Gimp Mode

Niels Giesen

September 13, 2009

1 Short description

° EmacsE] mode for developing scheme (script-fu) scripts for the GIMPH

e Interaction with the GIMP as subprocess or as a client.

Smart and fuzzy code completion .

e Documentation echoing.

Hypertext help system with history.

2 News: people do use Gimp Mode

2.1 Version v1.52:

- Multiple patches by Brent Goodrick to fix bugs thrown by completion functions
inside comments and let/let* forms.

2.2 Version v1.51:

- gimp-mode.el (gimp-get-closure-code): traced down hanging emacs on quickly
repeated keypresses (TAB and SPACE), to this call. Added a timeout argument
of one second to the call of gimp-eval-to-string. (gimp-eval-to-string): add time-
out option to avoid infinite loop. Throw error if timeout is exceeded. (Note: this
bug could have also been avoided by setting ‘gimp-try-and-get-closure-code-p’
to non-nil).

2.3 Version v1.50:

- gimp-mode.el (gimp-selector): Add ESC as binding to cancel the selector +
mention it under ?. Mention binding of ¢ to gimp-cl-connect under 7. (gimp-
first-run-action): Save input ring when gimp is closed externally. (gimp-buffer):

Lhttp://www.gnu.org/software/emacs
2http://gimp.org

http://www.gnu.org/software/emacs
http://gimp.org

Just (get-buffer “ GIMP”) if process is finished. (run-gimp): clear gimp-output
before going any further. This closes the bug “Wrong argument: sequencep
Copyright” (or something like that..).

- gimp-mode.el, gimp-install.el: change default gimp version from 2.4 to 2.6

- gimp-init.el (magic-mode-alist): when the string “gimp” is part of buffer-
file-name (anywhere) AND filename ends in “.scm”, gimp-mode will be activated.
This effectively means any scheme script distributed with the GIMP, or that is
in your gimp-configuration directory will use gimp-mode.

2.4 Version v1.48 (the FUD release):

This version adds a betabetabeta version of FUD, meaning the Fu Debugger. It is
however not yet set up by default yet (as it is very beta, as in “don’t expect it to
work” (actually it does...) and would break the client mode right now). With
FUD, you can define breakpoints and instruct functions for stepping, poking at
the environment at run-time &c.

Uncomment the (require ’fud) in gimp-mode.el before compilation to
experience a bit of what lies ahead. Also, symlink or copy the file fud.scm to
~/.gimp-2. [45]/scripts/. See contents of fud.scm and fud.el for pointers.
Expect more FUD in about three weeks time. First vacation.

- gimp-mode.el (gimp-snippets): drop radio snippet, as the param type does
not exist

- gimp-mode.el (gimp-comint-filter): add prettification to output of the
GIMP.

- fud.scm: add stepping inside and function instruction.

- fud.el: add fud-bullet bitmap to show breakpoints.

- gimp-mode.el (gimp-open-image): changed order so that message is not
put in the GIMP buffer.

- gimp-mode.el (gimp-completion-rules): enhance rule for palettes (gimp-
shortcuts): gimp-clear (,clear from REPL) was added, to clear the REPL screen.

- (gimp-fnsym-in-current-sexp): fix for list beginning with a number (that
bugged ‘gimp-echo’ higher up the stack): now returns nil when the symbol
begins with a number.

- (gimp-echo): change cache-resp into response, as we'’re (a long time..) not
using caches anymore to save the echoing.

- gimp-install.el (gimp-install): put installation in a function, then call it.

- fud.el (Module): new FUD FU debugger - elisp side

- fud.scm (Module): new FUD FU debugger - scheme side

- gimp-mode.el (gimp-switch-to-latest-source-buffer): made this functional-
ity a separate command, and enhanced it so that you will switch to another
source buffer if already in a source buffer.

- (gimp-help-mode-map): removed gimp-help-refresh (which isn’t a com-
mand)

- (gimp-mode): Add some rules to highlight the frequent use of UPPER-
CASE CONSTANTS in script-fu. This required turning off CASE-FOLD in
‘gimp-mode’.

- (gimp-comint-filter): add FUD actions

2.5 Version v1.45

Fix for v1.44: use gimp-menu-map as mixin, not as parent.

2.6 Version v1.44

Added menu entries for most important commands.

2.7 Version v1.43

Echoing and completion made optional (and completion toggable with C-cc).
Reference to SICP added in gimp-documentation.
Some bugfixes.

2.8 Version v1.42:

Auto-insertion of template in empty script-fu-*.scmn files.
Fixes for unconnected gimp-mode editing.
Fix for menu entry in GIMP from svn

2.9 Version 1.41:

Fix for installation on emacs23 on Windows (thanks Lennart Borgman).

3 Features

Interaction:

Gimp Mode can either run the Gimp as subprocess in Emacs, or connect as
a client to the script-fu-server. The latter is less stable and has less features,
but is sometimes better than nothing, see below. Interaction with the Gimp
script-fu engine is possible directly from the code that is being edited and/or
from a special REPL (read-eval-print-loop) buffer.

Smart 'n’ fuzzy TAB-completion similar (but not equal) to that of Slime:
the entire tiny-fu oblist is available and variables, functions and macros that
are defined during a session are added to completion EL As you can see, the
fuzziness accepts the first letters of a part of a hyphenated string to as input as
a kind of abbreviation, so you can for instance write s-f-u-m and have it expand
to script-fu-unsharp-mask. If for some reason you do not like this fuzzy factor,
you can switch it off anytime by pressing C-cr or by customising the variable
gimp-complete-fuzzy-p.

3This happens only when issued with the usual define/define-macro construct, and only at
top-level, not if you e.g. wrap \texttt{define} in another macro.

on a complet o select it.
type RET to the completion near point.

Possible completions are:
SF—FONT

string—Fi1l1!

script—fu-g

script—fu-1
script—fu-slide
TRANSPARENT—FILL

~time?
letions= Top (1,0]

Figure 1: Fuzzy completion

Completion on arguments is done via a system of rules, based on regexp-
matching/custom commands that work on the registration of the functions. It
means you've got completion available for stuff like fonts, palettes, brushes,
images, choices of booleans etc.

The completion system is open to be improved and extended upon (see
variable gimp-completion-rules). For script-fu registered functions, default
arguments are offered as completion.

Argument echoing whereby current argument is highlightedE]

More in-depth documentation echoing: both for argument at point and for
the entire function.

In both documentation (echoing) and completion, the procedural first argu-
ment run-mode (Interactive, non-interactive) is omitted for script-fu functions,
as this argument has to be omitted from a call made by script-fu.

A complete hyper-textual rework of the Procedure Browser implemented in
Emacs Lisp, with history, apropos function, menu-driven look-up of plug-ins,
nice faces (if I may say so) etc.

Some 'Bookmarks’ to Gimp/Fu/Scheme resources on the 'net.

Handy shortcuts for various stuff oft needed when developing. Type ,shortcuts
at the REPL for an overview.

One of these shortcuts is ,trace and ,untrace, that toggle, well, tracing.
Output from tracing is not put into Emacs’ undo list, as GIMP’s tracing can
be very extensive. Do not use (tracing 1) yourself, as this can hamper behind-
the-scenes interaction with the GIMP.

Some snippets are provided through the library snippet.el (included) by
Pete Kazmier. A registration template is provided (type reg SPACE), and
handy templates for script-fu-register arguments (type sf* SPACE). Type M-x

4For the interested: Gimp Mode gets its information in this regard from the following
sources: the procedural database, the TinyScheme-function \texttt{get-closure-code} and
lastly from \texttt{scheme-complete.el} (included) by Alex Shinn. In the echoing for script-fu
functions the arguments as registered in the procedural database alternate with the arguments
derived from the closure itself - if any.

‘-
GIMP proc: script-fu-sunray

image

value

(type 1))

value

4 FLOAT value
Th 0

(Thi

nc 0.01) nc 0.1) type 1)

value

topple

value

when outer aller than im

all (3,22) (GIMP Help)
e on

1y menu

Figure 2: The Gimp Mode Help Browser

gimp-list-snippets or ,list-snippets RET from the REPL to show snip-
pets.

Input history (which is saved on ,quit).

Basic code lookup (using grep).

4 Caveats

1. The main mode is developed on and for a GNU/Linux environment, on
Emacs22 and Emacs from CVS. I only have had very little time to test this on a
win32 machine. The problem on that ’system’ is that somehow the GIMP opens
a second ’console’, so it does not return anything useful to the calling program.
I do not know about the behaviour on OSX. Not tested on BSD either. If you
have any results (or a spare MacBook), please let me know.

L]
(define (script—fu—Hamne)
>

(script—fu-register "script—fu-hame"
_"blurp {(use _ before shortcut letter!) "
_"help"
“Niels Giesen (sharik@reetkevert.sshunet.nl)"
"Niels Giesen”
"2?08706721 [

(script—fu-menu-register "script—fu-fane"
_"¢Toolbox>/Xtns/Script—Fu"}

Figure 3: Snippet to set up the framework of a script-fu script

To overcome the problem of not being able to interact with the GIMP as a
subprocess, Gimp Mode comes with another, similar, mode that hooks into the
script-fu server provided by the GIMP as a client. You can start this mode with
M-x gimp-cl-connect (after having started the server from within the GIMP).
It was a PITA to get this to work well. The mode lacks some features of the
‘normal’ inferior-gimp-mode and has some idiosyncrasies due to the behaviour
of the server: the GIMP script-fu server produces a new call frame each time
around, making it unable (or possibly: quite hard) to define variables, functions
and macros and saving their new values without hacking the gimp source. The
way around this is the macro emacs-cl-output in emacs-interaction.scm,
that writes the form (wrapped in another (with-output-to-file ...)) to
evaluate to a temporary file, and subsequently loads that file, so that the new
definition will be part of any new call frame. I’d love to be able to work some-
thing out using continuations, but I have not yet found out whether that is at
all possible technically.

The features the client mode (as opposed to the truly inferior mode) currently
lacks are:

e tracing.

e scheme functions display, write and any derivatives do not work. For
these exact reasons, the FU Debugger does not work in this mode.

Note: behaviour when using both modes together is unspecified (what a
lovely fall-back that word is...) and unsupported (although I do use it when
developing the client mode. The trick is to first run M-x run-gimp, start the
server, and then run M-x gimp-cl-connect).

Note that on any system gimp-mode is perfectly capable of performing quite
well ‘off-line’; as it reads in most data through the use of caches. Stuff it cannot
do unconnected (i.e. evaluation, and some echoing and completion that are
dependent on evaluation) it will simply ignore. If not, that is a bug and should
be filed as such (M-x gimp-report-bug).

2. I have not written many script-fu files to test this mode on, to wit: two,
one of which is emacs-interaction.scm that comes with Gimp Mode (for the
curious: the other one{ﬂ makes a selection of sun rays).

3. There is no way currently to recover from non-returning forms, such an
infinite loop, save for killing the process altogether. I'd love to find a way to
deal with this. In this regard, the client mode is the better choice, as you are
able to spawn several servers and just re-connect from emacs.

5 Comparison with other modes

Gimp Mode differs from gimp-shell.el in that the main objective of Gimp
Mode is to run the GIMP as a subprocess instead of hooking into the script-fu
server as a client. For the client mode, I have adopted code from gimp-shell.el
(see gimp-cl-send-string), and am very grateful for it (I could not have come
up with these awkward but apparently necessary byte-sequences myself - sooo
low-level. ..). Further, Gimp Mode simply has a lot more. Oh, and then there is
gimp.el (included with nxhtml-mode), which does nothing more than open an
image in the GIMP (and then only on windows). Both of these other libraries do
not seem to conflict with Gimp Mode; however, they are probably unnecessary
as their features are implemented in Gimp Mode too.

6 Getting started /Download

First uncompress and unpack the files:
gimp-mode.tar.bz2| (Linux etc.)

tar xjvf gimp-mode.tar.bz2

or
gimp-mode.zip (Windows)

unzip gimp-mode.zip
Now run the installation script from Emacs:
M-x load-file /path/to/gimp-install.el RET

And follow the directions given there.
(It will direct you to put something like the following in your load file and
evaluate it:

(load "/path/to/gimp-mode/gimp-init.el")

...that file basically sets up everything so that stuff is only loaded when
needed.)

Shttp://registry.gimp.org/node/6226

http://registry.gimp.org/node/6226
gimp-mode.tar.bz2
gimp-mode.zip

6.1 Now run the gimp inferiorly...

(Note for Windows users: skip this section and

Now run M-x run-gimp to start the GIMP and its REPL within Emacs.
This takes a little while (just a little longer than the graphical start-up phase -
the Gimp is told by emacs-interaction.scm to set up some caches in your local
gimp directory), so just be patient. In any event, do not type anything while
the message “Reading in caches...” is displayed—for some reason I have not
been able to track down yet this causes the reading in of caches to go on forever.
We don’t want that now do we? Visiting other buffers in the mean time is no
problem however (if you do happen to have typed something at that moment,
just quit with C-g, and issue M-x restore-caches—most will be well). See
the customization for variables gimp-program and gimp-command-line-args
to tweak GIMP’s incantation to your needs.

Anyway, where were we. Yes. Once you see this, you can let the fun begin:

{Inferior GIMP:runlfuzzyl)

i)
. Done! The GIMP is loaded. Hawe FU.

Figure 4: First encounter with the REPL

6.2 ...or attach as a client

If you want to hook into a running GIMP session as a client (this is the only
means of interaction on a windows system) use M-x gimp-cl-connect after
having started the script-fu server from the GIMP. In GIMP 2.4, the server
is hidden under Xtns > Script-Fu > Start Server. In the development ver-
sions >= 2.5 it is tucked away (somewhat strangely in my humble opinion) un-
der Filters > Script-Fu > Start Server. You will also find an entry there
called “Dump internals for Emacs’ Gimp Mode”, which can be of use when
emacs-interaction.scm is has been loaded before other scripts in your user
directory on start-up.

Gimp Mode sets up buffers to to automatically use gimp-mode when the
file begins with “s-f-” or “script-fu-” and ends with “.scm” (just ending in “scm”
does not suffice, as it would be improper to impose gimp-mode on any scheme
file). Also any file ending in “.scm” and in a path containing the string “gimp”

is automatically started in gimp-mode (as of v1.49). There are other ways, such
as to put:

;3 —%- mode: Gimp; -*-

in the first line of a script-fu file.

If you have set ‘auto-insert’ set to a non-nil value, gimp-mode will insert
that line and a registration when visiting a blank file in gimp-mode or using
M-x auto-insert.

7 To Do (?)

A debugger (inferior mode only - if any).

e Find a way to get to python/C stuff REGISTERED on procedure argu-
ments. (such as: lower and upper bounds, step, precision, default val-
ues...) (this has already been done for script-fu)

e Test on an OSX box (interesting).
e Add completion on script-fu-register, script-fu-menu-register.

e Add function for constructing a basic script-fu-register form from a
define form.

e Make completion selection better (navigation and selection between can-
didates).

e Show tracing in a separate buffer (7).

e And of course I am open to suggestions

8 Known Bugs

The interactive client mode suffers from a strange lag, combined with returning
the last value multiple times, especially with errors, and more especially on
windows. I haven’t been able to pin down its cause yet. The inferior mode does
not suffer from this problem.

Please file any bugs you might find via M-x gimp-report-bug RET.

9 Possibly Asked Questions

Q. What was your incentive to write Gimp Mode?

A. When writing a script for the GIMP, I found the discoverability to be
quite low, existing interaction mechanisms clunky and, well, to be honest, I
simply have the habit of writing an Emacs mode whenever I embark on any
new project that can be handled by emacs and has not been handled be emacs

yet—or insufficiently. I have to admit that often this stops me from engaging
in the project itself, becoming too absorbed in its interaction with emacs.

Q: Why do you offer both an inferior mode and a client mode for the script-fu
server?

A: Tt is way easier to start the GIMP as a subprocess, defining gimp-inferior
mode as a derived mode from inferior-scheme-mode than hacking up (write
(convert-form-to-emacs-readable FORM)) stuff, and so I naturally started with
that. In order to be universally attractive (read: also on those pesky windows
machines), gimp-mode asked me to be adapted to a client-mode operation. I
had no option but to obey.

Q: What about a Python interface?

A:

Just like the script-fu server, the Python batch-interpreter doesn’t talk
back (except on error). Therefore, this would require quite some tweaking.

I like Lisp.

I do not know Python that well.

e Furthermore, the python console provided with the Gimp is pretty good.

Q. Why don’t you simply use the script-fu console that is shipped with the
Gimp?

A. T wanted dynamic completion, interaction with source buffers, instant
evaluation. The script-fu console does not have those.

Q. I want to find a script or plug-in whose place in the menu I know, but
whose name I do not know.

A. C-cm to browse the menu structure to the rescue. This gives you the
Gimp Mode Help page on that script or plug-in. Note that the sub-menus
shown on top of that Help page are clickable too.

Q. Stuff does not work correctly when I turn on tracing via (tracing 1)

A. Use the wrapper functions gimp-trace / gimp-untrace for that; at the
REPL: ,trace ENTER and ,untrace ENTER. NOTE that this tracing feature is
only on at the REPL, not from .scm files (and not in client mode).

Q. Why didn’t you name it gimp.el?

A. There is already a gimp.el in the nxhtml distribution (which actually
does nothing more than open an image (and then only on win32)). And Gimp
Mode is nicer for wiki pages anyway. So gimp-mode.el it shall be. Just harder
to interpret it as a recursive acronym: gimp interaction mode for programmers
mildly... gimp interaction mode performed mostly on... (and gimpel would
rhyme so lovely with 'met vlag en wimpel...’) Yes, life can be hard sometimes.

Q. What’s with the strange versioning numbers?

A. That’s just the CVS revision number for the file gimp-mode.el. I found
that easiest.

Q. Where can I get that shirt the Gnu on GimpMode’s homepage is wearing?

A ...

10

10 Related

TIP on using emacs-w3m to browse gimp documentation:
To use emacs-w3m as the browser for help files from within the Gimp, put
the following in your .gimprc:

(help-browser web-browser)
(web-browser "emacsclient -e ’(w3m-browse-url \"%s\")’")

and (server-start) in your .emacs

Browsing the help with emacs-w3m is very nice, esp. since you can make use
of the nice w3m-scroll-down-or-previous-url, w3m-scroll-up-or-next-url
(SPACE) and w3m-scroll-down-or-previous-url (b), as relative links are
provided by the HTML documentation of the Gimp.

11 Licence

Gimp Mode is licenced under the GPLv3}

12 Earlier versions

[

13 Contact

Please use M-x gimp-report-bug from Emacs. This is OK too for feature
suggestions.
If that should fail for some reason, you can contact me at nielsforkgiesen@gmailknifecom,
but please replace the kitchen utensils with a dot before hitting “Send”, lest any-
one get hurt in the process.

Shttp://www.gnu.org/licenses/gpl.html

11

http://www.gnu.org/licenses/gpl.html

E GIMP
File [Xtns | Help

Script-Fu

atch
rip
Start Server...
S for remot

Figure 5: Start up the server from the Gimp

12

	Short description
	News: people do use Gimp Mode
	Version v1.52:
	Version v1.51:
	Version v1.50:
	Version v1.48 (the FUD release):
	Version v1.45
	Version v1.44
	Version v1.43
	Version v1.42:
	Version 1.41:

	Features
	Caveats
	Comparison with other modes
	Getting started/Download
	Now run the gimp inferiorly…
	…or attach as a client

	To Do (?)
	Known Bugs
	Possibly Asked Questions
	Related
	Licence
	Earlier versions
	Contact

