
Homework 7

MLE, MCMC, Interpolation, Expectation Maximization (EM), and
Resampling Methods
 
This notebook is arranged in cells. Texts are usually written in the markdown cells, and here you can use
html tags (make it bold, italic, colored, etc). You can double click on this cell to see the formatting. 
 
The ellipsis (...) are provided where you are expected to write your solution but feel free to change the
template (not over much) in case this style is not to your taste.  
 
Hit "Shift-Enter" on a code cell to evaluate it. Double click a Markdown cell to edit.  

Link Okpy

In [ ]:

from client.api.notebook import Notebook 
ok = Notebook('hw7.ok') 
_ = ok.auth(inline = True) 

Imports

In [2]:

import numpy as np 
from scipy.integrate import quad 
#For plotting 
import matplotlib.pyplot as plt 
%matplotlib inline 



Supernova Cosmology Project

In this homework, we use a compilation of supernovae data to show that the expansion of the universe is
accelerating, and hence it contains dark energy. This is the Nobel prize winning research in 2011
(https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/
(https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/)), and Saul Perlmutter, a professor of
physics at Berkeley, shared a prize in 2011 for this discovery.  
 
"The expansion history of the universe can be determined quite easily, using as a “standard candle” any
distinguishable class of astronomical objects of known intrinsic brightness that can be identified over a wide
distance range. As the light from such beacons travels to Earth through an expanding universe, the cosmic
expansion stretches not only the distances between galaxy clusters, but also the very wavelengths of the
photons en route. By the time the light reaches us, the spectral wavelength  has thus been redshifted by
precisely the same incremental factor  by which the cosmos has been stretched in the time interval
since the light left its source. The recorded redshift and brightness of each such object thus provide a
measurement of the total integrated expansion of the universe since the time the light was emitted. A
collection of such measurements, over a sufficient range of distances, would yield an entire historical record
of the universe’s expansion." (Saul Perlmutter, http://supernova.lbl.gov/PhysicsTodayArticle.pdf
(http://supernova.lbl.gov/PhysicsTodayArticle.pdf)).  
 
Supernovae emerge as extremely promising candidates for measuring the cosmic expansion. Type I
Supernovae arises from the collapse of white dwarf stars when the Chandrasekhar limit is reached. Such
nuclear chain reaction occurs in the same way and at the same mass, the brightness of these supernovae
are always the same. The relationship between the apparent brightness and distance of supernovae depend
on the contents and curvature of the universe.  
 
We can infer the "luminosity distance"  from measuring the inferred brightness of a supernova of
luminosity . Assuming a naive Euclidean approach, if the supernova is observed to have flux , then the
area over which the flux is distributed is a sphere radius , and hence  
 

 
In Big Bang cosmology,  is given by:  
 

 
where  is the scale factor ( , and the quantity with the subscript 0 means the value at
present. Note that .), and  is the comoving distance, the distance between two objects as
would be measured instantaneously today. For a photon, , so . We can write

this in terms of a Hubble factor ( ), which tells you the expansion rate: 

. (change of variable using .)  

 
Using the Friedmann equation (which basically solves Einstein's equations for a homogenous and isotropic
universe), we can write  in terms of the mass density  of the components in the universe: 

  
 

 is the density parameter; it is the ratio of the observed density of matter and energy in the universe ( ) to
the critical density  at which the universe would halt is expansion. So  (again, the subscript 0 means
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the value at the present) is the total mass and energy density of the universe today, and consequently 
 (matter density parameter today; remember we obtained the best-fit value of this parameter in

Project 1?) =  + . If , the universe will continue to expand forever. If 
, the expansion will stop eventually and the universe will start to recollapse. If , then the universe is
flat and contains enough matter to halt the expansion but not enough to recollapse it. So it will continue
expanding, but gradually slowing down all the time, finally running out of steam only in the infinite future.
Even including dark matter in this calculation, cosmologists found that all the matters in the universe only
amounts to about a quarter of the required critical mass, suggesting a continuously expanding universe with
deceleration. Then, using all this, we can write the luminosity distance in terms of the density parameters:  
 

 

 
where .  
 
Fluxes can be expressed in magnitudes , where  + const. The distance modulus is 

 (  is the absolute magnitude, the value of  if the supernova is at a distance 10pc. Then, we
have:  
 

 
 
In this assignment, we use the SCP Union2.1 Supernova (SN) Ia compilation.
(http://supernova.lbl.gov/union/ (http://supernova.lbl.gov/union/))  
 
First, load the measured data:  (redshift),  (distance modulus),  (error on distance modulus)

In [ ]:

data = np.loadtxt("sn_z_mu_dmu_plow_union2.1.txt", usecols=range(1,5)) 
# z 
z_data = data[:,0] 
# mu 
mu_data = data[:,1] 
# error on mu (sigma(mu)) 
mu_err_data = data[:,2] 
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1. Plot the measured distance modulus as a function of redshift with errorbars. Then, assume three different
scenarios:  
 
Remember:

 

 
 
Now, plot three curves of  as a function of  for  on top of the measured data (Calculate 
using quad. For now, assume .) How do they fit? 

In [ ]:

import math 

... 

In [ ]:

plt.figure(figsize = (20,14)) 

... 

plt.legend() 
plt.xlim(0.01, 1.5) 
plt.xlabel('$z$') 
plt.ylabel('$\mu$') 
plt.show() 
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2. Now assume three different scenarios: ( ), ( ), and (
). Again, plot three curves of  as a function of  on top of data (assume 

)  

In [ ]:

... 

You should find that the measured data do not fit well to all three scenarios. "The high-redshift supernovae
are fainter than would be expected even for an empty cosmos (corresponding to )." So what's
wrong? 
 
"If these data are correct, the obvious implication is that the simplest cosmological model must be too
simple. The next simplest model might be one that Einstein entertained for a time. Believing the universe to
be static, he tentatively introduced into the equations of general relativity an expansionary term he called the
“cosmological constant” ( ) that would compete against gravitational collapse. After Hubble’s discovery of
the cosmic expansion, Einstein famously rejected  as his “greatest blunder.” In later years,  came to be
identified with the zero-point vacuum energy of all quantum fields. It turns out that invoking a cosmological
constant allows us to fit the supernova data quite well." (Saul Perlmutter,
https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/
(https://www.nobelprize.org/nobel_prizes/physics/laureates/2011/))  
 
So in short, the data indicates that faint supernovae are further away from the earth than had been
theoretically expected. The expansion rate of the universe is increasing indeed. It seems that some
mysterious material (which we call "dark energy") is causing such antigravity effects. The cosmological
constant, , the value of the energy density of the vacuum of space is widely accepted as a leading
candidate of dark energy. 
 
Now let us add a general form of dark energy to our model.  
 

 
 is the dark energy equation of state, which is the ratio of its pressure to its energy density.  for the

cosmological constant .  
 

 (matter density parameter today) +  (dark energy density parameter today), and 
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In [ ]:

plt.figure(figsize = (20,14)) 

... 

plt.legend() 
plt.xlim(0.01, 1.5) 
plt.xlabel('$z$') 
plt.ylabel('$\mu$') 
plt.show() 

You basically reproduced the below figure!

You should see that  and  fits the data best. In combination with the CMB data, this
shows that about 70% of the total energy density is vacuum energy and 30% is mass.

= 0.3Ωm = 0.7Ωm



Now, with measurements of the distance modulus , use Bayesian analysis to estimate the cosmological
parameters.  
 
let us assume that the universe is flat (which is a fair assumption since the CMB measurements indicate that
the universe has no large-scale curvature). . Then, we do not need to worry about the
curvature term: 
 

 

 
where . 
 
Assuming that errors are Gaussian (can be justified by averaging over large numbers of SN; central limit
theorem), we calculate the likelihood  as:  
 

 
where  are from the measurements, and we compute  as a function of .

 
 
First, try the maximum likelihood estimation (MLE). 
 

3. Assuming that  = 0.7, find the maximum likelihood estimation of  and  (i.e. find  and  which
maximizes the likelihood. 
 
(Hint: This is very similar to Problem 2-1, HW6. Take the log of the likelihood and maximize it using
scipy.optimize.fmin (https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.fmin.html
(https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.fmin.html)). Note that you need
to make initial guesses on the parameters in order to use fmin. You can set them to be 0. Caveat: "fmin"
minimizes a given function, so you should multiply the log-likelihood by  in order to maximize it using
fmin.)  

In [ ]:
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In [ ]:

from scipy import optimize 

def minus_log_likelihood(param): 
    
   Omegam, w = param 
    
   if(Omegam<=0 or w>=0): 
       lnL = -1.e100 
   else: 
    
       ... 
       lnL = ... 

   return -lnL 

In [ ]:

Omegam, w = optimize.fmin(...) 
print('MAP solution') 
print('Omega_m = ', Omegam, ', w = ', w) 

Next, write an MCMC code using the Metropolis algorithm. In this problem, assume that the universe is
flat, and  (dark energy is .) We call this flat CDM cosmology. By fixing  and , 

.  
 
First, I precalculated  for  from 2 one-dimensional vectors giving the tabulated values of the
parameters  and  in the range  and . We call the tabulated values of 
and  as "z_fit" (length 200) and "Om0_fit" (length 100). Then, "DL_fit" is a 2-dimensional grid of tabulated
values of  (its dimension 200  100. i.e. [i,j] is  = z_fit[i],  = Om0_fit[j]   
 
Now using a 2-D spline interpolation, estimate  for any  and .  
 
4. Using scipy.interpolate.RectBivariateSpline, estimate  for any  and . Plot 

 as a function of  on top of the measured data. How does it fit to the
data? 
 
(Hint: Let z_spline = RectBivariateSpline(x_fit,y_fit,z_fit). Then, z_spline.ev(x,y) will evaulate the spline at
given positions x and y.)

In [ ]:

DL_fit = np.loadtxt("DL_fit.txt").T 
Om0_fit = np.loadtxt("Om0_fit.txt") 
z_fit = np.loadtxt("z_fit.txt") 

In [ ]:

from scipy.interpolate import RectBivariateSpline 

w = −1 Λ Λ h w

= (z, )DL DL Ωm

DL h = 0.7

z Ωm 0.01 < z < 1.5 0.01 < < 1Ωm z

Ωm

DL × DL DL(z Ωm )

(z, )DL Ωm z Ωm

(z, )DL Ωm z Ωm

μ = 25 + 5 ⋅ ( (z, = 0.3))log10 DL Ωm z



In [ ]:

... 

In [ ]:

plt.figure(figsize = (20,14)) 

... 

plt.legend() 
plt.xlim(0.01, 1.5) 
plt.xlabel('$z$') 
plt.ylabel('$\mu$') 
plt.show() 

 
 
Now, run the MCMC code to estimate .Ωm



In [ ]:

# The following is a modified version of the code written by Alan Heavens (htt
p://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/astrop
hysics/public/icic/data-analysis-workshop/2016/SNcodePython.txt) 

# Import data 
data = np.loadtxt("sn_z_mu_dmu_plow_union2.1.txt", usecols=range(1,5)) 
# z 
z_data = data[:,0] 
# mu 
mu_data = data[:,1] 
# error on mu (sigma(mu)) 
mu_err_data = data[:,2] 

# length of MCMC chains 
nsamples = 10000 
# number of parameters 
npars    = 1 

# Define (gaussian) width of the proposal distribution, one for each parameter.
This determines how far you propose jumps 
Sigma = [0.01] 

# Number of supernova: 
nSN = len(z_data) 

# Declare an empty array of the parameter values of each point.  
# Theta[:,0] stores a trace of the parameter \Omega_m   
# Theta[:,1] stores log-likelihood values at each point 
Theta          = np.empty([nsamples,npars+1]) 

# Dmu stores mu(data)-mu(theory), temporarily: 
Dmu = np.empty(nSN) 

# Random starting point in parameter space 
# Set initial likelihood to low value so next point is accepted (could compute i
t instead): 
Theta[0,:] = [np.random.uniform(), -1.e100] 

In Part 4, you calculated  from the CDM model given  and , using  from the 2D spline
interpolation. Using this result, define a function  which outputs  from the CDM theory model given 
 and . Then, Dmu[j] = mu_data[j]-mu_model(zdata[j],Omegam), and the log-likelihood is 

 
$$ \mathrm{ln}(L) \approx -\frac{1}{2} \sum{i = 1}^{N{\mathrm{SN}}} \frac{[\mu{i,⧵ data}(zi) - \mu{i,⧵ model}
(z_i, ⧵Omega_m)]^2}{⧵sigma(⧵mui)^2} = -\frac{1}{2} \sum{i = 1}^{N_{⧵mathrm{SN}}} ⧵frac{Dmu_i^2}
{⧵sigma(⧵mu_i)^2} $$

5. Define a function for mu_model (mu predicted from theory) and lnL (log-likelihood). Then, you can run the
MCMC code and plot the posterior (the routine already given).  
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In [ ]:

def mu_model(z,Omegam): 
   ... 
   return ... 

# Define the likelihood function: 

def lnL(Omegam): 

   # Treat unphysical regions by setting likelihood to (almost) zero:     
   if(Omegam<=0): 
       lnL = -1.e100 
   else: 
            
   # Compute difference with theory mu at redshifts of the SN, for trial Omegam 
       ... 

   # Compute ln(likelihood) assuming gaussian errors 
       lnL = ... 
        
   return lnL 

# Now run the MCMC code (all routine already given below) 

# Draw new proposed samples from a proposal distribution, centred on old values
Omegam[i-1] 
# Accept or reject, and colour points according to ln(likelihood): 

# Compute initial likelihood value: 
Theta[0,npars] = lnL(Theta[0,0]) 

progress = nsamples/10; val = 0 
for i in range(1,nsamples):     
    
   if i%progress == 0: 
       val = val + 10 
       print("%d percent done" %val) 
    
   lnLPrevious = Theta[i-1,npars] 
   OmegamProp = np.random.normal(Theta[i-1,0],Sigma[0]) 
    
   lnLProp    = lnL(OmegamProp) 

   # Metroplis-Hastings algorithm: 

   if(lnLProp > lnLPrevious): 
   # Accept point if likelihood has gone up: 
       Theta[i,0]     = OmegamProp 
       Theta[i,npars] = lnLProp 
   else: 
   # Otherwise accept it with probability given by ratio of likelihoods: 
       alpha = np.random.uniform() 
    
       if(lnLProp - lnLPrevious > np.log(alpha)): 
           Theta[i,0]     = OmegamProp 
           Theta[i,npars] = lnLProp 
       else: 
       # Reject; Repeat the previous point in the chain: 
           Theta[i,0]     = Theta[i-1,0] 



           Theta[i,npars] = lnLPrevious 

# Remove a burn in period, arbitrarily chosen to be the first 10% of the chain: 
nburn = math.floor(nsamples/10) 
    

# Plot the histogram of Omegam after the burn-in phase: 
plt.hist(Theta[nburn:,0],bins=30) 
plt.xlabel(r'$\Omega_m$') 
plt.show() 

# Determine the best-fit value and constraint 
print ('Omega_m = ',np.mean(Theta[nburn:nsamples,0]), '+/-' ,np.std(Theta[nburn:
nsamples,0])) 

 
 
Now, assume a more general form of dark energy, as in Part 3. (Do not fix  to -1; add  as a parameter.)

In the flat universe,  
 

 

 
where . Here, we fix . 
 
We calculate the likelihood  as:  
 

 
where

 

 
 
6. Modify the code in Part 5 (most routine already given) and run the MCMC code to estimate  and .
(npars = 2 in this case). Plot 1-d posterior of  and  as well as 2-d posterior (i.e. plot the chain in two-
dimensional parameter space. Make sure that the chain has converged (you can change nsamples, nburn). 
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In [ ]:

# Import data 
data = np.loadtxt("sn_z_mu_dmu_plow_union2.1.txt", usecols=range(1,5)) 
# z 
z_data = data[:,0] 
# mu 
mu_data = data[:,1] 
# error on mu (sigma(mu)) 
mu_err_data = data[:,2] 

# length of MCMC chains 
nsamples = 15000 
# number of parameters 
npars    = 2 

# Define (gaussian) width of the proposal distribution, one for each parameter.
This determines how far you propose jumps 
Sigma = [0.01, 0.01] 

# Number of supernova: 
nSN = len(z_data) 

# Declare an empty array of the parameter values of each point.  
# Theta[:,0] stores a trace of the parameter \Omega_m   
# Theta[:,1] stores a trace of the parameter w  
# Theta[:,2] stores log-likelihood values at each point 
Theta          = np.empty([nsamples,npars+1]) 

# Dmu stores mu(data)-mu(theory), temporarily: 
Dmu = np.empty(nSN) 

# Random starting point in parameter space 
# Set initial likelihood to low value so next point is accepted (could compute i
t instead): 
Theta[0,:] = [np.random.uniform(), -np.random.uniform(), -1.e100] 

In [ ]:

def mu_model(z,Omegam,w): 
   ... 
   return ... 



In [ ]:

# Define the likelihood function: 

def lnL(Omegam, w): 

   # Treat unphysical regions by setting likelihood to (almost) zero:     
   if(Omegam<=0 or w>=0): 
       lnL = -1.e100 
   else: 
            
   # Compute difference with theory mu at redshifts of the SN, for trial Omegam 
       ... 

   # Compute ln(likelihood) assuming gaussian errors 
       lnL = ... 
        
   return lnL 

# Draw new proposed samples from a proposal distribution, centred on old values
Omegam[i-1] 
# Accept or reject, and colour points according to ln(likelihood): 

# Compute initial likelihood value: 
Theta[0,npars] = lnL(Theta[0,0], Theta[0,1]) 

progress = nsamples/10; val = 0 
for i in range(1,nsamples):     
    
   if i%progress == 0: 
       val = val + 10 
       print("%d percent done" %val) 
    
   lnLPrevious = Theta[i-1,npars] 
   OmegamProp = np.random.normal(Theta[i-1,0],Sigma[0]) 
   wProp = np.random.normal(Theta[i-1,1],Sigma[1]) 
    
   lnLProp    = lnL(OmegamProp, wProp) 

   # Metroplis-Hastings algorithm: 

   if(lnLProp > lnLPrevious): 
   # Accept point if likelihood has gone up: 
       Theta[i,0]     = OmegamProp 
       Theta[i,1]     = wProp 
       Theta[i,npars] = lnLProp 
   else: 
   # Otherwise accept it with probability given by ratio of likelihoods: 
       alpha = np.random.uniform() 
    
       if(lnLProp - lnLPrevious > np.log(alpha)): 
           Theta[i,0]     = OmegamProp 
           Theta[i,1]     = wProp 
           Theta[i,npars] = lnLProp 
       else: 
       # Reject; Repeat the previous point in the chain: 
           Theta[i,0:2]     = Theta[i-1,0:2] 
           Theta[i,npars] = lnLPrevious 

# Remove a burn in period, arbitrarily chosen to be the first 20% of the chain: 



nburn = 2*math.floor(nsamples/10) 
    

# Plot the histogram of Omegam after the burn-in phase: 
plt.hist(Theta[nburn:,0],bins=30) 
plt.xlabel(r'$\Omega_m$') 
plt.show() 

# Plot the histogram of w after the burn-in phase: 
plt.hist(Theta[nburn:,1],bins=30) 
plt.xlabel('w') 
plt.show() 

# Scatter plot of the samples (2-d posterior): 
plt.scatter(Theta[nburn:,0], Theta[nburn:,1], c = -Theta[nburn:,npars]) 
plt.xlabel(r'$\Omega_m$') 
plt.ylabel('w') 
plt.show()  

# Print best-fit values and constraints 
print ('Omega_m = ',np.mean(Theta[nburn:nsamples,0]), '+/-' ,np.std(Theta[nburn:
nsamples,0])) 
print ('w = ',np.mean(Theta[nburn:nsamples,1]), '+/-' ,np.std(Theta[nburn:nsampl
es,1])) 

 
 
Now, include the distance modulus of 12 additional supernovae, which are not-so-good standard candles.
They are 3  away from the best-fit mode.

In [ ]:

data = np.loadtxt("sn_z_mu_dmu_plow_union2.1_outlier.txt", usecols=range(1,5)) 
# z 
z_data = data[:,0] 
# mu 
mu_data = data[:,1] 
# error on mu (sigma(mu)) 
mu_err_data = data[:,2] 

So we have a total of 592 supernovae, and we can see that the last 12 supernovae seem to be outliers. (i.e.
mu_data[580:] contains the distance modulus measurements of these 12 supernovae.)  
 
7. First run the MCMC code in Part 6 with the new data (total of 592 supernovae). Then, using the estimates
of  and  from the MCMC chain, calculate the distance modulus from theory and plot the curve on top of
the measured data. Plot the measurements of the last 12 supernovae with different color.  

In [ ]:

... 

σ

Ωm w



In [ ]:

plt.figure(figsize = (20,14)) 

... 

plt.legend() 
plt.xlim(0.01, 1.5) 
plt.xlabel('$z$') 
plt.ylabel('$\mu$') 
plt.show() 

 
 
Remember that in HW6, we used the Gaussian mixture to better model the measurements with outliers. Let
us apply the same technique in this case.  
 

 
Here, we have 5 free parameters: .  
 
With outliers, we think there is something in the noise we do not really understand, which makes error
distribution non-Gaussian. So we hope adding a second Gaussian to the model would better describe the
pdf.  determines weights on the two Gaussians.  is the variance of the second Gaussian, which we
assume to be larger than the variance of the first Gaussian.  is the distance modulus offset in the second
Gaussian.  
 

8. Re-run the MCMC code with this new model. Plot 1-d and 2-d constrains of  and  as in Part 6 and 7. 

L = [ exp( − ) + exp( −∏
i=1

NSN g

2πσ(μi)
2

‾ ‾‾‾‾‾‾‾√
1

2

[ ( ) − ( , ,w)μi, data zi μi, model zi Ωm ]2

σ(μi)
2

1 − g

2πσ2
B

‾ ‾‾‾‾√
1

2

[ ( ) −μi, data zi

,w, g, ,ΔμΩm σB

g σ2
B

Δμ

Ωm w



In [ ]:

# Setup (all routine already given) 

data = np.loadtxt("sn_z_mu_dmu_plow_union2.1_outlier.txt", usecols=range(1,5)) 
# z 
z_data = data[:,0] 
# mu 
mu_data = data[:,1] 
# error on mu (sigma(mu)) 
mu_err_data = data[:,2] 

# length of MCMC chains 
nsamples = 15000 
# number of parameters 
npars    = 5 

# Define (gaussian) width of the proposal distribution, one for each parameter.
This determines how far you propose jumps 
Sigma = 0.01*np.ones(npars) 
Sigma[2] = 0.03*np.ones(1) 
Sigma[3] = 0.1*np.ones(1) 
Sigma[4] = 0.01*np.ones(1) 

# Number of supernova: 
nSN = len(z_data) 

# Declare an empty array of the parameter values of each point.  
# Theta[:,0] stores a trace of the parameter \Omega_m   
# Theta[:,1] stores a trace of the parameter w  
# Theta[:,2] stores a trace of the parameter g 
# Theta[:,3] stores a trace of the parameter sigma_B  
# Theta[:,4] stores a trace of the parameter delta mu 
# Theta[:,5] stores log-likelihood values at each point 
Theta          = np.empty([nsamples,npars+1]) 

# Dmu stores mu(data)-mu(theory), temporarily: 
Dmu = np.empty(nSN) 

# Random starting point in parameter space 
# Set initial likelihood to low value so next point is accepted (could compute i
t instead): 
Theta[0,:2] = [np.random.uniform(), -np.random.uniform()] 
Theta[0,2] = np.random.normal(0.5, 0.1) 
Theta[0,3] = np.random.normal(10, 0.1) 
Theta[0,4] = np.random.uniform() 
Theta[0,npars] = -1.e100 



In [ ]:

# Define mu from theory 
def mu_model(z,Omegam,w): 
   ... 
   return ... 

# Define the likelihood function: 

def lnL(Omegam, w, sigmaB, gs, errs, muoffset): 

   # Treat unphysical regions by setting likelihood to (almost) zero:     
   if(Omegam<=0 or w>=0 or gs < 0 or gs > 1.): 
       lnL = -1.e100 
   else: 
            
   # Compute difference with theory mu at redshifts of the SN, for trial Omegam 
       ... 
       lnL = ... 
        
   return lnL 

# Run the MCMC code 

# Draw new proposed samples from a proposal distribution, centred on old values
Omegam[i-1] 
# Accept or reject, and colour points according to ln(likelihood): 

# Compute initial likelihood value: 
Theta[0,npars] = lnL(Theta[0,0], Theta[0,1], Theta[0,3], Theta[0,2], mu_err_data
, Theta[0,4]) 

progress = nsamples/10; val = 0 
for i in range(1,nsamples):     
    
   if i%progress == 0: 
       val = val + 10 
       print("%d percent done" %val) 
    
   lnLPrevious = Theta[i-1,npars] 
   OmegamProp = np.random.normal(Theta[i-1,0],Sigma[0]) 
   wProp = np.random.normal(Theta[i-1,1],Sigma[1]) 
   gvalProp   = np.random.normal(Theta[i-1,2],Sigma[2]) 
   sigmaProp   = np.random.normal(Theta[i-1,3],Sigma[3]) 
   offsetProp   = np.random.normal(Theta[i-1,4],Sigma[4]) 
    
   lnLProp    = lnL(OmegamProp,wProp,sigmaProp,gvalProp,mu_err_data,offsetProp) 

   # Metroplis-Hastings algorithm: 

   if(lnLProp > lnLPrevious): 
   # Accept point if likelihood has gone up: 
       Theta[i,0]     = OmegamProp 
       Theta[i,1]     = wProp 
       Theta[i,2] = gvalProp 
       Theta[i,3] = sigmaProp 
       Theta[i,4] = offsetProp 
       Theta[i,npars] = lnLProp 
   else: 
   # Otherwise accept it with probability given by ratio of likelihoods: 



       alpha = np.random.uniform() 
    
       if(lnLProp - lnLPrevious > np.log(alpha)): 
           Theta[i,0]     = OmegamProp 
           Theta[i,1]     = wProp 
           Theta[i,2] = gvalProp 
           Theta[i,3] = sigmaProp 
           Theta[i,4] = offsetProp 
           Theta[i,npars] = lnLProp 
       else: 
       # Reject; Repeat the previous point in the chain: 
           Theta[i,0:5]     = Theta[i-1,0:5] 
           Theta[i,npars] = lnLPrevious 
            
# Remove a burn in period, arbitrarily chosen to be the first 40% of the chain: 
nburn = 4*math.floor(nsamples/10) 
    

# Plot the histogram of Omegam after the burn-in phase: 
plt.hist(Theta[nburn:,0],bins=30) 
plt.xlabel(r'$\Omega_m$') 
plt.show() 

# Plot the histogram of w after the burn-in phase: 
plt.hist(Theta[nburn:,1],bins=30) 
plt.xlabel('w') 
plt.show() 

# Scatter plot of the samples (2-d posterior): 
plt.scatter(Theta[nburn:,0], Theta[nburn:,1], c = -Theta[nburn:,npars]) 
plt.xlabel(r'$\Omega_m$') 
plt.ylabel('w') 
plt.show()  

# Print best-fit values and constraints 
print ('Omega_m = ',np.mean(Theta[nburn:nsamples,0]), '+/-' ,np.std(Theta[nburn:
nsamples,0])) 
print ('w = ',np.mean(Theta[nburn:nsamples,1]), '+/-' ,np.std(Theta[nburn:nsampl
es,1])) 



Reference: See pg. 8-16 (https://lear.inrialpes.fr/~jegou/bishopreadinggroup/chap9.pdf
(https://lear.inrialpes.fr/~jegou/bishopreadinggroup/chap9.pdf))  
 
For this Gaussian mixture model, we wish to maximize the likelihood function with respect to the parameters

 for . In order to do this, we will apply the expectation-maximization (EM)
algorithm. This is an iterative method to find maximum likelihood in the case where the model depends on
the hidden/latent variable. Here, we call binary variable a as our latent variable such that   
 
Re-write the likelihood as:  

 

where  assumes . Suppose that we measure . For the
first Gaussian (expected to describe the distribution of 580 non-outlier, standard-candle supernovae), the
mean value of  is , and its variance is the measurement noise . For the second Gaussian which
expects to describe the distribution of 12 outliers, we assume that there will be some offset in  ( ), so
the mean value of  is , and it has some unknown variance .  
 
Now apply the EM algorithm.  
 

1. First, initialize: choose  and . Let  initially. 
 

2. Expectation (E) step: Evaluate the responsibilities using the current parameter values.  
 

 
where  (number of measurements). Note that  and  are vectors of length .
For a supernova ,  describes its probability of belonging to the first class (described by the first
Gaussian). (Note: Therefore, in the end, we expect 12 outliers have much higher values of  than
normal 580 supernovae - i.e. they have much greater probability of belonging to the second class.
This is a systematic way to identify an outlier.)  
 

3. Maximization (M) step: Re-estimate the parameters using the current responsibilities  
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In [ ]:

data = np.loadtxt("sn_z_mu_dmu_plow_union2.1_outlier.txt", usecols=range(1,5)) 
# z 
z_data = data[:,0] 
# mu 
mu_data = data[:,1] 
# error on mu (sigma(mu)) 
mu_err_data = data[:,2] 

... 

... 

Finally, we use a Boostrap resampling method to estimate the posterior of  and .  
 
Suppose that we have 10 measurements of : [3.7, 3.2, 3.3, 3.1, 3.2, 3.5, 2.9, 3.4, 3.0, 3.1]. Now, randomly
take 5 samples of 10 data measurements "with replacement."

 
 

4. Evaluate the log-likelihood and check for convergence of either the parameters or the log likelihood.
If the convergence criterion is not satisfied return to step 2.  
 

9. Using EM, calculate the converged values of , , and .  is the total number of SN in the second
class (can be identified as outliers). Iterate until you reach the convergence (parameters not changing). Then,
print out the values of  and show that 12 outliers have higher values of  than other supernovae.  
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In [3]:

x = np.array([3.7, 3.2, 3.3, 3.1, 3.2, 3.5, 2.9, 3.4, 3.0, 3.1]) 

num_samples = 5 
len_x = len(x) 
idx = np.random.randint(0, len_x, (num_samples, len_x)) 
print("After bootstrap re-sampling") 
print(x[idx]) 

Say you wish to see the probability distribution of . Then, take 100 samples using bootstrap and plot the
histogram of .

In [4]:

num_samples = 1000 
len_x = len(x) 
idx = np.random.randint(0, len_x, (num_samples, len_x)) 
x_bar = np.mean(x[idx], axis = 1) 
plt.hist(x_bar,bins=20) 
plt.xlabel(r'$\bar{x}$') 
plt.show() 

Now use bootstrap resampling technique to estimate the posterior of  and .  
 
10. Take 200 (or more) samples of 580 supernova distance modulus measurements and estimate  and 
using maximum likelihood estimation, as in Part 3. Plot the 1-d posteriors (histogram). 

x̄

x̄

Ωm w

Ωm w

After bootstrap re-sampling 
[[ 2.9  3.1  3.   3.   3.2  3.1  3.3  3.5  3.4  2.9] 
 [ 3.4  3.3  3.   3.2  3.1  3.1  3.5  3.1  3.1  3.4] 
 [ 3.2  3.2  3.2  3.2  3.7  3.1  3.2  3.2  3.3  3. ] 
 [ 2.9  2.9  2.9  3.2  3.   3.2  3.5  3.1  3.7  3.5] 
 [ 3.2  2.9  3.2  3.2  3.3  3.3  3.2  3.2  3.4  3.7]] 



In [ ]:

data = np.loadtxt("sn_z_mu_dmu_plow_union2.1.txt", usecols=range(1,5)) 
# z 
z_data = data[:,0] 
# mu 
mu_data = data[:,1] 
# error on mu (sigma(mu)) 
mu_err_data = data[:,2] 

In [ ]:

... 

To Submit
Execute the following cell to submit. If you make changes, execute the cell again to resubmit the final copy
of the notebook, they do not get updated automatically. 
We recommend that all the above cells should be executed (their output visible) in the notebook at the
time of submission.  
Only the final submission before the deadline will be graded.

In [ ]:

_ = ok.submit() 


