
Homework 4

Linear Algebra and Data Modeling
 
This notebook is arranged in cells. Texts are usually written in the markdown cells, and here you can use
html tags (make it bold, italic, colored, etc). You can double click on this cell to see the formatting. 
 
The ellipsis (...) are provided where you are expected to write your solution but feel free to change the
template (not over much) in case this style is not to your taste.  
 
Hit "Shift-Enter" on a code cell to evaluate it. Double click a Markdown cell to edit.  

Link Okpy

In [ ]:

from client.api.notebook import Notebook 
ok = Notebook('hw4.ok') 
_ = ok.auth(inline = True) 

Imports

In [3]:

import numpy as np 
from scipy.integrate import quad 
#For plotting 
import matplotlib.pyplot as plt 
%matplotlib inline 



Problem 1 - Gaussian Elimination

Consider the following circuit of resistors. 

 
All the resistors have the same resistance . The power rail at the top is at voltage  = 5 V. What are the
other four voltages,  to ? To answer this question we use Ohm’s law and the Kirchhoff current law,
which says that the total net current flow out of (or into) any junction in a circuit must be zero. Thus for the
junction at voltage , for instance, we have

 
or equivalently  
⧵begin{align} 4V_1 - V_2 - V_3 - V4 & = V+ ⧵ -V_1 + 3V3 & = V+ ⧵ -V_1 + 3V_2 - V_4 & = 0 ⧵ -V_1 - V_2 + 4V_4
& = 0 ⧵ ⧵end{align}

1. Write the above system of equations into a matrix form . Define the coefficient matrix  and the
constant matrix . (Note:  is a variable matrix: [ ]) 
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In [ ]:

A = ... 
b = ... 

2. Write a program to solve the four resulting equations using Gaussian elimination and hence find the four
voltages.

In [ ]:

# Gaussian Elimination 

def GaussianElimination(A, b): 
    
   ... 
    
   return ... 

x = GaussianElimination(A, b) 

print('V1 =', x[0], ', V2 =', x[1], ', V3 =', x[2], ', V4 =', x[3]) 

3. Modify Part 2 to incorporate partial pivoting. (Make sure that you get the same answer.)

In [ ]:

def GaussianElimination_pivot(A, b): 
    
   ... 
    
   return ... 

x = GaussianElimination_pivot(A, b) 

print('V1 =', x[0], ', V2 =', x[1], ', V3 =', x[2], ', V4 =', x[3]) 

Problem 2 - Solving Least Squares Using Normal Equations and SVD

(Reference - NR 15.4) We fit a set of 50 data points  to a polynomial 
. (Note that this problem is linear in  but nonlinear in ). The uncertainty 

 associated with each measurement  is known, and we assume that the 's are known exactly. To
measure how well the model agrees with the data, we use the chi-square merit function:  

 
where N = 50 and M = 4. Here,  are the basis functions.  
 
1. Plot data (make sure to include error bars). (Hint -
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.errorbar.html)  
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In [ ]:

# Load a given 2D data 
data = np.loadtxt("HW4_Problem2_data.dat") 
x = data[:,0] 
y = data[:,1] 
sig_y = data[:,2] 

In [ ]:

# Make plot 
plt.figure(figsize = (10, 7)) 
# Scatter plot 
... 

We will pick as best parameters those that minimize . 
 
First, let  be a matrix whose  components are constructed from the  basis functions evaluated at
the  abscissas , and from the  measurement errors , by the prescription

 
where . We call this matrix  the design matrix.  
 
Also, define a vector  of length  by

 
and denote the  vector whose components are the parameters to be fitted ( ) by .  
 
2. Define the design matrix A. (Hint: Its dimension should be NxM = 50x4.) Also, define the vector b.  

In [ ]:

# Define A 
A = ... 
# Define b 
b = ... 

Minimize  by differentiating it with respect to all  parameters  vaishes. This condition yields the matrix
equation  

 
where  and  (  is an  matrix, and  is a vector of length ). This is the
normal equation of the least squares problem. In matrix form, the normal equations can be written as:

 
 
This can be solved for the vector of parameters  by linear algebra numerical methods.  
 
3. Define the matrix alpha and vector beta.  
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In [ ]:

# Transpose of the matrix A 
A_transpose = ... 

# alpha matrix 
alpha = ... 
# beta vector 
beta = ... 

4. We have  Solve for  using (1) "GaussianElimination_pivot" from Part 1 and (2) LU
decomposition and forward subsitution and backsubstitution. Plot the best-fit line on top of the data.  

In [ ]:

# Using the Gaussian elimination with partial pivoting 
a = ... 

print('Using Gaussian Elimination:') 
print('a0 =', a[0], ', a1 =', a[1], ', a2 =', a[2], ', a3 =', a[3]) 

In [ ]:

# "lu" does LU decomposition with pivot. Reference - https://docs.scipy.org/doc/
scipy-0.14.0/reference/generated/scipy.linalg.lu_factor.html 
from scipy.linalg import lu 

def solve_lu_pivot(A, B): 
   # LU decomposition with pivot 
   L, U = lu(A, permute_l=True) 
    
   N = len(B) 
    
   # forward substitution: We have Ly = B. Solve for y 
   ... 

   # backward substitution: We have y = Ux. Solve for x. 
   ... 
    
   return ... 

a = ... 

print('Using LU Decomposition:') 
print('a0 =', a[0], ', a1 =', a[1], ', a2 =', a[2], ', a3 =', a[3]) 

In [ ]:

# Make plot 
... 

α ⋅ a = β. a



The inverse matrix  is called the covariance matrix, which is closely related to the probable
uncertainties of the estimated parameters . To estimate these uncertainties, we compute the variance
associated with the estimate . Following NR p.790, we obtain:  
 

 
5. Compute the error (standard deviation - square root of the variance) on the fitted parameters.  

In [ ]:

from scipy.linalg import inv 
# Covariance matrix 
C = inv(alpha) 

... 

sigma_a0 = ... 
sigma_a1 = ... 
sigma_a2 = ... 
sigma_a3 = ... 

print('Error: on a0 =', sigma_a0, ', on a1 =', sigma_a1, ', on a2 =', sigma_a2, 
', on a3 =', sigma_a3) 
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Now, instead of using the normal equations, we use singular value decomposition (SVD) to find the solution
of least squares. Please read Ch. 15 of NR for more details. Remember that we have the  design
matrix  and the vector  of length . We wish to mind  which minimizes .  
 
Using SVD, we can decompose  as the product of an  column-orthogonal matrix , an 
diagonal matrix  (with positive or zero elements - the "singular" values), and the transpose of an 
orthogonal matrix . ( ).  
Let  and  denote the columns of  and  respectively (Note: We get  number of vectors of length 

.)  are the th diagonal elements (singular values) of . Then, the solution of the above least squares
problem can be written as:  

 
 
The variance in the estimate of a parameter  is given by:

 
and the covariance:

 
 
6. Decompose the design matrix A using SVD. Estimate the parameter 's and its variance.  

In [ ]:

# Reference - https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.
linalg.svd.html 
from scipy.linalg import svd 

# Decompose A 
# Note: S, in this case, is a vector of length M, which contains the singular va
lues. 
U, S, VT = svd(A, full_matrices=False) 
V = V.T 

# Solve for a 
... 
a_from_SVD = ... 

print('Using SVD:') 
print('a0 =', a_from_SVD[0], ', a1 =', a_from_SVD[1], ', a2 =', a_from_SVD[2], 
', a3 =', a_from_SVD[3]) 
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In [ ]:

# Error on a 
... 
sigma_a_SVD = ... 

print('Error: on a0 =', sigma_a_SVD[0], ', on a1 =', sigma_a_SVD[1], ', on a2 ='
, sigma_a_SVD[2], ', on a3 =', sigma_a_SVD[3]) 

Suppose that you are only interested in the parameters  and . We can plot the 2-dimensional confidence
region ellipse for these parameters by building the covariance matrix:

 
 
The lengths of the ellipse axes are the square root of the eigenvalues of the covariance matrix, and we can
calculate the counter-clockwise rotation of the ellipse with the rotation angle:

 
Then, we multiply the axis lengths by some factor depending on the confidence level we are interested in.
For 68%, this scale factor is .  
 
7. Compute the covariance between  and . Plot the 68% confidence region of the parameter  and .

In [ ]:

# Compute the covariance 
... 
sigma_01 = ... 

# Build the covariance matrix 
CovM = np.array([[sigma_a_SVD[0], sigma_01],[sigma_01, sigma_a_SVD[1]]]) 

from numpy.linalg import eigvals 
axis1 = 1.52*eigvals(CovM)[0] 
axis2 = 1.52*eigvals(CovM)[1] 

theta = np.arctan(2*sigma_01/(sigma_a_SVD[0]**2-sigma_a_SVD[1]**2))/2. 
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In [ ]:

# Plot the 1-sigma confidence region (https://stackoverflow.com/questions/323719
96/python-matplotlib-how-to-plot-ellipse) 
from matplotlib.patches import Ellipse 
import matplotlib as mpl 

ell = mpl.patches.Ellipse(xy=[a[0], a[1]], width=axis1, height=axis2, angle = th
eta*180/np.pi) 
fig, ax = plt.subplots(figsize=(7,7)) 

ax.add_patch(ell) 
ax.set_aspect('equal') 
ax.autoscale() 
plt.xlim(-0.7, 0.7) 
plt.ylim(1.9, 3.3) 
plt.grid(True) 
plt.xlabel('$a_0$') 
plt.ylabel('$a_1$') 
plt.show() 

Problem 3 - Rational Function

The method of finding least-squares fits using polynomials is widely used, but in some cases rational
approximations behave better; they may work where the Taylor approximations do not converge.  
 
Consider an exponential function . The Maclaurin series of this function is 

. However, this is a poor approximation for large . To resolve this

issue, we can instead write it as the rational function: . (For more detail, read NR
5.12 - Pade Approximant)
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In [4]:

x = np.linspace(0, 3, 100) 
plt.plot(x, np.exp(-x), label = "True") 
plt.plot(x, 1-x+x**2/2-x**3/6+x**4/24, label = "Taylor") 
plt.plot(x, (1-x/2+x**2/8)/(1+x/2+x**2/8), label = "Rational") 
plt.xlim(0, 3) 
plt.legend() 
plt.show() 

Now, suppose that we have measured 100 pairs of values  of two variables .  
 
1. Plot data (make sure to include error bars). (Hint -
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.errorbar.html)  

In [ ]:

# Load a given 2D data 
data = np.loadtxt("HW4_Problem3_data.dat") 
x = data[:,0] 
y = data[:,1] 
sig_y = data[:,2] 

In [ ]:

# Make plot 
... 
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We find that  as  gets large. Hence, it is better to use rational approximations rather than polynomials
in this case. We come up with the rational function model for the data:

 
where 's are the unknown parameters.  
 
Multiply both sides by the denominator of the rational function:

 
Again, to measure how well the model agrees with the data, we use the chi-square merit function:

 
 
Wish pick the parameters which minimize . 
 
Let us solve this problem using normal equations. 
 
First, let  be the  (  = 100,  = 7) design matrix:

 
 
Also, define a vector  of length  by

 
and denote the  vector whose components are the parameters to be fitted ( ) by .
 
Minimize  by differentiating it with respect to all  parameters  vaishes. This condition yields the matrix
equation  

 
where  and  (  is an  matrix, and  is a vector of length ). 
 
2. We have  Solve for  using "GaussianElimination_pivot" from Part 1.  

In [ ]:

# Define A 
A = ... 
# Define b 
b = ... 
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In [ ]:

# Transpose of the matrix A 
A_transpose = ... 

# alpha matrix 
alpha = ... 
# beta vector 
beta = ... 

In [ ]:

# Using the Gaussian elimination with partial pivoting 
a = ... 

print('Using Gaussian Elimination:') 
print('a0 =', a[0], ', a1 =', a[1], ', a2 =', a[2], ', a3 =', a[3], ', a4 =', a[
4], ', a5 =', a[5], ', a6 =', a[6]) 

3. Compute the error (standard deviation - square root of the variance) on the fitted parameters..  

In [ ]:

from scipy.linalg import inv 
# Covariance matrix 
C = inv(alpha) 

... 

sigma_a0 = ... 
sigma_a1 = ... 
sigma_a2 = ... 
sigma_a3 = ... 
sigma_a4 = ... 
sigma_a5 = ... 
sigma_a6 = ... 

print('Error: on a0 =', sigma_a0, ', on a1 =', sigma_a1, ', on a2 =', sigma_a2, 
', on a3 =', sigma_a3, ', on a4 =', sigma_a4, ', on a5 =', sigma_a5, ', on a6 ='
, sigma_a6) 

4. Plot the best-fit line on top of the data.  

In [ ]:

# Make plot 
... 



To Submit
Execute the following cell to submit. If you make changes, execute the cell again to resubmit the final copy of
the notebook, they do not get updated automatically. 
We recommend that all the above cells should be executed (their output visible) in the notebook at
the time of submission.  
Only the final submission before the deadline will be graded.

In [ ]:

_ = ok.submit() 


