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If this presentation only had a single slide

« We need means of unwinding and finally blocks
« We can implement all of CL-specific control flow with this!

tagbody/go
block/return-from
catch/throw
unwind-protect

This includes non-local jumps
(a secret Common Lisp feature)

This includes loops

This includes switches

This includes error handling
This includes restart handling

The above four groups
are implemented
in Common Lisp itself
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Let's talk about Common Lisp

« Compiled multiparadigm interactive programming language
* ANSI-standardized in 1994

» Multiple conforming implementations with different qualities
* Relatively small but active community

» Continuously used for commercial projects and research
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You HAVE JAVASCRIPT

You SPEND HOURS
PICKING LIBRARIES,
SETTING UP NODE %
BUILDING A FRAMEWORK
FOR THE CASTLE.

You'RE FINISHED WITH
THE FRAMEWORK
THE FORT HAS
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AND THE PRINCESS
HAS MOVED To
ANOTHER CASTLE

BY THE TIME |
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cif

(if (foo)
(bar)
(baz))
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Let’s talk about control flow in Common Lisp

e if
* taghody/go

(tagbody
10 (print “hello”)
20 (go 10))
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Let’s talk about control flow in Common Lisp

o f
* taghody/go
* block/return-from

(block my-block

(o..)
(... (return-from my-block 42))

(ee))
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Let’s talk about control flow in Common Lisp

i f

* taghody/go

* block/return-from
e catch/throw

(catch ‘quux

(o..)
(... (foo0)) (defun foo ()
(e..))) (throw ‘quux 42))
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Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect

(let ((thing (make-thing)))
(unwind-protect (frob thing)
(cleanup thing)))
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Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

(let ((fn (lambda ...))

(args ...))
(apply fn 1 2 3 args))
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Let's talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from

e catch/throw
 unwind-protect
 lambda/apply ; and funcall

(let ((fn (lambda ...))
(args ...)) (let ((fn (lambda ...)))
(apply fn 1 2 3 args)) (funcall fn 1 2 3))
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e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply
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 Lambda/apply
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(let ((x 42))
(lambda () x))
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(let ((x 42))
(lambda () x))
s #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
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(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
3y => 42

;3 but we can close over more
;3 than just lexical variables!

48



Let’s talk about non-local control flow in Common Lisp



Let’s talk about non-local control flow in Common Lisp

(defun foo (x) (funcall x))

50



Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar () ; block bar
.)
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(defun bar ()
(let ((fn (lambda ()
(return-from

bar 42))))
..))
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(defun bar ()
(let ((fn (lambda ()
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bar 42))))
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

.F
(foo) (bar)

(bar)
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))
.F
(foo) (bar)
(bar)
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
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(foo fn)))
.F
(foo) (bar)
(bar)
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(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
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Let's talk about non-local control flow in Common Lisp

(defun foo (x) (funcall x))

* tagbody/go (defun bar ()
* block/return-from (let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))
(bar)

55 => 42

61



Let’s talk about non-local control flow in Common Lisp



Let's talk about unwinding in Common Lisp



Let's talk about unwinding in Common Lisp

(frob)

(quux)

(baz)

(bar)

(foo)




Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from

(frob)

(quux)

(baz)

(bar)

(foo)

65



Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from

(frob)

(quux)

(baz)

(bar)

(foo)

66



Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

(quux)

(baz)

(bar)

(foo)




Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

'a

t"

(quux)

(baz)

(bar)

(foo)

68



Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

'a

t‘,

(quux)

(baz)

(bar)

(foo)

69



Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

in

t‘,

(quux)

(baz)

(bar)

(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from
e catch/throw
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Let's talk about unwinding in Common Lisp

* tagbody/go ; 1-phase unwind (no search)
* block/return-from ; l1l-phase unwind (no search)
 catch/throw ; 2—-phase unwind (search)
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Let's talk about unwinding in Common Lisp

i f

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
 Lambda/apply
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Let’s talk about control flow in general

 Control flow # exception handling
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* Do not conflate unwinding with throwing exceptions
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Let’s talk about control flow in WebAssembly

 Suggestion: unwinding as a WebAssembly primitive
« Name the WASM operator unwind instead of throw perhaps?

 Suggestion: WebAssembly terminology change
 TPEH — 1PU = one-phase unwinding (unw-ind)
« 2PEH — 2PU = two-phase unwinding (stack-search + unwind)

 Suggestion: support for dynamic (fluid) variables?
* Basis for implementing a condition system
« Otherwise, we will need some other stack-searching operator
e ...or we'll need to reimplement dynamic variables

 Control flow # exception handling
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Let's talk about control flow in WebAssembly

e https://github.com/phoe/portable-condition-system
Common Lisp condition system implemented in Common Lisp

95



Let's talk about control flow in WebAssembly
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Common Lisp condition system implemented in Common Lisp
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Common Lisp control flow operators and condition system
implemented in Java
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Let’s talk about control flow in WebAssembly

e https://github.com/phoe/portable-condition-system
Common Lisp condition system implemented in Common Lisp

* https://github.com/phoe/cafe-latte/
Common Lisp control flow operators and condition system

implemented in Java

* https://www.youtube.com/watch?v=V4P9IFK79nhQ
Control Flow in Common Lisp - Online Lisp Meeting #11,
a recording of material presented in this talk,
including the differences between conditions and exceptions
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Let's talk about control flow

From Wikipedia, the free encyclopedia

FALSE

-
Zi>/¢ for(A;B;C)
=1 i
s D
Control tflow - !
' S
-

Not to be confused with Flow control (data).

In computer science, control flow (or flow of control) is the order in which 7
individual statements, instructions or function calls of an imperative program c

are executed or evaluated. The emphasis on explicit control flow distinguishes

an imperative programming language from a declarative programming C—b
language.
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Let's talk about non-local control flow

Structured non-local control flow [ edit]

Many programming languages, especially those favoring more dynamic
styles of programming, offer constructs for non-local control flow. These
cause the flow of execution to jump out of a given context and resume at
some predeclared point. Conditions, exceptions and continuations are
three common sorts of non-local control constructs; more exotic ones also
exist, such as generators, coroutines and the async keyword.
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Let's talk about non-local control flow

Structured non-local control flow [ edit]

Many programming languages, especially those favoring more dynamic
styles of programming, offer constructs for non-local control flow. These
cause the flow of execution to jump out of a given context and resume at
some predeclared point.nd continuations are
three common sorts of non-local control constructs; more exotic ones also
exist, such as generators, coroutines and the async keyword.
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Let’s talk about exceptions

Exception support in programming languages | edit]
See also: Exception handling syntax

Many computer languages have built-in support for exceptions and exception handling. This includes
ActionScript, Ada, BlitzMax, C++, C#, Clojure, COBOL, D, ECMAScript, Eiffel, Java, ML, Next Generation
Shell, Object Pascal (e.g. Delphi, Free Pascal, and the like), PowerBuilder, Objective-C, OCaml, PHP (as of
version 5), PL/I, PL/SQL, Prolog, Python, REALbasic, Ruby, Scala, Seed7, Smalltalk, Tcl, Visual Prolog and
most .NET languages. Exception handling is commonly not resumable in those languages, and when an
exception is thrown, the program searches back through the stack of function calls until an exception
handler is found.

Some languages call for unwinding the stack as this search progresses. That is, if function f, containing a
handler H for exception E, calls function g, which in turn calls function h, and an exception E occurs in h,
then functions h and g may be terminated, and H in T will handle E.
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Let’s talk about exceptions

Exception support in programming languages | edit]
See also: Exception handling syntax

Many computer languages have built-in support for exceptions and exception handling. This includes
ActionScript, Ada, BlitzMax, C++, C#, Clojure, COBOL, D, ECMAScript, Eiffel, Java, ML, Next Generation
Shell, Object Pascal (e.g. Delphi, Free Pascal, and the like), PowerBuilder, Objective-C, OCaml, PHP (as of
version 5), PL/I, PL/SQL, Prolog, Python, REALbasic, Ruby, Scala, Seed7, Smalltalk, Tcl, Visual Prolog and
most .NET languages. Exception handling is commonly not resumable in those languages, and when an
exception is thrown, the program searches back through the stack of function calls until an exception
handler is found.

Some languages call for unwinding the stack as this search progresses.jThat is, if function f, containing a

handler H for exception E, calls function g, which in turn calls function h, and an exception E occurs in h,
then functions h and g may be terminated, and H in T will handle E.
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bar ()

foo ()




Let’s talk about exceptions

1/0

baz ()

bar ()

foo ()




Let's talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()
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ArithmeticException
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1/0

baz ()

bar ()

foo ()
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Let’s talk about exceptions

bar ()

foo ()




Let’s talk about exceptions

// execution continues

bar ()

foo ()
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Let's talk about conditions

Condition systems | edit]

Common Lisp, Dylan and Smalltalk have a condition system!>3] (see Common Lisp Condition System)
that encompasses the aforementioned exception handling systems. In those languages or environments
the advent of a condition (a "generalisation of an error" according to Kent Pitman) implies a function call,
and only late in the exception handler the decision to unwind the stack may be taken.

Conditions are a generalization of exceptions. When a condition arises, an appropriate condition handler
is searched for and selected, in stack order, to handle the condition. Conditions that do not represent
errors may safely go unhandled entirely; their only purpose may be to propagate hints or warnings
toward the user.[54]

118



Let's talk about conditions

Condition systems | edit]

Common Lisp, Dylan and Smalltalk have a condition system!>3] (see Common Lisp Condition System)

that encompasses t’ ‘.‘.'.'-:mentioned exception handling systems. In those languages or environments

the advent of a con p=~ | "generalisation of an error" according to Kent Pitman) implies a function call,

and only late in the t gptlﬂn handler the decision to unwind the stack may be taken.

Conditions are a generalization of exceptions.JWhen a condition arises, an appropriate condition handler
is searched for and selected, in stack order, to handle the condition. Conditions that do not represent
errors may safely go unhandled entirely; their only purpose may be to propagate hints or warnings
toward the user.[54]
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ﬁ (error ...)
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Let's talk about signaling an error

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)
(baz) handler-1
(bar) handler-2

(foo) handler-3
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Let's talk about signaling an error

handler-1

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)
(baz) handler-1
(bar) handler-2

(foo) handler-3
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Let's talk about signaling an error

handler-2

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)
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(bar) handler-2

(foo) handler-3

132



Let's talk about signaling an error

handler-3

(signal ...)

ﬁ (error ...)
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(bar)

(foo) handler-3
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(invoke-debugger
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(invoke-debugger

. e)
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handler-2

ﬁ (error ...)

division-by-zero (/ 1 0)
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(bar) handler-2

(foo) handler-3
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Let's talk about unwinding the stack

handler-2

(error ...)

(/ 10)
(baz)

(bar) handler-2

(foo) handler-3
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Let's talk about unwinding the stack

handler-2

(error ...)

non-local jump (/ 1 0)

(baz)

(bar) handler-2

(foo) handler-3
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Let's talk about unwinding the stack

(foo)




Let's talk about unwinding the stack

// execution continues

(foo)
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Let's talk about restarts

(foo)

// execution continues
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Let's talk about restarts

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)
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Let's talk about restarts

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)
restart-1
restart-2 (baz)
restart-3 (bar)

restart-4 (foo)
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Let's talk about restarts

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)
“Return 42 -1instead.”
; ) (baz)
Query the user for new numbers.
“Try opening another file.” (bar)

“Abort and return to toplevel.” (fOO)
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division-by-zero

“Return 42 instead.”

“Query the user for new numbers.”

“Try opening another file.”

“Abort and return to toplevel.”
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(invoke-debugger

. e)

(error ...)

(/ 10)

(baz)
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(foo)
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Let's talk about restarts

o
-
(invoke-debugger
2
{ . )
9
: ? ﬁ (error ...)
9 division-by-zero (/ 1 0)
2
“Return 42 instead.”
I ” (baZ)
Query the user for new numbers.
“Try opening another file.” (bar)
“Abort and return to toplevel.” (fOO)
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Let's talk about restarts

ﬁ (error ...)

division-by-zero (/ 1 0)
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Let's talk about restarts

handler-2

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar) handler-2

(foo) handler-3
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Let's talk about restarts

handler-2
ﬁ (error ...)
division-by-zero (/ 1 0)
(baz)
“Try opening another file.” (bar) handler-2
(foo) handler-3
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Let's talk about restarts

restart-fn

handler-2

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

“Try opening another file.” (bar‘) handler-2

(foo) handler-3
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Let's talk about restarts

non-local
jump

division-by-zero

“Try opening another file.”

restart-fn

handler-2

(error ...)

(/ 10)

(baz)

(bar)

(foo)

handler-2

handler-3

154



Let's talk about restarts

(bar)

(foo)




Let's talk about restarts

(bar)

(foo)

// execution continues
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Let's talk about signaling a non-error condition

handler-2

ﬁ (signal ...)

some-condition (quux)
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(bar) handler-2

(foo) handler-3
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Let's talk about signaling a non-error condition

handler-3

ﬁ (signal ...)

some-condition (quux)

(baz)

(bar)

(foo) handler-3
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ﬁ (signal ...)

some-condition (quux)
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(foo)
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Let's talk about signaling a non-error condition

r—; \_(¥)_/7

some-condition (quux)

(baz)

(bar)

(foo)
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Let's talk about signaling a non-error condition
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Let's talk about signaling a non-error condition

// execution continues

(quux)

(baz)

(bar)

(foo)
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Let's talk about throwing exceptions

 Construct the exception object

170



Let's talk about throwing exceptions

 Construct the exception object

« Unwind the stack immediately
 Stop unwinding when something catches the exception
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Let's talk about throwing exceptions

 Construct the exception object

« Unwind the stack immediately
 Stop unwinding when something catches the exception

« Continue execution from that point
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Let's talk about signaling conditions

 Construct the condition object
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 Construct the condition object

e Call handlers from the stack in order
« What do the handlers do?
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 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?
« Maybe execute some code
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 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code
- Maybe invoke a restart

L
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 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code
- Maybe invoke a restart
« Maybe do nothing and return
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 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point

L
\

180



Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

Maybe execute some code
Maybe invoke a restart
Maybe do nothing and return
Maybe unwind the stack to a predefined point
Maybe there are no handlers

L
\
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Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point
« Maybe there are no handlers

« Maybe she’s born with it
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 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?
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- Maybe invoke a restart

« Maybe do nothing and return
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Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point
- Maybe there are no handlers

« Maybe she’s born with it

« Maybe it's Maybelline™

* If there was no transfer of control, return
e ...and maybe enter the debugger to halt the program

L
\
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Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order
« What do the handlers do?

« Maybe execute some code _f
- Maybe invoke a restart
« Maybe do nothing and return o

: : :  signaling = a
« Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she’s born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™
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Let’s talk about signaling conditions

e restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
. What dO the handlers dO7 _ ofaut%mated error recovelryt
- Maybe execute some code ..;" geOﬁrCV\é Ceondgiarsmg B

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™
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Let's talk about conditions versus exceptions

« restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
- What do the handlers do? - e g ovinen pareimgncomplate
- Maybe execute some code ..f source code)

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™
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Let's talk about conditions versus exceptions

Let’s talk about throwing exceptions Let’s talk about signaling conditions
e restarts=a
dynamically scoped
. . e . hani f choi
- Construct the exception object « Construct the condition object i
« Unwind the stack immediately « Call handlers from the stack in order Bhirepia- e
+ Stop unwinding when something catches the exception « What do the handlers do? - P bkt
« Continue execution from that point * Maybe execute some code -~ Source code)
« Maybe invoke a restart i
+ Maybe do nothing and return P —
« Maybe unwind the stack to a predefined point d&namigal_ly scoped
» Maybe there are no handlers hooking mechanism
* Maybe she’s born with it * progress bars
. " - * message passing
Maybe e l\/IaybeIIme + calling asynchronous code
« If there was no transfer of control, return . etc.
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Let’s talk about throwing exceptions Let’s talk about signaling conditions
e restarts=a
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: . " . hanism of choi
» Construct the exception object « Construct the condition object i
. . . . forint ti i
- Unwind the stack immediately « Call handlers from the stack in order o wopteEdenepdent menns
+ Stop unwinding when something catches the exception « What do the handlers do? s P bkt
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Let’s talk about signaling conditions

e restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
. What dO the handlers dO7 _ ofaut%mated error recovelryt
- Maybe execute some code ..;" geOﬁrCV\é Ceondgiarsmg B

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™

190



Let's talk about signaling conditions

« Maybe unwind the stack to a predefined point
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Let's talk about non-local control flow

« Maybe unwind the stack to a predefined point
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Let's talk about non-local control flow

handler-2

T (error ...)
-

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)




Let's talk about control flow

handler-2

T (error ...)
N

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)
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Let’s talk about control flow in Common Lisp

handler-2

T (error ...)
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(foo)




Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix B

Proving one-phase unwind in TAGBODY and BLOCK



Let’s talk about non-local control flow in Common Lisp

* tagbody/go ; 1-phase unwind (no search)
* block/return-from ; l1l-phase unwind (no search)
 catch/throw ; 2—-phase unwind (search)
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Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(block foo
(lambda ()
(return-from foo)))

200



Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(let ((fn (block foo
(lambda ()
(return-from foo)))))
(funcall fn))

.7
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Let's talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(let ((fn (block foo
(lambda ()
(return-from foo)))))
(funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.
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; 1-phase unwind (no search)
; 1l-phase unwind (no search)

; ERROR: Condition CONTROL-ERROR
; was signaled.
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Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

7 ~
IS

; ERROR: Condition CONTROL-ERROR
; was signaled.
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Let’s talk about one-phase unwind in Common Lisp

(block foo
(lambda ()
(return-from foo)))
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Let’s talk about one-phase unwind in Common Lisp

(block foo
.. )
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Let’s talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo

ces)
(setf return-valid-p nil)))
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Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
...) 33 let’s expand the lambda!
(setf return-valid-p nil)))
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Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))
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Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))
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Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%1l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))
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Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%1l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

;5 similar validation scheme applies for TAGBODY /GO
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aka Why Lisp Doesn't Need To Throw Exceptions

Appendix C

Describing UNWIND-PROTECT



Let’s talk about non-local control flow in Common Lisp

» taghody/go
* block/return-from
e catch/throw
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Let’s talk about non-local control flow in Common Lisp

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
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Let's talk about unwinding in Common Lisp

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)
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(bar)
(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from (
quux)

e catch/throw

« unwind-protect (baz)
(bar)
(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from
e catch/throw
« unwind-protect (baz)

(quux) (3¢

(bar) »¢

(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from (
quux)

e catch/throw

« unwind-protect (baz)
(bar)

(foo)
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Let’s talk about unwinding in Common Lisp

. tagbody /go - (frob)
* block/return-from (quux)
e catch/throw <9
» unwind-protect . (baz)
' (bar)
(>
‘ < (foo)
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Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix D

Common Lisp condition system without Common Lisp

(this is the last one | promise)



Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply
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Let's talk about control flow in Common Lisp and Java

o i f o i f

* taghody/go

* block/return-from

e catch/throw

 unwind-protect try/finally

 Llambda/apply *new/.apply()
 throw exception
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Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3J13 and ISO committees for the definition of Common Lisp is even less precise
than a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
ML could be developed for Common Lisp, we believe that a carefully fashioned system of
metacircular definitions can achieve most of the precision of denotational semantics.
Furthermore, a metacircular definition is also more readable and understandable by the
average Common Lisp programmer, since it is written in terms he mostly understands. Finally, a
metacircular definition for Common Lisp special forms enables us to transparently customize
the representation of certain "built-in" mechanisms such as function closures, to enable
sophisticated systems like "Portable Common Loops" to become truly portable.
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Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

o=
L
y » v;

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3J13 and ISO committees for the definition of Common Lisp is even less precise
than a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
ML could be developed for Common Lisp, we believe that a carefully fashioned system of
metacircular definitions can achieve most of the precision of denotational semantics.

Finally, a
metacircular definition for Common Lisp special forms enables us to transparently customize
the representation of certain "built-in" mechanisms such as function closures, to enable
sophisticated systems like "Portable Common Loops" to become truly portable.
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Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

o

o
Henry G. Baker -
Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436 k
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.
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Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.
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Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.

<T
®
« Can we port CL control flow to Java? e

oy
o

&

231



Let's talk about Common Lisp control flow in Java
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metacircular definition for Common Lisp special forms enables us

to enable
sophisticated systems like "Portable Common Loops" to become truly portable.

« Can we port CL control flow to Java?
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Let's talk about Common Lisp control flow in Java

o i f o i f

* taghody/go

* block/return-from

e catch/throw

 unwind-protect try/finally

 Llambda/apply *new/.apply()
 throw exception
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* taghody/go

* block/return-from
T e catch/throw

| — try/finally

o=
O

*new/.apply()
 throw exception
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Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| - try/finally

* new/.apply()
 throw exception
“I suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.”

o=
O

--- Abraham H. Maslow
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Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| — try/finally

*new/.apply()
https.//github.com/phoe/cafe-latte

o=
O

 throw exception
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yes, it’s seriously the end this time
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