
🚦 Performance/Feature Comparisons of Emacs Shells/Terminals

Emacs Shell/Feature eshell shell (⅀ shell-mode) ansi-term (⅀ term-mode) term (⅀ term-mode) emacs eat (⅀ eat-mode) vterm (⅀ vterm-mode) Comment

Relative speed comparison:
Execute “ls -lFGO” inside

/usr/local/bin/ on macOS.

(Execution times in seconds for several attempts
at the same command).

• 2.448571

• 4.247726

• 2.550193

• 2.631693

• 2.510235

• 4.220897

• 2.514221

• 2.472229

• 2.514438

• 2.468948

• 2.765349

• 6.169079

• 5.431559

• 5.493072

• 5.398879

• 5.435839

• 5.586079

• 5.531138

• 5.519672

• 5.227298

• 5.526750

Not measured. • 0.065568

• 0.073241

• 0.053149

• 0.048021

• 0.060560

• 0.109644

SEE ALSO:

PEL shell/REPL invocation commands

• EShell Manual
• Mastering EShell, from

Mickey Petersen

Tested the execution time of listing a directory
that has 861 entries (mostly symlinks), a /usr/
local/bin on a 2014 macOS computer.

Supports built-in serial terminal emulator? Yes, use:

M-x serial-term

Support running GNU Screen within an
Emacs internal shell in local host?
☝ One would normally start screen at the
remote host to establish a context and
connect to it via ssh. If the ssh link breaks
you can re-connect to the screen session
where it left off.

• Using screen inside a Emacs terminal
buffer is probably not very useful unless
you want to use GNU screen logging
facility to record the stdout/stderr output of
a long running job and want to interact with
other Emacs buffer while doing so.

No, the screen command
launches inside a term buffer.
The eshell remains running
independently.

No, the mode lacks screen clear
capability.

Yes: Linux, macOS
• Start term with M-x ansi-
term RETURN. Inside the
created shell, execute the
screen command.

• Start screen directly with M-
x ansi-term screen
RETURN.

Yes: Linux, macOS
• Start term with M-x term
RETURN. Inside the created
shell, execute the screen
command.

• Start screen directly with
M-x term screen
RETURN.

Yes: macOS Tested in Linux and macOS environments
only.

• Did not test vterm in Linux yet.

Support running GNU Screen within shell in
remote host by issuing a ssh command
within that shell and then executing screen.

No, the screen command
launches inside a term buffer.
The eshell remains running
independently.

No, the mode lacks screen clear
capability.

Yes: Linux, macOS
• Within ansi-term invoked shell,

issue the ssh command first,
then the screen command.

Yes: Linux, macOS
• Within the term invoked

shell, issue the ssh
command first, then the
screen command.

Yes: macOS Tested in Linux and macOS environments
only.

• Did not test vterm in Linux yet.

Special installation/configuration Notes term shell-side
configuration

Read configuration/installation notes for the
specific shell.

Advantage Implemented in Emacs Lisp,
available in all environments even
on non-*nix like Windows.

Flexible, good compromise
between speed and availability
of a mix of features from the
shell and from Emacs since
Emacs key bindings are
available.

Best speed I have on my
system, and pure terminal
control.

For fast operations on something that is close
to a real terminal, vterm is the best available
on *nix platforms as far as I can tell at the
moment (April 2020).

The eshell is useful to perform operations on
platforms where Unix-like utilities are not
available and where you want to use Emacs
lisp code. It integrates with Emacs
functionality, standing on its own.

Limitations The sub-process does not see
the command until the RET key
is pressed. Therefore do not
use this shell for running
interactive programs that wait
on keyboard input.

I saw several problems briefly using eat
0.9.4.

On macOS Sonoma, arm64 CPU, in both
Terminal.app text mode and GUI mode
Emacs 29.3 with zsh and bash
configurations identified as prompt model
2 in my USRHOME project, the
backspace key did not work in zsh and
bash prompt failed.

✅ setting TERM to xterm-256color
inside the eat terminal shell solved
the above problems.

Very flexible, fast, compared to term,
but still young with some bugs left (eg.
cloning buffers, dir tracking not
working). Worth trying !

Currently does not work on
macOS Silicon. There’s an
open bug: vterm-module
compiles as x86_64 instead
of arm64e on macOS M1
#593

Emacs Shell/Feature

⬉ Topic Index

￼1

https://www.gnu.org/software/emacs/manual/html_node/eshell/index.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell.html#Interactive-Shell
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/shell-mode.pdf
https://www.emacswiki.org/emacs/AnsiTerm
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/term-mode.pdf
https://www.gnu.org/software/emacs/manual/html_node/emacs/Term-Mode.html
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/term-mode.pdf
https://codeberg.org/akib/emacs-eat#readme
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/eat-mode.pdf
https://github.com/akermu/emacs-libvterm
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/vterm-mode.pdf
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/shells.pdf
https://www.gnu.org/software/emacs/manual/html_node/eshell/index.html
https://www.masteringemacs.org/article/complete-guide-mastering-eshell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Serial-Terminal.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Serial-Terminal.html
https://en.wikipedia.org/wiki/GNU_Screen
https://www.gnu.org/software/screen/manual/html_node/Log.html
https://en.wikipedia.org/wiki/GNU_Screen
https://github.com/akermu/emacs-libvterm#shell-side-configuration
https://github.com/pierre-rouleau/usrhome?tab=readme-ov-file#usrhome-prompt
https://github.com/akermu/emacs-libvterm/issues/593
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/-index.pdf

Toggle terminal mode to allow editing
navigation

Standard Emacs keys always
available for navigation but
cursor keys used by the terminal
for history.

Not available: always in Emacs
editing mode.

out: C-c C-j

in: C-c C-k

out: C-c C-j

in: C-c C-k

It has several, depending of the input
mode that is currently active (see below).

• C-c C-j : ➡︎ semi-char mode

• C-c C-e : ➡︎ emacs mode

• C-c M-d : ➡︎ char mode

• C-c C-l : ➡︎ line input mode

• C-M-m or M-RET: ➡︎ semi-char

out: C-c C-t
in: C-c C-t

The shells differ in their way to allow key
bindings. The eshell and shell buffers support
all Emacs key bindings while the shell is in
control. The ansi-term, term and vterm have
two input modes and key sequences to
switch between them.

Emacs key bindings available while shell
input mode is active

Yes Yes Some of them, not all: in shell
input mode, the C-x prefix is
replaced by the C-c prefix.

Type C-c C-j to switch to
Emacs input mode, then use
Emacs key sequences.

Return to shell input mode by
typing C-c C-k

Some of them, not all: in shell
input mode, the C-x prefix is
replaced by the C-c prefix.

Type C-c C-j to switch to
Emacs input mode, then use
Emacs key sequences.

Return to shell input mode by
typing C-c C-k

eat has 4 input modes:

• semi-char mode: most keys are

sending to terminal except C-\, C-c, C-
x, C-g, C-h, C-M-c, C-u, C-q, M-x, M-:,
M-!, M-& . Special bindings are:

• C-q: send next key to terminal

• C-y : like yank, but send text to

terminal

• M-y: like yank-pop: but send text

to terminal

• C-c C-k : kill process

• C-c C-e : ➡︎ emacs mode

• C-c M-d : ➡︎ char mode

• C-c C-l : ➡︎ line input mode

• emacs mode: use it to navigate and
edit: no special key binding except:

• C-c C-j: ➡︎ semi-char mode

• C-c M-d : ➡︎ char input mode

• C-c C-l : ➡︎ line input mode

• char mode: All keys are sent to
terminal except:

• C-M-m or M-RET: ➡︎ semi-char

• line mode: similar to comint, shell-
mode and term line mode: terminal
inout is sent line-wise, allowing editing
line with Emacs commands. Extra
binding:

• C-c C-e : ➡︎ emacs mode

• C-c C-j : ➡︎ semi-char mode

• C-c M-d : ➡︎ char mode

Only some of them (the ones
that start with Esc).

Type C-c C-t to switch to
Emacs input mode, then use
Emacs key sequences.

Return to shell input mode by
typing C-c C-t

The term, ansi-term and vterm buffers
operate with 2 different input modes:

• shell input mode (char input)

• Emacs input (line input)

In term and ansi-term buffers you must put
the buffer in Emacs input (line input) mode, by
typing C-c C-j, to be able to access the
PEL commands that use the <f12> key
prefix. The <f11> key prefix is always
available.

In vterm you must put the buffer in Emacs
input (line input) mode, by typing C-c C-t,
to be able to access the PEL commands that
use the <f11> or <f12> key prefix.

Both are always available in the eshell and
shell buffers.

F1-F12 keys available to terminal.
• Yes: available to terminal.

• No: used by Emacs only.

No No No No • semi-char mode: No Yes

• Can use htop and exit it

with <f10>

When the F1-F12 keys are used by terminal
they can be used by applications that use
them. They are, however not available to
Emacs until you toggle the terminal mode off
(using the keys identified in the second row
above (eg. C-c C-t for vterm.)

Use an application like htop that use the
function keys with eat in char mode or vterm.

• emacs mode: No (but irrelevant)

• char mode: Yes.
• Can use htop and exit it with <f10>

• line mode: No

Escape Sequences and colouring works Implement its own, does not
render everything applications
support.

Partially. Escape sequences
work partially but other type of
colouring does not.

Yes Yes Yes. ⚠ However on macOS, TERM
must be set to xterm-256color.
• See USRHOME shell config code

Yes

Shell prompt definition support (PS1, PS2,
PS3, PS4, …)

Irrelevant. eshell is not a POSIX
shell and is controlled from within
Emacs.

Yes, but tput expressions to
boldface prompt does not work.

Yes Yes • semi-char mode: Yes Yes but requires code in shell
configuration . This also
provides extra functionalities
like current directory tracking.

• emacs mode: Yes, but irrelevant.

• char mode: Yes

• line mode: Yes

Handle zsh RPOMPT Irrelevant. eshell is not a POSIX
shell and is controlled from within
Emacs.

No No No • semi-char mode: Yes Yes The zsh can print information at the right-
hand side of the prompt line. So the
command being typed is shown to its left.

The zsh RPROMPT does not work well with

• emacs mode: Yes, but irrelevant.

• char mode: Yes

eshell shell (⅀ shell-mode) ansi-term (⅀ term-mode) term (⅀ term-mode) emacs eat (⅀ eat-mode) vterm (⅀ vterm-mode) CommentEmacs Shell/Feature

￼2

https://codeberg.org/akib/emacs-eat#headline-1
https://en.wikipedia.org/wiki/Htop
https://en.wikipedia.org/wiki/Htop
https://github.com/pierre-rouleau/usrhome/blob/main/ibin/setfor-alias#L645
https://github.com/akermu/emacs-libvterm#directory-tracking-and-prompt-tracking

• line mode: Not really. The typed
command appears at the right of the
RPROMT. This is not what zsh intent
is.

The zsh RPROMPT does not work well with
any of the terminal emulators I have tested
except for vterm. It almost works for eat
except for its line-mode.

clear shell command works? Almost: clears the screen but
leaves cursor at the bottom of
the window.

No. However, the Emacs
comint-clear-buffer does work.
It’s bound to C-C M-o. PEL
adds a <f12> c key binding.

Yes Yes • semi-char mode: Yes Yes

• emacs mode: No. For editing only.

• char mode: Yes

• line mode: Yes

Support bash aliases No but supports its own. Yes Yes Yes Yes Yes

Shell tab completion Yes, but eshell is not a POSIX
shell and is controlled within
Emacs, providing a tight
integration with Emacs.

Yes, but completion is done by
Emacs and it might get out of
sync with the directory.
Execute shell-resync-dirs to
correct.

Yes Yes • semi-char mode: Yes Yes

• emacs mode: No, but irrelevant.

• char mode: Yes

• line mode: Yes

History via cursor keys Yes • Not supported by cursors
(which move point)

• But supported by using
CTRL key allowing with the
cursor keys.

Yes Yes • semi-char mode: Yes Yes

• emacs mode: No, but irrelevant.

• char mode: Yes

• line mode: Yes

Can run scripts (interpret shebang line) No, since it’s not a POSIX shell.

• But can run script if the

interpreter is specified
explicitly.

• It can, however, run any elisp
code!

Yes Yes Yes Yes

Runs other REPLs inside the terminal Yes, as long that the shell is an
executable on the PATH. It does
not support bash alias that are
sometimes used to launch shells.

Was able to use python, clisp,
iex, but not LFE: it launched
Erlang REPL instead. iex was
coloured properly.

Yes, with colouring. Yes, with colouring. • semi-char mode: Yes, no colouring. Yes, good speed, supports
colouring.

Use C-c C-c for Control-C,
C-c C-g for Control-G

The best shell to run another REPL from the
command line is vterm. However, it’s also
possible to run these REPLs directly from
within Emacs. Using them from within
another shell allows using one quickly or
testing.

• emacs mode: No. For editing only.

• char mode: Yes, no colouring.

• line mode: Yes, no colouring.

Can run Emacs Lisp commands via key
bindings

Yes No No No Yes Yes Some shells allow mapping keys to Emacs
Lisp command code.

Interact with Emacs from the shell Yes, using elisp code No No No ?🚧 Yes, with special escape
sequences for message
passing.

Supports all shell prompt formatting N/A No, some escape sequences
are not supported.

Yes, all formatting is supported. Yes, all formatting is
supported.

Yes, all formatting is supported. Yes, all formatting is
supported.

Handle Window resizing nicely Yes, all is fine, no bleeding,
prompt repeating.

No, with some shell prompts,
resizing the window may cause
extra prompt printing

Yes, all is fine, no bleeding,
prompt repeating.

Yes, all is fine, no bleeding,
prompt repeating.

Yes, all is fine, no bleeding, prompt
repeating, even in line-input mode (as
used in shell-mode)

Yes, all is fine, no bleeding,
prompt repeating.

eshell shell (⅀ shell-mode) ansi-term (⅀ term-mode) term (⅀ term-mode) emacs eat (⅀ eat-mode) vterm (⅀ vterm-mode) CommentEmacs Shell/Feature

￼3

https://github.com/akermu/emacs-libvterm#message-passing

Keyboard Macros and Shells One of the most compelling reasons for using a terminal shell within Emacs is the ability to interact
between the rest of Emacs and the shell in a semi automated way with ⅀ Keyboard Macros.

Using a terminal shell inside a window and a file or another REPL inside another window, it becomes
possible to create keyboard macros that insert text inside a file from the result of commands executed
in a shell or a REPL (like a Python or Erlang REPL) .

To enable this, you must be able to move across Emacs windows using key bindings as simply as
possible and you must be able to copy text from one window and yank it inside another.

As the following columns show, this can be done most flexibly with two of the available terminal shell
modes:

• shell

• eat

Both of these modes are flexible enough to execute commands and use the Emacs key bindings to
navigate and copy text across windows without changing mode input mode. The shell mode always works.
The eat-mode runs faster and can also be used in line-mode for that. If you are willing to switch inputs
mode, you can use extra keystrokes to use semi-char and char modes too.

The eshell is similar but you need to use
Emacs Lisp syntax.

Emacs Shell/Feature eshell shell ansi-term term emacs eat vterm Comment

Can yank text in shell • Linux: Yes

• macOS: Yes

• Linux: Yes

• macOS: Yes

• Linux: No

• macOS: No

• Linux: No

• macOS: No

• semi-char mode: Yes:
• C-y : like yank, but send text to

terminal

• M-y: like yank-pop: but send text

to terminal

• Linux: Yes

• macOS: Yes

• emacs mode: No

• char mode: Yes, using the OS key
sequence.

• line mode: Yes, using the OS key
sequence.

Can navigate out of window with
PEL Esc cursor key sequences

• Linux: Yes

• macOS: Yes

• Linux: Yes

• macOS: Yes

• Linux: No

• macOS: No

• Linux: No

• macOS: No

• semi-char mode: No • Linux: Yes

• macOS: Yes

This is the same as being able to execute any
commands that use an Esc key prefix.

• emacs mode: Yes

• char mode: No

• line mode: Yes

Can navigate out of window with
PEL <f1> cursor key sequences

• Linux: Yes

• macOS: Yes

• Linux: Yes

• macOS: Yes

• Linux: Yes

• macOS: Yes

• Linux: Yes

• macOS: Yes

• semi-char mode: Yes • Linux: No

• macOS: No

This is the same as being able to execute any
commands that use any function key as key
prefix.• emacs mode: Yes

• char mode: No

• line mode: Yes

eshell shell (⅀ shell-mode) ansi-term (⅀ term-mode) term (⅀ term-mode) emacs eat (⅀ eat-mode) vterm (⅀ vterm-mode) CommentEmacs Shell/Feature

Terminal Multiplexers and Emacs
Terminal
multiplexer

Topic Information & Links

GNU Screen References: • GNU Screen @ Wikipedia : start here if you do not know what this program is.

• GNU Screen home page

• GNU Screen Manuals

• GNU Screen Manual - all in 1 HTML Page (useful to search)

GNU Screen source
code

• GNU Screen Git Repository - Savannah

Compile GNU
Screen:

git clone https://git.savannah.gnu.org/git/screen.git
cd screen/src
./autogen.sh
./configure --prefix=/usr/local \
 --enable-pam \
 --enable-colors256 \
 --enable-rxvt_osc \
 --enable-use-locale \
 --enable-telnet
make && make install

Terminal
multiplexer

￼4

https://en.wikipedia.org/wiki/GNU_Screen
https://www.gnu.org/software/screen/
https://www.gnu.org/software/screen/manual/
https://www.gnu.org/software/screen/manual/screen.html
https://savannah.gnu.org/git/?group=screen
https://git.savannah.gnu.org/git/screen.git
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/keyboard-macros.pdf
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/shells.pdf
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/keyboard-macros.pdf
https://www.gnu.org/software/emacs/manual/html_node/eshell/index.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell.html#Interactive-Shell
https://www.emacswiki.org/emacs/AnsiTerm
https://www.gnu.org/software/emacs/manual/html_node/emacs/Term-Mode.html
https://codeberg.org/akib/emacs-eat#readme
https://github.com/akermu/emacs-libvterm
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/windows.pdf#page=2
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/windows.pdf#page=2

Using Emacs within
an GNU Screen
Session

• By default GNU Screen uses the C-a key as the Screen command key.

• To pass C-a to Emacs running inside a GNU Screen session: type C-a followed by a

• Screen command key can be changed with the escape setting in the ~/.screenrc file. See next lines for 2 examples:

• To change it to C-^, write: escape ^^^
• The first ^^ is the caret representation of Control-^. The last ^ is the single key to type after to pass C-^ to the program running under Screen (like Emacs). Another character could be used, 6 for example.

• To change it to C-z, write: escape ^zz

Logging with
Screen

Screen supports dumping the current content of the screen to a file or log the complete window session to a file.

• This second feature is quite useful when running long lasting commands like software builds preformed from a shell.

• The session can be started inside a screen window, and hidden to speed it up while logging all the details inside the log file.

• The log file will contain the entire output to stdout and stderr. It will also contain all the escape sequence codes printed on your shell to colonize it for example.

• You can view this log file inside Emacs and use the pel-screen-log-fix-rendering command (bound to <f11> t s) to filter these escape codes out of the buffer and render the colours. See also: ⅀ Text Modes

Multi-user screen Use GNU screen to allow simultaneous access to a shell for several users! See:

• GNU Screen Manual - Multiuser Session

• https://aperiodic.net/screen/multiuser

• Unix & Linux: Sharing a terminal with multiple users (with screen or otherwise)

• 2012 UTOSC - Screen vs. tmux faceoff - Jon Jensen - Youtube video

Topic Information & LinksTerminal
multiplexer

￼5

https://www.gnu.org/software/screen/manual/screen.html#Logging
https://www.gnu.org/software/screen/manual/screen.html#Log
https://raw.githubusercontent.com/pierre-rouleau/pel/master/doc/pdf/text-modes.pdf
https://www.gnu.org/software/screen/manual/html_node/Multiuser-Session.html
https://aperiodic.net/screen/multiuser
https://unix.stackexchange.com/questions/163872/sharing-a-terminal-with-multiple-users-with-screen-or-otherwise
https://www.youtube.com/watch?v=QxTse5Elq8s

