Web Science

Lecture 2

01/19/2017

CS 432/532 Spring 2017

Old Dominion University
Department of Computer Science

Sawood Alam <salam@cs.odu.edu>

Originally prepared by Hany SalahEldeen Khalil

Original Lectures

CS 495 Python and Web Mining

http://www.cs.odu.edu/~hany/teaching/cs495-f12/

By Hany SalahEldeen Khalil

Lecture Outline

Python Programming
 We will learn how to:
* program in Python
* write high quality code
 utilize numerous libraries and APIs

Python

Taming the beast!

Python

It’s an open source programming language
Compiled and Interpreted

Slower than C/C++ but with the difference
in speed is negligible for most applications
Developed in the late 1980s

Why Python?

t is a scripting language

~ast in development and prototyping
~ast in testing functionality

Pluggable to other C/C++/Java code
Object oriented

Has hundreds of libraries

Automatically convert variable types
Clean and easy to read as white space is
part of the syntax!

Expression vs. Statement

Expression

Represents something
Python Evaluates it
Results in a value

Example:

5.6
(5/3)+2.9

Statement

Does something
Python Executes it
Results in an action

Example:

print("Barcelona FC is Awesome!")
import sys

Similarity with C Syntax

* Mostly similar to C/C++ syntax but with several exceptions.
* Differences:

* White spaces for indentation

* No “{}” for blocks

* Blocks begin with “:”

* NO type declaration

* No ++, -- operators

 Keywords

e No &&and ||

e No switch/case

Starting & Exiting Python REPL

[user@host ~]$ python

Python 2.6.5 (r265:79063, Jan 21 2011,
12:09:23)

[GCC 4.4.4 20100726 (Red Hat 4.4.4-13)] on
linux2

Type "help", "copyright", "credits" or "license" for

>>> ctrl+ D
[user@host ~]1%

Our Hello World!

[user@host ~]$ python

Python 2.6.5 (r265:79063, Jan 21 2011,
12:09:23)

[GCC 4.4.4 20100726 (Red Hat 4.4.4-13)] on
linux2

Type "help", "copyright”, "credits" or "license" for

>>> print "hello world"
hello world

Simple Data Types

Integer: 7/
Float: 87.23
String: "abc", 'abc’

Boolean: False, True

Simple Data Types: String

Concatenation: "Python" + "Rocks" - "PythonRocks"

Repetition: "Python" * 2 -
"PythonPython"

Slicing: "Python"[2:3] - "th"
Size: len("Python")

-6

Index: "Python"[2]

- 't

Search: "x" in "Python" -
False

Comparison: "Python" <"ZOO" - True

III‘\\I:I“AI‘TV"'\V\L\:I‘"\II\I\

Compound Data Types: List

The equivalent of array or vector in c++.
X=10,1, 2,3, 4]

* Creates a pre-populated array of size 5.
Y=1[]

X.append(5)

e Xbecomes]|O, 1, 2, 3, 4, 5]

len(X)

 Gets the length of X which is 6

Compound Data Types: List

>>> mylist = [0, 'a’, "hello", 1, 2, ['b', 'c’, 'd"]]
>>> mylist [1]

a

>>> mylist [5][1]

C

>>> mylist[1:3]

['a’, "hello", 1]

>>> mylist[:2]

[0, 'a’, "hello"]

Compound Data Types: List

>>> mylist = [0, 'a’, "hello", 1, 2, ['b', 'c', 'd"]]
>>> mylist[3:]

[1, 2, ['b', 'c’, 'd']]

>>> mylist.remove('a’)

>>> mylist

[0, "hello", 1, 2, ['b', 'c’, 'd']]

Compound Data Types: List

>>> mylist.reverse() - Reverse elements in list

>>> mylist.append(x) - Add element to end of list

>>> mylist.sort() — Sort elements in list
ascending

>>> mylist.index('a') -> Find first occurrence of 'a'

>>> mylist.pop() > Removes last element in

list

Compound Data Types: Tuple

* X=(0,1,2,3,4)
* Creates a pre-populated array of fixed size 5.
 print(X[3]) #=>3

Compound Data Types: Tuple vs. List

* Lists are mutable, tuples are immutable.
e Lists can be resized, tuples can't.
* Tuples are slightly faster than lists.

Compound Data Types: Dictionary

* An array indexed by a string.
 Denoted by {}

>>> marks = {"science": 90, "art": 25}
>>> print(marks["art"])
25

>>> marks["chemistry"] = 75
>>> print(marks.keys())

["science", "art", "chemistry"]

Compound Data Types: Dictionary

O O O O ©o o o

ict ={ "fish": 12, "cat": 7}
ict.has_key('dog') - False (To check if the
ictionary has 'dog' as a key)

ict.keys() (Gets a list of all keys)
ict.values() (Gets a list of all values)

ict.items() (Gets a list of all key-value pairs)
ict["fish"] =14 - Assignment

Variables

Everything is an object.

No need to declare.

No need to assign.

Not strongly typed.

Assignment = reference

e Ex: >>>X=['a','b', 'c']

>>>Y =X
>>>Y.append('d’)
>>> print(X)
['a’, 'b', 'c', 'd']

Input / Output

* |nput:

 Without a Message:
>>> X = input()
3
>>> X
3

* With a Message:
>>> X = input('Enter the number: ')
Enter the number: 3
>>> X

3

Input / Output

* |nput:
>>> X = input()
3+4
>>> X
"3+4"
>>> eval(x)
7/

File: Read

* |nput:
e >>>f=open("input file.txt", "r"
f=op ("inp - A)

File handle Name of the file Mode
e >>>|ine = f.readli,frje()

Read one line at a time

e >>>f.close()
A

Stop using this file and close

File: Write

* Output:
e >>>f=open ("output_file.txt", "w"
A A A

File handle Name of the file Mode
e >>>|ine = f.write("HeIIoAhow are you?")

Write a string to the file
¢« >>> f.cl%e()

Stop using this file and close

Control Flow

* Conditions:
e if
o if /else
e if /elif [else
* Loops:
* while
e for
* forloop in file iterations

Conditions

 The condition must be terminated with a colon ":
* Scope of the loop is the following indented section

>>> if score == 100:
print("You scored a hundred!")
elif score > 80:
print("You are an awesome student!")
else:
print("Go and study!")

Loops: while

>>>i=0

>>> while i < 10:
print(i)
i=i+1

Do not forget the « at the end of the condition line!

Loops: for

>>> foriin range(10):
print(i)

>>> myList = ['hany’, 'john’, 'smith’, 'aly’, 'max’]
>>> for name in myList:
print(name)

Do not forget the « at the end of the condition line!

Loops: Inside vs. Outside

for i in range(3):
print("lteration {}".format(i))
print("Done!")

lteration O
Done!
lteration 1
Done!
lteration 2
Done!

for i in range(3):
print("lteration {}".format(i))
print("Done!")

lteration O
lteration 1
lteration 2
Done!

Loops: for in File Iterations

>>>f = open ("my_ file.txt", "r")
>>> for line in f:
print(line)

Control Flow Keywords: pass

* It means do nothing
 >>>if x> 80:

pass
else:
print("You are less than 80!")

Control Flow Keywords: break

* It means quit the loop
* >>>for name in myList:
if name == "aly":
break
else:
print(name)

—>This will print all names before “aly”

Control Flow Keywords: continue

* It means skip this iteration of the loop
* >>>for name in myList:
if name == "aly":
continue
else:
print(name)

—>This will print all names except “aly”

Now, let’s dig some more
into Python ...

Functions

* So far you have learned how to write regular small code
in python.

e Code for finding the biggest number in a list:

mylist =[2,5,3,7,1,8,12,4]
maxnum =0
for num in mylist:
If (num>maxnum):
maxnum = num
print("The biggest number is: {}".format(maxnum))

Functions

 But what if the code is a bit more complicated
and long?

* Writing the code as one blob is bad!
* Harder to read and comprehend
 Harder to debug
* Rigid
 Non-reusable

Functions

def my_funtion(parameters):
do stuff

Give parameters

My main to work with....

Magic box

program

Return results

Functions

* Back to our example:

mylist = [2,5,3,7,1,8,12,4]
maxnum = getMaxNumber(mylist)
print("The biggest number is: {}".format(maxnum))

Functions

 While you can make the function getMaxNumber
as you wish

def getMaxNumber(list_x):
maxnum =0
for num in list_x:
if (num>maxnum):
maxnum = num
return maxnum

Testing

def getMaxNumber(list_x):
Returns the maximum number from the supplied list
>>> getMaxNumber([4, 7, 2, 5])
7
>>> getMaxNumber([-3, 9, 2])
9
>>> getMaxNumber([-3, -7, -1])
-1
maxnum =0
for num in list_x:
if (num>maxnum):
maxnum = num
return maxnum
if name_ ==' main__":
import doctest
doctest.testmod()

def getMaxNumber(list_x):

Testing

Returns the maximum number from the supplied list

>>> getMaxNumber([4, 7, 2, 5])

-
>>> getMaxNumber([-3, 9, 2])
9
>>> getMaxNumber([-3, -7, -1])
-1
maxnum =0
for num in list_x:
if (num>maxnum):
maxnum = num
return maxnum
if _name__ =='_main__":
import doctest
doctest.testmod()

$ python max_num.py
kkkkkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhhkkhhkkhkkhhkkhkkhkkkkhkhkkhhkhkhkkhkkhkkhkkhkkhkkkkkkk
File "max_num.py", line 8, in __main__.getMaxNumber
Failed example:

getMaxNumber([-3, -7, -1])
Expected:

-1
Got:

0
kkkkkkkkhkkkhhkhhkkhhkhkkhhhhkhhkhkhhhkhkhhhkhkhkhkhkhkhkkhhhhkhkhkhkkhhkkkhkkkkkkkkkk
1 items had failures:

1of 3in__main__.getMaxNumber
***Test Failed** 1 failures.

Functions

e Or...

def getMaxNumber(list_x):
return max(list_x)

e All Roads
7 Lead To

Functions

e Remember:
* All arguments are passed by value
* All variables are local unless specified as global
* Functions in python can have several
arguments or none

e Functions in python can return several results
or none

Functions

e Remember:
* All arguments are passed by value
* All variables are local unless specified as global
* Functions in python can have several arguments
or none

* Functions in python can return several results or
none

* Thisis AWESOME!

Functions

 Example of returning several values

def getMaxNumberAndindex(list_x):
maxnum = 0
index = -1
1=0
for numin list_x:

If (num>maxnum):
maxnum = num
index = |

=1+ 1

return maxnum, index

Functions

* And you call it like this:

mylist = [2,5,3,7,1,8,12,4]

maxnum, idx = getMaxNumberAndIindex(mylist)
print("The biggest number is: {}".format(maxnum))
print("It's index is: {}".format(idx))

Class

class Student:
count=0

def __init_ (self, name):
self.name = name
self.grade = None
Student.count +=1

def updateGrade(self, grade):
self.grade = grade

if _name_ =="_ main__ "

s = Student("John Doe")
s.updateGrade("A+")

< orade

Writing Clean Code

 Programmers have a terrible short term memory

Writing Clean Code

* Programmers have a terrible short term memory

You will have to learn
to live with it!

Writing Clean Code

e To fix that we need to write clean readable code with
a lot of comments.

Writing Clean Code

e To fix that we need to write clean readable code with
a lot of comments.

* You are the narrator of your own code, so make it
interesting!

‘i P ﬁ
* Ex: Morgan Freeman |

http://www.youtube.com/watch?v=IblgL-IN1B4&feature=player detallpage#t 77s

Writing Clean Code

® comments start with a # and end at the end of the

line.

mylist = [2,5,3,7,1,8,12,4]

The function getMaxNumberAndlndex will be
called next to retrieve

the biggest number in list "mylist" and the index
of that number.

maxnum, idx = getMaxNumberAndIindex(mylist)

print("The biggest number is: {}".format(maxnum))
print "It's index is: {}".format(idx))

Creating Python Files

* Python files end with ".py"
* To execute a python file you write:

>>> python myprogram.py

Creating Python Files

* To make the file “a script”, set the file permission to
be executable and add this shebang in the beginning:

#!/usr/bin/python <€ The path to Python installation
or better yet

#!/usr/bin/env python

Building on the Shoulders of Giants!

* You don’t have to reinvent the wheel.....
someone has already done it better!

Building

on the

"= Shoulders
of Giants

Modules

* Let's say you have this awesome idea for a program,
will you spend all your time trying to figure out the
square root and how it could be implemented and

utilized?

Modules

* Let's say you have this awesome idea for a program,
will you spend all your time trying to figure out the
square root and how it could be implemented and

utilized?

Modules

 We just call the math library that has the perfect
implementation of square root.

>>> import math
>>> x = math.sqrt(9.0)

Or

>>> from math import sqrt
>>> x = sqrt(9.0)

Modules

 Toimport all functions in a library we use the wildcard: *

>>> from string import *

Note: Be careful upon importing "from" several files, there
might be two modules named the same in different
libraries.

Your Programs are Your Butlers!

* You are Batman! Your programs are your
‘ ' —' e

I

Alfreds!

e Send them work:

Command-Line Arguments

* To get the command line arguments:
* >>>mport sys

* The arguments are in sys.argv as a list

What Happens When Your Program Goes

Kabooom!?

Bad Scenario

>>>sum_grades = 300
>>> number_of students = input()
>>> gverage = sum_grades / number_of students

—> What if the user wrote 0?

Bad Scenario

>>>sum_grades = 300

>>> number_of students = input()
0

>>> gverage = sum_grades / number_of_students

— Error! Divide by Zero

Bad Scenario

>>>sum_grades = 300
>>> number_of students = input()

0
>>> gverage = sum_grades / number_of_students

— Error! Divide by Zero

Remember: User input is evil!

Precautions: Exception Handling

You can just say:
try:
average = sum_grades / number_of students
except:
this catches if something wrong happens
print("Something wrong happened, please check it!")
average =0

Precautions: Exception Handling

Or if you have an idea what exception could it be:

try:
average = sum_grades / number_of students
except ZeroDivisionError:
this catches if a number was divided by zero
print("You Evil User!.....you inserted a zero!")
average =0

Precautions: Exception Handling

Or several exceptions you are afraid of:

try:
average = sum_grades / number_of students
except ZeroDivisionError:
this catches if a number was divided by zero
print("You Evil User!.....you inserted a zero!")
average =0
except IOError:
this catches errors happening in the input process
print("Something went wrong with how you enter words")
average =0

Generators

def fib():
a=b=1
while True:
vield a

a,b=b,a+b

f=fib()

print(next(f)) #=>1
print(next(f)) #=>1
print(next(f)) #=>2
print(next(f)) #=>3
print(next(f)) #=>5

Python Tips and Tricks

* range(start, end, increment)
You can design a specific loop with that

* Swap variable values using multiple assignment
a,b=Db,a

Python Tips and Tricks
“in” and “not in” operators

* Inloops

e forlinein lines

e forline notin lines
* |n conditions

o ifitemin list

e ifitem notin list

Python Tips and Tricks
List comprehensions

squares = (]
for x in range(10):
squares.append(x**2)

Can be written like this
squares = [x**2 for x in range(10)]

A more complex example
[(x, y) forxin[1,2,3] foryin [3,1,4] if x |=y]

Python Tips and Tricks
* Manipulating files:

* readline() - reads a line from file
* readlines() - reads all the file as a list of lines
* read() - reads all the file as one string.
» seek(offset, start) - start could be:
* 0 - beginning
e 1 - current location
e 2 —> endoffile

Python Libraries: urllib

 urllib is a Python module that can be used for
interacting with remote resources

import urllib.request

with urllib.request.urlopen('http://www.cs.odu.edu/"') as res:
html = res.read()
do something

urllib Response Headers

import urllib.request

with urllib.request.urlopen('http://python.org/') as res:
print("URL: {}".format(res.geturl())
print("Response code: {}".format(res.code)
print("Date: {}".format(res.info()['date’'])
print("Server: {}".format(res.info()[' 'server'])
print("Headers: {}".format(res.info())

urllib Requests

import urllib.request
url = "http://www.cs.odu.edu/"’

This puts the request together
req = urllib.request.Request(url)

Sends the request and catches the response
with urllib.request.urlopen(req) as res:

Extracts the response

html = res.read()

urllib Request Parameters

import urllib.request
import urllib.parse

url = "http://www.cs.odu.edu/"’
query _args = {'q': 'query string', 'foo':'bar'}

data = urllib.parse.urlencode(query_args).encode('ascii')
req = urllib.request.Request(url, data)
with urllib.request.urlopen(req) as res:

Extracts the response
html = res.read()

What Happens When the Server Tells,
“You Can't Get This Page!”

U cgn’t touch Tl-;!s

urllib Request Headers

import urllib.request
import urllib.parse

url = "http://www.cs.odu.edu/"’
query _args = {'q': 'query string', 'foo':'bar'}

headers = {'User-Agent': 'Mozilla 5.10'}

data = urllib.parse.urlencode(query_args).encode('ascii')
req = urllib.request.Request(url, data, headers)

with urllib.request.urlopen(req) as res:

Extracts the response
html = res.read()

Try a nicer third-party HTTP library named ‘requests’

Beautiful Soup: HTML/XML Parser

Installation is needed before you could use any third-party library
$ pip install beautifulsoup4

from bs4 import BeautifulSoup
import urllib.request

with urllib.request.urlopen('http://www.reddit.com') as res:
redditHtml = res.read()
soup = BeautifulSoup(redditHtml)
for links in soup.find all('a'):
print(links.get('href'))

Jupyter Notebook

@ M localhost ¢ M
examples/Notebook/ Running Code

A J U pyte I’ Running Code Last Checkpoint: 9 hours ago (unsaved changes) ?

File Edit View Insert Cell Kernel Help Python3 O

+ = @B 4 v M EH C Markdown $ @ CellToolbar

Running Code

First and foremost, the Jupyter Notebook is an interactive environment for writing and running code. The notebook is capable of running code in a wide range
of languages. However, each notebook is associated with a single kernel. This notebook is associated with the IPython kernel, therefor runs Python code.

Code cells allow you to enter and run code
Run a code cell using shift-Enter or pressing the M button in the toolbar above:
In [1): a = 10

In [2]: print(a)

10

There are two other keyboard shortcuts for running code:

* Alt-Enter runs the current cell and inserts a new one below.
e Ctrl-Enter run the current cell and enters command mode.

Managing the Kernel

Code is run in a separate process called the Kernel. The Kernel can be interrupted or restarted. Try running the following cell and then hit the B button in the
toolbar above.

In []: import time

References

http://introtopython.org/
http://www.cs.cornell.edu/courses/cs1110/2012fa/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-189-a-gentle-introduction-to-programming-using-python-
january-iap-2011/lectures/
http://courses.cms.caltech.edu/cs11/material/python/index.html
http://www.cs.cornell.edu/courses/cs2043/2012sp/
http://www-cs-faculty.stanford.edu/~nick/python-in-one-easy-
lesson/
http://www.pythonforbeginners.com/python-on-the-web/how-to-
use-urllib2-in-python/
http://www.pythonforbeginners.com/python-on-the-web/
beautifulsoup-4-python/

Python in a Nutshell, 2nd Edition By Alex Martelli

