
Homework 3

Intro to Statistics - Part 2

This notebook is arranged in cells. Texts are usually written in the markdown cells, and here you can use
html tags (make it bold, italic, colored, etc). You can double click on this cell to see the formatting.

The ellipsis (...) are provided where you are expected to write your solution but feel free to change the
template (not over much) in case this style is not to your taste.

Hit "Shift-Enter" on a code cell to evaluate it. Double click a Markdown cell to edit.

Link Okpy

In []:

from client.api.notebook import Notebook
ok = Notebook('hw3.ok')
_ = ok.auth(inline = True)

Imports

In []:

import numpy as np
from scipy.integrate import quad
#For plotting
import matplotlib.pyplot as plt
%matplotlib inline

Problem 1 - Fitting Gaussian Contours to a 2D Data

Gaussian distribution function plays a central role in statistics and is the most ubiquitous distribution in
physics. It often provides a good approximation to the true probability density function (pdf) even in cases
where its application is not strictly correct.

In this problem, suppose that you have measured 1000 pairs of values of two
variables . You saved these measurements to a .dat file ("Problem1_data.dat"). Plot their 1-dimensional
pdf's and determine how well Gaussian pdf can approximate them. Compute the mean, variance, median,
mode, 68% and 95% confidence intervals, and correlation coefficient.

1. Plot 1-dimensional pdf for .

(,), . . . , (,)x1 y1 x1000 y1000
x, y

x

In []:

Load a given 2D data
data = np.loadtxt("Problem1_data.dat")
x = data[:,0]
y = data[:,1]

In []:

Plot a normalized histogram (Hint - https://matplotlib.org/devdocs/api/_as_ge
n/matplotlib.pyplot.hist.html)
Try to have 25 elements per each bin

...

2. Calculate mean, variance, and median of . First, do it "by hand" without using any in-built functions.
Then, check your answers using in-built functions from numpy.

In []:

Calculating "by hand"
mean_x = ...
variance_x = ...

median_x = ...

print("For x, mean = ", mean_x, ", variance = ", variance_x, ", and median = ",
median_x)

Using in-built functions from numpy
mean_x = ...
variance_x = ...
median_x = ...

print("For x, mean = ", mean_x, ", variance = ", variance_x, ", and median = ",
median_x)

3. Smoothly interpolate the discrete probability density from Part 1. Then, find the mode and symmetric 68%,
95% confidence intervals. (Suggestion - Read
https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html and
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html)

(Hint - For 68% confidence interval, find the range where 68% of the given sample occurs. We assume that
such interval is symmetrically placed around the mean.
In other words, find such taht

where is 's pdf, and is the mean.
One way to find is to define a cumulative distribution function (cdf) and find such that

.)

x

a

0.68 = P(x)∫
μ+a

μ−a

P(x) x μ

a G(x) a

G(μ + a) − G(μ − a) = .68

In []:

NOTE: The following skeleton code is only a suggestion.
from scipy.interpolate import UnivariateSpline

p, xvar = np.histogram(... , normed = True)
Find x values at the center of each bin (call it xvar)
xvar = xvar[:-1] + (xvar[1] - xvar[0])/2

Find the interpolated function f
f = UnivariateSpline(xvar, p, s=n)
Change the amount of smoothing
f.set_smoothing_factor(1.e-8)

Plot both histogram and interpolated function
plt.hist(... , normed = True, rwidth = 0.8)
plt.plot(... , '--', label = "Interpolated")
...
plt.show()

In []:

Find the mode
mode_x = ...

print("For x, mode = ", mode_x)

Find 68% and 95% confidence intervals

...

Assuming that the distribution is Gaussian, 68% and 95% confidence interval corresponds to and
. </i>

In []:

print("Assuming Gaussian distribution, 68% confidence interval is", mean_x, "±",
np.sqrt(variance_x),
 ", and 95% interval is", mean_x, "±", 2*np.sqrt(variance_x))

You should find that the Gaussian distribution is a reasonable approximation in this case.

4. Plot Gaussian distribution with the mean and variance from Part 1 on top of probability density histogram.
Make sure to label each plot.

In []:

Define Gaussian distribution
def gaussian(x, mu, sigma):
 return ...

μ ± 1σ

μ ± 2σ

In []:

Plot histogram
...
Plot Gaussian distribution on top
...

5. Repeat part 1-4 for .

In []:

Find mean, variance and median
...
Plot histogram (discrete pdf) and interpolate it
...
Find mode and 68%, 95% confidence interval
...
Plot Gaussian fit on top of the histogram
...

6. Make a 2-d scatter plot with Gaussian contours (ellipses). Then, compute the covariance () of and

as well as the correlation coefficient .

In []:

Compute the covariance and correlation coefficient
cov = ...

print("The covariance between x and y is", cov)

print("The correlation coefficient of x and y is", ...)

Make a 2-d scatter plot with Gaussian contours

import matplotlib.mlab as mlab

Create coordinate matrices from coordinate vectors.
gridx = np.linspace(9000, 11000, 100)
gridy = np.linspace(-1500, 1500, 100)
X, Y = np.meshgrid(gridx, gridy)

Create bivariate Gaussian distribution for equal shape X, Y (https://matplotli
b.org/api/mlab_api.html)
Z = mlab.bivariate_normal(X, Y, np.sqrt(variance_x), np.sqrt(variance_y), mean_x
, mean_y, cov)

Make plot
plt.figure(figsize = (10, 7))
Scatter plot
plt.scatter(x, y, marker = 'x')
Gaussian contour plots
plt.contour(X, Y, Z)

plt.xlabel('x')
plt.ylabel('y')
plt.show()

y

Cxy x y

ρ =
Cxy

σxσy

The above contour plot is a bird eye view of the 3-d mesh plot; these are ellipses of equal probability. The
coloring represents the intensity. Yellow central ellipse is the region of highest probability; the peak of 2-d
Gaussian distribution is at the center of this ellipse. As we move away from the peak, the probability lowers.

Problem 2 - Central Limit Theorem

Plot the binomial distribution for different values of and plot the Gaussian with mean and
variance for the binomial. Similarly, plot the Poisson distribution with the mean varying from 1 to 10. See if
both binomial and Poisson approach Gaussian as the mean/ increases.

(Reference - Kardar p. 41) For the binomial distribution, consider a random variable with two outcomes
and of relative probabilities and . The probability that in trials the event occurs
exactly times is given by the binomial distribution:

1. Plot the binomial distribution for and plot the Gaussian with mean and
variance for the binomial. Let and . Make sure to label each plot.

In []:

Import packages for the bionomial coefficient
from scipy.special import binom

Define the probability for the binomial distribution
def pdf_binom(p_A, N, N_A):
 return ...

Define Gaussian distribution
def gaussian(x, mu, sigma):
 return ...

In []:

N = [5, 20, 40, 100, 300]

Make plot

For p_A = 0.1
N_A = np.linspace(0, 40, 1000)
plt.figure(figsize= (10, 8))
p_A = 0.1
...
plt.show()

For p_A = 0.5
N_A = np.linspace(0, 70, 1000)
plt.figure(figsize= (10, 8))
p_A = 0.5
...
plt.show()

P(,N)NA N

N

A

B pA = 1 −pB pA N A

NA

() = () (1 − .pN NA

N

NA

p
NA

A pA)
N−NA

P(,N)NA N = 5, 20, 40, 100, 300

= 0.5pA 0.1

In class, we find that the binomial distribution is approximately normal (with mean and variance
) as , by the central limit theorem. The proof of this theorem can be carried out using

Stirling's approximation:

2. Plot the above Stirling's formula approximation (i.e. Compare with Stirling's approximation. Compute
the residual: (actual-estimate)/actual.)
(Hint:)

In []:

from scipy.special import gamma

Nvals = np.linspace(1, 40, 1000)

actual = ...
estimate = ...

plt.plot(Nvals, (actual-estimate)/actual)
plt.xlabel('N')
plt.ylabel('residual')
plt.show()

You should find that residual as .

Next, consider the Poisson distribution (Kardar p. 42):

where is the number of occurrences. Its mean and variance are .

3. Plot as a function of for and plot the Gaussian with mean and variance for the
Poisson. Make sure to label.

In []:

Define the Poisson distribution
...

Make plot
...

4. What happens as the mean/ increases?

Answer:
...

NpA
N (1 −)pA pA N → ∞

N! ≈ NNe−N 2πN‾ ‾‾‾√

N!

Γ(n + 1) = n!

→ 0 N → ∞

P(λ) =
λke−λ

k!
k λ

P(λ) k λ = 1, 3, 5, 10, 20

N

Problem 3 - Fitting Data to a Straight Line (Linear Regression)

(Reference - NR 15.2) We fit a set of 50 data points to a straight-line model . The
uncertainty associated with each measurement is known, and we assume that the 's are known
exactly. To measure how well the model agrees with the data, we use the chi-square merti function:

Make a scatter plot of data (including uncertainties) and find the best-fit line. Compute the errors on the two
parameters and and plot lines where the two are changed by .

1. Plot data (make sure to include error bars). (Hint -
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.errorbar.html)

In []:

Load a given 2D data
data = np.loadtxt("Problem3_data.dat")
x = data[:,0]
y = data[:,1]
sig_y = data[:,2]

In []:

Make plot
plt.figure(figsize = (10, 7))
Scatter plot
...
plt.show()

(,)xi yi y(x) = a + bx

σi yi xi

(a, b) = (.χ2 ∑
i=0

N−1
− a − byi xi

σi
)
2

a b ±1σ

(NR p. 781) We should minimize the above chi-square function to determine and . At its minimum,
derivatives of with respect to vanish:

These conditions can be rewritten in a convenient form if we define the following sums:

With these, we can rewrite (1), (2) as:

The solution to these is calculated as:

2. Find parameters which minimize the chi-square function and plot the best-fit line on top of the data.

In []:

S = ...
Sx = ...
Sy = ...
Sxx = ...
Sxy = ...
Delta = ...

In []:

a = ...
b = ...

...

In []:

Make plot
plt.figure(figsize = (10, 7))
...
plt.show()

a b

χ2 a, b

= −2∑ = 0 (1)
∂χ2

∂a

− a − byi xi

σ2

i

= −2∑ = 0 (2)
∂χ2

∂b

(− a − b)xi yi xi

σ2

i

S =∑ , =∑ , =∑
1

σ2

i

Sx
xi

σ2

i

Sy
yi

σ2

i

=∑ , =∑Sxx
x2i

σ2

i

Sxy
xiyi

σ2

i

a ∗ S + b ∗ =Sx Sy
a ∗ + b ∗ =Sx Sxx Sxy

Δ = S − (Sxx Sx)
2

a =
−SxxSy SxSxy

Δ

b =
S −Sxy SxSy

Δ

a, b

Now, we must estimate the probable uncertainties in the estimates of and , since obviously the
measurement errors in the data must introduce some uncertainty in the determination of those parameters. If
the data are independent, then each contributes its own bit of uncertainty to the parameters. Consideration
of propagation of errors show that the variance in the value of any function will be

For the straight line, the derivatives of and with respect to can be directly evaluated from teh solution:

Summing over the points, we get

3. Compute the errors () on the two parameters and plot lines where the two are changed by .
(Hint - Try to plot the 1 confidece band as in http://astropython.blogspot.com/2011/12/
(http://astropython.blogspot.com/2011/12/). You can use plt.fill_between to shade the region between plots.)

In []:

Calculate sigma_a, sigma_b

sigma_a = ...
sigma_b = ...

print('We estimate that a =', a ,"±", sigma_a, "and b =", b, "±", sigma_b)

In []:

plt.figure(figsize = (10, 7))
...
plt.show()

To Submit
Execute the following cell to submit. If you make changes, execute the cell again to resubmit the final copy
of the notebook, they do not get updated automatically.
We recommend that all the above cells should be executed (their output visible) in the notebook at the
time of submission.
Only the final submission before the deadline will be graded.

In []:

_ = ok.submit()

a b

σ2

f

=∑ (σ2

f σ2

i

∂f

∂yi
)2

a b yi

=
∂a

∂yi

−Sxx Sxxi

Δσ2

i

=
∂b

∂yi

S −xi Sx

Δσ2

i

= /Δσ2
a Sxx

= S/Δσ2

b

,σa σb a, b ±1σ

σ

http://astropython.blogspot.com/2011/12/

