{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Imports\n",
"The tutorial below imports [NumPy](http://www.numpy.org/), [Pandas](https://plotly.com/pandas/intro-to-pandas-tutorial/), [SciPy](https://www.scipy.org/) and [PeakUtils](http://pythonhosted.org/PeakUtils/)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"from plotly.tools import FigureFactory as FF\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import scipy\n",
"import peakutils\n",
"\n",
"from scipy import signal"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Import Data\n",
"Let us import some stock data for our fitting:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"stock_data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/stockdata.csv')\n",
"df = stock_data[0:15]\n",
"\n",
"table = FF.create_table(df)\n",
"py.iplot(table, filename='stockdata-peak-fitting')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Original Plot\n",
"Let us plot the `SBUX` column of the data and highlight a section we will fit to:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"left_endpt=1857\n",
"right_endpt=1940\n",
"\n",
"original_trace = go.Scatter(\n",
" x = [j for j in range(len(stock_data['SBUX']))],\n",
" y = stock_data['SBUX'][0:left_endpt].tolist() + [None for k in range(right_endpt - left_endpt)] +\n",
" stock_data['SBUX'][right_endpt + 1:len(stock_data['SBUX'])].tolist(),\n",
" mode = 'lines',\n",
" name = 'Full Data',\n",
" marker = dict(color = 'rgb(160,200,250)')\n",
")\n",
"\n",
"highlighted_trace = go.Scatter(\n",
" x = [j for j in range(left_endpt, right_endpt)],\n",
" y = stock_data['SBUX'][left_endpt:right_endpt],\n",
" mode = 'lines',\n",
" name = 'Highlighted Section',\n",
" marker = dict(color = 'rgb(0,56,210)')\n",
")\n",
"\n",
"data = [original_trace, highlighted_trace,]\n",
"py.iplot(data, filename='stock-data-SBUX')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Peak Detection\n",
"Before we are able to apply `Peak Fitting` we need to detect the peaks in this waveform to properly specify a peak to fit to."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = [j for j in range(len(stock_data))][left_endpt:right_endpt]\n",
"y = stock_data['SBUX'][left_endpt:right_endpt]\n",
"y = y.tolist()\n",
"\n",
"cb = np.array(y)\n",
"indices = peakutils.indexes(cb, thres=0.75, min_dist=0.1)\n",
"\n",
"trace = go.Scatter(\n",
" x=x,\n",
" y=y,\n",
" mode='lines',\n",
" marker=dict(\n",
" color='rgb(0,56,210)'\n",
" ),\n",
" name='Highlighted Plot'\n",
")\n",
"\n",
"trace2 = go.Scatter(\n",
" x=indices + left_endpt,\n",
" y=[y[j] for j in indices],\n",
" mode='markers',\n",
" marker=dict(\n",
" size=8,\n",
" color='rgb(255,0,0)',\n",
" symbol='cross'\n",
" ),\n",
" name='Detected Peaks'\n",
")\n",
"\n",
"data = [trace, trace2]\n",
"py.iplot(data, filename='stock-data-with-peaks')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Peak Fitting\n",
"Since we have detected all the local maximum points on the data, we can now isolate a few peaks and superimpose a fitted gaussian over one."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def gaussian(x, mu, sig):\n",
" return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))\n",
"\n",
"first_index = indices[6]\n",
"left_gauss_bound = 1894\n",
"right_gauss_bound = 1910\n",
"\n",
"x_values_1 = np.asarray(x[left_gauss_bound-left_endpt:right_gauss_bound-left_endpt])\n",
"y_values_1 = np.asarray(y[left_gauss_bound-left_endpt:right_gauss_bound-left_endpt])\n",
"\n",
"gaussian_params_1 = peakutils.gaussian_fit(x_values_1, y_values_1, center_only=False)\n",
"gaussian_y_1 = [gaussian(x_dummy, gaussian_params_1[1], 1.5) for x_dummy in x_values_1]\n",
"\n",
"trace = go.Scatter(\n",
" x=x,\n",
" y=y,\n",
" mode='lines',\n",
" marker=dict(\n",
" color='rgb(0,56,210)'\n",
" ),\n",
" name='Highlighted Plot'\n",
")\n",
"\n",
"trace2 = go.Scatter(\n",
" x=indices + left_endpt,\n",
" y=[y[j] for j in indices],\n",
" mode='markers',\n",
" marker=dict(\n",
" size=8,\n",
" color='rgb(255,0,0)',\n",
" symbol='cross'\n",
" ),\n",
" name='Detected Peaks'\n",
")\n",
"\n",
"trace3 = go.Scatter(\n",
" #x=x_values_1,\n",
" x=[item_x + 1.5 for item_x in x_values_1],\n",
" y=[item_y + 38.2 for item_y in gaussian_y_1],\n",
" mode='lines',\n",
" marker=dict(\n",
" size=2,\n",
" color='rgb(200,0,250)',\n",
" ),\n",
" name='Gaussian Fit'\n",
")\n",
"\n",
"data = [trace, trace2, trace3]\n",
"py.iplot(data, filename='stock-data-with-peaks-and-fit')"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/plotly/publisher.git\n",
" Cloning https://github.com/plotly/publisher.git to /var/folders/ld/6cl3s_l50wd40tdjq2b03jxh0000gp/T/pip-Fa_UTY-build\n",
"Installing collected packages: publisher\n",
" Found existing installation: publisher 0.10\n",
" Uninstalling publisher-0.10:\n",
" Successfully uninstalled publisher-0.10\n",
" Running setup.py install for publisher ... \u001b[?25l-\b \b\\\b \bdone\n",
"\u001b[?25hSuccessfully installed publisher-0.10\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/brandendunbar/Desktop/test/venv/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning: The `IPython.nbconvert` package has been deprecated. You should import from nbconvert instead.\n",
" \"You should import from nbconvert instead.\", ShimWarning)\n",
"/Users/brandendunbar/Desktop/test/venv/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning: Did you \"Save\" this notebook before running this command? Remember to save, always save.\n",
" warnings.warn('Did you \"Save\" this notebook before running this command? '\n"
]
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"! pip install git+https://github.com/plotly/publisher.git --upgrade\n",
"import publisher\n",
"publisher.publish(\n",
" 'python-Peak-Fitting.ipynb', 'python/peak-fitting/', 'Peak Fitting | plotly',\n",
" 'Learn how to fit to peaks in Python',\n",
" title='Peak Fitting in Python | plotly',\n",
" name='Peak Fitting',\n",
" language='python',\n",
" page_type='example_index', has_thumbnail='false', display_as='peak-analysis', order=5,\n",
" ipynb= '~notebook_demo/119')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}