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Linear Algebra, Optimization, Fisher Information Matrix, and
MCMC
 
This notebook is arranged in cells. Texts are usually written in the markdown cells, and here you can use
html tags (make it bold, italic, colored, etc). You can double click on this cell to see the formatting. 
 
The ellipsis (...) are provided where you are expected to write your solution but feel free to change the
template (not over much) in case this style is not to your taste.  
 
Hit "Shift-Enter" on a code cell to evaluate it. Double click a Markdown cell to edit.  

Write your partner's name here (if you have one). 

Link Okpy

In [ ]:

from client.api.notebook import Notebook 
ok = Notebook('project1.ok') 
_ = ok.auth(inline = True) 

Imports

In [ ]:

import numpy as np 
from scipy.integrate import quad 
#For plotting 
import matplotlib.pyplot as plt 
%matplotlib inline 



Problem 1 - Constraining the cosmological parameters using the Planck power spectrum

Planck is the third-generation space telescope, following COBE and WMAP, and it aims to determine the
geometry and content of the Universe by observing the cosmic microwave background radiation (CMB),
emitted around 380,000 years after the Big Bang. Permeating the whole universe and containing information
on the properties of the early Universe, the CMB is widely known as the strongest evidence for the Big Bang
model.  
 
Measuring the spectrum of the CMB, we confirm that it is very close to the radiation from an ideal
blackbody, and flunctuations in the spectrum are very small. Averaging ocer all locations, its mean
temperature is , and its root mean square temperature fluctuation is  (i.e.
the temperature of the CMB varies by only ~ 30  across the sky).  

 
Suppose you observe the fluctuations . Since we are taking measurements on the surface of a sphere,
it is useful to expand  in spherical harmonics (because they form a complete set of orthogonal
functions on the sphere): 

 
In flat space, we can do a Fourier transform of a function  as  where  is the wavenumber, and 

 determines the amplitude of the mode. For spherical harmonics, instead of , we have , the number of
the modes along a meridian, and , the number of modes along the equator. So  and  determine the
wavelength ( ) and shape of the mode, respectively.  
 
In cosmology, we are mostly interested in learning the statistical properties of this map and how different
physical effects influence different physical scales, so it is useful to define the correlation function  and
split the CMB map into different scales. 
 
Suppose that we observe  at two different points on the sky. Relative to an observer, they are in
direction  and  and are separated by an angle  given by  Then, we can find the correlation
function by multiplying together the values of  at the two points and average the product over all points
separated by the angle .
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The above expression is specific to the temperature fluctuations, but we can also do a similar analysis for
the polarization map of the CMB. (The CMB is polarized because it was scattered off of free electrons during
decoupling.) We decompose the polarization pattern in the sky into a curl-free "E-mode" and grad-free "B-
mode." 
 
However, the CMB measurements (limited by the experiment resolution and the patch of sky examined) tell
us about  over only a limited range of angular scales. (i.e. the precise values of  for all angles from 

 to  is not known.) Hence, using the expansion of  in spherical harmonics, we write the
correlation function as:

where  are the Legendre polynomials.  
 
So we break down the correlation function into its multipole moments , which is the angular power
spectrum of the CMB.

 
 
Remember that . So  measures the amplitude as a function of wavelength. (

). In this problem, we will consider the E-mode power spectrum 

  
 
THe CMB angular power spectrum is usually expressed in terms of  (in unit of )
because this better shows the contribution toward the variance of the temperature fluctuations.  
 
Cosmologists built a software called "cosmological boltzmann code" which computes the theoretical power
spectrum given cosmological parameters, such as the Hubble constant and the baryon density. Therefore,
we can fit the theory power spectrum to the measured one in order to obtain the best-fit parameters.  
 
Here, we consider six selected cosmological parameters, 

. (  = Hubble constant,  = physical baryon
density parameter,  = physical cold dark matter density parameter,  = scalar spectral index,  =
curvature fluctuation amplitude,  = reionization optical depth.). We provide you with the measured CMB E-
mode power spectrum from Planck Data Release 2. Then, assuming a simple linear model of the CMB
power spectrum (i.e. assuming its respose to those parameters are linear), we estimate the best-fit values of 

 using linear algebra and Gauss-Newton optimization and plot their 1- , 2-  confidence regions.  
 
Then, how do we build a linear model of the theory power spectrum? Suppose a very simple scenario where
you wish to determine the best-fit value of  assuming all the other parameters are already known (so 
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 in this case). The measurements from WMAP (the CMB satellite which preceded Planck and
consequently had a lower resolution) estimate that . You take it as your starting value  and
compute the theory power spectrum there using the Boltzmann code. You also compute the derivative of 
with respect to  at . Then, you can estimate the power spectrum as you perturb  around :  
 

 
From Planck, you get the measured  and error , so you can find the best-fit value of  which
minimizes . Also note that you expect the best-fit values from Planck will
be close to WMAP estimate, so the above linear model is a valid approximation.  
 
Now, we can similarly build a simple linear model power spectrum with six parameters. We take  as an
estimate of the cosmological parameters from WMAP data
(https://lambda.gsfc.nasa.gov/product/map/dr2/params/lcdm_wmap.cfm
(https://lambda.gsfc.nasa.gov/product/map/dr2/params/lcdm_wmap.cfm)).  

 
So you can find the best-fit values of the above six cosmological parameters ( ) which minimizes  
 

 
(i.e. when ,  is minimized.)  
 
References :  
Intro to Cosmology, Barbara Ryden  
http://folk.uio.no/hke/AST5220/v11/AST5220_2_2011.pdf
(http://folk.uio.no/hke/AST5220/v11/AST5220_2_2011.pdf)  
http://cosmology.berkeley.edu/~yuki/CMBpol/ (http://cosmology.berkeley.edu/~yuki/CMBpol/)

The below cell defines  (In problem 1, we only consider the CMB

E-mode power spectrum, so  refers to .) 
 
Here, we set , and we have 92 -bins in this range (For , the power spectra
are not binned ( ), and for , they are binned, and the bin size is ). We obtain
the measured and model power spectrum in that 92 -bins.
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In [ ]:

# Load Data 

# Measured power spectra from Planck 
data = np.loadtxt("Project1_EE_measured.dat") 
# l (same for all model and measured power spectrum) 
ell = data[:,0] 
# D_l^EE (measured) 
EE_measured = data[:,1] 
# and error 
error_EE_measured = data[:,2] 

# initial estimate of the parameters (\theta_{ini}) - from https://lambda.gsfc.n
asa.gov/product/map/dr2/params/lcdm_wmap.cfm 
H0     = 73.2 
ombh2  = 0.02229 
omch2  = 0.1054 
ns     = 0.958 
As     = 2.347e-9 
tau    = 0.089 

theta_ini = np.array([H0, ombh2, omch2, ns, As, tau]) 

# Model power spectra given \theta_{ini} (calculated at the same ell bins as the
measured power spectrum) 
data = np.loadtxt("Project1_EE_model_at_theta_ini.dat") 
# D_l^EE (model) 
EE_model = data[:,1] 

# Derivative of the power spectra at \theta = \theta_{ini} (calculated at the sa
me ell bins as the measured power spectrum) 
data = np.loadtxt("Project1_derivative_EE_at_theta_ini.dat") 
# Derivative of D_l^EE with respect to six parameters  
# ([theta1, theta2, theta3, theta4, theta5, theta6] = [H_0, \Omega_b h^2, \Omega
_c h^2, n_s, A_s, \tau]) 
deriv_DlEE_theta1 = data[:,1] 
deriv_DlEE_theta2 = data[:,2] 
deriv_DlEE_theta3 = data[:,3] 
deriv_DlEE_theta4 = data[:,4] 
deriv_DlEE_theta5 = data[:,5] 
deriv_DlEE_theta6 = data[:,6] 

1. Plot the measured power spectrum with errorbar. Also, plot the model power spectrum on top, by
interpolating between the data points. You should find that the data from Planck does not fit to the model
very well. To better see the low-  measurements, also plot both spectra in the range . Remember
that the power spectra  have units of . Don't forget to label all plots.

In [ ]:

... 
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2. Using the techniques from linear algebra (normal equations, SVD, etc), find the best-fit cosmological
parameters ( ). Print . 
 
Hint (only a suggestion):  

 
where .  
 
Note that the only variable in the above equation is . So we can re-write the above function as:  

 
 

Now let  (Note:  is independent of ).  

 
Then, we can simplify the above  function as:

 
 
Here, we are trying to determine . Remember how we solved the linear least squares problem
using the normal equations. Re-write the  function in a matrix form and find  which minimizes .
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We can define  where . (so  is a vector of length 92.)  
 
We then compute the gradient and the Hessian of  to apply the Gauss-Newton method. (This is a linear
least squares problem, so using the Gauss-Newton method is equivalent to using the normal equations in
this case - yes, you may think that it is silly to use the Gauss-Newton here! So we are expected to reach
minimum just after one iteration. The Jacobian  is identical to the design matrix .) 
 
The th component of the gradient is:

where  

 
Now, the Jacobian matrix  is: ⧵begin{bmatrix} ⧵frac{⧵partial r{l{min}}}{⧵partial ⧵theta1}(\vec{\theta}) & ... &
\frac{\partial r{l_{min}}}{⧵partial ⧵theta6}(\vec{\theta}) \ ....&....&.... \ \frac{\partial r{l_{max}}}{⧵partial ⧵theta1}
(\vec{\theta}) & ... & \frac{\partial r{l_{max}}}{⧵partial ⧵theta_6}(⧵vec{⧵theta}) ⧵end{bmatrix}  
 
The gradient of  can be written as:

 
 
Similarly, the th component of the Hessian matrix of  is given by:  
 

(Here, )  

 
Because our model power spectrum is linear, we can write the Hessian matrix simply as 

.  
 
Then, using Newton's method, we can find  which minimizes :  
 

 
 
We have a simple linear model in this case, so we are expected to reach the minimum after one step.  
 
3. Using the Gauss-Newton optimization, find the best-fit parameters ( ). Iterate until you reach the
minimum (Show that you get the best-fit values after one step). Does your result agree with Part 2?
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We can compute the covariance matrix as . (Remember that the covariance matrix in the
normal equations is  where  is the design matrix.) From this, we can plot 1-d and 2-d constraints
on the parameters. (See Fig. 6 in Planck 2015 paper https://arxiv.org/pdf/1502.01589v3.pdf
(https://arxiv.org/pdf/1502.01589v3.pdf))  
 
1-d constraint (corresponding to the plots along the diagonal in Fig. 6, Planck 2015 paper):  
 
First, the th diagonal element of the covariance matrix correspond to . Then, we can plot 1-d
constraints on the parameter  assuming a normal distribution with mean =  and variance = 

.  
 
2-d constraint (off-diagonal plots in Fig. 6, Planck 2015 paper):  
 

Consider two parameters  and  from . Now marginalize over other parameters - in order to marginalize
over other parameters, you can simply remove those parameters' row and column from the full covariance
matrix. (i.e. From the full covariance matrix, you know the variance of all six parameters and their
covariances with each other. So build a smaller dimension - 2 x 2 - covariance matrix from this.) - and obtain
a  covariance matrix:  
 

 
Now, we can plot the 2-dimensional confidence region ellipses from this matrix. The lengths of the ellipse
axes are the square root of the eigenvalues of the covariance matrix, and we can calculate the counter-
clockwise rotation of the ellipse with the rotation angle:  
 

 
where  is the eigenvector with the largest eigenvalue. So we calculate the angle of the largest eigenvector
towards the x-axis to obtain the orientation of the ellipse.  
 
Then, we multiply the axis lengths by some factor depending on the confidence level we are interested in.
For 68%, this scale factor is . For 95%, it is .  
 
4. Plot 1-d and 2-d constraints on the parameters. For 2-d plot, show 68% and 95% confidence ellipses for
each pair of parameters. You can arrange those subplots in a triangle shape, as in Fig. 6, Planck 2015
(https://arxiv.org/pdf/1502.01589v3.pdf).  
 
Hint: For plotting ellipses, see HW4 Q2-7 solution (http://datahub.berkeley.edu/user-redirect/interact?
account=bccp&repo=seljak-phy151-fall-2017&branch=master&path=Homework/HW4/HW4-solution.ipynb
(http://datahub.berkeley.edu/user-redirect/interact?account=bccp&repo=seljak-phy151-fall-
2017&branch=master&path=Homework/HW4/HW4-solution.ipynb))
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5. Plot  and  as well as  with errorbar. Show that with the
best-fit parameters you obtained, the model power spectrum fits better to the measured data.

In [ ]:
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Problem 2 - Fisher prediction for future CMB surveys

In class, we learned that the Fisher information matrix is useful for designing an experiment; we can vary the
experiment design and predict the level of the expected error on any given parameter. In this problem, we
aim to determine how well a low-noise, high-resolution future CMB survey would do in constraining the
cosmological parameters.  
 
The Fisher matrix is defined as the ensemble average of the Hessian of the log-likelihood ( ) with respect
to the given parameters :  
 

 
 
Here we take the model CMB power spectrum as our observables. (Here we consider the auto-correlations 

 and cross-correlation  obtained from the boltzmann code using the best-fit cosmological
parameters from Planck, https://arxiv.org/pdf/1502.01589v3.pdf (https://arxiv.org/pdf/1502.01589v3.pdf).)
Then, we can estimate the Fisher matrix between two parameters  and  as:  
 

 
 
where we sum over the CMB auto- and cross-power spectra , and we assume that
there is no correlation between them.  is the variance of  and noise:  
 

 
 
where  is the fraction of the sky covered by the survey. Assume that  for the sake of simplicity. 
is the size of -bin. (Remember that for , the power spectra are not binned ( ), and for 

, they are binned, and the bin size is .) In this problem, first take the noise from
Planck. We provide you with  for  from Planck.  
 
Then, assume that we have an ideal, zero-noise CMB survey with . However, we are still instrinsically
limited on the number of independent modes we can measure (there are only (2l+1) of them) - 

. This leads that we get an instrinsic error (called "cosmic variance") in our
estimate of . So we approximate that  
 

 

.  
 
Finally, we can obtain the covariance matrix  by inverting the Fisher matrix :
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References: 
Fisher Matrix Forecasting Review, Nicholas Kern  
https://arxiv.org/pdf/0906.4123.pdf (https://arxiv.org/pdf/0906.4123.pdf)  
 
1. First, load the measurement errors ( ), model power spectrum ( ) and their
derivatives with respect to six cosmological parameters evaluated at the best-fit values from Planck (

, , etc). With the measurement errors from Planck, construct the Fisher matrix

and the covariance matrix (you can use the numpy.linalg.inv for the matrix inversion). Evaluate the constraints
on six parameters  (corresponding to the square root of the diagonal entries of the
covariance matrix). Print the results.
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In [ ]:

# Load data 

# Best-fit values of the cosmological parameters from https://arxiv.org/pdf/150
2.01589v3.pdf 
H0     = 67.27 
ombh2  = 0.02225 
omch2  = 0.1198 
ns     = 0.9645 
As     = 2.2065e-9 
tau    = 0.079 

theta_best_Planck = np.array([H0, ombh2, omch2, ns, As, tau]) 

# Planck noise 

# sigma_l for D_l^EE 
data = np.loadtxt("Project1_EE_measured.dat") 
# l (same for all power spectrum) 
ell = data[:,0] 
# and error 
error_EE = data[:,2] 

# sigma_l for D_l^TT 
data = np.loadtxt("Project1_TT_measured.dat") 
# and error 
error_TT = data[:,2] 

# sigma_l for D_l^TE 
data = np.loadtxt("Project1_TE_measured.dat") 
# and error 
error_TE = data[:,2] 

# Model power spectra given theta_best_Planck (calculated at the same ell bins a
s the measured power spectrum) 

# D_l^EE (model) 
data = np.loadtxt("Project1_EE_model_at_theta_best_Planck.dat") 
EE_model_Planck = data[:,1] 

# D_l^TT (model) 
data = np.loadtxt("Project1_TT_model_at_theta_best_Planck.dat") 
TT_model_Planck = data[:,1] 

# D_l^TE (model) 
data = np.loadtxt("Project1_TE_model_at_theta_best_Planck.dat") 
TE_model_Planck = data[:,1] 

# Derivative of the power spectrum given theta_best_Planck (calculated at the sa
me ell bins as the measured power spectrum) 

# Derivative of D_l^EE with respect to six parameters  
# ([theta1, theta2, theta3, theta4, theta5, theta6] = [H_0, \Omega_b h^2, \Omega
_c h^2, n_s, A_s, \tau]) 
data = np.loadtxt("Project1_derivative_EE_at_theta_best_Planck.dat") 
deriv_DlEE_theta1 = data[:,1] 
deriv_DlEE_theta2 = data[:,2] 



deriv_DEEl_theta3 = data[:,3] 
deriv_DlEE_theta4 = data[:,4] 
deriv_DlEE_theta5 = data[:,5] 
deriv_DlEE_theta6 = data[:,6] 

# Derivative of D_l^TT with respect to six parameters  
data = np.loadtxt("Project1_derivative_TT_at_theta_best_Planck.dat") 
deriv_DlTT_theta1 = data[:,1] 
deriv_DlTT_theta2 = data[:,2] 
deriv_DlTT_theta3 = data[:,3] 
deriv_DlTT_theta4 = data[:,4] 
deriv_DlTT_theta5 = data[:,5] 
deriv_DlTT_theta6 = data[:,6] 

# Derivative of D_l^TE with respect to six parameters  
data = np.loadtxt("Project1_derivative_TE_at_theta_best_Planck.dat") 
deriv_DlTE_theta1 = data[:,1] 
deriv_DlTE_theta2 = data[:,2] 
deriv_DlTE_theta3 = data[:,3] 
deriv_DlTE_theta4 = data[:,4] 
deriv_DlTE_theta5 = data[:,5] 
deriv_DlTE_theta6 = data[:,6] 

In [ ]:

... 

2. Same as in Problem1-Part4. From the covariance matrix, plot 1-d and 2-d constraints on the parameters.
Note that the best-fit values of six parameters are alrady given in Part 1 (we just use the values from the
Planck paper). For 2-d plot, show 68% and 95% confidence ellipses for pairs of parameters. You can arrange
those subplots in a triangle shape, as in Fig. 6, Planck 2015 (https://arxiv.org/pdf/1502.01589v3.pdf). 

In [ ]:

... 

3. Repeat Part 1 and 2 assuming . (How well does a zero-noise CMB survey constrain the
cosmologial parameters?) 

In [ ]:

... 

4. Combine Part 2 and Part 3 and compare. (First plot your results from Part 2 (1-d and 2-d constraints using
the Planck power spectra and noise. Then, plot Part 3 results (assuming zero noise) on top with different
colors. Note that your 1-d constrains in Part 3 are more sharply peaked Gaussians (with much smaller
variances), so you can scale them so that its peak amplitudes match with your results from Part 2.)  

In [ ]:

... 

= 0N k
l



5. In Problem1-Part4, you estimated the best-fit values of the cosmological parameters and their 1, 2-
confidence regions. In Problem2-Part2, starting from the best-fit values from the Planck 2015 paper, you
constrained six cosmological parameters assuming that you have a zero-noise future CMB survey. Compare
your results with Table 3 and Figure 6 in https://arxiv.org/pdf/1502.01589v3.pdf.  

Answer:  
 

σ



Problem 3 - Planck MCMC chain

Markov chain Monte Carlo is a general method based on drawing values of  from approximate distributions
and then correcting those draws to better aproximate the target posterior distribution. The sampling is done
sequentially, wtih the distribution of the sampled draws depending on the last value drawn - hence, the
draws from a Markov chain. (p. 275, Bayesian Data Analysis, Andrew Gelman et al.) (Remember that a
sequence  of random events is called a Markov chain if  depends explicitly on  only (and
not explicitly on previous steps).) Here, we consider six selected cosmologial parameters: [

], so the "chain" in this case is a random walk through the parameter space.  

from https://github.com/KIPAC/StatisticalMethods/blob/master/chunks/montecarlo1.ipynb
(https://github.com/KIPAC/StatisticalMethods/blob/master/chunks/montecarlo1.ipynb)  
 
As shown in the above figure, chains take time to converge to the target distribution, and you can determine
the "burn-in" period, the number of sequences it takes to reach convergence.  
 
In this problem, we provide you MCMC chains (using Planck low and high-  temperature data with lensing
reconstruction) from Planck Data Release 1 (http://irsa.ipac.caltech.edu/data/Planck/release_1/ancillary-
data/ (http://irsa.ipac.caltech.edu/data/Planck/release_1/ancillary-data/)). You can plot the chains in the
parameter space and estimate the posterior distribution.  
 
References: 
Bayesian Data Analysis, Andrew Gelman et al. 
https://github.com/KIPAC/StatisticalMethods/blob/master/chunks/montecarlo1.ipynb
(https://github.com/KIPAC/StatisticalMethods/blob/master/chunks/montecarlo1.ipynb)  
 
1. First, we give you one Planck chain without removing the burn-in. In this case, the parameter space is (

). Estimate the burn-in period.  

θ

, , . . .x1 x2 xn+1 xn

, , , , , τH0 Ωbh
2
Ωch

2 ns As

l

,H0 Ωbh
2

https://github.com/KIPAC/StatisticalMethods/blob/master/chunks/montecarlo1.ipynb
http://irsa.ipac.caltech.edu/data/Planck/release_1/ancillary-data/
https://github.com/KIPAC/StatisticalMethods/blob/master/chunks/montecarlo1.ipynb


In [ ]:

# Load data 
data = np.loadtxt("Planck_chain_with_burnin.txt") 
# H0 
theta1 = data[:,23] 
# Omega_b h^2 
theta2 = data[:,2] 

# Plot chain 
plt.plot(theta1, theta2, 'x-') 
plt.xlabel('$H_0$') 
plt.ylabel('$\Omega_b h^2$') 
plt.show() 

Answer:  
 

2. Now, we provide you with 8 independent Planck MCMC chains. For each chain, we load the data for six
cosmological parameters we are considering, [ ]. From the chain, estimate the
posterior distribution of each of the six parameters. (Plot the 1-d posterior distribution and estimate its mean
+ standard deviation.) 

In [ ]:

# Load data 

# H_0 
theta1_chain = np.zeros(shape=(8,1981)) 
# Omega_b h^2 
theta2_chain = np.zeros(shape=(8,1981)) 
# Omega_c h^2 
theta3_chain = np.zeros(shape=(8,1981)) 
# n_s 
theta4_chain = np.zeros(shape=(8,1981)) 
# A_s 
theta5_chain = np.zeros(shape=(8,1981)) 
# tau 
theta6_chain = np.zeros(shape=(8,1981)) 

# 8 Planck chains, each of length 1981 (so theta6_chain[1] contains values of ta
u in Planck chain 1) 
for i in range(8): 
   data = np.loadtxt("base_planck_lowl_post_lensing_%d.txt" %(i+1)) 
   theta1_chain[i] = data[:,27][0:1981] 
   theta2_chain[i] = data[:,2][0:1981] 
   theta3_chain[i] = data[:,3][0:1981] 
   theta4_chain[i] = data[:,6][0:1981] 
   theta5_chain[i] = data[:,29][0:1981]*1.e-9 
   theta6_chain[i] = data[:,5][0:1981] 

In [ ]:

... 

, , , , , τH0 Ωbh
2
Ωch

2 ns As



3. For all pairs of the parameters, compute the covariance. Make a 2-d scatterplot of the chains (as in
Problem3-Part 1). Then, plot 68% and 95% confidence ellipses on top of the scatterplots, as in Problem1-
Part4. Compare your answers with Problem1-Part4 and Problem2-Part2.  

In [ ]:

... 

In MCMC, we need to make sure that chains converge to the posterior distribution. One useful test for
convergence is "Gelman-Rubin statistic." For a given parameter, , the  statistic compares the variance
across chains with the variance within a chain. Intuitively, if the chains are random-walking in very different
places, i.e. not sampling the same distribution,  will be large. 
 
In detail, given chains , each of length , 

Let , where  is the average  for chain  and  is the global average. This is
proportional to the variance of the individual-chain averages for . 
Let , where  is the estimated variance of  within chain . This is the average of the
individual-chain variances for . 
Let . This is an estimate for the overall variance of . 
 

Finally, . We'd like to see  (e.g.  is often used). Note that this calculation can also

be used to track convergence of combinations of parameters, or anything else derived from them. 
 
Reference: https://github.com/KIPAC/StatisticalMethods/blob/master/chunks/montecarlo1.ipynb
(https://github.com/KIPAC/StatisticalMethods/blob/master/chunks/montecarlo1.ipynb)  
 
4. For all six parameters, compute  and determine if the condition  is satisfied. 

In [ ]:

... 

The autocorrelation of a sequence, as a function of lag, , is defined thusly:

 
 
The larger lag one needs to get a small autocorrelation, the less informative individual samples are.  
 
5. Using autocorrelation_plot from pandas (https://pandas.pydata.org/pandas-
docs/stable/visualization.html#visualization-autocorrelation), plot the auto-correlation of six parameters and
determine that it gets small for large lag. The given Planck MCMC chains are already heavily thinned, so you
will not see much autocorrelation.  

In [ ]:

from pandas.tools.plotting import autocorrelation_plot 
... 
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From the WMAP measurements, the best-fit value of  was . However, as discussed in
Komatsu et al. (2009), uncertainties in modelling polarized foreground emission are comparable to the
statistical error in the WMAP  measurement. In particular, at the time of the WMAP9 analysis there was very
little information available on polarized dust emission. So in the Planck analysis, cosmologists cleaned the
WMAP maps for polarized dust emission, and this lowered  by 1  to .
(https://arxiv.org/pdf/1502.01589.pdf (https://arxiv.org/pdf/1502.01589.pdf))  
 
6. From the Planck MCMC chain, we determined the mean value of the  posterior distribution. Now do the
importance sampling by lowering  by 1 . What happens to the posterior? 

In [ ]:

 

To Submit
Execute the following cell to submit. If you make changes, execute the cell again to resubmit the final copy
of the notebook, they do not get updated automatically. 
We recommend that all the above cells should be executed (their output visible) in the notebook at the
time of submission.  
Only the final submission before the deadline will be graded.

In [ ]:

_ = ok.submit() 

τ 0.089 ± 0.013

τ

τ σ τ = 0.075 ± 0.013

τ

τ σ

https://arxiv.org/pdf/1502.01589.pdf

