
Michał “phoe” Herda

phoe@disroot.org
https://phoe.github.io

1

2

• We need means of unwinding and finally blocks

3

• We need means of unwinding and finally blocks

4

• We need means of unwinding and finally blocks
• We can implement all of CL-specific control flow with this!

5

• We need means of unwinding and finally blocks
• We can implement all of CL-specific control flow with this!

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

6

• We need means of unwinding and finally blocks
• We can implement all of CL-specific control flow with this!

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

7

• This includes non-local jumps
(a secret Common Lisp feature)

• We need means of unwinding and finally blocks
• We can implement all of CL-specific control flow with this!

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

8

• This includes non-local jumps
(a secret Common Lisp feature)

• This includes loops
• This includes switches
• This includes error handling
• This includes restart handling

• We need means of unwinding and finally blocks
• We can implement all of CL-specific control flow with this!

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

9

• This includes non-local jumps
(a secret Common Lisp feature)

• This includes loops
• This includes switches
• This includes error handling
• This includes restart handling
• The above four groups

are implemented
in Common Lisp itself

10

• Compiled multiparadigm interactive programming language

11

• Compiled multiparadigm interactive programming language

• ANSI-standardized in 1994

12

• Compiled multiparadigm interactive programming language

• ANSI-standardized in 1994

• Multiple conforming implementations with different qualities

13

• Compiled multiparadigm interactive programming language

• ANSI-standardized in 1994

• Multiple conforming implementations with different qualities

• Relatively small but active community

14

• Compiled multiparadigm interactive programming language

• ANSI-standardized in 1994

• Multiple conforming implementations with different qualities

• Relatively small but active community

• Continuously used for commercial projects and research
15

16

17

18

19

20

21

22

23

• Software engineer at Ericsson (C/C++/Erlang)

24

• Software engineer at Ericsson (C/C++/Erlang)

• Common Lisp enthusiast (#lisp, Lisp Discord, Reddit)

25

• Software engineer at Ericsson (C/C++/Erlang)

• Common Lisp enthusiast (#lisp, Lisp Discord, Reddit)
• Author of The Common Lisp Condition System (Apress, 2020)

26

• Software engineer at Ericsson (C/C++/Erlang)

• Common Lisp enthusiast (#lisp, Lisp Discord, Reddit)
• Author of The Common Lisp Condition System (Apress, 2020)

• Somewhat capable of writing other programming languages

27

• Software engineer at Ericsson (C/C++/Erlang)

• Common Lisp enthusiast (#lisp, Lisp Discord, Reddit)
• Author of The Common Lisp Condition System (Apress, 2020)

• Somewhat capable of writing other programming languages

• I kinda like the topic of control flow

28

• I kinda like the topic of control flow

29

• I kinda like the topic of control flow

30

• I kinda like the topic of control flow

31

32

• if

(if (foo)
 (bar)
 (baz))

33

• if
• tagbody/go

(tagbody
 10 (print “hello”)
 20 (go 10))

34

(block my-block
 (...)
 (... (return-from my-block 42))
 (...))

35

• if
• tagbody/go
• block/return-from

(catch ‘quux
 (...)
 (... (foo))
 (...)))

(defun foo ()
 (throw ‘quux 42))

36

• if
• tagbody/go
• block/return-from
• catch/throw

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect

(let ((thing (make-thing)))
 (unwind-protect (frob thing)
 (cleanup thing)))

37

(let ((fn (lambda ...))
 (args ...))
 (apply fn 1 2 3 args))

38

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(let ((fn (lambda ...))
 (args ...))
 (apply fn 1 2 3 args))

(let ((fn (lambda ...)))
 (funcall fn 1 2 3))

39

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply ; and funcall

40

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

41

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

42

(let ((x 42))
 (lambda () x))

43

(let ((x 42))
 (lambda () x))
;; #<FUNCTION (LAMBDA ())>

44

(let ((x 42))
 (lambda () x))
;; #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)

45

(let ((x 42))
 (lambda () x))
;; #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
;; => 42

46

(let ((x 42))
 (lambda () x))
;; #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
;; => 42

;; but we can close over more
;; than just lexical variables!

47

48

(let ((x 42))
 (lambda () x))
;; #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
;; => 42

;; but we can close over more
;; than just lexical variables!

49

(defun foo (x) (funcall x))

50

(defun foo (x) (funcall x))

(defun bar () ; block bar
 ...)

51

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 ...))

52

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 (foo fn)))

53

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 (foo fn)))

(bar)

54

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 (foo fn)))

(bar)
(bar)

55

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 (foo fn)))

(bar)
(bar)

(foo)

56

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 (foo fn)))

(bar)
(bar)

(foo)

(lambda () ...)

57

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 (foo fn)))

(bar)
(bar)

(foo)

(lambda () ...)

58

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 (foo fn)))

(bar)
(bar)

(foo)

(lambda () ...)

59

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 (foo fn)))

(bar)
;; => 42

60

(defun foo (x) (funcall x))

(defun bar ()
 (let ((fn (lambda ()
 (return-from
 bar 42))))
 (foo fn)))

(bar)
;; => 42

61

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

62

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

63

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

64

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

65

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

1

!

66

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

67

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)1

?

?

?

68

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)1

?

?

?

69

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)1

2?

?

?

!

70

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

71

• if
• tagbody/go ; 1-phase unwind (no search)
• block/return-from ; 1-phase unwind (no search)
• catch/throw ; 2-phase unwind (search)
• unwind-protect
• lambda/apply

72

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

73

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

74

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• All other CL control flow operators are
derivatives of those primitives

75

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• All other CL control flow operators are
derivatives of those primitives
• loops (do, dolist, loop, ...)

76

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• All other CL control flow operators are
derivatives of those primitives
• loops (do, dolist, loop, ...)
• switches (cond, case, typecase, ...)

77

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• All other CL control flow operators are
derivatives of those primitives
• loops (do, dolist, loop, ...)
• switches (cond, case, typecase, ...)
• error handling (handler-case, ...)

78

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• All other CL control flow operators are
derivatives of those primitives
• loops (do, dolist, loop, ...)
• switches (cond, case, typecase, ...)
• error handling (handler-case, ...)
• restarts (restart-case, ...)

79

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• All other CL control flow operators are
derivatives of those primitives
• loops (do, dolist, loop, ...)
• switches (cond, case, typecase, ...)
• error handling (handler-case, ...)
• restarts (restart-case, ...)

• This list includes use cases that are
not related to exception handling

80

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• All other CL control flow operators are
derivatives of those primitives
• loops (do, dolist, loop, ...)
• switches (cond, case, typecase, ...)
• error handling (handler-case, ...)
• restarts (restart-case, ...)

• This list includes use cases that are
not related to exception handling

81

• Control flow ≠ exception handling

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• All other CL control flow operators are
derivatives of those primitives
• loops (do, dolist, loop, ...)
• switches (cond, case, typecase, ...)
• error handling (handler-case, ...)
• restarts (restart-case, ...)

• This list includes use cases that are
not related to exception handling

82

• Control flow ≠ exception handling

83

• Control flow ≠ exception handling

• Do not conflate unwinding with throwing exceptions

84

• Control flow ≠ exception handling

• Do not conflate unwinding with throwing exceptions
• Throwing exceptions is a subset of control flow

85

• Control flow ≠ exception handling

• Do not conflate unwinding with throwing exceptions
• Throwing exceptions is a subset of control flow
• Throwing exceptions is not synonymous with unwinding

86

• Control flow ≠ exception handling

• Do not conflate unwinding with throwing exceptions
• Throwing exceptions is a subset of control flow
• Throwing exceptions is not synonymous with unwinding
• Throwing exceptions is not a primitive operation

87

• Control flow ≠ exception handling

• Do not conflate unwinding with throwing exceptions
• Throwing exceptions is a subset of control flow
• Throwing exceptions is not synonymous with unwinding
• Throwing exceptions is not a primitive operation

• Proofs: Common Lisp, Dylan, Smalltalk

88

• Control flow ≠ exception handling

• Do not conflate unwinding with throwing exceptions
• Throwing exceptions is a subset of control flow
• Throwing exceptions is not synonymous with unwinding
• Throwing exceptions is not a primitive operation

• Proofs: Common Lisp, Dylan, Smalltalk

89

• Control flow ≠ exception handling

90

• Control flow ≠ exception handling

• Suggestion: unwinding as a WebAssembly primitive
• Name the WASM operator unwind instead of throw perhaps?

91

• Control flow ≠ exception handling

• Suggestion: unwinding as a WebAssembly primitive
• Name the WASM operator unwind instead of throw perhaps?

• Suggestion: WebAssembly terminology change
• 1PEH → 1PU = one-phase unwinding (unwind)
• 2PEH → 2PU = two-phase unwinding (stack-search + unwind)

92

• Control flow ≠ exception handling

• Suggestion: unwinding as a WebAssembly primitive
• Name the WASM operator unwind instead of throw perhaps?

• Suggestion: WebAssembly terminology change
• 1PEH → 1PU = one-phase unwinding (unwind)
• 2PEH → 2PU = two-phase unwinding (stack-search + unwind)

• Suggestion: support for dynamic (fluid) variables?
• Basis for implementing a condition system
• Otherwise, we will need some other stack-searching operator
• ...or we’ll need to reimplement dynamic variables

93

• Control flow ≠ exception handling

94

95

• https://github.com/phoe/portable-condition-system
Common Lisp condition system implemented in Common Lisp

96

• https://github.com/phoe/portable-condition-system
Common Lisp condition system implemented in Common Lisp

• https://github.com/phoe/cafe-latte/
Common Lisp control flow operators and condition system
implemented in Java

97

• https://github.com/phoe/portable-condition-system
Common Lisp condition system implemented in Common Lisp

• https://github.com/phoe/cafe-latte/
Common Lisp control flow operators and condition system
implemented in Java

• https://www.youtube.com/watch?v=V4P9lFK79hQ
Control Flow in Common Lisp - Online Lisp Meeting #11,
a recording of material presented in this talk,
including the differences between conditions and exceptions

98

but wait hold on for just one moment

99

Appendix A

Differences between conditions and exceptions

100

101

102

103

104

105

106

107

108

foo()

bar()

baz()

109

foo()

bar()

baz()

1/0

110

foo()

bar()

baz()

1/0

ArithmeticException

111

foo()

bar()

baz()

1/0

ArithmeticException

112

foo()

bar()

baz()

1/0

ArithmeticException

113

foo()

bar()

baz()

1/0

ArithmeticException

114

foo()

bar()

baz()

1/0

catch

ArithmeticException

115

foo()

bar()

baz()

1/0

catch

116

foo()

bar()

117

foo()

bar()

... // execution continues

118

119

120

121

122

(foo)

(bar)

(baz)

123

(foo)

(bar)

(baz)

(/ 1 0)

124

(foo)

(bar)

(baz)

(/ 1 0)division-by-zero

125

(foo)

(bar)

(baz)

(/ 1 0)division-by-zero

126

(foo)

(bar)

(baz)

(/ 1 0)division-by-zero

127

(foo)

(bar)

(baz)

(/ 1 0)division-by-zero

128

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

129

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(signal ...)

130

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(signal ...)

handler-3

handler-2

handler-1

131

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(signal ...)

handler-3

handler-2

handler-1

handler-1

132

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(signal ...)

handler-3

handler-2

handler-1

handler-2

133

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(signal ...)

handler-3

handler-2

handler-1

handler-3

134

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(signal ...)

handler-3

handler-2

handler-1

135

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

136

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(invoke-debugger
 ...)

137

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(invoke-debugger
 ...)

138

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(invoke-debugger
 ...)

139

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

handler-3

handler-2

handler-1

division-by-zero

140

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

handler-3

handler-2

handler-1

141

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

handler-3

handler-2

handler-1

non-local jump

142

(foo)

143

(foo)

... // execution continues

144

(foo)

... // execution continues

145

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(invoke-debugger
 ...)

146

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(invoke-debugger
 ...)

restart-1
restart-2

restart-4

restart-3

147

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(invoke-debugger
 ...)

“Return 42 instead.”
“Query the user for new numbers.”

“Abort and return to toplevel.”

“Try opening another file.”

148

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

(invoke-debugger
 ...)

“Return 42 instead.”
“Query the user for new numbers.”

“Abort and return to toplevel.”

“Try opening another file.”

?

?

?
?

?

149

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

(invoke-debugger
 ...)

“Return 42 instead.”
“Query the user for new numbers.”

“Abort and return to toplevel.”

“Try opening another file.”

division-by-zero

150

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

division-by-zero

151

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

handler-3

handler-2

handler-1

division-by-zero

152

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

handler-3

handler-2

handler-1

division-by-zero

“Try opening another file.”

153

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

handler-3

handler-2

handler-1

division-by-zero

“Try opening another file.”

restart-fn

154

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

handler-3

handler-2

handler-1

division-by-zero

“Try opening another file.”

restart-fn

non-local
jump

155

(foo)

(bar)

156

(foo)

(bar)

... // execution continues

157

158

(foo)

(bar)

(baz)

(quux)

159

(foo)

(bar)

(baz)

(quux)some-condition

160

(foo)

(bar)

(baz)

(quux)some-condition

(signal ...)

161

(foo)

(bar)

(baz)

(quux)some-condition

handler-3

handler-2

handler-1

(signal ...)

162

(foo)

(bar)

(baz)

(quux)some-condition

handler-3

handler-2

handler-1

(signal ...)

handler-1

163

(foo)

(bar)

(baz)

(quux)some-condition

handler-3

handler-2

handler-1

(signal ...)

handler-2

164

(foo)

(bar)

(baz)

(quux)some-condition

handler-3

handler-2

handler-1

(signal ...)

handler-3

165

(foo)

(bar)

(baz)

(quux)some-condition

handler-3

handler-2

handler-1

(signal ...)

166

(foo)

(bar)

(baz)

(quux)some-condition

handler-3

handler-2

handler-1

¯_(ツ)_/¯

167

(foo)

(bar)

(baz)

(quux)

168

(foo)

(bar)

(baz)

(quux)

... // execution continues

169

• Construct the exception object

170

• Construct the exception object
• Unwind the stack immediately

• Stop unwinding when something catches the exception

171

• Construct the exception object
• Unwind the stack immediately

• Stop unwinding when something catches the exception
• Continue execution from that point

172

173

• Construct the condition object

174

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?

175

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?

176

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code

177

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart

178

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return

179

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point

180

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers

181

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it

182

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

183

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

184

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

185

• signaling = a
dynamically scoped
hooking mechanism

• progress bars
• message passing
• calling asynchronous code
• etc..

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

186

• signaling = a
dynamically scoped
hooking mechanism

• progress bars
• message passing
• calling asynchronous code
• etc..

• restarts = a
dynamically scoped
mechanism of choices

• context-dependent actions
for interactive programming

• context-dependent means
of automated error recovery
(e.g. when parsing incomplete
source code)

• etc..

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

187

• signaling = a
dynamically scoped
hooking mechanism

• progress bars
• message passing
• calling asynchronous code
• etc..

• restarts = a
dynamically scoped
mechanism of choices

• context-dependent actions
for interactive programming

• context-dependent means
of automated error recovery
(e.g. when parsing incomplete
source code)

• etc..

188

189

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

190

• signaling = a
dynamically scoped
hooking mechanism

• progress bars
• message passing
• calling asynchronous code
• etc..

• restarts = a
dynamically scoped
mechanism of choices

• context-dependent actions
for interactive programming

• context-dependent means
of automated error recovery
(e.g. when parsing incomplete
source code)

• etc..

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

191

• signaling = a
dynamically scoped
hooking mechanism

• progress bars
• message passing
• calling asynchronous code
• etc..

• restarts = a
dynamically scoped
mechanism of choices

• context-dependent actions
for interactive programming

• context-dependent means
of automated error recovery
(e.g. when parsing incomplete
source code)

• etc..

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

192

• signaling = a
dynamically scoped
hooking mechanism

• progress bars
• message passing
• calling asynchronous code
• etc..

• restarts = a
dynamically scoped
mechanism of choices

• context-dependent actions
for interactive programming

• context-dependent means
of automated error recovery
(e.g. when parsing incomplete
source code)

• etc..

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

193

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

194

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

• Construct the condition object
• Call handlers from the stack in order

• What do the handlers do?
• Maybe execute some code
• Maybe invoke a restart
• Maybe do nothing and return
• Maybe unwind the stack to a predefined point
• Maybe there are no handlers
• Maybe she’s born with it
• Maybe it’s Maybelline™

• If there was no transfer of control, return
• ...and maybe enter the debugger to halt the program

195

(foo)

(bar)

(baz)

(/ 1 0)

(error ...)

handler-2

Appendix B

Proving one-phase unwind in TAGBODY and BLOCK

196

• if
• tagbody/go ; 1-phase unwind (no search)
• block/return-from ; 1-phase unwind (no search)
• catch/throw ; 2-phase unwind (search)
• unwind-protect
• lambda/apply

197

• if
• tagbody/go ; 1-phase unwind (no search)
• block/return-from ; 1-phase unwind (no search)
• catch/throw ; 2-phase unwind (search)
• unwind-protect
• lambda/apply

198

199

• if
• tagbody/go ; 1-phase unwind (no search)
• block/return-from ; 1-phase unwind (no search)
• catch/throw ; 2-phase unwind (search)
• unwind-protect
• lambda/apply

(block foo
 (lambda ()
 (return-from foo)))

200

• if
• tagbody/go ; 1-phase unwind (no search)
• block/return-from ; 1-phase unwind (no search)
• catch/throw ; 2-phase unwind (search)
• unwind-protect
• lambda/apply

(let ((fn (block foo
 (lambda ()
 (return-from foo)))))
 (funcall fn))
; ...?

201

• if
• tagbody/go ; 1-phase unwind (no search)
• block/return-from ; 1-phase unwind (no search)
• catch/throw ; 2-phase unwind (search)
• unwind-protect
• lambda/apply

(let ((fn (block foo
 (lambda ()
 (return-from foo)))))
 (funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.

202

• if
• tagbody/go ; 1-phase unwind (no search)
• block/return-from ; 1-phase unwind (no search)
• catch/throw ; 2-phase unwind (search)
• unwind-protect
• lambda/apply

• if
• tagbody/go ; 1-phase unwind (no search)
• block/return-from ; 1-phase unwind (no search)
• catch/throw ; 2-phase unwind (search)
• unwind-protect
• lambda/apply (let ((fn (block foo

 (lambda ()
 (return-from foo)))))
 (funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.

203

• if
• tagbody/go ; 1-phase unwind (no search)
• block/return-from ; 1-phase unwind (no search)
• catch/throw ; 2-phase unwind (search)
• unwind-protect
• lambda/apply (let ((fn (block foo

 (lambda ()
 (return-from foo)))))
 (funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.

204

? ?

(block foo
 (lambda ()
 (return-from foo)))

205

(block foo
 ...)

206

(let ((return-valid-p t))
 (unwind-protect
 (%unwind-tag foo
 ...)
 (setf return-valid-p nil)))

207

(let ((return-valid-p t))
 (unwind-protect
 (%unwind-tag foo
 ...) ;; let’s expand the lambda!
 (setf return-valid-p nil)))

208

(let ((return-valid-p t))
 (unwind-protect
 (%unwind-tag foo
 (lambda ()
 (if return-valid-p
 (%1-phase-unwind-to-tag foo)
 (error ‘control-error))))
 (setf return-valid-p nil)))

209

(let ((return-valid-p t))
 (unwind-protect
 (%unwind-tag foo
 (lambda ()
 (if return-valid-p
 (%1-phase-unwind-to-tag foo)
 (error ‘control-error))))
 (setf return-valid-p nil)))

210

(let ((return-valid-p t))
 (unwind-protect
 (%unwind-tag foo
 (lambda ()
 (if return-valid-p
 (%1-phase-unwind-to-tag foo)
 (error ‘control-error))))
 (setf return-valid-p nil)))

211

(let ((return-valid-p t))
 (unwind-protect
 (%unwind-tag foo
 (lambda ()
 (if return-valid-p
 (%1-phase-unwind-to-tag foo)
 (error ‘control-error))))
 (setf return-valid-p nil)))

;; similar validation scheme applies for TAGBODY/GO

212

Appendix C

Describing UNWIND-PROTECT

213

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

214

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

215

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

216

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

217

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

218

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

219

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

220

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

221

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

222

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)

(bar)

(baz)

(quux)

(frob)

223

Appendix D

Common Lisp condition system without Common Lisp

(this is the last one I promise)
224

225

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

226

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• if
• tagbody/go
• block/return-from
• catch/throw
• try/finally
• new/.apply()
• throw exception

227

228

229

230
• Can we port the condition system to Java?

231
• Can we port CL control flow to Java?

232
• Can we port CL control flow to Java?

233

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• if
• tagbody/go
• block/return-from
• catch/throw
• try/finally
• new/.apply()
• throw exception

234

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• if
• tagbody/go
• block/return-from
• catch/throw
• try/finally
• new/.apply()
• throw exception

235

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• if
• tagbody/go
• block/return-from
• catch/throw
• try/finally
• new/.apply()
• throw exception

“I suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.”

--- Abraham H. Maslow

236

• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• if
• tagbody/go
• block/return-from
• catch/throw
• try/finally
• new/.apply()
• throw exception

https://github.com/phoe/cafe-latte

237

yes, it’s seriously the end this time

238

