
Homework 8

Distributional Approximation and Gaussian Processes

This notebook is arranged in cells. Texts are usually written in the markdown cells, and here you can use
html tags (make it bold, italic, colored, etc). You can double click on this cell to see the formatting.

The ellipsis (...) are provided where you are expected to write your solution but feel free to change the
template (not over much) in case this style is not to your taste.

Hit "Shift-Enter" on a code cell to evaluate it. Double click a Markdown cell to edit.

Link Okpy

In []:

from client.api.notebook import Notebook
ok = Notebook('hw8.ok')
_ = ok.auth(inline = True)

Imports

In [1]:

import numpy as np
from scipy.integrate import quad
#For plotting
import matplotlib.pyplot as plt
%matplotlib inline

Problem - Back to Quasar

In HW5, we performed Principal Component Analysis (PCA) on the quasar (QSO) spectra from the Sloan
Digital Sky Survey (SDSS); we filtered for high to apply the standard PCA and selected 18 high-
spectra of QSOs with redshift 2.0 < z < 2.1, trimmed to . Then, using the first three
principal eigenvectors from the covariance matrix, we reconstructed each of the 18 QSO spectra.

In this assignment, we do Expectation Maximization PCA with and without per-observation weights. We use
a simple noise fit of PCA components to individual spectra. Finally, using a Gaussian process, we compute
the posterior distribution of the QSO's true emission spectrum and sample from it.

The following analysis is based on https://arxiv.org/pdf/1208.4122.pdf (https://arxiv.org/pdf/1208.4122.pdf),
and https://arxiv.org/pdf/1605.04460.pdf (https://arxiv.org/pdf/1605.04460.pdf)

In []:

Load data
wavelength = np.loadtxt("HW5_Problem2_wavelength.txt")
X = np.loadtxt("HW5_Problem2_QSOspectra.txt")
ivar = np.loadtxt("HW5_Problem2_ivar_flux.txt")

In []:

Data dimension
print(np.shape(wavelength))
print(np.shape(X))
print(np.shape(ivar))

S/N S/N

1340 < λ < 1620 A˚

https://arxiv.org/pdf/1208.4122.pdf
https://arxiv.org/pdf/1605.04460.pdf

In the above cell, we load the following data: wavelength in Angstroms ("wavelength"), a 2D array of spectra
x fluxes (" "), and another 2D array of inverse variances () of the flux array ("ivar").

We have 824 wavelength bins, so " " is a 18 824 matrix, each row containing fluxes of different QSO
spectra and each column containing fluxes in different wavelength bins. (e.g. X[i,j] is the measured flux of
QSO in wavelength bin .) Similarly, "ivar" is a 18 824 matrix. (e.g. ivar[i,j] is the inverse variance of the
flux of QSO in wavelength bin .)

Remember that in HW5, we computed the eigenvectors of the covariance of the quasars, sorted by their
descending eigenvalues; we call them the principal components (henceforth denoted by). Suppose that
we have eigenvectors, each of length 824. Construct the matrix of eigenvectors , with

 the th principal eigenvector.

We can reconstruct the data as:

where is the mean of the initial dataset and is the reconstruction coefficient for eigenvector .

More specifically, we define as:

The mean-centered data matrix can be defined as:

where denote the flux of th QSO in th wavelength bin, and is the mean flux in th wavelength bin.

1. Plot as a function of wavelength .

In []:

...

X 1/σ2

X ×

i j ×

i j

ϕ

k ϕ = [. . .]ϕ1 ϕ2 ϕk

ϕi i

= μ +X̂ ∑
k

ckϕk

μ ck ϕk

μ

μ = [] .x
⎯⎯⎯

1 x
⎯⎯⎯

2 … x
⎯⎯⎯

824

Xc

= X − μXc =

⎡

⎣

⎢
⎢
⎢
⎢

−x(1,1) x
⎯⎯⎯

1

−x(2,1) x
⎯⎯⎯

1

⋮

−x(18,1) x
⎯⎯⎯

1

−x(1,2) x
⎯⎯⎯

2

−x(2,2) x
⎯⎯⎯

2

⋮

−x(18,2) x
⎯⎯⎯

2

…

…

⋮

…

−x(1,824) x
⎯⎯⎯

824

−x(2,824) x
⎯⎯⎯

824

⋮

−x(18,824) x
⎯⎯⎯

824

⎤

⎦

⎥
⎥
⎥
⎥

xm,n m n x
⎯⎯⎯

k k

μ = []x
⎯⎯⎯

1 x
⎯⎯⎯

2 … x
⎯⎯⎯

824

μ λ

"Expectation Maximization (EM) is an iterative technique for solving parameters to maximize a likelihood
function for models with unknown hidden (or latent) variables. Each iteration involves two steps: finding the
expectation value of the hidden variables given the current model (E-step), and then modifying the model
parameters to maximize the fit likelihood given the estimates of the hidden variables (M-step)."
(https://arxiv.org/pdf/1208.4122.pdf (https://arxiv.org/pdf/1208.4122.pdf))

Now, do Expectation Maximization PCA. In this case, we wish to solve for the eigenvectors, and the latent
variables are the coefficients . The likelihood is "the ability of the eigenvectors to describe the data."

First, find the eigenvector with the highest eigenvalue (the first principal eigenvector):

1. Initialize: Let is a random vector of length 824.

2. E-step: For each QSO ,

Here, " " represents a dot product, so and are vectors of length 824, so is a number.

 is a vector of length 18 (because we have 18 QSOs in this problem). So for
each QSO , we solve the coefficient which best fits that QSO using .

3. M-step:

Using the coefficients , we update to find the vector which best fits the data given .

4. Normalize:

5. Iterate until converged. Once converged, , and

After you get , subtract the projection of from (, where " " is the outer product
(https://en.wikipedia.org/wiki/Outer_product (https://en.wikipedia.org/wiki/Outer_product)). is a vector of
length 18, and is a vector of length 824, so is a matrix.) and repeat the EM algorithm.

(So to find , you should use a data matrix . To find , use), and so
on.

2. Using EM PCA, find the first three principal eigenvectors and plot them as a function of
wavelength.

In []:

...

c

ϕ1

ϕ

j

= ⋅ ϕcj Xrow j

⋅ Xrow j ϕ cj
c = [. . .]c1 c2 c18

j cj ϕ

ϕ =
 ∑j cj Xrow j

∑j c
2
j

cj ϕ cj

ϕ =
ϕ

|ϕ|

= cc1 = ϕϕ1

ϕ1 ϕ X X − ⊗c1 ϕ1 ⊗
c1

ϕ1 ⊗c1 ϕ1 18 × 824

ϕ2 X − c⊗ ϕ1 ϕ2 X − ⊗ − ⊗c1 ϕ1 c2 ϕ2

, ,ϕ1 ϕ2 ϕ3

https://arxiv.org/pdf/1208.4122.pdf
https://en.wikipedia.org/wiki/Outer_product

Finally, reconstruct the data using the first principal eigenvectors:

3. For any one QSO spectra, plot the original and reconstructed spectra, using the above equation.

In []:

...

Alternatively, you can also reconstruct the data using "PC scores." (Call the PC score matrix)

Then, we can reconstruct the data by mapping it back to 824 dimensions with :

4. For any one QSO spectra, plot the original and reconstructed spectra, using PC scores.

In []:

...

Now, include noisier QSO spectra.

In [2]:

Load data
wavelength = np.loadtxt("HW5_Problem2_wavelength_300.txt")
X = np.loadtxt("HW5_Problem2_QSOspectra_300.txt")
ivar = np.loadtxt("HW5_Problem2_ivar_flux_300.txt")

In []:

ivar[ivar==0] = 1.e-4

In [3]:

Data dimension
print(np.shape(wavelength))
print(np.shape(X))
print(np.shape(ivar))

We now have 2562 quasars (including 18 high quasars we had before). The below cell plots the spectra
of two quasars; you can see how noisy they are.

= ⊗X̂ ∑
k=1

3

ck ϕk

Z

Z = ϕXc

ϕT

= μ + ZX̂ ϕT

S/N

(824,)
(2562, 824)
(2562, 824)

In [4]:

fig, axes = plt.subplots(1,2,figsize=(15,4))
ax = axes[0]; i = 50
ax.plot(wavelength, X[i,:])
ax.set_xlabel('Wavelength [Angstrom]'); ax.set_ylabel('Flux')

ax = axes[1]; i = 500
plt.plot(wavelength, X[i,:])
ax.set_xlabel('Wavelength [Angstrom]'); ax.set_ylabel('Flux')
plt.show()

Now, perform EM PCA on 2562 quasars.

5. Using EM PCA, find the first 10 principal eigenvectors and reconstruct the data using
them. () For any two spectra, plot the original and reconstructed spectra.

In []:

...

So far we treated all data equally when solving for the eigenvectors. However, we find that some data have
considerably larger measurement noise, and they can unduly influence the solution. Now, we perform EM
PCA with per-observation weights (called weighted EMPCA) so that the high data receive greater
weight. (See https://arxiv.org/pdf/1208.4122.pdf (https://arxiv.org/pdf/1208.4122.pdf) for more detailed
explanation. The following description is paraphrased from this paper.)

Basically, we add weights to the measured data in M-step:

In this case, the situation is more complicated since the measured flux in each wavelength bin for each
quasar has a different weight. So we cannot do a simple dot product to derive ; instead, we must solve a
set of linear equations for . Similarly, M-step must solve a set of linear equations to update instead of just
performing a simple sum. Hence, the weighted EMPCA starts with a set of random orthonormal vectors and
iterates over.

1. Initialize: Let is a set of random orthonormal vectors.

, , . . . ,ϕ1 ϕ2 ϕ10

= ⊗X̂ ∑10

k=1 ck ϕk

S/N

w ϕ = ∑j wj cj Xrow j

c

c ϕ

ϕ

https://arxiv.org/pdf/1208.4122.pdf

In []:

Create an aray of random orthonormal vectors
Reference: https://github.com/sbailey/empca
def _random_orthonormal(nvec, nvar, seed=1):
 """
 Return array of random orthonormal vectors A[nvec, nvar]
 Doesn't protect against rare duplicate vectors leading to 0s
 """

 if seed is not None:
 np.random.seed(seed)

 A = np.random.normal(size=(nvec, nvar))
 for i in range(nvec):
 A[i] /= np.linalg.norm(A[i])

 for i in range(1, nvec):
 for j in range(0, i):
 A[i] -= np.dot(A[j], A[i]) * A[j]
 A[i] /= np.linalg.norm(A[i])

 return A

Number of quasars
nQSO = len(X)
Number of wavelength bins
nLambda = len(wavelength)
Number of eigenvectors we want
nEigvec = 10

A set of random orthonormal vectors
phi = _random_orthonormal(nLambda, nEigvec, seed=1)

1. E-step: . (refers to th row of , and is th column of . Note that is
a matrix of dimension "nQSO" x "nLambda", is a matrix of dimension "nLambda" x "nEigvec",
and is a matrix of dimension "nEigvec" x "nQSO".) Solve for assuming weights .

We define weight as the inverse variance ("ivar"). (So is a matrix of dimension "nQSO" x
"nLambda") This makes sense. "We weight the measured data by the estimated measurement
variance so that noisy observations do not unduly affect the solution, while allowing PCA to
describe the remaining signal variance."

Now, solve for with weights . More generally, let

:

Hence, we get:

In the below cell, we define the function "_solve."
_solve(A, b, w) solves with weights . This function solves with weights using

= ϕ Xrow j ccol j Xrow j j X ccol j j c X

ϕ

c c w

w w

= ϕ Xrow j ccol j ccol j wrow j

A = ϕ, x = , b = ,w =ccol j Xrow j wrow j

b = Ax

wb = wAx

wb = (wA)xAT AT

(wA wb = xAT)−1AT

= (ϕ ccol j ϕTwrow j)−1 ϕTwrow j Xrow j

Ax = b w Ax = b w

x = (wA wbAT)−1AT

In []:

Solve Ax = b with weights w using the above set of equations
Reference: https://github.com/sbailey/empca
import scipy
def _solve(A, b, w):
 """
 Solve Ax = b with weights w; return x

 A : 2D array
 b : 1D array length A.shape[0]
 w : 1D array same length as b
 """

 #- Apply weights
 # nvar = len(w)
 # W = dia_matrix((w, 0), shape=(nvar, nvar))
 # bx = A.T.dot(W.dot(b))
 # Ax = A.T.dot(W.dot(A))

 b = A.T.dot(w*b)
 A = A.T.dot((A.T * w).T)

 if isinstance(A, scipy.sparse.spmatrix):
 x = scipy.sparse.linalg.spsolve(A, b)
 else:
 x = np.linalg.lstsq(A, b)[0]

 return x

Now, in the E-step, for each QSO , we can solve for with weights using the
function "solve".

Similarly in the M-step, for each wavelength bin , we can solve $X{col⧵ j} = c^T ⧵phi{row\ j} \phi{row⧵ j}

w_{col⧵ j}

Fill in the blank and run the weighted EMPCA. </i>

j = ϕXrow j ccol j ccol j wrow j

j f or

withweights

usingthefunction olve ". < br >< br >< spanstyle =" color : blue ">< i > 6.Thebelowcellusesthew"s

In []:

C = np.zeros((nEigvec, nQSO))

W = ivar

Number of iteration for EMPCA
niteration = 20

for jj in range(niteration):
 print("iteration", jj+1, "/20")

 # E-step
 for i in range(...):
 b = ...
 A = ...
 w = ...
 ... = _solve(A, b, w)

 # M-step
 for j in range(nLambda):
 b = ...
 A = ...
 w = ...
 ... = _solve(A, b, w)

Reconstruct the data using :

 is a matrix of dimension "nLambda" x "nEigvec", and is a matrix of dimension "nEigvec" x "nQSO". So
is a matrix of dimension "nQSO" x "nLambda" as expected.

7. Reconstruct the data using the above equation. Remember that you chose two spectra in Part 5. For the
same two spectra, plot the original and reconstructed spectra. Part 5 uses EMPCA without weights.
Compared to Part 5, does your reconstructed spectra become less noisy?

In []:

...

ϕ

= (ϕcX̂)T

ϕ c X̂

The following analysis is based on https://arxiv.org/pdf/1605.04460.pdf
(https://arxiv.org/pdf/1605.04460.pdf).

In Part 6, we reconstruct the QSO spectra from the noisy data. This reconstructed spectra is closer to the
true spectra of QSO. Note that in reality, the true spectra can never be directly observed, both due to
measurement error and due to absorption by intervening matter along the line of sight. So we wish to
perform inference about the true spectra of QSO using a non-parametric technique called Gaussian
processes (GP). We henceforth call the measured spectra as and the true spectra as (where
refers to wavelength).

A gaussian process is fully specified by its first two central moments: a mean function and a covariance
function :

.
In this problem, we can derive the posterior distribution of conditioned on the observed values of :

where is a multivariate Gaussian given by:

where is the dimension of .

In other words, for the QSO , the measured spectra is . Then, we can compute the posterior
distribution of given as:

where is given by:

The mean function and the covariance function are defined as:

where (We can use from Part 7. is a matrix of eigenvectors, its dimension is "nLambda" x
"nEigvec").

 is a diagonal matrix whose entries are e.g. for the QSO , = np.diag(1/ivar[i,:]).

y(λ) f (λ) λ

μ(λ)

K(λ,)λ′

μ(λ) = �[f (λ) | λ]

K(λ,) = cov[f (λ), f () | λ,]λ′ λ′ λ′

f y

p(| , λ, y, σ(λ) =  (| (), (,))f ∗ λ∗)2 f ∗ μf |y λ∗ Kf |y λ∗ λ∗,

 (f | μ,K)

 (f | μ,K) = exp(− (f − μ (f − μ))
1

(2π detK)d‾ ‾‾‾‾‾‾‾‾√

1

2
)TK−1

d f

i y Xrow i

f Xrow i

(f ,)∣∣ μf |Xrow i
Kf |Xrow i

μ

μ = [] .x
⎯⎯⎯

1 x
⎯⎯⎯

2 … x
⎯⎯⎯

824

μf |Xrow i
Kf |Xrow i

= μ + K(K + V (− μ)μf |Xrow i
)−1 Xrow i

= K − K(K + V KKf |Xrow i
)−1

K = ϕϕT ϕ ϕ

V σ(λ)2 i V

https://arxiv.org/pdf/1605.04460.pdf

Finally, we can plot by sampling from .

8. For any two spectra, plot using Gaussian processes. You can use np.random.multivariate_normal
(https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.random.multivariate_normal.html) to
sample from a multivariate Gaussian.

In []:

...

To Submit
Execute the following cell to submit. If you make changes, execute the cell again to resubmit the final copy
of the notebook, they do not get updated automatically.
We recommend that all the above cells should be executed (their output visible) in the notebook at the
time of submission.
Only the final submission before the deadline will be graded.

In []:

_ = ok.submit()

f (λ) (f ,)∣∣ μf |Xrow i
Kf |Xrow i

f (λ)

