
Homework 6

Markov Chain Simulation and Hierarchical Model
 
This notebook is arranged in cells. Texts are usually written in the markdown cells, and here you can use
html tags (make it bold, italic, colored, etc). You can double click on this cell to see the formatting. 
 
The ellipsis (...) are provided where you are expected to write your solution but feel free to change the
template (not over much) in case this style is not to your taste.  
 
Hit "Shift-Enter" on a code cell to evaluate it. Double click a Markdown cell to edit.  

Link Okpy

In [ ]:

from client.api.notebook import Notebook 
ok = Notebook('hw6.ok') 
_ = ok.auth(inline = True) 

Imports

In [1]:

import numpy as np 
from scipy.integrate import quad 
#For plotting 
import matplotlib.pyplot as plt 
%matplotlib inline 



Problem 1 - Simulated Annealing

Reference: Newman, Computational Physics (p. 490-497) 
 
For a physical system in equilibrium at temperature , the probability that at any moment the system is in a
state  is given by the Boltzmann probability. Let us assume our system has single unique ground state and
let us choose our energy scale so that  in the ground state and  for all other states. Now
suppose we cool down the system to absolute zero. The system will definitely be in the ground state, and
consequently one way to find the ground state of the system is to cool it down to .  
 
This in turn suggests a computational strategy for finding the ground state: let us simulate the system at
temperature , using the Markov chain Monte Carlo method, then lower the temperature to zero and the
system should find its way to the ground state. This same approach could be used to find the minimum of
any function, not just the energy of a physical system. we can take any mathematical function 
and treat the independent variables  as defining a "state" of the system and  as being the energy of
that system, then perform a Monte Carlo simulation. Taking the temperature down to zero will again cause
the system to fall into its ground state, i.e. the state with the lowest value of , and hence we find the
minimum of the function.  
 
However, if the system is cooled rapidly, it can get stuck in a local energy minimum. On the other hand, an
annealed system, one that is cooled sufficiently slowly, can find its way to the ground state. Simulated
annleaing applies the same idea in a computational setting. It mimics the slow cooling of a material on the
computer by using a Monte Carlo simulation with a temperature parameter that is gradually lowered from an
initially high value towards zero. The initial temperature should be chosen so that the system equilibrates
quickly. To achieve this, we should choose the thermal energy to be significantly greater than the typical
energy change accompanying a single Monte Carlo move. 
 
As for the rate of cooling, one typically specifies a "cooling schedule," a trajectory for the temperature as a
function of time, and the most common choise is the exponential one:  
 

 
 
where  is the initial temperature, and  is a time constant. Some trial error may be necessary to find a
good value for . 
 
As an example of the use of simulated annealing, we will look at one of the most famous optimization
problems, traveling salesman problem, which involves finding the shortest route that visits a given set of
locations on a map. A salesman wishes to visit  given cities, and we assume that he can travel in a straight
line between any pair of citiies. Given the coordinates of the cities, the problem is to devise the shortest tour.
It should start and end at the same city, and all cities must be visited at least once. Let us denote the
position of the city  by the two-dimensional vector .  
 
Here is the solution:
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In [2]:

# Traveling salesman (Newman p. 493) 
from math import sqrt,exp 
from numpy import empty 
from random import random,randrange 
from scipy.misc import imread 

N = 25 
R = 0.02 
Tmax = 10.0 
Tmin = 1e-3 
tau = 1e4 

# Function to calculate the magnitude of a vector 
def mag(x): 
   return sqrt(x[0]**2+x[1]**2) 

# Function to calculate the total length of the tour 
def distance(): 
   s = 0.0 
   for i in range(N): 
       s += mag(r[i+1]-r[i]) 
   return s 

# Choose N city locations and calculate the initial distance 
r = empty([N+1,2],float) 
for i in range(N): 
   r[i,0] = random() 
   r[i,1] = random() 
r[N] = r[0] 
D = distance() 

# Main loop 
t = 0 
T = Tmax 
while T>Tmin: 

   # Cooling 
   t += 1 
   T = Tmax*exp(-t/tau) 

   # Choose two cities to swap and make sure they are distinct 
   i,j = randrange(1,N),randrange(1,N) 
   while i==j: 
       i,j = randrange(1,N),randrange(1,N) 

   # Swap them and calculate the change in distance 
   oldD = D 
   r[i,0],r[j,0] = r[j,0],r[i,0] 
   r[i,1],r[j,1] = r[j,1],r[i,1] 
   D = distance() 
   deltaD = D - oldD 

   # If the move is rejected, swap them back again 
   if random()>exp(-deltaD/T): 
       r[i,0],r[j,0] = r[j,0],r[i,0] 
       r[i,1],r[j,1] = r[j,1],r[i,1] 
       D = oldD 

plt.figure(figsize = (8, 7)) 



img = imread("map_sacramento.png") 
plt.plot(r[:,0], r[:,1], 'o-', color = 'crimson', zorder=1) 
plt.imshow(img,zorder=0, extent=[-0.1, 1.1, -0.1, 1.1]) 
plt.xticks([]) 
plt.yticks([]) 
plt.show() 

Now, consider the function , which looks like this:

In [3]:

x = np.linspace(-2, 2, 100) 
y = x**2 - np.cos(4*np.pi*x) 
plt.plot(x, y) 
plt.grid(True); plt.xlim(-2, 2); plt.xlabel('$x$'); plt.ylabel('$f(x)$') 
plt.show() 

f (x) = − cos(4πx)x2



Clearly the global minimum of this function is at .

1. Write a program to confirm this fact using simulated annealing starting at, say, , with Monte Carlo
moves of the form  where  is a random number drawn from a Gaussian distribution with mean
zero and standard deviation one. Use an exponential cooling schedule and adjust the start and end
temperatures, as well as the exponential constant, until you find values that give good answers in reasonable
time. Have your program make a plot of the values of  as a function of time during the run and have it print
out the final value of x at the end. You will find the plot easier to interpret if you make it using dots rather than
lines, with a statement of the form plot(x,".") or similar. 

In [ ]:

... 

2. Now adapt your program to find the minimum of the more complicated function 
 in the range .  

 
(Hint: The correct answer is around , but there are also competing minima around  and 
that your program might find. In real-world situations, it is often good enough to find any reasonable solution
to a problem, not necessarily the absolute best, so the fact that the program sometimes settles on these
other solutions is not necessarily a bad thing.)

In [ ]:

... 

x = 0

x = 2

x → x + δ δ

x

f (x) = cos(x) + cos( x) + cos( x)2‾√ 3‾√ 0 < x < 50

x = 16 x = 2 x = 42



Problem 2 - Hierarchial Normal Model

Reference: Gelman et al., Bayesian Data Analysis (p. 288-290)  
 

Table 1. Coagulation time in seconds for blood drawn from 24 animals randomly allocated to four different
diets. Different treatments have different numbers of observations because the randomization was
unrestricted. 
 
Under the hierarchical normal model, data , for  and , are independently
normally distributed within each of  groups, with means  and common variance . The data is
presented in Table 1. (In this case, there are  groups (or 4 sets of experiments - A, B, C, and D), and for
each group , we have a data vector  with the mean ;  (there have been 
observations made.) (e.g. j = 1 represents the diet A group. So 
with   
 
The total number of observations is . The group means ( ) are assumed to follow a normal
distribution with unknown mean  and variance , and a uniform prior distribution is assumed for 

, with  and ; equivalently, .  
 
The joint posterior density of all the parameters is 
 

 
 

where .  

 
1. Now, find the MAP (Maximum A Posteriori) solution to this (find the solution to MAP for all these
parameters). In other words, find  which maximizes the likelihood.  
 
(Hint: The likelihood is given as . Take the log of
the likelihood and maximize it using scipy.optimize.fmin (https://docs.scipy.org/doc/scipy-
0.19.1/reference/generated/scipy.optimize.fmin.html (https://docs.scipy.org/doc/scipy-
0.19.1/reference/generated/scipy.optimize.fmin.html)). Note that you need to make initial guesses on the
parameters in order to use fmin. Make a reasonable guess! You can use a different in-built function to
maximize the likelihood function.  
Caveat: "fmin" minimizes a given function, so you should multiply the log-likelihood by  in order to
maximize it using fmin.)
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In [ ]:

# Load data 
A = np.array([62, 60, 63, 59]) 
B = np.array([63, 67, 71, 64, 65, 66]) 
C = np.array([68, 66, 71, 67, 68, 68]) 
D = np.array([56, 62, 60, 61, 63, 64, 63, 59]) 

data = [] 
data.append(A) 
data.append(B) 
data.append(C) 
data.append(D) 

data = np.array(data) 

In [ ]:

from scipy import optimize 

def minus_log_likelihood(param, y_i1=data[0], y_i2=data[1], y_i3=data[2], y_i4=d
ata[3]): 
   theta1, theta2, theta3, theta4, mu, sigma, tau = param 
   return ... 

In [ ]:

... 



You should find that the MAP solution is dependent on your initial guesses. The point is that the maximal
likelihood estimator is biased, even though we have all the parameters. Hence, it is better to use the Monte
Carlo simulation for the parameter estimation; we can also determine posterior quantiles with the Monte
Carlo method. First, we will try the Gibbs sampler.  
 
Starting points: 
In this example, we can choose overdispersed starting points for each parameter  by simply taking
random points from the data  from group . We obtain 10 starting points for the simulations by drawing 
independently in this way for each group. We also need starting points for , which can be taken as the
average of the starting  values. No starting values are needed for  or  as they can be drawn as the first
steps in the Gibbs sampler. 
 
Conditional posterior distribution of : 
The conditional posterior density for  has the form corresponding to a normal variance with known mean;
there are  observations  with means . The conditional posterior distribution is 

 
where

 

 
 
(Hint: You can take random samples from the inverse gamma function using scipy.stats.invgamma -
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.invgamma.html
(https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.invgamma.html).  
invgamma.rvs(alpha, scale = beta, size=1) will take one random sample from .)  
 
Conditional posterior distribution of : 
Conditional on  and the other parameters in the model,  has a normal distribution determined by the 
values : 

 
with

 
 
Conditional posterior distribution of each : 
The factors in the joint posterior density that involve  are the  prior distribution and the normal
likelihood from the data in the th group,  ,  . The conditional posterior distribution of each 
given the other parameters in the model is  

 
 
where the parameters of the conditional posterior distribution depend on  as well as :  
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These conditional distributions are independent; thus drawing the ’s one at a time is equivalent to drawing
the vector  all at once from its conditional posterior distribution.  
 
Conditional posterior distribution of : 
Conditional on  and the other parameters in the model,  has a normal distribution determined by the 
values : 

 
where .

 
 
2. Define a function which does the Gibbs sampling. Take 100 samples. Remove the first 50 sequences and
store the latter half. Repeat this 10 times so that you get ten Gibbs sampler sequences, each of length 50.
We have 7 parameters ( ), and for each parameter, you created 10 chains, each of length
50.

In [ ]:

... 

3. Estimate posterior quantiles. Find 2.5%, 25%, 50%, 75%, 97.5% posterior percentiles of all parameters.  
(Hint: You can use np.percentile - https://docs.scipy.org/doc/numpy-
dev/reference/generated/numpy.percentile.html (https://docs.scipy.org/doc/numpy-
dev/reference/generated/numpy.percentile.html).)

In [ ]:

... 
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4. Now, test for convergence using "Gelman-Rubin statistic." For all seven parameters, compute  and
determine if the condition  is satisfied. 
 
For a given parameter , the  statistic compares the variance across chains with the variance within a
chain. 
Given chains , each of length ,  

Let , where  is the average  for chain  and  is the global average. This is
proportional to the variance of the individual-chain averages for . 
Let , where  is the estimated variance of  within chain . This is the average of the
individual-chain variances for . 
Let . This is an estimate for the overall variance of .  
 

Finally, . We'd like to see  (e.g.  is often used). Note that this calculation can also

be used to track convergence of combinations of parameters, or anything else derived from them.

In [ ]:

... 

Now, try the Metropolis algorithm.

5. Run ten parallel sequences of Metropolis algorithm simulations using the package "emcee"
(http://dfm.io/emcee/current/). First, define the log of prior (already given to you), likelihood, and posterior
(Hint: http://dfm.io/emcee/current/user/line/)  

In [ ]:

import emcee 

In [ ]:

def log_prior(param): 
   theta1, theta2, theta3, theta4, mu, sigma, tau = param 
   if sigma > 0 and tau > 0: 
       return 0.0 
   return -np.inf 

def log_likelihood(param, data0, data1, data2, data3): 
   theta1, theta2, theta3, theta4, mu, sigma, tau = param 
   return ... 

def log_posterior(param, data0, data1, data2, data3): 
   return ... 

6. Now, try different number of MCMC walkers and burn-in period, and number of MCMC steps. At which
point do you obtain similar results to those obtained using Gibbs sampling? Run the MCMC chain and
estimate posterior quantiles as in Part 3.  

R

R < 1.1

θ R

J = 1,… ,m n

B = n

m−1 ∑j ( − )θ̄j θ̄
2

θj
¯ θ j θ̄

θ

W = 1

m
∑j s

2
j s2j θ j

θ

V = W + B
n−1
n

1

n
θ

R = V

W
‾‾‾√ R ≈ 1 R < 1.1



In [ ]:

emcee_trace = [] 
for i in range(10): 
   # Here we'll set up the computation. emcee combines multiple "walkers", 
   # each of which is its own MCMC chain. The number of trace results will 
   # be nwalkers * nsteps 

   ndim = 7  # number of parameters in the model 
   nwalkers = 50  # number of MCMC walkers 
   nburn = 500 # "burn-in" period to let chains stabilize 
   nsteps = 1000  # number of MCMC steps to take 

   # set theta near the maximum likelihood, with  
   np.random.seed(0) 
   starting_guesses = np.random.random((nwalkers, ndim)) 

   # Here's the function call where all the work happens: 
   # we'll time it using IPython's %time magic 

   sampler = emcee.EnsembleSampler(nwalkers, ndim, log_posterior, args=[data[0
], data[1], data[2], data[3]]) 
   sampler.run_mcmc(starting_guesses, nsteps) 

   emcee_trace.append(sampler.chain[:, nburn:, :].reshape(-1, ndim).T) 

emcee_trace = np.array(emcee_trace) 
    
    

In [ ]:

np.shape(emcee_trace) 

In [ ]:

... 

Using the package "corner," you can also easily plot the 1-d and 2-d posterior (looks familiar?). Make a plot
for one chain. Plots along the diagonal correspond to 1-d constraints. The dotted lines show 16%, 50%, and
84% percentile ranges.

In [ ]:

import corner 
fig = corner.corner(emcee_trace[0, :, :].T, labels=["$\\theta_1$", "$\\theta_2$"
, "$\\theta_3$", "$\\theta_4$", "$\mu$", "$\sigma$", "$\\tau$"], quantiles=[0.16
, 0.5, 0.84], range = 0.95*np.ones(7)) 

6. Test for convergence using Gelman-Rubin statistic as in Part 4.  

In [ ]:

... 



7. Using autocorrelation_plot from pandas (https://pandas.pydata.org/pandas-
docs/stable/visualization.html#visualization-autocorrelation), plot the auto-correlation of six parameters and
determine that it gets small for large lag.  

In [ ]:

from pandas.tools.plotting import autocorrelation_plot 

In [ ]:

... 

In [ ]:

import daft 
from matplotlib import rc 

In [ ]:

... 

7. Using the package "daft", plot a graphical model in this problem.  
Note that we have  experiments each with  data, each its own mean , but common variance . The
mean  has a hyperprior, generated as a gaussian with some mean  and variance . 
(Hint:
https://github.com/KIPAC/StatisticalMethods/blob/8232a7b7e870b82088fe3589b8a796430e9076d6/examples

J nj θj σ
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Problem 3 - Mixture Model for Outliers

Suppose we have data that can be fit to a linear regression, apart from a few outlier points. It is always
better to understand the underlying generative model of outliers.  
 
Consider the following dataset, relating the observed variables  and , and the error of  stored in .  
 

x y y σy



In [ ]:

# Load the data 
x = np.array([ 0,  3,  9, 14, 15, 19, 20, 21, 30, 35, 
             40, 41, 42, 43, 54, 56, 67, 69, 72, 88]) 
y = np.array([33, 68, 34, 34, 37, 71, 37, 44, 48, 49, 
             53, 49, 50, 48, 56, 60, 61, 63, 44, 71]) 
e = np.array([ 3.6, 3.9, 2.6, 3.4, 3.8, 3.8, 2.2, 2.1, 2.3, 3.8, 
              2.2, 2.8, 3.9, 3.1, 3.4, 2.6, 3.4, 3.7, 2.0, 3.5]) 

1. Determine  which maximize the likelihood (or, equivalently, minimize the loss). As in Problem
2-1, you can use scipy.optimize.fmin. Plot the best-fit line (on top of data points) using  from the MAP
solution.  

In [ ]:

from scipy import optimize 

... 

Clearly, we get a poor fit to the data because the squared loss is overly sensitive to outliers.

2. As in Problem2-Part5, define log-prior (already given to you), log-likelihood and log-posterior.  

θ = [ , ]θ0 θ1
θ



In [ ]:

def log_prior(theta): 
   #g_i needs to be between 0 and 1 
   if (all(theta[2:] > 0) and all(theta[2:] < 1)): 
       return 0 
   else: 
       return -np.inf  # recall log(0) = -inf 

def log_likelihood(theta, x, y, e, sigma_B): 
   ... 

def log_posterior(theta, x, y, e, sigma_B): 
   return ... 

Now, run the MCMC samples.

In [ ]:

ndim = 2 + len(x)  # number of parameters in the model 
nwalkers = 50  # number of MCMC walkers 
nburn = 10000  # "burn-in" period to let chains stabilize 
nsteps = 15000  # number of MCMC steps to take 

# set theta near the maximum likelihood, with  
np.random.seed(0) 
starting_guesses = np.zeros((nwalkers, ndim)) 
starting_guesses[:, :2] = np.random.normal(theta1, 1, (nwalkers, 2)) 
starting_guesses[:, 2:] = np.random.normal(0.5, 0.1, (nwalkers, ndim - 2)) 

sampler = emcee.EnsembleSampler(nwalkers, ndim, log_posterior, args=[x, y, e, 50
]) 
sampler.run_mcmc(starting_guesses, nsteps) 

sample = sampler.chain  # shape = (nwalkers, nsteps, ndim) 
sample = sampler.chain[:, nburn:, :].reshape(-1, ndim) 

Once we have these samples, we can exploit a very nice property of the Markov chains. Because their
distribution models the posterior, we can integrate out (i.e. marginalize) over nuisance parameters simply by
ignoring them!  
 
We can look at the (marginalized) distribution of slopes and intercepts by examining the first two columns of
the sample:

In [ ]:

plt.plot(sample[:, 0], sample[:, 1], ',k', alpha=0.1) 
plt.xlabel('intercept') 
plt.ylabel('slope') 
plt.show() 



We allowed the model to have a nuisance parameter  for each data point:  indicates an
outlier. We can also allow sb to be a nuisance parameter to marginalize over (or just make it a large number).
Now, let us define an outlier whenever posterior .  
 
3. Using such cutoff at , identify an outlier and mark them on the plot. Also, plot the marginalized
best model over the original data.  

In [ ]:

... 

To Submit
Execute the following cell to submit. If you make changes, execute the cell again to resubmit the final copy
of the notebook, they do not get updated automatically. 
We recommend that all the above cells should be executed (their output visible) in the notebook at the
time of submission.  
Only the final submission before the deadline will be graded.

In [ ]:

_ = ok.submit() 
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