{ "cells": [ { "cell_type": "markdown", "id": "e40c18d5-e4e9-49ca-b3f5-faab7d3f1aaf", "metadata": {}, "source": [ "# daschlab Quicklook Notebook Template\n", "\n", "Use this template to quickly check out the DASCH data for a source of interest. To keep things\n", "terse, it does not include explanation — see [the documentation](https://dasch.cfa.harvard.edu/dr7/)." ] }, { "cell_type": "markdown", "id": "cfeee608-6f5d-4822-a5d2-93f5bcdfa333", "metadata": {}, "source": [ "---\n", "\n", "## Configuration" ] }, { "cell_type": "code", "execution_count": null, "id": "48ac67ec-a87c-4d84-900d-21da4f863d05", "metadata": {}, "outputs": [], "source": [ "# Fill in the SIMBAD-resolvable name of your target source:\n", "SOURCE = \"source name goes here\"\n", "\n", "# Leave this unchanged unless you're sure that you want something else:\n", "REFCAT = \"apass\"" ] }, { "cell_type": "markdown", "id": "41e26299-8a75-4ba8-8c67-a6186e6c542e", "metadata": {}, "source": [ "---\n", "\n", "## Initialization" ] }, { "cell_type": "code", "execution_count": null, "id": "9ce5c4bf-673c-49e0-b591-bcce10cf9595", "metadata": {}, "outputs": [], "source": [ "# Get the main module:\n", "import daschlab\n", "\n", "# Set up Bokeh plots:\n", "from bokeh.io import output_notebook\n", "output_notebook()\n", "\n", "# Get some other imports that will be useful:\n", "from astropy import units as u\n", "from bokeh.plotting import figure, show\n", "import numpy as np\n", "from daschlab.photometry import AFlags, BFlags" ] }, { "cell_type": "code", "execution_count": null, "id": "8ed8b3e3-c916-485e-83a8-7c83d766ccdb", "metadata": {}, "outputs": [], "source": [ "sess = daschlab.open_session(source=SOURCE)\n", "sess.select_target(name=SOURCE)\n", "sess.select_refcat(REFCAT)" ] }, { "cell_type": "markdown", "id": "35c1e265-6abb-433b-8914-b56d2fd32d99", "metadata": {}, "source": [ "#### **Before proceeding, make sure that the WWT JupyterLab app is open** — the [tutorial slideshow][slides] shows what to do\n", "\n", "Once that's done, you may continue:\n", "\n", "[slides]: https://dasch.cfa.harvard.edu/dr7/rycnc/" ] }, { "cell_type": "code", "execution_count": null, "id": "0059f3c9-22ea-453b-9d31-8cf5cae5d065", "metadata": {}, "outputs": [], "source": [ "await sess.connect_to_wwt()" ] }, { "cell_type": "markdown", "id": "9a2c3937-a8e7-427b-bb4f-a92880b15df6", "metadata": {}, "source": [ "---\n", "\n", "## Print and display the refcat\n" ] }, { "cell_type": "code", "execution_count": null, "id": "794bd586-f158-4921-8ba8-9100afbbb28b", "metadata": {}, "outputs": [], "source": [ "sess.refcat()[:12]" ] }, { "cell_type": "code", "execution_count": null, "id": "df83affa-03a7-495b-a21c-832d9498163d", "metadata": {}, "outputs": [], "source": [ "sess.refcat().show()" ] }, { "cell_type": "markdown", "id": "2a6fbadc-d40c-4a20-8810-4a6317301c64", "metadata": {}, "source": [ "---\n", "\n", "## Select and show a nice sample cutout" ] }, { "cell_type": "code", "execution_count": null, "id": "fd9cdb39-1047-4fae-be7c-0cdb1a5c57bb", "metadata": {}, "outputs": [], "source": [ "# Print mini table of candidates\n", "sess.exposures().candidate_nice_cutouts()" ] }, { "cell_type": "code", "execution_count": null, "id": "08e2127a-b366-47c6-a7a7-721c6fe7e111", "metadata": {}, "outputs": [], "source": [ "# Choose an exp_local_id from the above list of candidates\n", "SAMPLE_EXP_ID = id_goes_here" ] }, { "cell_type": "code", "execution_count": null, "id": "ee18b491-d774-482b-855f-db799f34ac18", "metadata": {}, "outputs": [], "source": [ "sess.exposures().show(SAMPLE_EXP_ID)" ] }, { "cell_type": "markdown", "id": "7bde450b-8785-4206-a154-57275d101d8b", "metadata": {}, "source": [ "---\n", "\n", "## Plot the raw lightcurve" ] }, { "cell_type": "code", "execution_count": null, "id": "2905ec4a-7273-4b91-9298-3c1bc029fc50", "metadata": {}, "outputs": [], "source": [ "# This number is a row index into the reference catalog table, `sess.refcat()`. That\n", "# table is sorted by promixity to the search target, so row 0 is probably what you want.\n", "\n", "TARGET_ID = 0" ] }, { "cell_type": "code", "execution_count": null, "id": "75292ad7-598f-4f63-a4bd-cfab073f436d", "metadata": {}, "outputs": [], "source": [ "lc = sess.lightcurve(TARGET_ID)\n", "lc.summary()" ] }, { "cell_type": "code", "execution_count": null, "id": "6bc2ad23-7431-4c27-b4bc-319f0be0cd2f", "metadata": {}, "outputs": [], "source": [ "lc.plot()" ] }, { "cell_type": "markdown", "id": "0e681404-5128-4b6a-86fb-658fb22ba319", "metadata": {}, "source": [ "---\n", "\n", "## Plot after standard rejections" ] }, { "cell_type": "code", "execution_count": null, "id": "9be85c99-61fa-4c6d-b92b-ac3fd351e113", "metadata": {}, "outputs": [], "source": [ "lc.apply_standard_rejections()\n", "print()\n", "lc.summary()" ] }, { "cell_type": "code", "execution_count": null, "id": "d858825e-8e66-48d1-aea8-b887eb997cd8", "metadata": {}, "outputs": [], "source": [ "lc.plot()" ] }, { "cell_type": "markdown", "id": "e1263f40-d17c-4ea4-8fa2-0a6630b132d7", "metadata": {}, "source": [ "---\n", "\n", "## Your Analysis Follows Here:" ] }, { "cell_type": "code", "execution_count": null, "id": "5e438fbf-bd45-40e3-b5ab-0c875f917e6b", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }