
Université catholique de Louvain

Louvain School of Engineering

Computing Science Engineering Department

The Phenomenal Gem
Putting Features as a Service on Rails

Thesis submitted in partial fulfilment of the requirements for the degree M.Sc. in
Computer Science option Software Engineering

Authors: Thibault Poncelet & Löıc Vigneron

Promoter: Kim Mens
Co-advisor: Sebastián González

Reader: Nicolas Jacobeus

Louvain-la-Neuve

June 2012

ii

Abstract

This thesis introduces the Phenomenal Gem, a Context-Oriented Programming frame-
work for the dynamic programming language Ruby. With this framework, programmers
can handle contexts as first-class entities allowing them to adapt the behaviour of their
applications dynamically in a clean and structured manner. In addition to this COP
framework, the thesis also introduces the notion of Context as a Feature that tries to
merge the best of COP and Feature-Oriented Programming into a single new paradigm.
From the point of view of usability in today’s web application, this thesis builds the
notion of Feature as a Service on top of CaaF, and integrates it in the Ruby on Rails
web framework. The implementation and semantics of these concepts are presented in
detail and validated by a real-world case study of a Software as a Service Enterprise
Resource Planning application, developed by an industrial collaborator.

iii

iv

Acknowledgments

We would like to thank our promoter Professor Kim Mens and our co-advisor Doctor
Sebastián González for their outstanding support throughout the development of this
thesis. For the extensive time they took to review our work but also for all the meetings
we had and which were most fruitful and motivating. We could not have had greater
support and we are very grateful to both of them.

We would also like to acknowledge the support of Nicolas Jacobeus who agreed to be
our reader and collaborated on our case study by giving us access to the source code of
Benubo. In addition, his counsel on our findings enabled us to add an industrial aspect
to this thesis.

Finally, we would like to thank our families and friends for supporting us throughout
our studies and especially during the writing of this thesis.

Thibault Poncelet & Löıc Vigneron

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Approach . 2

1.4 Running Example . 3

1.5 Resources . 3

1.6 Roadmap . 3

I Background 5

2 Context-Oriented Programming 7

2.1 Introduction . 7

2.2 Motivation . 8

2.3 Concepts . 8

2.3.1 General Architecture . 8

2.3.2 Adaptation . 9

2.3.3 Context . 9

2.3.4 Combined Context . 10

2.3.5 Context Relationships . 10

2.4 Conclusion . 11

3 Feature-Oriented Programming 13

3.1 Introduction . 13

3.2 Motivation . 14

3.3 Concepts . 14

3.3.1 Feature . 14

3.3.2 Feature-Oriented Domain Analysis 15

3.4 Comparison with Context-Oriented Programming 15

3.5 Conclusion . 16

4 Ruby 17

4.1 Introduction . 17

4.2 Strengths and Weaknesses . 18

vi

CONTENTS vii

4.3 Why Ruby? . 18

5 Ruby on Rails 21

5.1 Introduction . 21

5.2 Concepts . 23

5.2.1 Application Middleware . 23

5.2.2 Rendering Mechanism . 23

5.2.3 Lazy Loading . 24

5.3 Strengths and Weaknesses . 24

5.4 Why Ruby on Rails? . 24

6 Related Work 25

6.1 Introduction . 25

6.2 ContextR . 25

6.3 rbFeature . 27

6.4 Subjective-C . 28

II Framework 31

7 Phenomenal 33

7.1 Introduction . 34

7.2 Concepts . 34

7.2.1 Context . 34

7.2.2 Proceed . 37

7.2.3 Relationships . 37

7.2.4 Context as a Feature . 38

7.3 Tools . 40

7.3.1 Context Visualizer . 40

7.4 Semantics . 42

7.4.1 Building Blocks . 42

7.4.2 Core Mechanisms . 43

7.5 Architecture . 48

7.5.1 Global Structure . 48

7.5.2 Context Package . 49

7.5.3 Manager Package . 50

7.5.4 Relationship Package . 51

7.5.5 Viewer Package . 53

7.5.6 Miscellaneous . 54

7.6 Under the Hood: Core Mechanisms . 55

7.6.1 Conflict Resolution Policy . 55

7.6.2 Context Definition . 57

7.6.3 Adaptation Definition . 58

7.6.4 Context Activation . 58

viii CONTENTS

7.6.5 Adaptation Activation . 59

7.6.6 Context Deactivation . 61

7.6.7 Adaptation Deactivation . 61

7.6.8 Relationship Definition . 62

7.6.9 Relationship Activation . 63

7.6.10 Proceed . 64

7.7 Programming Language Requirements . 66

7.8 Limitations . 67

8 Phenomenal Rails 69

8.1 Introduction . 70

8.2 Motivation . 70

8.3 Concepts . 71

8.3.1 File Structure Integration . 71

8.3.2 Features Activation Conditions . 71

8.3.3 Persistent Context . 72

8.3.4 Views Adaptation . 73

8.4 Under the Hood: Core Mechanisms . 75

8.4.1 Engine . 75

8.4.2 File Structure Integration . 76

8.4.3 Features Activation Conditions . 76

8.4.4 Context Extensions . 77

8.4.5 Views Adaptation . 78

8.5 Limitations . 80

9 Development Approaches 81

9.1 Introduction . 81

9.2 Pair Programming . 81

9.3 Test-Driven Development . 82

9.4 Bad Smells Analysis . 83

9.5 Open Source . 83

9.6 Industrial Minded . 84

III Validation 85

10 Benubo 87

10.1 Introduction . 88

10.2 Motivation . 88

10.3 Analysis . 89

10.3.1 Foreword . 89

10.3.2 Requirements . 89

10.4 Refactoring . 91

10.4.1 Budget Feature . 92

CONTENTS ix

10.4.2 Contact Feature . 93
10.4.3 Invoice Feature . 94

10.5 Feature as a Service . 95
10.5.1 Base Feature . 95
10.5.2 Invoice and Contact Features Interactions 96
10.5.3 Trial Context . 98
10.5.4 Debug Feature . 99

10.6 Feedback from Belighted . 100
10.7 Conclusion . 101

11 Benchmarks 103
11.1 Introduction . 103
11.2 Phenomenal . 103
11.3 Phenomenal Rails . 108
11.4 Conclusion . 109

IV Conclusion 111

12 Future Work 113
12.1 Introduction . 113
12.2 Phenomenal . 114

12.2.1 Structural Adaptations . 114
12.2.2 Relationships Set . 114
12.2.3 Thread Specific Context . 114
12.2.4 Proceed Improvement . 114

12.3 Phenomenal Rails . 114
12.3.1 Activation Optimization . 114
12.3.2 Proceed for Views . 115

13 Conclusion 117
13.1 Contributions . 117
13.2 General Conclusion . 119

A Application Programming Interface 121
A.1 Phenomenal Gem Version 1.2.2 . 121

A.1.1 Contexts Management . 121
A.1.2 Adaptations Management . 122
A.1.3 Relationships Management . 123
A.1.4 Debugging . 124

A.2 Phenomenal Rails Gem Version 1.2.3 . 124

B Graphical View Code 125

x CONTENTS

Acronyms

API Application Programming Interface . 24

AST Abstract Syntax Tree . 28

CaaF Context as a Feature. .117

CoC Convention over Configuration . 71

COP Context-Oriented Programming . 117

CSV Comma-Separated Values . 95

DOM Document Object Model . 115

DSL Domain Specific Language . 118

DRY Don’t Repeat Yourself . 71

ERB Embedded Ruby . 115

ERP Enterprise Resource Planning . 119

FaaS Feature as a Service . 118

FOP Feature-Oriented Programming . 117

FODA Feature-Oriented Domain Analysis . 15

HAML HTML Abstraction Markup Language . 115

HTML HyperText Markup Language . 74

HTTP HyperText Transfer Protocol. .124

JIT Just In Time. .18

JS JavaScript . 23

LAN Local Area Network . 108

LGPL GNU Lesser General Public License . 3

MRI Matz’s Ruby Interpreter . 114

MVC Model-View-Controller . 89

OO Object-Oriented . 104

OOP Object-Oriented Programming . 66

OS Operating System. .72

RoR Ruby on Rails . 117

REST Representational State Transfer . 22

SaaS Software as a Service . 118

SME Small and Medium Enterprise . 88

xi

xii CONTENTS

SPL Software Product Line . 89

TDD Test-Driven Development . 82

UCL Université catholique de Louvain . 88

URI Uniform Resource Identifier . 21

VAT Value Added Tax . 91

XP eXtreme Programming . 81

Chapter 1

Introduction

Contents

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Approach . 2

1.4 Running Example . 3

1.5 Resources . 3

1.6 Roadmap . 3

To the man who only has a hammer in the toolkit, every problem looks like a nail.

Abraham Maslow

1.1 Motivation

In current applications, customisation has become a major issue. While our program-
ming languages have been developed at a time when software was designed as a finished
product and expected to behave exactly the same everywhere, today’s applications are
more and more connected to the external world. This connection is a huge potential
source of adaptation to the context in which these applications are running.

We believe that tools matter and that the current tools do not put the programmers in
the right frame of mind to build dynamically adaptable applications from scratch. For
end users, the software unit is a feature (or functionality) that an application provides.
They do not reason about object and classes. To overcome this distortion of approach,

1

2 CHAPTER 1. INTRODUCTION

several solutions already exist but most of them remain principally static and are not
able to provide real run time software variability on the basis of the situation. However,
new ways of selling applications like Software as a Service (SaaS) would really enhance
their user experience by being able to achieve mass customisation in a straightforward
way.

The Context-Oriented Programming (COP) paradigm emerged starting from these ob-
servations with the aim to solve the software adaptability headache. Several implemen-
tations already exist. A comparison of a number of them is presented in [AHH+09] but
a lot of work is still needed before they are accepted by a wide community of developers.
This low rate of adoption is due to the fact that most frameworks have a research ap-
proach with a heavy syntax, pre-processing steps, etc, which prevents them being used
in industry.

1.2 Contribution

Starting from these observations, this thesis goes through and revises the concepts of
COP while applying them to the Ruby programming language. This review of concepts
is conducted keeping in mind the concepts of Feature-Oriented Programming (FOP).
The goal is to bring together the best of both paradigms to provide a robust and natural
way of developing dynamically customizable software. And this will lead to Feature as
a Service (FaaS) software.

On the basis of these revised notions, which are clearly defined with the help of formal
semantics for the core mechanisms, an implementation is proposed in the Ruby pro-
gramming language. Contexts and features are reified as first-class entities and available
for the developer as adaptable application building blocks.

Web applications are especially well suited for behavioural adaptation. A single code
base can potentially serve millions of users in different places, different specific needs and
through an uncountable number of means. In addition to the plain Ruby implementation,
this thesis provides the glue to bind the developed concepts within the Ruby on Rails
(RoR) web framework. Because one of our main goals is to provide something useful in
real life, our test case is the refactoring of a SaaS implemented in RoR by Belighted, a
web company based in Louvain-la-Neuve, Belgium.

Since real applications quickly involve many different contexts, features and relation-
ships between them, a visualizer tool is also implemented and provided alongside the
framework.

1.3 Approach

The COP notions are mainly derived from the one defined in Subjective-C [GCM+11]
while the FOP ones from rbFeature [GF11]. In order to merge these two paradigms

1.4. RUNNING EXAMPLE 3

and create the Context as a Feature (CaaF) concept, we started with a COP imple-
mentation and then searched for the interesting concepts in FOP to enhance this base
implementation..

Being developer-friendly was a very important point for us, thus we went to great lengths
to provide as clear a syntax as possible and to integrate it smoothly in Ruby. This
was made possible thanks to the reflective Application Programming Interface (API) of
Ruby that allowed us to extend the language without having to modify the interpreter or
provide a code generator which has multiple drawbacks, such as a difficult maintainability
and debugging.

Finally, we decided to integrate our ideas into the RoR web framework as smoothly as
possible because, once again we wanted to build something usable by a large number
of developers, and we think that Phenomenal Gem will be a great advantage for web
applications.

1.4 Running Example

To illustrate the notions developed we will use a TO-DO list application as a running
example that will be extended throughout the thesis. We will start with an off-line
pure Ruby TO-DO list of several tasks. These tasks will then be extended with new
capabilities such as adaptation to the Operating System (OS). The application will
finally be put on the Web and become a RoR application.

1.5 Resources

The entire source code (released with a GNU Lesser General Public License (LGPL)) and
documentation is available on www.phenomenal-gem.com. In addition to the resources
linked to this thesis, this website has been developed with the framework itself. It serves
as a live demo with several intercession and introspection capabilities, allowing the user
to play with contexts and features.

1.6 Roadmap

Part I of this thesis presents the background on which it is based, namely the COP and
FOP paradigms, as well as the Ruby and RoR framework used by the implementation.
Next, an analysis of the related works describes first Subjective-C, an Objective-C based
COP language for smartphones; then contextR, another COP implementation in Ruby
from the Potsdam University; and finally, rbFeature, a FOP implementation in Ruby.

Part II presents the actual contributions made and developments achieved. It starts with
the concepts and their formal semantics, followed by the core mechanisms presentation
as well as the debugging tool presentation. It ends with the approaches used, and best

www.phenomenal-gem.com

4 CHAPTER 1. INTRODUCTION

practices adopted during the development of the framework.

Part III validates the second part with a real world case study that consists in refactor-
ing a SaaS Enterprise Resource Planning (ERP) provided by Beligthed, our industrial
partner. Then several benchmarks assess the achieved performance and compare several
applications implementations with and without Phenomenal Gem.

Finally, Part IV proposes possible future work and concludes by reviewing the contents
covered.

Part I

Background

5

Chapter 2

Context-Oriented Programming

Contents

2.1 Introduction . 7

2.2 Motivation . 8

2.3 Concepts . 8

2.3.1 General Architecture . 8

2.3.2 Adaptation . 9

2.3.3 Context . 9

2.3.4 Combined Context . 10

2.3.5 Context Relationships . 10

2.4 Conclusion . 11

For me context is the key - from that comes the understanding of everything.

Kenneth Noland

2.1 Introduction

In this chapter, we will present the concept of Context-Oriented Programming (COP).
We will use this paradigm later in our implementation to create a COP extension of
the Ruby language. Once combined with the concept of Feature-Oriented Programming
(FOP) presented in the next chapter, they become the building blocks of the Context
as a Feature (CaaF) and Feature as a Service (FaaS) concepts.

7

8 CHAPTER 2. CONTEXT-ORIENTED PROGRAMMING

A context can be seen as a set of relevant circumstances that can influence a behaviour
of the application. It can be anything that may exert this influence, for example, the
country, the battery level, the load of a server, etc. The global idea is that today soft-
ware is more and more connected to the external world, and that current programming
languages do not provide a good support for this problem. COP is a paradigm built on
top of Object-Oriented Programming (OOP) by adding the concepts presented in this
chapter.

We will start by presenting the problem on our running example from Section 1.4, and
then present the different concepts of COP.

2.2 Motivation

As presented in Section 1.4, we want to develop a TODO-list application. Basically, we
have a set of tasks and due dates for them. By default, the application will show an alert
on the screen when the due date arrives. This behaviour is sufficient in most cases, but
in order to provide a better user experience we would like to adapt it in the following
cases:

• Presenter mode : Delay notification until full-screen is deactivated.

• Away mode : Send mail notification instead of the screen notification.

• Trial mode: Until the user has a valid licence, some functionalities are limited. For
example, the number of tasks is limited.

This kind of application can of course be done with current programming languages,
but it will probably lead to “messy” codes with many conditional statements. Further-
more, these behaviour adaptations can be fairly well implemented, for example, with the
Strategy Pattern [Gam95], but they have to be foreseen.

2.3 Concepts

2.3.1 General Architecture

A COP framework architecture is designed on the basis of the one illustrated in Figure 2.1
Firstly, the Context Discovery module collects data from the external world in which the
system is running and make sense of the logical environment. In addition to the Context
Discovery, context change can also be triggered by the internal application. The Context
Management on its side analyses the current situation and context change request and
might choose to prioritize some changes, solve conflicts that might appear, drop some
contexts. Once these choices have been made, a coherent set of changes is commited

2.3. CONCEPTS 9

Figure 2.1 – Context aware system architecture.

on the Active Context representation which directly affects the Application Behaviour
[GCM+11].

2.3.2 Adaptation

An adaptation is a first-class entity in a context-oriented system. It reifies a behavioural
adaptation of a method in a class for a particular context or situation. Thus, the
granularity of an adaptation is at the method level in OOP languages.

This adaptation of behaviour can be dynamically activated and deactivated at run time.
During the execution, changes in the software environment will trigger changes of con-
texts which will lead to (de)activation of its associated adaptations specific to those
contexts.

A method can be adapted several times in different contexts. These different adapta-
tions can then be composed to provide a new behaviour. Active adaptations of a same
method can be composed together to form a new behaviour and can vary at any time.
Adaptations of a method in different contexts are added to the base behaviour and, can
change dynamically of order following an ordering policy. This means that an adaptation
do not shadow other ones.

2.3.3 Context

We firstly define a situation as a combination of relevant environmental facts for the
application. We then define a context as the reification of a situation that can occur while
an application executes. Applications might present behavioural adaptations to those
particular situations that are reified. Behavioural adaptations associated to a context are

10 CHAPTER 2. CONTEXT-ORIENTED PROGRAMMING

deployed in the system whenever that context becomes active. The context-dependent
behaviour is no longer visible in the system when its associated context becomes inactive.
[GCM+11]

As defined, a context is concerned with run-time behaviour modification. Other ap-
proaches such as Software Product Line (SPL) in FOP provide static adaptation of an
application by pruning and adding content in the source code. This source code can
then be compiled and shipped in its different versions to different types of stakeholders.
However, in this case it will adapt the software functionalities dynamically on the basis
of the current situation.

A set of adaptations can be associated to a context (providing the response to the new
situation), and these adaptations are automatically (de)activated when the context itself
is (de)activated.

2.3.4 Combined Context

A Combined context is a context built by composition of several other contexts. This
means that it is automatically active only when all these contexts are themselves ac-
tive, giving the capability to define behaviour specific to this very combination of con-
texts. The combined context behaviour always takes precedence over composing contexts
(named sub-contexts) behaviour but can still be combined with it.

2.3.5 Context Relationships

Relationships enforce constraints between contexts. These constraints are specified by
the application developer and allows him to be sure that the application behaviour will
be consistent. They will ensure that two incompatible contexts are never active at
the same time or that a context that relies on another for its implementation is never
activated alone. Furthermore, it means that the (de)activation of a context involved
in a relationship can trigger other (de)activations and its (de)activation may fail if the
constraints cannot be met.

Implication

A B

Figure 2.2 – Implication.

An implication (Figure 2.2) between contexts A and B means that the activation of A
triggers the activation of B. If the activation of B fails, A cannot be activated either.
Conversely, the deactivation of A or B triggers the deactivation of B or A, respectively.

2.4. CONCLUSION 11

A B

Figure 2.3 – Suggestion.

Suggestion

A suggestion (Figure 2.3) between contexts A and B means that the activation of A
triggers the activation of B. However, if the activation of B fails, A is still activated.
Conversely, the deactivation of A triggers the deactivation of B, if possible.

Requirement

A B

Figure 2.4 – Requirement.

A requirement (Figure 2.4) between contexts A and B means that A can only be activated
if B is already active. The deactivation of B triggers the deactivation of A. Furthermore,
if A cannot be deactivated, neither can B.

Exclusion

A B

Figure 2.5 – Exclusion.

An exclusion (Figure 2.5) between contexts A and B means that A can only be activated
if B is not already active and conversely.

2.4 Conclusion

In this chapter, we introduced the COP paradigm, which allows dynamic behaviour
adaptations of software. In order to achieve this goal, it models situations by contexts
that contain a set of method adaptations. These contexts can be combined and system
coherency is enforced through relationships.

We will implement these concepts as an extension of the Ruby language and combine
them with the ones of FOP presented in Chapter 3 to finally provide our new concepts
of CaaF that will allow us to put FaaS on Rails in Chapter 10.

12 CHAPTER 2. CONTEXT-ORIENTED PROGRAMMING

Chapter 3

Feature-Oriented Programming

Contents

3.1 Introduction . 13

3.2 Motivation . 14

3.3 Concepts . 14

3.3.1 Feature . 14

3.3.2 Feature-Oriented Domain Analysis 15

3.4 Comparison with Context-Oriented Programming 15

3.5 Conclusion . 16

One new feature or fresh take can change everything.

Neil Young

3.1 Introduction

In this chapter, we will present the main concepts of Feature-Oriented Programming
(FOP) and identify which of these concepts are relevant to the new Context as a Feature
(CaaF) concept that we will develop further in this thesis.

One of the reasons why we are interested in FOP is that, while current Context-Oriented
Programming (COP) implementations provide behavioural adaptation in a fine-grained
and dynamic approach, FOP for its part addresses the same class of problems but from
a more static and structural approach. These two paradigms are quite similar [CGD11]
and we think that the coarser-grained functionality-centred point of view from FOP is
something currently missing in COP.

13

14 CHAPTER 3. FEATURE-ORIENTED PROGRAMMING

3.2 Motivation

In Section 2.2, we defined our TODO-list running example. We will use the same example
here to express our need for features. To illustrate this, we will provide the following
extensions to our base application:

• The detection of the environment, for example, if the application executes in full-
screen mode, is handled by the feature EnvironmentSense.

• The detection of the current Operating System (OS) is handled by the feature
OperatingSystemsSense. It can be used to adapt the notification behaviour.

• TODO-lists can involve several people. There is a need of sharing TODO-items
either through social networks or email.

3.3 Concepts

3.3.1 Feature

The FOP paradigm regards end-user visible behaviour, identifying all the functionalities
[CGD11] or the increments on top of the software [Ape08] that are relevant to a stake-
holder. Usually, a feature is a cross-cutting concern not implemented by a single class
only but by a set of collaborating classes.

The concept of feature is usually defined as follows in the literature: “The concept of fea-
tures initially emerged with the goal of expressing distinct functionality that is targeted
towards a specific stakeholder. This notion of a feature is called conceptual, because
it only regards the end-user visible behaviour, but not its implementation.”[CGD11] A
feature can also be defined as “a unit of functionality that may be added to (or omitted
from) a system”[PR01] or again “an optional or incremental unit of functionality”[Zav03].

If we apply these definitions on the TODO-list example, the sharing functionality fits
perfectly the concept of feature. Indeed, this is clearly something that incrementally
extends the base application and is visible for the end-user.

Two kinds of granularities characterize a feature. On the one hand, a feature can be
fine-grained, in this case, its definition is some lines, e.g. methods in one or multiple files
through the application. On the other hand, a feature can be coarse-grained, e.g. its
definition is done through classes, modules. The granularity of the feature depends on
its interactions with the application. Indeed, where many interactions occur at precise
points through the entire application, the granularity tends to be finer, and inversely.

In FOP, there are three ways to implement feature, annotations, modules and refine-
ments. Using the first one, the definition of feature is achieved using annotations in

3.4. COMPARISON WITH Context-Oriented Programming 15

the program’s source code. The second way is by using the modularization mechanisms
provided by the language like traits, mixins or classes. Finally, refinement is the use of
an external feature representation that is added to the software.[CGD11]

Features are typically used in Software Product Line (SPL) in order to easily maintain
the base-code of a multi-user application. Using features in this context helps to have
a better modularization and separation of concerns. Thus facilitate development and
maintenance. Using SPL, it becomes very easy to produce different applications for
specific stakeholders.

3.3.2 Feature-Oriented Domain Analysis

Feature-Oriented Domain Analysis (FODA) is a domain analysis method to help analyse
applications in order to develop domain-specific products that remain generic and widely
reusable. Genericity is obtained by abstracting all factors that make different applica-
tions in that domain different from each other. Once those factors are identified, the
produced parametrized domain models can be instantiated to produce domain-specific
applications.[KCH+90]

In software engineering, almost no applications are built from scratch any more. They
typically reuse some frameworks or other building blocks. FODA bases its method on
multiples of those abstractions such as aggregation/decomposition, generalization/spe-
cialization and parametrisation. FODA uses aggregation and generalization in order to
find commonalities and refinements for differences.[KCH+90]

Parametrization is a concept already known and applied on code, like subroutine or
macro. FODA also applies this concept at the level of design and requirements. The iden-
tified factors responsible for the differences among applications are used in parametriza-
tion. Those factors can be classified into four categories, capabilities, operation environ-
ments, application domain technology and implementation techniques.[KCH+90]

The previous concepts are partially illustrated on the TODO-list example. Instead of
designing a specific application for each OS, the OS specificities are abstracted from the
base application to generalize it. The OS detection feature is added on top of the base
application in order to automatically parametrize it.

3.4 Comparison with Context-Oriented Programming

The concept of FOP is closely related to that of SPL, the applications of those concepts
usually taking place at compile time. The orientation of FOP is to provide a modular
software that can easily be composed to provide other variants before execution. On the
other hand, we have COP which is more aware of changes in the environment at run
time and does not deal with SPL. Our CaaF concept tries to combine the concepts of
COP and FOP into a full run-time approach.

16 CHAPTER 3. FEATURE-ORIENTED PROGRAMMING

3.5 Conclusion

FODA is useful in the context of our case study application: Benubo, in Chapter 10. It
helps us to analyse our application and decompose the application into a base function-
ality that can be extended using additional features.

Other important points retained for CaaF are the methodology and implementation
possibilities related to the FOP paradigm. One of our main concerns is to provide the
developer with an intuitive process to highlight contexts and features from the applica-
tion, and with the simplest way to implement contexts and features regardless of the
granularity.

Chapter 4

Ruby

Contents

4.1 Introduction . 17

4.2 Strengths and Weaknesses . 18

4.3 Why Ruby? . 18

God is a Ruby programmer, after all :-)

Andy Hunt

4.1 Introduction

The first version of the Ruby programming language was released in 1995 by Yukihiro
Matsumoto.

This language was mostly inspired by Perl, Python and Smaltalk and aimed to be a
“scripting language that was more powerful than Perl, and more Object-Oriented (OO)
than Python” [Ste11]. It has a pure OO approach, everything is an object, even basic
types such as integers. It is a dynamic interpreted language with duck typing [TFH09],
meaning that the objects do not have a static type but can be any type to which they
respond1.

The key factor in our choice was the great reflective capabilities Ruby provides. It gives
introspective and intercessive access to the running application and we needed this in

1“When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that
bird a duck.” [Hei07]

17

18 CHAPTER 4. RUBY

order to be able to adapt easily the behaviour at runtime [Bla09]. In addition to its
reflective capabilities, also found in other languages like Common Lisp or Smalltalk,
Ruby is used in industry and especially by our industrial partner.

4.2 Strengths and Weaknesses

Strengths

The large and growing community of this language is a great strength because it provides
good feedback for the new gems that are developed, and therefore ensures the durability
of the language. In our case, we wanted to develop an implementation of Context-
Oriented Programming (COP) that was usable in real life. A first condition to this
was to develop it in a language that is really used by industry. Another advantage of
the Ruby community in our case is that the developers are familiar with reflection and
meta-programming and so hopefully, will adopt COP more easily than others.

Ruby owns a packaging system named RubyGem. A RubyGem (commonly named a
“gem”) contains packaged Ruby applications that are easy to download, install and
update in a system. It comes with dependencies and version management. Numerous
of gems have been developed in open source and add many capabilities to the language.
In our case, we package our implementation into a gem and it allows anyone to use our
framework by only adding one line in their applications.

Finally, Ruby on Rails (RoR), which will be presented in Chapter 5, is the “killer gem”
in Ruby and is heavily used in real-world projects.

Weaknesses

The Ruby programming language has a low support for multi-threading, actually, in the
default interpreter (Matz’s Ruby Interpreter (MRI)), a global lock prevents two threads
from being executed at the same time.

Secondly, as it is an interpreted language, it leads to slower performances than compiled
languages like C,.. or languages like Java with Just In Time (JIT) compilers.

Finally, although Ruby is now becoming popular this was not the case for several years
and thus it has not reached the same maturity as other languages of the same generation
like Java, for instance.

4.3 Why Ruby?

As presented in this chapter, we chose Ruby for this thesis firstly because it is a language
where industrial partners are available. Belighted, in particular, is interested in COP

4.3. WHY RUBY? 19

technology and this company has provided us with an interesting case study.

An other advantage is its great reflective Application Programming Interface (API). This
allows us to extend this OO language with our Context as a Feature (CaaF) concepts
without having to modify the interpreter or to use a pre-compilation step.

Finally, the facility provided by the RubyGem packaging facilitates the spreading of our
gem that can be installed and ready to go using a single command2.

2gem install phenomenal

20 CHAPTER 4. RUBY

Chapter 5

Ruby on Rails

Contents

5.1 Introduction . 21

5.2 Concepts . 23

5.2.1 Application Middleware . 23

5.2.2 Rendering Mechanism . 23

5.2.3 Lazy Loading . 24

5.3 Strengths and Weaknesses . 24

5.4 Why Ruby on Rails? . 24

Rails is the killer app for Ruby.

Yukihiro Matsumoto

5.1 Introduction

First released in 2004, Ruby on Rails (RoR) [Fer10] is an open source full-stack web
framework1 built on top of Ruby. Over the years, more and more people have become
involved in its development through GitHub2 and now use the framework in their appli-
cations. Thanks to this enthusiasm for RoR, the framework improves every day and is
very responsive to the community’s needs.

1A full-stack web framework provides an all-in-one solution including Uniform Resource Identifier
(URI) routing, caching, tools, its own rules like MVC, for example, needed to develop a complete web
application.

2https://github.com/

21

https://github.com/

22 CHAPTER 5. RUBY ON RAILS

The framework contains a variety of tools to ease the developer’s life. Scaffolding is
used to automatically generate files related to a controller, model, database access, for
example. WEBrick is a simple server written in Ruby that can run an application
just by typing one command. Rake is a building system used in multiple contexts like
managing databases, assets compilation, etc. The additional packages are all managed
by the RubyGem tool of Ruby.

RoR uses the Model-View-Controller (MVC) as the main architectural pattern for a web
application. The Model contains all the business logic of the application and is mapped
to a database table by default. The Controller handles user requests by determining
which file needs to be shown to the user from the View. Typically, a controller contains
several simple actions accessible through a routing system.

The way RoR maps external requests through the appropriate controller is achieved by
the routing system. In RoR, a route maps HyperText Transfer Protocol (HTTP) verbs
and URI to controller actions. The routing system is based on the Representational
State Transfer (REST) architecture that forces the developer to use routes like create,
new, edit, update, destroy, show, and index. Those routes are automatically declared
for a model and mapped to the right controller actions simply by adding a line in the
routes file.

There are some concepts that are part of the RoR philosophy like Convention over
Configuration (CoC) or Don’t Repeat Yourself (DRY) which make the framework very
pleasant to use. CoC is the fact that a lot of concerns that are generally defined by
the programmer are now fixed by conventions. Configuration becomes necessary when
something outside the predefined conventions needs to be defined. Furthermore, the
conventions have to be verified because, the entire behaviour of the framework is based
on those conventions, e.g. routing or database access. For example, the name of a model
is in singular and the name of the associated table is in plural such as “User” model
associated to the “users” table. If this convention is not verified, the framework will fail
to access the database for this model. DRY states that all pieces of information have
their unambiguous places which it avoids duplicating the same information in multiple
places[HT99].

5.2. CONCEPTS 23

5.2 Concepts

5.2.1 Application Middleware

Ruby On Rails Application

ModelView

Controller

Middleware

User W
E

B
 S

E
R

V
E

R

Figure 5.1 – Simplified application stack.

Figure 5.1 illustrates the simplified RoR application stack. The interesting part we
will use during the implementation of our framework is the middleware layer. The
middleware is an object (or multiple objects) that stands between the user (browser)
and the controller of the application. Thus all requests go through the middleware before
being processed by the controller and inversely after the processing.

5.2.2 Rendering Mechanism

The rendering mechanism is typically used by the controller to send a response back to
the user, by passing control to the view. It can also be used inside views themselves to
compose views with each other.

RoR can handle views of different format like Embedded Ruby (ERB), HTML Abstrac-
tion Markup Language (HAML) or JavaScript (JS). In order to convert those different
formats into HyperText Markup Language (HTML), the framework uses builders. In
addition, views can be either partial or template, a partial is part of a view built to be
integrated in a template. To display a requested file to the user, the rendering mecha-
nism checks if there exists a partial or template of the right name and “locale”3. Then,
it checks thanks to the extension of the files if the corresponding builder is available for
the file. Finally, if a file is selected, it is converted in HTML and displayed on the screen
for the user.

3Locales are specific options like language, date or currency formats needed for internationalization.

24 CHAPTER 5. RUBY ON RAILS

5.2.3 Lazy Loading

Lazy loading is a pattern that aims to delay the loading of an object until it is really
needed. This pattern is used to accelerate the loading of an application during its
development. It is disabled in the production environment of RoR, in which case all
classes are eager loaded at system startup.

5.3 Strengths and Weaknesses

Strengths

Thanks to the philosophy and all the tools provided by RoR, development is made very
fast and easy. Its philosophy helps to organize the code and facilitate team work. With
all the built-in tools and the Gem system, the required dependencies for the application
can be installed easily.

Weaknesses

RoR provides many additions to help a developer, but those additions can also hinder
performance. In fact, all methods are added using the reflective Application Program-
ming Interface (API) of Ruby. Generally, many of them are not used by the developer
but remain in the system which results in a lack of performance.

5.4 Why Ruby on Rails?

For the validation of this thesis, we wanted to apply our paradigm to a real life case study
and were given the opportunity to work in partnership with the Belighted company in
Louvain-La-Neuve specialized in RoR applications.

The RoR framework gives us a better chance to bring Context-Oriented Programming
(COP) to the masses. Firstly, its community is used to meta-programming concepts.
Secondly, the entire framework is open source, which makes it easy to understand how
it works and to add many functionalities to the framework.

RoR seems to be very appreciated and used in real world projects like Groupon4 or
GitHub. Some people may think that RoR is not suited for heavy-load applications but
Github is clearly the proof that RoR has nothing to envy from other big web frameworks.

4http://www.groupon.com/

http://www.groupon.com/

Chapter 6

Related Work

Contents

6.1 Introduction . 25

6.2 ContextR . 25

6.3 rbFeature . 27

6.4 Subjective-C . 28

If I had eight hours to chop down a tree, I’d spend six sharpening my axe.

Abraham Lincoln

6.1 Introduction

This chapter will analyse different papers that illustrate Feature-Oriented Programming
(FOP) and Context-Oriented Programming (COP) paradigms. Those works deal with
problems that we have in common, and give us the opportunity to improve our imple-
mentation. The two paradigms differ but our goal will be to select the most interesting
concepts and combine them in order to build our new Context as a Feature (CaaF)
concept.

6.2 ContextR

ContextR is a Ruby COP framework developed by Gregor Schmidt for his master thesis
in 2008 at the University of Potsdam [Sch08]. The aim of this thesis was to design a COP
framework and test it on a web application. The approach was to represent contexts as

25

26 CHAPTER 6. RELATED WORK

layers that are added to classes of the base application and that can be (de)activated
at run-time. The framework and application were developed on Ruby 1.8.7 and are no
longer compatible with the current major version of Ruby (1.9).

In order to model layer behaviour, ContextR uses the module abstraction of Ruby.
Layers provide the ability to define partial behaviour to be executed in a given context.
Furthermore, layers are stateful, meaning that they can contain variables that will be
restored between activations. Finally, they have the ability to add methods that are
available only when a layer is active.

In order to define partial behaviour two syntaxes exist: either one use a plain-old module
that can be reused through different layers or classes, or alternatively, one can define
layer-specific behaviour directly in the classes that have to be adapted using the in -

layer (See Figure 6.1) keyword. (This will then generate an anonymous module.)

1 class Religion

2 in_layer :location do

3 def to_s

4 "#{super} (#{yield(:receiver).origin})"

5 end

6 end

7 end

Figure 6.1 – Layer-specific behaviour definition.

In order to activate a layer, the framework provides the with layer (See Figure 6.2)
keyword:

1 christianity = Religion.new("Christianity", "Israel")

2 ContextR.with_layer :location do

3 christianity.to_s == "Christianity (Israel)" # True

4 end

Figure 6.2 – Layer activation.

The framework has the following restrictions:

• The framework does not provide support for anonymous contexts. If it is needed,
the developer will have to generate new unique names himself, because all the
layers have to be named uniquely.

• To call an adaptation that was previously deployed for a method, i.e the adaptation
of the “super” context, the keyword super is used. A problem occurs when an
inherited method is redefined in a subclass. In fact, the super keyword will not

6.3. RBFEATURE 27

call the inherited method implementation because it is used for other purposes by
the framework.

• Some methods are not available for adaptations (id , send ,...) because they
are used internally by the gem.

• Because of the modularization approach of this framework, self is not available
in the layers. You have to use yield(:receiver) instead, but you may only call
public methods.

ContextR is relatively old (at least for the fast moving Ruby world) but has a great
number of capabilities needed by a COP framework. What is missing are the relation-
ships between contexts and the ability to define custom conflict resolution policies. Its
most important strength is that the activation of layers are scoped and so support multi-
threaded applications easily. Real multi-threading is not yet supported in the default
interpreter of Ruby (Matz’s Ruby Interpreter (MRI)), but other interpreters, like JRuby,
support this feature.

Finally, although it works well, we think that the syntax provided could be enhanced in
order to bring it closer to day-to-day programmers, and that it still contains too many
uses of workarounds (like the yield(:receiver) needed to replace the self keyword in
the layers (see line 4 in Figure 6.1).

6.3 rbFeature

rbFeature is a versatile Ruby implementation for FOP created by Sebastian Günther in
the context of his PhD thesis [GF11]. The project was started with two motivations,
the first one was to understand how to build a DSL from scratch, and the second was to
see how to add a non-native paradigm to Ruby.

The framework allows the definition of features as first-class entities and allows to define
features using annotations. We explain the different approaches to define feature in Sec-
tion 3.3.1. In this framework, the annotations approach was preferred to the module or
refinement approaches for its ability to define either coarse or fine-grained features. More
precisely, rbFeature uses feature containments that are semantic annotations consisting
of a condition and a body. In Figure 6.3, (Print | ConsoleOutput) is the condition
and the block (closure) passed to the method code is the body. The latter is evaluated
only if the condition is true, the evaluation of the block will define the method print.

In addition, rbFeature has two important capabilities which are the Variant Generator
and Feature Aggregator. Variant Generator is a tool to pre-process the program and
prune feature-specific code to provide a program with a fixed behaviour, like a Software
Product Line (SPL). The Feature Aggregator allows the developer to extract a file with
the feature-specific code that will give him a coherent view of the feature.

28 CHAPTER 6. RELATED WORK

1 # Print | ConsoleOutput is the containment condition.

2 (Print | ConsoleOutput).code do

3 # The lines below define the containment body that is executed

4 # only if the containment condition is true.

5 def print

6 ...

7 end

8 end

Figure 6.3 – Feature containment.

The technique used by rbFeature to generate the code using the Feature Generator is by
modifying the Abstract Syntax Tree (AST). The first step is to convert the Ruby files
using the Ruby2Ruby Gem. Then the AST is walked to find all the feature containments
and the condition of the containment is evaluated to see if the body of the containment
must be included or not. Finally, the modified AST is reconverted to Ruby using the
RubyParser Gem.

The features are (de)activated by an external trigger. rbFeature does not use sensors to
detect changes of the environment, all the features are only commanded by the user.

rbFeature is a complete implementation of the FOP paradigm in Ruby. It has some
interesting capabilities like the principle of SPL (Variant Generator) which can create
variants of the application according to the features selected at compile time. Another
interesting capability is the ability to define dependencies between features.

6.4 Subjective-C

Subjective-C [GCM+11] is a COP framework designed on top of Objective-C, a language
for mobile platforms. The main motivation was to bring COP to mobile platform because
this had not been done before, although those platforms would probably be most exposed
to context changes. Subjective-C was also the first to introduce a Domain Specific
Language (DSL) to express contexts interdependencies in COP implementations.

The framework defines contexts as first-class entities and defines the adaptations using
annotations in the code where the adaptations normally take place, like rbFeature.

1 #context Landscape

2 - (NSString*)getText() {

3 return [NSString stringWithString:@"Landscape view"];

4 }

Figure 6.4 – Context-specific method definition.

6.4. SUBJECTIVE-C 29

To (de)activate contexts, Subjective-C uses internal triggers based on the system state,
which gives the ability to react to a change in the environment. Contrary to the other
COP implementations available at that time, the framework uses method pre-dispatch.
The method pre-dispatch has the ability to change the method’s implementation at each
adaptation of the method, unlike other COP implementations which adapt the method
lookup process.

Subjective-C is a great implementation of COP for mobile platforms. Its main draw-
back is the preprocessing required for the annotations. Furthermore, the preprocessing
replaces annotations by generated code, which leads to some difficulties for debugging.
In spite of this, it provides the ability to specify dependencies between contexts using
relationships, exclusion or requirement, for example. The method pre-dispatch consti-
tutes an advantage to COP applications whose context do not often change because the
method implementation is adapted once during context (de)activation. Otherwise, the
method pre-dispatch becomes a disadvantage if (de)activations occur more frequently
than method calls.

30 CHAPTER 6. RELATED WORK

Part II

Framework

31

Chapter 7

Phenomenal

Contents

7.1 Introduction . 34

7.2 Concepts . 34

7.2.1 Context . 34

7.2.2 Proceed . 37

7.2.3 Relationships . 37

7.2.4 Context as a Feature . 38

7.3 Tools . 40

7.3.1 Context Visualizer . 40

7.4 Semantics . 42

7.4.1 Building Blocks . 42

7.4.2 Core Mechanisms . 43

7.5 Architecture . 48

7.5.1 Global Structure . 48

7.5.2 Context Package . 49

7.5.3 Manager Package . 50

7.5.4 Relationship Package . 51

7.5.5 Viewer Package . 53

7.5.6 Miscellaneous . 54

7.6 Under the Hood: Core Mechanisms 55

7.6.1 Conflict Resolution Policy . 55

7.6.2 Context Definition . 57

7.6.3 Adaptation Definition . 58

7.6.4 Context Activation . 58

7.6.5 Adaptation Activation . 59

7.6.6 Context Deactivation . 61

7.6.7 Adaptation Deactivation . 61

7.6.8 Relationship Definition . 62

7.6.9 Relationship Activation . 63

7.6.10 Proceed . 64

7.7 Programming Language Requirements 66

7.8 Limitations . 67

33

34 CHAPTER 7. PHENOMENAL

If we knew what we were doing, it wouldn’t be called research, would it?

Albert Einstein

7.1 Introduction

In this chapter, we will present the main contributions of this thesis in terms of concepts
and implementation. We will start by presenting intuitively our vision of contexts,
relationships and especially the brand new notion of Context as a Feature (CaaF). These
concepts will then be formally defined through a semantics based on sets and functions.
The actual implementation will then be discussed, and this chapter will end with the
presentation of the current limitations of the framework.

Incidentally, we chose the name “Phenomenal Gem” because, like Perl, the Ruby lan-
guage bears the name of a gemstone. A RubyGem is a software package, commonly
called a “gem”. The name “Phenomenal Gem” thus comes from the fact that the phe-
nomenal gemstone is a gemstone that will change colour depending on external factors
such as light or temperature. In our case, it is a gem that adapts software behaviour
according to the surrounding situation.

7.2 Concepts

As presented in Part I Background, the goal of this thesis is to merge the paradigms
of Context-Oriented Programming (COP) and Feature-Oriented Programming (FOP).
The approach used is to first implement a COP framework and then bring in some inter-
esting ideas of FOP that were missing. In fact, these two paradigms have more points in
common than differences [CGD11]. Thus, we first implement all the regular COP con-
cepts (contexts, relationships, adaptations, management,...), drawing inspiration mainly
from Subjective-C [GCM+11]. Then we attempt to integrate the idea of feature into it
in order to obtain the CaaF concept.

7.2.1 Context

We defined what a context is in Section 2.3.3. This definition is the one we use in the
Phenomenal Gem framework. We take the concept of context and reify it in Ruby as

7.2. CONCEPTS 35

a class. Around our framework we defined a small Domain Specific Language (DSL)
that provides a structured and easy access to the new concepts we add to Ruby. While
defining it, we tried to stick to the Ruby conventions as much as possible.

Simple Context

1 context :Trial do

2 adaptations_for TodoList

3 adapt :add_task do |date,time,title,text|

4 ... # Behaviour of the adaptation

5 end

6 end

Figure 7.1 – Context definition. The Trial context is used in the TODO-List application
to limit functionalities until the application has been bought. In this case, the adaptation
will limit the number of tasks that can be added.

Figure 7.1 introduces the definition of a new context. Several points are highlighted in
this simple example. First, syntactically the context definition is similar to a new class
definition. Next, adaptations for allows to specify the class to be adapted. Then,
adapt provides the capability to adapt an instance method by passing a block (closure)
as implementation.

A context can be reopened later. In the same way as open classes allow to add methods
at any time in Ruby, open contexts allow to add adaptations at any time (see Figure 7.2).

1 context :Trial do

2 adaptations_for TodoList

3 adapt :get_tasks do |date,time|

4 ... # Behaviour of the adaptation

5 end

6 end

Figure 7.2 – Reopen the Trial context in order to add the adaptation that will limit
the number of tasks that can be retrieved.

Combined Context

A context can be combined with others to provide behaviour specific to this combination
of contexts. Our DSL offers two different ways of defining combined contexts, either by
nesting the context definitions (Figure 7.3) or by passing multiple context names to the
context keyword (Figure 7.4). The only distinction between the two notations is that
the former sets the surrounding context as the parent of the other. We will see how it
is used in Section 7.2.4.

A sub-context is one of the contexts that compose a combined context. In Figure 7.3, con-

36 CHAPTER 7. PHENOMENAL

1 context :Away

2 context :Network do

3 adaptations_for TodoList

4 adapt :notify do

5 ... # Behaviour of the adaptation

6 end

7 end

8 end

Figure 7.3 – Nested context definition. The combination of the Away and Network
contexts expresses the behaviour that occurs when the user is away from his computer
and the network is available.

text Away and Network are both sub-contexts of the combined context [Away,Network].

1 context :Away, :Network do

2 adaptations_for TodoList

3 adapt :notify do

4 ... # Behaviour of the adaptation

5 end

6 end

Figure 7.4 – Combined context definition.

Activation Count

Each context contains a value called activation count. This value is incremented at each
context activation and decremented at each deactivation. The main purpose of this value
is the detection of the true deactivation. A true deactivation occurs when the activation
count is equal to 0. In this case, all the adaptations of the context are removed.

The integer counter is needed because the activation of a context can be triggered by
relationships, users, or automatically. Therefore, the deactivation is effective only if there
are as many deactivation as activation. Otherwise the system would become inconsistent.

Adaptation Activation

The adaptation activation is roughly the deployment of the new implementation to the
target method. In order to make the new implementation effective, there exist two ways,
method pre-dispatch and modifying the method dispatching semantics. The former
changes the target method body by the new implementation whenever the adaptation
is deployed. The latter modifies the method call mechanism and adds some dynamic
behaviour that looks for the deployed adaptation implementation at each method call.
Method pre-dispatch is more efficient when there are many method calls and few context
switches, and conversely for the modification of the method dispatch semantic.

7.2. CONCEPTS 37

In our case, we use method pre-dispatch in the same way as Subjective-C (see Section 6.4)
to avoid adding a proxy method or modifying the method mechanism.

7.2.2 Proceed

As multiple adaptations can be deployed for the same method in a specific order, the
language offers the proceed mechanism to be able to call the implementation of the
adaptation previously deployed for this method. The previously deployed adaptation
is the one just before the adaptation where the proceed call is made according to the
conflict policy. This behaviour is illustrated by the Figure 7.5.

notify
Default implementation

 notify
Away implementation

 notify
Presenter implementation

proceed call from Presenter's

implementation of notify.

proceed call from Away's

implementation of notify.

Activation of Away &
adaptation deployment

Activation of Presenter &
adaptation deployment

Figure 7.5 – Proceed example.

In Figure 7.5, after the activation of the context Away, the default implementation
of notify in TodoList is replaced by the implementation of the adaptation defined
for notify in the context Away. Subsequently, the same process is triggered by the
activation of the context Presenter1.

7.2.3 Relationships

In Section 2.3.5 we stated that relationships between contexts are subject to certain
constraints to ensure overall system consistency. Our implementation provides a means
of defining all these relationships.

The relationships between contexts are defined directly in the contexts bodies like in
Figure 7.6.

We define a small DSL for the relationships introduced in Section 2.3.5. For example,
a context that requires a context B will contain requires :B in its definition. A sim-
ilar notation exists for implies :B and suggests :B for implications and suggestions
relationships.

1This context reifies the situation where the user is doing something in fullscreen mode.

38 CHAPTER 7. PHENOMENAL

1 context :Mobile do

2 requires :OperatingSystemsSense

3 end

Figure 7.6 – Relationships definition.

The syntax used in Figure 7.6 only works for asymmetric2 relations. Otherwise, for
symmetric3 relations, the relationship definition is allowed outside the involved con-
texts using requirement for, implication for and suggestion for as illustrated in
Figure 7.9.

7.2.4 Context as a Feature

We presented the standard definition of feature in Section 3.3.1. However we have
chosen to adapt it somehow and bring it into COP. From our point of view, a feature
is a refinement of the notion of context. We see a feature as a coarser-grained context
that provides particular functionality to stakeholders through its sub-contexts and sub-
features. We therefore define the keyword feature which operates like context but
defines a feature instead.

The main idea is that a feature is self-contained and that its (de)activation will (de)activate
all behaviour and related relationships. This is why we decided to attach relationships
to features to be able to (de)activate them when the feature itself is (de)activated.

Here, the nested definition syntax in Figure 7.7, means that the behaviour is defined for
the combination of the feature and the nested context. Rather, the behaviour defined in
a combined context is active only when all the sub-contexts are active.

1 feature :EnvironmentSense do

2 context :Presenter do

3 # Behaviour specific to :EnvironmentSense

4 # and :Presenter combination

5 end

6 end

Figure 7.7 – Nested definition.

The fact that relationships are attached to features means that, when you define a
relationship in a context nested in a feature, this relationship will actually be stored in
the feature, like in Figure 7.8. But this notation is only a shortcut, since relationships
can also be defined immediately at feature level, allowing to define relationships between
contexts that are not sub-contexts of the feature, like in Figure 7.9.

2One context plays a more important role than the other in the relation.
3Two or more contexts play the same role in the relation.

7.2. CONCEPTS 39

1 feature :OperatingSystemsSense do

2 context :Android do

3 implies :Mobile

4 end

5 end

Figure 7.8 – Nested context relationships definition.

1 feature :OperatingSystemsSense do

2 implications_for :Android, :on=>:Mobile

3 end

Figure 7.9 – Feature relationships definition. The ”:on” is used to match with the RoR
conventions and allows to read the DSL as plain English.

In COP implementations [GCM+11], a default context is defined which models the base
application behaviour. In our case, we have a default feature which, in addition to being
default context, stores the relationships defined at root level (in contexts like the ones
in Figure 7.6 or directly in the default feature like in 7.10).

1 requirements_for :Mobile, :on=>:OperatingSystemsSense

Figure 7.10 – Default feature relationships definition.

The advantages of such a default feature are the following. First, it represents the default
application as a feature. When a method is adapted, its default implementation is saved
as an adaptation in the default feature. This allows to simplify the implementation by
using the same mechanism for the adaptations and the default behaviour. Secondly,
when relationships are defined outside a feature, instead of having special mechanism,
the relationships are stored in the default feature.

Figure 7.11 provides a schematic representation of a system developed with the Phe-
nomenal Gem. It shows the default feature which is the parent of all other features
and contexts and stores the relationships of root contexts (this feature is always active
and models the base application behaviour). On the left, the feature OperationSystem-
Sense4 is defined with some relationships and sub-contexts; on the right we have some
simple contexts Android,...,Mobile which are combined with the default feature to form
sub-contexts of it.

Conceptually, the CaaF also provides structural adaptations, meaning that a feature
should be able to add/remove methods and classes through its (de)activations. We do
not have support for this yet in the current implementation, but we think it could be an
interesting area of research to complete the concept in this sense in the future.

4This feature reifies the behaviour needed to detect the operating system.

40 CHAPTER 7. PHENOMENAL

Default feature (F0)

Mobile requires OperatingSystemSense

Desktop requires OperatingSystemSense

Feature OperatingSystemSense (OSS)

(OSS, Android), (OSS, IOs), (OSS,

Windows), (OSS, Linux) and (OSS,

MacOs)

OSS, Android OSS, IOs

(OSS, Android) implies Mobile

(OSS, IOs) implies Mobile

(OSS, Windows) implies Desktop

(OSS, Linux) implies Desktop

(OSS, MacOs) implies Desktop

OSS, Linux

OSS, MacOsOSS, Windows

Android

IOs

Windows

MacOs

Linux

Mobile

Desktop

Activation/Deactivation logic of

Relationships for

Relationships for

Figure 7.11 – Architecture of a Phenomenal application. The code used to draw this
figure is in Appendix B.

7.3 Tools

7.3.1 Context Visualizer

Alongside the development of the framework, we felt the need for a debugging tool that
would allow the developers to easily get a representation of their system state. System
state is characterized by the defined contexts, features, relationships, and if they are
activate or not.

Once an application contains several contexts and features having complex relationships
between them, it can become really difficult to determine which contexts, relationships
or features are active at any moment in time, and thus to debug the system.

The Phenomenal Gem framework comes with a tool which is able to automatically gener-
ate a graphical view of the system state at any time. Figure 7.12 shows the representation
of the running example5. The squared boxes represent features and the rounded ones
contexts. The relationship notation is defined in Section 2.3.5. The red boxes and arrows
mean that the contexts or relationships are active at the time the image was generated.

5The code used to generate this graph is in Appendix B.

7.3. TOOLS 41

Figure 7.12 – Graphical View. For clarity, OSS stands for OperatingSystemSense and
ES for EnvironementSense.

42 CHAPTER 7. PHENOMENAL

7.4 Semantics

The following formal semantics is based on sets and functions. Although, it nonetheless
presents the main mechanisms and ideas of the framework in order to have a precise
definition of them. These definitions only assume that the framework is build on top
of an Object-Oriented (OO) programming language. This allows to be used for other
implementations without requiring the reader to dig into our Ruby code to know what
we have done. For the sake of simplicity, the handling of relationships and errors has
been omitted.

7.4.1 Building Blocks

Particular Notations

→ This arrow defines a total function.
9 This arrow defines a partial function.
my function[x/y] The value y is set at x for my function such that x ∈

dom(my function) and y ∈ range(my function)
my functionJxK The J...K specifies a parameter in my function signature.

Here x is a parameter of my function.
concat(name1, name2) This function concatenates name1 and name2 and returns

name1, name2

Sets

Id Set of all possible identifiers.
ContextId ⊆ Id Set of all possible context identifiers.
MethodId ⊆ Id Set of all possible method identifiers.
ClassId ⊆ Id Set of all identifiers of defined classes.
Context Set of all possible contexts.
Feature ⊂ Context Set of all possible features.
MBody Set of all possible method bodies.
MArg Set of all possible method arguments.
Object Set of all objects.
Boolean ⊂ Object {True, False}
Relationship {Implication, Suggestion,Requirement}

Values

V oid ∈ Object = The void object.
DefaultFeature ∈ Feature = The default feature that represents the base appli-

cation.

7.4. SEMANTICS 43

Functions

defined context : ContextId1..∗
9 Context× Context

The function maps all the defined ContextId to a Context. The first Context of the
Cartesian product is the context specified by ContextId and the second is the
surrounding context (parent).

defined combined context : ContextId1..∗
9 Context

The function maps all the defined ContextId that designate a combined context to a
Context.

active context : ContextId
9 Context

The function maps all the ContextId that designate an activated context to a Context.

defined method : ClassId×MethodId× Boolean
9 MBody

The function returns the MBody for MethodId that is defined in ClassId. The
Boolean specifies if it is an instance method or not. The function represents the
implementation that is currently used by a method.

adaptation : Context× ClassId×MethodId× Boolean
9 MBody

The function returns the MBody for MethodId that is defined in ClassId by Context .
The Boolean specifies if it is an instance method or a class method.

7.4.2 Core Mechanisms

The functions in the following table will be explained one by one in detail below.

context : ContextId
9 Context\Feature

feature : ContextId
9 Feature

adapt : ClassId×MethodId× Context×MBody × Boolean
9 V oid

conflict policy : Context× Context
→ {−1, 1}

44 CHAPTER 7. PHENOMENAL

next adaptation : ClassId×MethodId×MBody × Boolean
9 MBody

eval : Object×MBody ×MArg∗

→ Object
proceed : Object× ClassId×MethodId×MBody ×MArg∗

9 Object
first adaptation : Context× ClassId×MethodId× Boolean

9 MBody
activate context : ContextId

9 V oid
deactivate context : ContextId

9 V oid

contextJidentifierK

This function retrieves a context by its name or creates it if needed. It is always done
in the scope of a parent context (at least the default feature) that will be used to find
the closest parent feature in order to store defined relationships.

parent context is the surrounding context.
If identifier ∈ dom(defined context)

c, p = defined context(identifier)
Else
sc ∈ Context\Feature such that sc, parent context /∈ range(defined context)

defined context′ = defined context[identifier/sc, DefaultFeature]
If parent context 6= DefaultFeature

cc ∈ Context\Feature such that cc, parent context /∈ range(defined context)

parents = All parents from parent context to DefaultFeature included.
defined context′ = defined context[concat(parents, identifier)/cc, parent context]
defined combined context′ = defined combined context[concat(parents, identifier)/cc]
c = cc

Else
c = sc

Return c

The function first checks, if the context is already defined. If true, the context can
simply be returned. Otherwise, the function needs to create a new context. The
creation mechanism starts by creating the simple context (sc) as the default feature for
parent. Then, if the actual parent differs from the default feature, a combined context
cc with sc and parent context is created. Finally, c is returned.

7.4. SEMANTICS 45

featureJidentifierK

This function basically operates like context but is applied to a feature.

parent context is the surrounding context.
If identifier ∈ dom(defined context)

f, p = defined context(identifier)
Else
sf ∈ Feature such that sf, parent context /∈ range(defined context)
defined context′ = defined context[identifier/sf, DefaultFeature]
If parent context 6= DefaultFeature
cf ∈ Feature such that cf, parent context /∈ range(defined context)
parents = All the parents from parent context to DefaultFeature included.
defined context′ = defined context[concat(parents, identifier)/cf, parent context]
defined combined context′ = defined combined context[concat(parents, identifier)/cf]
f = cf

Else
f = sf

Return f

adaptJcontext id, class id, method id, method body, instance methodK

This function creates and stores a new adaptation for a method (instance or class) in a
class for a context.

adaptation′ =
adaptation[context id, class id, method id, instance method/method body]

conflict policyJcontext1, context2K

This function is a total ordering function that allows to compare the precedence of two
contexts. Its genericness allows the framework users to define their own policy
depending on custom needs.

Return 1 if context1 has precedence on context2
Return -1 if context2 has precedence on context1

next adaptationJclass id, method id, method body, instance methodK

Returns the next body after method body for the method method id in the class class id.
The next body is found using the precedence order defined by conflict policy.

46 CHAPTER 7. PHENOMENAL

evalJinstance, method body, method args∗K

Returns the evaluation of method body with method args∗ in instance. The evaluation
of the method is executed in the hosting OO language. The method execution semantics
of the language is not modified.

proceedJinstance, class id, method id, method body, method args∗K

This function has to be called in the body of an adaptation. It uses the
next adaptation function to retrieve the adaptation that has to be evaluated.

next = next adaptation(class id, method id, method body, method args∗)
Return eval(instance, next)

first adaptationJclass id, method id, instance methodK

Returns the first adaptation for method id in class class id according to the precedence
order defined by conflict policy between all the contexts in active context.

activate contextJcontext idK

This function will deploy all the adaptations that are returned by the first adaptation
function for all methods adapted by the context. It will also activate the combined
contexts that the context is part of and for which all the other sub-contexts are already
active.

active context′ = active context[context id/defined context(context id)]
c, p = defined context(context id)
∀cid ∈ ClassId, mid ∈MethodId, im ∈ Boolean

such that c, cid,mid, im ∈ dom(adaptations) :
new method body = first adaptation(cid, mid, im)
defined method′ = defined method[cid, mid, im/new method body]

∀cc such that c ∈ range(defined combined context)
If ∀cid ∈ defined combined context(cc) such that cid ∈ dom(active context)

activate context(cc)

deactivate contextJcontext idK

This function causes the redeployment of all the methods that were adapted by this
context. It will also deactivate all the combined contexts of which the context is a part.

7.4. SEMANTICS 47

active context′ = active context[context id/NULL]
c, p = defined context(context id)
∀cid ∈ ClassId, mid ∈MethodId, im ∈ Boolean

such that c, cid,mid, im ∈ dom(adaptation) :
new method body = first adaptation(cid, mid, im)
defined method′ = defined method[cid, mid, im/new method body]

∀cc such that c ∈ range(defined combined context)
deactivate context(cc)

48 CHAPTER 7. PHENOMENAL

7.5 Architecture

This section will present the architectural structure of the entire framework. We will
start with a general overview of the framework. Then we will define packages, modules,
classes and the role they play in the framework.

7.5.1 Global Structure

Figure 7.13 defines the architecture of the whole framework and dependencies between
classes. The framework uses the Phenomenal:: name space (omitted for clarity reasons)
in order to avoid the redefinition of unwanted methods when used with other gems in an
application. The framework is subdivided into multiple packages that are represented
by directories in the file structure.

relationship

DSL

Implication

RelationshipStore

Requirement Suggestion

RelationshipManager

Singleton

ContextRelationships

Module

FeatureRelationships

Module

Relationship

context

Adaptation

Context

ContextCreation

Module

Feature

manager

AdaptationManagement

Module

ContextManagement

Module

ConflictPolicies

Module

Manager

Singleton

viewer

DSL

Viewer::
Graphical

Viewer::
Textual

DSL

include

extend

inherit

Error

Figure 7.13 – Architecture Model.

The context package contains the building blocks for the framework; the manager pack-

7.5. ARCHITECTURE 49

age handles the interactions between the building blocks; and the relationship package
contains all the logic related to relationships. The context and feature classes use mod-
ules from the relationship package to extend their behaviour with the relationships logic.

7.5.2 Context Package

The context package in Figure 7.14 is composed of building blocks for the framework.
Indeed, the classes and modules inside reify the concepts of context, feature and adap-
tation. Furthermore, the package also contains all the logic for context reopening and
creation.

+ initialize
+ forget
+ add_adaptation
+ context
+ feature
+ add_adaptations
+ adaptations_for
+ adapt
+ adapt_class
+ remove_adaptation
+ activate
+ deactivate
+ active?
+ just_activated?
+ anonymous?
+ age
+ information
+ parent_feature
+ to_s
: check_validity

activation_age
activation_frequency
adaptations
activation_count
parent
forgotten
manager
name

Context

+ initialize
Feature

ContextCreation
+ create
: find_or_create_simple_context
: find_or_create_combined_context
: create_combined_context

Module

+ initialize
+ deploy
+ bind
+ concern?
+ to_s
: bind_proc
: bind_method
: check_validity
: get_original_method

context
klass
method_name
implementation
src_file
src_line
instance_adaptation

Adaptation

extend inherit

Figure 7.14 – Context package.

Context

Models a first-class context and implements the basic behaviour to activate/deactivate
the context and add/remove adaptations independently of the other contexts. The cre-
ation of contexts is handled by ContextCreation. In addition, the relationships logic for
contexts is included through the ContextRelationships module from the relationships
package illustrated in Section 7.5.4.

50 CHAPTER 7. PHENOMENAL

ContextCreation

Implements all the logic required to detect the kind of context requested, either simple
or combined. If the requested context already exists, it is simply returned. Otherwise,
a new context is created and returned. In fact, this module implements the concept of
open-context explained in Section 7.2.1.

Feature

Models a first class feature which inherits from Context because, as explained in Sec-
tion 7.2.4, a feature is a context. The additional relationship logic is included through
the module FeatureRelationships from the relationships package in Section 7.5.4.

Adaptation

Models a first-class adaptation and the logic for its deployment. In addition, the class
contains all the logic needed to bind a method or a block (closure) to a specific class
or instance. Therefore, this logic plays an important role in the proceed mechanism
explained in Section 7.2.1.

7.5.3 Manager Package

The manager package in Figure 7.15 contains a class and several modules that bind the
building blocks. Indeed, the package handles the interactions between adaptations or
contexts and has to keep the application consistent. It also contains the management of
conflict policies and built-in conflict policies.

ConflictPolicies

Implements two basic conflict resolution policies used to make a distinction between the
contexts and build total order between them. Those policies can be selected by the user
and are used by the AdaptationManagement module. Furthermore, it also implements a
hook method used to create and change the conflict policy. The age conflict policy, which
orders adaptations according to their contexts age (number of activations of contexts
since the last activation of a context), is selected by default.

Manager

Implements the management of contexts and adaptations through the modules Con-

textManagement, AdaptationManagement and ConflictPolicies.

AdaptationManagement

Handles registration and deployment of adaptations. Using the information about con-
texts, it is able to determine which adaptations relevant to those contexts have to be
deployed. Furthermore, the module also plays a role in the proceed mechanism explained

7.5. ARCHITECTURE 51

! init_default
! initialize

rmanager
Manager

Singleton

+ register_context
+ unregister_context
+ activate_context
+ deactivate_context
+ find_context
+ context_defined?
! unregister_combined_contexts
! activate_combined_contexts
! deactivate_combined_contexts
! find_simple_context
! find_combined_context

contexts
default_context
combined_contexts
shared_contexts

ContextManagement

Module

+ no_resolution_conflict_policy
+ age_conflict_policy
+ conflict_policy
+ change_conflict_policy

ConflictPolicies

Module

+ register_adaptation
+ unregister_adaptation
+ proceed
! activate_adaptation
! deactivate_adaptation
! redeploy_adaptation
! deploy_adaptation
! save_default_adaptation
! find_adaptation
! parse_stack
! relevant_adaptations
! resolve_conflict
! sorted_adaptations_for

active_adaptations
deployed_adaptations

AdaptationManagement

Module

include

Figure 7.15 – Manager package.

in Section 7.2.2 to determine the next adaptation to be called.

ContextManagement

This modules handles registration and (de)activation of contexts.

7.5.4 Relationship Package

The package in Figure 7.16 contains all the classes and modules needed to add re-
lationships between contexts. It contains the different relationships as well as their
management for features and contexts.

RelationshipManager

Avoids duplication of relationships in the RelationshipStore. Furthermore, it handles
relationships (de)activations for the features and ensures that all the relationships are
satisfied to keep the system consistent.

RelationhipStore

Implements a fast data structure to store relationships allowing to retrieve them either
by their source or by their target.

52 CHAPTER 7. PHENOMENAL

+ initialize
+ activate_feature
+ deactivate_feature
+ activate_context
+ deactivate_context

activation_counter
Suggestion

+ activate_feature
+ deactivate_feature
+ activate_context
+ deactivate_context
3 check_requirement

Requirement

+ initialize
+ add
+ remove
+ include?
+ update_references
+ get_for
3 set_references
3 array_for

sources
argets

RelationshipStore

+ activate_relationships
+ deactivate_relationships
+ update_relationships_references
3 import_relationships
3 remove_relationships
3 initialize

relationships
RelationshipManager

Singleton

+ initialize
+ ==
+ refresh
+ activate_context
+ deactivate_context
+ activate_feature
+ deactivate_feature
+ to_s

source
target
manager
feature

Relationship

+ initialize
+ activate_feature
+ deactivate_feature
+ activate_context
+ deactivate_context

activation_counter
Implication

+ initialize_relationships
+ requirements_for
+ implications_for
+ suggestions_for
3 add_relationship
3 set_relationship

relationships
FeatureRelationships

Module

+ requires
+ implies
+ suggests
3 set_context_relationship

ContextRelationships

Module

inherit

Figure 7.16 – Relationships package.

FeatureRelationships

Implements the logic needed by the relationships defined at feature level.

ContextRelationships

Implements the logic needed by the relationships defined at context level.

Relationship

Models an abstract relationship that contains all the basic behaviours for a relationship.
It also defines template methods that must be redefined by the concrete relationships.

7.5. ARCHITECTURE 53

Implication

Implements the concrete relationship of implication. It inherits from Relationship and
implements the template methods of this class for the implication relationship.

Requirement

Implements the concrete relationship of requirement. It inherits from Relationship and
implements the template methods of this class for the requirement relationship.

Suggestion

Implements the concrete relationship of suggestion. It inherits from Relationship and
implements the template methods of this class for the suggestion relationship.

7.5.5 Viewer Package

The package in Figure 7.17 contains classes that implement a textual and graphical rep-
resentation of the application contexts, features and relationships. Those representations
are used as a debugging tool for the system.

+ initialize
+ generate

manager
rmanager

Viewer::Textual

+ initialize
+ generate
- set_options
- add_edges_for
- node
- graph_container
- set_edge
- add_node_for
- new_node_for

manager
rmanager
main_graph
feature_nodes
r_feature_nodes
context_nodes
destination_file

Viewer::Graphical

Figure 7.17 – Viewer package.

Viewer::Textual

Implements a textual view of the application’s defined features, contexts and relation-
ships. The purpose of this view is mainly to debug the application.

Viewer::Graphical

Same utility as Viewer::Textual but in a graphical way. In addition, the active con-
texts, features and relationships are colour-coded, and the relationships are represented
according to their definitions in Section 2.3.5.

54 CHAPTER 7. PHENOMENAL

7.5.6 Miscellaneous

Dsl

Implements the definition of all the keywords that are provided by the domain-specific
language of the framework. The keywords are prefixed by phen in order to avoid names
clashes with other gems. This module is included in the Ruby Kernel module at the
loading of the framework. Since Kernel is inherited by all objects, the keywords are all
available everywhere in the application as if they were actual keywords.

Error

Defines a standard exception for the framework.

7.6. UNDER THE HOOD: CORE MECHANISMS 55

7.6 Under the Hood: Core Mechanisms

The aims of this section is to help understand how the entire framework operates, and
how the different interaction mechanisms of the building blocks in Section 7.5 are man-
aged. The content is mainly high-level, but also includes implementation notes that can
be easily skipped at the reader’s convenience. All the concepts described in Section 7.2
will now be explained from an implementation point of view.

7.6.1 Conflict Resolution Policy

A conflict occurs when multiple contexts adapt the same method and are active at the
same time. In this case, the system needs to choose the appropriate adaptation to be
deployed into this method.

The conflict policy mechanism is used by the activation mechanism explained in Sec-
tion 7.6.5 to choose a possible adaptation for a method among multiple candidates for
deployment in case of conflict. Namely, choose the appropriate adaptation among all
adaptations of active contexts for this method. It is also used by the proceed mechanism
in Section 7.6.10 to select the adaptation that has to be called by a proceed call.

The comparison of the adaptations is carried out by the method conflict policy in
the ConflictPolicies module, which takes two contexts in conflict for a method as
parameters and returns -1 (when the first context has precedence on the second) or 1
(otherwise). In addition, as the framework needs to work out of the box, some built-in
ready to use conflict policies are provided.

Policy Definition

To set a new conflict policy for the framework, one only needs to pass an implementation
that returns -1 or 1 as a block to the phen change conflict policy as illustrated in
Figure 7.18.

1 phen_change_conflict_policy do |context1,context2|

2 if #context1 has precedence on context2

3 -1

4 elsif #context2 has precedence on context1

5 1

6 else

7 Raise an error

8 end

9 end

Figure 7.18 – Example of setting a new conflict policy by calling the phen change -

conflict policy keyword.

56 CHAPTER 7. PHENOMENAL

As illustrated in Figure 7.19, the phen change conflict policy keyword uses the meta-
programming capabilities of Ruby. It will define an instance method using Ruby’s
class eval and define method that will redefine the original method conflict pol-

icy. After the call to phen change conflict policy, the framework will use this new
conflict policy.

1 def change_conflict_policy (&block)

2 self.class.class_eval{define_method(:conflict_policy,&block)}

3 end

Figure 7.19 – Implementation of the phen change conflict policy keyword.

Provided Policies

Two conflict policies are provided by default: the no resolution and the age resolution.

The no resolution policy gives priority to non-default contexts over the default one.
Indeed, if neither context is default, an error is raised. From an implementation point of
view, it returns 1 if the first context is the default feature and -1 inversely. Otherwise,
if neither is default, an error is raised.

The age resolution policy in Figure 7.20 is the default policy of the framework. The age
of a context is the number of context activations since the last activation of the former
context. The policy compares the two contexts and returns -1 if the age of the first
one is smaller than that of the second, 1 otherwise. Furthermore, the comparison never
returns 0, because our implementation prevents having two contexts with the same age.

1 def age_conflict_policy(context1, context2)

2 context1.age <=> context2.age

3 end

Figure 7.20 – Age resolution conflict policy.

The age conflict policy is defined as: “One can associate time stamps to context values
to keep track of the order in which the context evolves. A possible timestamp strategy
is to give preference to the most recent context information.” [DVC+07]. In our case,
the timestamps are based on the activation age as explained above.

Such a policy is interesting because it relies on the natural intuition that contexts acti-
vated recently should have precedence on the ones that were activated previously. When
a context has been activated recently, its defined behaviour is likely to suit the current
situation better than the older one.

7.6. UNDER THE HOOD: CORE MECHANISMS 57

7.6.2 Context Definition

The snippet in Figure 7.21 represents an example of context declaration for the context
:Presenter and the declaration of an adaptation for the method notify of the class
TodoList.

1 context :Presenter do

2 adaptations_for TodoList

3 adapt :notify do

4 ... # Behaviour of the adaptation

5 end

6 end

Figure 7.21 – Example context definition.

To declare contexts or features we define two keywords, respectively context and fea-

ture. Those keywords are available everywhere in the application because they are
added to the Ruby Kernel module which is automatically inherited by all objects.

The context keyword can be called by passing a name as parameter, for example “Away”
or “Away,Network”. “Away” represents a simple context and “Away,Network” a com-
bined context. Once the kind of context has been determined, we first have to make sure
that it does not already exist before creating it. If it exists, we must use the existing
one, if not, we create a new one. Thanks to this language construct, we can reopen
a context already declared to add adaptations or relationships everywhere, like open
classes in standard Ruby. The next step is the self declaration of the context to the
manager. Finally, the block passed to the method context is evaluated in the defined
context in order to define the adaptations and the relationships.

context :Name do
block

end

Find Simple
Context :Name

Find Combined
Context :Name

Evaluate
block in

context :Name

:Name is like :name1,:name2,...

:Name is like :name1

SC found

Create Simple
Context :Name

Create Combined
Context :NameCC not found

SC not found

CC found

Register the context
to the manager

Figure 7.22 – Context declaration process.

58 CHAPTER 7. PHENOMENAL

7.6.3 Adaptation Definition

The block (lines 2-5 in Figure 7.21) is evaluated in the given context. The two methods
adaptations for and adapt are two methods defined in the class Context and they are
the only ones needed to define adaptations.

The method adaptations for(Class) just sets an instance variable inside the evaluat-
ing context. As a consequence, there is no need anymore to specify for which class the
following adaptations are defined. This method behaves like the public and private

keywords of Ruby: the same class is used by all the following adaptations defined by
adapt and adapt class until the next call of adaptations for.

Evaluate
block in

context C

adaptation_for
Class

adapt :method do
block_method

end

Create a new
adaptation

for :method in Class
with implementation

block_method

Add adaptation to
context C

Register
adaptation to the

manager

All the following
adaptations are for

Class

Activate the
adaptation

context is
already active

Figure 7.23 – Adaptation declaration process.

The red box in Figure 7.23 is the step that prevents our framework being thread-safe.
Otherwise, if multiple threads open the same context at the same time, we cannot
determine which class has to be adapted.

In the next step, the method adapt triggers the creation of a new adaptation for the
method name and block passed in parameter. This freshly created adaptation is added
to the context and registered with the manager.

Furthermore, as we are able to reopen contexts and add adaptations everywhere, the
context can be active when adaptations are added. In this case, the manager triggers
automatically the activation of the adaptation.

7.6.4 Context Activation

The activation of a context leads to some changes in its internal state. The first one
is the activation age, which is assigned to the class variable total activations in-
cremented at each activation of any context. The next one is the activation count

that is incremented at each activation and decremented at each deactivation. Thanks

7.6. UNDER THE HOOD: CORE MECHANISMS 59

activate_context C

Update context C
attributes

Signal the activation of
the context C to the

manager

Activation of all the
relationships for

context C
Deactivate context C

Activate all the
adaptations of the

context C

Relationships KO

Relationships OK

For each
combined_context that

depend of context C

activate_context
combined_context

combined_context

can be activated

combined_context activation KO

Figure 7.24 – Context activation process.

to this activation count one can detect when a context really needs to be deacti-
vated (activation count == 0). The activation age is used to compute the age of a
context that is used by the conflict policy.

Subsequently, the context is registered with the manager. The latter triggers the acti-
vation of the the relationships that concern the context. This step is mandatory. If it
fails, the entire activation process fails and a rollback is done to clean up the system.

Once the relationships are validated, the manager activates all the adaptations of the
context.

If the freshly activated context is a composite of a combined context, and if all the
composites are active, the manager tries to activate this combined context. In case of
success, the activation process is done. If not, the composite context that has triggered
the activation of the combined context is deactivated.

7.6.5 Adaptation Activation

In this section, we will explain active adaptations and deployed adaptations sets. Both
sets play an important role in adaptation activation. The former contains all the adap-
tations that are actually active in the system, that is all the adaptations of all the active
contexts. The latter contains all the active adaptations that are already deployed.

The activation of an adaptation means that it is now candidate to an effective deploy-
ment. The activated adaptation is added to the active adaptations set and because of
its presence in this set, it is taken into account when resolving conflicts.

60 CHAPTER 7. PHENOMENAL

As shown in Figure 7.25, each time an adaptation is activated, a redeployment is trig-
gered. This step consists in finding the adaptation that will be effectively deployed for
the method. To achieve this operation, the conflict policy selects the adaptation that
must be deployed for the class and method specified by the original adaptation.

Activate all the
adaptations of the

context C

Add adaptation to the
active adaptations set

Redeploy adaptation

Activate adaptation

Select all the adaptations
for the same klass and

method as adaptation in
the active adaptations

Order all those adaptations
according to the
conflict policy

Take the first adaptation in
the list

adaptation is
already active

adaptation is
not active Deploy adaptation and

replace the old one in the
deployed adaptations set

The adaptation is
different from the
currently deployed one

Define method using
klass.define_singleton_method

Define method using
klass.class_eval

and define_method

adaptation is a
class method

adaptation is an
instance method

for each adaptation in
adaptations of context C

Figure 7.25 – Adaptation activation mechanism.

Finally, the adaptation selected by the conflict policy is now effectively deployed thanks
to the meta-programming capabilities of Ruby. The mechanism used depends on the
method that needs to be adapted, either instance or class. The illustration of this
method is shown in Figure 7.26.

1 def deploy

2 method_name = self.method_name

3 implementation = self.implementation

4 if instance_adaptation?

5 klass.class_eval { define_method(method_name, implementation) }

6 else

7 klass.define_singleton_method(method_name,implementation)

8 end

9 end

Figure 7.26 – deploy method in Adapatation.

7.6. UNDER THE HOOD: CORE MECHANISMS 61

7.6.6 Context Deactivation

deactivate_context C

Update context C
attributes

Signal the deactivation of
the context C to the

manager

Deactivation of all
the relationships for

context C

Deactivate all the
adaptations of the

context C

For each
combined_context that

depend of context C

deactivate_context
combined_context

if the context C

effectively needs to
be deactivated

if all the relationships
can be deactivated

Figure 7.27 – Context deactivation process.

The deactivation process of a context in Figure 7.27 is more simple than the activation.
The only point we must be careful about is when the context needs to be effectively
deactivated. At each deactivation, the activation count of the context is decremented.
Only when the activation count is equal to zero and was greater than 0 before the
deactivation, must the context be effectively deactivated.

In addition, because of the relationships, the deactivation can either trigger deactivation
of other contexts or be forbidden. The deactivation of other contexts is triggered by
relationships like suggestion or implication. On the other hand, if a context is required
by another context, the deactivation of the former is forbidden because of the requirement
relationship.

7.6.7 Adaptation Deactivation

The Figure 7.28 illustrates the deactivation process of an adaptation. The process differs
from the activation in Figure 7.25 up to the “Redeploy adaptation” step, but is the same
afterwards.

62 CHAPTER 7. PHENOMENAL

Deactivate all the
adaptations of the

context C

Remove adaptation
from the active
adaptations set

Redeploy adaptation

Deactivate adaptation

for each adaptation in
adaptations of context C

Figure 7.28 – Adaptation deactivation process.

7.6.8 Relationship Definition

There are two ways of defining relationships depending on where the definition is made,
either in a context or a feature. In the first case, that is defining a relationship in a
context, the relationship is stored in the parent feature, while in the other case, the
relationship is stored in the feature itself. The concept of parent feature is defined in
Section 7.2.4.

1 feature EnvironmentSense do

2 requirements_for :Desktop, :on=>:OperatingSystemSense

3 end

Figure 7.29 – Relationship declaration in a feature.

Figure 7.29 illustrates a relationship declaration in a feature. The keywords available to
define the relationships are: suggestions for, requirements for and implications -

for.

In addition, the developer may want to declare all the relationships in a single file. It
is possible thanks to the latter keywords. Indeed, as each keyword has a source and
target(s), the declaration within a feature is not mandatory and can be moved to a
separate file. In this case, all those relationships will be stored in the default feature and
are always active.

1 context :Android do

2 implies :Mobile

3 end

Figure 7.30 – Relationship declaration in a context.

Figure 7.30 illustrates a relationship declaration at context level. The keywords available

7.6. UNDER THE HOOD: CORE MECHANISMS 63

to define the relationships at context level are: suggests, requires and implies.

Each context keeps a pointer to the closest parent at declaration time. Thanks to this
pointer, the parent feature can be found by running through all the parents until the
parent is a feature. When the context has no parent, in this case the parent pointer is
then set on the default feature.

7.6.9 Relationship Activation

The relationship activation process of a feature is different from that of a context. Indeed,
a feature contains all the relationships of its sub-contexts. When a feature is activated,
all those relationships are added to the active relationships of the application.

All the relationship objects of the framework inherit from the Relationship class that
implements the common behaviour for all relationships. Each relationship has to redefine
four methods: (de)activate context and (de)activate feature.

Indeed, as explained in Section 7.2.4, the features also store the relationships of their sub-
contexts. As a result we distinguish the activation of features from that of contexts. In
the implementation, this distinction is represented by the methods (de)activate con-

text and (de)activate feature. (de)activate feature is used to actually (de)activate
the relationship when its containing feature is (de)activated, while (de)activate con-

text is a callback method triggered each time the source or the target context of the
relationship is (de)activated.

Activation of all the
relationships for

context C

Import all relationships
defined in the feature

if context C
is a feature

For each relationship in the
set of active relationships
that concern the context C

For each f_relationship
declared in the feature

Execute the method
activate_feature in

f_relationship for the
activation of feature

Execute the method
activate_context in

relationship for the activation
of context C

Add f_relationship to
the set of active
relationships

if context C
is a context

when all the f_relationship
declared in the feature

are processed

Figure 7.31 – Relationship activation.

As illustrated in Figure 7.31, there is a common behaviour for feature and context: the

64 CHAPTER 7. PHENOMENAL

execution of activate context for each relationship that concerns the context. In addi-
tion, for the feature, the method activate feature is executed for all the relationships
declared in the feature.

Relationships deactivation

Deactivation of all
the relationships for

context C

For each relationship in the
set of active relationships
that concern the context C

For each f_relationship
declared in the feature

Execute the method
deactivate_feature in
f_relationship for the

deactivation of feature

Execute the method
deactivate_context in
relationship for the

deactivation of context C

Remove f_relationship
from the set of active

relationships

when all the relationship in the set of
active relationships that concern
the context C are processed
AND context C is a feature

Figure 7.32 – Relationship deactivation.

The relationships deactivation in Figure 7.32 is almost the same as the activation in
Figure 7.31.

The first distinction is that the methods deactivate context and deactivate feature

are now called in place of, respectively, activate context and activate feature.

The second is that in the case of features, the relationships that are defined in a feature
are now removed from the system.

7.6.10 Proceed

All the steps needed for the proceed mechanism are explained in the order in which they
appear, and are implemented in module AdaptationManagement.

Find the Calling Adaptation

Finding the calling adaptation (method, class and context name) is very difficult because
of the limited calling stack reification provided by Ruby in Figure 7.33. To achieve this
task, we use a “hack” in order to retrieve it from the file and the line number of the
calling adaptation.

We extract the file name and the line number of the call from the calling stack by using

7.6. UNDER THE HOOD: CORE MECHANISMS 65

1 example_basic.rb:10:in ‘block (2 levels) in <main>’

2 example_basic.rb:22:in ‘<main>’

Figure 7.33 – Example of calling stack.

a regular expression. The first line of the calling stack contains the line and file where
proceed is called. Once we have the file name and the line number from the calling
stack, we are able to retrieve the calling adaptation.

Implementation

First, we find among all the active adaptations, those that have the same file
name as the file name retrieved from the calling stack of the proceed call.

Then, those adaptations are all sorted in descending order according to their decla-
ration line. As a result, the adaptation that is defined last in the file is now at the
top of the sorted list.

Finally, the calling adaptation is the first to have its declaration line smaller or equal
to the proceed call line.

Finding the Adaptation to Call

Once we have the calling adaptation, we have to find which adaptation comes just before,
according to the conflict policy.

All the active adaptations for the method and class of the calling adaptation are sorted
according to the conflict policy. After that, we find the position of the calling adaptation
among those and the adaptation to call is the first one with less precedence than the
calling adaptation.

Execution of the Adaptation to Call

Once the adaptation to call is found, we have to execute it. Two criteria affect the
execution of the adaptation implementation. The adaptations can adapt either instance
or class method. Secondly, depending on how the method is defined, the implementation
can be of a different type. Those criteria make it more complex to evaluate the adaptation
within a specific class or instance.

Implementation

The implementation can be a Method, UnboundMethod or a Proc. In addition,
an adaptation can be applied either to an instance or to a class. The different
behaviours are shown in table 7.1.

UnboundMethod is an instance method not already linked to a specific instance. Such

66 CHAPTER 7. PHENOMENAL

methods need to be bound to an instance using bind(instance) before they are
called.

Method is a class method always bound to its origin class.

Proc is a block that can be bound to local variables; once bound, the code can be
executed everywhere and can still access those variables.

target is the Instance target is the Class

impl is a Method impl.bind(target) impl.call(*args,&block)

or UnboundMethod .call(*args,&block)

impl is a Proc target.instance exec(*args,&impl)

Table 7.1 – Binding behaviours.

target.instance exec(*args,&impl) evaluates the block &impl in the context of
target (instance or class) by setting self to target with arguments *args.

impl.bind(target) binds the impl to a specific target instance and returns a
Method object that can be called.

method.call(*args,&block) calls a Method object with arguments *args and a
block &block.

7.7 Programming Language Requirements

In this section, we summarize the language constructs needed to implement the concepts
of our framework.

First, the COP paradigm is an extension of the Object-Oriented Programming (OOP)
paradigm. The behaviour adaptation is performed by modifying methods in classes. Fur-
thermore, to implement the building blocks contexts and features as first-class entities,
such paradigm is required.

Secondly, the language must have the following meta-programming capabilities:

• To change instance and class method implementations at run-time in order to
deploy the adaptations, Section 7.6.5.

• To execute the adaptation bodies in a specific instance without replacing the de-
ployed method, Section 7.6.10.

• To retrieve a reification of the calling stack which is required to determine the
adaptation that performed a proceed call, Section 7.6.10.

• To add new methods in built-in language classes which is used to define the DSL
as language keywords, Section 7.5.6.

7.8. LIMITATIONS 67

Finally, other constructs are also useful, for example, closure (blocks in Ruby) to store
the adaptation implementations, and efficient data structures like hash tables.

7.8 Limitations

Although the implementation is fairly complete and stable, the framework still has some
limitations:

Firstly, at the moment, we do not have structural adaptations. The ability to add and
remove classes and methods would be really handy when COP and FOP paradigms are
merged.

Secondly, adaptations are system wide. This means that it is not possible to activate
a context for a specific object instance or a specific thread. Currently, thread support
is very limited in the default Matz’s Ruby Interpreter (MRI) but in JRuby or Rubinius
real multi-threading is possible. Thus, scoped context activation would be very useful
in RoR web application because it would allow to serve HyperText Transfer Protocol
(HTTP) requests with threads instead of processes and would improve the scalability
and portability.

Thirdly, due to limitation of Ruby the proceed mechanism relies on a “hack”, meaning
that it is not very robust. It does not handle the (unlikely) case in which two adaptations
are defined on the same line. Furthermore, the sort needed to match the calling line
with its adaptation is not very efficient, as detailed in Chapter 11.

Fourthly, due to the adaptations for implementation, the framework is not thread-
safe. However, as explained above, this is not a real problem for the moment because of
the poor support of multi-threading in Ruby.

Finally, at this stage, it is not possible to access a class variable within an adaptation.
This is due to the scoping of Ruby for Proc objects. While self is correctly bound to
the proper class, @@ variables are found in the Object class. Since class variables are
not heavily used in Ruby, this should not be a problem, otherwise, a workaround for the
framework user would be to define accessors methods for the class variable and use it
instead of the variable itself in the adaptations.

68 CHAPTER 7. PHENOMENAL

Chapter 8

Phenomenal Rails

Contents

8.1 Introduction . 70

8.2 Motivation . 70

8.3 Concepts . 71

8.3.1 File Structure Integration . 71

8.3.2 Features Activation Conditions 71

8.3.3 Persistent Context . 72

8.3.4 Views Adaptation . 73

8.4 Under the Hood: Core Mechanisms 75

8.4.1 Engine . 75

8.4.2 File Structure Integration . 76

8.4.3 Features Activation Conditions 76

8.4.4 Context Extensions . 77

8.4.5 Views Adaptation . 78

8.5 Limitations . 80

No one can be a rock star without a great scene.

David Heinemeier Hansson

69

70 CHAPTER 8. PHENOMENAL RAILS

8.1 Introduction

The Phenomenal Gem extends the Ruby programming language with Context-Oriented
Programming (COP) and Context as a Feature (CaaF) concepts. We will now go further
and integrate them in the Ruby on Rails (RoR) framework, presented in Chapter 5,
through the Phenomenal Rails Gem. Nowadays, more and more applications are web
applications.

While standard web applications are very popular, the recent development of cloud com-
puting started the era of Software as a Service (SaaS) applications. Contrary to usual
web applications, they use a multi-tenant architecture. This means that, instead of run-
ning a separate dedicated server for each tenant (customers), all tenants share a (virtual)
server. This can be achieved in different ways, but most SaaS prefer application-level
multi-tenancy where the tenants use the same application instance. This particular ar-
chitecture has an obvious economical advantage because hardware resources are much
better shared and economy of scales start working. In addition to the hardware ad-
vantage, the greatest benefit of this approach is that there is only one code base to
maintain[CC06].

Thus, the major challenge of SaaS is to maintain this code base well-structured while
keeping as much tenant customization as possible. Also, behaviour adaptations fit ex-
actly COP capabilities [TCW+12] and we think it will be the killer application of the
Phenomenal Rails Gem presented in this chapter.

8.2 Motivation

A TODO-list on the desktop is good, but a TODO-list online available everywhere
even on smartphones and with transparent update for the user is much better. The
Phenomenal Gem allowed us to develop the former version but for a RoR application
we needed something more to ease the developers’ life.

All RoR applications have the same specific structure and special needs that can be
handled within the framework. Firstly, web applications are composed of many views
which are not Ruby methods and so not adaptable by the Phenomenal Gem. Secondly,
Each HyperText Transfer Protocol (HTTP) request is independent from the other and
may be served from different server processes. Thus, user contexts have to be maintained
in a new way.

The new problems we address here on top of the concepts presented in Chapter 7 lead
to the Feature as a Service (FaaS) concept. While a SaaS aims to provide an application
on user need basis (e.g. through a monthly fee), we think that we can go further now
that we have COP in hand and provide features on the user need basis, leading one day
to a new economical model, who knows?

8.3. CONCEPTS 71

8.3 Concepts

8.3.1 File Structure Integration

As introduced in Chapter 5, the principles of Convention over Configuration (CoC) and
Don’t Repeat Yourself (DRY) are heavily used in RoR. The first consequence is that
this leads to a strict file structure architecture, as illustrated in Figure 8.1. The app/
root folder contains one folder per Model-View-Controller (MVC) component.

▼ todo$list

▼ app

► assets

► controllers

► helpers

► mailers

► models

► views

► ...

Figure 8.1 – Ruby on Rails file structure.

In order to integrate our features and contexts in this file structure, we had to find a
way immediately accepted by RoR developers. After many attempts we ended with
the solution illustrated in Figure 8.2. Beside the usual app/, we add a app phenomenal/
folder, which contains one sub-folder per feature or context. These sub-folders are named
using the snake case of the context or feature name that it contains. The feature folder
in turn, contains folders for optional sub-features or sub-contexts in addition to the
usual MVC and a file describing the context that has the same name as the parent
folder. These conventions allow the framework to load features and contexts into the
application automatically. Furthermore, it provides better modularity. Indeed, instead
of having all your models, controllers and views in the app/ folder, they are now grouped
by features.

8.3.2 Features Activation Conditions

Indeed, in the case of single user desktop applications, a context is (de)activated when
a change in the situation occurs. However, in case of web applications, each HTTP
request is independent from the other and the same client may be served by a different
process during the same session, therefore Phenomenal Rails deactivates all contexts
before each request and activates the one needed on a per request basis. This is why
Phenomenal Rails Gem adds a new keyword to the Domain Specific Language (DSL) of
features definition: activation condition.

72 CHAPTER 8. PHENOMENAL RAILS

▼ todo$list

▼ app

► assets

► controllers

► helpers

► mailers

► models

► views

▼ app_phenomenal

► OperatingSystemsSense

► EnvironmentSense

► ...

Figure 8.2 – Ruby on Rails file structure with Phenomenal.

Figure 8.3 shows an example of usage for this keyword. Suppose we want to adapt the
way TODO-lists are handled to the type of user Operating System (OS) (very useful
for mobile OS). An activation condition is a block that will be executed before the
request hits the controller of the RoR application.

This block has access to the session and the request details, enabling user specific be-
haviour in a very handy way. While COP does not provide a silver bullet, there is still
a long conditional statement. The clear advantage is that now, this statement is not
duplicated any more in multiple places in the code. When this code has been executed,
all the behaviour changes needed for a specific OS are deployed.

We put this keyword in Phenomenal::Feature and not in Phenomenal::Context be-
cause a feature is responsible for adding a functionality. In our opinion, it is the respon-
sibility of features to activate their sub-contexts since they are also responsible for the
relationships of the latter.

If we look at the general COP architecture depicted in Figure 8.4, we can see that acti-
vation condition and thus Phenomenal::Feature implements the Context Discovery
component. This gives us a complete COP implementation for web applications.

8.3.3 Persistent Context

As explained above, contexts have to be activated on a request basis in web applications.
The Phenomenal Rails Gem extends the Phenomenal Gem DSL by adding the is -
persistent keyword as illustrated in Figure 8.5. Putting this keyword in a context (or
feature) definition means that this context should remain active for every HTTP request.

When a feature or context is needed for the users this keyword avoids the unneeded
activation/deactivation at each request, which improves performance.

8.3. CONCEPTS 73

1 feature :OperatingSystemsSense do

2 activation_condition do |env|

3 user_agent = env["HTTP_USER_AGENT"]

4 if user_agent[/(Android)/]

5 activate_context(:Android)

6 elsif user_agent[/(Linux)/]

7 activate_context(:Linux)

8 elsif user_agent[/(Windows)/]

9 activate_context(:Windows)

10 elsif user_agent[/(Mac)/]

11 activate_context(:Macos)

12 end

13 end

14 end

Figure 8.3 – Feature activation condition.

Figure 8.4 – Context aware system architecture.

1 feature :Base do

2 is_persistent

3 end

Figure 8.5 – Persistent Context definition.

8.3.4 Views Adaptation

While the Phenomenal Gem is able to adapt any method in any Ruby class which is fine
for Model and Controller components of the RoR MVC, a large part of web applications
code resides in the Views. Indeed, when web application behaviours are adapted, Views

74 CHAPTER 8. PHENOMENAL RAILS

must also be adapted.

As a result, the main addition made by the Phenomenal Rails Gem is to provide a
handy way to adapt views in RoR applications. These views are defined in various
templating languages such as Embedded Ruby (ERB), HTML Abstraction Markup
Language (HAML), etc. Moreover, in addition to adapting other file than Ruby files, we
had to find a way to be independent of the language used in order to remain compatible
with all RoR applications.

We first considered using Helpers, which in RoR are mixins of methods available in
all views during rendering. They are normally used to extract Ruby logic from the
views. Thus, one solution was to put calls to Helpers wherever an adaptation was
needed. This way, we could use our Phenomenal Gem without any additions. However
this approach had several drawbacks. Firstly, the templating language cannot be used
in the helpers body, and plain HyperText Markup Language (HTML) would have to
be written in strings. Secondly, this meant that we would have to change the base
application structure to be able to adapt it.

Since the first solution was not applicable to real applications, we searched further
into the RoR architecture. As described in Section 5.2.2, RoR views are organized
in templates (in short, a page) that are themselves recursively based on partials called
with the render method. This organization is independent of the templating system
and well written applications use fine-grained partials to avoid code duplication between
templates. The Phenomenal Rails Gem hooks to the RoR architecture to provide a way
of overriding any template and partial in any rails application depending of the context.

We saw in Section 8.3.1 that each context or feature folder can have a views/ entry.
Therefore, when a view (template or partial) is present in an active context or feature,
this file will be used instead of the one in the app/views/ folder from the base application.
It is possible that several contexts adapt the same view. In this case, the same conflict
policy as the one used for method adaptations is used to select the view with the highest
priority.

Thanks to this mechanism, views adaptations become really easy. One only need to put
a view file in the appropriate context or feature folder and that’s it. The view is adapts
automatically without having to change the base application code if it is well structured.
A small refactoring may still be useful in order to get more fine-grained partials.

An optional parameter added to the render method allows to specify a specific context
or feature for a partial view. Using this keyword, the partial view is displayed only if
the context or feature is active, nothing happens otherwise.

The current limitation of this system is that it does not have a proceed mechanism, thus
you cannot call behaviour of less priority contexts within a view adaptation.

8.4. UNDER THE HOOD: CORE MECHANISMS 75

8.4 Under the Hood: Core Mechanisms

The aims of this section is to help understand how the Phenomenal Rails Gem integrates
the Phenomenal Gem framework into RoR. The content is a bit lower level than in
Section 7.6 because it mainly concerns the actual integration of the same concepts in
the RoR framework.

8.4.1 Engine

Engine

Rails::Engine

Figure 8.6 – Ruby on Rails Engine.

The Phenomenal Rails Gem is implemented as a RoR Engine1, meaning that, in addi-
tion to be loaded alongside with the RoR application that uses it, it has access to the
application configuration, it can add middlewares, routes, controllers, etc.

The Engine hooks to the hosting application at start-up and executes the following
actions:

• Adds the models,controllers and helpers of features folders to the autoloaded paths
of RoR using the before configuration hook2. Then uses the to prepare hook
to load the root context folder content after all the initializers are run but before
eager loading and the middleware stack is built. Finally, adds a callback to the
ActionDispatch::Callbacks.before hook in order to deactivate all non-persistent
contexts before each request, and reloads all contexts files in development mode.
The file loading is explained in Section 8.4.2.

• Adds the custom middleware to the application middleware stack, giving an entry
point to every request coming in and out of the application, the activation condition
is explained in Section 8.4.3.

• Uses the after initialize hook to load our customized view resolver as first
resolver. The view adaptation mechanism is explained in Section 8.4.5.

76 CHAPTER 8. PHENOMENAL RAILS

+ self.autoload_paths
+ self.prepare
1 self.scan_dir
1 self.load_files

Loader

Figure 8.7 – File loader.

8.4.2 File Structure Integration

The loader module, in Figure 8.7, is a set of callbacks methods used by the engine to
integrate files from the context root folder into the hosting application.

Firstly, Loader.autoload paths scans the context sub-folders to retrieve controllers,
helpers and models folders. Theses folders are added to the auto loaded path of RoR
meaning that these files are either reloaded for each request in development mode, or
loaded only once in production mode.

Secondly, Loader.prepare is called before each HTTP request to handles the context
and features files. It deactivates all active contexts to ensure a clean system is left for
the new request. Furthermore, in development mode, all context files are reloaded, to
avoid restarting the server each time the developer makes a change in the context files.
This mimics the usual RoR behaviour for normal classes.

8.4.3 Features Activation Conditions

+ self.middleware

+ activation_condition

Phenomenal::Feature

Figure 8.8 – Feature.

+ initialize

+ add_condition

+ call

+ before_call

Middleware

Figure 8.9 – Middleware.

1http://edgeapi.rubyonrails.org/classes/Rails/Engine.html
2http://guides.rubyonrails.org/configuring.html#initialization-events

http://edgeapi.rubyonrails.org/classes/Rails/Engine.html
http://guides.rubyonrails.org/configuring.html#initialization-events

8.4. UNDER THE HOOD: CORE MECHANISMS 77

Using the same technique as for contexts extensions, the Phenomenal Rails Gem adds
the activation condition instance method to Phenomenal::Feature, Figure 8.8. This
method takes a block (closure) as an argument that is stored in the Middleware of
Figure 8.9.

These blocks are then executed for each request with the request environment as param-
eter. Their execution takes place before the request hits the RoR application and only
for active features.

The processing of a request is described in Figure 8.10

The client sends a HTTP request
to the web server

All contexts files are loaded and
the features add their activation

condition blocks to the
PhenomenalRails::Middleware

The Ruby On Rails
web server is started

The web server parses the HTTP
request and forwards it to the

RoR application

PhenomenalRails::Middleware

receives the request and
executes the activation

conditions of active features

The request is forwarded to the
RoR application that will use its
Routing component to select the

appropriate controller

Figure 8.10 – HTTP requests handling.

8.4.4 Context Extensions

+ is_persistent

+ to_path

persistent

Phenomenal::Context

Figure 8.11 – Context.

Thanks to the Ruby open classes [TFH09], it is very easy to open the Phenomenal::Context
class in the Phenomenal Rails Gem and add new methods, as illustrated in Figure 8.11.

The is persistent instance method in Figure 8.12, is the first one added. A call to this
method activates the context and sets the new persistent attribute on true such that
Loader knows that it does not have to deactivate it between requests.

78 CHAPTER 8. PHENOMENAL RAILS

1 class Phenomenal::Context

2 attr_accessor :persistent

3 #DSL inside context definition

4 def is_persistent

5 self.persistent = true

6 activate

7 end

8 end

Figure 8.12 – Adding persistence to contexts.

The to path instance method is also added using the same technique. This method uses
the context name to find the matching folder in app phenomenal/. It is used by the view
adaptations mechanism described in Section 8.4.5.

8.4.5 Views Adaptation

render file

Return the first file

Find file using the default
behaviour of RoR resolver

Find file in all the active
contexts ordered

according to conflict
policy

Find file in all the inactive
contexts

if file is
found

Return an empty view

resolver is a
Phenomenal::Resolver

For each resolver in
view_path

resolver is the default
RoR resolver

Raise default missing
template exception

if file is
found

if file is
not found

when all the resolvers in view_path
 have been tried and file is still not found

Figure 8.13 – View rendering.

As described in Section 8.3.4 the Phenomenal Rails Gem allows to adapt any template or
partial simply by putting a file of the same name in the views/ folder of the appropriate
feature or context.

This is achieved by adding the custom resolver of Figure 8.14. In order to implement
this component, we inspired ourselves from the SQLResolver of J. Valim[Val11]. We
had to deal with caching and were confronted with other problems not covered by J.
Valim, and since the RoR framework implementation is much less documented than the

8.4. UNDER THE HOOD: CORE MECHANISMS 79

+ find_all
+ find_all_inactive
. initialize
. cached
. find_all_contexts
. query

Resolver

Singleton

ActionView::OptimizedFileSystemResolver

Figure 8.14 – Views Resolver.

framework usage, we also dug heavily in the RoR source code 3.

The view adaptation process is depicted in Figure 8.13. What we do is to subclass the
RoR resolver of Section 5.2.2 whose task is to find a view, in order to create a new one
that would be able to choose between different versions of a same view implemented in
different contexts or features.

This involves overriding not only the find all method to choose the appropriate folder
among all the active contexts using the conflict policy, but also the caching mechanism
of the parent class. In fact, RoR view caching is foreseen to store only one compiled
view per name since there cannot be multiple views with the same name. Thus we add
a per context view cache.

Our custom resolver is added to the resolver list (ActionController::Base.view path)
at application startup. This means that it executes before the RoR resolver but does
not replace it. If a view is not found in any feature, the standard resolver will search in
the base application.

+ find

& find_all_inactive

PathSet

Figure 8.15 – Path Set.

Another problem that we faced was that we wanted the application to raise errors if
a view was not defined. However, nothing has to be raised if a view exists only in an
inactive context or feature.

3https://github.com/rails/rails

https://github.com/rails/rails

80 CHAPTER 8. PHENOMENAL RAILS

This was achieved by opening the PathSet class of RoR in Figure 8.15. We also added
the find all inactive method to Resolver. Together, they allow to display nothing
if a view exists only in an inactive feature or context but still raise an error if the view
does not exists, thus avoiding unnoticed typos.

8.5 Limitations

The first limitation comes from the Phenomenal Gem because context activations are
not scoped to a specific thread, meaning that our gem cannot be used in a multi-threaded
implementation of Ruby, like JRuby, even though these servers are much more scalable.
(The activation of a context for one client would modify the behaviour of the applications
for other concurrent clients.)

Because we do not currently have a proceed mechanism for the views, this could lead
to some code duplication in adaptations since we cannot reuse the original behaviour.
Implementing this is very challenging because a way is required to efficiently access the
Document Object Model (DOM) of the HTML tree.

Currently, all contexts are deactivated before each request. It would be more efficient to
deactivate only the ones not needed by the new requests, but to achieve this, it would be
mandatory to activate all the contexts only in one place in an atomic action. Otherwise,
it would be impossible to know which difference of contexts exists between two requests.

The framework allows to override and define classes like controllers and models into
features, but there is no control over the order in which the files are loaded, thus prob-
lems will arise if multiple features override the same method. We need true structural
adaptations to do this in a clean and secure way.

Chapter 9

Development Approaches

Contents

9.1 Introduction . 81

9.2 Pair Programming . 81

9.3 Test-Driven Development . 82

9.4 Bad Smells Analysis . 83

9.5 Open Source . 83

9.6 Industrial Minded . 84

Give me a lever long enough and a fulcrum on which to place it, and I shall move the
world.

Archimedes

9.1 Introduction

For the development of the Phenomenal Gem we have tried to always use the best
practices in terms of architecture, testing, etc. This section will present our development
process, which was enhanced throughout the academic year, and the support tools we
used.

9.2 Pair Programming

As there is always more in two heads than in one, we applied the eXtreme Programming
(XP) pair programming principle for the entire framework development, at least until

81

82 CHAPTER 9. DEVELOPMENT APPROACHES

the last stages where all the functionalities were fixed. It may take more time at first
but it was important to achieve better code quality so as to reduce global development
time.

When real pair programming is not possible for some reason, it is crucial to remain in
touch and structure ideas. Campfire1, which is a team collaboration tool with real time
chat, proved most useful in this respect.

9.3 Test-Driven Development

The Ruby community has a great philosophy of Test-Driven Development (TDD). We
have always tried to write behavioural tests with the RSpec2 library before writing actual
code. This led to an extended test set that became very useful when we had to refactor
the Gem. Writing failing tests, writing code, checking that all tests pass is definitely a
must to avoid bugs in a software.

This TDD approach led to a set of 158 tests. We ran the SimpleCov3 coverage tool on
our test suite, and got a result of 94.89%, as presented in Figure 9.1.

Figure 9.1 – SimpleCov output insight.

We also use Travis-CI4, a continuous integration server. This service sends an e-mail
with the result of the test suite each time a new commit is pushed on the Git repository.
That way we never forget to run the tests and are sure that a commit does not break
anything.

1http://campfirenow.com/
2http://rspec.info/
3https://github.com/colszowka/simplecov
4http://travis-ci.org/#!/phenomenal/phenomenal

http://campfirenow.com/
http://rspec.info/
https://github.com/colszowka/simplecov
http://travis-ci.org/#!/phenomenal/phenomenal

9.4. BAD SMELLS ANALYSIS 83

9.4 Bad Smells Analysis

In addition to having code exempt from bugs we also aimed to have an as clean as
possible code. We use the Code Climate5 tool to monitor our code quality. This web
tool integrates directly into the Git repository and provides code metrics each time a
new commit is pushed.

As shown in Figure 9.2 we have only A grades and one B grade. These grades are a
measure of code complexity and duplication.

Figure 9.2 – CodeClimate results insight.

9.5 Open Source

Hoping that the produced software would still be used after this thesis, we open sourced
our project on GitHub6. This approach is a great motivation for us to apply the best
practice developed above. The steps we followed to add a new functionality are listed
below:

1. Create a branch with the name of the functionality.

2. Create tests and code for this functionality.

3. Initiate a Pull Request on GitHub, and solve the problems notified by other de-
velopers through the commit comments.

4. Merge the branch in master, once the functionality is completely implemented and
all the tests pass.

5. Iterate for the next functionality.

5https://codeclimate.com/
6https://github.com/organizations/phenomenal

https://codeclimate.com/
https://github.com/organizations/phenomenal

84 CHAPTER 9. DEVELOPMENT APPROACHES

9.6 Industrial Minded

The Phenomenal Gem has two main development priorities: to provide a complete
Context-Oriented Programming (COP) system and be as developer-friendly as possible.
The second point is very important because if we want to bring COP out of the research
labs, we have to provide something very clean and easy to use. This is why developing
the Domain Specific Language (DSL) associated with the framework is time-consuming,
because we always have to trade off functionality against Ruby and Ruby on Rails
conventions.

Part III

Validation

85

Chapter 10

Benubo

Contents

10.1 Introduction . 88

10.2 Motivation . 88

10.3 Analysis . 89

10.3.1 Foreword . 89

10.3.2 Requirements . 89

10.4 Refactoring . 91

10.4.1 Budget Feature . 92

10.4.2 Contact Feature . 93

10.4.3 Invoice Feature . 94

10.5 Feature as a Service . 95

10.5.1 Base Feature . 95

10.5.2 Invoice and Contact Features Interactions 96

10.5.3 Trial Context . 98

10.5.4 Debug Feature . 99

10.6 Feedback from Belighted . 100

10.7 Conclusion . 101

The best frameworks are in my opinion extracted, not envisioned. And the best way to
extract is first to actually do.

David Heinemeier Hansson

87

88 CHAPTER 10. BENUBO

10.1 Introduction

In this chapter we will explain how to use the Phenomenal Rails Gem through an in-
dustrial case-study. Starting from the application developed by our industrial partner,
we will analyse its needs in terms of contexts and features. Next, we will illustrate the
refactoring process and how the application moved from a Software as a Service (SaaS)
to a Feature as a Service (FaaS). In this chapter some general refactoring tips will also
be given.

10.2 Motivation

Belighted founded in 2008 at Louvain-La-Neuve by Nicolas Jacobeus specializes in Ruby
on Rails (RoR) technologies. Since then, Belighted has developed its capabilities around
three main domains: web applications, web site development and RoR expertise. Al-
though still young, Belighted is very ambitious and aims to become a major player in
Europe for business web application development with RoR technologies.

Thanks to its office located in Louvain-la-Neuve and its very enthusiastic staff, Belighted
collaborates closely with the Université catholique de Louvain (UCL). Indeed, Belighted
offered us the opportunity to use as validation application their brand new web applica-
tion Benubo1. They also provided us feedback about our Phenomenal Gem throughout
its development. Moreover, their experience in the industry and their feedback helped
us to develop our framework in order to make it developer-friendly.

Benubo is a SaaS Enterprise Resource Planning (ERP) built to manage Small and
Medium Enterprise (SME) activities in a single tool. This tool embeds several func-
tionalities represented in Figure 10.1:

Figure 10.1 – Benubo functionalities.

1http://benubo.com/ , the application code cannot be shown entirely because it belongs to Belighted.

10.3. ANALYSIS 89

• Staff planning : allocates the resources on projects.

• Project management : follows the progress of the projects.

• Invoicing : sends invoices and acknowledge payments.

• Team management : monitors team’s activity.

• Contact management : manages customers, suppliers and partners.

• Budget : checks profitability and sales progress.

10.3 Analysis

10.3.1 Foreword

Benubo is built as a monolithic application, which means that the functionalities are not
modularized. In fact, RoR enforces the use of a single Model-View-Controller (MVC)
pattern, and thus does not provide a straightforward way to modularize those function-
alities. This choice is fine for small applications but becomes increasingly poor as they
grow.

Therefore, with such a design, functionalities are much harder to maintain because
there exist no boundaries among them. To address this problem we identify the different
functionalities in Section 10.3.2. Once these are identified, they can then be modularized
easily in features with the Phenomenal Rails Gem as explain in Section 10.4.

The Phenomenal Rails Gem refactoring then allows to tackle a common challenge of
today’s SaaS which is the run-time user customization, explained in Section 10.5. One
solution to this challenge is the use of scattered conditional statements across the views,
models and controllers of the application. Another one is to maintain one code base per
user type, for example per company, using a Software Product Line (SPL). These two
solutions, however, make it difficult to maintain the application.

10.3.2 Requirements

Feature Analysis

In order to identify the features we refine the application through generalization (see
Section 3.3.2). This ends with the division of the application into a base application and
several optional features, illustrated in Figure 10.2. The base application is able to run
by itself and contains only the functionalities common to all users of the application.

Optional features are independent and can be activated according to customer needs or
their financial capabilities. Furthermore, thanks to the dynamic adaptation approach of
the Phenomenal Rails Gem, these conditional activations can be performed at run-time
for each user.

90 CHAPTER 10. BENUBO

Figure 10.2 – Benubo with extracted Invoice, Budget and Contact features.

Guideline

Identify all the features from the application using the generalization mecha-
nism. Wich functionalities can be removed from the application in order to make the
base application less specific?

Feature Interaction Analysis

We have to be careful about possible interactions among features. Those kind of inter-
actions are not an issue for the initial application because all the features are always
active. However, as all the features have to be able to run either independently or in
synergy, interactions need to be managed.

An illustration of this is the interaction between the invoice feature and the contact
feature. Basically, the invoice feature uses the contact feature to retrieve the contact to
which the invoice is addressed. However, as the former has to work without the latter,
the contact selection must be replaced by a basic independent behaviour. In this case,
the basic behaviour is a simple text field used to enter manually the complete address
of the contact.

Guideline

Identify all the feature interactions from the application. Which functionalities
need another one to do its job? What are the emerging behaviours resulting from
the combination of features? What features are mutually exclusive?

10.4. REFACTORING 91

Context Analysis

While the features aim to reify functionalities in applications, contexts on their side aim
to adapt the behaviour of these features without adding new functionalities.

An example of Benubo’ need for contexts is to have a context for each country. Indeed,
the invoice feature has several behaviours that have to be modified depending on the
country. For example, for the computation of the Value Added Tax (VAT), all the coun-
try contexts are combined with the invoice feature. A counter example is the language
of the application. Since the main goal of Context-Oriented Programming (COP) is
behavioural adaptation, the internationalization provided by RoR is a better solution.

Another example is the trial context that adapts features in order to limit their capa-
bilities until users buy the application. Each feature can be combined with this trial
context to define what its limited capabilities are.

Guideline

Identify all the contexts from the application. What functionalities need some
changes of behaviour because of change in the environment such as location, network
availability, etc ?

10.4 Refactoring

In this section, we present the actual refactoring of Benubo on the basis of the analysis
made in Section 10.3. As mentioned in Section 10.3.1 the RoR architecture is based on
a single MVC for the entire application. Thanks to the Phenomenal Rails Gem, each
feature is organized in its own MVC.

Concretely, this refactoring implies moving from the file structure depicted in Figure 10.3
to the one in Figure 10.4. For clarity reasons, some folders, not relevant to the imple-
mentation, are hidden from theses figures.

▼ app

► controllers

► models

► views

Figure 10.3 – Benubo file structure.

As a result, all the features are now in the app phenomenal/ folder and are represented
by a folder with the feature’s name. In addition, since the main goal of this section is
to modularize the original application and keep maintain its behaviour, all features are
persistent, meaning that they are always active for all users.

92 CHAPTER 10. BENUBO

▼ app

► controllers

► models

► views

▼ app_phenomenal

► base_feature

► budget_feature

► contact_feature

► debug_feature

► invoice_feature

Figure 10.4 – Refactored Benubo file structure.

Guideline

A good convention to adopt is to define features or contexts into a Ruby file
with the same name as the containing folder.

10.4.1 Budget Feature

▼ budget_feature

budget_feature.rb

▼ controllers

budgets_controller.rb

▼ views

▼ budgets

show.html.haml

▼ layouts

_feature_menu.html.haml

Figure 10.5 – budget feature files.

1 feature :BudgetFeature do

2 is_persistent

3 end

Figure 10.6 – budget feature.rb

The budget feature folder is shown in Figure 10.5. The main file budget feature.rb

shown in Figure 10.6 defines the persistent feature in the system.

The controllers and views folders contain the original files moved from the base appli-
cation MVC.

In addition to the original files, feature menu.html.haml shown in Figure 10.7, is a
new partial view that contains the budget menu entry. As a result, the entire code
concerning the feature is only in its own folder. The menu view of the application is

10.4. REFACTORING 93

composed of the base menu and the features menu as shown in Figures 10.8 and 10.9.
In Figure 10.9 the parameter :feature is used to enforce rendering of the file of the
specified feature.

1 %li{:class => is_selected(’budgets’)}

2 =link_to t(’menu.budget’), company_budget_path(current_user.company)

Figure 10.7 – feature menu.html.haml in budget feature.

1 =render "layouts/menu_logged_base"

2 =render "layouts/features_menu"

Figure 10.8 – menu logged.html.haml in the base application.

1 =render :partial=>"layouts/feature_menu",:feature=>:ContactFeature

2 =render :partial=>"layouts/feature_menu",:feature=>:BudgetFeature

3 =render :partial=>"layouts/feature_menu",:feature=>:InvoiceFeature

Figure 10.9 – features menu.html.haml in the base application.

10.4.2 Contact Feature

▼ contact_feature

contact_feature.rb

▼ controllers

contacts_controller.rb

▼ models

contact.rb

▼ views

▼ contacts

...

▼ layouts

_feature_menu.html.haml

Figure 10.10 – contact feature files.

The contact feature folder is shown in Figure 10.10. The main file contact feature.rb

shown in Figure 10.11 defines the persistent feature in the system.

The controllers, models and views folders contain the original files moved from the base
application MVC.

In addition to the original files, the purpose of feature menu.html.haml shown in
Figure 10.12 is the same as the one defined for budget feature.

94 CHAPTER 10. BENUBO

1 feature :ContactFeature do

2 is_persistent

3 end

Figure 10.11 – contact feature.rb

1 %li{:class => is_selected(’contacts’)}

2 =link_to t(’menu.contacts’), company_contacts_path(current_user.company)

Figure 10.12 – feature menu.html.haml in contact feature.

▼ invoice_feature

invoice_feature.rb

▼ controllers

invoices_controller.rb

▼ models

invoice.rb

invoice_line.rb

▼ views

...

▼ layouts

_feature_menu.html.haml

Figure 10.13 – invoice feature files.

10.4.3 Invoice Feature

The invoice feature folder is shown in Figure 10.13. The main file invoice feature.rb

shown in Figure 10.14 defines the persistent feature in the system.

The controllers, models and views folders contain the original files moved from the base
application MVC.

In addition to the original files, the purpose of feature menu.html.haml shown in
Figure 10.15 is the same than the one defined for invoice feature.

1 feature :InvoiceFeature do

2 is_persistent

3 end

Figure 10.14 – invoice feature.rb

1 %li{:class => is_selected(’invoices’)}

2 = link_to t(’menu.invoices’), company_invoices_path(current_user.company)

Figure 10.15 – feature menu.html.haml in invoice feature.

10.5. FEATURE AS A SERVICE 95

Guideline

A requirement to facilitate the usage of the framework is to avoid having big
and monolithic views. Thanks to the partial views of RoR, separating views into
several partial views is really easy. Once the applications views are well separated,
using our views adaptation mechanism explained in Section 8.3.4 is very efficient.

10.5 Feature as a Service

After the refactoring of Section 10.4 we are now ready to exploit the full potential of our
Phenomenal Rails Gem. On the basis of the traditional SaaS, we add in this section the
capability to activate features per user at run-time, which is what we call FaaS.

Thanks to this dynamic adaptation of behaviour, we add interesting behaviour like the
trial context and the debug feature. The former is combined with the features to limit
their capabilities until the user has paid for the application. The latter aims to help the
developer by adding debugging information to the application.

Figure 10.16 – Features selection with all features activated.

10.5.1 Base Feature

This persistent feature embeds all the logic needed to activate the features depending
on the user. Its file structure is depicted in Figure 10.18.

The file base feature.rb shown in Figure 10.19 contains the activation condition

block that adds behaviour to the middleware in order to retrieve the active features
for the user’s company and activate them. Furthermore, it also adapts two methods of
CompaniesController to be able to save the selected features for each company. To
keep the example simple, active features for each company are stored in the database
using Comma-Separated Values (CSV).

96 CHAPTER 10. BENUBO

Figure 10.17 – Features selection with all features deactivated. All the features are
hidden in the menu.

▼ base_feature

base_feature.rb

▼ views

▼ companies

_features_tab.html.haml

_features_tab_header.html.haml

▼ layouts

_features_menu.html.haml

_menu_logged.html.haml

Figure 10.18 – base feature files.

This feature also adapts the menu view to avoid having code concerning features in
the base application. As shown in Figure 10.20, the base application does not contain
references to the features any more. Thanks to the view adaptation mechanism, the file
menu logged.html.haml shown in Figure 10.21 of the base feature is rendered in place
of the one of the base application. The file features menu.html.haml from Figure 10.9
is now moved from the base application to the base features views.

Now that the base feature activates dynamically the other features, the is persistent

line is removed from contact feature, invoice feature and budget feature.

10.5.2 Invoice and Contact Features Interactions

Using combined features, we can add specific behaviour when both invoice feature and
contact feature are active at the same time. The file structure used to achieve this is
shown in Figure 10.22.

When invoice feature alone is active, the invoice contact has to be manually entered each
time through two text form fields, name and address, as shown in Figure 10.23. Once

10.5. FEATURE AS A SERVICE 97

1 feature :BaseFeature do

2 is_persistent

3 activation_condition do |env|

4 if env[’HTTP_ACCEPT’].to_s.include?("text/html")

5 user_id = env["rack.session"]["warden.user.user.key"].try(:at,1).try(:at,0)

6 if user_id

7 company=User.find(user_id).company

8 company.features.try(:split,";").try(:each) do |f|

9 activate_context f.to_sym

10 end

11 end

12 end

13 end

14 adaptations_for CompaniesController

15 adapt :edit do

16 proceed

17 @features = @company.features.try(:split,";")||""

18 end

19 adapt :update do

20 params[:company][:features]=params[:company][:features].try(:join,";")

21 proceed

22 end

23 end

Figure 10.19 – base feature.rb

1 =render "layouts/menu_logged_base"

Figure 10.20 – menu logged.html.haml in the base application.

1 =render "layouts/menu_logged_base"

2 =render "layouts/features_menu"

Figure 10.21 – menu logged.html.haml in base feature.

contact feature is also active, we use it to specify the invoice contact through a single
select form field, as shown in Figure 10.24. The latter file overrides the former when
both features are active.

In order to validate form entries, RoR uses validations on models. The method vali-

dates contact of Figure 10.25 illustrates such validation. Since the combined feature
does not use the same fields, both validation and the method used to represent the
contact have to be adapted. Figure 10.26 shows theses adaptations for the Invoice

model.

98 CHAPTER 10. BENUBO

▼ invoice_feature

▼ contact_feature

invoice_contact_feature.rb

▼ views

▼ invoices

_contact_fields.html.haml

invoice_feature.rb

▼ controllers

invoices_controller.rb

▼ models

invoice.rb

invoice_line.rb

▼ views

▼ invoices

_contact_fields.html.haml

...

▼ layouts

_feature_menu.html.haml

Figure 10.22 – [invoice feature, contact features] files.

1 =f.text_field :contact_name

2 =f.text_area :contact_address , :rows=>3

Figure 10.23 – contact fields.html.haml in invoice feature.

1 =f.select :contact_id,

2 options_from_collection_for_select(@invoice.company.contacts,

3 :id,

4 :name,

5 @invoice.contact_id),

6 :prompt=>true

Figure 10.24 – contact fields.html.haml in [invoice feature, contact feature].

Guideline

Structure the phenomenal app folder in a consistent way. First, each context
has its own folder of the same name. Secondly, in this folder, a file with the contexts
name defines this context in the system. Thirdly, features files are organized like
in RoR, inside models, views and controllers folders. Finally, in case of context
combination, the context used by another one is defined in a sub-folder of the latter.

10.5.3 Trial Context

As an example for the trial context, Figure 10.28 shows how the capabilities of the contact
feature can be easily limited. Therefore, the ContactController is adapted to avoid

10.5. FEATURE AS A SERVICE 99

1 class Invoice < ActiveRecord::Base

2 ...

3 def validates_contact

4 errors.add(:contact_name, t(errors.messages.blank)) if contact_name.blank?

5 errors.add(:contact_address, t(errors.messages.blank)) if contact_address.blank?

6 end

7 def contact_representation

8 "#{contact_name}
 #{contact_address}"

9 end

10 end

Figure 10.25 – invoice.rb model in invoice feature.

1 feature(:InvoiceFeature,:ContactFeature) do

2 adaptations_for Invoice

3 adapt :validates_contact do

4 errors.add(:contact, t(errors.messages.empty)) if contact.nil?

5 end

6 adapt :contact_representation do

7 if contact.nil?

8 # Call the original behaviour when the invoice

9 # was first created without the contact feature

10 proceed

11 else

12 "#{contact.name}
 #{contact.formatted_address}
 #{contact.email}"

13 end

14 end

15 end

Figure 10.26 – invoice contact feature.rb

addition and edition of contacts. The file structure used for this context is shown in
Figure 10.27

10.5.4 Debug Feature

Because it is useful to know which contexts are active at a specific time. We introduce the
debug feature. When this feature is active, the graphical view illustrated in Section 7.3.1
is generated and displayed at the bottom of the application.

100 CHAPTER 10. BENUBO

▼ contact_feature

contact_feature.rb

▼ controllers

contacts_controller.rb

▼ models

contact.rb

▼ trial_context

trial_context.rb

▼ views

▼ contacts

...

▼ layouts

_feature_menu.html.haml

Figure 10.27 – contact feature files with trial context.

1 feature :ContactFeature do

2 context :TrialContext do

3 trial_behaviour = Proc.new do

4 flash[:error] = "This action is not avalaible in trial mode"

5 redirect_to company_contacts_path(current_user.company)

6 end

7

8 adaptations_for ContactsController

9 adapt :new, &trial_behaviour

10 adapt :edit, &trial_behaviour

11 adapt :create, &trial_behaviour

12 adapt :update, &trial_behaviour

13 end

14 end

Figure 10.28 – invoice contact feature.rb

▼ debug_feature

debug_feature.rb

▼ views

▼ layouts

_debug.html.haml

Figure 10.29 – debug feature files.

10.6 Feedback from Belighted

The aim of Benubo is to provide small companies with a complete toolset to manage
all their internal business processes online. We are convinced that not all companies
will want to use every feature of Benubo, and therefore the possibility to select desired
features on a per-client basis is essential to us.

10.7. CONCLUSION 101

We had the opportunity to test the Phenomenal Gem, and discuss it with its creators,
while developing the prototype version of Benubo. We found it to be an interesting,
innovative approach to the aforementioned problem, which is typical of SaaS tools. We
are used to service-oriented architectures, which help decompose an application into
multiple services, each responsible for a feature. However, the COP approach promoted
by the Phenomenal Gem has the advantage of allowing us to keep the application in a
single code base and run-time environment, while still being able to separate logically
the various functionalities and activate them on demand.

Some validation is still required, as the solution is rather young and we have yet to test
its maintainability in a real-world production environment. However, we are convinced
of its potential, and would be interested in seeing the Phenomenal Gem promoted in
open-source communities.

Nicolas Jacobeus

10.7 Conclusion

As shown in Sections 10.4 and 10.5, the refactoring of an application with the Phenome-
nal Rails Gem is very straightforward. Once the refactoring is done, the implementation
of the application is better organized and can easily be turned into a FaaS application.

One reason why the refactoring is so easy is because we keep all the RoR basic. The
MVC architecture is also present in feature folders. The extension of the lazy loading and
of the rendering mechanism explained in Chapter 8, eases the modularization without
requiring any change to the base application code, whereas before the refactoring, it
was difficult to see where feature-specific files were located. With the new feature file
structure in app phenomenal, mapping between features and their files is now obvious.

The main contribution of the Phenomenal Rails Gem to Benubo is its ability to acti-
vate features dynamically depending on the user. This means that a single application
instance is able to serve many users with different needs, and still remain very easy to
maintain thanks to the improved modularization.

102 CHAPTER 10. BENUBO

Chapter 11

Benchmarks

Contents

11.1 Introduction . 103

11.2 Phenomenal . 103

11.3 Phenomenal Rails . 108

11.4 Conclusion . 109

There are lies, damned lies, and statistics.

Benjamin Disraeli

11.1 Introduction

In this chapter, we will assess the cost of using the framework in terms of performance.
We will compare the efficiency of a simple application implemented in three ways. The
first uses a Context-Oriented Programming (COP) approach through Phenomenal Gem,
the second is based on conditional statements and the third uses the Strategy Pattern.
Chapter 10 compared Benubo in terms of modularity with and without the Phenomenal
Rails Gem. We will reuse it to compare the performance of the original, the refactored
and the Feature as a Service (FaaS) implementations.

11.2 Phenomenal

Since COP provides a new way of adapting software behaviour, two common alternatives
are used to compare our framework performance. The straightforward way of achieving

103

104 CHAPTER 11. BENCHMARKS

behaviour adaptations in current programming languages is with hard-coded conditional
statements. However, these statements induce tangled and scattered code which is very
hard to change afterwards. A common Object-Oriented (OO) pattern to avoid this, is
by using the Strategy Pattern [Gam95] which allows to change an algorithm at run-time.
The problem is that it creates an infrastructural burden and the adaptations points have
to be foreseen. The question is, whether the cost in terms of performance is lower than
the code quality gain.

1 class Foo

2 def meth(mode)

3 if mode==0

4 0

5 elsif mode==1

6 1

7 ...

8 elsif mode==K

9 K

10 end

11 end

12 end

Figure 11.1 – Conditional statements implementation.

In order to answer this, we use the same benchmark as in Subjective-C [GCM+11], by
measuring the difference in execution time between equivalent applications operating
in several different operation modes. The latter represents different behaviours of the
application which are simply a different integer returned for each mode.

In addition to the hard-coded conditional statements (Figure 11.1) and the Phenomenal
Gem (Figure 11.2) version, we added one that uses the Strategy pattern (Figure 11.3).
With the Phenomenal Gem approach, operation modes are represented by different con-
texts adapting the same method. The second version uses one method that contains one
big conditional statement (with a parameter) and finally, the Strategy Pattern version
uses one Strategy class per operation mode. The test method meth simply returns an
integer, whose cost is negligible, meaning that the main cost is the evaluation of the
conditions, the activations of the contexts or the additional method call for the Strategy
Pattern.

The applications have K +1 mode of operations (the default one plus K adaptations).
For sufficiently large values of K, the cost of testing the branches becomes considerable.
With Phenomenal Gem there is no additional cost once the adapted method is deployed
and with the Strategy Pattern a small cost occurs at strategy switching, as well as
another small cost for each call due to the added level of indirection.

To measure the difference between the three versions, we call the meth method M times

11.2. PHENOMENAL 105

1 class Foo

2 def meth

3 0

4 end

5 end

6 context :1 do

7 adaptations_for :Foo

8 adapt :meth do

9 1

10 end

11 end

12 ...

13 context :K do

14 adaptations_for :Foo

15 adapt :meth do

16 K

17 end

18 end

Figure 11.2 – Phenomenal implementation.

1 class Foo

2 attr_accessor :strategy

3 def meth

4 strategy.recieve

5 end

6 end

7 class Strategy1

8 def recieve

9 1

10 end

11 end

12 ...

13 class StrategyK

14 def recieve

15 K

16 end

17 end

Figure 11.3 – Strategy pattern implementation.

for every change of operation mode. The graphical result of the comparison between
the three approaches is shown in Figure 11.4, for K=50 and for 50 changes of operation

106 CHAPTER 11. BENCHMARKS

mode.1 In the case illustrated in Figure 11.4, all the versions grow linearly with the
number of method call per operation modes but the contexts and strategies have a much
less slope than the conditional statements version. After 250 method calls per operation
mode, the COP approach is more efficient than the conditional one.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

S
ec

o
n
d
s

Number of method calls per operation mode

ifs
strategies
contexts

Figure 11.4 – Evolution of execution time with respect to the number of method calls
per operation mode (M). With a fixed K =50 and 50 changes of operation modes.

This result is very interesting because it means that, in addition to providing a cleaner
code, Phenomenal Gem is more efficient than the old conditional statements solution
and while providing adaptations capabilities that have not to be foreseen, it achieves
performance similar to the Strategy Pattern for a large number of operation modes.

Figure 11.5 illustrate how the execution time evolves while increasing the number of
operation modes (K), for a fixed number of method call per operation mode (M =2000)
and a number of changes of operation modes per K values of 500. It can be seen that
the Phenomenal Gem and Strategy approaches remain stable while the solution with
conditional statements grows linearly.

After these comparison tests, we conducted some more specific benchmarks of the Phe-
nomenal Gem. Firstly, Figure 11.6 shows the context activation time with respect to
the number of adaptations that it contains. It can be seen that this grows exponentially
because each adaptation activation uses a sort for the conflict resolution that is more
than linear.

Finally, Figure 11.7 shows the execution time of a method call that uses the proceed

method. The main cost is due to the binding of adaptations to the current instance. In
fact, another test showed us that the BasicObject#instance exec Ruby method used
to bind adaptations implementations dynamically is about 3 times as slow as a normal

1The tests are run on an Intel Core 2 Duo T9400 @ 2.53Ghz computer with Ubuntu 11.04 on the
Matz’s Ruby Interpreter (MRI) version 1.9.2p180.

11.2. PHENOMENAL 107

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400 450 500

S
ec

o
n

d
s

Number of operation modes

ifs
strategies
contexts

Figure 11.5 – Evolution of execution time with respect to the number of operations
modes (K). With a fixed M =2000 and 500 changes of operations modes.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250

S
ec

o
n
d

s

Number of adapted methods

Method

Figure 11.6 – Evolution of one context activation time with respect to the number of
adapted methods it contains.

method call. Furthermore, the combination of UnboundMethod#bind and Method#call

used to restore temporarily the default behaviour during the proceed call is about 4
times as slow as the normal method call. While a deployed adaptation call does not cost
more than a normal call, the use of proceed avoids code duplication at a linear cost
with respect to the number of adaptations active for the same method.

108 CHAPTER 11. BENCHMARKS

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 20 40 60 80 100

S
ec

o
n

d
s

Number of active adaptations

proceed

Figure 11.7 – Evolution of execution time of a method call with respect to the number
of adaptations active for the same method. All adaptations using a proceed call.

11.3 Phenomenal Rails

The benchmarks of Section 11.2 give us an idea of some of Phenomenal Gem’s per-
formance. In order to further assess the Phenomenal Rails Gem capabilities, we used
the Benubo application presented in Chapter 10. We compare the number of responses
per second achieved by the Ruby on Rails (RoR) server while increasing the number of
requests per second. This comparison was conducted on three different versions, which
are the original versions provided by Belighted, the refactored one from Section 10.4
and finally, the FaaS version from Section 10.5. Figure 11.8 shows the results of the
experiment2.

From the graph in Figure 11.8 we can conclude that, although the Phenomenal Rails
Gem leads to a small performance penalty, this is not significant for medium size web
applications and provides new capabilities (FaaS) in addition to enhancing code struc-
ture. Furthermore, this performance penalty would hardly be noticed by the end-user
compared to the enhanced customisation he will get.

The difference between the FaaS and Refactoring curves in Figure 11.8 comes from the
fact that in the former, contexts are not persistent any more and thus, must be activated
for each request. Furthermore, the difference between the Refactoring and the Original
curves is due to the view adaptation mechanism detailed in Section 8.4.5.

2Conducted on an Intel Core 2 Duo T9400 @ 2.53Ghz server with Ubuntu 11.04 on the MRI version
1.9.2p180 and with RoR version 3.2.1. We used a single instance Mongrel (http://rubydoc.info/gems/
mongrel/1.1.5/frames) web server version 1.2.0.pre2 in production mode with the deamon option (-d).
The clients were simulated with the Httperf (http://www.hpl.hp.com/research/linux/httperf/) tool
on an Ubuntu 11.04 computer with an Intel Pentium 4 @ 2.8 Ghz processor. The client and server were
interconnected through a 100 Mb/s Local Area Network (LAN).

http://rubydoc.info/gems/mongrel/1.1.5/frames
http://rubydoc.info/gems/mongrel/1.1.5/frames
http://www.hpl.hp.com/research/linux/httperf/

11.4. CONCLUSION 109

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

 10.2

 10 100 1000

S
ec

o
n
d

s

Number of response per seconds

Time

Original
Refactoring

FaaS

Figure 11.8 – Evolution of the number of responses per second for the three implemen-
tations of Benubo on the home page.

11.4 Conclusion

The Phenomenal Gem is most useful when the number of contexts switches are relatively
small with respect to the number of calls of adapted methods. For that matter, usual
applications are likely to fit this rule, since such context switches are normally linked to
external events.

When using this framework, one should try to avoid too fine-grained contexts that often
have to be (de)activated. In addition, since the proceed mechanism is linear, it should
be used whenever possible, to avoid code duplication.

In case of the Phenomenal Rails Gem is only used for modularization, the application
developer must trade off performance cost with code quality enhancement. From our
point of view, if Phenomenal Rails Gem is used to build FaaS applications, the user-
experience gain from the dynamic behaviour adaptation will be greater than the loss in
performance.

We have learned thanks to Benubo that the contexts of real world applications need a
limited number of adaptations. The penalty incurred by the exponential activation time
of contexts shown in Figure 11.6 is thus limited. As a result, the framework is sufficiently
efficient for standard RoR applications.

110 CHAPTER 11. BENCHMARKS

Part IV

Conclusion

111

Chapter 12

Future Work

Contents

12.1 Introduction . 113

12.2 Phenomenal . 114

12.2.1 Structural Adaptations . 114

12.2.2 Relationships Set . 114

12.2.3 Thread Specific Context . 114

12.2.4 Proceed Improvement . 114

12.3 Phenomenal Rails . 114

12.3.1 Activation Optimization . 114

12.3.2 Proceed for Views . 115

And no, we don’t know where it will lead. We just know there’s something much bigger
than any of us here.

Steve Jobs

12.1 Introduction

As nothing is perfect, there is always room for improvement, especially in computer
sciences, and our framework is no exception to the rule. In this chapter, we will develop
all the points from the more high-level to the lowest implementation issues that are
subject to improvement. The following points stew from our own reflection on the topic,
but we hope that other will come from the community of users, once we have put our
implementation on the Web.

113

114 CHAPTER 12. FUTURE WORK

12.2 Phenomenal

12.2.1 Structural Adaptations

We have only developed behavioural adaptation for our framework. But as we dealt
with adding and removing features at run-time, it will be useful to have the capability
to also add/remove methods and classes at run-time. We have already started to think
about how to add this capability but, for want of time, we have not implemented this
functionality.

12.2.2 Relationships Set

Until now, we have implemented three relationships: requirement, suggestion and im-
plication. However, other relationships can be very useful. Thanks to the fact that we
always thought about extensibility, adding relationships to the framework is very easy.

12.2.3 Thread Specific Context

When we started to develop our framework, we did not intent to focus on multi-threading
applications, because the Matz’s Ruby Interpreter (MRI) does not deal very well with
them. However, since other Ruby interpreters available which operate very well with
real multi-threading, we have changed our mind. Indeed, it will be interesting to have
contexts that are not global but specific to each thread.

12.2.4 Proceed Improvement

The proceed mechanism is implemented through a “hack” because of the poor reifica-
tion of the calling stack in Ruby. Improvements should be made on this mechanism.
Concretely, to improve the implementation, we need to find a way to remove the actual
“hack”. Furthermore, as shown in Chapter 11, the proceed mechanism is about four
times as slow as a simple method call. Thus, in addition to removing the “hack”, some
implementation optimizations may be possible.

12.3 Phenomenal Rails

12.3.1 Activation Optimization

The requests to the web servers are handled in such a way that we need to deactivate
all the contexts and then activate the right ones for each request. Another approach
could be to deactivate only the contexts that are not needed any more. But as the
(de)activation of all the contexts is not an atomic action, it is impossible to distinguish
the difference of contexts between requests.

12.3. PHENOMENAL RAILS 115

12.3.2 Proceed for Views

As the proceed mechanism is very useful for methods, we think that this could also be
the case for views in a Ruby on Rails (RoR) application. The main issue is that the views
can use different templating systems like Embedded Ruby (ERB) or HTML Abstraction
Markup Language (HAML). Because of this, such a mechanism would probably have to
work on the produced Document Object Model (DOM), but we have not investigated
these possibilities yet.

116 CHAPTER 12. FUTURE WORK

Chapter 13

Conclusion

Contents

13.1 Contributions . 117

13.2 General Conclusion . 119

Adapt or perish, now as ever, is Nature’s inexorable imperative.

H. G. Wells

The main problem addressed in this thesis was the lack of existing support for dy-
namically adaptable applications in the Ruby programming language as well as web
applications with Ruby on Rails (RoR). Developing such applications was possible but
could very quickly have led to poor design and messy code. For that purpose, we in-
troduced the Phenomenal Gem, a Ruby based Context-Oriented Programming (COP)
framework extended with some notions of Feature-Oriented Programming (FOP). This
framework allows developers to handle contexts and features as first-class entities. As
a result, they can handle behaviour adaptations in a straightforward and modular way
and are put in the right frame of mind to build highly dynamic applications.

13.1 Contributions

While the actual implementation of the Phenomenal Gem and Phenomenal Rails
Gem (web integration) are the main contributions of this thesis, their development has
led to several new notions or extension of existing ones.

The notion of Context as a Feature (CaaF) brings the feature concept from the FOP

117

118 CHAPTER 13. CONCLUSION

into the COP paradigm. This means that a feature is a context and refines it by adding
the responsibilities of handling relationships. This notion provides a better structure of
dynamically adaptable applications than if we only had contexts.

The visualiser tool is a first step to a debugging eco-system for COP development. To
our knowledge, it is the first automated run-time representation of COP applications.

The activation condition notion that extends CaaF in the Phenomenal Rails Gem is
a structured way of handling Context Discovery which is often omitted in other imple-
mentations. Furthermore, in addition to the relationships management, features become
responsible for the activation of their sub-contexts.

The validation case-study on Benubo proved that the presented concepts and their
implementation are actually useful in a real application. In addition to this, this case-
study has led to the notion of Feature as a Service (FaaS). Half-way between
implementation guidelines and marketing needs, FaaS pushes the idea of Software as a
Service (SaaS) further and allows to sell sub-components of an application. Thanks to
the CaaF and the integration work done by the Phenomenal Rails Gem, FaaS can be
achieved in a straightforward way.

The Domain Specific Language (DSL) defined with the framework provides a clear
syntax for handling the notions reified by the framework.

The chapters listed below highlight their contribution to this thesis:

• Chapter 2 introduces the COP paradigm and helps to understand its basics.

• Chapter 3 introduces the relatively similar FOP paradigm and with Chapter 2
gives an overview of the theoretical foundation of the thesis.

• Chapter 4 presents the Ruby programming language and the reasons why we choose
it for the implementation.

• Chapter 5 presents the same reasons and advantages for the RoR web framework
used later for our case-study.

• Chapter 6 presents Subjective-C and contextR, two other COP implementations
as well as rbFeature, a FOP implementation in Ruby. These frameworks help us
to build ours.

• Chapter 7 introduces the core part of the thesis. In addition to presenting the
developed concepts for the Phenomenal Gem and formal semantics for them, it
also presents the architecture and core mechanisms of the framework.

• Chapter 8 presents the concepts of the Phenomenal Rails Gem and the core mech-
anisms.

13.2. GENERAL CONCLUSION 119

• Chapter 9 presents the approaches used for the software development of the thesis.

• Chapter 10 validates the concepts and implementations by refactoring a SaaS
Enterprise Resource Planning (ERP).

• Chapter 11 assesses the performances achieved by the implementation and proves
that, while easy adaptability comes at a cost, this cost is not overwhelming.

13.2 General Conclusion

More than one year ago, we started to work on a first COP framework in Ruby as a
project for the Programming Paradigms course of Professor Kim Mens. We already
knew that it would become our Master thesis subject and we started to think about the
Benubo case-study with Belighted at the same period.

This long term work represented an major challenge from the beginning. It ended with a
new Ruby COP framework able to adapt the behaviour of any application with only one
command. While this enhanced adaptability has a cost, the benchmarks and validation
case-study showed that, at least for a reasonable number of adaptations, the performance
cost is not noticeable by the end-user.

Along with the framework implementations, several COP concepts have been revisited
and a first step was taken towards the merging of the COP and FOP paradigms. This
led to the notion of CaaF which sees a feature as being a context. From the application
of this notion emerged the new FaaS approach for developing highly customizable web
applications. The refactoring of the RoR Benubo application and the feedback from
Belighted finally gave us the opportunity to direct our research close to industrial needs.
We really have good hope that our end-product will leave the research labs and we plan
to continue to maintain and promote it in the years to come.

120 CHAPTER 13. CONCLUSION

Appendix A

Application Programming
Interface

This appendix introduces the DSL available to the framework user. The full RubyDoc
is available on http://rubydoc.info/gems/phenomenal/frames.

A.1 Phenomenal Gem Version 1.2.2

A.1.1 Contexts Management

phen context(context[,contexts...],&block) → context

context(context[,contexts...],&block) → context

Defines a new (combined) context.

phen feature(context[,contexts...],&block) → feature

feature(context[,contexts...],&block) → feature

Defines a new (combined) feature.

adaptations for(klass) → klass

Must be called in the body of a context or feature, defines the class for which the
following adaptation defined with adapt and adapt class belong.

adapt(method,&block) → nil

Must be called in the body of a context or feature, defines an adaptation for the
instance method in the class specified by the previous call to adaptations for.

adapt class(method,&block) → nil

Must be called in the body of a context or feature, defines an adaptation for the class
method in the class specified by the previous call to adaptations for.

121

http://rubydoc.info/gems/phenomenal/frames

122 APPENDIX A. APPLICATION PROGRAMMING INTERFACE

phen forget context(context) → nil

Removes a context from the system.

phen activate context(context[,contexts...]) → context or feature

activate context(context[,contexts...]) → context or feature

Activates the context or feature.

phen deactivate context(context[,contexts...]) → context or feature

deactivate context(context[,contexts...]) → context or feature

Deactivates the context or feature.

phen context active?(context) → true or false

Returns true when the context is currently active.

phen context information(context) → hash

Returns details about the context:

- name: the name of the context.
- adaptations: an array of the context adaptations.
- active: true if the context is active, false otherwise.
- age: the activation age of the context.
- activation count : the number of activations of the context since the last actual

deactivation.
- type: either Phenomenal::Context or Phenomenal::Feature.

phen default feature → feature

Returns the default feature of the system. This feature represents the base application.

phen defined contexts → array

Returns an array containing all the contexts and features defined in the system.

A.1.2 Adaptations Management

phen add adaptation(context,klass, method name, &body) → adaptation

Creates and returns a new adaptation for the instance method in klass into context.

phen add class adaptation(context,klass, method name, &body) → adaptation

Creates and returns a new adaptation for the class method in klass into context.

A.1. PHENOMENAL GEM VERSION 1.2.2 123

phen remove adaptation(context,klass, method name) → adaptation

Deletes and returns the adaptation for the instance method in klass from context.

phen remove class adaptation(context,klass, method name) → adaptation

Deletes and returns the adaptation for the class method in klass from context.

phen proceed([args...],&block) → object

proceed([args...],&block) → object

Must be called into the body of an adaptation, returns the evaluation of the next
method with less precedence according to the conflict policy. The arguments are passed
to this next method.

phen change conflict policy(&block) → nil

Sets a new conflict policy for the system. The block takes two contexts in argument
and has to return -1 if first context has precedence on the second, 1 in the opposite case
and raise a Phenomenal::Error if the conflict is not resolvable.

A.1.3 Relationships Management

phen requirements for(source,:on=>[targets]) → nil

requirements for(source,:on=>[targets]) → nil

Define a requirement relationship for source on targets. When called in the body of a
feature, this relationship is stored into it. Otherwise, stored in the default feature.

phen implications for(source,:on=>[targets]) → nil

implications for(source,:on=>[targets]) → nil

Define a implication relationship for source on targets. When called in the body of a
feature, this relationship is stored into it. Otherwise, stored in the default feature.

phen suggestions for(source,:on=>[targets]) → nil

suggestions for(source,:on=>[targets]) → nil

Define a suggestion relationship for source on targets. When called in the body of a
feature, this relationship is stored into it. Otherwise, stored in the default feature.

requires(context,[contexts,..]) → nil

Must be called in the body of a context, defines a requirement relationship in its
closest parent feature on the contexts in parameters.

124 APPENDIX A. APPLICATION PROGRAMMING INTERFACE

implies(context,[contexts,..]) → nil

Must be called in the body of a context, defines a implication relationship in its closest
parent feature on the contexts in parameters.

suggests(context,[contexts,..]) → nil

Must be called in the body of a context, defines a suggestion relationship in its closest
parent feature on the contexts in parameters.

A.1.4 Debugging

phen textual view → string

Returns a textual representation of the current state of the system.

phen graphical view(file) → nil

Generates a graphical representation of the current state of the system.

A.2 Phenomenal Rails Gem Version 1.2.3

is persistent → context

Must be called in a feature or context, states that the contexts is always active in the
system.

activation condition(&block) → nil

Must be called in a feature, specifies the logic to activate contexts before each HyperText
Transfer Protocol (HTTP) request. The block defining logic has access to the Rack en-
vironment through the parameter env. This activation condition is only applied when
the surrounding feature is active.

Appendix B

Graphical View Code

The following partial code is used to generate the graphical view of Section 7.3.1.

1 context :Trial do

2 adaptations_for TodoList

3 adapt :get_tasks do |date,time|

4 ...

5 end

6 end

7 feature :EnvironmentSense do

8 context :Presenter do

9 adaptations_for TodoList

10 adapt :notify do

11 ...

12 end

13 end

14 context :Away do

15 adaptations_for TodoList

16 adapt :notify do

17 ...

18 end

19 end

20 context :Mobile do

21 requires :OperatingSystemSense

22 end

23 context :Desktop do

24 requires :OperatingSystemSense

25 end

26 end

27

28 feature :OperatingSystemSense do

29 context :Android do

30 implies :Mobile

31 end

125

126 APPENDIX B. GRAPHICAL VIEW CODE

32 context :IOs do

33 implies :Mobile

34 end

35 context :Linux do

36 implies :Desktop

37 end

38 context :Windows do

39 implies :Desktop

40 end

41 context :MacOs do

42 implies :Desktop

43 end

44 end

45

46 context :Away, :Network do

47 adaptations_for TodoList

48 adapt :notify do

49 ...

50 end

51 end

52

53 context :Network

54

55 phen_graphical_view

Bibliography

[AHH+09] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and
Michael Perscheid. A comparison of context-oriented programming lan-
guages. In International Workshop on Context-Oriented Programming, COP
’09, pages 6:1–6:6, New York, NY, USA, 2009. ACM.

[Ape08] Sven Apel. Die rolle von features und aspekten in der softwareentwicklung
(the role of features and aspects in software development). it - Information
Technology, 50(2):128–130, 2008.

[Bla09] D.A. Black. The well-grounded Rubyist. Manning Pubs Co Series. Manning,
2009.

[CC06] F. Chong and G. Carraro. Architecture strategies for catching the long
tail. http://msdn.microsoft.com/en-us/library/aa479069.aspx, April
2006.

[CGD11] Nicolás Cardozo, Sebastian Günther, and Theo D’Hondt. Feature-oriented
programming and context-oriented programming: Comparing paradigm
characteristics by example implementations. In International Conference
On Software Engineering Advances (ICSEA’11), pages 130 – 135. IARIA,
2011.

[DVC+07] Brecht Desmet, Jorge Vallejos, Pascal Costanza, Wolfgang De Meuter, and
Theo D’Hondt. Context-oriented domain analysis. In Boicho Kokinov,
Daniel Richardson, Thomas Roth-Berghofer, and Laure Vieu, editors, Mod-
eling and Using Context, volume 4635 of Lecture Notes in Computer Science,
pages 178–191. Springer Berlin / Heidelberg, 2007. 10.1007/978-3-540-74255-
5 14.

[Fer10] O. Fernandez. The Rails 3 Way. Addison-Wesley Professional Ruby Series.
Addison-Wesley, 2010.

[Gam95] E. Gamma. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional Computing Series. Addison-Wesley, 1995.

[GCM+11] Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz, Jean-
Christophe Libbrecht, and Julien Goffaux. Subjective-c: Bringing context
to mobile platform programming. In Proceedings of the Third international
conference on Software Language Engineering (SLE 2010), number 6563 in
Lecture Notes in Computer Science, page 246265, Berlin, Heidelberg, 2011.
Springer Verlag.

127

http://msdn.microsoft.com/en-us/library/aa479069.aspx

128 BIBLIOGRAPHY

[GF11] Sebastian Günther and Marco Fischer. Supporting program variant genera-
tion and feature files in rbfeatures. In Proceedings of the 15th International
Software Product Line Conference, Volume 2, SPLC ’11, pages 8:1–8:8, New
York, NY, USA, 2011. ACM.

[Hei07] M. Heim. Exploring Indiana Highways: Trip Trivia. Travel Organization
Network Exchange, 2007.

[HT99] A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman
to Master. Pearson Education, 1999.

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering Institute, November 1990.

[PR01] Malte Plath and Mark Ryan. Feature integration using a feature construct.
Sci. Comput. Program., 41(1):53–84, September 2001.

[Sch08] Gregor Schmidt. Contextr & contextwiki. Master’s thesis, Hasso-Plattner-
Institut, Potsdam, April 2008.

[Ste11] D. Stewart. An interview with the creator of ruby. http://linuxdevcenter.
com/pub/a/linux/2001/11/29/ruby.html, 2011.

[TCW+12] Eddy Truyen, Nicolás Cardozo, Stefan Walraven, Jorge Vallejos, Engineer
Bainomugisha, Sebastian Günther, and Theo DHondt and. Context-oriented
programming for customizable saas applications. In Symposium on Applied
Computing, SAC’12. ACM press, 2012.

[TFH09] D. Thomas, C. Fowler, and A. Hunt. Programming Ruby 1.9: The Pragmatic
Programmers’ Guide. Facets of Ruby. Pragmatic Bookshelf, 2009.

[Val11] J. Valim. Crafting Rails Applications: Expert Practices for Everyday Rails
Development. Pragmatic Programmers. Pragmatic Bookshelf, 2011.

[Zav03] Pamela Zave. Programming methodology. chapter An experiment in feature
engineering, pages 353–377. Springer-Verlag New York, Inc., New York, NY,
USA, 2003.

http://linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html
http://linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html

	Introduction
	Motivation
	Contribution
	Approach
	Running Example
	Resources
	Roadmap

	I Background
	Context-Oriented Programming
	Introduction
	Motivation
	Concepts
	General Architecture
	Adaptation
	Context
	Combined Context
	Context Relationships

	Conclusion

	Feature-Oriented Programming
	Introduction
	Motivation
	Concepts
	Feature
	Feature-Oriented Domain Analysis

	Comparison with Context-Oriented Programming
	Conclusion

	Ruby
	Introduction
	Strengths and Weaknesses
	Why Ruby?

	Ruby on Rails
	Introduction
	Concepts
	Application Middleware
	Rendering Mechanism
	Lazy Loading

	Strengths and Weaknesses
	Why Ruby on Rails?

	Related Work
	Introduction
	ContextR
	rbFeature
	Subjective-C

	II Framework
	Phenomenal
	Introduction
	Concepts
	Context
	Proceed
	Relationships
	Context as a Feature

	Tools
	Context Visualizer

	Semantics
	Building Blocks
	Core Mechanisms

	Architecture
	Global Structure
	Context Package
	Manager Package
	Relationship Package
	Viewer Package
	Miscellaneous

	Under the Hood: Core Mechanisms
	Conflict Resolution Policy
	Context Definition
	Adaptation Definition
	Context Activation
	Adaptation Activation
	Context Deactivation
	Adaptation Deactivation
	Relationship Definition
	Relationship Activation
	Proceed

	Programming Language Requirements
	Limitations

	Phenomenal Rails
	Introduction
	Motivation
	Concepts
	File Structure Integration
	Features Activation Conditions
	Persistent Context
	Views Adaptation

	Under the Hood: Core Mechanisms
	Engine
	File Structure Integration
	Features Activation Conditions
	Context Extensions
	Views Adaptation

	Limitations

	Development Approaches
	Introduction
	Pair Programming
	Test-Driven Development
	Bad Smells Analysis
	Open Source
	Industrial Minded

	III Validation
	Benubo
	Introduction
	Motivation
	Analysis
	Foreword
	Requirements

	Refactoring
	Budget Feature
	Contact Feature
	Invoice Feature

	Feature as a Service
	Base Feature
	Invoice and Contact Features Interactions
	Trial Context
	Debug Feature

	Feedback from Belighted
	Conclusion

	Benchmarks
	Introduction
	Phenomenal
	Phenomenal Rails
	Conclusion

	IV Conclusion
	Future Work
	Introduction
	Phenomenal
	Structural Adaptations
	Relationships Set
	Thread Specific Context
	Proceed Improvement

	Phenomenal Rails
	Activation Optimization
	Proceed for Views

	Conclusion
	Contributions
	General Conclusion

	Application Programming Interface
	Phenomenal Gem Version 1.2.2
	Contexts Management
	Adaptations Management
	Relationships Management
	Debugging

	Phenomenal Rails Gem Version 1.2.3

	Graphical View Code

