{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!\n",
"#### Version Check\n",
"Plotly's python package is updated frequently. Run pip install plotly --upgrade to use the latest version."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'2.2.2'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly\n",
"plotly.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Basic Heatmap"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"trace = go.Heatmap(z=[[1, 20, 30],\n",
" [20, 1, 60],\n",
" [30, 60, 1]])\n",
"data=[trace]\n",
"py.iplot(data, filename='basic-heatmap')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Heatmap with Categorical Axis Labels"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"trace = go.Heatmap(z=[[1, 20, 30, 50, 1], [20, 1, 60, 80, 30], [30, 60, 1, -10, 20]],\n",
" x=['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'],\n",
" y=['Morning', 'Afternoon', 'Evening'])\n",
"data=[trace]\n",
"py.iplot(data, filename='labelled-heatmap')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Heatmap with Unequal Block Sizes\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import plotly.plotly as py\n",
"\n",
"def spiral(th):\n",
" a = 1.120529\n",
" b = 0.306349\n",
" r = a*np.exp(-b*th)\n",
" return (r*np.cos(th), r*np.sin(th))\n",
"\n",
"nspiral = 2 # number of spiral loops\n",
"\n",
"th = np.linspace(-np.pi/13,2*np.pi*nspiral,1000); # angle\n",
"(x,y) = spiral(th)\n",
"\n",
"# shift the spiral north so that it is centered\n",
"yshift = (1.6 - (max(y)-min(y)))/2\n",
"\n",
"s = dict(x= -x+x[0], y= y-y[0]+yshift,\n",
" line =dict(color='white',width=3)) \n",
"\n",
"# Build the rectangles as a heatmap\n",
"# specify the edges of the heatmap squares\n",
"phi = ( 1+np.sqrt(5) )/2.\n",
"xe = [0, 1, 1+(1/(phi**4)), 1+(1/(phi**3)), phi]\n",
"ye = [0, 1/(phi**3),1/phi**3+1/phi**4,1/(phi**2),1]\n",
"\n",
"z = [ [13,3,3,5],\n",
" [13,2,1,5],\n",
" [13,10,11,12],\n",
" [13,8,8,8]\n",
" ]\n",
"\n",
"hm = dict(x = np.sort(xe),\n",
" y = np.sort(ye)+yshift,\n",
" z = z,\n",
" type = 'heatmap',\n",
" colorscale = 'Viridis')\n",
"\n",
"axis_template = dict(range = [0,1.6], autorange = False,\n",
" showgrid = False, zeroline = False,\n",
" linecolor = 'black', showticklabels = False,\n",
" ticks = '' )\n",
"\n",
"layout = dict( margin = dict(t=200,r=200,b=200,l=200),\n",
" xaxis = axis_template,\n",
" yaxis = axis_template,\n",
" showlegend = False,\n",
" width = 700, height = 700,\n",
" autosize = False )\n",
"\n",
"figure = dict(data=[s, hm],layout=layout)\n",
"\n",
"py.iplot(figure, filename='golden spiral', height=750)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Heatmap with Datetime Axis"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"import datetime\n",
"import numpy as np\n",
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"programmers = ['Alex','Nicole','Sara','Etienne','Chelsea','Jody','Marianne']\n",
"\n",
"base = datetime.datetime.today()\n",
"date_list = [base - datetime.timedelta(days=x) for x in range(0, 180)]\n",
"\n",
"z = []\n",
"\n",
"for prgmr in programmers:\n",
" new_row = []\n",
" for date in date_list:\n",
" new_row.append( np.random.poisson() )\n",
" z.append(list(new_row))\n",
"\n",
"data = [\n",
" go.Heatmap(\n",
" z=z,\n",
" x=date_list,\n",
" y=programmers,\n",
" colorscale='Viridis',\n",
" )\n",
"]\n",
"\n",
"layout = go.Layout(\n",
" title='GitHub commits per day',\n",
" xaxis = dict(ticks='', nticks=36),\n",
" yaxis = dict(ticks='' )\n",
")\n",
"\n",
"fig = go.Figure(data=data, layout=layout)\n",
"py.iplot(fig, filename='datetime-heatmap')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dash Example"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[Dash](https://plotly.com/products/dash/) is an Open Source Python library which can help you convert plotly figures into a reactive, web-based application. Below is a simple example of a dashboard created using Dash. Its source code can be found [here](https://github.com/plotly/simple-example-chart-apps/tree/master/dash-heatmapplot) and can easily be deployed to a PaaS."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import IFrame\n",
"IFrame(src= \"https://dash-simple-apps.plotly.host/dash-heatmapplot/\", width=\"120%\", height=\"650px\", frameBorder=\"0\")"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import IFrame\n",
"IFrame(src= \"https://dash-simple-apps.plotly.host/dash-heatmapplot/code\", width=\"120%\", height=500, frameBorder=\"0\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reference\n",
"See https://plotly.com/python/reference/#heatmap for more information and chart attribute options!\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/plotly/publisher.git\n",
" Cloning https://github.com/plotly/publisher.git to /tmp/pip-req-build-s5qxb1jf\n",
"Building wheels for collected packages: publisher\n",
" Running setup.py bdist_wheel for publisher ... \u001b[?25ldone\n",
"\u001b[?25h Stored in directory: /tmp/pip-ephem-wheel-cache-ugbgjrgp/wheels/99/3e/a0/fbd22ba24cca72bdbaba53dbc23c1768755fb17b3af0f33966\n",
"Successfully built publisher\n",
"Installing collected packages: publisher\n",
" Found existing installation: publisher 0.13\n",
" Uninstalling publisher-0.13:\n",
" Successfully uninstalled publisher-0.13\n",
"Successfully installed publisher-0.13\n",
"\u001b[33mYou are using pip version 10.0.1, however version 19.1.1 is available.\n",
"You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n"
]
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"! pip install git+https://github.com/plotly/publisher.git --upgrade\n",
"\n",
"import publisher\n",
"publisher.publish(\n",
" 'heatmaps.ipynb', ' python/heatmaps/', 'Heatmaps | plotly',\n",
" 'How to make Heatmaps in Python with Plotly.',\n",
" title = 'Python Heatmaps | plotly',\n",
" name = 'Heatmaps',\n",
" has_thumbnail='true', thumbnail='thumbnail/heatmap.jpg', \n",
" language='python', page_type='example_index',\n",
" display_as='scientific',order=3,\n",
" ipynb= '~notebook_demo/33', redirect_from='python/heatmap/') "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 1
}