
Homework 5

Matrix Diagonalization and PCA

This notebook is arranged in cells. Texts are usually written in the markdown cells, and here you can use
html tags (make it bold, italic, colored, etc). You can double click on this cell to see the formatting.

The ellipsis (...) are provided where you are expected to write your solution but feel free to change the
template (not over much) in case this style is not to your taste.

Hit "Shift-Enter" on a code cell to evaluate it. Double click a Markdown cell to edit.

Link Okpy

In []:

from client.api.notebook import Notebook
ok = Notebook('hw5.ok')
_ = ok.auth(inline = True)

Imports

In []:

import numpy as np
from scipy.integrate import quad
#For plotting
import matplotlib.pyplot as plt
%matplotlib inline

Problem 1 - Asymmetric Quantum Well

Quantum mechanics can be formulated as a matrix problem and solved on a computer using linear algebra
methods. Suppose, for example, we have a particle of mass M in a one-dimensional quantum well of width
, but not a square well like the examples you’ve probably seen before. Suppose instead that the potential

 varies somehow inside the well:

We cannot solve such problems analytically in general, but we can solve them on the computer. In a pure
state of energy , the spatial part of the wavefunction obeys the time-independent Schrodinger equation

, where the Hamiltonian operator is given by

For simplicity, let’s assume that the walls of the well are infinitely high, so that the wavefunction is zero
outside the well, which means it must go to zero at and . In that case, the wavefunction can be
expressed as a Fourier sine series thus:

where are the Fourier coefficients.

Using the orthogonality relationships of the sine functions, we find that implies that

Hence, defining a Hamiltonian matrix with elements

Then, the Schrodinger's equation can be written in matrix form as = , where is an eigenvector of
the Hamiltonian matrix with eigenvalue . If we can calculate the eigenvalues of this matrix, then we know
the allowed energies of the particle in the well.

Let , and then we can evaluate the integral in analytically. Here is a general expression for
the matrix element :

1. Is the matrix real and symmetric?

Answer:
...

L

V(x)

E

ψ(x) = Eψ(x)Ĥ Ĥ

= − + V(x)Ĥ ℏ2

2M

d
2

dx2

x = 0 x = L

ψ(x) = sin()∑
n=1

∞

ψn

πnx

L

, , . . .ψ1 ψ2

ψ(x) = Eψ(x)H
̂

sin() sin()dx = E .∑
n=1

∞

∫
L

0

πmx

L
Ĥ πnx

L

L

2
ψm

H

= sin() sin()dx.Hmn

2

L ∫
L

0

πmx

L
Ĥ πnx

L

Hψ E ψ ψ

E

V(x) = ax/L Hmn

Hmn

= {Hmn
(+ m = n − m ≠ n and one is even, one is odd1

2M

ℏπn

L
)2 a

2

8a

π
2

mn

(−m2 n2)2

H

2. Write a Python program to evaluate your expression for for arbitrary and when the particle in the
well is an electron, the well has width 5 Angstrom, and = 10 eV. (The mass and charge of an electron are

 kg and C respectively.) Evaluate , , and .

In []:

L = 5e-10
hbar = 1.0546e-34
M = 9.1094e-31
a = 10*1.6022e-19

def H_element(m,n):

 ...

 return ...

In []:

print('H22 =', H_element(2,2), ', H23 =', H_element(2,3), ', H35 =', H_element(3
,5))

3. The matrix is in theory infinitely large, so we cannot calculate all its eigenvalues. But we can get a pretty
accurate solution for the first few of them by cutting off the matrix after the first few elements. Use the
program you wrote for part 2 to create a 10 × 10 array of the elements of up to = 10.

In []:

...
H = ...
...

In []:

Show the matrix H
print(H)

4. Calculate the eigenvalues of this matrix using the appropriate function from numpy.linalg and hence print
out, in units of electron volts, the first ten energy levels of the quantum well, within this approximation.

In []:

Suggestion - See https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/n
umpy.linalg.eigh.html
from numpy.linalg import eigh
...

5. What is the ground-state energy of the system? (in eV).

In []:

...

Hmn m n

a

9.1094 × 10−31 1.6022 × 10−19 H22 H23 H35

H

H m, n

6. Use a 100 × 100 array instead and again calculate the first ten energy eigenvalues.

In []:

...

7. Comparing with the values you calculated in part 4, what do you conclude about the accuracy of the
calculation?

Answer:
...

8. Now modify your program once more to calculate the wavefunction for the ground state and the first
two excited states of the well. Use your results to make a graph with three curves showing the probability
density as a function of x in each of these three states.

In []:

...

9. In the setup, the eigenvector of the Hamiltonian is normalized. Then, is ? (Hint:

 if and 0 otherwise). Using "quad," integrate the wavefunction for the
ground state from to .
Answer:
We have

In []:

from scipy.integrate import quad
...

ψ(x)

|ψ(x)|2

ψ |ψ(x) = 1∫ L

0
|2

sin()sin() =∫ L

0

πnx

L

πmx

L

L

2
m = n

x = 0 L

|ψ(x) = (|) sin(= 1 ⋅ ≈ 2.5 ×∫ L

0
|2 ∑

n
ψn|

2 ∫ L

0

πnx

L
)2 L

2
10−10

Problem 2 - Applying the PCA Method on Quasar Spectra

The following analysis is based on https://arxiv.org/pdf/1208.4122.pdf (https://arxiv.org/pdf/1208.4122.pdf).

"Principal Component Analysis (PCA) is a powerful and widely used technique to analyze data by forming a
custom set of “principal component” eigenvectors that are optimized to describe the most data variance with
the fewest number of components. With the full set of eigenvectors the data may be reproduced exactly, i.e.,
PCA is a transformation which can lend insight by identifying which variations in a complex dataset are most
significant and how they are correlated. Alternately, since the eigenvectors are optimized and sorted by their
ability to describe variance in the data, PCA may be used to simplify a complex dataset into a few
eigenvectors plus coefficients, under the approximation that higher-order eigenvectors are predominantly
describing fine tuned noise or otherwise less important features of the data." (S. Bailey, arxiv: 1208.4122)

In this problem, we take the quasar (QSO) spectra from the Sloan Digital Sky Survey (SDSS) and apply PCA
to them. Filtering for high in order to apply the standard PCA, we select 18 high- spectra of QSOs
with redshift 2.0 < z < 2.1, trimmed to .

In []:

Load data
wavelength = np.loadtxt("HW5_Problem2_wavelength.txt")
flux = np.loadtxt("HW5_Problem2_QSOspectra.txt")

In []:

Data dimension
print(np.shape(wavelength))
print(np.shape(flux))

In the above cell, we load the following data: wavelength in Angstroms ("wavelength") and 2D array of
spectra x fluxes ("flux").

We have 824 wavelength bins, so "flux" is 18 824 matrix, each row containing fluxes of different QSO
spectra.

1. Plot any three QSO spectra flux as a function of wavelength. (In order to better see the features of QSO
spectra, you may plot them with some offsets.)

In []:

...

S/N S/N

1340 < λ < 1620 A˚

×

https://arxiv.org/pdf/1208.4122.pdf

"Flux" is the data matrix of order 18 824. Call this matrix .

We can construct the covariance matrix using the mean-centered data matrix. First, calculate the mean of
each column and subtracts this from the column. Let denote the mean-centered data matrix.

where denote the flux of th QSO in th wavelength bin, and is the mean flux in th wavelength bin.

Then, the covariance matrix is: (is the number of QSOs.)

2. Find the covariance matrix C using the data matrix flux.

In []:

C =
...

3. Using numpy.linalg, find eigenvalues and eigenvectors of the covariance matrix. Order the eigenvalues
from largest to smallest and then plot them as a function of the number of eigenvalues. (Remember that the
eigenvector with the highest eigenvalue is the principle component of the data set.) In this case, we find that
our covariance matrix is rank-17 matrix, so we only select the first 17 highest eigenvalues and corresponding
eigenvectors (other eigenvalues are close to zero).

In []:

np.linalg.matrix_rank(C)

In []:

from numpy.linalg import eig
...

In []:

Make plot
...

4. Plot the first three eigenvectors. These eigenvectors represent the principal variations of the spectra with
respect to that mean spectrum.

In []:

...

× X

C

Xc

Xc =

⎡

⎣

⎢
⎢
⎢
⎢

−x(1,1) x
⎯⎯⎯

1

−x(2,1) x
⎯⎯⎯

1

⋮

−x(18,1) x
⎯⎯⎯

1

−x(1,2) x
⎯⎯⎯

2

−x(2,2) x
⎯⎯⎯

2

⋮

−x(18,2) x
⎯⎯⎯

2

…

…

⋮

…

−x(1,824) x
⎯⎯⎯

824

−x(2,824) x
⎯⎯⎯

824

⋮

−x(18,824) x
⎯⎯⎯

824

⎤

⎦

⎥
⎥
⎥
⎥

xm,n m n x
⎯⎯⎯

k k

C = 1

N−1
.XT

c Xc N

The eigenvectors indicate the direction of the principal components, so we can re-orient the data onto the
new zes by multiplying the original mean-centered data by the eigenvectors. We call the re-oriented data "PC
scores." (Call the PC score matrix) Suppose that we have eigenvectors. Construct the matrix of
eigenvectors , with the th highest eigenvector. Then, we can get 18 PC score
matrix by multiplying the 18 824 data matrix with the 824 eigenvector matrix:

Then, we can reconstruct the data by mapping it back to 824 dimensions with :

where is the vector of mean QSO flux.

Now, comparing the original data with the reconstructed data, we can calculate the residuals. Let
denote the rows of respectively. Remember that the data matrix has the dimension 18 824, so each
row corresponding the spectra of one particular QSO. (For example, if you wish to see the QSO spectra
in row 7, you can plot as a function of wavelength.). Then, we can simply calculate the residual as

 where is the total number of QSOs (NOTE: is the magnitude of the

difference between two vectors and .)

5. First, start with only mean flux value (in this case) and calculate the residual. Then, do the
reconstruction using the first two principal eigenvectors and calculate the residual. Finally, let

 (the first six principal eigenvectors) and compute the residual.

In []:

...

6. For any two QSO spectra, plot the original and reconstructed spectra using the first six principal
eigenvectors.

In []:

...

7. Plot the residual as a function of the number of included eigenvectors.

In []:

...

In this problem, we only have 18 QSO spectra, so the idea of using PCA may seem silly. We can also use
SVD to find eigenvalues and eigenvectors. With SVD, we get . Then, the covariance matrix is

 Then, the eigenvalues are the squared singular values scaled by the factor

 and the eigenvectors are the columns of .

8. Find the eigenvalues applying SVD to the mean-centered data matrix .

Z k

V = [. . .]v1v2 vk vi i × k

× × k

Z = VXc

VT

= μ + ZX̂ VT

μ

,X(i) X̂
(i)

X,X̂ ×

X(i)

X(7)

| −

1

N
∑N

i=1 X̂
(i) X(i) |

2
N | − |X̂

(i) X(i)

X̂
(i) X(i)

μ = μ, V = 0X̂

V = []v1v2
V = [. . .]v1v2 v6

= USXc VT C

= 1

N−1
XT

c Xc = 1

N−1
V .S2VT

1

N−1
V

Xc

In []:

from scipy.linalg import svd

...

Print Eigenvalues
...

To Submit
Execute the following cell to submit. If you make changes, execute the cell again to resubmit the final copy of
the notebook, they do not get updated automatically.
We recommend that all the above cells should be executed (their output visible) in the notebook at
the time of submission.
Only the final submission before the deadline will be graded.

In []:

_ = ok.submit()

