
Homework 4

Linear Algebra and Data Modeling

This notebook is arranged in cells. Texts are usually written in the markdown cells, and here you can use
html tags (make it bold, italic, colored, etc). You can double click on this cell to see the formatting.

The ellipsis (...) are provided where you are expected to write your solution but feel free to change the
template (not over much) in case this style is not to your taste.

Hit "Shift-Enter" on a code cell to evaluate it. Double click a Markdown cell to edit.

Link Okpy

In []:

from client.api.notebook import Notebook
ok = Notebook('hw4.ok')
_ = ok.auth(inline = True)

Imports

In [3]:

import numpy as np
from scipy.integrate import quad
#For plotting
import matplotlib.pyplot as plt
%matplotlib inline

Problem 1 - Gaussian Elimination

Consider the following circuit of resistors.

All the resistors have the same resistance . The power rail at the top is at voltage = 5 V. What are the
other four voltages, to ? To answer this question we use Ohm’s law and the Kirchhoff current law,
which says that the total net current flow out of (or into) any junction in a circuit must be zero. Thus for the
junction at voltage , for instance, we have

or equivalently
⧵begin{align} 4V_1 - V_2 - V_3 - V4 & = V+ ⧵ -V_1 + 3V3 & = V+ ⧵ -V_1 + 3V_2 - V_4 & = 0 ⧵ -V_1 - V_2 + 4V_4
& = 0 ⧵ ⧵end{align}

1. Write the above system of equations into a matrix form . Define the coefficient matrix and the
constant matrix . (Note: is a variable matrix: [])

R V+

V1 V4

V1

+ + + = 0
−V1 V2

R

−V1 V3

R

−V1 V4

R

−V1 V+

R

Ax = b A

b x , , ,V1 V2 V3 V4

In []:

A = ...
b = ...

2. Write a program to solve the four resulting equations using Gaussian elimination and hence find the four
voltages.

In []:

Gaussian Elimination

def GaussianElimination(A, b):

 ...

 return ...

x = GaussianElimination(A, b)

print('V1 =', x[0], ', V2 =', x[1], ', V3 =', x[2], ', V4 =', x[3])

3. Modify Part 2 to incorporate partial pivoting. (Make sure that you get the same answer.)

In []:

def GaussianElimination_pivot(A, b):

 ...

 return ...

x = GaussianElimination_pivot(A, b)

print('V1 =', x[0], ', V2 =', x[1], ', V3 =', x[2], ', V4 =', x[3])

Problem 2 - Solving Least Squares Using Normal Equations and SVD

(Reference - NR 15.4) We fit a set of 50 data points to a polynomial
. (Note that this problem is linear in but nonlinear in). The uncertainty

 associated with each measurement is known, and we assume that the 's are known exactly. To
measure how well the model agrees with the data, we use the chi-square merit function:

where N = 50 and M = 4. Here, are the basis functions.

1. Plot data (make sure to include error bars). (Hint -
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.errorbar.html)

(,)xi yi
y(x) = + x + +a0 a1 a2x

2 a3x
3 ai xi

σi yi xi

= (.χ2 ∑
i=0

N−1 −yi ∑M−1

k=0 akx
k

σi
)
2

1, x, . . . , x3

In []:

Load a given 2D data
data = np.loadtxt("HW4_Problem2_data.dat")
x = data[:,0]
y = data[:,1]
sig_y = data[:,2]

In []:

Make plot
plt.figure(figsize = (10, 7))
Scatter plot
...

We will pick as best parameters those that minimize .

First, let be a matrix whose components are constructed from the basis functions evaluated at
the abscissas , and from the measurement errors , by the prescription

where . We call this matrix the design matrix.

Also, define a vector of length by

and denote the vector whose components are the parameters to be fitted () by .

2. Define the design matrix A. (Hint: Its dimension should be NxM = 50x4.) Also, define the vector b.

In []:

Define A
A = ...
Define b
b = ...

Minimize by differentiating it with respect to all parameters vaishes. This condition yields the matrix
equation

where and (is an matrix, and is a vector of length). This is the
normal equation of the least squares problem. In matrix form, the normal equations can be written as:

This can be solved for the vector of parameters by linear algebra numerical methods.

3. Define the matrix alpha and vector beta.

χ2

A N ×M M

N xi N σi

=Aij

()Xj xi

σi

(x) = 1, (x) = x, (x) = , (x) =X0 X1 X2 x2 X3 x3 A

b N

=bi
yi

σi

M , , ,a0 a1 a2 a3 a

χ2 M ak

=∑
j=0

M−1

αkjaj βk

α = ⋅ AA
T β = ⋅ bA

T α M ×M β M

α ⋅ a = β.

a

In []:

Transpose of the matrix A
A_transpose = ...

alpha matrix
alpha = ...
beta vector
beta = ...

4. We have Solve for using (1) "GaussianElimination_pivot" from Part 1 and (2) LU
decomposition and forward subsitution and backsubstitution. Plot the best-fit line on top of the data.

In []:

Using the Gaussian elimination with partial pivoting
a = ...

print('Using Gaussian Elimination:')
print('a0 =', a[0], ', a1 =', a[1], ', a2 =', a[2], ', a3 =', a[3])

In []:

"lu" does LU decomposition with pivot. Reference - https://docs.scipy.org/doc/
scipy-0.14.0/reference/generated/scipy.linalg.lu_factor.html
from scipy.linalg import lu

def solve_lu_pivot(A, B):
 # LU decomposition with pivot
 L, U = lu(A, permute_l=True)

 N = len(B)

 # forward substitution: We have Ly = B. Solve for y
 ...

 # backward substitution: We have y = Ux. Solve for x.
 ...

 return ...

a = ...

print('Using LU Decomposition:')
print('a0 =', a[0], ', a1 =', a[1], ', a2 =', a[2], ', a3 =', a[3])

In []:

Make plot
...

α ⋅ a = β. a

The inverse matrix is called the covariance matrix, which is closely related to the probable
uncertainties of the estimated parameters . To estimate these uncertainties, we compute the variance
associated with the estimate . Following NR p.790, we obtain:

5. Compute the error (standard deviation - square root of the variance) on the fitted parameters.

In []:

from scipy.linalg import inv
Covariance matrix
C = inv(alpha)

...

sigma_a0 = ...
sigma_a1 = ...
sigma_a2 = ...
sigma_a3 = ...

print('Error: on a0 =', sigma_a0, ', on a1 =', sigma_a1, ', on a2 =', sigma_a2,
', on a3 =', sigma_a3)

C = α−1

a

aj

() =σ2 aj ∑
k=0

M−1

∑
l=0

M−1

CjkCjlαkl

Now, instead of using the normal equations, we use singular value decomposition (SVD) to find the solution
of least squares. Please read Ch. 15 of NR for more details. Remember that we have the design
matrix and the vector of length . We wish to mind which minimizes .

Using SVD, we can decompose as the product of an column-orthogonal matrix , an
diagonal matrix (with positive or zero elements - the "singular" values), and the transpose of an
orthogonal matrix . ().
Let and denote the columns of and respectively (Note: We get number of vectors of length

.) are the th diagonal elements (singular values) of . Then, the solution of the above least squares
problem can be written as:

The variance in the estimate of a parameter is given by:

and the covariance:

6. Decompose the design matrix A using SVD. Estimate the parameter 's and its variance.

In []:

Reference - https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.
linalg.svd.html
from scipy.linalg import svd

Decompose A
Note: S, in this case, is a vector of length M, which contains the singular va
lues.
U, S, VT = svd(A, full_matrices=False)
V = V.T

Solve for a
...
a_from_SVD = ...

print('Using SVD:')
print('a0 =', a_from_SVD[0], ', a1 =', a_from_SVD[1], ', a2 =', a_from_SVD[2],
', a3 =', a_from_SVD[3])

N ×M

A b N a = |A ⋅ a − bχ2 |
2

A N ×M U M ×M

S M ×M

V A = USV
T

U(i) V(i) U V M

M S(i,i) i S

a = () .∑
i=1

M ⋅ bU(i)

S(i,i)

V(i)

aj

() = (σ2 aj ∑
i=1

M Vji

Sii
)
2

Cov(,) = ().aj ak ∑
i=1

M VjiVki

S2ii

ai

In []:

Error on a
...
sigma_a_SVD = ...

print('Error: on a0 =', sigma_a_SVD[0], ', on a1 =', sigma_a_SVD[1], ', on a2 ='
, sigma_a_SVD[2], ', on a3 =', sigma_a_SVD[3])

Suppose that you are only interested in the parameters and . We can plot the 2-dimensional confidence
region ellipse for these parameters by building the covariance matrix:

The lengths of the ellipse axes are the square root of the eigenvalues of the covariance matrix, and we can
calculate the counter-clockwise rotation of the ellipse with the rotation angle:

Then, we multiply the axis lengths by some factor depending on the confidence level we are interested in.
For 68%, this scale factor is .

7. Compute the covariance between and . Plot the 68% confidence region of the parameter and .

In []:

Compute the covariance
...
sigma_01 = ...

Build the covariance matrix
CovM = np.array([[sigma_a_SVD[0], sigma_01],[sigma_01, sigma_a_SVD[1]]])

from numpy.linalg import eigvals
axis1 = 1.52*eigvals(CovM)[0]
axis2 = 1.52*eigvals(CovM)[1]

theta = np.arctan(2*sigma_01/(sigma_a_SVD[0]**2-sigma_a_SVD[1]**2))/2.

a0 a1

= ()C′
σ(Cov(,)a0)

2 a0 a1

Cov(,) σ(a0 a1 a1)
2

θ = arctan()
1

2

2 ⋅ Cov(,)a0 a1

σ(− σ(a0)
2 a1)

2

≈ 1.52Δχ2‾ ‾‾‾√

a0 a1 a0 a1

In []:

Plot the 1-sigma confidence region (https://stackoverflow.com/questions/323719
96/python-matplotlib-how-to-plot-ellipse)
from matplotlib.patches import Ellipse
import matplotlib as mpl

ell = mpl.patches.Ellipse(xy=[a[0], a[1]], width=axis1, height=axis2, angle = th
eta*180/np.pi)
fig, ax = plt.subplots(figsize=(7,7))

ax.add_patch(ell)
ax.set_aspect('equal')
ax.autoscale()
plt.xlim(-0.7, 0.7)
plt.ylim(1.9, 3.3)
plt.grid(True)
plt.xlabel('a_0')
plt.ylabel('a_1')
plt.show()

Problem 3 - Rational Function

The method of finding least-squares fits using polynomials is widely used, but in some cases rational
approximations behave better; they may work where the Taylor approximations do not converge.

Consider an exponential function . The Maclaurin series of this function is

. However, this is a poor approximation for large . To resolve this

issue, we can instead write it as the rational function: . (For more detail, read NR
5.12 - Pade Approximant)

e−x

1 − x + /2 − /6 + /24 + O()x2 x3 x4 x5 x

= =e−x e−x/2

ex/2

1−x/2+ /8x2

1+x/2+ /8x2

In [4]:

x = np.linspace(0, 3, 100)
plt.plot(x, np.exp(-x), label = "True")
plt.plot(x, 1-x+x**2/2-x**3/6+x**4/24, label = "Taylor")
plt.plot(x, (1-x/2+x**2/8)/(1+x/2+x**2/8), label = "Rational")
plt.xlim(0, 3)
plt.legend()
plt.show()

Now, suppose that we have measured 100 pairs of values of two variables .

1. Plot data (make sure to include error bars). (Hint -
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.errorbar.html)

In []:

Load a given 2D data
data = np.loadtxt("HW4_Problem3_data.dat")
x = data[:,0]
y = data[:,1]
sig_y = data[:,2]

In []:

Make plot
...

(,), . . . , (,)x1 y1 x100 y100 x, y

We find that as gets large. Hence, it is better to use rational approximations rather than polynomials
in this case. We come up with the rational function model for the data:

where 's are the unknown parameters.

Multiply both sides by the denominator of the rational function:

Again, to measure how well the model agrees with the data, we use the chi-square merit function:

Wish pick the parameters which minimize .

Let us solve this problem using normal equations.

First, let be the (= 100, = 7) design matrix:

Also, define a vector of length by

and denote the vector whose components are the parameters to be fitted () by .

Minimize by differentiating it with respect to all parameters vaishes. This condition yields the matrix
equation

where and (is an matrix, and is a vector of length).

2. We have Solve for using "GaussianElimination_pivot" from Part 1.

In []:

Define A
A = ...
Define b
b = ...

y ∼ 0 x

y =
+ x + +a0 a1 a2x

2 a3x
3

1 + x + +a4 a5x
2 a6x

3

ai

y = + x + + − xy + y + ya0 a1 a2x
2 a3x

3 a4 a5x
2 a6x

3

= (.χ2 ∑
i=0

N−1 − (+ + + − y + +)yi a0 a1xi a2x
2

i a3x
3

i a4xi a5x
2

i yi a6x
3

i yi

σi
)
2

χ2

A N ×M N M
⎡

⎣

⎢
⎢
⎢
⎢

1/σy0

1/σy1

. . . .

1/σyN

/x0 σy0

/x1 σy1

. . . .

/xN σyN

/x2
0
σy0

/x2
1
σy1

. . . .

/x2N σyN

/x3
0
σy0

/x3
1
σy1

. . . .

/x3N σyN

− /y0x0 σy0

− /y1x1 σy1

. . . .

− /yNxN σyN

− /y0x
2

0
σy0

− /y1x
2

1
σy1

. . . .

− /yNx
2

N σyN

− /y0x
3

0
σy0

− /y1x
3

1
σy1

. . . .

− /yNx
3

N σyN

⎤

⎦

⎥
⎥
⎥
⎥

b N

=bi
yi

σi

M , , , , , ,a0 a1 a2 a3 a4 a5 a6 a

χ2 M ak

α ⋅ a = β.

α = ⋅ AA
T β = ⋅ bA

T α M ×M β M

α ⋅ a = β. a

In []:

Transpose of the matrix A
A_transpose = ...

alpha matrix
alpha = ...
beta vector
beta = ...

In []:

Using the Gaussian elimination with partial pivoting
a = ...

print('Using Gaussian Elimination:')
print('a0 =', a[0], ', a1 =', a[1], ', a2 =', a[2], ', a3 =', a[3], ', a4 =', a[
4], ', a5 =', a[5], ', a6 =', a[6])

3. Compute the error (standard deviation - square root of the variance) on the fitted parameters..

In []:

from scipy.linalg import inv
Covariance matrix
C = inv(alpha)

...

sigma_a0 = ...
sigma_a1 = ...
sigma_a2 = ...
sigma_a3 = ...
sigma_a4 = ...
sigma_a5 = ...
sigma_a6 = ...

print('Error: on a0 =', sigma_a0, ', on a1 =', sigma_a1, ', on a2 =', sigma_a2,
', on a3 =', sigma_a3, ', on a4 =', sigma_a4, ', on a5 =', sigma_a5, ', on a6 ='
, sigma_a6)

4. Plot the best-fit line on top of the data.

In []:

Make plot
...

To Submit
Execute the following cell to submit. If you make changes, execute the cell again to resubmit the final copy of
the notebook, they do not get updated automatically.
We recommend that all the above cells should be executed (their output visible) in the notebook at
the time of submission.
Only the final submission before the deadline will be graded.

In []:

_ = ok.submit()

