
YALE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

Using Deep Q-Learning to Compare
Strategy Ladders of Yahtzee

Philip Vasseur

Advised by James Glenn

December 12, 2019

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

CONTENTS

1 Introduction 2

2 Yahtzee Gameplay 2

2.1 Categories . 3

2.1.1 Upper . 3

2.1.2 Lower . 3

2.1.3 Bonuses . 3

2.2 Optimal Play . 3

2.3 Single vs Two Player Yahtzee . 4

3 Reinforcement Learning 4

3.1 Deep Q-Network . 4

3.2 Double and Dueling DQN . 5

4 Implementation Details 5

4.1 Yahtzee Architecture . 5

4.2 Training Architecture . 6

4.3 Self-Play Implementation . 6

5 Results 7

5.1 Strategy Ladder Comparison . 7

5.1.1 Quantifiers . 7

5.1.2 Analysis . 8

5.2 Self-Play . 10

6 Future Work 10

6.1 Solitaire Yahtzee . 10

6.2 Two Player Yahtzee . 10

7 Conclusion 10

8 Acknowledgements 11

References 11

1

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

Abstract—“Bots” playing games is not a new concept,
likely going back to the first video games. However,
there has been a new wave recently using machine
learning to learn to play games at a near optimal
level - essentially using neural networks to “solve”
games. Depending on the game, this can be relatively
straight forward using supervised learning. However,
this requires having data for optimal play, which is
often not possible due to the sheer complexity of many
games. For example, solitaire Yahtzee has this data
available, but two player Yahtzee does not due to the
massive state space. A recent trend in response to this
started with Google Deep Mind in 2013, who used Deep
Reinforcement Learning to play various Atari games
[4].

This project will apply Deep Reinforcement Learning
(specifically Deep Q-Learning) and measure how an
agent learns to play Yahtzee in the form of a strategy
ladder. A strategy ladder is a way of looking at how
the performance of an AI varies with the computational
resources it uses. Different sets of rules changes how the
the AI learns which varies the strategy ladder itself. This
project will vary the upper bonus threshold and then
attempt to measure how “good” the various strategy
ladders are - in essence attempting to find the set of
rules which creates the “best” version of Yahtzee. We
assume/expect that there is some correlation between
strategy ladders for AI and strategy ladders for human,
meaning that a game with a “good” strategy ladder for
an AI indicates that game is interesting and challenging
for humans.

1 INTRODUCTION

This project aims to use Deep Q-learning (DQL)

to measure the strategy ladders of various versions

of single-player Yahtzee, a dice game invented in the

1940s, as well as implementing DQL self-play for

two player Yahtzee. A strategy ladder is a way of

looking at how the performance of an AI varies with

the computational resources it uses - in this project

computational resources will be simply defined as

training time for the reinforcement learning. This

project will compare the various strategy ladders to

determine which set of rules gives the ”best” strategy

ladder, where a ”good” strategy ladder would be one

that is not too vertical or too horizontal, and rather

gives a good combination of learning over time.

This project specifically compares the strategy lad-

ders of solitaire Yahtzee when varying the upper

bonus threshold from 53 to 75.

2 YAHTZEE GAMEPLAY

Yahtzee is a board game originating in the 1940s

which has an an incredibly large random element,

though is still largely dependant on skill. The game

consists of 13 rounds where the player is given some

amount of points based on the combination of dice

they have and category they choose. In each of the

13 rounds, the player starts off by rolling 5 dice.

The first two “moves” in each round is to pick some

subroll of the dice to keep and then reroll the rest.

The third and final “move” in each round is for the

player to pick one of the 13 categories in Yahtzee to

score their moves on. At the end of the 13 rounds,

the scores from each category are summed up to give

the player’s final score. In two player Yahtzee, the

player with the highest score is the winner. There is

clearly an incredibly large chance element in Yahtzee

consisting of rolling the dice. Even if the player

chooses optimally at each state, they could get a

subpar score.

2

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

Fig. 1. A Yahtzee scoresheet [1]

2.1 Categories

The number of points awarded depends on the

category chosen and the current dice rolled. Each of

the 13 categories can only be used once in the game

(though the Yahtzee category has special rules, which

will be explained layer on). The categories in Yahtzee

are split between the upper and lower sections.

2.1.1 Upper: The first six categories are in the

upper section, which are just simply aces, two, threes,

fours, fives, and sixes. The number of points the player

earns from choosing an upper section category is just

the sum of the die faces with that number. If, for

example, one chooses sixes without any six faces in

their current lineup of dice, they would be given zero

points and no longer be able to use the sixes category.

2.1.2 Lower: The latter seven categories are in the

lower section. These are three of a kind, four of a kind,

full house, small straight, large straight, chance, and

Yahtzee. The important thing to note is that the points

are only awarded if the category is satisfied. So for

three/four of a kind the player gets points equivalent

to the sum of all the dice if they have three or four

of a kind, respectively. This is the same for all of the

rest - full house gives 25 points, small/large straights

give 30 and 40 points flat respectively, and Yahtzee

gives 50 points flat (again assuming your 5 dice satisfy

the category conditions). The unique category in this

respect is chance, which gives points equivalent to the

sum of all the dice regardless of which dice.

2.1.3 Bonuses: There are two main bonuses in

Yahtzee. The first is the upper section bonus, which

awards 35 points to the player if the player scores

hits a threshold amount of points in the upper section

(63 in the official rules, which is achievable with

three die in each of the categories). The second

is the Yahtzee bonus. If the Yahtzee category has

already been successfully filled, then a subsequent

Yahtzee used to fill any other category also gives an

additional 100 points. The final rule is the joker rule.

This project used the free choice joker rule, which

allows a subsequent Yahtzee to satisfy full-house and

small/large straight conditions if the Yahtzee bonus is

satisfied and the corresponding upper section category

is filled.

The upper section bonus is a heavily weighted

bonus in optimal Yahtzee play (see optimal statistics

image below) due to the high amount of points it

can give and the relative ease to achieve it.While the

Yahtzee bonus gives many more points, it is much

more difficult to obtain. In this project, we will be

adjusting the upper bonus threshold to values between

53 and 75 and comparing the measured strategy

ladders.

2.2 Optimal Play

Solitaire (single-player) Yahtzee has a small enough

state space that it can be effectively solved and played

3

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

Fig. 2. Statistics on the points scored in each category by the

optimal Yahtzee player [7]

optimally. The optimal average score in solitaire

Yahtzee including the bonuses and jokers mentioned

above is approximately 254.59 with a standard de-

viation of 59.61 [2]. The variance is quite high as

mentioned earlier due to the inherent randomness in

rolling the dice and simply the mechanics of the game.

The worst possible score that can be earned is 5, while

the best is 1575. While both of these are extremely

unlikely (and the former you would seemingly have to

try to do terribly), it wouldn’t be unusual for a skilled

player to get scores of less than 150 when down on

their luck.

A simple example shows this: the trivial random

Yahtzee player (who chooses a valid category at

the start of each turn) averages around 191 points

with a standard deviation of 40.37 points. Assuming

normal distribution, let R ∼ N(191.16, 40.37) and

O ∼ N(254.59, 59.61). We then have P (R > O) =

P (R − O > 0) = P (D > 0) ≈ 0.189, where

D ∼ N(−63.43, 71.99). This straight forward cal-

culation shows this extremely naive bot gets a higher

score than the optimal solitaire Yahtzee player slightly

under 20% of the time.

2.3 Single vs Two Player Yahtzee

While this project mainly focuses on single player,

Deep Q-Learning with self-play was implemented for

two player Yahtzee. While the difference is subtle,

the optimal strategy for single player is different than

the optimal strategy for two player Yahtzee. This

difference stems from the fact that the goal of two

player Yahtzee is not to get the most points possible,

but to simply get more points than your opponent.

These are obviously correlated, but not perfectly.

Moments of distinction can easily be thought of, such

as when a player is down by slightly under 100 points

on their final turn. The Yahtzee bonus might be their

only chance at winning and thus is obviously the best

move to go for. However, going for a Yahtzee bonus

probably has a lower expected total score (depending

on the current roll) because of how rare it is to get

a Yahtzee. In this case, the optimal single player

strategy and the optimal two player strategy would

differ.

The other reason why two player is interesting

to look at is because of how large the state space

becomes. While single player Yahtzee is solvable, two

player Yahtzee nearly squares the state space, making

it much too large to solve with other typical methods.

There is no labelled data possible to use supervised

learning on, but an option like Deep Reinforcement

Learning could work quite well theoretically.

3 REINFORCEMENT LEARNING

3.1 Deep Q-Network

This project uses Deep Reinforcement Learning (a

Deep Q-Network specifically) to allow the agent to

learn as it plays. Deep Reinforcement learning works

similar to normal reinforcement learning, but rather

than using a State-Action table or another approxima-

tor for Q-value, it uses a neural network. The neural

4

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

network takes in an input the dimensions of the state,

and produces an output the dimensions of the action

space - with the output vector representing the Q-

values for each action. From regular reinforcement

learning, the Bellman equation is

Q(st, at) += α
(
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)
)

Where α is the learning rate and γ is the de-

cay rate. The Q function is iteratively updated, in

an attempt to have it converge to a point where

rt + γmaxa′ Q(st+1, a
′) (the target) equals Q(st, at)

(the current value of the network). To achieve this

in the neural network world, the loss function is

simply a masked mean-squared error of the Q-value

outputs and the target. All output nodes except at are

masked to 0, and gradient descent is then performed

to minimize rt + γmaxa′ Q(st+1, a
′)−Q(st, at).

3.2 Double and Dueling DQN

A problem with vanilla DQNs is that they often

overestimate action values due to the inherent max-

imization bias. Q-Learning at its core is learning to

estimate from its own estimates, and therefore it is

somewhat clear how this along with the fact that the

target Q-value is maximized can lead to substantially

overestimated Q-values and thus substantially worse

performances. The solution to this is Double DQNs

[6]. This modification creates an entirely separate

target network Q′ separate from Q. Q is still used

to evaluate the Q-values of the actions, but rather

than using a target of rt+γmaxa′ Q(st+1, a
′) we use

rt + γQ
(
st+1, argmaxa′Q′(st+1, a

′)
)
, using the target

network Q′ to select the action and updating Q′ = Q

every so often. This then disentangles the overestimate

bias.

Another improvement is the Dueling DQN [8]. This

seemed to have less of an affect in practice, but was

still useful. The Dueling DQN deals with the issue that

not all states are valuable and it is often “wasteful” in

a sense to learn the value of an action at every state, if

the state itself is invaluable. For example, there might

be situations in Yahtzee where which action is taken

does not truly affect things, and the state itself is the

important factor. The Dueling DQN solves this by

separating the Q(s, a) into A(s, a)+V (s) - a function

to calculate the advantage of selecting a specific action

plus the value of the state itself. The output though

must be the same, so they are combined back in an

identifiable way, to still output Q(s, a) and train in

the same manner (though now with the networks split

earlier on). This may seem unimpactful, but in fact

allows the network to learn the value of a state without

having to learn which actions are or are not valuable.

4 IMPLEMENTATION DETAILS

4.1 Yahtzee Architecture

The implementation of single and two player

Yahtzee was largely an extension of previously written

work by my advisor, Professor James Glenn (for

which I am extremely grateful). The state of a game

of Yahtzee simply consists of a scoresheet, a roll, and

a number of rerolls left, which were already written.

To simplify the code, these things were combined

into a class YahtzeeGame, which upon initialization

allows for a single player game of Yahtzee to be

played by repeatedly calling game.make_move.

In order to simplify debugging, this was

then wrapped in an Open AI Gym environment

YahtzeeEnv. This extends gym.Env, which is a

common API for reinforcement learning problems.

The API consists of init to get to the starting state,

reset to get back to the starting state and return

this state, and most importantly step which takes

in an action and returns the next state, reward, and

whether the game is done. This allows Yahtzee to

be easily swapped out when reinforcement learning

5

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

algorithm with any other simple Open AI Gym

environment. The YahtzeeEnv step function

takes in a meta action (essentially representing which

category the player is aiming for - one to six, n-kind,

full house, straights, or chance) instead of a roll or

a category, and uses a conversion utility to change

the meta action into an action which can be passed

into YahtzeeGame. The environment wrapper also

took in a number of players, allowing for two player

Yahtzee, which initialized multiple Yahtzee games

and kept track of turns. As the environment was also

built for reinforcement learning problems, it had the

functionality to calculate and return the state of the

game in terms of an input vector, which varied in

size depending on how many players were in the

game.

4.2 Training Architecture

The main workhorse of the project is a class

Trainer, which is given an environment (such

as Yahtzee), an agent (such as the Huskarl

DQN agent discussed below), and a number

of players - after which one can simply call

trainer.train(num_steps). The trainer it-

erates num_steps times, getting an action from

the agent based on the current state, pushing the

State-Action-Reward-NextState (SARS) tuple into the

agents memory, and then having the agent train by

sampling from its memory. While iterating it also

checks when the current game finishes, where it

then resets the environment and calls the update

function. This simply keeps track of the progress

of the agent as it learns, for example validating it’s

current total score in single player every 1000 games

of training to keep track of the current best model.

The lowest level parts of the reinforcement learning

for single and two player uses a forked version of a

deep reinforcement learning library Huskarl. The

vanilla version of Huskarl provides an implementation

of a Deep Q-Network (DQN) which then rely only

on a few basic calls to use - namely act, push, and

train, to calculate the action from the current state,

to add to the agents memory, and to train based off

the memory respectively. While this seemed fantastic,

in practice the package was quite problematic, which

was why for this project we forked and made some

small adjustments. Other than simply tuning various

parameters, the implementation of the memory was

simplified (as the Huskarl implementation of pri-

oritized experience replay was quickly became the

bottleneck of training), the save functionality was

rewritten (as it was poorly written, used outdated

tensorflow functionality, and didn’t save the full state

of the network), and the load function added (as

it somehow did not exist beforehand). The original

version of Huskarl worked somewhat well - out of

the box it was able to have the single player agent

learn from averaging 70 points to averaging around

130 - but with tuning and massively speeding up the

runtime in a matter of two hours or so, the single

player agent was able to learn from averaging 70 to

averaging 232.

4.3 Self-Play Implementation

Many aspects of the codebase did not need to be

changed in order to accommodate training for two

player Yahtzee. As the game environment was built

with multiplayer in mind, the main adjustments were

with the Trainer class.

The first step was to create another opponent copy

of the agent. This opponent would be updated period-

ically as the main agent improved. A threshold used

in Alpha Go Zero [5] is if the current agent wins

55% of games, which is what was used as inspiration

for many aspects of the self-play implementation. The

two agents went back and forth every turn acting

on the environment, though instead of pushing each

SARS tuple into the main agent’s memory, it was

6

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

stored in a temporary buffer. This is because there

is no current reward, and rather also inspired by

AlphaGo Zero, the reward is simply whether the agent

has won the game or not. Finally, after the game

finishes, the buffer of SARS is updated with the proper

rewards, which are then pushed into the main agents

memory to be trained on later.

5 RESULTS

5.1 Strategy Ladder Comparison

In order to reduce the inherent variance of Yahtzee,

the strategy ladder was measured by taking the aver-

age score of the current model, but rather the average

score of the best model so far. While generally train-

ing improved the model, slight changes to the model

could result in dramatically worse scores, which made

the results much less interpretable. Further, rather than

measuring the raw scores themselves, the fraction of

the optimal score for the respective set of rules was

recorded. This was done to normalize the strategy

ladders, as changing the upper bonus threshold would

clearly affect the optimal score. Using code previously

written by my advisor, the optimal values for Yahtzee

with an upper bonus from 53 to 75 were calculated.

In the end, strategy ladders were obtained by testing

the average score of the model over 1000 games every

1000 games of training for 160,000 games. If the

model scored better than the current best model, than

the best model was replaced with the current (see

Figure 3).

5.1.1 Quantifiers: In order to quantitatively

compare the strategy ladders, I’ll be using three

different measurements of “goodness”. As mentioned

earlier, a “good” strategy ladder is one that does not

improve too quickly, but also not too slowly. So we

are looking for one which takes many small steps

over a few big steps, but also one which has a high

horizontal asymptote (which represents how much

it was able to learn in 160,000 games - the final

performance “FP”). The first measure of “goodness”

is one described in Depth in Strategic Games [3],

which picks a constant step size for x and y and

counts how many times the target y (which is the

previous y + the y step size) is reached when taking

the x step size. This effectively measures how many

decently sizeable steps are taken. We will call this

“P1”. The y step size was chosen arbitrarily as 1
12

of what was left to learn - when calculating the

metric with sizes from 1
10 to 1

30 and averaging,

the top three thresholds were still 55, 57, and 53

(averaging 18.1, 17.7, and 17.65 for P1 respectively).

The second measure of “goodness” is simply

np.sum(np.log(1 + np.diff(data))).

This is essentially just summing up how much

is learned each step, but taking the log makes it

so taking multiple small steps is weighted much

heavier than taking one large step. We will call

this “P2”. The third measure of “goodness” is

(P1/np.max(P1) + P2/np.max(P2))/2,

which is simply a scaled combination of P1 and P2.

We will call this “P3”. Calculating these metrics for

each set of rules gives the table in Figure 4.

Threshold P1 P2 P3 FP

57.0 14.0 0.5992 0.9929 0.8956

55.0 14.0 0.5979 0.9918 0.8925

53.0 13.0 0.6079 0.9643 0.9002

63.0 13.0 0.6017 0.9592 0.9121

65.0 13.0 0.577 0.9389 0.8908

67.0 13.0 0.5591 0.9242 0.8721

59.0 12.0 0.5806 0.9062 0.882

73.0 12.0 0.5741 0.9008 0.9011

71.0 12.0 0.5685 0.8962 0.8931

61.0 11.0 0.577 0.8675 0.8829

75.0 11.0 0.56 0.8535 0.888

69.0 11.0 0.5497 0.845 0.8681

Fig. 4. Performance metrics for each of the thresholds

7

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

Fig. 3. Plot of the normalized strategy ladders for each variation on the official set of rules

Plotting these three metrics versus the final perfor-

mance gives the scatter plots in Figure 5.

5.1.2 Analysis: The first thing to note is that the

learning parameters were not tuned for each threshold

value. Rather, they were tuned for a threshold value

of 63 and then the same parameters were reused for

the rest of the thresholds. This was largely because

tuning the parameters was very time consuming and

as such, tuning the parameters for 12 different models

would have become overly tedious. This makes it so

the final performance result of threshold 63 must be

taken with a grain of salt when comparing.

P1 and P2 show relatively similar results in which

rules create the “best” strategy ladder - they have a

correlation coefficient of 0.6985. Thresholds of 53 to

57 seem to have the highest performance measure-

ments, and relatively high final performance (with

only 63 easily beating them - potentially due to the

reason listed above).

This is also supported by the cumulative metric P3.

In the plot of P3 we also interestingly see that the very

high thresholds seem to provide poor strategy ladders.

When qualitatively analyzing the category statistics

from the models, this is supported - after a threshold

of 67 the emphasis on the upper bonus threshold

becomes dramatically lower. With thresholds of 71,

73, and 75 the average upper bonus points were 0.770,

0.245, and 0.070 respectively, while with the official

threshold of 63 our model averaged 15.753 upper

bonus points. In the variations of the game with a

high threshold, the upper bonus becomes much less

emphasized, as one would expect. This seemingly

makes the game simpler and less “interesting”.

8

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

Fig. 5. Results scatter plots of P1, P2, and P3 versus the final performance of the model

9

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

Overall, it seems like decreasing the upper bonus

threshold in Yahtzee could lead to a “better” strategy

ladder - especially when taking into account that if

thresholds 53-57 had their parameters tuned, they

would have had a higher final performance.

5.2 Self-Play

Learning and comparisons in solitaire Yahtzee

worked well, though this was not the case with two

player Yahtzee. Rather than using a trained solitaire

Yahtzee network as a place to jump start from, initially

a new neural network was used in order to test the

waters and see if any learning would occur. While

there was a quick jump in the first 1000 games

or so from averaging 70 points to averaging 100

points, afterwards no consistent learning occurred.

Despite trying various parameters, adjusting what was

included in the two player state, including and ex-

cluding the non-main agents SARS from the memory

buffer, and numerous other various, there seemed to

be no substantial change. After jumping up to 100,

the network often went back down to 70 or even

lower. For the rest of the 80,000 games trained, the

main agent rarely ever won more than 55% of the test

games, showing no progress whatsoever.

Slower learning was somewhat expected, as the re-

wards as much less nuanced - being 1 or -1 depending

on whether the agent has won or lost. The dimensions

of the input being twice the size also would likely

have a similar effect. Due to these two things, the

difficult of learning likely increased dramatically and

in order to obtain any good results a much larger and

(or) deeper neural network would be necessary - this

would also require much more powerful machines.

6 FUTURE WORK

6.1 Solitaire Yahtzee

While this project was only a semester long, with

more time it would have been interesting to look at

more variations on the solitaire Yahtzee rules. Com-

paring a large number of variations and combinations

of those variations to attempt to come up with a truly

“best” version of Yahtzee would be a challenging,

but incredibly interesting project. To do this truly

properly, one would also need to spend much more

time on each variation actually tuning the model in

order to get a better idea of top performance. The

tuning in this project was done “by hand”, though

a pipeline to automatically test a large number of

parameters for some amount of training would be

incredibly useful and help make the above possible.

6.2 Two Player Yahtzee

With more powerful machines and more time to

train, building out an optimal two player Yahtzee

agent would be an obvious follow up to the work

attempted in this project. The question of how differ-

ent/how much better an optimal two player Yahtzee

agent is compared to an optimal solitaire agent was

left unanswered but would be an interesting question

to look further into. Along with the research of soli-

taire Yahtzee, once the above is completed it would

be possible to also compare the strategy ladders of

two player Yahtzee - looking at how often they win

against some constant agent as they learn.

7 CONCLUSION

This project used Deep Q-Learning to measure and

compare the strategy ladder of solitaire Yahtzee when

varying the upper bonus threshold from 53 to 75.

Quantifying the strategy ladders via two performance

metrics and a cumulative metric of the two showed

that the official rules of Yahtzee might not be the

“best” rules, and that lowering the upper bonus thresh-

old to somewhere in the range of 53 to 57 could result

in a more “interesting” variation of Yahtzee.

10

Vasseur Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee

8 ACKNOWLEDGEMENTS

I would like to thank Professor James Glenn for

being my advisor throughout this semester. Professor

Glenn helped me countless times through a large

variety of problems, giving extremely valuable insight

and feedback as I progressed through my work (as

well as an implementation of Yahtzee to start this

project off with) - thank you! I would also like to

thank my friends (especially the non-STEM ones)

who listened to me ramble about my project for the

past few months. Finally, I would like to thank my

brothers and parents.

REFERENCES

[1] Math Explorers’ Club Cornell. Yahtzee: Rules

and scoring. http://pi.math.cornell.edu/∼mec/

2006-2007/Probability/Yahtzee.htm. Accessed:

2019-12-07.

[2] James Glenn. An optimal strategy for yahtzee.

Loyola College Technical Report, CS-TR-0002,

May 2006.

[3] Frank Lantz, Aaron Isaksen, Alexander Jaffe,

Andrew Nealen, and Julian Togelius. Depth

in strategic games. In WS-17-01, volume WS-

17-01 - WS-17-15, pages 967–974. AI Access

Foundation, 1 2017.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David

Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin A. Riedmiller. Playing

atari with deep reinforcement learning. CoRR,

abs/1312.5602, 2013.

[5] David Silver, Julian Schrittwieser, Karen Si-

monyan, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Hubert, Lucas Baker, Matthew Lai,

Adrian Bolton, Yutian Chen, Timothy Lillicrap,

Fan Hui, Laurent Sifre, George van den Driess-

che, Thore Graepel, and Demis Hassabis. Mas-

tering the game of go without human knowledge.

Nature, 550(7676):354–359, 2017.

[6] Hado van Hasselt, Arthur Guez, and David Sil-

ver. Deep reinforcement learning with double q-

learning. CoRR, abs/1509.06461, 2015.

[7] Tom Verhoeff. Optimal solitaire yahtzee

player. http://www-set.win.tue.nl/∼wstomv/misc/

yahtzee/trivia.html, 1999. Accessed: 2019-12-07.

[8] Ziyu Wang, Nando de Freitas, and Marc Lanctot.

Dueling network architectures for deep reinforce-

ment learning. CoRR, abs/1511.06581, 2015.

11

http://pi.math.cornell.edu/~mec/2006-2007/Probability/Yahtzee.htm
http://pi.math.cornell.edu/~mec/2006-2007/Probability/Yahtzee.htm
http://www-set.win.tue.nl/~wstomv/misc/yahtzee/trivia.html
http://www-set.win.tue.nl/~wstomv/misc/yahtzee/trivia.html

	Introduction
	Yahtzee Gameplay
	Categories
	Upper
	Lower
	Bonuses

	Optimal Play
	Single vs Two Player Yahtzee

	Reinforcement Learning
	Deep Q-Network
	Double and Dueling DQN

	Implementation Details
	Yahtzee Architecture
	Training Architecture
	Self-Play Implementation

	Results
	Strategy Ladder Comparison
	Quantifiers
	Analysis

	Self-Play

	Future Work
	Solitaire Yahtzee
	Two Player Yahtzee

	Conclusion
	Acknowledgements
	References

