a73e92ab0f916511ed78bb32cbe8790b821392511a87bbb200a4b405f3d138b5e7573e77a291edd\", \"name\": \"RPAP3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RPAP3)\", \"function\": \"Protein\", \"id\": \"ef7daf05f2028269dc55b8aa4b4e66ff94062cbf2094960d9a73e92ab0f916511ed78bb32cbe8790b821392511a87bbb200a4b405f3d138b5e7573e77a291edd\", \"name\": \"RPAP3\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:RPAP3), p(HGNC:URI1))\", \"function\": \"Complex\", \"id\": \"74d8cb19510fdd03a4502bea18f1d4de37e6abdb4c2aa7e3270160f125ac1574491dc6050a31c40dda31349645073acd74044b3c8df8bbb84f06800e34046339\", \"members\": [{\"bel\": \"p(HGNC:RPAP3)\", \"function\": \"Protein\", \"id\": \"ef7daf05f2028269dc55b8aa4b4e66ff94062cbf2094960d9a73e92ab0f916511ed78bb32cbe8790b821392511a87bbb200a4b405f3d138b5e7573e77a291edd\", \"name\": \"RPAP3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:URI1)\", \"function\": \"Protein\", \"id\": \"c6e00b9b0d57bbd66769e285df5faaae0d71428ce82ea1ad653bd5787ee832b60418c9b9939a61933442465a6b377da81a45cf6c764e558aa1ec43a129963b75\", \"name\": \"URI1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:SEPT5), p(HGNC:STX1A))\", \"function\": \"Complex\", \"id\": \"8c8c62d3e73442a42439a73cc44cc44713658e742c0e8d4fe72fa0964c727d0174efc2c92593e63ab5e6854390cdc9479fbc582c163be8315415836f8b0bfa6e\", \"members\": [{\"bel\": \"p(HGNC:SEPT5)\", \"function\": \"Protein\", \"id\": \"b719d8ec4bed0e750c89e6cec6fa638335921e20e6ba943f090ff76b0f263cbb8a405819ddb455593c5231f51370b514b257f7e34a1cd5cdffde5a876828b8f4\", \"name\": \"SEPT5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:STX1A)\", \"function\": \"Protein\", \"id\": \"d58fc2dbafc0194032341c585603f9124967a3539257dc865296654fb5cd1be6466bad28d74b103b67520aacd3f71f775a8f392837231cbfadcd489eb07742dc\", \"name\": \"STX1A\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"complex(p(HGNC:STIP1), p(INTERPRO:\\\"Heat shock protein 70 family\\\"), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"da67f1ab19e9912694b91e2cdcc21f61ecda91fa989b5d02985483fee89f0546fa001542afa3fa1cc1ba0b0259d7b78c891a6aeccc53331732c97b67f4971d37\", \"members\": [{\"bel\": \"p(HGNC:STIP1)\", \"function\": \"Protein\", \"id\": \"b370e8c93a9fd4a6879ea0c4467c8d4380531fd8a3f1d11edadc2f87129929639d62087b071694e5937f4278fc6fb00d65ef937930fa462de94fa83118735ead\", \"name\": \"STIP1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:STUB1), p(INTERPRO:\\\"Heat shock protein 70 family\\\"))\", \"function\": \"Complex\", \"id\": \"5dce6c832198dc358ba10eda707554d9281dc624776e0a1f430806a503590823c3dfd4d82e2eacc8db9a4e336a5b18a7f26aaa4c4368cdc392440fd48f5988e7\", \"members\": [{\"bel\": \"p(HGNC:STUB1)\", \"function\": \"Protein\", \"id\": \"7edf63ec4c2eaacc63944e79144be59c6ded86334f97e772d1e6ccbca7065106451bd7861e8acfbda8051ed22ecf6451dd68a33a35fc2d3b91083a48b53e1c68\", \"name\": \"STUB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:STUB1), p(INTERPRO:\\\"Heat shock protein 70 family\\\"), p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\"))\", \"function\": \"Complex\", \"id\": \"81a19f77c3bb23bd49573487e76019c1d68118476c422b0cc100455dd46f072c3837136cf1bb8302f461dba370b24a43e41e1795c2ae64ac13fe4ccdfdcad126\", \"members\": [{\"bel\": \"p(HGNC:STUB1)\", \"function\": \"Protein\", \"id\": \"7edf63ec4c2eaacc63944e79144be59c6ded86334f97e772d1e6ccbca7065106451bd7861e8acfbda8051ed22ecf6451dd68a33a35fc2d3b91083a48b53e1c68\", \"name\": \"STUB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:SUGT1), p(INTERPRO:\\\"Leucine-rich repeat domain superfamily\\\"))\", \"function\": \"Complex\", \"id\": \"b5a79445bb82d879e1af4835fdc928711d59447df6d7db01d259e7211bd82187a07400f3b7e5352787b0afdc0f729887b974596209385c85e92005307f0ef613\", \"members\": [{\"bel\": \"p(HGNC:SUGT1)\", \"function\": \"Protein\", \"id\": \"4af52118121cd800414191aa793a427476930ec475743c5d685ac6c64ef53b960463c118755d73d7d0b493a637e4bebeed1084fffd34da89e7e101b7de8dd185\", \"name\": \"SUGT1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Leucine-rich repeat domain superfamily\\\")\", \"function\": \"Protein\", \"id\": \"04a2b3209e8a834425e0c063d9e315c9def1420c8ea887263ecfa02122af157f3e58dceef366f1157abe086935796a62ff353b59629e6c16c2ad58046e7dfdc5\", \"name\": \"Leucine-rich repeat domain superfamily\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:SUGT1), p(INTERPRO:\\\"Leucine-rich repeat\\\"))\", \"function\": \"Complex\", \"id\": \"47d70b192e4771e4fa649cd83238e1c64a11d106d3b0528d05b80b8a4d8a5c38ae831eb8902046c18c216538654cb8d9fda378ced99619d5b5d0c0f45c476376\", \"members\": [{\"bel\": \"p(HGNC:SUGT1)\", \"function\": \"Protein\", \"id\": \"4af52118121cd800414191aa793a427476930ec475743c5d685ac6c64ef53b960463c118755d73d7d0b493a637e4bebeed1084fffd34da89e7e101b7de8dd185\", \"name\": \"SUGT1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(INTERPRO:\\\"Leucine-rich repeat\\\")\", \"function\": \"Protein\", \"id\": \"79dc7821e9eca1be04c8da75bab2041916532dda73bb18393619819eefe50d29dfcd204c004524ac8a79b5a74953337c696d76abc18c4df5f20f8ed2fed6973b\", \"name\": \"Leucine-rich repeat\", \"namespace\": \"INTERPRO\"}]}, {\"bel\": \"complex(p(HGNC:UCHL1), p(HGNC:UCHL1))\", \"function\": \"Complex\", \"id\": \"aac8c3a6ca2186f005eccf1f474a6b58df983af55baa14e3cdfe6510f1a999b90cf864c28bb88de861c44c4089b8d41c9db4e7147de4f297f083723f645b57de\", \"members\": [{\"bel\": \"p(HGNC:UCHL1)\", \"function\": \"Protein\", \"id\": \"f7531e6266f87c46b4e1b6876d0958e4f96eb16cdd3e37135c951235b870287853e8651beabe8d49096808db68a48431f05ce660b1b6b5eb3e120e79a046ac45\", \"name\": \"UCHL1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UCHL1)\", \"function\": \"Protein\", \"id\": \"f7531e6266f87c46b4e1b6876d0958e4f96eb16cdd3e37135c951235b870287853e8651beabe8d49096808db68a48431f05ce660b1b6b5eb3e120e79a046ac45\", \"name\": \"UCHL1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"composite(a(CHEBI:\\\"amyloid-beta\\\"), p(HGNC:MAPT, var(\\\"?\\\")))\", \"function\": \"Composite\", \"id\": \"441eb249a364dcb161cfb3270996430caac2f1cbfc3d1b0c72456c0d06e485b6188a772b6d4622f0d55cfd734278b6a5595e33b43becd8e5577ca60a0086d218\", \"members\": [{\"bel\": \"a(CHEBI:\\\"amyloid-beta\\\")\", \"function\": \"Abundance\", \"id\": \"a9487b29439483c6840095610dd3e496e3ca9cccc3a8d71e0385a39b570f3c0a26965ac06d83265e1c08deaae7998272d4f4c21ec0534f8be3fd8e4e57dbb3a2\", \"name\": \"amyloid-beta\", \"namespace\": \"CHEBI\"}, {\"bel\": \"p(HGNC:MAPT, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"40a1fcd2e6b4af4d7f275f7ffae5cd34aff043c40297e912ed0e45c5a645d1abe2b717042d39ef0fd11ffa06c96785d31a8c7af123db21c2162d4e6ab59b9729\", \"name\": \"MAPT\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}]}, {\"bel\": \"composite(a(CHEBI:ATP), p(HGNC:UBA1))\", \"function\": \"Composite\", \"id\": \"f9252fad56ab5ef4e21ffee4e128f816190afa0fb50d244e329f9ccd5936e8e7545729a44d48b4fca1f53c8e983ae3719d68aa0a9f4d7ae52fe795a4aa998efa\", \"members\": [{\"bel\": \"a(CHEBI:ATP)\", \"function\": \"Abundance\", \"id\": \"dbc5553fb6213ed82215c03a89950a37045e23683ffa96b44532f3e75d204cc547a974025c2799c6a189ad0c5045d96b16d1f5f7ac9296473ba1c647499bb3b2\", \"name\": \"ATP\", \"namespace\": \"CHEBI\"}, {\"bel\": \"p(HGNC:UBA1)\", \"function\": \"Protein\", \"id\": \"64cd396bda4fbaa0048a7e4a7856637e4a4f51bf281f9a8c3ad87842bd94e66db417e85ca49c9d10c7c7b2d078492b635d9f9ac5fa6366ff7080fa3943685364\", \"name\": \"UBA1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"composite(a(CHEBI:cystamine), p(HGNC:AR, var(\\\"?\\\")))\", \"function\": \"Composite\", \"id\": \"ae54c744ffee60f9ec031c0575f803dadf9fc472903aab5b42c284ccc28b2356325baa623a667c369df65ea58d26b7f9a28f21ba9f4205c8f37969a5bdcf75c6\", \"members\": [{\"bel\": \"a(CHEBI:cystamine)\", \"function\": \"Abundance\", \"id\": \"f853439c9ff57d61c89c3d2d7a31acc0de9cfae43accb753a68465af2469ca4e07f6c9efa4171387ab6ce39ec7b4af0a40ace0c335126e64a84750150ba962f1\", \"name\": \"cystamine\", \"namespace\": \"CHEBI\"}, {\"bel\": \"p(HGNC:AR, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"194c6e47a7c8cfa8d20612aa8ff374d28f03304e9e2f52a56fe5f87803efc5433c8f2b6fc4118f7f9c9ed5e7812a2b6934378ec22ba347ee0d0802af00034422\", \"name\": \"AR\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}]}, {\"bel\": \"composite(a(CHEBI:cystamine), p(HGNC:ATN1))\", \"function\": \"Composite\", \"id\": \"31c3a18c8c37a46f46c69fe9cd742cc39a80d727a9b9c63c0d0469af7f607d3bf921908abded457c7faf93b724fc4c24882cc477fbbb5291eb46375dad2d37cb\", \"members\": [{\"bel\": \"a(CHEBI:cystamine)\", \"function\": \"Abundance\", \"id\": \"f853439c9ff57d61c89c3d2d7a31acc0de9cfae43accb753a68465af2469ca4e07f6c9efa4171387ab6ce39ec7b4af0a40ace0c335126e64a84750150ba962f1\", \"name\": \"cystamine\", \"namespace\": \"CHEBI\"}, {\"bel\": \"p(HGNC:ATN1)\", \"function\": \"Protein\", \"id\": \"b575c546f2116ad15befcd3a343e40d187ba416ed9021f82c5b108fd75dc114b5a1232f11b9c823d51e72813e43e54e56fe4f5c370357b82b51751a97a51636f\", \"name\": \"ATN1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"composite(a(CHEBI:lactacystin), p(HGNC:SOD1, var(\\\"?\\\")))\", \"function\": \"Composite\", \"id\": \"010ab3f79efbf89d396b1a20b7c406f50ac24a889b84c2b0386b438e9c0d8294fcfe8c25bf2e1332913ab727f4bb0928e10a314f277d9834cc9bea5c99bbfe98\", \"members\": [{\"bel\": \"a(CHEBI:lactacystin)\", \"function\": \"Abundance\", \"id\": \"d9aec05f15495c9a5dbb8d06a6a0cae56615f27eca5e96aa34e7cb317c611920c1e47f82387e051ee436974c9d6edf0e178f5b1354417132d44661b1896617ed\", \"name\": \"lactacystin\", \"namespace\": \"CHEBI\"}, {\"bel\": \"p(HGNC:SOD1, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"489d0def821169265e7e27a156e90cfceba86c9192b2566cc767f80dfba25e8f19d858d93667e7c8280bca5e41c8b63db9c5e590b43bc6d0b9039bcb9afbba00\", \"name\": \"SOD1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}]}, {\"bel\": \"composite(a(CHEBI:sirolimus), a(PUBCHEM:1560402))\", \"function\": \"Composite\", \"id\": \"fecf1cf1c1fe92ce71728b13756774080a86f74fb9a73b26d4004297424a0882b4faf245a64329ab5e0388d3b4ae72569ffe2f27e998a16a683bdbc7e773d07f\", \"members\": [{\"bel\": \"a(CHEBI:sirolimus)\", \"function\": \"Abundance\", \"id\": \"102b031a00eed78fd9e5c4236defb90a8995463980f9060493bb5fd3159a3eb666cbb2b6a33a213c749a2b279ef6d149796b4f0b568e03b82eb5c89b0da77426\", \"name\": \"sirolimus\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(PUBCHEM:1560402)\", \"function\": \"Abundance\", \"id\": \"2217f86ce31e5423d655f89888f91d17117a5861aafce36ea2f85e09b923cf82d88c2d975f3a571e6f981c79a5fb673f3057c79ae9db137cad7b3e88cdf15000\", \"name\": \"1560402\", \"namespace\": \"PUBCHEM\"}]}, {\"bel\": \"composite(a(CHEBI:sirolimus), a(PUBCHEM:799645))\", \"function\": \"Composite\", \"id\": \"14e3237050d5d68f0410976763131f527f0d09478257ce2fbee16c3ec9de75be56c9592c6e3b07d7f929b7396ec3d03b1525e23c9cc0489f5b87e47c6564086c\", \"members\": [{\"bel\": \"a(CHEBI:sirolimus)\", \"function\": \"Abundance\", \"id\": \"102b031a00eed78fd9e5c4236defb90a8995463980f9060493bb5fd3159a3eb666cbb2b6a33a213c749a2b279ef6d149796b4f0b568e03b82eb5c89b0da77426\", \"name\": \"sirolimus\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(PUBCHEM:799645)\", \"function\": \"Abundance\", \"id\": \"b1223361448acc2542be17f305955ac74f04032ad0a7df5d197e9e7138a556eb23a8cff6793994a06873888b074dde6cd2b386cebd38caca9956e5fd8e8d6bf5\", \"name\": \"799645\", \"namespace\": \"PUBCHEM\"}]}, {\"bel\": \"composite(a(CHEBI:sirolimus), a(PUBCHEM:877863))\", \"function\": \"Composite\", \"id\": \"6a5be5ce03b7d7fe6f789fe3639414821cb9633e55ca51e1f400d79e5ced2d4d21e535f22cd239036b85ecc64de9238995e8da9699a001210247c115ee2e5da1\", \"members\": [{\"bel\": \"a(CHEBI:sirolimus)\", \"function\": \"Abundance\", \"id\": \"102b031a00eed78fd9e5c4236defb90a8995463980f9060493bb5fd3159a3eb666cbb2b6a33a213c749a2b279ef6d149796b4f0b568e03b82eb5c89b0da77426\", \"name\": \"sirolimus\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(PUBCHEM:877863)\", \"function\": \"Abundance\", \"id\": \"93e0bc5d24bc60e63eb38dfdea1d8fa22a7d9ed79c923da54effa48ff2491c5f424bb0fc4e7e60cdf5913ff47e487dd249c68b19126a6c69c1793fd60c6e390b\", \"name\": \"877863\", \"namespace\": \"PUBCHEM\"}]}, {\"bel\": \"composite(a(PUBCHEM:164810), p(HGNC:PRKN))\", \"function\": \"Composite\", \"id\": \"861714d658e7e2bf3d9019abdb28dd146b5788f142cbcdeeeb9aea235f78981fc62a14fa10acb9fc5e44d1dc99563f1f4d8ee0b89bdbc518bc7f2984cd865dd4\", \"members\": [{\"bel\": \"a(PUBCHEM:164810)\", \"function\": \"Abundance\", \"id\": \"783f72b01dea1b55fb0ad44f88c102e8a2b996fe04fc6ed34db09148c177dd026d6accfc713d92a9ecacb8b65f6fc257dfadfa9872f8119980672417df5f5650\", \"name\": \"164810\", \"namespace\": \"PUBCHEM\"}, {\"bel\": \"p(HGNC:PRKN)\", \"function\": \"Protein\", \"id\": \"c129e31246d9b635f2d39f8a0d20e11d29724b9888bc1c35e5b5f5eb721f42a8ead8ccee052e21a3c178f79c19d2fecb3360bd35d0a89f449b2d05af14ae324f\", \"name\": \"PRKN\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"composite(p(HGNC:PRKN), p(HGNC:UBE2G1), p(HGNC:UBE2J1))\", \"function\": \"Composite\", \"id\": \"5086dd1373152318ad7bfd30f94058acd5ee847bb135c5e48ae7fa6c49376e8c8cae057856d6a7db4b0f017352c8ad2d13c84402f1a587199b707082877666c7\", \"members\": [{\"bel\": \"p(HGNC:PRKN)\", \"function\": \"Protein\", \"id\": \"c129e31246d9b635f2d39f8a0d20e11d29724b9888bc1c35e5b5f5eb721f42a8ead8ccee052e21a3c178f79c19d2fecb3360bd35d0a89f449b2d05af14ae324f\", \"name\": \"PRKN\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBE2G1)\", \"function\": \"Protein\", \"id\": \"aeeed663ce65206268a1864f11b9615d4039e0d6ff58b5f93366c5417c1a7a910723a0220303237b378eb73d47c73d3ef2979f803376fe76d15ee3834aad0d64\", \"name\": \"UBE2G1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBE2J1)\", \"function\": \"Protein\", \"id\": \"e82e733458a7a4b668116e3fd3c56be97832b4b5a07c0930d4c161336edca192a9ee56215407a6ba66568270a7410dde45a6d14ff5adb3430605ed38696e1950\", \"name\": \"UBE2J1\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"composite(p(HGNC:SNCA), p(HGNC:SNCAIP))\", \"function\": \"Composite\", \"id\": \"4abd7e2479fa84d79b40148f067da9de2ff2df00b733d7e448908edc361904ff43bb00111a39fa35c5814b6f0d5c7f436d49f97494d05295316b4544966c9588\", \"members\": [{\"bel\": \"p(HGNC:SNCA)\", \"function\": \"Protein\", \"id\": \"4345441d1f420dc0d830377737dba9467f21b1637ed3472a697534ce698f2566b780dd52cda47c96b782242b1bcfa70e9a6147fb3bb251d1f3e1e2a0bb7038f3\", \"name\": \"SNCA\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SNCAIP)\", \"function\": \"Protein\", \"id\": \"9fc115a6523c84de5fd0246f5d01b733123691199a2f21854abdcc2c32e01e9ce339c6b4f1425b516f9b5cede917f8d1bfa9000da9d070282f3138d513fd37f8\", \"name\": \"SNCAIP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"g(HGNC:MAPT)\", \"function\": \"Gene\", \"id\": \"7ad90706e1ab9f0cc742939e775c72288e56d806f361dace584c7eba277aac96aa2ab72031691e797473cc1d634f22496e2746514c84039c184fa3f27d6ec568\", \"name\": \"MAPT\", \"namespace\": \"HGNC\"}, {\"bel\": \"g(HGNC:MAPT, var(\\\"?\\\"))\", \"function\": \"Gene\", \"id\": \"636713c4c298de37d7f0f034da0bd5e2a9403c3ee89d15b2fd3a369d34eefde9152ba15bdc60371b2502b1a6baf4d347b87853d9f2058fcf05cb1afb7f9cedae\", \"name\": \"MAPT\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"g(HGNC:PARK7)\", \"function\": \"Gene\", \"id\": \"e2d628c30faa9410c6b5d999c1c23c150b6d44f313dc4b9157f6977e122ae31476e21754524730c3ba0397d9f2adfbbfc1b4218aaceef1c343fff0f1a3475676\", \"name\": \"PARK7\", \"namespace\": \"HGNC\"}, {\"bel\": \"g(HGNC:PARK7, var(\\\"?\\\"))\", \"function\": \"Gene\", \"id\": \"ee851c2593d48b98e2210c5b8c7065074efac6ed57c26614ca357101a0ac24cb5c3bfd1c32f87e059857c87789451f1e27435028f29e18bacfda25dd5ad71a0f\", \"name\": \"PARK7\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(FPLX:\\\"CCT_complex\\\")\", \"function\": \"Protein\", \"id\": \"554e7f9c82615ea7fa9719f442dcfbb91f532f63193db585c9b528504f6d0ba8836cbe52a868fd724dbbc796b40a4ef47db1e28e8419c0a06f995ab05e11bb72\", \"name\": \"CCT_complex\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(FPLX:AKT)\", \"function\": \"Protein\", \"id\": \"3263678a1e320013081e7134e7e64e91b2c66e6fbd10dd7fe4fd282cf0cc3ba29b5cacb5e8eb0a8ac0a194f73b80dabcea5465b0fec5b044290b259ba889cef1\", \"name\": \"AKT\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(FPLX:Caspase)\", \"function\": \"Protein\", \"id\": \"54b5143faf2ac2ec71e4716c9b6814773d806fc93ecefa2cbb24c9d5a76f54d194f9ae1cba324c4d5a5655475ca9cc530344afdd5b6566a85bacc1447edc1c24\", \"name\": \"Caspase\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(FPLX:HSP90)\", \"function\": \"Protein\", \"id\": \"a5bdfe1366faea602e03fefece5805427ae4af29a007d93291e6224dc74a8cab597169f580be49b50b4c24e83fa743fefa44549edb827a4dd531224d7d373245\", \"name\": \"HSP90\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(FPLX:HSPA)\", \"function\": \"Protein\", \"id\": \"c293d8f843520dae6cba835a86c0e958d54d4dad9658a8281d9540b21d8e39272f2548fe5c429cd97d5d9a3755643b8dc346c2aecf00d7d53ab3914574cbf62d\", \"name\": \"HSPA\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(FPLX:HSPB)\", \"function\": \"Protein\", \"id\": \"fd98dc50f6da0fc63d105440679adf158811af92c96e5c774ac44e2ec5575f1134fbede9eeaf90f18ca92639bd4edd6ed8201907120479aceb23983d94550a3c\", \"name\": \"HSPB\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(FPLX:Proteasome)\", \"function\": \"Protein\", \"id\": \"645bfb1e8fc6c1ec119c660999773cfddcb4cf0f2f8f8c0e07af96aceec91f6e5218098423451401e3da7ba628a36a7437a426ca75f5ca004f97d56d7bbfd541\", \"name\": \"Proteasome\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(FPLX:mTORC1)\", \"function\": \"Protein\", \"id\": \"a1c299171aad616f24329a91ca82660e0205dc2da1b10758111e4a1dfc283c68f49134e8b0987b93bcaa6c92fceb45567212a78013bae1639af5468de9caa508\", \"name\": \"mTORC1\", \"namespace\": \"FPLX\"}, {\"bel\": \"p(HBP:\\\"20 S Proteasome\\\")\", \"function\": \"Protein\", \"id\": \"8a56c0f6f2b52d0a7a53a70d49721d5c779a7997adc4becb3efaf48fe80367a66813d387789e058855832cdd189dc6f70f0977f4d03a07bd84eff74d279f3e39\", \"name\": \"20 S Proteasome\", \"namespace\": \"HBP\"}, {\"bel\": \"p(HBP:\\\"N-terminal fragment of ATF6\\\")\", \"function\": \"Protein\", \"id\": \"9f74ceb3a053a604f988a0278dba4239ba428fb4095db606f91135eed36b614974209c6a79e2f3b4b7e789df51dde6a97c7a59c78206cfd0da45ca5e4fa51f1e\", \"name\": \"N-terminal fragment of ATF6\", \"namespace\": \"HBP\"}, {\"bel\": \"p(HGNC:ABL2)\", \"function\": \"Protein\", \"id\": \"2e0c74df09de6b5dd9ddad613346ae4b0f4c36d8ab26d1adb661e4b9570e2cbf006e24a5a3e473629b38ebc7732a6f0d4638c1f16d0a6a518fafd980a736fa3f\", \"name\": \"ABL2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ADRM1)\", \"function\": \"Protein\", \"id\": \"0cf64c1fe24a828c985c4b876d618f54e69000ec1e8b50766c848a00d34905f0ef576102bd3ffbf657fffd8fa2e4f90db5c0f3ea29c547a7346e3d8ccc6dfad8\", \"name\": \"ADRM1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:AGO1)\", \"function\": \"Protein\", \"id\": \"4a2f085bc85ab35d092dd7a430dff12d86a8247e402931b1e6002b5d345d9d94b7065352087774c20d790d1c70a7b5e4d819c422a59e6cf1f37a1c908930da2e\", \"name\": \"AGO1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:AGO2)\", \"function\": \"Protein\", \"id\": \"0670f10439d6d76e183a92b1d00a51cb631060bfbc43c2d2b92ae5153465934af37591215c530d2e7bd9f186cd8890536468785dd471e34f75169a7a7f7c119b\", \"name\": \"AGO2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:AHSA1)\", \"function\": \"Protein\", \"id\": \"11a853fc14b77522314fab2709c38add5e956dac10acc0070da97ad317b2909a68d9795388464aa588c7e7ef51c9bb0190a3f168750c1e687b6ce1707eb4f9a0\", \"name\": \"AHSA1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:AIMP2)\", \"function\": \"Protein\", \"id\": \"19ef0f2459ca617cfb47f51b61693eae81b31e0e414dae567fe09a450ab9bf6d13e7d85a7d99bd67a47232b581032eebff7dcab6f0d2e730514d6a60d60e163c\", \"name\": \"AIMP2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:AIMP2, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"3707a442888632eb543a5621435c00f2d737a124811108464c1ba5486aad0ed12eb3da3b4593fb23aa0b9af2a1e3c9a02e7972e4bc70c78c6319b62cecbaf4da\", \"name\": \"AIMP2\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:ANKMY2)\", \"function\": \"Protein\", \"id\": \"ccd6fe62c5abc39777b90591a953c62b8d00e10bc34c416572f6a384560013a2dc76fd890040e8dbd6e375813409140be583f8685621ce501f362530414592bc\", \"name\": \"ANKMY2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:APP)\", \"function\": \"Protein\", \"id\": \"ed1d45f3255226e4210017e6c179950e0e04a300727326d7fea6a9659868e8818ff64fd5e8a2a92a703fb1566b3f48323750ac6c28e7adb40843053d276710bc\", \"name\": \"APP\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:APP, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"adfa44e460056ce0ad28c197336a8cb47bdfafc555dc0f1250e4841f38e1abc710d9fc17592e7e0537b1d15fd2d0c1e521624a44dbf092697dffe15948e3ce00\", \"name\": \"APP\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:AR)\", \"function\": \"Protein\", \"id\": \"60878547f1ea9bd206acace30325a383d895de7264633382bdeaf9a3908587be2d24d753a66f2072ea329790851aff35688463694a4afe62906b3e18e1c2d643\", \"name\": \"AR\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:AR, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"194c6e47a7c8cfa8d20612aa8ff374d28f03304e9e2f52a56fe5f87803efc5433c8f2b6fc4118f7f9c9ed5e7812a2b6934378ec22ba347ee0d0802af00034422\", \"name\": \"AR\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:ARAF)\", \"function\": \"Protein\", \"id\": \"28e8f3d2fdc3c7870309432db94a4c56458b972d216946530bc81021ccfcf7afeeda879e8cceb2aab57d92e4ca0f99e391c2b03b9ad80c2e2440bd3787279a14\", \"name\": \"ARAF\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ATF4)\", \"function\": \"Protein\", \"id\": \"39a285ddc452b4f28e91e623542bb42630a04fa984f8d8d08b21fe9a9f250f9005e484bda93c6768a0559ed58a12cd4bb6b8a9aa26b52d40e87ad7e32014c892\", \"name\": \"ATF4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ATF6)\", \"function\": \"Protein\", \"id\": \"02005095fad6ae7046bd0ced10c2a62d67c5884f2ed8b5abee65e06a064dfbf90d82788e40a9f9649a4750294d8cfcc6d51df20195561236834bfb6c9d40fc1f\", \"name\": \"ATF6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ATN1)\", \"function\": \"Protein\", \"id\": \"b575c546f2116ad15befcd3a343e40d187ba416ed9021f82c5b108fd75dc114b5a1232f11b9c823d51e72813e43e54e56fe4f5c370357b82b51751a97a51636f\", \"name\": \"ATN1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ATXN1)\", \"function\": \"Protein\", \"id\": \"afd2ab5f00b85d7132d3c65b8d64ec5db7d08f6977ae334d9de4658c80afed502ca4c661d9f487e71d5c3df5e1c8da1c883d65990d10d96a5c6d25b259bd47f3\", \"name\": \"ATXN1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ATXN1, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"c589a4363cb192e1c63e11ff974464a32b426bf45efd3330dcf8f363cb32f7c16d0fc079ded877ed04acbc9228376535e818527dacc6a162810a3b6aa1078c3d\", \"name\": \"ATXN1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:ATXN3)\", \"function\": \"Protein\", \"id\": \"c6102d230a5c67109dd4fd3cfaa57f2745158769d72caa5add04724e9dfe725c935bb1ec09338262f4184baa34fb990c7287982726308939a7f9e77987c33b64\", \"name\": \"ATXN3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ATXN3, frag(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"2ef0d6e31cb9626de1f889b4ce102b75e3448de0cec84da457953a4efcd2074c0f3111966359bdf87a27fd0adbfaa3352451f5ff82316d95a1afa6eea49698fe\", \"name\": \"ATXN3\", \"namespace\": \"HGNC\", \"variants\": [{\"kind\": \"frag\", \"missing\": \"?\"}]}, {\"bel\": \"p(HGNC:ATXN3, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"c718e8aad3283d9a0b0356dedcc2e95c205312f3130083e3d8711d70038704b08c2a917b19135048bfb5ea98a96b44de3ba22c2f4d13d36ff8f15aa725cdecc7\", \"name\": \"ATXN3\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:AURKB)\", \"function\": \"Protein\", \"id\": \"e140215bfac8fa1db587ac3d7263dbabb1bd51e96df94b335a2dc2ef56542ffaba4de96f132f931d5ff8bad76a86a739727d09a813f4dbb4544433a50c494392\", \"name\": \"AURKB\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:BACE1)\", \"function\": \"Protein\", \"id\": \"88f17e7dffb6947c01414f79e5a3bb9cdd3e932c355af7f0c8907d2b5d07742883eaf63866fe7fc938401ce0c366856fd5e306f324e6c1f474c1a984c8e46a51\", \"name\": \"BACE1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:BAG1)\", \"function\": \"Protein\", \"id\": \"16010efedd909e1809b9f15337bfa512d6188fbd0ac9c2f9787342600e90ab4411f71aafe35e04dae02318d3e8bb384c0d1e32135c2e04d40712b9a3e54f3c80\", \"name\": \"BAG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:BAG2)\", \"function\": \"Protein\", \"id\": \"e0d63070373e33a3cb5ada43942d4be2f50e667f839d736a14e1dad90b28e3047ee4b976bb1d86993e526ad215fa08fd0eafc89ba8c725fd9ce7888b85740177\", \"name\": \"BAG2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:BAG3)\", \"function\": \"Protein\", \"id\": \"32dee13e3a844df0ba64e23467fcc35937e6d9a008a8959b6f9d1d75721263b054c5a9403a99e18be324a4a5e0cf873fd1123b304c3cdf85db0423c73fab3785\", \"name\": \"BAG3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:BAG4)\", \"function\": \"Protein\", \"id\": \"ad10f40ef554d547af8f72f7679bed5ff31938bc5b1f6ced3b42c0ace91c4f0a12dd68b131666e1a3949bded26a96b5293409e0eb14c28fe4d9bad71b11c4507\", \"name\": \"BAG4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:BAG4, var(\\\"p.Asp424Ala\\\"))\", \"function\": \"Protein\", \"id\": \"6fcab02b439004ab5479f9725535e5bf0918359ac01b146c1a4f1692cd4e2b9fb06f1a84d14d47e84b17a76f334125b8b3dead31483e346333c77bbed0905d77\", \"name\": \"BAG4\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Asp424Ala\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:BAG5)\", \"function\": \"Protein\", \"id\": \"67d4f37d394a9c5e903cc9642f2c0fcb41e0dc13f29f28aec9074cca7e294252b9c6c373402ec51c82f1bb216b1d3c5209f505e5c1b508e37684080b27d4a3dd\", \"name\": \"BAG5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:BAG6)\", \"function\": \"Protein\", \"id\": \"d816a85df9cca7f30b8bfb4ef5797de2db3274d7d71233acc42d164ca404c4df2ba6b594c4aec1ea1205676790a8350dbda3ebc77fb4482c1ff78d0189676f8a\", \"name\": \"BAG6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CASP12)\", \"function\": \"Protein\", \"id\": \"30cbaca59340b0dad787c6937b7f41793287f02302ee70015357a4752430eac1d2dd6c412f9f2c6e495e9225da52ec2b10d2d36fb5a1596ce9d5d87e8f795d91\", \"name\": \"CASP12\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CCNE1)\", \"function\": \"Protein\", \"id\": \"d8b8925ad5697f3d2c2458f9ab24ee394e51a2f7a13dab691d9a915f8bf11420634ec6de401da060539e2d00ac9397617059ad6adcd9e2054475e5090c8d0f08\", \"name\": \"CCNE1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CCNE1, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"ae032989fb0443e442f9cf2a57582f8521fef5a98bb2e616ee27ff8bee15f54f16c088ec5f93aae9ba58c671c1f13650667da2aa657fa7db1e1e55f28cc66d39\", \"name\": \"CCNE1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:CCT5)\", \"function\": \"Protein\", \"id\": \"d8e74d99149939353c5fdbe8d82f1a914e8c2b20483eed1594ce0fa0b2a67c51ebcec646a83d6c58c75bc3884cf647a6270df05d3d22214935be94601c9027bd\", \"name\": \"CCT5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC23)\", \"function\": \"Protein\", \"id\": \"66c49342fb5842921ffb4f4094775c32fe7c3495dc20c53fc8293f32f7dc0e81cf5bdaa706668dd6826f2b205db06a8637ac1c068f28c7113c7c6a4cc03769d1\", \"name\": \"CDC23\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC27)\", \"function\": \"Protein\", \"id\": \"f975bbe44ed30bf0fe6167310abe86c5bd3e60b0ac548058e64bbf1b44b3129adcc5135c805cb347189f5e9b04a2eff1fae2925e926e073bc75836105834be58\", \"name\": \"CDC27\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC34)\", \"function\": \"Protein\", \"id\": \"244a2d047b94d7624ede94116364dcce34711ec18c6423615f516b755ebfe7456713942ac905d3043093e8de74af3032a68441580999f633f5c1340bee599c94\", \"name\": \"CDC34\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC34, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"0c166fed66912197c65edd5b222a731b83ad5f5d9ba59ba4563526a753b37c5d2cda6182799f28f94f81b707727d40d502f0cedb2508156ef459f98c6f3d09d5\", \"name\": \"CDC34\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:CDC37)\", \"function\": \"Protein\", \"id\": \"926e7052adcda63d68ea1ea2a8c703a4652ea6ab6b281e9462ad243171de9ee72dadad40e0ca15c988cffc2580dcf4a9a0383eaea52c091eed2e0a4b395359e9\", \"name\": \"CDC37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDC37L1)\", \"function\": \"Protein\", \"id\": \"b365a1df4db73ecf62b46604a0c879364c05df87fb11261055e3ffbcec939f57e5817d9d630c11b759b27f22c925368406bcfda25873d030284eb4fbe726ee15\", \"name\": \"CDC37L1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDK1)\", \"function\": \"Protein\", \"id\": \"747cb5f5befdf836f554988dc78f239aa22c459cac15530f612c81e574e698015ce984fbf7e925106a70e03f362c9e1b812b74790a36fcc7124b05ad1e08c8b7\", \"name\": \"CDK1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDK11A)\", \"function\": \"Protein\", \"id\": \"8dc0399109d6b7f39b82e6630d98345b323dc22f58444f27994f803e98ed204c3b324232a0700a20d02c8ac8590cbd080fc9a1d2f15c57df2c8a643724639621\", \"name\": \"CDK11A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CDK4)\", \"function\": \"Protein\", \"id\": \"80da30db4e674484ea561a52ff4186ba0d264cfa374a79a06d2084965ecd750bb15822eb65c933a8b7a89df07f331fccc952a7b5e6f8b849209f84ad91a243b0\", \"name\": \"CDK4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CFAP100)\", \"function\": \"Protein\", \"id\": \"7db812ec2ba36bf46f2ef6a412399a5c5d55603bdc972eac5883e458f6863031a49f58c8dd34eacd192a9ffa77061992a38e2b379b4fe353039d5c82ddd4c928\", \"name\": \"CFAP100\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CFTR)\", \"function\": \"Protein\", \"id\": \"655219f93953b102b60f3467e3262346067189f259a44afdc30f454ce8b2b743b794a4d3910d8f34432678a28e03c0f809b04cfdc2f428e2eaea91f3b6aae8d6\", \"name\": \"CFTR\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CFTR, var(\\\"p.Phe508del\\\"))\", \"function\": \"Protein\", \"id\": \"e7a6ae70efee085e397c8c66c9378db4e75c2489a45b3dc913e8c6c693d6d15cb69669925ec894919b3eb21d19882babe63070f441d7c102b6412bb45eb609f1\", \"name\": \"CFTR\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Phe508del\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:CHUK)\", \"function\": \"Protein\", \"id\": \"48d5f4d56eddd155ff7a85345988764054b91ceae34dc707e52ddbb4b528a41e2c51ec0bf95ff60c891aa31e7aea3647ea906ddc2d36731187e31adee9875475\", \"name\": \"CHUK\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CREBBP)\", \"function\": \"Protein\", \"id\": \"d0eb9b821554881d92c1cca97a8be9f6af6ff3e8e469d2bd975c1447a63788cdc34e982097cbdd0860dc260acc6e1e3ead68366d8b1f5511d819f21c76838f32\", \"name\": \"CREBBP\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:CUL1)\", \"function\": \"Protein\", \"id\": \"b8998472147cc12d4718c12b635b8bb419df17e80b30d3e6ffdafb179ad4d834483fbdbbb779c6a81f1024d1ab6e00d28b2da76141a6e35d29d5d3e614ea2579\", \"name\": \"CUL1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DCP1A)\", \"function\": \"Protein\", \"id\": \"82b768c8845dd17cd9dbb8ec890bb19f2b834e0de4ae9458a84e48fefeac27fc54755b333894633775d9c2942b7ee989e74df298879b917f1b1f1b7df433fb88\", \"name\": \"DCP1A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DCP1B)\", \"function\": \"Protein\", \"id\": \"487588e5f3957c441e60ea071cc0742af0dcbeaeeaaf4ff316a436d969b9fb9f49a68b48cb34e4f642840dbee5f4b403083af64c7168994ecb654cdc15081007\", \"name\": \"DCP1B\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DDIT3)\", \"function\": \"Protein\", \"id\": \"3acf87bfc0e8d3ada59e5f78159de0b3f2b012ecf9dc2f9164bcde3ffc6ee39f456ef190568754de2996d20aaed3c86decd20f4265ca0822b428d6891c5051d6\", \"name\": \"DDIT3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DDX6)\", \"function\": \"Protein\", \"id\": \"8145e2607a62432e475774a7f4ed99537633d80d4820bacc7b9077e455c197fb6ec51357112d57eebbc23d5ae87faedb50c1e81bf5c1e4d7c3b6bfdd611ffd7d\", \"name\": \"DDX6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DNAJA1)\", \"function\": \"Protein\", \"id\": \"83a0a593d2c1b95718f144298eb7c57245bcc6267d1a9d45742bf9535661256e3b5f7ac195fe7e2a11dd406003b240a4987ef04e3485ac2b0578e0359d02372e\", \"name\": \"DNAJA1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DNAJA4)\", \"function\": \"Protein\", \"id\": \"d0de1d1ae075711d104c2b5674d3b32f39fce2d76e898e6361d53401a953d6c3fe799daf718e45506a839bbada20cc0b35140a77ce2d389ec079f70e31cab254\", \"name\": \"DNAJA4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DNAJB1)\", \"function\": \"Protein\", \"id\": \"34ef35309926dae000c9fe717ab665b294d3130de5a7c627cf49c030f267fa793f0903f6b011359bf5e33ceced49efec114bdd891dc1b45b0850aa3c00b7996b\", \"name\": \"DNAJB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DNAJB2)\", \"function\": \"Protein\", \"id\": \"f942247c37a186d200679ec271db6667f0a7f38d98ff885d01e6dcc0041076d104d7250dbb6e0b9363554bb9d96d9e2c16791cb1f982df96d0b71cdbb79997e4\", \"name\": \"DNAJB2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DNAJB6)\", \"function\": \"Protein\", \"id\": \"a706a2875d0ae3ac0b50cf682c4d196d4ae8fa3e3ad0cf23e689d91274e28c28c5c4e34a1f8846bdcf89bd6009fe50bf384268c45a46a8e36e17bb7ad927bcbc\", \"name\": \"DNAJB6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:DNAJC7)\", \"function\": \"Protein\", \"id\": \"04b577560e9f05b5dae9eabf2f3063873f5291bf10002f44e60a1d0e4c7b57db013e9e5c6376a3822b89882fbb78c173e21c67bfb6057a160d51f9e53b152ce4\", \"name\": \"DNAJC7\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:EDC3)\", \"function\": \"Protein\", \"id\": \"debdf11e72b6b1c31efc965da7df0ea1b1c1a9017a338c31e5c4d72f526dd28d5162b3fe2127deff65ed787f500bb99aa4417bdfc3934773fdab8b862a1bb912\", \"name\": \"EDC3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:EDRF1)\", \"function\": \"Protein\", \"id\": \"5619962cf05bbd0f5bbaa2785220dc5b079af520a5413d80cdc47347c9a36c1f0d047859b270f891d7907754a2c5065034472deb1a0b6448b17de3c7622f403b\", \"name\": \"EDRF1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:EGLN1)\", \"function\": \"Protein\", \"id\": \"7e049a55bd7da0c9401e9fbb0a90e6b286d51535564b2ecbbf10327f9888da6fcb3c84edadfaf6235f1e67f0f4bb21ae315b860bfdff6f0f1afbbbd97bb63537\", \"name\": \"EGLN1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:EIF2AK3)\", \"function\": \"Protein\", \"id\": \"79755b26d8d0165aea6a2d926c2f0e994f02842441b9de19e3fa33f208ddca335adf10c82387bbd996edc0c62c6abee805d2926feaaeef1805a82e9b18549c8d\", \"name\": \"EIF2AK3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:EIF2S1)\", \"function\": \"Protein\", \"id\": \"f9f140f1e21ce20744dd2f47644091ad5633013e7317059002f401ef9513a8cfed5a639c3a0691e4f1526d1c3c13134a521220f101ca7dfb1c34ea87c7e7f5f5\", \"name\": \"EIF2S1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:EIF2S1, pmod(Ph))\", \"function\": \"Protein\", \"id\": \"dd2b7c0fde0e07632f2d51f640cc4853b0f0ab2570ecde21bbc5804e7772ff30315d2906e1633e1d6ecef7ca291d854b58846ed5c671e9f4854db9601c69e5dc\", \"name\": \"EIF2S1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ph\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:ENC1)\", \"function\": \"Protein\", \"id\": \"39dd2233caac70419bd99ce8724ef2cfaa73c7af5d33def05750040ba27cf1a5b12ca5cf518a448b446720c4ced1e6ad94fbff1fdda21b0502d55addded4ef84\", \"name\": \"ENC1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ERN1)\", \"function\": \"Protein\", \"id\": \"dfd405ea7a10f70de7646eb6c22fe0b9bee8906dbe1fc6d7e93399bfda46456ce70c846f404ef8bf13772d120bac608a9a63bdd25ea5b1f75aecfef326359fdd\", \"name\": \"ERN1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ERN1, pmod(Ph))\", \"function\": \"Protein\", \"id\": \"912aeb3c848c985fa943a6ad3df838baf5db603f4dd738ff9919c76f01ac596cdca07bbb96dce2953b71c740137401943726e6cb7f52fa7487fee6231c82e0e3\", \"name\": \"ERN1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ph\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:FBXO24)\", \"function\": \"Protein\", \"id\": \"92bbd90268e7932747a5edb58cb9e388dca72fd410f66b4169867d786b99734215fa2d35073826f6a3763e50b7392dc419c4af037ec148063d67308a2808665b\", \"name\": \"FBXO24\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FBXW7)\", \"function\": \"Protein\", \"id\": \"67603e1127e8e07a07806ee02d42504e7c52300f7ef7080c646d00dafe6d1d5fd7759e4c3a0bfbf349bafc2142be87d7630b49cc84f2816771c54ce1eb1939b7\", \"name\": \"FBXW7\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FER)\", \"function\": \"Protein\", \"id\": \"b7b5a64f9a5ddd781c36ea3b3a13df79011918a66968e1829c8f163cf5ba953a997e31c08431b72c36390146eba9e9ee5a5bee0c7404d0b3a6d54c463f771074\", \"name\": \"FER\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP4)\", \"function\": \"Protein\", \"id\": \"4b4d04660cce588fae0beec1c7476117f842e4de7495fb38ca6e84a1c0e432492353d48a26d4db9d75072c260d5bbc589bc6dd97ae31fc7b65151d4655878cb1\", \"name\": \"FKBP4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP5)\", \"function\": \"Protein\", \"id\": \"235130a6aad5392b8d93ce87ee8c3548278ee308274731183499ce12dda8591cebd72053e22806a7c74a50cea9078cc291520f2bb9b1af2eb56e3880dd8d73ab\", \"name\": \"FKBP5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP6)\", \"function\": \"Protein\", \"id\": \"aa1183700c8e41f87b2b72493c5a0c1140abbd565a360b4774aad7116b341d7edd2d7b9068cd075ecc9d6a6faf167c3eeba95a7f0068cf856a86e7e84a84fcee\", \"name\": \"FKBP6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:FKBP8)\", \"function\": \"Protein\", \"id\": \"ca15345ed96dca4ed1f2a02f130ceeae40d56e291a2c5f276efa9f1d03e9d4e74016496c82f296733c127907f13b8736a10ec0e1b4b000ca0396831f0e9c78af\", \"name\": \"FKBP8\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:GPR37)\", \"function\": \"Protein\", \"id\": \"3579187db4c8bd0832129afb8131838e04c6cfad424eeed23e1e457364c19f634ee9eb5e185834b528918e2114998d786484b741f780565edfb8e910c3a449a8\", \"name\": \"GPR37\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:GPR37, pmod(HBP:misfolding))\", \"function\": \"Protein\", \"id\": \"44887cbecb2327ec62fc6370b612c0d2d08ac93a6b3e5f7aca0445424e752c753bde13f5255496cd9fe9a1f83807c41e0a92ddd6a55c471dbbc628d229057654\", \"name\": \"GPR37\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"misfolding\", \"namespace\": \"HBP\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:HSF1)\", \"function\": \"Protein\", \"id\": \"f14348a34dab846dcd69f4e44f9229a90bd3a44e5ddbcef4331d61dc959cb6e1aec7c1210063cb9d6f140de4ab55d0aa21cd9176aa9a75bd97939f364145b7b6\", \"name\": \"HSF1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSF1, pmod(Ac))\", \"function\": \"Protein\", \"id\": \"5778647ddfabf74e0ac880e56368797c159fe2399a47a1aa3168128a53a975a836248a195f7b41f956aae94789b1159f228ffb2abe07441f28260f6ada6cfd14\", \"name\": \"HSF1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ac\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:HSP90AB1)\", \"function\": \"Protein\", \"id\": \"6aa56d18c328e87c34e870f7b02913e5d6efc404b4ceb714fa7b67f3bac9a90781af94a70ebfc3b8340d7a663779c93ee9be4635ee5e56db036a319e57fa7ffc\", \"name\": \"HSP90AB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA12A)\", \"function\": \"Protein\", \"id\": \"8ebde3f80d0e5cbc69c21dc54e01d635b4f6e98f02a65438fc9e3348019de8dc05a3dade3b8ae9716a14538b1898a378ae332590cd776797cbf77247bc7c26d2\", \"name\": \"HSPA12A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA14)\", \"function\": \"Protein\", \"id\": \"c22822fcb32fd80e12771ddfc2f1dada017090c74e3f481cb71b5abd033e626ce5997eb417791edf978c9a106f7aaf1a55afa2b6d43f202df409709dfd51c430\", \"name\": \"HSPA14\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA1A)\", \"function\": \"Protein\", \"id\": \"fb0cbb9cc4e216ea41397bd2965faa82f855f844ecde6a1f971a7a3c7ae9e2f1bb20285815aaa4963ab45dee6b4452cdb3427c3b6f4c1f05a16ea3ea8fb299e4\", \"name\": \"HSPA1A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA1B)\", \"function\": \"Protein\", \"id\": \"45c3aeb824afad6e9d5a7d4f29cbcad07f40a16edd7c576f25128c024d40f26f582a414fe10f59ca75d82c01da967deef47e11e006b3435a33da28c55b262dc1\", \"name\": \"HSPA1B\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA2)\", \"function\": \"Protein\", \"id\": \"b7b6abb59b880e267a4d1200709130e2b2694b915ed62b8d93b4dfb895d678e24a0bbdd0d4bd1dfbaed5dd477d11c612dde688fc21ae9d256400b4548a0fc0a2\", \"name\": \"HSPA2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA5)\", \"function\": \"Protein\", \"id\": \"91a76da7c0cb8d0d8daee288925749f2b8f33b80fca84b2f994dd939c2b2b5400a196a96b5de0c74c4c075f8c9f0de56a6de0a08a2effab9563c77caca8c5432\", \"name\": \"HSPA5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA6)\", \"function\": \"Protein\", \"id\": \"c5642b35597b17ede7ffbfd3fe0dd2b1c4558149f4122c8bcd8122559ec1b738ab70f5c878770d58f00642e4105d7669e996d6eb159e750ef4d4df7c756f2525\", \"name\": \"HSPA6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPA8)\", \"function\": \"Protein\", \"id\": \"adbb7eb799b12cc7b0d44de87e8712515e7d06740dfc632ca77e4c00a3741a8efeb9259665e8deac8c5fe2184cbce4b0a228311a757c8571b706689f43aec19c\", \"name\": \"HSPA8\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPB1)\", \"function\": \"Protein\", \"id\": \"96c2e5e8f77aed7e051078529a022b3f2749abfafa85556c562ca52d96ef14965065c600e95bd3a593a68254aee443067dbb3631852f09acc84313fc5cf9015d\", \"name\": \"HSPB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPB8)\", \"function\": \"Protein\", \"id\": \"d1fd1bb16aef7b55e8f140f69a2271ecd8b1508f333bb74421a45b50401b43cd777352b0eb785b8ee18c9c9c2e7318e6f59cd2a2333fd2f7501965799458eb1a\", \"name\": \"HSPB8\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPBP1)\", \"function\": \"Protein\", \"id\": \"e8e81f2ce99fe04a122e85bab35b0631f5fd0ae0f9b2ff9d0129f77bb8a97a7cad47212b59636a8787c20746c0c7e54343f658ea5619d0cbb18e239b275e898a\", \"name\": \"HSPBP1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPD1)\", \"function\": \"Protein\", \"id\": \"f0cac6ac9384c14aafe44f9bb58139b1d3326cbc9b523d94eba4bba2580c2b9d83f8c85858c115d4f8e333e0fe1ef75672140e493b799c42ed18c18b3132b607\", \"name\": \"HSPD1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HSPH1)\", \"function\": \"Protein\", \"id\": \"36c67c1ca85967b0146e9447a9c41d71d942ad6468b32ae76033bafdc4254c47ea75642522d1f8a1d8c9c4f5c16fd899ad66848ace8d7f1af90aa366061346ae\", \"name\": \"HSPH1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HTT)\", \"function\": \"Protein\", \"id\": \"f3dac0d39a258f730f45800014166f0cd6e8002b0bd1f9be6aefa0958d84dc3a67a48721743405568d2c7942ea831f7bdc6cdcc7a990bb1a7d5161351e6e67b0\", \"name\": \"HTT\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:HTT, frag(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"4ec113a2b89660b05ec358e5e4063e08e3ef3ebae53d7f43d7c36579ca67aa43d18fdab068a58ad7b66507ce9725de81651db33f8a08c03af1146a5f40dae779\", \"name\": \"HTT\", \"namespace\": \"HGNC\", \"variants\": [{\"kind\": \"frag\", \"missing\": \"?\"}]}, {\"bel\": \"p(HGNC:HTT, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"71d318589ae3f7792eb568e485f75a43730fbc62f1b2566d66f64a61f76dca10b46e8f6588317322ec69ab058fc8e5a7e1852d94538328d7feb958b16fc8a356\", \"name\": \"HTT\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:HTT, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"ecfea6b35e9ef56154b1f7d1255c3ae63e48c14c262428a01170245d2ffae3786b0b2439c3b2b1f6abf506d5ff2a338d6de2d7a2c18ee7defc89d51c50e22f75\", \"name\": \"HTT\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:IKBKG)\", \"function\": \"Protein\", \"id\": \"3478ba3aeeb0684569bf2cddfdf9718130fa1eda53713be43ab687a31b422d72cb0412a540289e3e84a085b335cf889f570db0775bb5b1832cc4a5c834830f04\", \"name\": \"IKBKG\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:KLHL1)\", \"function\": \"Protein\", \"id\": \"3b9980f7955386ad9a320049b2860d97080eb43bc6507238d8d0a16e4aaebc9ec42bb5f940d335fe71cf7677ec4b80a2abef0fa45649e21c6a399192c0c5afa8\", \"name\": \"KLHL1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:KLHL13)\", \"function\": \"Protein\", \"id\": \"a7e40e6db01686faa168fab1939f3f24faa981c5fafa80b317d7b33278a6f6b5024db75d065c54d602aa4c38b8d4f5d4302ca880bdd92ef879d1ccc3e10076a2\", \"name\": \"KLHL13\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:LTN1)\", \"function\": \"Protein\", \"id\": \"9478fe63b072cc99bcc78770504fc8dbac30654d414786d1787050f6e666160da89fd8954ba788af283272c5abbc682d91ebd3135c132e9e24c91cb926276b28\", \"name\": \"LTN1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MAD1L1)\", \"function\": \"Protein\", \"id\": \"369af691c9a363beeec4d770d7562a85e4d1ef4a58313e9374e6e4d5157a89ea23a9a09104e94df8ce10c8e88f1d278b346e81c48d22527be0d85e3d98599d82\", \"name\": \"MAD1L1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MAD2L1)\", \"function\": \"Protein\", \"id\": \"b620582e18594c7d9b8efd141b0c9b25c5d4d07c5ce162df61d5ad1975d2aeddb898a19866fcf8aa6b8505c7f87dfca96ce2d9a02b070cf2a2ecffd3d75032bf\", \"name\": \"MAD2L1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MAP1LC3A)\", \"function\": \"Protein\", \"id\": \"696720fe445fd05f8ee69df577c1eb30a03353ea55fa2d483f9b533222cccec6a8edb971af1b1296bd3514c9546a59e158162797ceb5d4ef8937bfee4600a06d\", \"name\": \"MAP1LC3A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MAPT)\", \"function\": \"Protein\", \"id\": \"ad82d360f02888e890bb2d1f91d1dc020c21cebed2b4eed0193a58e6b396b5f0797d607568dea382c05ffe2a003537d10190b020739af8d51c8d7dbc19bf5ab1\", \"name\": \"MAPT\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MAPT, pmod(HBP:hyperphosphorylation))\", \"function\": \"Protein\", \"id\": \"ede67fb639f29861d91976fefa16d8279b53ae13a659f35d70ed12e01bf3f339ffcf701fc54c7c4e908fee9902c02aac3e0022dcae5a7afa217ed2d4dba133b0\", \"name\": \"MAPT\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"hyperphosphorylation\", \"namespace\": \"HBP\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:MAPT, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"40a1fcd2e6b4af4d7f275f7ffae5cd34aff043c40297e912ed0e45c5a645d1abe2b717042d39ef0fd11ffa06c96785d31a8c7af123db21c2162d4e6ab59b9729\", \"name\": \"MAPT\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:MCM2)\", \"function\": \"Protein\", \"id\": \"27e0bfeab2c65c23713aa4a9bda6aa80772d9306a17036323e4a3b846f00703877ab1becb508930ec3a33a6fc517722de031a6f329b17ca80b567720fad87b95\", \"name\": \"MCM2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCM3)\", \"function\": \"Protein\", \"id\": \"bb6ec99877b1466fb8a537c122e12132c68c5dd3fc7156e0a4b59921d5ac09c9bd236d8ddc4751fecd9a9fdf9a829d25f6d383629dd043f1860b62d782999c7f\", \"name\": \"MCM3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCM4)\", \"function\": \"Protein\", \"id\": \"0860c13c002552200f2ffdd71c3a2dba86c23f66700637a61803f2b253470b5fbb82942af13f018653492a7a1320f3530d12697f599a986583e3395188079fda\", \"name\": \"MCM4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCM5)\", \"function\": \"Protein\", \"id\": \"5bbe1745ed802efe103807ab9e881ac7eaa06702278d0d246e0eb5be34da52aa50817be0aefc87b1a28ff25a2df8d3ef36f59f303974dae9adf34342f99e425a\", \"name\": \"MCM5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCM6)\", \"function\": \"Protein\", \"id\": \"1c500bf42ebca65dc6324c5daa1e85a5eb360fe59311041d0cd38dbc11143f4c366b10a52328c10d6904d8baca7701ebac146745e48e5f5729a2278dce087eb4\", \"name\": \"MCM6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCM7)\", \"function\": \"Protein\", \"id\": \"c6ca396237b8c138ff2680cebc843e094c4d324075d28ce973fa3b23f94bf1aa96474eb186019935282ba9ec887e918f6d3893b42c15f29be4bcdd199bc6d489\", \"name\": \"MCM7\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MCMBP)\", \"function\": \"Protein\", \"id\": \"95b3c51df04c23197ef4982473e182ff05ec82ebb5b65f4ec9d2e8060b8bc33a0d0aaeecf9d28039357620694c4a6b9d1406a50a1ede0e18e7cd2f052c4744cd\", \"name\": \"MCMBP\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:MOCS3)\", \"function\": \"Protein\", \"id\": \"e14a4e72f2851f60cfe9cb2a230389f241f4f89f4fa69640937ff830bdc9a549c4b5dd57544874b3c36c3877e1fdd31cc9252963e183fb85fc8d4dfa470df71a\", \"name\": \"MOCS3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NEDD8)\", \"function\": \"Protein\", \"id\": \"59b65988fee4e1fff814422c907345600bffeaf993373d7cd60d5830da3c4556e01840002b64735e47911c071850f0dec96e2c33c1b906e6f306699bab77daa3\", \"name\": \"NEDD8\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NFKBIA)\", \"function\": \"Protein\", \"id\": \"9b4bb952ac56939715566b2be0e9e32837d1688e51c453a2e2d00d51fb4efd6b25a3e42654c40166b33acc42b405f24eeb2dacff3aac84d496bae22778f98e45\", \"name\": \"NFKBIA\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NFKBIA, pmod(Sumo))\", \"function\": \"Protein\", \"id\": \"afdf21fa92b7313698ab9dc0b05f372280dc5f3d606f37f8c14af7a9f29b272f9e8347683ced15aaced261ad321d204c941251ad5a726f61d0186eed62dd9a80\", \"name\": \"NFKBIA\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Sumo\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:NUDC)\", \"function\": \"Protein\", \"id\": \"6bee2eb21a47f60b68031c0187642cd084e9ee5139277fe8febd2771423cf32470b6e7904d949243993089f07d1e9d7c11dcb8b6cf2912e821c9bab9ea6c05df\", \"name\": \"NUDC\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NUDCD1)\", \"function\": \"Protein\", \"id\": \"d6180e318184dd3e1be35332c0aef252c1fed0fc743184395165ac2856e66fe022ff405f4bc141fa3d8d026ba3caf83057b046560768ff0b22b3a11cb73d96a6\", \"name\": \"NUDCD1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NUDCD2)\", \"function\": \"Protein\", \"id\": \"d8db29a1ea84674d36095c4f2342d6ce70b081218fc82ee8c7cbe342f03ed0192501980845b73345839598e6d3024d76ec9e4e0cb4d2ef1e3820a18246092299\", \"name\": \"NUDCD2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:NUDCD3)\", \"function\": \"Protein\", \"id\": \"2839b7c7d3e9f1eab0b1baaaf788dfea1a727ab9fd1f9024472cb733db30e62b65b5251255546098cd99c46c50634bdb8df45cba81504018480ef8d2c8e115a2\", \"name\": \"NUDCD3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:OAZ1)\", \"function\": \"Protein\", \"id\": \"9f911c671161ad20732743100f4d249905e81bbcae02a624b8760dd6a1ac631fee933ef87f81bf9a608082c5bed9a6687668643c167d52373bba1c325708f44e\", \"name\": \"OAZ1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:ODC1)\", \"function\": \"Protein\", \"id\": \"2acc1135b0098a7e23f4b3d62b42fa61cf70c1d3c388cbb9dc3e3c62bdf635e4c5ef6b41e3509f6ebc3f80598f862a8de6fb79fd6957596b15e930465737e42a\", \"name\": \"ODC1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:OSBP)\", \"function\": \"Protein\", \"id\": \"14c0294d94d867e45674db77c5042bf6c11a8630884c3e2b329bef0f356e66006d11450b6ae03fc301edce1ab7f7b2290b4550a14ac9cdd627a57a500025fd36\", \"name\": \"OSBP\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PARK7)\", \"function\": \"Protein\", \"id\": \"6308bbbeea3bf1b0132b1fb284549e7e1e932c4560083ad76367b8b55d5445c0d561a9990984a4d38b18f8edace3c0a85aac78d63bad04bd71563ad265d145cc\", \"name\": \"PARK7\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PARK7, pmod(Sumo))\", \"function\": \"Protein\", \"id\": \"a676cf6c520591ab161499862b6eb1547396d62f3c1d0d1e0641795c0b472ffede70b8120c9a4a8b1b257a3b8cc3e2d0087a4953f4c5a423e32bb0ba17177a1c\", \"name\": \"PARK7\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Sumo\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:PARK7, var(\\\"p.Leu166Pro\\\"))\", \"function\": \"Protein\", \"id\": \"c0cc0c4670aa821566dd544cd66ec794a1941a42f2f61a486f79449b40926701e570eba6c8b8aab49d666e4e94f05fbd8819fec5cf129c53a85e81859ed2e1d0\", \"name\": \"PARK7\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Leu166Pro\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:PDCD2)\", \"function\": \"Protein\", \"id\": \"8121989e5d5b1ac963b41d56567b41c1d62cb91172de4df21d45dbb3dd0cacb1f541ece4cf69bfdee886997d8bafdff0d13070887dcded114f1f491a9e0411a9\", \"name\": \"PDCD2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PDCL)\", \"function\": \"Protein\", \"id\": \"fccf7653f56c7b9e98b2a8bd5a534fbe6950583f84f1ec6112a4ed3aafa815f6deb144219a1a4898feea6f97c1233f784faa4deb1137fe4795b2d075950d2fb6\", \"name\": \"PDCL\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PDRG1)\", \"function\": \"Protein\", \"id\": \"6bce0f646e0928a627cb3f93c3434cdaef11a6fa272f2920a371d4022e00d2a6dee6240218e019bd8fc6032bfd684a81e3f20585260f101389e31734bdd71da9\", \"name\": \"PDRG1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN2)\", \"function\": \"Protein\", \"id\": \"708c109c920ff021e2d8666e0bcff8bb757f69afafcc35fc5a6b2f0c6edca41d8ee060016b767192d6e83b6977bc630cdd186878a4885f3534987f56e496c1f0\", \"name\": \"PFDN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PFDN5)\", \"function\": \"Protein\", \"id\": \"f07512786d27370093e79ad291601f634fd90ce8203209a1a7e62fb3ccb0b35864c470aad6b7d013c0885ab335b0994de5e27fc5566c16b76cfa5de9f5cd16a5\", \"name\": \"PFDN5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PIAS2)\", \"function\": \"Protein\", \"id\": \"d139b0de2cc8f772352fd924a1661ee6d683cc147a1e0225c11adbe181701c2286a36600de7089ba45c15926136e6325dcce34e920fec542321005c55895d18c\", \"name\": \"PIAS2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:POLR3A)\", \"function\": \"Protein\", \"id\": \"5a2f78224b5ec36c7ecf6811f7f518474182466219efba00f1c50fdc71291179f22f7efb956050450e1c7b483e38e4bdcad8c05841c62ac3d342feb666b3d3f9\", \"name\": \"POLR3A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PPP5C)\", \"function\": \"Protein\", \"id\": \"fb42b597325b4b19c18f87893065075af732edf8113519b1b370391d340983fca2da6f260b522019521ec0431bffff6a1b0fd09594442394f300fb69a55f70f4\", \"name\": \"PPP5C\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PRKN)\", \"function\": \"Protein\", \"id\": \"c129e31246d9b635f2d39f8a0d20e11d29724b9888bc1c35e5b5f5eb721f42a8ead8ccee052e21a3c178f79c19d2fecb3360bd35d0a89f449b2d05af14ae324f\", \"name\": \"PRKN\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PRKN, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"18bad2008a5318b2ac88e39192c1cdc3930229cde4d1875cba179e0c144b7ee324191837819b0e6294790388cc7e202eca06b5776e5def8f36b099e366069eb1\", \"name\": \"PRKN\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:PRKN, var(\\\"p.Arg42\\\"))\", \"function\": \"Protein\", \"id\": \"214f83cc4b1bb0bf8ba516d2f5b09f2940c880b87ae15b28b79791b644b1d55a9574816c0fe7d2485228954db0cc55c576f6bd6c22052b3b5f40b6392535a52c\", \"name\": \"PRKN\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Arg42\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:PRKN, var(\\\"p.Lys161Asn\\\"))\", \"function\": \"Protein\", \"id\": \"62ff6c2387f411cf9764a0ee8924687e4e6e3ed8884f3fb7b73317674c6a9141581e27bf8048b22b07324cc7ad644b3d4b9f54609d7fae91f5d10c0e72c83518\", \"name\": \"PRKN\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Lys161Asn\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:PRNP)\", \"function\": \"Protein\", \"id\": \"97023c238092f75f952ae0785caba6d1454099f27405c7e582078f2f49f5ef146e0c8eb3a1c25a63781a21e5d83689e958397e3115d98e65cf8c5a2ad9c7bffd\", \"name\": \"PRNP\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PRNP, pmod(HBP:misfolding))\", \"function\": \"Protein\", \"id\": \"f616b66f6531ad3c1e6d1ce8f2d0b141f41cd4476528853996bdb416170fdd6767d2f13102d0c7b07fe745db29a40f5319511fc16ac6f794ecfbf38095a06889\", \"name\": \"PRNP\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"misfolding\", \"namespace\": \"HBP\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:PRPS2)\", \"function\": \"Protein\", \"id\": \"bcbae1b417030d6cfef4874b205a28aef85b514b8e98fedb1e0f3cd3020f607a51e0752880a6546c5d910417f6f7e4712e00e6fbec148b9d8ecfe7ce27ece95b\", \"name\": \"PRPS2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PRSS1)\", \"function\": \"Protein\", \"id\": \"51326c17210ee5623daad9dc74f90f509efb2d484be55c7125a76c9589d63726a3f3569c6b8cb5f0b8df8388a1fedcce177b324f7a0c34320365140ad7f79025\", \"name\": \"PRSS1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PRSS2)\", \"function\": \"Protein\", \"id\": \"30c69c378d408b414214014a00863036dab86ac12ac2c34af14bf2fcdc6f37fdde31239348b864cd1a31f868b57a75c53357b6c055807a4f1a5c3403511bd29e\", \"name\": \"PRSS2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSEN1)\", \"function\": \"Protein\", \"id\": \"1bd45a944b5c10f3c058ae82889876ff98fedf45e982a4db6a034e656845574daa76c407b40b21386a2b59045178e42fa90d4c5b8226477d9f5c86c4b4aa727f\", \"name\": \"PSEN1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSEN1, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"f5d6578d69810b663530f600dc1f3ad5890322ee3f03f8d46228697825d1ecca162f64973903e064570572f0c16f7718468b02886e44179fb609209d62644261\", \"name\": \"PSEN1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:PSEN2)\", \"function\": \"Protein\", \"id\": \"a48c939dd23656d3d74e6d0bec3176c8bcd8cdd2d816ac8f90fc78442759db35852078eebabc5fbc1e2f4255a07b6b397daae3f058157269dcc5c15cf7b1149a\", \"name\": \"PSEN2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSEN2, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"cecb49f99b901bbf6dc1d386cb4cf5356057d4073586449edc6f2d15c4f48fd046bff27bb6fdd771af5c3460b6a781b76ca3d42662fba821e459d6eb5f9947f4\", \"name\": \"PSEN2\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:PSMA5)\", \"function\": \"Protein\", \"id\": \"edfb7034424d48885d2faeda9a9f7a189ba15685eeff7d60117fc5be87b14c91591eb0ca325a97c80efaf3107919e5300ccdc936756858ee9f30ea582540a376\", \"name\": \"PSMA5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMC1)\", \"function\": \"Protein\", \"id\": \"51ff2eb19418491681267097da8216669704f5f3cd3cf8758df1d54037a14ef70b81e8697bafd1d9feb2684a2ec9c1fd192a193b2c3744b6bddcab2cf824f518\", \"name\": \"PSMC1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMC2)\", \"function\": \"Protein\", \"id\": \"2b1ced2c49cec8b9e98d0e4c5a3274b1dd8ee25b190a71f677fcf154bafe5df8dad3ffe62a985d437883794c3e766fb36de517bb9129a92fa0805e0cdd933f76\", \"name\": \"PSMC2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMC3)\", \"function\": \"Protein\", \"id\": \"9fb3264a339c433f959e3667b96bc9d4d83ff7acc74f284b13799f0e73740845fea308b2753e6da353d8aeb98c270b64333b5fb9652f29696d3f6c9925de5a6b\", \"name\": \"PSMC3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMC4)\", \"function\": \"Protein\", \"id\": \"74ba82c3efbb95f72a8beb19b2c8b389881226f550ccab8e4e87dbd9dadf162e2bda7c9574f250739e0c2bfb4856e56ed3af271f5b38938ba29d0e7dd0821419\", \"name\": \"PSMC4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD1)\", \"function\": \"Protein\", \"id\": \"306db780e09cc385dc2ca1417f08b39eef4cf9692edfce243d63461fd7054e52546c8d69a7434f8ce8acc50cabd21660eaa40985b38ae292358e04048e438033\", \"name\": \"PSMD1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD14)\", \"function\": \"Protein\", \"id\": \"aa2c878246acc1c817cd5f35a4828ed63f1deed8daad87d531e94038bf53e42f4ad54eff30512512de9a0f023628805de4fd560cb18d5eb3119f9e4b4f106b10\", \"name\": \"PSMD14\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD2)\", \"function\": \"Protein\", \"id\": \"2285c9c0b9111cf13594cf58ac0a25ed904ed2b11120e7d706ddca48193986ededfa041f2e0435446e8cbadf2e3a25c5f8c27ab306a22c82a572c21741f9acc9\", \"name\": \"PSMD2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PSMD4)\", \"function\": \"Protein\", \"id\": \"d9d04480e2882891bc3719d84ddcda93272fc6d6bc378b44783df20c69bd4674d4f7a23967975dce3b9b16e5ffcbee22b2e15589e3609717df69409ffc5995b3\", \"name\": \"PSMD4\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:PTGES3)\", \"function\": \"Protein\", \"id\": \"743fd8f60493bef225875a48d1e2b407ba42f50f44599aad5c556c443395a0f89e397754ace47bfc9433603285bf7499f4ddf8a568b10821a3c260f508c7d69a\", \"name\": \"PTGES3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RAB1A)\", \"function\": \"Protein\", \"id\": \"54bc7323fecdeb3ec17a7ec03afcdf2c5746c72017167baa729f2a3fd192fd4d3c54bd306b2c5e3927627015703e9462b366500a051476951b8b0a24f353bb8d\", \"name\": \"RAB1A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RAD23A)\", \"function\": \"Protein\", \"id\": \"2f0886d04f6a8df9189aef3ca924ba57b514b2c972a3ca281bbee5f1d7acb4a0e5d9dd15fe78aa78413d737b6d04f1ad4ae9fcbc0c28e0d462798eabdb37bc81\", \"name\": \"RAD23A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RAF1)\", \"function\": \"Protein\", \"id\": \"edf6926724d4c429784a197774c1f2b3b82cafc4c88f9b5ab0a85bb9f7964469f8bde553aded79f7459df94a17f2d833255d0c7db9931ce239012077f5dc6d90\", \"name\": \"RAF1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RNF19A)\", \"function\": \"Protein\", \"id\": \"896b02b8abea57c14ddc7fd2da88c24d8f2d70fe26e69cde083d40b279262ab09a0cd31a3c7349f8e1a5db7341e1517339694da09ca67bac5e70d859a2e8edf2\", \"name\": \"RNF19A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RNF41)\", \"function\": \"Protein\", \"id\": \"d7045b461a72897ba6dcb6cedffc20920fa9d5bc8808a87c2ed61a94d6df0d773615b3f289e69dc6da35929bcaae8fe36b4deb69198c6d45ce33c429acb59a04\", \"name\": \"RNF41\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:RPAP3)\", \"function\": \"Protein\", \"id\": \"ef7daf05f2028269dc55b8aa4b4e66ff94062cbf2094960d9a73e92ab0f916511ed78bb32cbe8790b821392511a87bbb200a4b405f3d138b5e7573e77a291edd\", \"name\": \"RPAP3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SEC61A1)\", \"function\": \"Protein\", \"id\": \"39224a250ee004139ca7f83e4922fe3c13004ce32de3e7f749135f37413bd703d28e732844300672f37b081ffb0ec36cf67558f58ead10a39501633bf20d9cb2\", \"name\": \"SEC61A1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SEPT5)\", \"function\": \"Protein\", \"id\": \"b719d8ec4bed0e750c89e6cec6fa638335921e20e6ba943f090ff76b0f263cbb8a405819ddb455593c5231f51370b514b257f7e34a1cd5cdffde5a876828b8f4\", \"name\": \"SEPT5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SEPT5, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"9517fb11943946ff9a5182038ad2b590f944e7178292a9c2c26fec85b0cd6950f62cfda627f95e602ddbb7f4fa456eea997c0e7c55142d7514d04f5cd9437160\", \"name\": \"SEPT5\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:SIRT6)\", \"function\": \"Protein\", \"id\": \"418f976c813faf69cd959540ecaf58694237e9e61726f7cfcb130492c835980f37e622d576ae588471a23af3f3df1ea6c14bef6ca8db0e052123152a02ea9776\", \"name\": \"SIRT6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SNCA)\", \"function\": \"Protein\", \"id\": \"4345441d1f420dc0d830377737dba9467f21b1637ed3472a697534ce698f2566b780dd52cda47c96b782242b1bcfa70e9a6147fb3bb251d1f3e1e2a0bb7038f3\", \"name\": \"SNCA\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SNCA, pmod(Glyco))\", \"function\": \"Protein\", \"id\": \"f42d0c8ee92b0370b88167be800631fa06f4b7a5c4e8b044bf35a5cbeac0d7270618d30298a779ef444d0b4135a68b7263fd26a4c27828955b5fb6f994f3db0e\", \"name\": \"SNCA\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Glyco\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:SNCA, pmod(OGlyco))\", \"function\": \"Protein\", \"id\": \"6776ec025fed595f07473fc94dc8b86f60f031f2a3bf1cd7a5e0141aa0403931bdb8dc1ba595677bd16c63fe5e1562d330d4aa3b103d15bcf8e4ab9269ff3651\", \"name\": \"SNCA\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"OGlyco\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:SNCA, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"855b24579901d5d9ad33c5534f5939171e1b5ea123a621a12ca2cff6a38c34cd522e62e7a35e9a00f4f925ac47f29fec9893fd2a2470102f70ed78cc2cae0ba8\", \"name\": \"SNCA\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:SNCA, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"0d646c2b44d28c4acc9f9df1e5691d8250fda5b35ec7b7818be264cf143fdd8a975666a0e67d14bea4130c53464dfafa710e2c65f54a7fdc0151fc726740f440\", \"name\": \"SNCA\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:SNCA, var(\\\"p.Ala30Pro\\\"))\", \"function\": \"Protein\", \"id\": \"56ce8be3c490eafefc734158205e27bfcde01c5d160354345ad61607099ca26704f9f079559cf958aa16b1ae1fffafd552ddabf79ecf722d81d7b3ec047ff1be\", \"name\": \"SNCA\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Ala30Pro\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:SNCA, var(\\\"p.Ala53Thr\\\"))\", \"function\": \"Protein\", \"id\": \"d2068443e7a690d5d02ecf646516124d655e615c8f4a7c320cad114af8b6cb752bcdb98e8973c053690af90c8cb72d8d4211d4f8f1314c79c1aab0bbd385c692\", \"name\": \"SNCA\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Ala53Thr\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:SNCAIP)\", \"function\": \"Protein\", \"id\": \"9fc115a6523c84de5fd0246f5d01b733123691199a2f21854abdcc2c32e01e9ce339c6b4f1425b516f9b5cede917f8d1bfa9000da9d070282f3138d513fd37f8\", \"name\": \"SNCAIP\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SNCAIP, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"533db34572d78cebccc34c0104deedf145b3d9b4d6ad1600a486baf361d67d0b4f5455b09ac0148494f4133deed958d0d2037d9b05df167638c875c2f1918f00\", \"name\": \"SNCAIP\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:SNX31)\", \"function\": \"Protein\", \"id\": \"707e9953e3210d35a2285b1e79cae312ee3f64af43a74d825e55017ac58b19f2f5a8790c06c3cd4e9b8afc3307c0a7f501caff830dcf68364c73cce3d05a134c\", \"name\": \"SNX31\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SOD1)\", \"function\": \"Protein\", \"id\": \"7bebe84ddc870a4ceb70828bba41ec797b861126138342942eb8124edaef94657501d4b9c4a69876b38e0fba2ff4cd5a91b560173b73723f03809ed503e90e98\", \"name\": \"SOD1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SOD1, pmod(HBP:misfolding))\", \"function\": \"Protein\", \"id\": \"2df3c40b3d5d422c8570f24c61cfde6a01d5664f6670f6fd2a37346034d668268ba55b831ba17fa618ad8cfb4af9eea7f2c2a08b354ab4719fb7ec81c72c0a8a\", \"name\": \"SOD1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"misfolding\", \"namespace\": \"HBP\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:SOD1, pmod(HBP:misfolding), var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"9788b855316a74ce0c633a4ce937e56754afd4ef6cf8e01f6e1797cba39938f1244b38fa09dc3cd36bb2dca1b67a0d3d1393bf18c0e959ab8a7a9eab18df0fbf\", \"name\": \"SOD1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"misfolding\", \"namespace\": \"HBP\"}, \"kind\": \"pmod\"}, {\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:SOD1, pmod(Ub), var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"629c14b20adebedacd322c602636c9a6c6f6607f13b18255adfbfb07b8e4628c0b5ee7351e9250ed9fc324af28cb088ea2a9616974a701e40a65a2508c2e20bd\", \"name\": \"SOD1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}, {\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:SOD1, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"489d0def821169265e7e27a156e90cfceba86c9192b2566cc767f80dfba25e8f19d858d93667e7c8280bca5e41c8b63db9c5e590b43bc6d0b9039bcb9afbba00\", \"name\": \"SOD1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:SOD1, var(\\\"p.Gly576Arg\\\"))\", \"function\": \"Protein\", \"id\": \"4df730644bf87ce6066f6095009edaf876cb2b496a7d98d0329660e5540ef6563a2294072460f3fac143b7a8f613345cfab45c95d2f92f78382824bb00efd725\", \"name\": \"SOD1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Gly576Arg\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:SQSTM1)\", \"function\": \"Protein\", \"id\": \"8cd06d93cab875a139eae92082f11af5ad651146fabba6fa298a46f2cfda5bcb2bccf9dec8cc73067f5c11595d8eeb288f5c13f6a56dd316b54d108e5e66217d\", \"name\": \"SQSTM1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:STIP1)\", \"function\": \"Protein\", \"id\": \"b370e8c93a9fd4a6879ea0c4467c8d4380531fd8a3f1d11edadc2f87129929639d62087b071694e5937f4278fc6fb00d65ef937930fa462de94fa83118735ead\", \"name\": \"STIP1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:STUB1)\", \"function\": \"Protein\", \"id\": \"7edf63ec4c2eaacc63944e79144be59c6ded86334f97e772d1e6ccbca7065106451bd7861e8acfbda8051ed22ecf6451dd68a33a35fc2d3b91083a48b53e1c68\", \"name\": \"STUB1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:STX1A)\", \"function\": \"Protein\", \"id\": \"d58fc2dbafc0194032341c585603f9124967a3539257dc865296654fb5cd1be6466bad28d74b103b67520aacd3f71f775a8f392837231cbfadcd489eb07742dc\", \"name\": \"STX1A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SUGT1)\", \"function\": \"Protein\", \"id\": \"4af52118121cd800414191aa793a427476930ec475743c5d685ac6c64ef53b960463c118755d73d7d0b493a637e4bebeed1084fffd34da89e7e101b7de8dd185\", \"name\": \"SUGT1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SUMO1)\", \"function\": \"Protein\", \"id\": \"1e1844dc2cd090887d357b2e8c7ba537a86b2e799968b043145ec3044cd4d5d78eb341878421b15fa34602b1ca0c7d9b08a12806e3fd114cd82806ec54cea6b3\", \"name\": \"SUMO1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SYT11)\", \"function\": \"Protein\", \"id\": \"a5d47ed282f1cef3eecedf93c5fa7f0f85d3be4cfbc6d9d9ed46eb02f9b60a03f1de57bf3c4ff3708414cba48755852a1338d5a909d326daafae9b29978f93db\", \"name\": \"SYT11\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:SYT11, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"233b22f4fa420f22c644f3114cec873480ef02313c2279e4167813029ec5366a557c462318def6d4c28573d483bce42a93e5ec144baf0ecababd97fdff5ea90e\", \"name\": \"SYT11\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:TARDBP)\", \"function\": \"Protein\", \"id\": \"96048ed5d196081ca480607e30326cb8bb474db3177bfdeea242002c3c7a4681b51247acdfdd0a3ae600face27455ed0e62e9c750e79b240b8e7418150b92963\", \"name\": \"TARDBP\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:TCP1)\", \"function\": \"Protein\", \"id\": \"cb633638d9799431ae903b7c7a68c3e423eafb79759de774b2253aad90bb39779850757c49f74da87d2cef6d714a3c2b3edfae660ac53c8cc9b91ea6661a96cc\", \"name\": \"TCP1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:TH)\", \"function\": \"Protein\", \"id\": \"4ba2e6e4b7552f6fb5c57e50a86c08fcb3fa93ac5b0076e30c3ba54f1c90af6a522969a82e164bd5e5c49cb96e843f00f4254f5b8f866513ab1783da50b05d02\", \"name\": \"TH\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:TH, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"5a35008fbc10a27dec56ce4caf6dec1ca9b8e46edf49a04baeb1b33410b2aae9ceaaa1e0dfff9bb8fa107b2391e152558b05927ba743a417ef032d35880a85fa\", \"name\": \"TH\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(HGNC:TOMM70)\", \"function\": \"Protein\", \"id\": \"805ee4f2c58a4e398184abafd9bb90207582be01762c0cb02db461f1aa4e3bd7ae9f4173ee0a757d9ae5cb4e4c7b7fea4b6e63b385f30c4dbf628fab4f79ac84\", \"name\": \"TOMM70\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:TP53)\", \"function\": \"Protein\", \"id\": \"b3cf9a1d278f5ccc00d85dd03123ef42b4470914b7e279563535c5827c39437c5d9d81e76957b16054df7e83501f04de6ccfad79fcafbc2bc4d417f5c6b814ba\", \"name\": \"TP53\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:TPR)\", \"function\": \"Protein\", \"id\": \"aed1943ec7aed3ab6113c39fb5a1698050072ea8232424160e28a9349edd3de81f7d5cb4869e9556b668249ed21cf506118565289ed0fe6efe70f5db65722d14\", \"name\": \"TPR\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:TTC1)\", \"function\": \"Protein\", \"id\": \"a840afd1d5a908211efcc90ccb136b639a0609cd3ad0d3ff172d9a2c69ca87f313b116512b1d81c908b2a5b82148f78485fc4cad2165cdc77a0852f2f39a9f70\", \"name\": \"TTC1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBA1)\", \"function\": \"Protein\", \"id\": \"64cd396bda4fbaa0048a7e4a7856637e4a4f51bf281f9a8c3ad87842bd94e66db417e85ca49c9d10c7c7b2d078492b635d9f9ac5fa6366ff7080fa3943685364\", \"name\": \"UBA1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBA2)\", \"function\": \"Protein\", \"id\": \"cccccfcdcc945288992b69ada8ef0074939d0284397b6662af5d047d9395b52104d31ec76fd70bf1bb9e7e654e1a814f2b7e3bea94b071ab706294ccc4a7e0ed\", \"name\": \"UBA2\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBA3)\", \"function\": \"Protein\", \"id\": \"06940713789ef5ef150380929d211df089884400cfe5e265b1919f01b29f50de605ffdd0a13361cf8c02c6905a425c4c8bc6921ee25566c2b4f54f9f2b44270f\", \"name\": \"UBA3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBE2G1)\", \"function\": \"Protein\", \"id\": \"aeeed663ce65206268a1864f11b9615d4039e0d6ff58b5f93366c5417c1a7a910723a0220303237b378eb73d47c73d3ef2979f803376fe76d15ee3834aad0d64\", \"name\": \"UBE2G1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBE2J1)\", \"function\": \"Protein\", \"id\": \"e82e733458a7a4b668116e3fd3c56be97832b4b5a07c0930d4c161336edca192a9ee56215407a6ba66568270a7410dde45a6d14ff5adb3430605ed38696e1950\", \"name\": \"UBE2J1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBE2K)\", \"function\": \"Protein\", \"id\": \"c65a42418b44435130fbd16f310c20ebdaca221fe9bafd257c127aeafcbe956cd28f559daf152849967c36b28085274b463a1d1c8668067f995583c16fa835c4\", \"name\": \"UBE2K\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBE2S)\", \"function\": \"Protein\", \"id\": \"4b11e657c01428774f37a866ef7a12130fb07de9c13f37dc46f252bc15364c63dc8b935d203884853f64cf870ccacded4e641482b5dc936fdb7219f929d3ded2\", \"name\": \"UBE2S\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBE3A)\", \"function\": \"Protein\", \"id\": \"890317073b366ace646852cd4c0f9d505e81f6e2335f9b17dd535a72fb6fd958ac4f222d61b5b2a1097b5ccf2aa527eab6132cfc4dd4ff167c99025b3f0ab581\", \"name\": \"UBE3A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UBL5)\", \"function\": \"Protein\", \"id\": \"cd430daf013adadd810471a001dce4184de74171df726c69aaeda1afabfb27bc1edff051ae96980bf5fdf16f175d09a441f44d9a62d41f6076a813e9f16c5360\", \"name\": \"UBL5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UCHL1)\", \"function\": \"Protein\", \"id\": \"f7531e6266f87c46b4e1b6876d0958e4f96eb16cdd3e37135c951235b870287853e8651beabe8d49096808db68a48431f05ce660b1b6b5eb3e120e79a046ac45\", \"name\": \"UCHL1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UCHL1, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"870415c34542d12368285602338bdd5cd17fff2f3a1aa2e3952d66e3458ced087e73e8b1f168907f81d9aa1462bcd5721047360d89d053ead1ae46ae0c1725bd\", \"name\": \"UCHL1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:UCHL1, var(\\\"p.Ile93Met\\\"))\", \"function\": \"Protein\", \"id\": \"8900d24bad922474ed9db0f94a2a31368093e6b4f6b561b9a478e5237027c74ad1dd1d9de47deed5ce852f6aaf658d2af81e888d91d8c41f07aa7ab32a5dbf56\", \"name\": \"UCHL1\", \"namespace\": \"HGNC\", \"variants\": [{\"identifier\": \"p.Ile93Met\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(HGNC:UCHL3)\", \"function\": \"Protein\", \"id\": \"a895195df24ce92e3d772630c0f8411489e759f04714d6cf115e6a5f72bb8103fcd00611c5417743b1ac34c1430aa5d492a8ab15f3b204c6d3ab1e331e49fef1\", \"name\": \"UCHL3\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UCHL5)\", \"function\": \"Protein\", \"id\": \"b5a193ea1cad1944f5675ad7e1e79245b77a325d97d35e38b3a27e01d091a992fdd94b76659698ad52b5b3112f0acbd8055793e27e83adfe760d4d72046ee2c5\", \"name\": \"UCHL5\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UNC45A)\", \"function\": \"Protein\", \"id\": \"9d2bd68e0d546dd0795d5656c8ee228c8cc8f4a1dd97eaac5686d16da3d86311310364b21b446106842a0cbce65d4fcca31ed45d90a692123a156b1b23372d20\", \"name\": \"UNC45A\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:URI1)\", \"function\": \"Protein\", \"id\": \"c6e00b9b0d57bbd66769e285df5faaae0d71428ce82ea1ad653bd5787ee832b60418c9b9939a61933442465a6b377da81a45cf6c764e558aa1ec43a129963b75\", \"name\": \"URI1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:USP14)\", \"function\": \"Protein\", \"id\": \"1470a3d143a2fd5929b833f4f8c5e0881731040826296bfe6062bd3ff1474e282150885ab09707960d7a54489ed5c13cf8251602f437c10c26dc5b0ca583a960\", \"name\": \"USP14\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:USP6)\", \"function\": \"Protein\", \"id\": \"3eeb22843454abf93a36ef90a06f84bcf2615e828025e0c3aa1b708e24fbf389a17d49bd737e59ac91710e13155f3653efe21220782cd3fcabb3e142dc7b38ae\", \"name\": \"USP6\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:UXT)\", \"function\": \"Protein\", \"id\": \"2afba9b5b8a5b2c948e217bbeda792fea1256638c09c818d737f219c41d91049423467c587617c613ee4b21d6a79973ac92b1e9566af29037899f22b01171b4d\", \"name\": \"UXT\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:VBP1)\", \"function\": \"Protein\", \"id\": \"f21a1add36f3f1ccdc4148b8f6b0fcc16f3a3d47f1b3abfcf2d22537c7fe72dab8c19fee424c965a454998a88397d25f42395b162d67a6ab2e44ef3d5f4cef30\", \"name\": \"VBP1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:VCP)\", \"function\": \"Protein\", \"id\": \"307857d01a7f0dadc6a2107652397cb1357840ad198966860f655229f5b1f374eef2ce0e8cf74787599054138963ac8cd6613577cbf8002da0b34a9a25494da5\", \"name\": \"VCP\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNC:XBP1)\", \"function\": \"Protein\", \"id\": \"c6315ce7cf274cdf7ff9a7203c63315210438a553ae637a8c29c2abaaeadc1fa19c9ca275ad8f53d1c477bb7a6e32d7ebf6adb5697bdf8fddb3ac75763fb1e32\", \"name\": \"XBP1\", \"namespace\": \"HGNC\"}, {\"bel\": \"p(HGNCGENEFAMILY:\\\"DNAJ (HSP40) heat shock proteins\\\")\", \"function\": \"Protein\", \"id\": \"6b6e0265cfbceaf9d409a1ffd96579c8cf4b416cab3a7aece4f92367c30680a273b1bf48525b5ababcbc7cdaf7b1e1c5b6c718b3136302cc3ee2f3a958513b30\", \"name\": \"DNAJ (HSP40) heat shock proteins\", \"namespace\": \"HGNCGENEFAMILY\"}, {\"bel\": \"p(INTERPRO:\\\"BAG domain superfamily\\\")\", \"function\": \"Protein\", \"id\": \"eb8d49d72d87fbdac26b4d5d9b0775fac39c65f15fe28d4861512fb9c522ffbd4c71b291b1708a57c60d25de7a9b7e3d5617ab8948b90bc5a9b4eb0a68589f1a\", \"name\": \"BAG domain superfamily\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"BAG domain\\\")\", \"function\": \"Protein\", \"id\": \"3dc1399e9cf1ac131b906e6eb4590a0902a172222c2497ab057036b00697c827a0c515b02af7953b1e3b7b56176b3d97cc97f4c75d08e4af0183f3b62879a4d4\", \"name\": \"BAG domain\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Cdc37, N-terminal domain\\\")\", \"function\": \"Protein\", \"id\": \"96f4f6366994983975c4d31334d751b8da779f289b0e0c0fdd3ba5050d86746dc82def1bd1d173e2a39bb79058b47e14a49ab7b7b952280995c146ed7f0dddca\", \"name\": \"Cdc37, N-terminal domain\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"DEAD/DEAH box helicase domain\\\")\", \"function\": \"Protein\", \"id\": \"c836e786bde3321ae54bd5bcccc556798456f42ff982c5fb7f91c38f42dbf78a0acea2e87ab6ad0e6a513cf095cf9495e5f512251dbb4ac7b7539d4d2673a323\", \"name\": \"DEAD/DEAH box helicase domain\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"E3 ubiquitin ligase RBR family\\\")\", \"function\": \"Protein\", \"id\": \"60525c9cc621eea97010f18a1b43993dd9b6ca513d29c7655b2227b07cdd2a2e23069df223f416ab047ac52aae83d903c24e2b4fb5b10a01d3d4f092191d504b\", \"name\": \"E3 ubiquitin ligase RBR family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"G-protein, gamma subunit\\\")\", \"function\": \"Protein\", \"id\": \"a4f4ac140eef84c2ccd31253fb5ad6fa69cabdb5677835c3c35d104b6d1846ba108664f6f46b342ed7e8d58dcaaa8c1f6b57ca3b640d2d33cf4941ec16de699e\", \"name\": \"G-protein, gamma subunit\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"HECT domain\\\")\", \"function\": \"Protein\", \"id\": \"cef5748cf8a907e796306598bab98dbdb24ad47558c3c1d71b3cb6a9f428746e69d2bf05c697005a8fe2e6ee0bf2419f256a6be449dfc685108ca540b0589176\", \"name\": \"HECT domain\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein 70 family\\\")\", \"function\": \"Protein\", \"id\": \"107f046963afb832d368b07bf920547caf81b030a2eacf8f0f4310d55600ca0f51950ad7489bd0d901c5df6076168ad4ec18432ce6724da28dc451cf74ce618c\", \"name\": \"Heat shock protein 70 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Heat shock protein Hsp90 family\\\")\", \"function\": \"Protein\", \"id\": \"2988f2a3c29b9ea53ca0dbbbe269b88585850e69e2c356cf8809a96231297fce42a977dbdb23678f7a3f8be0be9b59b9a38d7f416a831b8298b10fd5444ddea8\", \"name\": \"Heat shock protein Hsp90 family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"IBR domain\\\")\", \"function\": \"Protein\", \"id\": \"3c56a205be9cb720919890ad0441568f7e812f8585bc7b8464e5a533903ac52597315210db8b24e26fafccedfdc3bad6e8a6740443b28b212f254f014d420048\", \"name\": \"IBR domain\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"IBR domain\\\", var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"736deaab7b8ec43bdec4406414e66537fe94e3b6d57391d1bf72f7af3e4d8938868b95e1a195e8396bae7dfb22e777d86dd99321f61d95577c2f2b387d1f540f\", \"name\": \"IBR domain\", \"namespace\": \"INTERPRO\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(INTERPRO:\\\"Kelch-type beta propeller\\\")\", \"function\": \"Protein\", \"id\": \"de18384bc906f7f275c2543016ec3741289f42a03d80fdb9c2dd2b28a968fdcbf89a3ef612ab320c1b5f4b4f88d8a617cc58bba8582c2dcc01c0467c00c4e9f1\", \"name\": \"Kelch-type beta propeller\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Leucine-rich repeat domain superfamily\\\")\", \"function\": \"Protein\", \"id\": \"04a2b3209e8a834425e0c063d9e315c9def1420c8ea887263ecfa02122af157f3e58dceef366f1157abe086935796a62ff353b59629e6c16c2ad58046e7dfdc5\", \"name\": \"Leucine-rich repeat domain superfamily\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Leucine-rich repeat\\\")\", \"function\": \"Protein\", \"id\": \"79dc7821e9eca1be04c8da75bab2041916532dda73bb18393619819eefe50d29dfcd204c004524ac8a79b5a74953337c696d76abc18c4df5f20f8ed2fed6973b\", \"name\": \"Leucine-rich repeat\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"NudC family\\\")\", \"function\": \"Protein\", \"id\": \"64e1184000b70e5f586082fcfe86bb22ced9fc73a2a5dfaeffc365855e4029b02073a18dc57e48aaadfbbc5550dc44d960b4db813fd34c2693dd66b2544fa975\", \"name\": \"NudC family\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Regulator of chromosome condensation, RCC1\\\")\", \"function\": \"Protein\", \"id\": \"262c9993d4ec0bb8eb3852cbc34bf667c10bce6f845827ecde5eb68bafbf9a09f97f71850f00a8a0b0ef91ffef38239f334abd5a8147b38bbc58dc8bc4a50f38\", \"name\": \"Regulator of chromosome condensation, RCC1\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Tetratricopeptide repeat\\\")\", \"function\": \"Protein\", \"id\": \"556a9ecea697965fd6fc5df95af755af45c5a1fa55a5e4c2c63d2d8721b5c2943f0e11dff1819ad885c5599eaadf414bda03ee07b43e36ef3b1d2c75a6abc8ef\", \"name\": \"Tetratricopeptide repeat\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"U box domain\\\")\", \"function\": \"Protein\", \"id\": \"ce77190c8ecf35d1e66f34958bcb8b08c3ddcdff4351e8b096607d5b362c2cbb38f97f8a6485900c5e8a1228eccc3ce5a65fea4ce987502ed98421d63acb4f67\", \"name\": \"U box domain\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"WD40-repeat-containing domain superfamily\\\")\", \"function\": \"Protein\", \"id\": \"59e80e13a16be3814d8f5c496ff0e79237478e5b65c693633c37c12e3c317f4c23cb1f470c95e95c82d4eb5acaee1af9532c2ed728ebf20fdbe779bbac286ea9\", \"name\": \"WD40-repeat-containing domain superfamily\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"WD40-repeat-containing domain\\\")\", \"function\": \"Protein\", \"id\": \"b2a46a7866214efa38aa39db0c2e567c41b8486ad372d12b20a2bce94647927d7b047ae52a8cf77706c931cda6ebb5454403075de98bc9388e32e2b1273df404\", \"name\": \"WD40-repeat-containing domain\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(INTERPRO:\\\"Zinc finger, MYND-type\\\")\", \"function\": \"Protein\", \"id\": \"dfbb43e9a582bcb2c84b3e3b21cc7ee911e4df54d85e002bb3de3d3ad809b1ca785af6281114d6a99a3b650525f3abb495c2d0945385fe060e8ada5ff3254593\", \"name\": \"Zinc finger, MYND-type\", \"namespace\": \"INTERPRO\"}, {\"bel\": \"p(MESH:Proteins)\", \"function\": \"Protein\", \"id\": \"20fec9748aca569e46ee2703620f548aece50dde1dd6518d2833a58da6a5fc28e70918b127d515943ad659b626fa533df7854b4887e2cab8d3a7af00dea602d0\", \"name\": \"Proteins\", \"namespace\": \"MESH\"}, {\"bel\": \"p(MESH:Proteins, pmod(GO:\\\"protein K48-linked ubiquitination\\\"))\", \"function\": \"Protein\", \"id\": \"0a9f7030ab027ff19f7b444ec5dcb121f2006e827abe99e37258bf9467904e5fc90d643357c7729a50c9c8c605208457880a66b633ad00bec88f4e85c2bed8eb\", \"name\": \"Proteins\", \"namespace\": \"MESH\", \"variants\": [{\"identifier\": {\"name\": \"protein K48-linked ubiquitination\", \"namespace\": \"GO\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(MESH:Proteins, pmod(GO:\\\"protein K63-linked ubiquitination\\\"))\", \"function\": \"Protein\", \"id\": \"5335c932904ded74ffab7db774f42ac8cae50b5b504b5c6bb140d79bf0412c526f52e6ae73d35f42df42fe7bc8e7cc456cc6d0d59a7e962bcfb48e8044bfd2e2\", \"name\": \"Proteins\", \"namespace\": \"MESH\", \"variants\": [{\"identifier\": {\"name\": \"protein K63-linked ubiquitination\", \"namespace\": \"GO\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(MESH:Proteins, pmod(HBP:misfolding))\", \"function\": \"Protein\", \"id\": \"12fefccac94d80506ac923f62fc88eb55460550bfb6d4133c4832f7b198cfa89f25ec8b60b38e6bb207b6c59de82efe473a6d5859342c0e0a47458e4c3357e96\", \"name\": \"Proteins\", \"namespace\": \"MESH\", \"variants\": [{\"identifier\": {\"name\": \"misfolding\", \"namespace\": \"HBP\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(MESH:Proteins, pmod(Ub))\", \"function\": \"Protein\", \"id\": \"eec7827eaf9a8c63740d8caddb124f2f9b407f08cff90cff9b204cb3886d1f03dbc8af83ba8a0c83a87b0e7d0803537125ed0137e951a2d38e656efeac1ba0f2\", \"name\": \"Proteins\", \"namespace\": \"MESH\", \"variants\": [{\"identifier\": {\"name\": \"Ub\", \"namespace\": \"bel\"}, \"kind\": \"pmod\"}]}, {\"bel\": \"p(MESH:Proteins, var(\\\"?\\\"))\", \"function\": \"Protein\", \"id\": \"82deb1e24bbe427818af95959dacce2f1e76b9fafebf5a918bded2a24c4124023aa352c1d1dda3b23b0b4fdf364efb69da5827a297a423049e673aa20b2e327e\", \"name\": \"Proteins\", \"namespace\": \"MESH\", \"variants\": [{\"identifier\": \"?\", \"kind\": \"hgvs\"}]}, {\"bel\": \"p(MGI:Atg5)\", \"function\": \"Protein\", \"id\": \"b4abaf591febabfd6f99de67fca10e3afe7102f474b7990b6d58949aed0d271f5cecfb3c9ff86f34dcc6166755ed2d92d65ccda35b52bc6e200549fc489c799a\", \"name\": \"Atg5\", \"namespace\": \"MGI\"}, {\"bel\": \"p(MGI:Atg7)\", \"function\": \"Protein\", \"id\": \"b2cd1052f916403510ac11216f8d12a33c39a52173383dab19cd7f6e10a79bcae34f35d742900f9e8fb47ab1ec4e0679020ae68f2f4529ea437d6351469cdcaf\", \"name\": \"Atg7\", \"namespace\": \"MGI\"}, {\"bel\": \"p(UNIPROT:P32628)\", \"function\": \"Protein\", \"id\": \"0e69e3e22c2dfb1edaaaf69e4fb9d24852b1c65332487e77fd85eb401fa5fb79c7a3131a9506f322acb43682e0b40bddfa08ad5c2075e5a2f9702401635549cd\", \"name\": \"P32628\", \"namespace\": \"UNIPROT\"}, {\"bel\": \"p(UNIPROT:P48510)\", \"function\": \"Protein\", \"id\": \"a86bef44cecd9766a46b6ea31abca3b10bd893af17fdc25e642e70cd700df2923e4eb56b9dc610dd984a9e46d7d9172eb8dd1a7cd1bd5146d0fbe37b7400043c\", \"name\": \"P48510\", \"namespace\": \"UNIPROT\"}, {\"bel\": \"rxn(reactants(p(HGNC:APP)), products(a(CHEBI:\\\"amyloid-beta polypeptide 40\\\"), a(CHEBI:\\\"amyloid-beta polypeptide 42\\\")))\", \"function\": \"Reaction\", \"id\": \"210a69226f2611a3d50737555ddc6bf20b758f72c58205733a3b7a8c043f0e5e2c10c8993ff8576a50f2b36898229f8ec8a3864392c6f9096313f538f6932f9c\", \"products\": [{\"bel\": \"a(CHEBI:\\\"amyloid-beta polypeptide 40\\\")\", \"function\": \"Abundance\", \"id\": \"2ca2eb795438fe9e0f24c1e9d332717de5e344ddfee00ce8df89c5b901d85db5994d6ffd383e40a90bde264f33e75b220476b3de86c89f0658bf281c872f0bb6\", \"name\": \"amyloid-beta polypeptide 40\", \"namespace\": \"CHEBI\"}, {\"bel\": \"a(CHEBI:\\\"amyloid-beta polypeptide 42\\\")\", \"function\": \"Abundance\", \"id\": \"c2da54109c90719396dfdfb558be74582b8522863849a50f3f5029b7d60f4d53df3cfa1a97b787e760a2f74ea1f74012eb49273beeded42a2873d788953b4a13\", \"name\": \"amyloid-beta polypeptide 42\", \"namespace\": \"CHEBI\"}], \"reactants\": [{\"bel\": \"p(HGNC:APP)\", \"function\": \"Protein\", \"id\": \"ed1d45f3255226e4210017e6c179950e0e04a300727326d7fea6a9659868e8818ff64fd5e8a2a92a703fb1566b3f48323750ac6c28e7adb40843053d276710bc\", \"name\": \"APP\", \"namespace\": \"HGNC\"}]}, {\"bel\": \"rxn(reactants(p(HGNC:APP)), products(a(MESH:\\\"Amyloid beta-Peptides\\\")))\", \"function\": \"Reaction\", \"id\": \"69df3b66dd4e88372cda570f759c351e0dc9aeaf6b4eb4d202bd2b6c7341fbd3bb267a3e826a89022ca4c5a8dd214c6440ed03b473aa7e21b15a70cec425c706\", \"products\": [{\"bel\": \"a(MESH:\\\"Amyloid beta-Peptides\\\")\", \"function\": \"Abundance\", \"id\": \"3561a0e32ad8cad6085b532574f73a3cce1d90648f557d9658ffd734fa10825a5ee8e45f868eb74a3ea6acb478fc4145667df43b0f1205da1a00ea642995747a\", \"name\": \"Amyloid beta-Peptides\", \"namespace\": \"MESH\"}], \"reactants\": [{\"bel\": \"p(HGNC:APP)\", \"function\": \"Protein\", \"id\": \"ed1d45f3255226e4210017e6c179950e0e04a300727326d7fea6a9659868e8818ff64fd5e8a2a92a703fb1566b3f48323750ac6c28e7adb40843053d276710bc\", \"name\": \"APP\", \"namespace\": \"HGNC\"}]}]}, \"#qoemztryhdvkqpbg\", 1000, 650, {'Protein': '#1F77B4', 'Pathology': '#FF7F0E', 'BiologicalProcess': '#2CA02C', 'miRNA': '#D62728', 'Complex': '#98DF8A', 'Composite': '#9467BD', 'Reaction': '#000000', 'Gene': '#FFBB78', 'Abundance': '#AEC7E8', 'RNA': '#FF9896'});\n", "});" ], "text/plain": [ "