
⬉ PEL Topic Index
GNU Make

See also: 𝕻𝔩 - Make GNU Make
tools:

GNU Autotools @ Wikipedia, GNU Coding Standard, section 7, Filesystem Hierarchy Standard (FHS 3.0)

GNU Make
Manuals :

• GNU Make Top page
• How to run make

• GNU Make - Appendix A - Quick Reference
• Makefile Conventions
• Autoconf Portable Make Programming

• GNU Make @ mad-scientist.net , from it’s
maintainer, Paul D. Smith. It identifies the latest
version of GNU Make, describes how to build GNU
Make from source and what is required.

Related GNU tools:

• automake
• autoconf
• gettext
• m4

 GNU Make Rules
Including Other Makefiles

Include makefiles include filenames… -include filenames… Use the -include so that make ignores a makefile which does not exist or
cannot be remade, with no error message.

sinclude filename… sinclude is supported for compatibility with other make implementations.

GNU Make Escaping dollar := $$ pound := \# ☜ Examples on how to the $ and # characters must be escaped inside GNU make files.

GNU Make Rules (See section on implicit rules below)

Topic Rule syntax format Description

Rule Syntax targets : prerequisites

 recipe

 …

• Multiple line recipe, the one used most often. ⚠ The recipe lines must start with:

• a hard TAB character, or

• the string identified by the .RECIPEPREFIX pseudo-variable.

targets : prerequisites ; recipe

 recipe

 …

• It is also possible to to identify a recipe on the same line as the prerequisites, separated from
them by a semicolon.

• This allow writing a single-line rule.

Wildcards Wildcards can be used in targets and prerequisites.

• They are expanded in target and prerequisites

• They are not expanded in variable definitions:

• See wildcard examples

• But wildcard functions can be use to expand in variable definition as

in: objects := $(wildcard *.o)

* All files, like ‘*.c’

? Expand to characters

[…]

~ At beginning of path name, like ~/bin expands to your home bin directory

~user Expands the the home directory of specific user

Searching directories

The Basics: VPATH
and vpath

VPATH The value of the VPATH make variable specifies a list of directories that
make should search. Each directory in the list can be separated by:

• On Unix-like OS: space or :

• On MS-DOS, Windows: space or ;

Example:

VPATH = src:../headers

Selective search

Use vpath to find
sources, not targets.

vpath directive Same as VPATH but more selective: only applies to a particular class of
file names. The path statement format is one of the 3 forms. The last 2
clear search path for the specified scope (file pattern or all):

• vpath pattern directories set search of pattern to directories
• vpath pattern clear search path for specified pattern
• vpath clear search path for all scopes

The first form sets the directory search for a specified file name pattern, like
the following:

vpath %.h ../headers

Directory search for
Link Libraries

Note: that make treats prerequisites of the form -lname as library names. The -lname is
expanded to the full path of the library name with starts with the ‘lib’ prefix.

For example:

foo : foo.c -lcurses
 cc $^ -o $@

will cause the following command to be executed if needed:

cc foo.c /usr/lib/libcurses.a -o foo

This behaviour is customizable by the .LIBPATTERNS special variable.

Phony Targets
See also:

• Rules without

Recipes or
Prerequisites

• Empty target files to
record events

• A phony target is a target that is not really the name of a file, it’s just a name for a recipe to be executed when you make an explicit request.

• Use it to avoid a conflict with the name of a file, and to improve performance: implicit rule search is skipped for .PHONY targets.

• Example:

.PHONY: clean
clean:
 rm *.o temp

• Some older make versions did not support .PHONY , so a FORCE target without receipt or prerequisite was used:

FORCE:

• Also useful for recursive makes processing multiple directories with loops, and other case. See the GNU manual

Special Built-in
Targets

These include:

 .PHONY .SUFFIXES .DEFAULT .PRECIOUS .INTERMEDIATE .SECONDARY .SECONDEXPANSION .DELETE_ON_ERROR .IGNORE .LOW_RESOLUTION_TIME
.SILENT .EXPORT_ALL_VARIABLES .NOTPARALLEL .ONESHELL .POSIX .FEATURES

Other Special
Variables

MAKEFILE_LIST .DEFAULT_GOAL MAKE_RESTART MAKE_TERMOUT
MAKE_TERMERR .RECIPEPREFIX .VARIABLES .FEATURES .INCLUDE_DIRS .EXTRA_PREREQ

GNU Make Recipes
Recipe line 1st char suppress echoing with: @ Ignore recipe line error with: - Prevent “instead of execution”, marks the line as “recursive” ensure the line is executed even

when make is invoked with the -n -t or -q command line option, with: +

Recipe execution By default: each recipe line is executed in a new sub-
shell

Use one shell for all lines with: .ONESHELL: • Select a shell with: SHELL

• Shell arguments with: .SHELLFLAGS

Recursive make

• export and unexport
directives.

Variable CURDIR : pathname of current directory • Use variable MAKE to recurse make.

• Variable MAKEFLAGS pass make flags to the

sub-make.

• Variable MAKEFILES is exported if set to anything: set to
space-separated names of make files.

• It’s also possible to export or un-export a specific
variable with the export and unexport directives.

Communicating
options to sub-make

This section describe the use of the following variables: MAKEFLAGS, MAKEOVERRIDES, MFLAGS and GNUMAKEFLAGS,

Canned Recipes Define “canned” recipe with the define statement: define run-yacc =
yacc $(firstword $^)
mv y.tab.c $@
endef

It can then be
used later as in:

foo.c : foo.y
 $(run-yacc)

Empty Recipes A recipe that does nothing. For example: target: ; Used to: • Prevent a target from getting implicit recipes

• Avoid errors for targets that will be created as side-effect

of another recipe

GNU Make Conditionals
Conditional syntax
See also:

 conditional example

ifeq (arg1, arg2)
ifeq 'arg1' 'arg2'
ifeq "arg1" "arg2"
ifeq "arg1" 'arg2'
ifeq 'arg1' "arg2"

ifneq (arg1, arg2)
ifneq 'arg1' 'arg2'
ifneq "arg1" "arg2"
ifneq "arg1" 'arg2'
ifneq 'arg1' "arg2"

ifdef variable-name ifndef variable-name else
else conditional

endif

GNU Make Text Transforming Functions
Function Call Syntax Format Arguments Style

• $(function arguments)
• ${function arguments}

• separated from the function name by 1 or more spaces or tabs

• arguments are separated by commas

Use the same style of delimited () or {} inside the entire
expression.

Text Functions $(subst from,to,text)
$(patsubst pattern,replacement,text)

$(strip string)
$(findstring find,in)
$(filter pattern…,text)
$(filter-out pattern…,text)
$(sort list)

$(word n,text)
$(wordlist s,e,text)
$(words text)
$(firstword names…)
$(lastword names…)

Alternative to patsubst is Substitution References of
the form:

• $(var:a=b)
• ${var:a=b}

 1

https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/-index.pdf
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/pl-make.pdf
https://en.wikipedia.org/wiki/GNU_Autotools
https://www.gnu.org/prep/standards/html_node/index.html
https://www.gnu.org/prep/standards/html_node/Managing-Releases.html#Managing-Releases
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://refspecs.linuxfoundation.org/fhs.shtml
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/html_node/index.html#Top
https://www.gnu.org/software/make/manual/html_node/Running.html#Running
https://www.gnu.org/software/make/manual/html_node/Quick-Reference.html
https://www.gnu.org/software/make/manual/html_node/Makefile-Conventions.html#Makefile-Conventions
https://www.gnu.org/savannah-checkouts/gnu/autoconf/manual/autoconf-2.71/html_node/Portable-Make.html#Portable-Make
https://make.mad-scientist.net/
https://en.wikipedia.org/wiki/Automake
https://en.wikipedia.org/wiki/Autoconf
https://en.wikipedia.org/wiki/Gettext
https://en.wikipedia.org/wiki/M4_(computer_language)
https://www.gnu.org/software/make/manual/html_node/Include.html#Include
https://www.gnu.org/software/make/manual/html_node/Include.html#Include
https://www.cmcrossroads.com/article/gnu-make-escaping-walk-wild-side
https://www.gnu.org/software/make/manual/html_node/Rules.html#Rules
https://www.gnu.org/software/make/manual/html_node/Implicit-Rules.html#Implicit-Rules
https://www.gnu.org/software/make/manual/html_node/Rule-Syntax.html#Rule-Syntax
https://www.gnu.org/software/make/manual/html_node/Wildcards.html#Wildcards
https://www.gnu.org/software/make/manual/html_node/Wildcard-Examples.html#Wildcard-Examples
https://www.gnu.org/software/make/manual/html_node/Wildcard-Function.html#Wildcard-Function
https://www.gnu.org/software/make/manual/html_node/Directory-Search.html#Directory-Search
https://www.cmcrossroads.com/article/basics-vpath-and-vpath
https://www.gnu.org/software/make/manual/html_node/General-Search.html#General-Search
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://www.gnu.org/software/make/manual/html_node/Selective-Search.html#Selective-Search
https://make.mad-scientist.net/papers/how-not-to-use-vpath/
https://www.gnu.org/software/make/manual/html_node/Libraries_002fSearch.html#Libraries_002fSearch
https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
https://www.gnu.org/software/make/manual/html_node/Force-Targets.html#Force-Targets
https://www.gnu.org/software/make/manual/html_node/Empty-Targets.html#Empty-Targets
https://www.gnu.org/software/make/manual/html_node/Force-Targets.html
https://www.gnu.org/software/make/manual/html_node/Special-Targets.html#Special-Targets
https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
https://www.gnu.org/software/make/manual/html_node/Suffix-Rules.html
https://www.gnu.org/software/make/manual/html_node/Interrupts.html#Interrupts
https://www.gnu.org/software/make/manual/html_node/One-Shell.html#One-Shell
https://www.gnu.org/software/make/manual/html_node/Guile-Function.html#Guile-Function
https://www.gnu.org/software/make/manual/html_node/Special-Variables.html
https://www.gnu.org/software/make/manual/html_node/Special-Variables.html#index-MAKEFILE_005fLIST-_0028list-of-parsed-makefiles_0029
https://www.gnu.org/software/make/manual/html_node/Goals.html#Goals
https://www.gnu.org/software/make/manual/html_node/Remaking-Makefiles.html#Remaking-Makefiles
https://www.gnu.org/software/make/manual/html_node/Include.html#Include
https://www.gnu.org/software/make/manual/html_node/Recipes.html#Recipes
https://www.gnu.org/software/make/manual/html_node/Echoing.html#Echoing
https://www.gnu.org/software/make/manual/html_node/Errors.html#Errors
https://www.gnu.org/software/make/manual/html_node/Instead-of-Execution.html#Instead-of-Execution
https://www.gnu.org/software/make/manual/html_node/Testing-Flags.html#Testing-Flags
https://www.gnu.org/software/make/manual/html_node/Execution.html#Execution
https://www.gnu.org/software/make/manual/html_node/One-Shell.html#One-Shell
https://www.gnu.org/software/make/manual/html_node/Choosing-the-Shell.html#Choosing-the-Shell
https://www.gnu.org/software/make/manual/html_node/Recursion.html#Recursion
https://www.gnu.org/software/make/manual/html_node/Variables_002fRecursion.html#Variables_002fRecursion
https://www.gnu.org/software/make/manual/html_node/Recursion.html#Recursion
https://www.gnu.org/software/make/manual/html_node/MAKE-Variable.html#MAKE-Variable
https://www.gnu.org/software/make/manual/html_node/MAKE-Variable.html#MAKE-Variable
https://www.gnu.org/software/make/manual/html_node/MAKEFILES-Variable.html#MAKEFILES-Variable
https://www.gnu.org/software/make/manual/html_node/Variables_002fRecursion.html#Variables_002fRecursion
https://www.gnu.org/software/make/manual/html_node/Options_002fRecursion.html#Options_002fRecursion
https://www.gnu.org/software/make/manual/html_node/Canned-Recipes.html#Canned-Recipes
https://www.gnu.org/software/make/manual/html_node/Empty-Recipes.html#Empty-Recipes
https://www.gnu.org/software/make/manual/html_node/Conditionals.html#Conditionals
https://www.gnu.org/software/make/manual/html_node/Conditional-Syntax.html#Conditional-Syntax
https://www.gnu.org/software/make/manual/html_node/Conditional-Example.html#Conditional-Example
https://www.gnu.org/software/make/manual/html_node/Functions.html#Functions
https://www.gnu.org/software/make/manual/html_node/Syntax-of-Functions.html#Syntax-of-Functions
https://www.gnu.org/software/make/manual/html_node/Text-Functions.html#Text-Functions
https://www.gnu.org/software/make/manual/html_node/Testing-Flags.html#Testing-Flags
https://www.gnu.org/software/make/manual/html_node/Substitution-Refs.html#Substitution-Refs

File Name Functions For each of these functions the argument is regarded as a series of file names, separated by whitespace. Each file name in the series is transformed the same way and the
results are concatenated with single spaces between them.

$(dir names…)
$(notdir names…)
$(suffix names…)

$(basename names…)
$(addsuffix suffix,names…)
$(addprefix prefix,names…)

$(join list1,list2)
$(wildcard pattern)
$(realpath names…)
$(abspath names…)

Conditional Functions $(if condition,then-part[,else-part]) $(or
condition1[,condition2[,condition3…]])

$(and condition1[,condition2[,condition3…]])

The foreach Function $(foreach var,list,text) An example of this is show next: dirs := a b c d
files := $(foreach dir,$(dirs),$(wildcard $(dir)/*))

The file Function $(file op filename[,text]) Used to read or write from a file.
For example, the following write
commands to execute in a
temporary command file that it
executes then deletes:

program: $(OBJECTS)
 $(file >$@.in,$^)
 $(CMD) $(CMDFLAGS) @$@.in
 @rm $@.in

The call Function $(call variable,param,param,…) The following example reverses
the arguments:

reverse = $(2) $(1)

foo = $(call reverse,a,b)

This sets variable LS to the path of
the path of the ls program,
something like /bin/ls

pathsearch = $(firstword $(wildcard $(addsuffix /$(1),$
(subst :, ,$(PATH)))))

LS := $(call pathsearch,ls)

The value Function $(value variable) Provides a way to use the value of a variable without having it expanded.

The eval Function $(eval expression)

The origin Function $(origin variable) Returns how the variable was defined. It can return one of the following: undefined, default, environment,
environment override, file, command line, override, automatic.

The flavour Function $(flavor variable) Returns the flavour of the variable. It can be one of the following: undefined, recursive, simple.

Functions that control
Make

These functions control the way Make runs and are used
to provide information to the user.

$(error text…) $(warning text…) $(info text…)

The shell Function The shell function performs command expansion similar to what backquote does in the shell.

• After the $(shell …) execution, the exit status is placed inside the .SHELLSTATUS

variable.

• See the following examples:

To set the contents variable wit h a
space separating each line:

contents := $(shell cat
foo)

Set files to a space separated list of C file
names:

files := $(shell echo *.c)

The guile Function If GNU Make is built with Guile support the .FEATURES variable includes the word guile. The guile function is then available. Make expands its argument then it is passed to
Guile for evaluation. See GNU Guile Integration.

GNU Make Implicit Rules
Implicit Rule Topic Description

Using Implicit Rules • To use them refrain from writing the recipe for a kind of target.

• Each implicit rule has a target and prerequisite patterns.

• Write a rule to identify extra prerequisites like header files prerequisites to an object file.

• There may be several implicit rules for the same target (for example a rule to generate object file from C files, another rule to generate object file from C++ files).

• See the catalogue of built-in-rules. It is possible to cancel an implicit rule.

• Make searches for implicit rules for:

• each target that has no recipe,

• each double-colon rule that has no recipe,

• a file that is only mentioned as a prerequisite.

• The Implicit Rule Search Algorithm describes how the search for an implicit rule is done.

• A chain of implicit rules can be used to make the target from a prerequisite. But only one instance of an implicit rule can only be used in the chain.

• It’s possible to define last-resort default rules to override part of another makefile.

• To prevent an implicit rule to apply to a specific target create an empty recipe for that target.

• Pattern Rules Example:

%o : %c
 recipe

The example pattern rule says how to make stem.o from another file stem.c

• Expansions using ‘%’ in pattern occurs after any variable and function expansion.

• More than one pattern rule may match a target: make will choose the “best fit” rule. See How Pattern Match.

Special GNU Make Variables
Make Goals MAKECMDGOALS This variable is set to the list of targets (goals) specified in the command line. If there were none, the variable is empty.

Variables used in Implicit Rules
Variable Name Description Default value Flag Variable Description and default value (if any)

AR Archive-maintaining program ar ARFLAGS Flags to give the archive-maintaining program; default ‘rv’

AS Program for compiling assembly files as ASFLAGS Extra flags to give to the assembler (when explicitly invoked on a ‘.s’ or ‘.S’
file)

CC Program for compiling C files cc CFLAGS Extra flags to give to the C compiler.

CXX Program for compiling C++ files g++ CXXFLAGS Extra flags to give to the C++ compiler.

CPP Program for running the C preprocessor, with results to
standard output

$(CC) -E CPPFLAGS Extra flags to give to the C preprocessor and programs that use it (the C and
Fortran compilers).

FC Program for compiling or preprocessing Fortran and
Ratfor files

f77 FFLAGS Extra flags to give to the Fortran compiler.

RFLAGS Extra flags to give to the Fortran compiler for Ratfor files.

M2C Program to compile Modula-2 files m2c

PC Program to compile Pascal files pc PFLAGS Extra flags to give to the Pascal compiler.

CO Program for extracting a file from RCS co COFLAGS Extra flags to give to the RCS co program.

GET Program for extracting a file from SCCS get GFLAGS Extra flags to give to the SCCS get program.

LEX Program to use to turn Lex grammars into source code lex LFLAGS Extra flags to give to Lex.

YACC Program to use to turn Yacc grammars into source code yacc YFLAGS Extra flags to give to Yacc.

LINT Program to use to run lint on source code lint LINTFLAGS Extra flags to give to lint.

MAKEINFO Program to convert a Texinfo source file into an Info file makeinfo

TEX Program to make TeX DVI files from TeX source tex

TEXI2DVI Program to make TeX DVI files from Texinfo source texi2dvi

WEAVE Program to translate Web into TeX weave

CWEAVE Program to translate C Web into TeX weave

TANGLE Program to translate Web into Pascal tangle

CTANGLE Program to translate C Web into C tangle

RM Command to remove a file rm -f

LDFLAGS Extra flags to give to compilers when they are supposed to invoke the linker,
‘ld’, such as -L. Libraries (-lfoo) should be added to the LDLIBS instead.

LDLIBS Library flags or names given to compilers when they are supposed to invoke
the linker, ‘ld’. Non-library linker flags, such as -L, should go in the LDFLAGS .

LOADLIBES Deprecated (but still supported) alternative to LDLIBS.

 2

https://www.gnu.org/software/make/manual/html_node/File-Name-Functions.html#File-Name-Functions
https://www.gnu.org/software/make/manual/html_node/Conditional-Functions.html#Conditional-Functions
https://www.gnu.org/software/make/manual/html_node/Foreach-Function.html#Foreach-Function
https://www.gnu.org/software/make/manual/html_node/File-Function.html#File-Function
https://www.gnu.org/software/make/manual/html_node/Call-Function.html#Call-Function
https://www.gnu.org/software/make/manual/html_node/Value-Function.html#Value-Function
https://www.gnu.org/software/make/manual/html_node/Eval-Function.html#Eval-Function
https://www.gnu.org/software/make/manual/html_node/Origin-Function.html#Origin-Function
https://www.gnu.org/software/make/manual/html_node/Flavor-Function.html#Flavor-Function
https://www.gnu.org/software/make/manual/html_node/Make-Control-Functions.html#Make-Control-Functions
https://www.gnu.org/software/make/manual/html_node/Shell-Function.html#Shell-Function
https://www.gnu.org/software/make/manual/html_node/Guile-Function.html#Guile-Function
https://www.gnu.org/software/make/manual/html_node/Guile-Integration.html#Guile-Integration
https://www.gnu.org/software/make/manual/html_node/Implicit-Rules.html#Implicit-Rules
https://www.gnu.org/software/make/manual/html_node/Implicit-Rules.html#Implicit-Rules
https://www.gnu.org/software/make/manual/html_node/Using-Implicit.html#Using-Implicit
https://www.gnu.org/software/make/manual/html_node/Catalogue-of-Rules.html#Catalogue-of-Rules
https://www.gnu.org/software/make/manual/html_node/Canceling-Rules.html#Canceling-Rules
https://www.gnu.org/software/make/manual/html_node/Implicit-Rule-Search.html#Implicit-Rule-Search
https://www.gnu.org/software/make/manual/html_node/Chained-Rules.html#Chained-Rules
https://www.gnu.org/software/make/manual/html_node/Last-Resort.html#Last-Resort
https://www.gnu.org/software/make/manual/html_node/Overriding-Makefiles.html#Overriding-Makefiles
https://www.gnu.org/software/make/manual/html_node/Empty-Recipes.html#Empty-Recipes
https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html
https://www.gnu.org/software/make/manual/html_node/Pattern-Match.html
https://www.gnu.org/software/make/manual/html_node/Goals.html#Goals
https://www.gnu.org/software/make/manual/html_node/Implicit-Variables.html#Implicit-Variables

Assignment operators
OP Description Example

Rules

 : non-terminal

 :: Makes the rule terminal: it’s prerequisite may not be an intermediate file.

Using Variables

 = Non-terminal recursively expanded variable assignment.

See:

• The two-flavours of Variables
• Setting Variables

The following will echo Huh?:
 foo = $(bar)
bar = $(ugh)
ugh = Huh?

all:;echo $(foo)

:= Simply expanded variables

See:

• The two-flavours of Variables

The following:

x := foo
y := $(x) bar
x := later

is equivalent to:

y := foo bar
x := later

::= Simply expanded variables - 2012 POSIX standard compliant.

See:

• The two-flavours of Variables

The following:

x ::= foo
y ::= $(x) bar
x ::= later

is equivalent to:

y ::= foo bar
x ::= later

?= Set variable if it is not already set.

See:

• Setting Variables

The following:

FOO ?= bar

is equivalent to:

ifeq ($(origin
FOO), undefined)
FOO = bar
endif

!= Shell assignment operator: used to execute a shell script and set a variable to its output.

See:

• Setting Variables

Note that after the != execution, the exit status is placed inside the .SHELLSTATUS variable.

For example, if you don’t expect a $ character to be part of the output string:

hash != printf '\043'
file_list != find . -name ‘*.c'

If you expect $ character(s) to be part of the output, then it’s better to use another form:

hash := $(shell printf '\043')
var := $(shell find . -name "*.c")

+= Append text to a variable
The text append operation is affected by the flavour of the original variable assignment (by =
or := operators.)

The following:

objects = main.o foo.o bar.o utils.o
objects += another.o

is equivalent to:

objects = main.o foo.o bar.o utils.o
objects := $(objects) another.o

The Override Directive : how to set a variable in the make file even if the user has set it with
a command argument.

Appending More Text To Variables

Defining Multi-Line Variables

To override a variable that might have been set in the command line:

override variable = value

or

override variable := value

To append more text to a variable defined on the command line:

override variable += more text

It’s also possible to override directives with define directive:

override define foo =
bar
endef

Suffix Rules - Obsolete Old-fashioned Suffix Rules
Kinds of old-fashioned
suffix rule

Example of suffix rule Corresponding
pattern rule

Description

double-suffix .c.o %.o : %.c Matches any file whose name ends with the target suffix.

single-suffix .c % : %.c Matches any file name, and the corresponding implicit prerequisite name is made by appending the source suffix

The old-fashioned suffix rules are obsolete because the pattern rules are more general and clearer.

• Suffix rules cannot have any prerequisites of their own.

• Suffix sure without recipe are meaningless.

Automatic Variable Expands to Notes and examples

$@ File name of the target. For archive(member): name or archive.

 $(@D) The directory part of the target If the target is just a file name, then the value of $(@D) is .

 $(@F) The file name (with extension) of the target

$% File name of target archive member

 $(%D) The directory part of the target archive member

 $(%F) The file name (with extension) of the target archive member

$< Name of the first prerequisite

 $(<D) The directory part of the prerequisite

 $(<F) The file name (with extension) of the prerequisite

$? Names of all prerequisites newer than target with spaces between them.

• For archive(member), only contain the member.

Also useful in explicit rules when the receipt must operate on only the prerequisites that have
changed.

 $(?D) List of the directory part of all prerequisites newer than target

 $(?F) List of the file name (with extension) of all prerequisites newer than
target

$^ The names of all prerequisites with spaces between them.

• For archive(member), only contain the member.

• No duplicates in the list

Does not contain order-only prerequisites.

 $(^D) List of the directory part of all prerequisites (no duplicates)

 $(^F) Lis of the file name (with extension) of all prerequisites (no duplicates)

$+ The names of all prerequisites with spaces between them.

• For archive(member), only contain the member.

• Duplicates are allowed in the list in the same order as received

Useful when linking where it might be required to repeat the name of a library

 $(+D) List of the directory part of all prerequisites (with duplicates)

 $(+F) List of the file name (with extension) of all prerequisites (with
duplicates)

$| The names of all order-only prerequisites with spaces between them.

$* • For implicit rule: the stem which an implicit rule matches.

• For explicit rule, there is no stem : expands to the target name minus the

suffix.

• Implicit rule: if target is dir/a.foo.b and the target pattern is a.%.b then the stem is dir/foo

• Explicit rule: If target is foo.c, then $* expands to foo.

 $(*D) The directory part of the stem

 $(*F) The file name (with extension) of the stem

 3

https://www.gnu.org/software/make/manual/html_node/Using-Variables.html
https://www.gnu.org/software/make/manual/html_node/Flavors.html#Flavors
https://www.gnu.org/software/make/manual/html_node/Setting.html#Setting
https://www.gnu.org/software/make/manual/html_node/Flavors.html#Flavors
https://www.gnu.org/software/make/manual/html_node/Flavors.html#Flavors
https://www.gnu.org/software/make/manual/html_node/Setting.html#Setting
https://www.gnu.org/software/make/manual/html_node/Setting.html#Setting
https://www.gnu.org/software/make/manual/html_node/Shell-Function.html#Shell-Function
https://www.gnu.org/software/make/manual/html_node/Appending.html#Appending
https://www.gnu.org/software/make/manual/html_node/Override-Directive.html
https://www.gnu.org/software/make/manual/html_node/Appending.html
https://www.gnu.org/software/make/manual/html_node/Multi_002dLine.html
https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables
https://www.gnu.org/software/make/manual/html_node/Prerequisite-Types.html#Prerequisite-Types
https://www.gnu.org/software/make/manual/html_node/Suffix-Rules.html#Suffix-Rules

