Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Michat “phoe” Herda

i .jl iy

phoe@disroot.org
https://phoe.github.io

If this presentation only had a single sentence

If this presentation only had a single sentence

« We need means of unwinding and finally blocks

If this presentation only had a single slide

« We need means of unwinding and finally blocks

If this presentation only had a single slide

« We need means of unwinding and finally blocks
« We can implement all of CL-specific control flow with this!

If this presentation only had a single slide

« We need means of unwinding and finally blocks
« We can implement all of CL-specific control flow with this!

* tagbody/go

* block/return-from
« catch/throw

« unwind-protect

If this presentation only had a single slide

« We need means of unwinding and finally blocks
« We can implement all of CL-specific control flow with this!

« tagbody/go This includes non-local jumps
« block/return-from (a secret Common Lisp feature)

« catch/throw
« unwind-protect

If this presentation only had a single slide

« We need means of unwinding and finally blocks
« We can implement all of CL-specific control flow with this!

« tagbody/go This includes non-local jumps
« block/return-from (a secret Common Lisp feature)
« catch/throw

This includes loops

This includes switches

This includes error handling
This includes restart handling

unwind-protect

If this presentation only had a single slide

« We need means of unwinding and finally blocks
« We can implement all of CL-specific control flow with this!

tagbody/go
block/return-from
catch/throw
unwind-protect

This includes non-local jumps
(a secret Common Lisp feature)

This includes loops

This includes switches

This includes error handling
This includes restart handling

The above four groups
are implemented
in Common Lisp itself

Let’s talk about Commmon Lisp

Let’s talk about Commmon Lisp

« Compiled multiparadigm interactive programming language

11

Let's talk about Common Lisp

« Compiled multiparadigm interactive programming language

 ANSI-standardized in 1994

12

Let's talk about Common Lisp

« Compiled multiparadigm interactive programming language
* ANSI-standardized in 1994

» Multiple conforming implementations with different qualities

13

Let's talk about Common Lisp

« Compiled multiparadigm interactive programming language
* ANSI-standardized in 1994
» Multiple conforming implementations with different qualities

* Relatively small but active community

14

Let's talk about Common Lisp

« Compiled multiparadigm interactive programming language
* ANSI-standardized in 1994

» Multiple conforming implementations with different qualities
* Relatively small but active community

» Continuously used for commercial projects and research

15

Let’s talk about Common Lisp

Let’s talk about Commmon Lisp

GUT ™ FRUIRNCESEY

HOW TO SAVE THE PRINCESS BY © toggl
USING & PROGRAMMING Goon Squao
LANGUAGE S MART VIRKUS 'l6

17

x

Let's ta

— 9
mD__.-
p— "] g}é_u_)
W) 24 2
i 28 <
=Ry e
gy U >
= <
z g E
L
< Jd
v; Z Qg
rs Tz
G
w 2
w E o
r .93
= > &
mo'ﬂ
Owg
g3
33z
T = 3

You HAVE JAVASCRIPT

You SPEND HOURS
PICKING LIBRARIES,
SETTING UP NODE %
BUILDING A FRAMEWORK
FOR THE CASTLE.

You'RE FINISHED WITH
THE FRAMEWORK
THE FORT HAS
BEEN ABANDONED
AND THE PRINCESS
HAS MOVED To
ANOTHER CASTLE

BY THE TIME |

YOU HAVE A LIBRARY
FOoR A CASTLE &

A LIBRARY FoR THE
PRINCESS -

CHARGE!

You RESCUE THE PRINCESS
HER DOG, HER ENTIRE
WARDROBE & EVERYTHING SHE
HAS EVER EATEN...
FUCK-DID | FORGET A

NULL-TERMINATOR 7 &
Y TR

YOou SPEND HOURS
TRYING TO EXPRESS THE
ENTIRE RESCVE IN A

You GIVE UP AND GO
TO STACKOVERFLOW TO
HAVE JON SKEET

RESCUE THE PRINCESS

You QUICKLY DEPLOY

THE RESCUE
TO PRODUCTION

YOU DISCOVER YOu'vE

LOADED TWO VERSIONS
OF THE CASTLE
BUT NO PRINCESS

YoU HAVE LISP

(e
A
@@
@«
(Ccceeeecec

CC(Cleceeectecu
[CCCCCCCeCCCecc
LLCCCCCCCcecece
(cccceqeeecce

1))))))
)))N)))

NN
NN
NN

)
)
)

)M
nnHmn

)1)1)) R
m

WE DON'T SUPPORT FREEING CAPTURED
PRINCESSES , WE ALREADY HAVE THESE
FREE PRINCESSES IN THE STANDARD L\BR...

JAVA PANEL

...WA'ITi 1S
THIS THE
PRINCESS

FROM THE

YOU DECLARE £56us
YOUR PRINCESS,
CASTLE &

RESCUE PLAN

THEN YOu GO FOR
A DRINK % FORGET AsouT
THE IMPLEMENTATION

YOU HAVE To
RESCUE THE PRINCESS...

x

Let's ta

— 0
oe -~
=P 55
W) 24 2
i 5 2
)'0____
ny U -
(m <
TS 8T
L
boss J
n/ Zz Jg
s Tz
CLN
w2
w E o
= us
- z ¥
mo'ﬁ
o°°g
g3
33z
x> 4

You HAVE C

YOU HAVE A LIBRARY
FOoR A CASTLE &

A LIBRARY FoR THE
PRINCESS -

CHARGE!

You RESCUE THE PRINCESS
HER DOG, HER ENTIRE
WARDROBE & EVERYTHING SHE
HAS EVER EATEN...
FUCK-DID | FORGET A

NULL-TERMINATOR 7 &
X R

YoU HAVE LISP

(e
(el
(e
(ccecccea
(Ccccecceecd
KCCCeeeeeeCiecu
(CCCCCCOCCCCeC

LLCCCCCCCcecece
(cccceqeeecce

NINNNNM)
MNNINI) R
NN
NN

NN

)
)

mnmnmnni
]

)

19

You HAVE C YOu HAVE A LIBRARY || You RESCUE THE PRINCESS
’ FOR A CASTLE & HER Dog,
Let's talk A LIBRARY FoR THE waabaﬁuaazﬂiiﬁzlﬁuma SHE
S0 PRINCESS - HAS EVER EATEN...
e 3% CHARGE! FUCK-DID | FORGET A
W S5 2
@o VA
) S -
=
(o ~
<
%y
cams J
= 2 e pmmmnm
rs = «ecccedmmmmmnmm
(L w €cccecedpmmmmm R
Y g (cccccceed prmmmn i)
F > QU
z €, (Cccccecceccdpmmmm
% o0 CCCCcCccCCCLed pmmy
S CCCCCCOCCceclempm
3 Z3 Q@@
532 (CCCCCCeCeeced py

Let's talk

Goon Squno

8Y © toggl
MART VIRKUS 'I6

GIT ™ (PRUNEESSY

HOW TO SAVE THE PRINCESS

USING & PROGRAMMING

LANGUAGES

YoU HAVE LISP

(e

Q@

@@
(e

Qe
(((((((u((((u1

CCCCCOCCCCCecc
((CCCCCCeeCecc
(CCCCCCCeecec

))10)1))))))))
NNIINNNIM)

)NNIN)IND)
1)) NI

MmN
M)

)
N
)

Let's talk

91, SOMIIA LAV S3ADVNDNY
avabg uooh ONIWWY¥D03d ¥ HNISN
1660} @ 18 SS3IDONIYd JHL 3IAVS OL MOH

1SS LD

Let's talk about me

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

24

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

« Common Lisp enthusiast (#11sp, Lisp Discord, Reddit)

25

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

« Common Lisp enthusiast (#11sp, Lisp Discord, Reddit)
« Author of The Common Lisp Condition System (Apress, 2020)

26

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

« Common Lisp enthusiast (#11sp, Lisp Discord, Reddit)
« Author of The Common Lisp Condition System (Apress, 2020)

« Somewhat capable of writing other programming languages

27

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

« Common Lisp enthusiast (#11sp, Lisp Discord, Reddit)
« Author of The Common Lisp Condition System (Apress, 2020)

« Somewhat capable of writing other programming languages

* | kinda like the topic of control flow

28

Let's talk about me

* | kinda like the topic of control flow

29

Let's talk about control flow

* | kinda like the topic of control flow

30

Let’s talk about control flow in Common Lisp

* | kinda like the topic of control flow

31

Let’s talk about control flow in Common Lisp

Let’s talk about control flow in Common Lisp

cif

(if (foo)
(bar)
(baz))

33

Let’s talk about control flow in Common Lisp

e if
* taghody/go

(tagbody
10 (print “hello”)
20 (go 10))

34

Let’s talk about control flow in Common Lisp

o f
* taghody/go
* block/return-from

(block my-block

(o..)
(... (return-from my-block 42))

(ee))

35

Let’s talk about control flow in Common Lisp

i f

* taghody/go

* block/return-from
e catch/throw

(catch ‘quux

(o..)
(... (foo0)) (defun foo ()
(e..))) (throw ‘quux 42))

36

Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect

(let ((thing (make-thing)))
(unwind-protect (frob thing)
(cleanup thing)))

37

Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

(let ((fn (lambda ...))

(args ...))
(apply fn 1 2 3 args))

38

Let's talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from

e catch/throw
 unwind-protect
 lambda/apply ; and funcall

(let ((fn (lambda ...))
(args ...)) (let ((fn (lambda ...)))
(apply fn 1 2 3 args)) (funcall fn 1 2 3))

39

Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

40

Let's talk about closures

 Lambda/apply

41

Let's talk about closures

Let's talk about closures

(let ((x 42))
(lambda () x))

43

Let's talk about closures

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

44

Let's talk about closures

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)

45

Let's talk about closures

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
3y => 42

46

Let's talk about closures

(let ((x 42))
(lambda () x))
s #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
35 => 42

;3 but we can close over more
;3 than just lexical variables!

47

Let's talk about non-local control flow in Common Lisp

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
3y => 42

;3 but we can close over more
;3 than just lexical variables!

48

Let’s talk about non-local control flow in Common Lisp

Let’s talk about non-local control flow in Common Lisp

(defun foo (x) (funcall x))

50

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar () ; block bar
.)

51

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

bar 42))))
..))

52

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

53

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

(bar)

54

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

(bar)

(bar)

55

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

.F
(foo) (bar)

(bar)

56

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))
.F
(foo) (bar)
(bar)

Y

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))
.F
(foo) (bar)
(bar)

58

Let's talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))

.F
(foo) (bar)

(bar)

59

Let's talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

(bar)
55 => 42

60

Let's talk about non-local control flow in Common Lisp

(defun foo (x) (funcall x))

* tagbody/go (defun bar ()
* block/return-from (let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))
(bar)

55 => 42

61

Let’s talk about non-local control flow in Common Lisp

Let's talk about unwinding in Common Lisp

Let's talk about unwinding in Common Lisp

(frob)

(quux)

(baz)

(bar)

(foo)

Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from

(frob)

(quux)

(baz)

(bar)

(foo)

65

Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from

(frob)

(quux)

(baz)

(bar)

(foo)

66

Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

(quux)

(baz)

(bar)

(foo)

Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

'a

t"

(quux)

(baz)

(bar)

(foo)

68

Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

'a

t‘,

(quux)

(baz)

(bar)

(foo)

69

Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

in

t‘,

(quux)

(baz)

(bar)

(foo)

70

Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from
e catch/throw

71

Let's talk about unwinding in Common Lisp

* tagbody/go ; 1-phase unwind (no search)
* block/return-from ; l1l-phase unwind (no search)
 catch/throw ; 2—-phase unwind (search)

72

Let's talk about unwinding in Common Lisp

i f

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
 Lambda/apply

73

Let’s talk about control flow in Common Lisp

i f

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
 Lambda/apply

74

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

75

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
e catch/throw

 unwind-protect

 Lambda/apply

76

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

 unwind-protect
 lLambda/apply

77

Let's talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

] e error handling (handler-case, ...)
* unwind-protect

 lLambda/apply

78

Let's talk about control flow in Common Lisp

*if * All other CL control flow operators are
» tagbody/go derivatives of those primitives
e block/return-from . Ioopsh(doé doldist, loop, ...))

* switches (cond, case, typecase, ...
) Cat?h/throw e error handling (handler-case, ...)
* unwind-protect restarts (restart-case, ...)
 Lambda/apply

79

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

] e error handling (handler-case, ...)
* unwind-protect restarts (restart-case, ...)

* lambda/apply e This list includes use cases that are
not related to exception handling

80

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

] e error handling (handler-case, ...)
* unwind-protect restarts (restart-case, ...)

* lambda/apply e This list includes use cases that are
not related to exception handling

 Control flow # exception handling

81

Let’s talk about control flow in general

 Control flow # exception handling

82

Let’s talk about control flow in general

 Control flow # exception handling

83

Let’s talk about control flow in general

* Do not conflate unwinding with throwing exceptions

 Control flow # exception handling

84

Let’s talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow

 Control flow # exception handling

85

Let's talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding

 Control flow # exception handling

86

Let's talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding
* Throwing exceptions is not a primitive operation

 Control flow # exception handling

87

Let's talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding
* Throwing exceptions is not a primitive operation

* Proofs: Common Lisp, Dylan, Smalltalk

 Control flow # exception handling

88

Let’s talk about control flow in WebAssembly

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding
* Throwing exceptions is not a primitive operation

* Proofs: Common Lisp, Dylan, Smalltalk

 Control flow # exception handling

89

Let's talk about control flow in WebAssembly

 Control flow # exception handling

90

Let's talk about control flow in WebAssembly

 Suggestion: unwinding as a WebAssembly primitive
« Name the WASM operator unwind instead of throw perhaps?

 Control flow # exception handling

91

Let's talk about control flow in WebAssembly

 Suggestion: unwinding as a WebAssembly primitive
« Name the WASM operator unwind instead of throw perhaps?

 Suggestion: WebAssembly terminology change
 TPEH — 1PU = one-phase unwinding (unw-ind)
« 2PEH — 2PU = two-phase unwinding (stack-search + unwind)

 Control flow # exception handling

92

Let’s talk about control flow in WebAssembly

 Suggestion: unwinding as a WebAssembly primitive
« Name the WASM operator unwind instead of throw perhaps?

 Suggestion: WebAssembly terminology change
 TPEH — 1PU = one-phase unwinding (unw-ind)
« 2PEH — 2PU = two-phase unwinding (stack-search + unwind)

 Suggestion: support for dynamic (fluid) variables?
* Basis for implementing a condition system
« Otherwise, we will need some other stack-searching operator
e ...or we'll need to reimplement dynamic variables

 Control flow # exception handling

93

Let's talk about control flow in WebAssembly

Let's talk about control flow in WebAssembly

e https://github.com/phoe/portable-condition-system
Common Lisp condition system implemented in Common Lisp

95

Let's talk about control flow in WebAssembly

e https://github.com/phoe/portable-condition-system
Common Lisp condition system implemented in Common Lisp

* https://github.com/phoe/cafe-latte/
Common Lisp control flow operators and condition system
implemented in Java

96

Let’s talk about control flow in WebAssembly

e https://github.com/phoe/portable-condition-system
Common Lisp condition system implemented in Common Lisp

* https://github.com/phoe/cafe-latte/
Common Lisp control flow operators and condition system

implemented in Java

* https://www.youtube.com/watch?v=V4P9IFK79nhQ
Control Flow in Common Lisp - Online Lisp Meeting #11,
a recording of material presented in this talk,
including the differences between conditions and exceptions

97

<3

but wait hold on for just one moment

99

Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix A

Differences between conditions and exceptions

Let's talk about control flow

Let's talk about control flow

From Wikipedia, the free encyclopedia

FALSE

-
Zi>/¢ for(A;B;C)
=1 i
s D
Control tflow - !
' S
-

Not to be confused with Flow control (data).

In computer science, control flow (or flow of control) is the order in which 7
individual statements, instructions or function calls of an imperative program c

are executed or evaluated. The emphasis on explicit control flow distinguishes

an imperative programming language from a declarative programming C—b
language.

102

Let's talk about non-local control flow

Structured non-local control flow [edit]

Many programming languages, especially those favoring more dynamic
styles of programming, offer constructs for non-local control flow. These
cause the flow of execution to jump out of a given context and resume at
some predeclared point. Conditions, exceptions and continuations are
three common sorts of non-local control constructs; more exotic ones also
exist, such as generators, coroutines and the async keyword.

103

Let's talk about non-local control flow

Structured non-local control flow [edit]

Many programming languages, especially those favoring more dynamic
styles of programming, offer constructs for non-local control flow. These
cause the flow of execution to jump out of a given context and resume at
some predeclared point.nd continuations are
three common sorts of non-local control constructs; more exotic ones also
exist, such as generators, coroutines and the async keyword.

K >

\ |

104

Let’s talk about exceptions

Exception support in programming languages | edit]
See also: Exception handling syntax

Many computer languages have built-in support for exceptions and exception handling. This includes
ActionScript, Ada, BlitzMax, C++, C#, Clojure, COBOL, D, ECMAScript, Eiffel, Java, ML, Next Generation
Shell, Object Pascal (e.g. Delphi, Free Pascal, and the like), PowerBuilder, Objective-C, OCaml, PHP (as of
version 5), PL/I, PL/SQL, Prolog, Python, REALbasic, Ruby, Scala, Seed7, Smalltalk, Tcl, Visual Prolog and
most .NET languages. Exception handling is commonly not resumable in those languages, and when an
exception is thrown, the program searches back through the stack of function calls until an exception
handler is found.

Some languages call for unwinding the stack as this search progresses. That is, if function f, containing a
handler H for exception E, calls function g, which in turn calls function h, and an exception E occurs in h,
then functions h and g may be terminated, and H in T will handle E.

105

Let’s talk about exceptions

Exception support in programming languages | edit]
See also: Exception handling syntax

Many computer languages have built-in support for exceptions and exception handling. This includes
ActionScript, Ada, BlitzMax, C++, C#, Clojure, COBOL, D, ECMAScript, Eiffel, Java, ML, Next Generation
Shell, Object Pascal (e.g. Delphi, Free Pascal, and the like), PowerBuilder, Objective-C, OCaml, PHP (as of
version 5), PL/I, PL/SQL, Prolog, Python, REALbasic, Ruby, Scala, Seed7, Smalltalk, Tcl, Visual Prolog and
most .NET languages. Exception handling is commonly not resumable in those languages, and when an
exception is thrown, the program searches back through the stack of function calls until an exception
handler is found.

Some languages call for unwinding the stack as this search progresses.jThat is, if function f, containing a

handler H for exception E, calls function g, which in turn calls function h, and an exception E occurs in h,
then functions h and g may be terminated, and H in T will handle E.

o

L

&

106

Let’s talk about exceptions

Let’s talk about exceptions

baz ()

bar ()

foo ()

Let’s talk about exceptions

1/0

baz ()

bar ()

foo ()

Let's talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

110

Let's talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

111

Let’s talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

112

Let's talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

113

Let's talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

114

Let’s talk about exceptions

1/0

baz ()

bar ()

foo ()

115

Let’s talk about exceptions

bar ()

foo ()

Let’s talk about exceptions

// execution continues

bar ()

foo ()

117

Let's talk about conditions

Condition systems | edit]

Common Lisp, Dylan and Smalltalk have a condition system!>3] (see Common Lisp Condition System)
that encompasses the aforementioned exception handling systems. In those languages or environments
the advent of a condition (a "generalisation of an error" according to Kent Pitman) implies a function call,
and only late in the exception handler the decision to unwind the stack may be taken.

Conditions are a generalization of exceptions. When a condition arises, an appropriate condition handler
is searched for and selected, in stack order, to handle the condition. Conditions that do not represent
errors may safely go unhandled entirely; their only purpose may be to propagate hints or warnings
toward the user.[54]

118

Let's talk about conditions

Condition systems | edit]

Common Lisp, Dylan and Smalltalk have a condition system!>3] (see Common Lisp Condition System)

that encompasses t’ ‘.‘.'.'-:mentioned exception handling systems. In those languages or environments

the advent of a con p=~ | "generalisation of an error" according to Kent Pitman) implies a function call,

and only late in the t gptlﬂn handler the decision to unwind the stack may be taken.

Conditions are a generalization of exceptions.JWhen a condition arises, an appropriate condition handler
is searched for and selected, in stack order, to handle the condition. Conditions that do not represent
errors may safely go unhandled entirely; their only purpose may be to propagate hints or warnings
toward the user.[54]

119

Let's talk about conditions

Condition systems | edit]

Common Lisp, Dylan and Smalltalk have a condition system!>3] (see Common Lisp Condition System)
that encompasses t' ‘;.'.'-:mentioned exception handling systems. In those languages or environments
the advent of a con '-\ . "generalisation of an error" according to Kent Pitman) implies a function call,

and only late in the -ption handler the decision to unwind the stack may be taken.

Conditions are a generalization of exceptions.JWhen a condition arises, an appropriate condition handler
is searched for and selected, in stack order, to handle the condition.JConditions that do not represent
errors may safely go unhandled entirely;Jtheir only purpose may be to propagate hints or warnings

toward the user.[54] ‘\ N

oy,

120

Let's talk about signaling an error

Let's talk about signaling an error

(baz)

(bar)

(foo)

Let's talk about signaling an error

(/ 10)
(baz)

(bar)

(foo)

Let's talk about signaling an error

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

Let's talk about signaling an error

division-by-zero

(/ 10)

(baz)

(bar)

(foo)

125

Let's talk about signaling an error

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

"Weldon't do that here” 126

Let's talk about signaling an error

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

"Wel do that here" 127

Let's talk about signaling an error

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

128

Let's talk about signaling an error

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

129

Let's talk about signaling an error

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)
(baz) handler-1
(bar) handler-2

(foo) handler-3

130

Let's talk about signaling an error

handler-1

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)
(baz) handler-1
(bar) handler-2

(foo) handler-3

131

Let's talk about signaling an error

handler-2

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar) handler-2

(foo) handler-3

132

Let's talk about signaling an error

handler-3

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo) handler-3

133

Let's talk about signaling an error

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

134

Let's talk about signaling an error

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

135

Let's talk about signaling an error

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

136

Let's talk about signaling an error

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

Let's talk about unwinding the stack

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

Let's talk about unwinding the stack

handler-2

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar) handler-2

(foo) handler-3

139

Let's talk about unwinding the stack

handler-2

(error ...)

(/ 10)
(baz)

(bar) handler-2

(foo) handler-3

140

Let's talk about unwinding the stack

handler-2

(error ...)

non-local jump (/ 1 0)

(baz)

(bar) handler-2

(foo) handler-3

141

Let's talk about unwinding the stack

(foo)

Let's talk about unwinding the stack

// execution continues

(foo)

143

Let's talk about restarts

(foo)

// execution continues

144

Let's talk about restarts

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

Let's talk about restarts

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)
restart-1
restart-2 (baz)
restart-3 (bar)

restart-4 (foo)

146

Let's talk about restarts

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)
“Return 42 -1instead.”
;) (baz)
Query the user for new numbers.
“Try opening another file.” (bar)

“Abort and return to toplevel.” (fOO)

147

Let's talk about restarts

r—>

division-by-zero

“Return 42 instead.”

“Query the user for new numbers.”

“Try opening another file.”

“Abort and return to toplevel.”

R
\

(invoke-debugger

. e)

(error ...)

(/ 10)

(baz)

(bar)

(foo)

148

Let's talk about restarts

o
-
(invoke-debugger
2
{ .)
9
: ? ﬁ (error ...)
9 division-by-zero (/ 1 0)
2
“Return 42 instead.”
I ” (baZ)
Query the user for new numbers.
“Try opening another file.” (bar)
“Abort and return to toplevel.” (fOO)

149

Let's talk about restarts

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

150

Let's talk about restarts

handler-2

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar) handler-2

(foo) handler-3

151

Let's talk about restarts

handler-2
ﬁ (error ...)
division-by-zero (/ 1 0)
(baz)
“Try opening another file.” (bar) handler-2
(foo) handler-3

152

Let's talk about restarts

restart-fn

handler-2

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

“Try opening another file.” (bar‘) handler-2

(foo) handler-3

153

Let's talk about restarts

non-local
jump

division-by-zero

“Try opening another file.”

restart-fn

handler-2

(error ...)

(/ 10)

(baz)

(bar)

(foo)

handler-2

handler-3

154

Let's talk about restarts

(bar)

(foo)

Let's talk about restarts

(bar)

(foo)

// execution continues

156

Let's talk about signaling a non-error condition

Let's talk about signaling a non-error condition

(quux)

(baz)

(bar)

(foo)

Let's talk about signaling a non-error condition

some—-condition (quux)

(baz)

(bar)

(foo)

Let's talk about signaling a non-error condition

ﬁ (signal ...)

some-condition (quux)

(baz)

(bar)

(foo)

160

Let's talk about signaling a non-error condition

ﬁ (signal ...)

some-condition (quux)
(baz) handler-1
(bar) handler-2

(foo) handler-3

161

Let's talk about signaling a non-error condition

handler-1

ﬁ (signal ...)

some-condition (quux)

(baz) handler-1

(bar) handler-2

(foo) handler-3

162

Let's talk about signaling a non-error condition

handler-2

ﬁ (signal ...)

some-condition (quux)

(baz)

(bar) handler-2

(foo) handler-3

163

Let's talk about signaling a non-error condition

handler-3

ﬁ (signal ...)

some-condition (quux)

(baz)

(bar)

(foo) handler-3

164

Let's talk about signaling a non-error condition

ﬁ (signal ...)

some-condition (quux)

(baz)

(bar)

(foo)

165

Let's talk about signaling a non-error condition

r—; _(¥)_/7

some-condition (quux)

(baz)

(bar)

(foo)

166

Let's talk about signaling a non-error condition

(quux)

(baz)

(bar)

(foo)

Let's talk about signaling a non-error condition

// execution continues

(quux)

(baz)

(bar)

(foo)

168

Let's talk about throwing exceptions

Let's talk about throwing exceptions

 Construct the exception object

170

Let's talk about throwing exceptions

 Construct the exception object

« Unwind the stack immediately
 Stop unwinding when something catches the exception

171

Let's talk about throwing exceptions

 Construct the exception object

« Unwind the stack immediately
 Stop unwinding when something catches the exception

« Continue execution from that point

172

Let's talk about signaling conditions

Let's talk about signaling conditions

 Construct the condition object

174

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order
« What do the handlers do?

175

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order
« What do the handlers do?

L
\

176

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?
« Maybe execute some code

L
\

177

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code
- Maybe invoke a restart

L
\

178

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code
- Maybe invoke a restart
« Maybe do nothing and return

L
\

179

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point

L
\

180

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

Maybe execute some code
Maybe invoke a restart
Maybe do nothing and return
Maybe unwind the stack to a predefined point
Maybe there are no handlers

L
\

181

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point
« Maybe there are no handlers

« Maybe she’s born with it

L
\

182

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point
- Maybe there are no handlers

« Maybe she’s born with it

« Maybe it's Maybelline™

L
\

183

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point
- Maybe there are no handlers

« Maybe she’s born with it

« Maybe it's Maybelline™

* If there was no transfer of control, return
e ...and maybe enter the debugger to halt the program

L
\

184

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order
« What do the handlers do?

« Maybe execute some code _f
- Maybe invoke a restart
« Maybe do nothing and return o

: : : signaling = a
« Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she’s born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™

185

Let’s talk about signaling conditions

e restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
. What dO the handlers dO7 _ ofaut%mated error recovelryt
- Maybe execute some code ..;" geOﬁrCV\é Ceondgiarsmg B

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™

186

Let's talk about conditions versus exceptions

« restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
- What do the handlers do? - e g ovinen pareimgncomplate
- Maybe execute some code ..f source code)

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™

187

Let's talk about conditions versus exceptions

Let’s talk about throwing exceptions Let’s talk about signaling conditions
e restarts=a
dynamically scoped
. . e . hani f choi
- Construct the exception object « Construct the condition object i
« Unwind the stack immediately « Call handlers from the stack in order Bhirepia- e
+ Stop unwinding when something catches the exception « What do the handlers do? - P bkt
« Continue execution from that point * Maybe execute some code -~ Source code)
« Maybe invoke a restart i
+ Maybe do nothing and return P —
« Maybe unwind the stack to a predefined point d&namigal_ly scoped
» Maybe there are no handlers hooking mechanism
* Maybe she’s born with it * progress bars
. " - * message passing
Maybe e l\/IaybeIIme + calling asynchronous code
« If there was no transfer of control, return . etc.

188

Let's talk about conditions versus exceptions

Let’s talk about throwing exceptions Let’s talk about signaling conditions
e restarts=a
dynamically scoped
: . " . hanism of choi
» Construct the exception object « Construct the condition object i
. . . . forint ti i
- Unwind the stack immediately « Call handlers from the stack in order o wopteEdenepdent menns
+ Stop unwinding when something catches the exception « What do the handlers do? s P bkt
« Continue execution from that point * Maybe execute some code ~ Source code)
« Maybe invoke a restart i
+ Maybe do nothing and return P —
« Maybe unwind the stack to a predefined point d&namigally scoped
» Maybe there are no handlers hooking mechanism
* Maybe she’s born with it * progress bars
« Maybe it's Maybelline™ bt
+ calling asynchronous code
« If there was no transfer of control, return - etc.

~
~N

91

'R »
-

189

Let’s talk about signaling conditions

e restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
. What dO the handlers dO7 _ ofaut%mated error recovelryt
- Maybe execute some code ..;" geOﬁrCV\é Ceondgiarsmg B

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™

190

Let's talk about signaling conditions

« Maybe unwind the stack to a predefined point

191

Let's talk about non-local control flow

« Maybe unwind the stack to a predefined point

192

Let's talk about non-local control flow

handler-2

T (error ...)
-

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)

Let's talk about control flow

handler-2

T (error ...)
N

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)

194

Let’s talk about control flow in Common Lisp

handler-2

T (error ...)
-

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)

Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix B

Proving one-phase unwind in TAGBODY and BLOCK

Let’s talk about non-local control flow in Common Lisp

* tagbody/go ; 1-phase unwind (no search)
* block/return-from ; l1l-phase unwind (no search)
 catch/throw ; 2—-phase unwind (search)

197

Let’s talk about non-local control flow in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

198

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

199

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(block foo
(lambda ()
(return-from foo)))

200

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(let ((fn (block foo
(lambda ()
(return-from foo)))))
(funcall fn))

.7

201

Let's talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(let ((fn (block foo
(lambda ()
(return-from foo)))))
(funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.

202

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

; ERROR: Condition CONTROL-ERROR
; was signaled.

203

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

7 ~
IS

; ERROR: Condition CONTROL-ERROR
; was signaled.

204

Let’s talk about one-phase unwind in Common Lisp

(block foo
(lambda ()
(return-from foo)))

205

Let’s talk about one-phase unwind in Common Lisp

(block foo
..)

206

Let’s talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo

ces)
(setf return-valid-p nil)))

207

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
...) 33 let’s expand the lambda!
(setf return-valid-p nil)))

208

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

209

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

210

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%1l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

211

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%1l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

;5 similar validation scheme applies for TAGBODY /GO

212

Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix C

Describing UNWIND-PROTECT

Let’s talk about non-local control flow in Common Lisp

» taghody/go
* block/return-from
e catch/throw

214

Let’s talk about non-local control flow in Common Lisp

» taghody/go

* block/return-from
e catch/throw

« unwind-protect

215

Let's talk about unwinding in Common Lisp

» taghody/go

* block/return-from
e catch/throw

« unwind-protect

216

Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)

217

Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)

218

Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from (
quux)

e catch/throw

« unwind-protect (baz)
(bar)
(foo)

219

Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from
e catch/throw
« unwind-protect (baz)

(quux) (3¢

(bar) »¢

(foo)

220

Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)

221

Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from (
quux)

e catch/throw

« unwind-protect (baz)
(bar)

(foo)

222

Let’s talk about unwinding in Common Lisp

. tagbody /go - (frob)
* block/return-from (quux)
e catch/throw <9
» unwind-protect . (baz)
' (bar)
(>
‘ < (foo)

223

Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix D

Common Lisp condition system without Common Lisp

(this is the last one | promise)

Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

225

Let's talk about control flow in Common Lisp and Java

o i f o i f

* taghody/go

* block/return-from

e catch/throw

 unwind-protect try/finally

 Llambda/apply *new/.apply()
 throw exception

226

Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3J13 and ISO committees for the definition of Common Lisp is even less precise
than a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
ML could be developed for Common Lisp, we believe that a carefully fashioned system of
metacircular definitions can achieve most of the precision of denotational semantics.
Furthermore, a metacircular definition is also more readable and understandable by the
average Common Lisp programmer, since it is written in terms he mostly understands. Finally, a
metacircular definition for Common Lisp special forms enables us to transparently customize
the representation of certain "built-in" mechanisms such as function closures, to enable
sophisticated systems like "Portable Common Loops" to become truly portable.

227

Let’s talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

o=
L
y » v;

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3J13 and ISO committees for the definition of Common Lisp is even less precise
than a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
ML could be developed for Common Lisp, we believe that a carefully fashioned system of
metacircular definitions can achieve most of the precision of denotational semantics.

Finally, a
metacircular definition for Common Lisp special forms enables us to transparently customize
the representation of certain "built-in" mechanisms such as function closures, to enable
sophisticated systems like "Portable Common Loops" to become truly portable.

228

Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

o

o
Henry G. Baker -
Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436 k
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.

T
¥ -

Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.

<T
®
« Can we port the condition system to Java? e

oy
o

&

230

Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.

<T
®
« Can we port CL control flow to Java? e

oy
o

&

231

Let's talk about Common Lisp control flow in Java

g—y

metacircular definition for Common Lisp special forms enables us

to enable
sophisticated systems like "Portable Common Loops" to become truly portable.

« Can we port CL control flow to Java?

232

Let's talk about Common Lisp control flow in Java

o i f o i f

* taghody/go

* block/return-from

e catch/throw

 unwind-protect try/finally

 Llambda/apply *new/.apply()
 throw exception

233

Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| — try/finally

o=
O

*new/.apply()
 throw exception

234

Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| - try/finally

* new/.apply()
 throw exception
“I suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.”

o=
O

--- Abraham H. Maslow

235

Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| — try/finally

*new/.apply()
https.//github.com/phoe/cafe-latte

o=
O

 throw exception

236

<3

yes, it’s seriously the end this time

238

