{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#### New to Plotly?\n", "Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n", "
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n", "
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Network reflecting coappearances of characters in
Victor Hugo's novel Les Miserables" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We define our graph as an `igraph.Graph` object. [Python `igraph`](http://igraph.org/python/)\n", "is a library for high-performance graph generation and analysis. Install the Python library with `sudo pip install python-igraph`." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import igraph as ig" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Read graph data from a `json` file:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[u'nodes', u'links']\n" ] } ], "source": [ "import json\n", "import urllib2\n", "\n", "data = []\n", "req = urllib2.Request(\"https://raw.githubusercontent.com/plotly/datasets/master/miserables.json\")\n", "opener = urllib2.build_opener()\n", "f = opener.open(req)\n", "data = json.loads(f.read())\n", "\n", "print data.keys()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get the number of nodes:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "77" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "N=len(data['nodes'])\n", "N" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define the list of edges and the Graph object from Edges:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "L=len(data['links'])\n", "Edges=[(data['links'][k]['source'], data['links'][k]['target']) for k in range(L)]\n", "\n", "G=ig.Graph(Edges, directed=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Extract the node attributes, 'group', and 'name':" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{u'group': 1, u'name': u'Myriel'}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['nodes'][0]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "labels=[]\n", "group=[]\n", "for node in data['nodes']:\n", " labels.append(node['name'])\n", " group.append(node['group'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get the node positions, set by the Kamada-Kawai layout for 3D graphs:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "layt=G.layout('kk', dim=3) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`layt` is a list of three elements lists (the coordinates of nodes):" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[4.195949332184983, 1.172321178571202, -2.5543268281789135]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "layt[5]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set data for the Plotly plot of the graph:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "Xn=[layt[k][0] for k in range(N)]# x-coordinates of nodes\n", "Yn=[layt[k][1] for k in range(N)]# y-coordinates\n", "Zn=[layt[k][2] for k in range(N)]# z-coordinates\n", "Xe=[]\n", "Ye=[]\n", "Ze=[]\n", "for e in Edges:\n", " Xe+=[layt[e[0]][0],layt[e[1]][0], None]# x-coordinates of edge ends\n", " Ye+=[layt[e[0]][1],layt[e[1]][1], None] \n", " Ze+=[layt[e[0]][2],layt[e[1]][2], None] " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "import plotly.plotly as py\n", "import plotly.graph_objs as go\n", "\n", "trace1=go.Scatter3d(x=Xe,\n", " y=Ye,\n", " z=Ze,\n", " mode='lines',\n", " line=dict(color='rgb(125,125,125)', width=1),\n", " hoverinfo='none'\n", " )\n", "\n", "trace2=go.Scatter3d(x=Xn,\n", " y=Yn,\n", " z=Zn,\n", " mode='markers',\n", " name='actors',\n", " marker=dict(symbol='circle',\n", " size=6,\n", " color=group,\n", " colorscale='Viridis',\n", " line=dict(color='rgb(50,50,50)', width=0.5)\n", " ),\n", " text=labels,\n", " hoverinfo='text'\n", " )\n", "\n", "axis=dict(showbackground=False,\n", " showline=False,\n", " zeroline=False,\n", " showgrid=False,\n", " showticklabels=False,\n", " title=''\n", " )\n", "\n", "layout = go.Layout(\n", " title=\"Network of coappearances of characters in Victor Hugo's novel
Les Miserables (3D visualization)\",\n", " width=1000,\n", " height=1000,\n", " showlegend=False,\n", " scene=dict(\n", " xaxis=dict(axis),\n", " yaxis=dict(axis),\n", " zaxis=dict(axis),\n", " ),\n", " margin=dict(\n", " t=100\n", " ),\n", " hovermode='closest',\n", " annotations=[\n", " dict(\n", " showarrow=False,\n", " text=\"Data source: [1] miserables.json\",\n", " xref='paper',\n", " yref='paper',\n", " x=0,\n", " y=0.1,\n", " xanchor='left',\n", " yanchor='bottom',\n", " font=dict(\n", " size=14\n", " )\n", " )\n", " ], )" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data=[trace1, trace2]\n", "fig=go.Figure(data=data, layout=layout)\n", "\n", "py.iplot(fig, filename='Les-Miserables')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Reference\n", "See https://plotly.com/python/reference/#scatter3d for more information and chart attribute options!" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting git+https://github.com/plotly/publisher.git\n", " Cloning https://github.com/plotly/publisher.git to c:\\users\\thars\\appdata\\local\\temp\\pip-req-build-ogrbpd\n", "Building wheels for collected packages: publisher\n", " Running setup.py bdist_wheel for publisher: started\n", " Running setup.py bdist_wheel for publisher: finished with status 'done'\n", " Stored in directory: c:\\users\\thars\\appdata\\local\\temp\\pip-ephem-wheel-cache-unt43t\\wheels\\99\\3e\\a0\\fbd22ba24cca72bdbaba53dbc23c1768755fb17b3af0f33966\n", "Successfully built publisher\n", "Installing collected packages: publisher\n", " Found existing installation: publisher 0.11\n", " Uninstalling publisher-0.11:\n", " Successfully uninstalled publisher-0.11\n", "Successfully installed publisher-0.11\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Anaconda\\Anaconda2\\lib\\site-packages\\IPython\\nbconvert.py:13: ShimWarning: The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n", " \"You should import from nbconvert instead.\", ShimWarning)\n", "C:\\Anaconda\\Anaconda2\\lib\\site-packages\\publisher\\publisher.py:53: UserWarning: Did you \"Save\" this notebook before running this command? Remember to save, always save.\n", " warnings.warn('Did you \"Save\" this notebook before running this command? '\n" ] } ], "source": [ "from IPython.display import display, HTML\n", "\n", "display(HTML(''))\n", "display(HTML(''))\n", "\n", "! pip install git+https://github.com/plotly/publisher.git --upgrade\n", "\n", "import publisher\n", "publisher.publish(\n", " 'Les-miserables-network.ipynb', 'python/3d-network-graph/', 'Python 3D Network Graphs',\n", " 'How to make 3D Network Graphs in Python. ',\n", " title = '3D Network Graphs in Python | plotly',\n", " name = '3D Network Graphs',\n", " has_thumbnail='true', thumbnail='thumbnail/3dnetwork.jpg', \n", " language='python', page_type='example_index', \n", " display_as='3d_charts', order=13,\n", " ipynb= '~notebook_demo/226')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 1 }