{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!!"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"#### Compare WebGL and SVG\n",
"Checkout [this notebook](https://plotly.com/python/compare-webgl-svg) to compare WebGL and SVG scatter plots with 75,000 random data points"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"#### WebGL with 100,000 points"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import numpy as np\n",
"\n",
"N = 100000\n",
"trace = go.Scattergl(\n",
" x = np.random.randn(N),\n",
" y = np.random.randn(N),\n",
" mode = 'markers',\n",
" marker = dict(\n",
" line = dict(\n",
" width = 1, \n",
" color = '#404040')\n",
" )\n",
")\n",
"data = [trace]\n",
"py.iplot(data, filename='WebGL100000')"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"#### WebGL with 1 Million Points"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import numpy as np\n",
"\n",
"N = 1000000\n",
"trace = go.Scattergl(\n",
" x = np.random.randn(N),\n",
" y = np.random.randn(N),\n",
" mode = 'markers',\n",
" marker = dict(\n",
" color = 'rgb(152, 0, 0)',\n",
" line = dict(\n",
" width = 1,\n",
" color = 'rgb(0,0,0)')\n",
" )\n",
")\n",
"data = [trace]\n",
"py.iplot(data, filename='WebGLmillion')"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"#### WebGL with many traces"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import numpy as np\n",
"\n",
"data = []\n",
"trace_num = 10\n",
"point_num = 5000\n",
"for i in range(trace_num):\n",
" data.append(go.Scattergl(\n",
" x = np.linspace(0, 1, point_num),\n",
" y = np.random.randn(point_num)+(i*5)\n",
" )\n",
")\n",
"layout = dict(showlegend=False)\n",
"fig=dict(data=data, layout=layout)\n",
"py.iplot(fig, filename='WebGL_line')"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Reference"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"See https://plotly.com/python/reference/#scattergl for more information and chart attribute options!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning: The `IPython.nbconvert` package has been deprecated. You should import from nbconvert instead.\n",
" \"You should import from nbconvert instead.\", ShimWarning)\n",
"/usr/local/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning: Did you \"Save\" this notebook before running this command? Remember to save, always save.\n",
" warnings.warn('Did you \"Save\" this notebook before running this command? '\n"
]
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"! pip install git+https://github.com/plotly/publisher.git --upgrade\n",
"import publisher\n",
"publisher.publish(\n",
" 'webgl.ipynb', 'python/webgl-vs-svg/', 'Python WebGL vs SVG | plotly',\n",
" 'Implement WebGL for increased speed, improved interactivity, and the ability to plot even more data!',\n",
" title = 'Python WebGL vs SVG | plotly',\n",
" name = 'WebGL vs SVG',\n",
" has_thumbnail='true', thumbnail='thumbnail/webgl.jpg', \n",
" language='python', \n",
" display_as='basic', order=0.5,\n",
" ipynb= '~notebook_demo/44')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}