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• This includes non-local jumps
(a secret Common Lisp feature)

• This includes loops
• This includes switches
• This includes error handling
• This includes restart handling
• The above four groups

are implemented 
in Common Lisp itself
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• Compiled multiparadigm interactive programming language

• ANSI-standardized in 1994

• Multiple conforming implementations with different qualities

• Relatively small but active community

• Continuously used for commercial projects and research
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• if

(if (foo)
    (bar)
    (baz))
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• if
• tagbody/go

(tagbody
 10 (print “hello”)
 20 (go 10))
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(block my-block
  (...)
  (... (return-from my-block 42))
  (...))
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(catch ‘quux 
  (...) 
  (... (foo))
  (...)))

(defun foo ()
  (throw ‘quux 42))
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• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect

(let ((thing (make-thing)))
  (unwind-protect (frob thing)
    (cleanup thing)))
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(let ((fn (lambda ...))
      (args ...))
  (apply fn 1 2 3 args))
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(let ((x 42))
  (lambda () x))
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  ...)
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(defun foo (x) (funcall x))
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(bar)
;; => 42
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• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

(foo)
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• if
• tagbody/go         ; 1-phase unwind (no search)
• block/return-from  ; 1-phase unwind (no search)
• catch/throw        ; 2-phase unwind (search)
• unwind-protect
• lambda/apply
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• Suggestion: unwinding as a WebAssembly primitive
• Name the WASM operator unwind instead of throw perhaps?

• Suggestion: WebAssembly terminology change
• 1PEH → 1PU = one-phase unwinding (unwind)
• 2PEH → 2PU = two-phase unwinding (stack-search + unwind)

• Suggestion: support for dynamic (fluid) variables?
• Basis for implementing a condition system
• Otherwise, we will need some other stack-searching operator
• ...or we’ll need to reimplement dynamic variables
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• https://github.com/phoe/portable-condition-system
Common Lisp condition system implemented in Common Lisp

• https://github.com/phoe/cafe-latte/
Common Lisp control flow operators and condition system 
implemented in Java

• https://www.youtube.com/watch?v=V4P9lFK79hQ
Control Flow in Common Lisp - Online Lisp Meeting #11,
a recording of material presented in this talk,
including the differences between conditions and exceptions
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Appendix A

Differences between conditions and exceptions
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Appendix B

Proving one-phase unwind in TAGBODY and BLOCK
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• if
• tagbody/go         ; 1-phase unwind (no search)
• block/return-from  ; 1-phase unwind (no search)
• catch/throw        ; 2-phase unwind (search)
• unwind-protect
• lambda/apply
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(block foo
  (lambda ()
    (return-from foo)))
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• if
• tagbody/go         ; 1-phase unwind (no search)
• block/return-from  ; 1-phase unwind (no search)
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(let ((fn (block foo
           (lambda ()
             (return-from foo)))))
  (funcall fn))
; ...?

201

• if
• tagbody/go         ; 1-phase unwind (no search)
• block/return-from  ; 1-phase unwind (no search)
• catch/throw        ; 2-phase unwind (search)
• unwind-protect
• lambda/apply



(let ((fn (block foo
           (lambda ()
             (return-from foo)))))
  (funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.
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• if
• tagbody/go         ; 1-phase unwind (no search)
• block/return-from  ; 1-phase unwind (no search)
• catch/throw        ; 2-phase unwind (search)
• unwind-protect
• lambda/apply (let ((fn (block foo

           (lambda ()
             (return-from foo)))))
  (funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.
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• if
• tagbody/go         ; 1-phase unwind (no search)
• block/return-from  ; 1-phase unwind (no search)
• catch/throw        ; 2-phase unwind (search)
• unwind-protect
• lambda/apply (let ((fn (block foo

           (lambda ()
             (return-from foo)))))
  (funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.
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(block foo
  (lambda ()
    (return-from foo)))

205



(block foo
  ...)
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(let ((return-valid-p t))
  (unwind-protect
      (%unwind-tag foo
        ...)
    (setf return-valid-p nil)))
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(let ((return-valid-p t))
  (unwind-protect
      (%unwind-tag foo
        ...) ;; let’s expand the lambda!
    (setf return-valid-p nil)))
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(let ((return-valid-p t))
  (unwind-protect
      (%unwind-tag foo
        (lambda ()
          (if return-valid-p
              (%1-phase-unwind-to-tag foo)
              (error ‘control-error))))
    (setf return-valid-p nil)))
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(let ((return-valid-p t))
  (unwind-protect
      (%unwind-tag foo
        (lambda ()
          (if return-valid-p
              (%1-phase-unwind-to-tag foo)
              (error ‘control-error))))
    (setf return-valid-p nil)))
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(let ((return-valid-p t))
  (unwind-protect
      (%unwind-tag foo
        (lambda ()
          (if return-valid-p
              (%1-phase-unwind-to-tag foo)
              (error ‘control-error))))
    (setf return-valid-p nil)))
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(let ((return-valid-p t))
  (unwind-protect
      (%unwind-tag foo
        (lambda ()
          (if return-valid-p
              (%1-phase-unwind-to-tag foo)
              (error ‘control-error))))
    (setf return-valid-p nil)))

;; similar validation scheme applies for TAGBODY/GO
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Appendix C

Describing UNWIND-PROTECT
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• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply
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• if
• tagbody/go
• block/return-from
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Appendix D

Common Lisp condition system without Common Lisp

(this is the last one I promise)
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• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• if
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• block/return-from
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• new/.apply()
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230
• Can we port the condition system to Java?
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• Can we port CL control flow to Java?
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• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• if
• tagbody/go
• block/return-from
• catch/throw
• try/finally
• new/.apply()
• throw exception

“I suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.”

--- Abraham H. Maslow
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• if
• tagbody/go
• block/return-from
• catch/throw
• unwind-protect
• lambda/apply

• if
• tagbody/go
• block/return-from
• catch/throw
• try/finally
• new/.apply()
• throw exception

https://github.com/phoe/cafe-latte
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yes, it’s seriously the end this time
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