element.\n",
" animation_opts: dict or None (default None)\n",
" dict of custom animation parameters to be passed to the function\n",
" Plotly.animate in Plotly.js. See\n",
" https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js\n",
" for available options. Has no effect if the figure does not contain\n",
" frames, or auto_play is False.\n",
" default_width, default_height: number or str (default '100%')\n",
" The default figure width/height to use if the provided figure does not\n",
" specify its own layout.width/layout.height property. May be\n",
" specified in pixels as an integer (e.g. 500), or as a css width style\n",
" string (e.g. '500px', '100%').\n",
" validate: bool (default True)\n",
" True if the figure should be validated before being converted to\n",
" JSON, False otherwise.\n",
" auto_open: bool (default True\n",
" If True, open the saved file in a web browser after saving.\n",
" This argument only applies if `full_html` is True.\n",
" Returns\n",
" -------\n",
" str\n",
" Representation of figure as an HTML div string\n",
"\n"
]
}
],
"source": [
"import plotly\n",
"help(plotly.io.write_html)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plotly.com"
},
"data": [
{
"type": "scatter",
"x": [
1,
2,
3,
4
],
"y": [
4,
3,
2,
1
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#506784",
"arrowhead": 0,
"arrowwidth": 1
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"fillcolor": "#506784",
"line": {
"width": 0
},
"opacity": 0.4
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "hello world"
},
"xaxis": {
"autorange": true,
"range": [
0.8171959721146398,
4.182804027885361
],
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
0.7802547770700636,
4.219745222929936
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAHCCAYAAACXLHDfAAAgAElEQVR4Xuy9C5hVV3n//91nLjBkIARCIOQGDMycIWq8X9patVZbf39rf/XS2pu21rvGeKlab/ESq01r1Bgbo02sl9Zb4yW23rXaplXT2p+mxswFBgghhIRACBCGgZmz/886hMwZAsw5s87Z77v3+Zzn6ROb2Wu97/p814HwYe+9kjRNU/GBAAQgAAEIQAACEIAABCAAAQhAoO0IJEiBtsucBUMAAhCAAAQgAAEIQAACEIAABKoEkAJsBAhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQggBRgD0AAAhCAAAQgAAEIQAACEIAABNqUAFKgTYNn2RCAAAQgAAEIQAACEIAABCAAAaQAewACEIAABCAAAQhAAAIQgAAEINCmBJACbRo8y4YABCAAAQhAAAIQgAAEIAABCCAF2AMQgAAEIAABCEAAAhCAAAQgAIE2JYAUaNPgWTYEIAABCEAAAhCAAAQgAAEIQAApwB6AAAQgAAEIQAACEIAABCAAAQi0KQGkQJsGz7IhAAEIQAACEIAABCAAAQhAAAJIAfYABCAAAQhAAAIQgAAEIAABCECgTQkgBdo0eJYNAQhAAAIQgAAEIAABCEAAAhBACrAHIAABCEAAAhCAAAQgAAEIQAACbUoAKdCmwbNsCEAAAhCAAAQgAAEIQAACEIAAUoA9AAEIQAACEIAABCAAAQhAAAIQaFMCSIE2DZ5lQwACEIAABCAAAQhAAAIQgAAEkALsAQhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQggBRgD0AAAhCAAAQgAAEIQAACEIAABNqUAFKgTYNn2RCAAAQgAAEIQAACEIAABCAAAaQAewACEIAABCAAAQhAAAIQgAAEINCmBJACbRo8y4YABCAAAQhAAAIQgAAEIAABCCAF2AMQgAAEIAABCEAAAhCAAAQgAIE2JYAUaNPgWTYEIAABCEAAAhCAAAQgAAEIQAApwB6AAAQgAAEIQAACEIAABCAAAQi0KQGkQJsGz7IhAAEIQAACEIAABCAAAQhAAAJIAfYABCAAAQhAAAIQgAAEIAABCECgTQkgBdo0eJYNAQhAAAIQgAAEIAABCEAAAhBACrAHIAABCEAAAhCAAAQgAAEIQAACbUoAKdCmwbNsCEAAAhCAAAQgAAEIQAACEIAAUoA9AAEIQAACEIAABCAAAQhAAAIQaFMCSIE2DZ5lQwACEIAABCAAAQhAAAIQgAAEkALsAQhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQgUEgp8NCnvFC/85u/ore/7k+akvBNI5v1ey95p/7qzS/Wbz31l6pz/v3nvqH3XfV5fe+f3q8Vy5Y0pY71JI/8zRfrab/2WF3yhhectJW//fsv68pPXqcf/cuVWtS7wLpt6kMAAhCAAAQgAAEIQAACEIDAHAkgBeoAhxSYCQkpUMem4RIIQAACEIAABCAAAQhAAAI5IIAUqCMkpABSoI5twiUQgAAEIAABCEAAAhCAAARyRwApUEdkSAGkQB3bhEsgAAEIQAACEIAABCAAAQjkjkChpcCTfvlh+uin/1lDG27R8mWn6XnP+Q39/v998oyQDk9O6eOf/bqu+9Z/aPuOu7Ro4SkK41730t+7/3n5RqTAD39yk678xHXVmp2dHXrkBQN67Yufo75VZ510c4zdsl3PeP6b9fqXPVd/8nu/ef+1v/uSdyhRos9/9O33/7uwpg9d80Vd/5UrtGTxwuq/r6fujTeP6Q9efon+5m0v08GJiep7EbbedmeVy+te+rs63jsF7th5ty676vP6tx/fqCRJdH7/KpVKpWo93imQu+87DUMAAhCAAAQgAAEIQAACEJhBoLBSoHdBj/btP6BffvSDtGTxouofYsMfcD/2N3+uX37Ug6oQ0jTVK99yuf7zv36u5/zWE7VuzTm6ZdsOffbL31N57bn6x799a/UPwvVKge9d//900cVXqG/VSv3mkx6tiYnD+vI3rtfBiUP6zJVvU995K0+6/X7lty+sSoQPvuuV1evu2n2PnvDMi6r/+/vXflBnnL64+r8vfMvl2nLrDv3zp95b/f/rrXtUCqxccbp27b5Hj3n4ep2yYL4eMrimKgaOlQJ337NPz3nR27Vz1z369V99hM5acXpVIlx/w/9W14QU4FcTCEAAAhCAAAQgAAEIQAAC+SZQWClwzpnLdNk7XqH+NWdXE9q5a4+e8tw/19Oe9Bi9980vqv67r33vx3rDJVfpqktfq8c/5iH3J/mNf71Bf/6uj+jq971ej3vk+XVJgampip7y3NfplJ75+qe/e6fmz+uuzrdj5249/Y//Qo+8oFytc7LPqy/+sG68eWNVAITPF7/27/rw33+pKjfe8PLf1+8+40nVf//EZ71aT/qlh1ZPV2ik7lEp8PAH9+vSt7xYQQ7Ufo6VAu/+4Kf12a98734OR6/lRYP5/tLTPQQgAAEIQAACEIAABCAAgaMECisFjnck4TP+5C067dReffLyN1XXH/7GffOtO/TFq981Y0eMj0/ol3/7lbrohc/Si//ot+qSAj8f2qTnvuxdetOFf6g/etZTZsz3lr+6Wv/8nR/qhq9dpZ75R2TB8T7/8MXv6L1X/OP9xxyG/s44/bTqHQMThw7pqktfpzvv2qMnPfvVuvStL9HTf/1xaqRu7eMD/+fJj3lAC8dKgXDnQpAqH//AG2dcixTgFxAIQAACEIAABCAAAQhAAALFINBWUuAPX/FuTVUq+txHLq6m91vPe5M2bb39hEn+6XOfpj9/6e/VJQW+/r0b9PpLPqKP/NVr9KuPvWDGnB/7h3/W5Vd/Uf/yqfdq9blnnrDe8MatetYLL9b73/FyPemXHqZfesYr9MF3Xajde/bq4r/5e/3wqx/Wj//nZl341g/dLw4aqduIFLhn773V+kFwBNFR+0EKFOPLzyogAAEIQAACEIAABCAAAQi0lRT4o1f+pSanpu6XAv/fH/+FOjo6dMkbXnDcnXDG0sU6c/nShqTAsY8ihImPvhjwa5/+K606Z8UJd12lkuqXn/EK/c7THq/HPfJBeu07/rYqAg6MT+jxv3Oh3nfxy6svMPzad3+kb3/ufdV5jkqBeuo2IgV23b1Xv/o7r6q+9DC8/BApwC8WEIAABCAAAQhAAAIQgAAEikegraXAS95wmf735jFdf90V6uzoOGG69bxoMMzz+y+/RG98xe9XX9pX+3nTe/5OX/vej2Z9fCCMefmbPqDwt/ThRYfhRX/vf8crqlP96Wv+SiuWLdXO3XsUZMV73nTkvQiN1G1ECgR58sjffIme+LiH3v/iw6Nr4k6B4v1CwIogAAEIQAACEIAABCAAgfYk0NZS4J/+5Qd6x/s+oZc+7xm68AXPnLEDwkkF4QV/a1efVdedAuEP0U/5vddpQc98Xft377r/3QHhmMOnP+9NevTDwosGXzfrLgvHBH7o41/SklMX6jUvfo6e/pTHVcd8+tpv6yOfuk5pJdXrX/5cPfP//Gr13zdStxEpEOb+s9f+tX560wZ99ZPv0dlnLqvWC6Li9ZdcpR/95BecPjBrmlwAAQhAAAIQgAAEIAABCEDAN4G2lgLhD9ThboHwnH54I/9jHz6o7u4u3TS8Wf/24xt1yetfoN966i/VJQVCzN/+t59Ub/lfc+6ZetqTH1M9kvBLX/93jR88pM9e+baqYJjtc/TFgR0dJV3/lSt06sJTqkOCXAinJ4TPN/7xUp171vL7p6q3bqNS4IafDlXFwKmLTqneMRB4/eCHP9Phw5OaOHQYKTBbmPwcAhCAAAQgAAEIQAACEICAcwJtLQVCNocnp/Tpa7+lf/nOj6onEXR3deq8s5frCY+9QL/327+m05ecWrcUCPNdf8PPddWnrqs++9/Z2aFHXjCgV7/oOfcfjTjbfgh/8H7c01+u8wdW6xMf/IsZlz/zz96m8Kz/v33p8gdMU0/dRqVAKPKdf/+JPnT1F7X1tju1csVS/dGznlp98eFVn/oqUmC2MPk5BCAAAQhAAAIQgAAEIAAB5wQKKQWcM6c9CEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiBSObbd41HzmAzfH53hxbM69DufYdsGqCqOYGujkSLe7u1854J815owIZAqZTojFPnacfdB20aoKoLAiuX9iivv5e5AFiAJlYs6dGdd4+rkhZgMSxhTgSWLZ6vPfsmdHiKTTAngAUYtGRhtw4cnNTBw5Vcrib8XsZn7gSQAnNnVx2Z1/+QQgpEBl+A4UiBAoQYuQSkQCTAggxHChQkyIhlIAUi4BVkKFKgIEFGLAMpEAGvAEORApEhIgUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8bsojhRwEYNZE0iBSPRIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIAVP8LoojBVzEYNYEUiASPVIgEiDDzQggBczQuymMFHAThWkjSAFT/C6KIwVcxGDaBFLAFL+L4kgBFzGYNYEUiESPFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaBFDDF76I4UsBFDGZNIAUi0SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPG7KI4UcBGDWRNIgUj0SIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kTSAFT/C6KIwVcxGDWBFIgEj1SIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuiiMFXMRg2gRSwBS/i+JIARcxmDWBFIhEjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSAEXMZg2gRQwxe+iOFLARQxmTSAFItEjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBUzxuyiOFHARg1kTSIFI9EiBSIAMNyOAFDBD76YwUsBNFKaNIAVM8bsojhRwEYNpE0gBU/wuiiMFXMRg1gRSoAH0l131BX38c1/XL37wiftHIQUaAMilrgggBVzFYdIMUsAEu7uiSAF3kWTeEFIgc+TuCiIF3EWSeUNIgcyRuyqIFKgzjk984Zv65vf/Sz8f2oQUqJMZl/kmgBTwnU8W3SEFsqDsvwZSwH9Gre4QKdBqwv7nRwr4z6jVHSIFWk3Y9/xIgTry+eq3/1Nf/Nq/6+2v+xP91vPelHspMDRc0v/+PNGhQ4nWrq3ooRdU1DO/DhBcUigCSIFCxTmnxSAF5oStcIOQAoWLtOEFIQUaRla4AUiBwkXa8IKQAg0jK9QApMAscf77j2/UFR//sj7+/jdo7/4Deupz/zzXUuCnP0v05a92zFj16vNS/enzpwq1sVnM7ASQArMzKvoVSIGiJ1zf+pAC9XEq8lVIgSKnW9/akAL1cSryVUiBIqc7+9qQAidhtGnr7Xr1xR/WNZe9XsuWLtZtO+56gBTYtXdidsqOrvjoNSVt2vLAht7x5op6ehw1SistJ9BRStTb06V77j3U8loU8EkgSRKd1tul3fvYAz4TyqarpYvmKW+/l2VDpn2qLFk4T3fvn1Cats+aWelMAqf2dmv/gcOaqrAJ2nVvLFzQpYlDUzo0WcklgvB7GZ+5E0AKnIRduEvgwrd8SEkpOXJVmurw5JS6ujp1xbtfpcc/5iGaOJyvL84Hr6xow6YH/oK/dKn0iAsSXXB+SeedKyX3LXnuW4uR3gmEbd3ZkejQJP8B4D2rVvUXvuddHaXc/gdAq7i027zzukq5+72s3TJq9Xq7u0o6fLgifjdoNWm/83d3ljQ5VRFOwG9Gre4s3EEapFBe90D4vYzP3AkgBRpgd7w7BfJ2+sCXruvQz2485k/84b8Cav7Vgp5U5f5UAwNSX19F3V0NQOLS3BDg8YHcRNWyRnl8oGVoczUxjw/kKq6WNMvjAy3BmqtJeXwgV3G1pFkeH2gJ1txMihRoIKoiSIG79yT6zOc7dMcdRxY+f57060+u6JQFqYZGEm3YmGh8fNoQdJSk1asrKg9I6wdT9Z7C3yM0sGVcX4oUcB1PJs0hBTLB7L4IUsB9RC1vECnQcsTuCyAF3EfU8gaRAi1H7LoAUqCBeIogBY4ud9euDmmyQ0uXz3yWuFKRttxS0vCINDyaaM+emXcVrFyZanBAKg9UtPwMBEED28fdpUgBd5Fk3hBSIHPkLgsiBVzGkmlTSIFMcbsshhRwGUumTSEFMsXtrhhSIDKSvD0+cHS587s7tGBex6wvGNt5V0kjI4mGRqRttyUzXkK0aFGq8kCqgX6pb1VFpZmHGkSSZXirCSAFWk3Y//xIAf8ZZdEhUiALyr5rIAV855NFd0iBLCj7roEU8J1Pq7tDCkQSLroUqMVzYDzR8HCioWFpbHNJk5PTP503L9W6PqlcDv9M1dPDXQSRW6vlw5ECLUfsvgBSwH1EmTSIFMgEs+siSAHX8WTSHFIgE8yuiyAFXMfT8uaQApGI20kK1KI6PClt2nzkMYOR0UT7908/ZhDeaH7uOakGy0deWLhkCYIgcpu1ZDhSoCVYczUpUiBXcbWsWaRAy9DmZmKkQG6ialmjSIGWoc3NxEiB3ETVkkaRApFY21UK1GIL5xrfviPcRRDeQ1DSjjtmvodg6ZLwmEGleprBeeekHHcYueeaNRwp0CyS+Z0HKZDf7JrZOVKgmTTzORdSIJ+5NbNrpEAzaeZzLqRAPnNrVtdIgUiSSIEHAty7L9HNQ0n1LoLw0sLw8sKjn3Dc4UB/kAQcdxi59aKHIwWiEeZ+AqRA7iNsygKQAk3BmOtJkAK5jq8pzSMFmoIx15MgBXIdX3TzSIFIhEiBkwM8OJFobEyzHncYXli4aCGPGURux4aGIwUawlXIi5EChYy14UUhBRpGVrgBSIHCRdrwgpACDSMr3ACkQOEibWhBSIGGcD3wYqRA/QDDHQNbtyUaCccdjpS0a/fMxwxWLA/vIKioXJZWnokgqJ/s3K5ECsyNW5FGIQWKlObc14IUmDu7ooxEChQlybmvAykwd3ZFGYkUKEqSc1sHUmBu3O4fhRSYO8Ddu8NjBqVZjztcs6qiDo47nDvoE4xECjQdae4mRArkLrKWNIwUaAnWXE2KFMhVXC1pFinQEqy5mhQpkKu4mt4sUiASKVIgEuB9w8Nxh6OjSVUQjI2VdOjw9LzdXUfePzA4oOr7CDjusDnMkQLN4ZjnWZACeU6veb0jBZrHMq8zIQXymlzz+kYKNI9lXmdCCuQ1ueb0jRSI5IgUiAR4nOFTU9LGTRx32HyyM2dECrSasP/5kQL+M8qiQ6RAFpR910AK+M4ni+6QAllQ9l0DKeA7n1Z3hxSIJIwUiAQ4y/BGjjs89+xUpVJr+ynS7EiBIqU5t7UgBebGrWijkAJFS7Tx9SAFGmdWtBFIgaIl2vh6kAKNMyvSCKRAZJpIgUiADQ4Pxx0Ojxw57nDz5pKmao47DI8VrFubanAg1bp1qcJjB3xOTAApwO5ACrAHAgGkAPsAKcAeQAqwB5AC7b0HkAKR+SMFIgFGDA/vHdiwIbyHINGGjYnGx6dPM+goSatXV1QekDju8PiQkQIRm68gQ5ECBQkychlIgUiABRiOFChAiJFLQApEAizAcKRAAUKMWAJSIAJeGIoUiATYpOGNHHd45opUyczTEJvURb6mQQrkK69WdIsUaAXV/M2JFMhfZs3uGCnQbKL5mw8pkL/Mmt0xUqDZRPM1H1IgMi+kQCTAFg0Pxx0Oh9MMhhNtvTVReDfB0U9vb1o9xSDcRbB2Tfsed4gUaNHmy9G0SIEchdXCVpECLYSbk6mRAjkJqoVtIgVaCDcnUyMFchJUi9pECkSCRQpEAsxgeHisYKSO4w77+1Mt6KmxBxn0ZlkCKWBJ30dtpICPHKy7QApYJ2BfHylgn4F1B0gB6wTs6yMF7DOw7AApEEkfKRAJMOPh4bjDTVtKGhlV9YWFe/dOP0cQHik4+6zwokJp/WBFS5YUWxAgBTLefA7LIQUchmLQElLAALqzkkgBZ4EYtIMUMIDurCRSwFkgGbeDFIgEjhSIBGg8fPvtiYaHpeHRknbcMfNFA0uXhEcMKhoYkIp43CFSwHjzOSiPFHAQgoMWkAIOQjBuASlgHICD8kgBByEYt4AUMA7AuDxSIDIApEAkQEfD6z3usK9Pmj8v/3cRIAUcbT6jVpACRuCdlUUKOAvEoB2kgAF0ZyWRAs4CMWgHKWAA3VFJpEBkGEiBSIBOh4fjDsfGShoeUfV9BAdqjjsslaRV5x057nD9YKpFC/MpCJACTjdfhm0hBTKE7bgUUsBxOBm1hhTICLTjMkgBx+Fk1BpSICPQTssgBSKDQQpEAszB8HBywS23JhoZCe8hKGnX7pmPGaxYnqrcX1G5LOXpuEOkQA42X4tbRAq0GHBOpkcK5CSoFraJFGgh3JxMjRTISVAtbBMp0EK4OZgaKRAZElIgEmAOh9d73OGa1RV1dfpdIFLAbzZZdYYUyIq07zpIAd/5ZNEdUiALyr5rIAV855NFd0iBLCj7rYEUiMwGKRAJMOfDw3GHG8bCywrDP6WJiem7CDo7pb7VFQ2WpXLZ33GHSIGcb74mtI8UaALEAkyBFChAiJFLQApEAizAcKRAAUKMXAJSIBJgzocjBSIDRApEAizQ8MqUNFbHcYcDA6mWnV4xXzlSwDwC8waQAuYRuGgAKeAiBtMmkAKm+F0URwq4iMG0CaSAKX7z4kiByAiQApEACzz8jjuT6jsIhkak7dtnvodg8eLwHoJw5OGRlxaGlxdm/UEKZE3cXz2kgL9MLDpCClhQ91UTKeArD4tukAIW1H3VRAr4yiPrbpACkcSRApEA22T4/nsTjY4mGhqWxjaXNDk5vfCenlTr1qYaHEiV5XGHSIE22XwnWSZSgD0QCCAF2AdIAfYAUoA9gBRo7z2AFIjMHykQCbANhx+elDZunP24w3AnQbijoFUfpECryOZnXqRAfrJqZadIgVbSzcfcSIF85NTKLpECraSbj7mRAvnIqVVdIgUiySIFIgG2+fBw3OFttyUaGj1y3OHOnTMfM1i2LDxiUNFgv3TWWamSmT+OoocUiMJXiMFIgULEGL0IpEA0wtxPgBTIfYTRC0AKRCPM/QRIgdxHGLUApEAUPgkpEAmQ4TMI7NmT6Obh8JhBoq23JgrS4OintzfVwH3vIWjGce64ZhUAACAASURBVIdIATYfUoA9EAggBdgHSAH2AFKAPYAUaO89gBSIzB8pEAmQ4SckUO9xh/39qXpPafwxA6QAmw8pwB5ACrAHAgGkAPsAKcAeQAq09x5ACkTmjxSIBMjwugiE4w63bD3yHoLh0UThjoLaz8qV4UWFqj5qsPyM+gQBUqAu9IW+CClQ6HjrXhx3CtSNqrAXIgUKG23dC0MK1I2qsBciBQobbV0LazspsO32nXr3Bz+loQ1bdc++e3Xe2cv1qhc8S09+/MOPC+z6G36ul77xshk/6+rq1M++c3X13yEF6tpnXNRkAnUfd3huRaWO4xdHCjQ5lBxOhxTIYWgtaBkp0AKoOZsSKZCzwFrQLlKgBVBzNiVSIGeBNbndtpMCm7ferl+MbNHDHrxOC3rm6cvfuF4f+eR1uuFrVyn8B/KxnyAFLvnAJ3Xt1e+6/0fhqoW9C5ACTd6MTDc3Aic77nDevFTr+qRyOVX/ulTz503fRYAUmBvvIo1CChQpzbmvBSkwd3ZFGYkUKEqSc18HUmDu7IoyEilQlCTnto62kwK1mPbfO65PXftt/c+NI7rm/W84LsEgBf7y8k/rm5/56+P+nDsF5rbxGNUaAuG4w02bp4873L9/WnSVStKq8yoqh8cM+lMtWyot7u3WznsmWtMMs7ongBRwH1EmDSIFMsHsughSwHU8mTSHFMgEs+siSAHX8bS8ubaVAn/791/WlZ+8Tg8ur9ZVl75Oi0/tPaEUeMWbP6DTTl2oRb0L9OiHDeqiFz27+r/DBynQ8j1KgTkSmO24wzOWpXrYQ0o677zJph93OMeWGZYxAaRAxsCdlkMKOA0mw7aQAhnCdloKKeA0mAzbQgpkCNthqbaVAiGLew8c1Mc/93X94Ic/0xc++g51dJQeENHd9+zTHTvv1qmLerXjzl267KovaNnSU/WBd77SYZy0BIETE9i1W/rpzyu68aaKRjemmqpMX9t7inTBg0p66INKOn8wUXcXJCEAAQhAAAIQgAAEIACBdiDQ1lIgBHxw4pAe8Rsv1lc/+R71nbdy1sx/etMGPf+i9+rG716jJEm4U2BWYlzgkcDBiUSbxhJt2NChm4YrmpiYfsygs1PqW13RYFma63GHHtdMTw8kwJ0C7IpAgDsF2AfcKcAe4E4B9gB3CrT3Hmh7KbDr7r361d95lb79uffprBWnz7ob/vO/b9Ib3/1R/cd1V1Sv5fGBWZFxgVMCR180eMfuiaYfd+h0ybR1DAGkAFsCKcAeCASQAuwDpAB7ACnQ3nug7aTAP37pu0rTVL/y6AerVCrpb678rO66e68+87dvrf7NfziNIPzB/30Xv6y6M6757Nd19pmn64Lz12rPPfv11kuv0SMe0q83XfiHSIH2/u7kfvUnOn1g510ljYwkGhqRtt2WKLyb4Ohn0aJU5YFUA/1S36oTH3eYezhtsgCkQJsEPcsyuVOAfYAUYA8gBdgDSIH23gNtJwV++JObdOUnrtPGLbeplCR67CPO15su/AMtW7q4uhMuv/qL+so3r9f3r/1g9f8PkuATX/imtm3fWT2G8KlPeJRe8+LnqGd+N1Kgvb87uV99PUcSHhhPNDycaGhYGttc0uTk9LJrjztc15eqp6fGHuSeTnssACnQHjnPtkqkwGyEiv9zpEDxM55thUiB2QgV/+dIgeJnfLIVtp0UaHbcPD7QbKLMlxWBeqRAbS8nO+4wSaRzz0k1WE61vpxq8WIEQVY5xtRBCsTQK85YpEBxspzrSpACcyVXnHFIgeJkOdeVIAXmSq4Y45ACkTkiBSIBMtyMQKNSoLbR8EjB7TvCXQTS8GhJO+6YflFhuG7ZsvCYQUWD/eK4Q7OEZy+MFJidUTtcgRRoh5RPvkakAHsAKcAeQAq09x5ACkTmjxSIBMhwMwIxUuDYpvfuS3TzUKLhEWnLLSVVao47XNAT3kEQJIHU11fhuEOzxB9YGCngKAzDVpAChvCdlEYKOAnCsA2kgCF8J6WRAk6CMGoDKRAJHikQCZDhZgSaKQVqFxGOOxwbk4ZGEm3YmGh8fPougo6StHp1pSoI1g+m6j2FxwzMNoAkpIAlfT+1kQJ+srDqBClgRd5PXaSAnyysOkEKWJH3URcpEJkDUiASIMPNCLRKCtQuKNwxEO4cCHcQDI8m2rNn5mMGK1emGhxQ9VGD5WcgCLLeDEiBrIn7rIcU8JlLll0hBbKk7bMWUsBnLll2hRTIkra/WkiByEyQApEAGW5GIAspcOzi6j3ucM2qijo6zNC0TWGkQNtEfdKFIgXYB0gB9gBSgD2AFGjvPYAUiMwfKRAJkOFmBCykQO1iw3GHo6OJhkaksbGSDh2e/ml315H3D4S7CML7CDjusDXbBCnQGq55mxUpkLfEmt8vUqD5TPM2I1Igb4k1v1+kQPOZ5mlGpEBkWkiBSIAMNyNgLQVqFz41JW3cdOQxg5HRRPv3Tz9mUHvcYbk/1ZIlPGbQrE2DFGgWyXzPgxTId37N6B4p0AyK+Z4DKZDv/JrRPVKgGRTzOwdSIDI7pEAkQIabEfAkBWohzHbc4dIlR447HBiQzjsnVZAGfOZGACkwN25FG4UUKFqija8HKdA4s6KNQAoULdHG14MUaJxZkUYgBSLTRApEAmS4GQGvUuBYIOG4w+GRI8cdbt5c0hTHHTZtzyAFmoYy1xMhBXIdX1OaRwo0BWOuJ0EK5Dq+pjSPFGgKxtxOghSIjA4pEAmQ4WYE8iIFagGF9w5s2BDeQ3Dy4w7LA6kWLeQxg9k2F1JgNkLt8XOkQHvkfLJVIgXYA0gB9gBSoL33AFIgMn+kQCRAhpsRyKMUqIUVjjvcui3RSDjucKSkXbtnPkewYnmqcn9F5bK08kwEwfE2GlLA7OvnqjBSwFUcJs0gBUywuyqKFHAVh0kzSAET7G6KIgUio0AKRAJkuBmBvEuBY8Ht3p3o5qFS9TSDbbclCu8mOPpZtCi8hyDVQL/EcYfTXJACZl8/V4WRAq7iMGkGKWCC3VVRpICrOEyaQQqYYHdTFCkQGQVSIBIgw80IFE0K1IKs97jD/v5UC3ra9y4CpIDZ189VYaSAqzhMmkEKmGB3VRQp4CoOk2aQAibY3RRFCkRGgRSIBMhwMwJFlgK1UMNxh5u2lDQyGh4zSLR378zjDs8+K9XggLR+sNJ2xx0iBcy+fq4KIwVcxWHSDFLABLurokgBV3GYNIMUMMHupihSIDIKpEAkQIabEWgXKXAs4O23JxoeloZHS9pxx8z3ENQed3ju2alKJbN4MimMFMgEs/siSAH3EbW8QaRAyxG7L4AUcB9RyxtECrQcsesCSIHIeJACkQAZbkagXaVALfCTHXfY05Nq3dpwF0GqdetSdXeZRdWywkiBlqHN1cRIgVzF1ZJmkQItwZqrSZECuYqrJc0iBVqCNTeTIgUio0IKRAJkuBkBpMBM9OG4w7GxkoZHpJHRROG9BEc/HSVp9eqKygOqvrCwKMcdIgXMvn6uCiMFXMVh0gxSwAS7q6JIAVdxmDSDFDDB7qYoUiAyCqRAJECGmxFACpwYfTi54JZb6zvu8MwVqZKZTyGYZdpoYaRAo8SKeT1SoJi5NrIqpEAjtIp5LVKgmLk2siqkQCO0inctUiAyU6RAJECGmxFACtSPPhx3ODyaaGg40dZbZx532NsbjjoMRx5Ka9dU1NFR/7zWVyIFrBPwUR8p4CMHyy6QApb0fdRGCvjIwbILpIAlffvaSIHIDJACkQAZbkYAKTA39OPjSfXxgqGRI48bhMcOjn7Cewf6+irV0wzycNwhUmBue6Boo5ACRUu08fUgBRpnVrQRSIGiJdr4epACjTMr0gikQGSaSIFIgAw3I4AUiEdf73GHAwOplp1eiS/Y5BmQAk0GmtPpkAI5Da6JbSMFmggzp1MhBXIaXBPbRgo0EWYOp0IKRIaGFIgEyHAzAkiB5qO/485EwyOl6l0E27fPfNHA4sWpyvc9ZrDqvIqL4w6RAs3fA3mcESmQx9Sa2zNSoLk88zgbUiCPqTW3Z6RAc3nmbTakQGRiSIFIgAw3I4AUaC36/fcmunkoSAJp8+aSpmpuFKg97rCvT5o/L21tMyeYHSlggt1dUaSAu0gybwgpkDlydwWRAu4iybwhpEDmyF0VRApExoEUiATIcDMCSIHs0J/suMNSSQp3DoQXFa4fzPa4Q6RAdnvAcyWkgOd0sukNKZANZ89VkAKe08mmN6RANpy9VkEKRCaDFIgEyHAzAkgBG/ThuMPbbks0NKrqowY7d858zGDF8vCYQUXlstTq4w6RAjZ7wFtVpIC3RLLvBymQPXNvFZEC3hLJvh+kQPbMPVVECkSmgRSIBMhwMwJIATP0Mwrv2ZPo5uHZjztcs7qirs7m9owUaC7PvM6GFMhrcs3rGynQPJZ5nQkpkNfkmtc3UqB5LPM4E1IgMjWkQCRAhpsRQAqYoT9h4XDc4YaxRMPD4Z/SxMT0XQSdnVLf6ooGy1K5nGpBT/x7CJAC/vaARUdIAQvqvmoiBXzlYdENUsCCuq+aSAFfeWTdDVIgkjhSIBIgw80IIAXM0NdVuDIljW0paaT6mEGivXunBUGSSGeflWpwQIo57hApUFcUhb8IKVD4iGddIFJgVkSFvwApUPiIZ10gUmBWRIW+ACkQGS9SIBIgw80IIAXM0M+pcN3HHZ5bUamjvhJIgfo4Ff0qpEDRE559fUiB2RkV/QqkQNETnn19SIHZGRX5CqTALOn+x3/9XFd+4isau2W7KpWKzh9YrYtf+3ytOffM6kikQJG/HsVeG1Igv/mG4w5HR8N7CKSxzSVNTk6vZd68VOv6jjxi0L8uPelxh0iB/O6BZnaOFGgmzXzOhRTIZ27N7Bop0Eya+ZwLKZDP3JrVNVKgDimQJIkG+s7R5NSU/vpvP6cD4wd11aWvRQo0axcyjwkBpIAJ9qYXPTwpbdxY0vCINDKa6MD49GMGtccdlvtTLV488z0E9+wtSYe71H3KhHrmN701JswJAaRAToJqYZtIgRbCzcnUSIGcBNXCNpECLYSbg6mRAnWGlKapdu66R+96/yf1oPJqvfR5z0AK1MmOy3wSQAr4zCWmq9mOO1y2LFV5oKLBfunb3y1py9ZpgfDEJ1T0a0+oxJRnbE4JIAVyGlwT20YKNBFmTqdCCuQ0uCa2jRRoIswcToUUqDO051/0Xv3kxhE9++lP0Ntf+ycKt92GD48P1AmQy9wRQAq4i6TpDYXjDodHk+pdBFtuKaly35/5gzwILys89vOyF0/qzBVNb4MJnRNACjgPKIP2kAIZQHZeAingPKAM2kMKZADZcQmkQAPh3HnXHr39fX+vs888XW+56I+rIycO5/Nv1sJtxR1JosNT8ceaNYCQSx0RCF6rsyPRoUn2gKNYWtbK+EHpF0Opbrwp1f/+Ip3xHoKjRR/7yET/9+klLextWRtM7JDAvK5Sbn8vc4gzly11d5V0+HBF/G6Qy/ia0nR3Z0mTUxVV2ARN4ZnHScJfFk1V0tzugfB7GZ+5E0AKNMju+ht+rje/92O6/itXVEfu2nuowRl8XB7+AyB8efYdqHlDmY/W6CIjAp0lqbenS3vuPZxRRcp4IfCt70n/+oPj3CoQ/mOwetyhdH5ZWj+YasVyL13TR6sILF3Undvfy1rFpN3mXbKoW3fvO6RwFxGf9iSwuLdb+w8c0mQ+/66rPUNr8qoXLujUxKGp3P5lUfi9jM/cCSAFGmT3ze//l9531ef13c9fVh3J4wMNAuRyNwR4fMBNFJk3cvsO6SMf65xRd/48afFpqXbsmCkLwssJw0sKywPSqgaOO8x8URScMwEeH5gzusIM5PGBwkQ554Xw+MCc0RVmII8PFCbKOS0EKTALtnd/8NN61EMHdMH5a3Xnzrv1pvf+nZ78Kw/Xa1/yu0iBOW05BnkhgBTwkoRNH5u3JPrZ/5Z0776Slp4+pcc+JtVpi1PVe9zhur5UPT38taJNes2tihRoLs88zoYUyGNqze0ZKdBcnnmcDSmQx9Sa1zNSYBaWn77227r2a/+mbdt3avGiXj39KY/TK/7k/6q7uwsp0Lx9yEwGBJACBtCdlQwvTD3j1HnacffB43YWjjvctHn6uMP9+6fvIggvKjz3nFSD5VTryw887tDZUmnnJASQAmwPpAB7ACnAHkAKtPceQApE5s/jA5EAGW5GAClght5N4dmkQG2jjRx3eNZZ6XFPN3CzcBqZQQApwIZACrAHkALsAaRAe+8BpEBk/kiBSIAMNyOAFDBD76ZwI1Lg2KZPdNxhuG5BT6qB+95D0NdX0X03VrlZN43MJIAUYEcgBdgDSAH2AFKgvfcAUiAyf6RAJECGmxFACpihd1M4RgrULuLgRKKxMWloJNGGjYnGx6cfM+goSatXV6ovKgynGfSewnsI3GyA+xpBCnhLJPt+kALZM/dWESngLZHs+0EKZM/cU0WkQGQaSIFIgAw3I4AUMEPvpnCzpEDtgioVacstR95DMDyaKNxRUPtZuTLV4IBUHqho+RkIAg+bASngIQXbHpACtvw9VEcKeEjBtgekgC1/6+pIgcgEkAKRABluRgApYIbeTeFWSIFjF7fzrpJGRhINjUjbbktmnIO+aFE46jA8aiD1raqo1OEGTVs1ghRoq7iPu1ikAHsAKcAeQAq09x5ACkTmjxSIBMhwMwJIATP0bgpnIQVqF3tgPNHwcKKhYWlsc0mTk9M/nTcv1bo+qVwO/+S4wyw3CVIgS9o+ayEFfOaSZVdIgSxp+6yFFPCZS1ZdIQUiSSMFIgEy3IwAUsAMvZvCWUuB2oXXe9xhuT/VkiU8ZtDKTYMUaCXdfMyNFMhHTq3sEinQSrr5mBspkI+cWtUlUiCSLFIgEiDDzQggBczQuylsKQVqIYTjDm/fEe4iCO8hKGnHHTPfQ7B0SXjMoKKBAem8czjusNkbCCnQbKL5mw8pkL/Mmt0xUqDZRPM3H1Igf5k1s2OkQCRNpEAkQIabEUAKmKF3U9iLFDgWyN59iW4eSqovKwwvLQwvLzz64bjD5m8fpEDzmeZtRqRA3hJrfr9IgeYzzduMSIG8JdbcfpECkTyRApEAGW5GAClght5NYa9SoBZQvccdhhcWLlrIYwZz2VxIgblQK9YYpECx8pzLapACc6FWrDFIgWLl2ehqkAKNEjvmeqRAJECGmxFACpihd1M4D1KgFla4Y2DrtkQj4bjDkZJ27Z75mMGK5anK/RWVy9LKMxEE9W40pEC9pIp7HVKguNnWuzKkQL2kinsdUqC42dazMqRAPZROcg1SIBIgw80IIAXM0LspnDcpcCy43bvDYwalWY87XLOqog6OOzzhvkMKuPlKmjWCFDBD76YwUsBNFGaNIAXM0LsojBSIjAEpEAmQ4WYEkAJm6N0UzrsUqAUZjjscHU2qgmBsrKRDh6d/2t0l9fVVNDggDfRz3OGxGxAp4OYradYIUsAMvZvCSAE3UZg1ghQwQ++iMFIgMgakQCRAhpsRQAqYoXdTuEhSoBbq1JS0cVOp+qLCkdFE+/dPP2aQJNK556QaLIdHDTjuMHBDCrj5Spo1ghQwQ++mMFLATRRmjSAFzNC7KIwUiIwBKRAJkOFmBJACZujdFC6qFKgF3Mhxh+eenapUchNPZo0gBTJD7bYQUsBtNJk1hhTIDLXbQkgBt9Fk0hhSIBIzUiASIMPNCCAFzNC7KdwOUuBY2OG4w+GRI8cdbt5c0lTNcYc9PanWrU01OJBq3bpU4bGDdvggBdoh5ZOvESnAHkAKsAeQAu29B5ACkfkjBSIBMtyMAFLADL2bwu0oBWrhh/cObNgQ3kOQaMPGROPj048ZdJSk1asrKg9IRT/uECng5itp1ghSwAy9m8JIATdRmDWCFDBD76IwUiAyBqRAJECGmxFACpihd1O43aVAbRCNHHd45opU4d0ERfkgBYqS5NzXgRSYO7uijEQKFCXJua8DKTB3dkUYiRSITBEpEAmQ4WYEkAJm6N0URgqcOIpw3OFwOM1gONHWWxOFdxMc/fT2ptVTDMJdBGvX5P+4Q6SAm6+kWSNIATP0bgojBdxEYdYIUsAMvYvCSIHIGJACkQAZbkYAKWCG3k1hpEB9UYTHCsIpBrMdd9jfn2pBT409qG9686uQAuYRmDeAFDCPwLwBpIB5BOYNIAXMIzBtACkQiR8pEAmQ4WYEkAJm6N0URgo0HkU47nDTlpJGRlV9YeHevTOPOzz7rPCiQmn9YEVLluRDECAFGt8HRRuBFChaoo2vBynQOLOijUAKFC3RxtaDFGiM1wOuRgpEAmS4GQGkgBl6N4WRAvFRbL890fCwNDxa0o47Zr5oYOmS8IhBRQMDkufjDpEC8fsg7zMgBfKeYHz/SIF4hnmfASmQ9wTj+kcKxPETUiASIMPNCCAFzNC7KYwUaG4U9R532NcnzZ/n5y4CpEBz90EeZ0MK5DG15vaMFGguzzzOhhTIY2rN6xkpEMkSKRAJkOFmBJACZujdFEYKtC6KcNzh2FhJwyOqvo/gQM1xh6WStOq8I8cdrh9MtWihrSBACrRuH+RlZqRAXpJqXZ9IgdaxzcvMSIG8JNWaPpECkVyRApEAGW5GAClght5NYaRANlGEkwtuuTXRyEh4D0FJu3bPfMxgxfJU5f6KymXJ4rhDpEA2+8BzFaSA53Sy6Q0pkA1nz1WQAp7TaX1vSIFIxkiBSIAMNyOAFDBD76YwUsAminqPO1yzuqKuztb3iBRoPWPvFZAC3hNqfX9IgdYz9l4BKeA9odb2hxSI5IsUiATIcDMCSAEz9G4KIwXsowjHHW4YCy8rDP+UJiam7yLo7JT6Vlc0WJbK5dYdd4gUsN8H1h0gBawTsK+PFLDPwLoDpIB1Arb1kQKR/JECkQAZbkYAKWCG3k1hpICbKKqNVKaksTqOOxwYSLXs9ErTmkcKNA1lbidCCuQ2uqY1jhRoGsrcToQUyG10TWkcKRCJESkQCZDhZgSQAmbo3RRGCriJ4riN3HFnUn0HwdCItH37zPcQLF4c3kMQjjw88tLC8PLCuX6QAnMlV5xxSIHiZDnXlSAF5kquOOOQAsXJci4rQQrMhVrNGKRAJECGmxFACpihd1MYKeAmilkb2X9vopuHgiSQNm8uaarmRoGenlTr1qYaHEg1l+MOkQKz4i/8BUiBwkc86wKRArMiKvwFSIHCR3zSBbadFNiweZve86F/0OimbTp8eFIPf/A6vfXVz9PZZy47Lqjrb/i5XvrGy2b8rKurUz/7ztXVf4cUaO8vUJ5XjxTIc3rN6R0p0ByOWc9S73GH4U6CcEfBbB+kwGyEiv9zpEDxM55thUiB2QgV/+dIgeJnfLIVtp0U+PH/u1mjY7fqib/0UHV3d+nSD39Gd+3eq09f8eYTSoFLPvBJXXv1u+7/ebiJc2HvAqRAe393cr96pEDuI4xeAFIgGqH5BOG4w9tuSzQ0euS4w507Zz5msGxZeMSgosF+6ayzUiUzf1ztHylgHqN5A0gB8wjMG0AKmEdg3gBSwDwC0wbaTgocSztIgle99UP6r69fdUIp8JeXf1rf/MxfH/fn3Clgun8pHkEAKRABryBDkQIFCbJmGXv2JLp5ONHQcKKttyYK0uDop7c31cB97yGoPe4QKVC8fdDoipACjRIr3vVIgeJl2uiKkAKNEivW9W0vBa7+zNf0gx/+TP/w4becUAq84s0f0GmnLtSi3gV69MMGddGLnl393+GDFCjWF6KdVoMUaKe0j79WpECx90C9xx3+6mPmaf+h8WLDYHUnJYAUYIMgBdgDSIH23gNtLQXC+wX++ML36MN/eZEeecHAcXfC3ffs0x0779api3q1485duuyqL2jZ0lP1gXe+snr9vvHJXO6gzo5EXR0ljR+aymX/NB1PoCOR5nd36N4J9kA8zXzOEG4lP2Vep/YfzOevY/mkbtP11JS0aYt0082pbhpKtXv3zOcIzjlbevD6RA9aL525wqZHqtoR6O3p1L3jk5r9DRR2PVK5tQROmd+pgxOTmmITtBa049l7ujt0eLKiyUo+N8HCnk7HdP231rZSYNPW2/WC11yqi174LP3O0x5fd1I/vWmDnn/Re3Xjd69RkiTad+Bw3WM9XdjZUVJXZ6Jx/kDoKZZMewl/SxykwAH+QJgpd0/Fwq9hp8zv0P6cyk1PLPPWy+07giBI9POhVLdum9n9kiWpHlSWHrS+pDWrUnV05G119Nsogd6eLt178PCMx00anYPr801gQZACh6ZUyekfCPNN30f3PfPukwI5NUMLF3T5AJnTLtpSCtx481j1PQJvfMUf6P88+TENRfef/32T3vjuj+o/rruiOo7HBxrCx8WOCPD4gKMwjFrh8QEj8M7K9nb36N9vmNDQsDS2uaTJmhtH5s1Lta5PKpdT9a9LNX9ePv8GyRlyd+3w+IC7SDJviMcHMkfuriCPD7iLJNOG2k4KhCMG3/zej+mdr3+BHvvwwfthh5MIOjs69OVvXK/wB//3Xfyy6s+u+ezXdfaZp+uC89dqzz379dZLr9EjHtKvN134h0iBTLcqxZpNACnQbKL5mw8pkL/MWtFx7YsGD09KGzeWNDwijYwmOjA+/ZhBqSStOq+i8oBU73GHreiXOZtPACnQfKZ5mxEpkLfEmt8vUqD5TPM0Y9tJgfde8Y/6hy9+5wEZ/c3bXla9a+Dyq7+or3zzen3/2g9WrwmS4BNf+Ka2bd9ZPYbwqU94lF7z4ueoZ343UiBPO51eH0AAKcCmQAqwBwKBE50+0IzjDiGcDwJIgXzk1MoukQKtpJuPuZEC+cipVV22nRRoNkgeH2g2UebLigBSICvSfusgBfxmk2Vn9R5JGI47HB5NqncRbLmlpEplussFPdPHHa5dW1EX73vKMsLoWkiBaIS5nwApkPsIoxeAFIhGmOsJkAKR0ONchAAAIABJREFU8SEFIgEy3IwAUsAMvZvCSAE3UZg2Uq8UqG3y4ESi0Q2JhocTbRiTJiamHzPo7JT6Vlc0WJb6+1P1nsJ7CEwDrqM4UqAOSAW/BClQ8IDrWB5SoA5IBb4EKRAZLlIgEiDDzQggBczQuymMFHAThWkjc5ECtQ1XpqQtW4+8hyDcSRDuKKj9rFyZajC8h2CgouVnIAhMwz5BcaSAx1Sy7QkpkC1vj9WQAh5Tya4npEAka6RAJECGmxFACpihd1MYKeAmCtNGYqXAsc3vvKukkZFEQyPSttuSGcfcLVqUqjwQHjWQ+lZVVOK4Q9PsjxZHCriIwbQJpIApfhfFkQIuYjBrAikQiR4pEAmQ4WYEkAJm6N0URgq4icK0kWZLgdrFhNMLwiMGsx13uK4vVU8PdxFYbQSkgBV5P3WRAn6ysOoEKWBF3kddpEBkDkiBSIAMNyOAFDBD76YwUsBNFKaNtFIK1C4sHHe4afP0cYf7908/ZpAk0rnnpBosp1pfTrV4MYIgy02BFMiSts9aSAGfuWTZFVIgS9r+aiEFIjNBCkQCZLgZAaSAGXo3hZECbqIwbSQrKVC7SI47NI38AcWRAr7ysOgGKWBB3VdNpICvPLLuBikQSRwpEAmQ4WYEkAJm6N0URgq4icK0EQspcOyC6z3usK+vou4uU1yFLI4UKGSsDS0KKdAQrkJejBQoZKx1LwopUDeq41+IFIgEyHAzAkgBM/RuCiMF3ERh2ogHKVALIBx3ODYmDY0k2rAx0fj49GMGHSVp9eqKygPS+kGOO2zWxkEKNItkfudBCuQ3u2Z1jhRoFsl8zoMUiMwNKRAJkOFmBJACZujdFEYKuInCtBFvUqAWRqUibbmF4w5bvUGQAq0m7H9+pID/jFrdIVKg1YR9z48UiMwHKRAJkOFmBJACZujdFEYKuInCtBHPUuBYMPUed7hmVUUdHHdY975CCtSNqrAXIgUKG23dC0MK1I2qkBciBSJjRQpEAmS4GQGkgBl6N4WRAm6iMG0kT1KgFlQ47nB0NNHQiDQ2VtKhw9M/De8dCO8fGByQBvo57nC2DYYUmI1Q8X+OFCh+xrOtECkwG6Fi/xwpEJkvUiASIMPNCCAFzNC7KYwUcBOFaSN5lQK10KampI2bZj/usNyfaskSjjs8dsMhBUy/gi6KIwVcxGDaBFLAFL95caRAZARIgUiADDcjgBQwQ++mMFLATRSmjRRBCtQCDMcd3r4j0fCwNDxa0o47pl9UGK5buiRVeaCigQHpvHNSJTN/bJqFVXGkgBV5P3WRAn6ysOoEKWBF3kddpEBkDkiBSIAMNyOAFDBD76YwUsBNFKaNFE0KHAtz775EwyPh/6TNm0uaqkxfsaAnrT5eEE4zaOfjDpECpl9BF8WRAi5iMG0CKWCK37w4UiAyAqRAJECGmxFACpihd1MYKeAmCtNGii4FauGG9w5s2BDeQ3Dy4w7LA6kWLWyfxwyQAqZfQRfFkQIuYjBtAilgit+8OFIgMgKkQCRAhpsRQAqYoXdTGCngJgrTRtpJCtSCDscdbt2WaGREGh4padfumc8RrFieqtxfUbksrTyz2IIAKWD6FXRRHCngIgbTJpACpvjNiyMFIiNACkQCZLgZAaSAGXo3hZECbqIwbaRdpcCx0HfvTnTzUKl6msG22xKFdxMc/SxaFB4xCI8aSEU87hApYPoVdFEcKeAiBtMmkAKm+M2LIwUiI0AKRAJkuBkBpIAZejeFkQJuojBtBCnwQPz1HnfY358qvJcg7x+kQN4TjO8fKRDPMO8zIAXynmBc/0iBOH5CCkQCZLgZAaSAGXo3hZECbqIwbQQpcHL84bjDTVtKGhkNjxkk2rt3+jGDcHLB2WelGhyQ1g9WcnvcIVLA9CvoojhSwEUMpk0gBUzxmxdHCkRGgBSIBMhwMwJIATP0bgojBdxEYdoIUqAx/Ntvr++4w3PPTlUqNTa31dVIASvyfuoiBfxkYdUJUsCKvI+6SIHIHJACkQAZbkYAKWCG3k1hpICbKEwbQQrMHf/Jjjvs6Um1bm24iyDVunWpurvmXqfVI5ECrSbsf36kgP+MWt0hUqDVhH3PjxSIzAcpEAmQ4WYEkAJm6N0URgq4icK0EaRAc/CH4w7HxkoaHpFGRhOF9xIc/XSUpNWrKyoPqPrCQm/HHSIFmrMH8jwLUiDP6TWnd6RAczjmdRakQGRySIFIgAw3I4AUMEPvpjBSwE0Upo0gBZqPP5xccMut9R13eOaKVOHdBJYfpIAlfR+1kQI+crDsAilgSd++NlIgMgOkQCRAhpsRQAqYoXdTGCngJgrTRpACrccfjjscHk00NJxo660zjzvs7Q1HHYYjD6W1ayrq6Gh9P8dWQApkz9xbRaSAt0Sy7wcpkD1zTxWRApFpIAUiATLcjABSwAy9m8JIATdRmDaCFMgW//h4Un28YGjkyOMG4bGDo5/w3oG+vkr1NIMsjztECmS7BzxWQwp4TCXbnpAC2fL2Vg0pEJkIUiASIMPNCCAFzNC7KYwUcBOFaSNIATv89R53ODCQatnplZY1ihRoGdrcTIwUyE1ULWsUKdAytLmYGCkQGRNSIBIgw80IIAXM0LspjBRwE4VpI0gBU/wzit9xZ6LhkVL1LoLt22e+aGDx4lTl+x4zWHVepanHHSIF/OwBq06QAlbk/dRFCvjJwqITpEAkdaRAJECGmxFACpihd1MYKeAmCtNGkAKm+E9YfP+9iW4eCpJA2ry5pKmaGwVqjzvs65Pmz0ujFoEUiMJXiMFIgULEGLUIpEAUvtwPRgpERogUiATIcDMCSAEz9G4KIwXcRGHaCFLAFH9dxU923GGpJIU7B8KLCtcPzu24Q6RAXTEU+iKkQKHjrWtxSIG6MBX2IqTALNF+6wf/pb/7x6/plm07NH9et3798Y/QX1z4h5oX3gYkCSlQ2O9G4ReGFCh8xLMuECkwK6K2uAApkK+Yw3GHt92WaGhU1UcNdu6c+ZjBiuXhMYOKymWp3uMOkQL52gOt6BYp0Aqq+ZoTKZCvvJrdLVJgFqKf/cr3tGTxQj30/HXas3e//vydV+qpT3yULnzBM5ECzd6NzJcpAaRAprhdFkMKuIwl86aQApkjb2rBPXsS3Tw8+3GHa1ZX1NV5/NJIgaZGksvJkAK5jK2pTSMFmoozd5MhBRqM7IqPf0kjG2/Vh99zEVKgQXZc7osAUsBXHhbdIAUsqPuriRTwl8lcOwrHHW4YSzQ8HP4pTUxM30XQ2Sn1ra5osCyVy6kW9KS6e0+iH9+QaPeuDi04paKHXlDR6lVx7yeYa++MsyWAFLDl76E6UsBDCnY9IAUaZP+SN1ym9f2rdNELn4UUaJAdl/sigBTwlYdFN0gBC+r+aiIF/GXSjI4qU9LYlpJGqo8ZJNq7d1oQJIm08sxU4bSDycmZ1V7zqimdthgx0IwM8jQHUiBPabWmV6RAa7jmZVakQANJffkb1+vyq7+oL11zSfWRgvDZtXeigRn8XNrd2aF53SXtO3DYT1N0kimBjlKi3p4u3XPvoUzrUswPgSRJdFpvl3bvYw/4SSX7TpYumpfb38uyp5XfijvukG4eKukXw6m23ZZI4c/9M19HUF3crz0x1W88GSmQ36Tn1vmpvd3af+CwpipkPzeC+R+1cEGXJg5N6dBkzVEnOVpW+L2Mz9wJIAXqZPetH/y3LvnAp3T1Za9Xee2594+aOJzPL054W3FHkujwFL/417kFCndZKZE6OxIdmmQPFC7cOhcU/rawq6OU2/8AqHOZXDYLgXldJeX19zLCnRuBffulr/xLRT/+yQN//Q+PGTzk/EQXPCjR+YOJeubPrQaj8kWgu7OkyamKcAL5yq2Z3YY7SIMUyuseCL+X8Zk7AaRAHey+8NXv66pPf1VXXfo69a85e8YITh+oAyCXuCTA4wMuY8m0KR4fyBS322I8PuA2mpY2dvsO6SMfe+CbB8PpBkEYhk/tcYfl/lSLeaygpZlYTs7jA5b0fdTm8QEfOVh1gRSYhfyVn/iK/uW7P9IV736Vzly+9P6re+bPU7j1FilgtXWpG0sAKRBLMP/jkQL5z7AZK0AKNINiPuf4xrdK+tEN03+7turcVE/99coJjztctixVeaCiwX7prLPS++VBPldP17UEkALsB6RAe+8BpMAs+T/zz96mkbFbH3DVv33pcp2+5FSkQHt/f3K9eqRAruNrSvNIgaZgzP0kSIHcRxi1gPGD0qF750udEzr11JmPE4TjDodHEw2PSFtuKalS88Rkb2+qgf4gCaSTHXcY1RyDMyOAFMgMtdtCSAG30WTSGFIgEjN3CkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRfEVS3p0593jJ32W+OBEotENsx932N+fqvcU3lXjItgGmkAKNACroJciBQoabJ3LQgrUCepElyEFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+ieD1SoLbRcNzhlq2l6h0E4U6CcEdB7WflylSDA6o+arD8DASBi5BnaQIpkIeUWtsjUqC1fL3PjhSITAgpEAmQ4WYEkAJm6N0URgq4icK0EaSAKX4XxRuVAsc2fced4RGDkoZGpO3bZwqC8HLC8JLC8JjBqnMrKnW4WDJNHEMAKcCWQAq09x5ACkTmjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4visVKgdhH77000OppoaFga21zS5OT0T+fNS7WuTyqXwz9T9fRwF4GLDSAJKeAlCbs+kAJ27D1URgpEpoAUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4s2UArULOjwpbdp85DGDkdFE+/dP30UQjj0895xUg+VU68scd2i9EZAC1gnY10cK2Gdg2QFSIJI+UiASIMPNCCAFzNC7KYwUcBOFaSNIAVP8Loq3SgrULi5NpdtuSzju0EXiD2wCKeA0mAzbQgpkCNthKaRAZChIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KJ6FFDh2oSc77nBBz/Rxh2vXVtTV6QJToZtAChQ63roWhxSoC1NhL0IKREaLFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+IWUqB24eG4w7ExaWgk0YaNicbHpx8z6OyU+lZXNFiWOO6wddsFKdA6tnmZGSmQl6Ra0ydSIJIrUiASIMPNCCAFzNC7KYwUcBOFaSNIAVP8LopbS4FaCJWKtOUWjjvMemMgBbIm7q8eUsBfJll2hBSIpI0UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4p6kwLFAdt5V0shIUj3ucNtticK7CY5+Fi0KRx2GRw2kvlUcdxizmZACMfSKMRYpUIwc57oKpMBcyd03DikQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFPUuBWkAHxhMND3PcYSs2DVKgFVTzNSdSIF95NbtbpEAkUaRAJECGmxFACpihd1MYKeAmCtNGkAKm+F0Uz4sUqIVV73GH5f5US5bU3F7ggri/JpAC/jLJuiOkQNbEfdVDCkTmgRSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4vieZQCteDCIwW37wh3EUjDoyXtuGP6RYXhuqVLwmMGFQ0MSOedkyqZ+WMXGVg3gRSwTsC+PlLAPgPLDpACkfSRApEAGW5GAClght5NYaSAmyhMG0EKmOJ3UTzvUuBYiHv3Jbp5KNHwyJGXFoaXFx791B532NdXUXeXiwjMm0AKmEdg3gBSwDwC0waQApH4kQKRABluRgApYIbeTWGkgJsoTBtBCpjid1G8aFKgFurJjjvsKEmrV1dUHpDWD6bqPaV9HzNACrj4Kpo2gRQwxW9eHCkQGQFSIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuihdZCtQCDncMbN2WaGREGh4padfumc8RrFyZanBA1UcNlp/RXoIAKeDiq2jaBFLAFL95caRAZARIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KN4uUuBY2Lt3h8cMSrMed7hmVUUdHS6ialkTSIGWoc3NxEiB3ETVkkaRApFYkQKRABluRgApYIbeTWGkgJsoTBtBCpjid1G8XaVALfxw3OHoaFIVBGNjJR06PP3T8N6B8P6BcBfBQH+qnp7i3UWAFHDxVTRtAilgit+8OFIgMgKkQCRAhpsRQAqYoXdTGCngJgrTRpACpvhdFEcKzIxhakrauKlUfVHhyGii/funHzMIJxece06qwXKqIh13iBRw8VU0bQIpYIrfvDhSIDICpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCpw4hkaOOzz37FSlkotIG24CKdAwssINQAoULtKGFoQUaAjXAy9GCkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRXGkQP0xhOMOh0eOHHe4eXNJUzXHHYbHCtatDS8rTLVuXZqr4w6RAvXvgaJeiRQoarL1rQspUB+nE16FFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIgbnFEN47sGFDeA9Bog0bE42PTz9mUHvcYXkg1aKFvt9DgBSY2x4o0iikQJHSbHwtSIHGmc0YgRSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSIH4GGY77nDF8vAOgorKZenMFanCuwk8fZACntKw6QUpYMPdS1WkQGQSSIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFGh+DOG4w+FwmsFwoq23JgrvJjj66e1Nq6cYlAektWt8HHeIFGj+HsjbjEiBvCXW3H6RApE8kQKRABluRgApYIbeTWGkgJsoTBtBCpjid1EcKdDaGMJjBeEUg9mOO+zvT7XA6LhDpEBr90AeZkcK5CGl1vWIFIhkixSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSIHsYgjHHW7aUtLIqKovLNy7d+Zxh2efFV5UKK0frGjJkuzeQ4AUyG4PeK2EFPCaTDZ9IQUiOSMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLALobttycaHpaGR0vaccfMFw0sXRIeMahoYEBq9XGHSAG7PeClMlLASxI2fSAFIrkjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMqve4w74+af685t5FgBTwsQcsu0AKWNK3r40UiMwAKRAJkOFmBJACZujdFEYKuInCtBGkgCl+F8WRAi5imNFEOO5wbKyk4RFV30dwoOa4w1JJWnVepfqiwvWDzTnuECngbw9k3RFSIGvivuohBSLzQApEAmS4GQGkgBl6N4WRAm6iMG0EKWCK30VxpICLGE7YRDi54JZbE42MhPcQlLRr98zHDJpx3CFSwPceyKI7pEAWlP3WQApEZoMUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzHU3US9xx2uWV1RV2d90yIF6uNU5KuQAkVOd/a1ta0U2LT1dj37hRfre//0fp126sITkrr+hp/rpW+8bMbPu7o69bPvXF39d0iB2TcZV/gkgBTwmUuWXSEFsqTttxZSwG82WXWGFMiKdPPrhOMON4yFlxWGf0oTE9N3EXR2Sn2rKxosS+XyyY87RAo0P5u8zYgUyFtize23LaXAn73ur7Vh0zbtunuv/uO6K2aVApd84JO69up33U8+/HK7sHcBUqC5e5HZMiaAFMgYuMNySAGHoRi0hBQwgO6sJFLAWSBzbKcyJY3VcdzhwECqZadXZlRBCswReoGGIQUKFOYcltKWUiBwOjB+UI962kvrkgJ/efmn9c3P/PVx8XKnwBx2HUNcEEAKuIjBtAmkgCl+N8WRAm6iMGsEKWCGvqWF77gzqb6DYGhE2r595nsIFi9OVe4PRx4eeWnh8iXztWffhA5PNfdUg5YukMmbSgAp0FScuZsMKVDHnQKvePMHqncTLOpdoEc/bFAXvejZ1f8dPkiB3O15Gr6PAFKArYAUYA8EAkgB9gFSoPh7YP+9iW4eCpJA2ry5pKmaGwV6elI9eH1Ja/umtGp12vTjDotPtxgrRAoUI8e5rgIpMIsUuPuefbpj5906dVGvdty5S5dd9QUtW3qqPvDOV86VOeMgAAEIQAACEIAABCBgQmDikHTzcKqf3VTRjTdVtP/e6TY6SlL/2kQXPKikhz24pKVLTFqkKAQgkDEBpMAsUuDYPH560wY9/6L36sbvXqMkSbhTIOMNS7nmEeBOgeaxzOtM3CmQ1+Sa2zd3CjSXZx5n406BPKbWnJ7DcYe33Zbolls69dP/rejOnTMfM1i2LDxiUNFgv3TWWamSmT9uThPM4oIAdwq4iMGsCaRAg1LgP//7Jr3x3R+tvosgfHh8wGzvUjiSAFIgEmABhiMFChBiE5aAFGgCxJxPgRTIeYBNaP/oiwZ37gp3ESQaGk609dZEQRoc/fT2phq47z0EjRx32IT2mCIDAkiBDCA7LoEUOEYKfPkb1yv8wf99F7+sGts1n/26zj7zdF1w/lrtuWe/3nrpNXrEQ/r1pgv/ECngeGPT2uwEkAKzMyr6FUiBoidc3/qQAvVxKvJVSIEip1vf2o53+kC9xx3296fqPYUXFNZH2u9VSAG/2WTRWVtKgWe98GLdfucu3bP3Xp268BSds/IMff6jb6/yvvzqL+or37xe37/2g9X/P0iCT3zhm9q2fWf1GMKnPuFRes2Ln6Oe+d1IgSx2KDVaRgAp0DK0uZkYKZCbqFraKFKgpXhzMTlSIBcxtbTJ2Y4kDMcdbtlaqr6ocHg00Z49M58jWLky1eCAqo8aLD8DQdDSsFo0OVKgRWBzMm1bSoFmZsPjA82kyVxZEkAKZEnbZy2kgM9csu4KKZA1cX/1kAL+Msm6o9mkwLH91H3c4bkVlTqyXg315kIAKTAXasUZgxSIzBIpEAmQ4WYEkAJm6N0URgq4icK0EaSAKX4XxZECLmIwbaJRKVDbbDjucHQ0vIdAGttc0uTk9E/nzUu1rk8ql1P1r+O4Q9OQZymOFPCcTut7QwpEMkYKRAJkuBkBpIAZejeFkQJuojBtBClgit9FcaSAixhMm4iRArWNH56UNm488pjByGiiA+PTjxmUStKq8yoqh8cM+lMtXsxjBqahH1McKeApjex7QQpEMkcKRAJkuBkBpIAZejeFkQJuojBtBClgit9FcaSAixhMm2iWFKhdxNHjDodGpeGRknZy3KFpxrMVRwrMRqjYP0cKROaLFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDbRCilw7ILCywnDSwrDXQRbbimpUpm+YkHP9HGHa9dW1NVpiqMtiyMF2jL2+xeNFIjMHykQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtIgspULvAgxOJRjckGh5OtGFMmpiYfsygs1PqW13RYFniuMPstgVSIDvWHishBSJTQQpEAmS4GQGkgBl6N4WRAm6iMG0EKWCK30VxpICLGEybyFoK1C6W4w5No7+/OFLARw5WXSAFIskjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk1YSoFjF77zrpJGRhINjUjbbksU3k1w9LNoUaryQHjUQOpbxXGHzdw0SIFm0szfXEiByMyQApEAGW5GAClght5NYaSAmyhMG0EKmOJ3URwp4CIG0yY8SYFaEOH0gvCIwWzHHa7rS9XTw2kGMZsIKRBDL/9jkQKRGSIFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTXiVArVQwnGHmzZPH3e4f//0ewiSRDr3nFSD5VTryxx3OJfNhBSYC7XijEEKRGaJFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaRBylQC4jjDpu/XZACzWeapxmRApFpIQUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZN5E0KHAur3uMO+/oq6u4yRe22OFLAbTSZNIYUiMSMFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaRdylQCy8cdzg2Jg2NJNqwMdH4+PRjBh0lafXqisoD0vrBVL2n8B6Co+yQAqZfQfPiSIHICJACkQAZbkYAKWCG3k1hpICbKEwbQQqY4ndRHCngIgbTJookBWpBVirSlluOvIdgeDRRuKOg9rNyZarBAak8UNHyM9pbECAFTL+C5sWRApERIAUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNFFUKHAu13uMO16yqqKPDNJLMiyMFMkfuqiBSIDIOpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCriIwbSJdpECtZDDcYejo4mGRqSxsZIOHZ7+aXjvQHj/QLiLYKC/PY47RAqYfgXNiyMFIiNACkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRXGkgIsYTJtoRylQC3xqStq4afbjDsv9qZYsKeZjBkgB06+geXGkQGQESIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kT7S4FauGH4w5v35FoeDi8h6CkHXfMfA/B0iVp9R0EAwPSeeekSmb+2DTHmOJIgRh6+R+LFIjMECkQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtAilwYvx79yW6eSipvqwwvLQwvLzw6GdBT1p9vCCcZpD34w6RAqZfQfPiSIHICJACkQAZbkYAKWCG3k1hpICbKEwbQQqY4ndRHCngIgbTJpAC9eGv97jD8kCqRQvz9ZgBUqC+PVDUq5ACkckiBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBRrHH+4Y2Lot0Ug47nCkpF27Zz5HsGJ5qnJ/ReWytPJM/4IAKdD4HijSCKRAZJpIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIgXj8u3eHxwxK1dMMtt2WKLyb4OhA++dXAAAWTElEQVRn0aLwiEF41EDyetwhUiB+D+R5BqRAZHpIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIgebir/e4w/7+VOG9BB4+SAEPKdj1gBSIZI8UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUaB3+cNzhpi0ljYyGxwwS7d07/ZhBOLng7LNSDQ5I6wcrpscdIgVatwfyMDNSIDIlpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCriIwbQJpEB2+LffXt9xh+eenapUyq4vpEB2rD1WQgpEpoIUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUsMEfjjsMdw+E4w43by5pqua4w56eVOvWhrsIUq1bl6q7q7U9IgVay9f77EiByISQApEAGW5GAClght5NYaSAmyhMG0EKmOJ3URwp4CIG0yaQAqb4q8UPHZY2bEg0NJJow8ZE4+PTjxl0lKTVqysqD6j6wsJWHHeIFLDfA5YdIAUi6SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPE/oHgjxx2euSJVeDdB7AcpEEsw3+ORApH5IQUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8c9aPBx3ODyaaGg40dZbZx532NsbjjoMRx5Ka9dU1NEx63THvQApMDduRRmFFIhMEikQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtAilgir+h4uGxgpEgCEaksbFS9bGDo5/w3oG+vkr1NINGjztECjQUQ+EuRgrUGel13/pPXfPZr+urn/jLGSOQAnUC5DJ3BJAC7iLJvCGkQObIXRZECriMJdOmkAKZ4nZZDCngMpZZm6r3uMOBgVTLTq95i+FxZkYKzIq70BcgBWaJ98679uj5F71Hd9+zX2ecfhpSoNBfh/ZaHFKgvfI+3mqRAuyBQAApwD5ACrAHkALF2AN33BlOMihV7yLYvn3miwYWL05Vvu8xg1XnVR5w3OGuO7qljkktnUUeeCUVfi/jM3cCSIE62f3ghz/T+z/2T0iBOnlxmX8CSAH/GbW6Q6RAqwnnY36kQD5yamWXSIFW0s3H3EiBfOTUSJf7701089Dsxx3eeyDRd/+1pIMHj8y+YoX0p8+bVM/8RqrZX4sUiMsAKVAnP6RAnaC4LDcEkAK5iapljSIFWoY2VxMjBXIVV0uaRQq0BGuuJkUK5CquhpsN7x0I7x8YGVH1hYUHao47VCrpmNMLHnpBqmf+9lTDdSwHIAXi6CMF6uR3Iikwcfjkz+fUOX3ml5VKUkeS6PBU+JWATzsSKCVSZ0eiQ5PsgXbMP6w5HGHU1VHSocl8/jrWrrk1e93zukrK6+9lzWbRrvN1d5V0+HCl+mcDPu1JoLuzpMmpiipsgsJvgDSVbtkq3fiLiv7nxlS7dj1wyevWJHr1y0u5YhF+L+MzdwJIgTrZnUgK7Np7qM4ZfF0W/gMgfHn2HZj01RjdZEagsyT19nRpz701r63NrDqFPBBIStJpp3Rr9758/jrmgWEReli6qFt5/b2sCPw9rGHJom7dve+Qwh8W+LQngcW93dp/4JBwxO2V//i49I73HHObgKQ1q6SX/Fm+fkEIv5fxmTsBpECd7Hh8oE5QXJYbAjw+kJuoWtYojw+0DG2uJubxgVzF1ZJmeXygJVhzNSmPD+QqrqY2+/FPdmjLLTPFwO//bkWD5XzdRcjjA3HbAilQJz+kQJ2guCw3BJACuYmqZY0iBVqGNlcTIwVyFVdLmkUKtARrriZFCuQqrqY2O35Q+unPStq4sUPz5lX0kAenuRMCAQhSIG5bIAVm4Xf7nbv1rBe+TZOTUxo/OKGFvQv0jKf+sv7ilX9QHbl913hcAkaj53d3aMG8Dm4bNuLvoSxSwEMKtj0gBWz5e6mOFPCShF0fSAE79l4qIwW8JGHXx5KF3TpwcFIHc/q+NKRA3N5BCsTxQwpE8mO4HQGkgB17L5WRAl6SsO0DKWDL30N1pICHFGx7QArY8vdQHSngIQW7HpACkey5UyASIMPNCCAFzNC7KYwUcBOFaSNIAVP8LoojBVzEYNoEUsAUv4viSAEXMZg1gRSIRI8UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUMMXvojhSwEUMZk0gBSLRIwUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8bsojhRwEYNZE0iBSPRIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIAVP8LoojBVzEYNYEUiASPVIgEiDDzQggBczQuymMFHAThWkjSAFT/C6KIwVcxGDaBFLAFL+L4kgBFzGYNYEUiESPFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaBFDDF76I4UsBFDGZNIAUi0SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPG7KI4UcBGDWRNIgUj0SIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kTSAFT/C6KIwVcxGDWBFIgEj1SIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuiiMFXMRg2gRSwBS/i+JIARcxmDWBFIhEjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSAEXMZg2gRQwxe+iOFLARQxmTSAFItEjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBUzxuyiOFHARg1kTSIFI9EiBSIAMNyOAFDBD76YwUsBNFKaNIAVM8bsojhRwEYNpE0gBU/wuiiMFXMRg1gRSwAw9hSEAAQhAAAIQgAAEIAABCEAAArYEkAK2/KkOAQhAAAIQgAAEIAABCEAAAhAwI4AUMENPYQhAAAIQgAAEIAABCEAAAhCAgC0BpIAtf6pDAAIQgAAEIAABCEAAAhCAAATMCCAFzNDbFt609XY9+4UX63v/9H6ddupC22ao3lIC9WY9ceiwHv7UFz2gl89c+TZdsL6vpT3+/+3de7yXgx0H8C/pQm6Ry7C5DbPNZe7XYWFUrnkRheQak5qwUpEoFCrZohiKDZnbUJthCyPkEjKpzSWXlOTl0lBnr+exjOWQXhyv83zfv/9yTv2ez/v7dc75fc7zPD//eN0KTP7ny9FvyKh4burL8eGHH8VmG60XPbscFmt8Z6W6PRDP9o0LvD/ngzj93OHx+NPPx1uz34l11lwtuh13UGyz+Q9rfe62nc6KiZOmfubjXY4+II5u1/obP15PUHcCNTU10aP/iHj0yX/E9JlvxYrLLxsH7r1LHNO+dSy22GJ1dyCeqU4ErrxuTNw0Zly8NG16NGncKHbadtPo2eXQaLpUk899/gsvvT4u/90dn/nY9lv+OC4b0K1OjteT1L1A8XPgMacMLJ/4qsHd6/4APOO3KqAU+Fb5v50nP/Lk82Py1Jdj5qy3475bLlYKfDtjqJNn/Sqznl8K3HrlObFS82afHF/TJZtEgwaL18nxepK6EXhwwjPx3JSXYuftNo1GjRrGeUOvjRlvvh0jL+5RNwfgWepMoCgCho28NfbdY4dYacXl46Y7x8WlI2+Ne0YPiqWbLvm5x1GUAvu3/GnssctWn3y8SaOG5a54VEdg3ryauHr02Nhx642jebPlYtLkF+LYUy+IUZf0jI1+sHZ1gkpSChT/739/rdXju6utHDNnzY6Teg+N/VvuGB3btqy1FCjKoh6d23/y8SUaNIillmxMtIICc+fOi65nDo3pb8yKxo0bKQUqOOMvi6QU+DKhin78vffnxJZ7HqcUqOh8Px1rYWc9vxQozh5ZdaUVEsiIOF+gKAk69xwS4+8YBqXiAh/NnRubtDgyRg/vExuut2atpUC7/XaNvXbfruIa4s0X+OCDD+OhxybFGQN/G6OHnxUrLO8MwqpuR/Hib+qLr0SX3kOj9y8Pj61/smGtpcCs2e9E31M7VpVCrk8J9B5wRSy7TNNYd83V4uYx9ykFEm6HUiDh0IvIC/tCMSlPpWIv7KznlwIrNls2llqySay/7hpx0pFtYt21Vq+UhzALCoy49va494HHY9TQ0/FUXODJZ6bEEV3Pi7/+YfAXninwwkuvlacVr7Zq8/I3icVZJR7VFBj/2LNxRNdzo/kKy8XQc06KjTZcp5pBpSoFfrRzh2i4RIPo1fXwaNPqp7WqFJcPXHvTXbF006Wi+Lmg1a7b1HpWAdr6LTBo+OiYPmNWnPOro8pCQClQv+e5qEevFFhUuXr+9xb2hWI9j+nwv0IBVJxK+uSkKbFK82bxznvvx8jRf4oHHn4q/jjy3PL6Q49qChT3Fzj0xH7li4EtNtmgmiGlKgXefW9OtDvh7GjZYus4pv1etaoUp5EXlxbU1ESMe+iJGDjs+rj2kp61nlmAt/4LFGcK3P/IU9Gj3/C4ccRZZRnkUU2B4nv9lBemxfHdB8UpndrG7jtt8blBX5z2enw0d14Ulw49O+Wl6HPBlXHsoXvHIfu1qCZM0lS3jL0/xt47Poac3TmKy0OKy0yUAjmXQSmQc+7OFEg090UtgIpTDLfY89gYMfCU2Hzj9ROJ5Yla3ISyY9fz4qSj2sR+e+6YJ3jCpEUhcNxpF8aaa6xSng78VW4kd1S3AeXXgE6H7ZNQLlfk4n4Sxf0n2u7zs1zBE6YtzgR4+dUZceGZxy9U+stG3RYPPvpMXHHRaQv1+T6pfghcMOz6GDl6bMR/by46b968KH7+a9hwiXjg1kvcQ6J+jPFrOUqlwNfCWP/+kUV9oVj/kjriRZ11cdfyrVsdFzdd3tclBBVcoyeemVLeR+C0Ew4pf3PsUV2BGW/OLguB4l0mup/Y7isVAoXKIcf3Le8vcPC+fkNY3S35ONleh3WPjge3VBJWfdARcdZFV8ecOf+Oft0XfNehz4tfnGJenD1w4ZknJNDJG9GZAnlnrxRIOvtFfaGYlKtex65t1sUX/vsffioG9u5U5rv7vgnxyuszY4etNorGjRrG4MtvLN+l4obL+sTii3t7qnq9BP938OMemhg9+l8WfU7pGNts9r+bTBV3ly9OH/SojsArr82IDl3OLX/72+GgPT4JVsy5mHdxqcDA31wX/XscEys3Xz6mvTajvI64VYttYuXmzWLMPeNj0PAbysuI3IC0OntRJJkw8bm462+PRuvdti3fmeKG2+6Nq24YG7eP/Pj+Ah7VESh+89vljKHRvs1u5Y3kJkycXH4PuKjPL8p3nyguKTi624Dya0Tx5+LR96KrY/edtyw/f9LkF+O0s4dF31OPjBY7blYdGEkWEFAK5F0KpUDC2bc5qne8On1mzH773Vhumabl29Ncd+kZCSWqH/mLZj14xI1x85hx5VuTFY/iN8cDfv37eP5f08o/b7HxBtGjczvXllZwTfpffE2MuvHPCyQb0KuTswYqNu+/jJsQnXsNWSDVgXvtHGec3CH+/sjTUVwecOc158X3Vl8lircw7HX+5eXXg+KSg/XWXj26dWrrfhMV24siTlEA9R9yTUx8dmq8+9775T0jTj3+YDcarOCsa2pqotf5V8T4xybFG2/OjjVWbR5Ht28de+++fZl2/ruS9Ol2RBzQeqfyvxXfJ+6+/7EozjQqCsEOB/48DnJZSQW347ORlAKVH3GtAZUCeWcvOQECBAgQIECAAAECBAgkF1AKJF8A8QkQIECAAAECBAgQIEAgr4BSIO/sJSdAgAABAgQIECBAgACB5AJKgeQLID4BAgQIECBAgAABAgQI5BVQCuSdveQECBAgQIAAAQIECBAgkFxAKZB8AcQnQIAAAQIECBAgQIAAgbwCSoG8s5ecAAECBAgQIECAAAECBJILKAWSL4D4BAgQIECAAAECBAgQIJBXQCmQd/aSEyBAgAABAgQIECBAgEByAaVA8gUQnwABAgQIECBAgAABAgTyCigF8s5ecgIECBAgQIAAAQIECBBILqAUSL4A4hMgQIAAAQIECBAgQIBAXgGlQN7ZS06AAAECBAgQIECAAAECyQWUAskXQHwCBAgQIECAAAECBAgQyCugFMg7e8kJECBAgAABAgQIECBAILmAUiD5AohPgAABAgQIECBAgAABAnkFlAJ5Zy85AQIECBAgQIAAAQIECCQXUAokXwDxCRAgQIAAAQIECBAgQCCvgFIg7+wlJ0CAAAECBAgQIECAAIHkAkqB5AsgPgECBAgQIECAAAECBAjkFVAK5J295AQIECBAgAABAgQIECCQXEApkHwBxCdAgAABAgQIECBAgACBvAJKgbyzl5wAAQIECBAgQIAAAQIEkgsoBZIvgPgECBAgQIAAAQIECBAgkFdAKZB39pITIECAAAECBAgQIECAQHIBpUDyBRCfAAECBAgQIECAAAECBPIKKAXyzl5yAgQIECBAgAABAgQIEEguoBRIvgDiEyBAgAABAgQIECBAgEBeAaVA3tlLToAAAQIECBAgQIAAAQLJBZQCyRdAfAIECBAgQIAAAQIECBDIK6AUyDt7yQkQIECAAAECBAgQIEAguYBSIPkCiE+AAAECBAgQIECAAAECeQWUAnlnLzkBAgQIECBAgAABAgQIJBdQCiRfAPEJECBAgAABAgQIECBAIK+AUiDv7CUnQIAAAQIECBAgQIAAgeQCSoHkCyA+AQIECBAgQIAAAQIECOQVUArknb3kBAgQIECAAAECBAgQIJBcQCmQfAHEJ0CAAAECBAgQIECAAIG8AkqBvLOXnAABAgQIECBAgAABAgSSCygFki+A+AQIECBAgAABAgQIECCQV0ApkHf2khMgQIAAAQIECBAgQIBAcgGlQPIFEJ8AAQIECBAgQIAAAQIE8gooBfLOXnICBAgQIECAAAECBAgQSC6gFEi+AOITIECAAAECBAgQIECAQF4BpUDe2UtOgAABAgQIECBAgAABAskFlALJF0B8AgQIECBAgAABAgQIEMgroBTIO3vJCRAgQIAAAQIECBAgQCC5gFIg+QKIT4AAAQIECBAgQIAAAQJ5BZQCeWcvOQECBAgQIECAAAECBAgkF1AKJF8A8QkQIECAAAECBAgQIEAgr4BSIO/sJSdAgAABAgQIECBAgACB5AJKgeQLID4BAgQIECBAgAABAgQI5BVQCuSdveQECBAgQIAAAQIECBAgkFxAKZB8AcQnQIAAAQIECBAgQIAAgbwCSoG8s5ecAAECBAgQIECAAAECBJILKAWSL4D4BAgQIECAAAECBAgQIJBXQCmQd/aSEyBAgAABAgQIECBAgEByAaVA8gUQnwABAgQIECBAgAABAgTyCigF8s5ecgIECBAgQIAAAQIECBBILqAUSL4A4hMgQIAAAQIECBAgQIBAXgGlQN7ZS06AAAECBAgQIECAAAECyQWUAskXQHwCBAgQIECAAAECBAgQyCugFMg7e8kJECBAgAABAgQIECBAILmAUiD5AohPgAABAgQIECBAgAABAnkFlAJ5Zy85AQIECBAgQIAAAQIECCQXUAokXwDxCRAgQIAAAQIECBAgQCCvgFIg7+wlJ0CAAAECBAgQIECAAIHkAv8Bhj3PToabkqUAAAAASUVORK5CYII=",
"text/html": [
"
\n",
" \n",
" \n",
"
\n",
" \n",
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import plotly.graph_objects as go\n",
"import plotly.io as pio\n",
"\n",
"fig = go.Figure(go.Scatter(x=[1, 2, 3, 4], y=[4, 3, 2, 1]))\n",
"fig.update_layout(title_text='hello world')\n",
"pio.show(fig)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also call plotly.io.show directly from the go.Figure object."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plotly.com"
},
"data": [
{
"type": "scatter",
"x": [
1,
2,
3,
4
],
"y": [
4,
3,
2,
1
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#506784",
"arrowhead": 0,
"arrowwidth": 1
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"fillcolor": "#506784",
"line": {
"width": 0
},
"opacity": 0.4
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "hello world"
},
"xaxis": {
"autorange": true,
"range": [
0.8171959721146398,
4.182804027885361
],
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
0.7802547770700636,
4.219745222929936
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAHCCAYAAACXLHDfAAAgAElEQVR4Xuy9C5hVV3n//91nLjBkIARCIOQGDMycIWq8X9patVZbf39rf/XS2pu21rvGeKlab/ESq01r1Bgbo02sl9Zb4yW23rXaplXT2p+mxswFBgghhIRACBCGgZmz/886hMwZAsw5s87Z77v3+Zzn6ROb2Wu97/p814HwYe+9kjRNU/GBAAQgAAEIQAACEIAABCAAAQhAoO0IJEiBtsucBUMAAhCAAAQgAAEIQAACEIAABKoEkAJsBAhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQggBRgD0AAAhCAAAQgAAEIQAACEIAABNqUAFKgTYNn2RCAAAQgAAEIQAACEIAABCAAAaQAewACEIAABCAAAQhAAAIQgAAEINCmBJACbRo8y4YABCAAAQhAAAIQgAAEIAABCCAF2AMQgAAEIAABCEAAAhCAAAQgAIE2JYAUaNPgWTYEIAABCEAAAhCAAAQgAAEIQAApwB6AAAQgAAEIQAACEIAABCAAAQi0KQGkQJsGz7IhAAEIQAACEIAABCAAAQhAAAJIAfYABCAAAQhAAAIQgAAEIAABCECgTQkgBdo0eJYNAQhAAAIQgAAEIAABCEAAAhBACrAHIAABCEAAAhCAAAQgAAEIQAACbUoAKdCmwbNsCEAAAhCAAAQgAAEIQAACEIAAUoA9AAEIQAACEIAABCAAAQhAAAIQaFMCSIE2DZ5lQwACEIAABCAAAQhAAAIQgAAEkALsAQhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQggBRgD0AAAhCAAAQgAAEIQAACEIAABNqUAFKgTYNn2RCAAAQgAAEIQAACEIAABCAAAaQAewACEIAABCAAAQhAAAIQgAAEINCmBJACbRo8y4YABCAAAQhAAAIQgAAEIAABCCAF2AMQgAAEIAABCEAAAhCAAAQgAIE2JYAUaNPgWTYEIAABCEAAAhCAAAQgAAEIQAApwB6AAAQgAAEIQAACEIAABCAAAQi0KQGkQJsGz7IhAAEIQAACEIAABCAAAQhAAAJIAfYABCAAAQhAAAIQgAAEIAABCECgTQkgBdo0eJYNAQhAAAIQgAAEIAABCEAAAhBACrAHIAABCEAAAhCAAAQgAAEIQAACbUoAKdCmwbNsCEAAAhCAAAQgAAEIQAACEIAAUoA9AAEIQAACEIAABCAAAQhAAAIQaFMCSIE2DZ5lQwACEIAABCAAAQhAAAIQgAAEkALsAQhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQgUEgp8NCnvFC/85u/ore/7k+akvBNI5v1ey95p/7qzS/Wbz31l6pz/v3nvqH3XfV5fe+f3q8Vy5Y0pY71JI/8zRfrab/2WF3yhhectJW//fsv68pPXqcf/cuVWtS7wLpt6kMAAhCAAAQgAAEIQAACEIDAHAkgBeoAhxSYCQkpUMem4RIIQAACEIAABCAAAQhAAAI5IIAUqCMkpABSoI5twiUQgAAEIAABCEAAAhCAAARyRwApUEdkSAGkQB3bhEsgAAEIQAACEIAABCAAAQjkjkChpcCTfvlh+uin/1lDG27R8mWn6XnP+Q39/v998oyQDk9O6eOf/bqu+9Z/aPuOu7Ro4SkK41730t+7/3n5RqTAD39yk678xHXVmp2dHXrkBQN67Yufo75VZ510c4zdsl3PeP6b9fqXPVd/8nu/ef+1v/uSdyhRos9/9O33/7uwpg9d80Vd/5UrtGTxwuq/r6fujTeP6Q9efon+5m0v08GJiep7EbbedmeVy+te+rs63jsF7th5ty676vP6tx/fqCRJdH7/KpVKpWo93imQu+87DUMAAhCAAAQgAAEIQAACEJhBoLBSoHdBj/btP6BffvSDtGTxouofYsMfcD/2N3+uX37Ug6oQ0jTVK99yuf7zv36u5/zWE7VuzTm6ZdsOffbL31N57bn6x799a/UPwvVKge9d//900cVXqG/VSv3mkx6tiYnD+vI3rtfBiUP6zJVvU995K0+6/X7lty+sSoQPvuuV1evu2n2PnvDMi6r/+/vXflBnnL64+r8vfMvl2nLrDv3zp95b/f/rrXtUCqxccbp27b5Hj3n4ep2yYL4eMrimKgaOlQJ337NPz3nR27Vz1z369V99hM5acXpVIlx/w/9W14QU4FcTCEAAAhCAAAQgAAEIQAAC+SZQWClwzpnLdNk7XqH+NWdXE9q5a4+e8tw/19Oe9Bi9980vqv67r33vx3rDJVfpqktfq8c/5iH3J/mNf71Bf/6uj+jq971ej3vk+XVJgampip7y3NfplJ75+qe/e6fmz+uuzrdj5249/Y//Qo+8oFytc7LPqy/+sG68eWNVAITPF7/27/rw33+pKjfe8PLf1+8+40nVf//EZ71aT/qlh1ZPV2ik7lEp8PAH9+vSt7xYQQ7Ufo6VAu/+4Kf12a98734OR6/lRYP5/tLTPQQgAAEIQAACEIAABCAAgaMECisFjnck4TP+5C067dReffLyN1XXH/7GffOtO/TFq981Y0eMj0/ol3/7lbrohc/Si//ot+qSAj8f2qTnvuxdetOFf6g/etZTZsz3lr+6Wv/8nR/qhq9dpZ75R2TB8T7/8MXv6L1X/OP9xxyG/s44/bTqHQMThw7pqktfpzvv2qMnPfvVuvStL9HTf/1xaqRu7eMD/+fJj3lAC8dKgXDnQpAqH//AG2dcixTgFxAIQAACEIAABCAAAQhAAALFINBWUuAPX/FuTVUq+txHLq6m91vPe5M2bb39hEn+6XOfpj9/6e/VJQW+/r0b9PpLPqKP/NVr9KuPvWDGnB/7h3/W5Vd/Uf/yqfdq9blnnrDe8MatetYLL9b73/FyPemXHqZfesYr9MF3Xajde/bq4r/5e/3wqx/Wj//nZl341g/dLw4aqduIFLhn773V+kFwBNFR+0EKFOPLzyogAAEIQAACEIAABCAAAQi0lRT4o1f+pSanpu6XAv/fH/+FOjo6dMkbXnDcnXDG0sU6c/nShqTAsY8ihImPvhjwa5/+K606Z8UJd12lkuqXn/EK/c7THq/HPfJBeu07/rYqAg6MT+jxv3Oh3nfxy6svMPzad3+kb3/ufdV5jkqBeuo2IgV23b1Xv/o7r6q+9DC8/BApwC8WEIAABCAAAQhAAAIQgAAEikegraXAS95wmf735jFdf90V6uzoOGG69bxoMMzz+y+/RG98xe9XX9pX+3nTe/5OX/vej2Z9fCCMefmbPqDwt/ThRYfhRX/vf8crqlP96Wv+SiuWLdXO3XsUZMV73nTkvQiN1G1ECgR58sjffIme+LiH3v/iw6Nr4k6B4v1CwIogAAEIQAACEIAABCAAgfYk0NZS4J/+5Qd6x/s+oZc+7xm68AXPnLEDwkkF4QV/a1efVdedAuEP0U/5vddpQc98Xft377r/3QHhmMOnP+9NevTDwosGXzfrLgvHBH7o41/SklMX6jUvfo6e/pTHVcd8+tpv6yOfuk5pJdXrX/5cPfP//Gr13zdStxEpEOb+s9f+tX560wZ99ZPv0dlnLqvWC6Li9ZdcpR/95BecPjBrmlwAAQhAAAIQgAAEIAABCEDAN4G2lgLhD9ThboHwnH54I/9jHz6o7u4u3TS8Wf/24xt1yetfoN966i/VJQVCzN/+t59Ub/lfc+6ZetqTH1M9kvBLX/93jR88pM9e+baqYJjtc/TFgR0dJV3/lSt06sJTqkOCXAinJ4TPN/7xUp171vL7p6q3bqNS4IafDlXFwKmLTqneMRB4/eCHP9Phw5OaOHQYKTBbmPwcAhCAAAQgAAEIQAACEICAcwJtLQVCNocnp/Tpa7+lf/nOj6onEXR3deq8s5frCY+9QL/327+m05ecWrcUCPNdf8PPddWnrqs++9/Z2aFHXjCgV7/oOfcfjTjbfgh/8H7c01+u8wdW6xMf/IsZlz/zz96m8Kz/v33p8gdMU0/dRqVAKPKdf/+JPnT1F7X1tju1csVS/dGznlp98eFVn/oqUmC2MPk5BCAAAQhAAAIQgAAEIAAB5wQKKQWcM6c9CEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiBSObbd41HzmAzfH53hxbM69DufYdsGqCqOYGujkSLe7u1854J815owIZAqZTojFPnacfdB20aoKoLAiuX9iivv5e5AFiAJlYs6dGdd4+rkhZgMSxhTgSWLZ6vPfsmdHiKTTAngAUYtGRhtw4cnNTBw5Vcrib8XsZn7gSQAnNnVx2Z1/+QQgpEBl+A4UiBAoQYuQSkQCTAggxHChQkyIhlIAUi4BVkKFKgIEFGLAMpEAGvAEORApEhIgUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8bsojhRwEYNZE0iBSPRIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIAVP8LoojBVzEYNYEUiASPVIgEiDDzQggBczQuymMFHAThWkjSAFT/C6KIwVcxGDaBFLAFL+L4kgBFzGYNYEUiESPFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaBFDDF76I4UsBFDGZNIAUi0SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPG7KI4UcBGDWRNIgUj0SIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kTSAFT/C6KIwVcxGDWBFIgEj1SIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuiiMFXMRg2gRSwBS/i+JIARcxmDWBFIhEjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSAEXMZg2gRQwxe+iOFLARQxmTSAFItEjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBUzxuyiOFHARg1kTSIFI9EiBSIAMNyOAFDBD76YwUsBNFKaNIAVM8bsojhRwEYNpE0gBU/wuiiMFXMRg1gRSoAH0l131BX38c1/XL37wiftHIQUaAMilrgggBVzFYdIMUsAEu7uiSAF3kWTeEFIgc+TuCiIF3EWSeUNIgcyRuyqIFKgzjk984Zv65vf/Sz8f2oQUqJMZl/kmgBTwnU8W3SEFsqDsvwZSwH9Gre4QKdBqwv7nRwr4z6jVHSIFWk3Y9/xIgTry+eq3/1Nf/Nq/6+2v+xP91vPelHspMDRc0v/+PNGhQ4nWrq3ooRdU1DO/DhBcUigCSIFCxTmnxSAF5oStcIOQAoWLtOEFIQUaRla4AUiBwkXa8IKQAg0jK9QApMAscf77j2/UFR//sj7+/jdo7/4Deupz/zzXUuCnP0v05a92zFj16vNS/enzpwq1sVnM7ASQArMzKvoVSIGiJ1zf+pAC9XEq8lVIgSKnW9/akAL1cSryVUiBIqc7+9qQAidhtGnr7Xr1xR/WNZe9XsuWLtZtO+56gBTYtXdidsqOrvjoNSVt2vLAht7x5op6ehw1SistJ9BRStTb06V77j3U8loU8EkgSRKd1tul3fvYAz4TyqarpYvmKW+/l2VDpn2qLFk4T3fvn1Cats+aWelMAqf2dmv/gcOaqrAJ2nVvLFzQpYlDUzo0WcklgvB7GZ+5E0AKnIRduEvgwrd8SEkpOXJVmurw5JS6ujp1xbtfpcc/5iGaOJyvL84Hr6xow6YH/oK/dKn0iAsSXXB+SeedKyX3LXnuW4uR3gmEbd3ZkejQJP8B4D2rVvUXvuddHaXc/gdAq7i027zzukq5+72s3TJq9Xq7u0o6fLgifjdoNWm/83d3ljQ5VRFOwG9Gre4s3EEapFBe90D4vYzP3AkgBRpgd7w7BfJ2+sCXruvQz2485k/84b8Cav7Vgp5U5f5UAwNSX19F3V0NQOLS3BDg8YHcRNWyRnl8oGVoczUxjw/kKq6WNMvjAy3BmqtJeXwgV3G1pFkeH2gJ1txMihRoIKoiSIG79yT6zOc7dMcdRxY+f57060+u6JQFqYZGEm3YmGh8fNoQdJSk1asrKg9I6wdT9Z7C3yM0sGVcX4oUcB1PJs0hBTLB7L4IUsB9RC1vECnQcsTuCyAF3EfU8gaRAi1H7LoAUqCBeIogBY4ud9euDmmyQ0uXz3yWuFKRttxS0vCINDyaaM+emXcVrFyZanBAKg9UtPwMBEED28fdpUgBd5Fk3hBSIHPkLgsiBVzGkmlTSIFMcbsshhRwGUumTSEFMsXtrhhSIDKSvD0+cHS587s7tGBex6wvGNt5V0kjI4mGRqRttyUzXkK0aFGq8kCqgX6pb1VFpZmHGkSSZXirCSAFWk3Y//xIAf8ZZdEhUiALyr5rIAV855NFd0iBLCj7roEU8J1Pq7tDCkQSLroUqMVzYDzR8HCioWFpbHNJk5PTP503L9W6PqlcDv9M1dPDXQSRW6vlw5ECLUfsvgBSwH1EmTSIFMgEs+siSAHX8WTSHFIgE8yuiyAFXMfT8uaQApGI20kK1KI6PClt2nzkMYOR0UT7908/ZhDeaH7uOakGy0deWLhkCYIgcpu1ZDhSoCVYczUpUiBXcbWsWaRAy9DmZmKkQG6ialmjSIGWoc3NxEiB3ETVkkaRApFY21UK1GIL5xrfviPcRRDeQ1DSjjtmvodg6ZLwmEGleprBeeekHHcYueeaNRwp0CyS+Z0HKZDf7JrZOVKgmTTzORdSIJ+5NbNrpEAzaeZzLqRAPnNrVtdIgUiSSIEHAty7L9HNQ0n1LoLw0sLw8sKjn3Dc4UB/kAQcdxi59aKHIwWiEeZ+AqRA7iNsygKQAk3BmOtJkAK5jq8pzSMFmoIx15MgBXIdX3TzSIFIhEiBkwM8OJFobEyzHncYXli4aCGPGURux4aGIwUawlXIi5EChYy14UUhBRpGVrgBSIHCRdrwgpACDSMr3ACkQOEibWhBSIGGcD3wYqRA/QDDHQNbtyUaCccdjpS0a/fMxwxWLA/vIKioXJZWnokgqJ/s3K5ECsyNW5FGIQWKlObc14IUmDu7ooxEChQlybmvAykwd3ZFGYkUKEqSc1sHUmBu3O4fhRSYO8Ddu8NjBqVZjztcs6qiDo47nDvoE4xECjQdae4mRArkLrKWNIwUaAnWXE2KFMhVXC1pFinQEqy5mhQpkKu4mt4sUiASKVIgEuB9w8Nxh6OjSVUQjI2VdOjw9LzdXUfePzA4oOr7CDjusDnMkQLN4ZjnWZACeU6veb0jBZrHMq8zIQXymlzz+kYKNI9lXmdCCuQ1ueb0jRSI5IgUiAR4nOFTU9LGTRx32HyyM2dECrSasP/5kQL+M8qiQ6RAFpR910AK+M4ni+6QAllQ9l0DKeA7n1Z3hxSIJIwUiAQ4y/BGjjs89+xUpVJr+ynS7EiBIqU5t7UgBebGrWijkAJFS7Tx9SAFGmdWtBFIgaIl2vh6kAKNMyvSCKRAZJpIgUiADQ4Pxx0Ojxw57nDz5pKmao47DI8VrFubanAg1bp1qcJjB3xOTAApwO5ACrAHAgGkAPsAKcAeQAqwB5AC7b0HkAKR+SMFIgFGDA/vHdiwIbyHINGGjYnGx6dPM+goSatXV1QekDju8PiQkQIRm68gQ5ECBQkychlIgUiABRiOFChAiJFLQApEAizAcKRAAUKMWAJSIAJeGIoUiATYpOGNHHd45opUyczTEJvURb6mQQrkK69WdIsUaAXV/M2JFMhfZs3uGCnQbKL5mw8pkL/Mmt0xUqDZRPM1H1IgMi+kQCTAFg0Pxx0Oh9MMhhNtvTVReDfB0U9vb1o9xSDcRbB2Tfsed4gUaNHmy9G0SIEchdXCVpECLYSbk6mRAjkJqoVtIgVaCDcnUyMFchJUi9pECkSCRQpEAsxgeHisYKSO4w77+1Mt6KmxBxn0ZlkCKWBJ30dtpICPHKy7QApYJ2BfHylgn4F1B0gB6wTs6yMF7DOw7AApEEkfKRAJMOPh4bjDTVtKGhlV9YWFe/dOP0cQHik4+6zwokJp/WBFS5YUWxAgBTLefA7LIQUchmLQElLAALqzkkgBZ4EYtIMUMIDurCRSwFkgGbeDFIgEjhSIBGg8fPvtiYaHpeHRknbcMfNFA0uXhEcMKhoYkIp43CFSwHjzOSiPFHAQgoMWkAIOQjBuASlgHICD8kgBByEYt4AUMA7AuDxSIDIApEAkQEfD6z3usK9Pmj8v/3cRIAUcbT6jVpACRuCdlUUKOAvEoB2kgAF0ZyWRAs4CMWgHKWAA3VFJpEBkGEiBSIBOh4fjDsfGShoeUfV9BAdqjjsslaRV5x057nD9YKpFC/MpCJACTjdfhm0hBTKE7bgUUsBxOBm1hhTICLTjMkgBx+Fk1BpSICPQTssgBSKDQQpEAszB8HBywS23JhoZCe8hKGnX7pmPGaxYnqrcX1G5LOXpuEOkQA42X4tbRAq0GHBOpkcK5CSoFraJFGgh3JxMjRTISVAtbBMp0EK4OZgaKRAZElIgEmAOh9d73OGa1RV1dfpdIFLAbzZZdYYUyIq07zpIAd/5ZNEdUiALyr5rIAV855NFd0iBLCj7rYEUiMwGKRAJMOfDw3GHG8bCywrDP6WJiem7CDo7pb7VFQ2WpXLZ33GHSIGcb74mtI8UaALEAkyBFChAiJFLQApEAizAcKRAAUKMXAJSIBJgzocjBSIDRApEAizQ8MqUNFbHcYcDA6mWnV4xXzlSwDwC8waQAuYRuGgAKeAiBtMmkAKm+F0URwq4iMG0CaSAKX7z4kiByAiQApEACzz8jjuT6jsIhkak7dtnvodg8eLwHoJw5OGRlxaGlxdm/UEKZE3cXz2kgL9MLDpCClhQ91UTKeArD4tukAIW1H3VRAr4yiPrbpACkcSRApEA22T4/nsTjY4mGhqWxjaXNDk5vfCenlTr1qYaHEiV5XGHSIE22XwnWSZSgD0QCCAF2AdIAfYAUoA9gBRo7z2AFIjMHykQCbANhx+elDZunP24w3AnQbijoFUfpECryOZnXqRAfrJqZadIgVbSzcfcSIF85NTKLpECraSbj7mRAvnIqVVdIgUiySIFIgG2+fBw3OFttyUaGj1y3OHOnTMfM1i2LDxiUNFgv3TWWamSmT+OoocUiMJXiMFIgULEGL0IpEA0wtxPgBTIfYTRC0AKRCPM/QRIgdxHGLUApEAUPgkpEAmQ4TMI7NmT6Obh8JhBoq23JgrS4OintzfVwH3vIWjGce64ZhUAACAASURBVIdIATYfUoA9EAggBdgHSAH2AFKAPYAUaO89gBSIzB8pEAmQ4SckUO9xh/39qXpPafwxA6QAmw8pwB5ACrAHAgGkAPsAKcAeQAq09x5ACkTmjxSIBMjwugiE4w63bD3yHoLh0UThjoLaz8qV4UWFqj5qsPyM+gQBUqAu9IW+CClQ6HjrXhx3CtSNqrAXIgUKG23dC0MK1I2qsBciBQobbV0LazspsO32nXr3Bz+loQ1bdc++e3Xe2cv1qhc8S09+/MOPC+z6G36ul77xshk/6+rq1M++c3X13yEF6tpnXNRkAnUfd3huRaWO4xdHCjQ5lBxOhxTIYWgtaBkp0AKoOZsSKZCzwFrQLlKgBVBzNiVSIGeBNbndtpMCm7ferl+MbNHDHrxOC3rm6cvfuF4f+eR1uuFrVyn8B/KxnyAFLvnAJ3Xt1e+6/0fhqoW9C5ACTd6MTDc3Aic77nDevFTr+qRyOVX/ulTz503fRYAUmBvvIo1CChQpzbmvBSkwd3ZFGYkUKEqSc18HUmDu7IoyEilQlCTnto62kwK1mPbfO65PXftt/c+NI7rm/W84LsEgBf7y8k/rm5/56+P+nDsF5rbxGNUaAuG4w02bp4873L9/WnSVStKq8yoqh8cM+lMtWyot7u3WznsmWtMMs7ongBRwH1EmDSIFMsHsughSwHU8mTSHFMgEs+siSAHX8bS8ubaVAn/791/WlZ+8Tg8ur9ZVl75Oi0/tPaEUeMWbP6DTTl2oRb0L9OiHDeqiFz27+r/DBynQ8j1KgTkSmO24wzOWpXrYQ0o677zJph93OMeWGZYxAaRAxsCdlkMKOA0mw7aQAhnCdloKKeA0mAzbQgpkCNthqbaVAiGLew8c1Mc/93X94Ic/0xc++g51dJQeENHd9+zTHTvv1qmLerXjzl267KovaNnSU/WBd77SYZy0BIETE9i1W/rpzyu68aaKRjemmqpMX9t7inTBg0p66INKOn8wUXcXJCEAAQhAAAIQgAAEIACBdiDQ1lIgBHxw4pAe8Rsv1lc/+R71nbdy1sx/etMGPf+i9+rG716jJEm4U2BWYlzgkcDBiUSbxhJt2NChm4YrmpiYfsygs1PqW13RYFma63GHHtdMTw8kwJ0C7IpAgDsF2AfcKcAe4E4B9gB3CrT3Hmh7KbDr7r361d95lb79uffprBWnz7ob/vO/b9Ib3/1R/cd1V1Sv5fGBWZFxgVMCR180eMfuiaYfd+h0ybR1DAGkAFsCKcAeCASQAuwDpAB7ACnQ3nug7aTAP37pu0rTVL/y6AerVCrpb678rO66e68+87dvrf7NfziNIPzB/30Xv6y6M6757Nd19pmn64Lz12rPPfv11kuv0SMe0q83XfiHSIH2/u7kfvUnOn1g510ljYwkGhqRtt2WKLyb4Ohn0aJU5YFUA/1S36oTH3eYezhtsgCkQJsEPcsyuVOAfYAUYA8gBdgDSIH23gNtJwV++JObdOUnrtPGLbeplCR67CPO15su/AMtW7q4uhMuv/qL+so3r9f3r/1g9f8PkuATX/imtm3fWT2G8KlPeJRe8+LnqGd+N1Kgvb87uV99PUcSHhhPNDycaGhYGttc0uTk9LJrjztc15eqp6fGHuSeTnssACnQHjnPtkqkwGyEiv9zpEDxM55thUiB2QgV/+dIgeJnfLIVtp0UaHbcPD7QbKLMlxWBeqRAbS8nO+4wSaRzz0k1WE61vpxq8WIEQVY5xtRBCsTQK85YpEBxspzrSpACcyVXnHFIgeJkOdeVIAXmSq4Y45ACkTkiBSIBMtyMQKNSoLbR8EjB7TvCXQTS8GhJO+6YflFhuG7ZsvCYQUWD/eK4Q7OEZy+MFJidUTtcgRRoh5RPvkakAHsAKcAeQAq09x5ACkTmjxSIBMhwMwIxUuDYpvfuS3TzUKLhEWnLLSVVao47XNAT3kEQJIHU11fhuEOzxB9YGCngKAzDVpAChvCdlEYKOAnCsA2kgCF8J6WRAk6CMGoDKRAJHikQCZDhZgSaKQVqFxGOOxwbk4ZGEm3YmGh8fPougo6StHp1pSoI1g+m6j2FxwzMNoAkpIAlfT+1kQJ+srDqBClgRd5PXaSAnyysOkEKWJH3URcpEJkDUiASIMPNCLRKCtQuKNwxEO4cCHcQDI8m2rNn5mMGK1emGhxQ9VGD5WcgCLLeDEiBrIn7rIcU8JlLll0hBbKk7bMWUsBnLll2hRTIkra/WkiByEyQApEAGW5GIAspcOzi6j3ucM2qijo6zNC0TWGkQNtEfdKFIgXYB0gB9gBSgD2AFGjvPYAUiMwfKRAJkOFmBCykQO1iw3GHo6OJhkaksbGSDh2e/ml315H3D4S7CML7CDjusDXbBCnQGq55mxUpkLfEmt8vUqD5TPM2I1Igb4k1v1+kQPOZ5mlGpEBkWkiBSIAMNyNgLQVqFz41JW3cdOQxg5HRRPv3Tz9mUHvcYbk/1ZIlPGbQrE2DFGgWyXzPgxTId37N6B4p0AyK+Z4DKZDv/JrRPVKgGRTzOwdSIDI7pEAkQIabEfAkBWohzHbc4dIlR447HBiQzjsnVZAGfOZGACkwN25FG4UUKFqija8HKdA4s6KNQAoULdHG14MUaJxZkUYgBSLTRApEAmS4GQGvUuBYIOG4w+GRI8cdbt5c0hTHHTZtzyAFmoYy1xMhBXIdX1OaRwo0BWOuJ0EK5Dq+pjSPFGgKxtxOghSIjA4pEAmQ4WYE8iIFagGF9w5s2BDeQ3Dy4w7LA6kWLeQxg9k2F1JgNkLt8XOkQHvkfLJVIgXYA0gB9gBSoL33AFIgMn+kQCRAhpsRyKMUqIUVjjvcui3RSDjucKSkXbtnPkewYnmqcn9F5bK08kwEwfE2GlLA7OvnqjBSwFUcJs0gBUywuyqKFHAVh0kzSAET7G6KIgUio0AKRAJkuBmBvEuBY8Ht3p3o5qFS9TSDbbclCu8mOPpZtCi8hyDVQL/EcYfTXJACZl8/V4WRAq7iMGkGKWCC3VVRpICrOEyaQQqYYHdTFCkQGQVSIBIgw80IFE0K1IKs97jD/v5UC3ra9y4CpIDZ189VYaSAqzhMmkEKmGB3VRQp4CoOk2aQAibY3RRFCkRGgRSIBMhwMwJFlgK1UMNxh5u2lDQyGh4zSLR378zjDs8+K9XggLR+sNJ2xx0iBcy+fq4KIwVcxWHSDFLABLurokgBV3GYNIMUMMHupihSIDIKpEAkQIabEWgXKXAs4O23JxoeloZHS9pxx8z3ENQed3ju2alKJbN4MimMFMgEs/siSAH3EbW8QaRAyxG7L4AUcB9RyxtECrQcsesCSIHIeJACkQAZbkagXaVALfCTHXfY05Nq3dpwF0GqdetSdXeZRdWywkiBlqHN1cRIgVzF1ZJmkQItwZqrSZECuYqrJc0iBVqCNTeTIgUio0IKRAJkuBkBpMBM9OG4w7GxkoZHpJHRROG9BEc/HSVp9eqKygOqvrCwKMcdIgXMvn6uCiMFXMVh0gxSwAS7q6JIAVdxmDSDFDDB7qYoUiAyCqRAJECGmxFACpwYfTi54JZb6zvu8MwVqZKZTyGYZdpoYaRAo8SKeT1SoJi5NrIqpEAjtIp5LVKgmLk2siqkQCO0inctUiAyU6RAJECGmxFACtSPPhx3ODyaaGg40dZbZx532NsbjjoMRx5Ka9dU1NFR/7zWVyIFrBPwUR8p4CMHyy6QApb0fdRGCvjIwbILpIAlffvaSIHIDJACkQAZbkYAKTA39OPjSfXxgqGRI48bhMcOjn7Cewf6+irV0wzycNwhUmBue6Boo5ACRUu08fUgBRpnVrQRSIGiJdr4epACjTMr0gikQGSaSIFIgAw3I4AUiEdf73GHAwOplp1eiS/Y5BmQAk0GmtPpkAI5Da6JbSMFmggzp1MhBXIaXBPbRgo0EWYOp0IKRIaGFIgEyHAzAkiB5qO/485EwyOl6l0E27fPfNHA4sWpyvc9ZrDqvIqL4w6RAs3fA3mcESmQx9Sa2zNSoLk88zgbUiCPqTW3Z6RAc3nmbTakQGRiSIFIgAw3I4AUaC36/fcmunkoSAJp8+aSpmpuFKg97rCvT5o/L21tMyeYHSlggt1dUaSAu0gybwgpkDlydwWRAu4iybwhpEDmyF0VRApExoEUiATIcDMCSIHs0J/suMNSSQp3DoQXFa4fzPa4Q6RAdnvAcyWkgOd0sukNKZANZ89VkAKe08mmN6RANpy9VkEKRCaDFIgEyHAzAkgBG/ThuMPbbks0NKrqowY7d858zGDF8vCYQUXlstTq4w6RAjZ7wFtVpIC3RLLvBymQPXNvFZEC3hLJvh+kQPbMPVVECkSmgRSIBMhwMwJIATP0Mwrv2ZPo5uHZjztcs7qirs7m9owUaC7PvM6GFMhrcs3rGynQPJZ5nQkpkNfkmtc3UqB5LPM4E1IgMjWkQCRAhpsRQAqYoT9h4XDc4YaxRMPD4Z/SxMT0XQSdnVLf6ooGy1K5nGpBT/x7CJAC/vaARUdIAQvqvmoiBXzlYdENUsCCuq+aSAFfeWTdDVIgkjhSIBIgw80IIAXM0NdVuDIljW0paaT6mEGivXunBUGSSGeflWpwQIo57hApUFcUhb8IKVD4iGddIFJgVkSFvwApUPiIZ10gUmBWRIW+ACkQGS9SIBIgw80IIAXM0M+pcN3HHZ5bUamjvhJIgfo4Ff0qpEDRE559fUiB2RkV/QqkQNETnn19SIHZGRX5CqTALOn+x3/9XFd+4isau2W7KpWKzh9YrYtf+3ytOffM6kikQJG/HsVeG1Igv/mG4w5HR8N7CKSxzSVNTk6vZd68VOv6jjxi0L8uPelxh0iB/O6BZnaOFGgmzXzOhRTIZ27N7Bop0Eya+ZwLKZDP3JrVNVKgDimQJIkG+s7R5NSU/vpvP6cD4wd11aWvRQo0axcyjwkBpIAJ9qYXPTwpbdxY0vCINDKa6MD49GMGtccdlvtTLV488z0E9+wtSYe71H3KhHrmN701JswJAaRAToJqYZtIgRbCzcnUSIGcBNXCNpECLYSbg6mRAnWGlKapdu66R+96/yf1oPJqvfR5z0AK1MmOy3wSQAr4zCWmq9mOO1y2LFV5oKLBfunb3y1py9ZpgfDEJ1T0a0+oxJRnbE4JIAVyGlwT20YKNBFmTqdCCuQ0uCa2jRRoIswcToUUqDO051/0Xv3kxhE9++lP0Ntf+ycKt92GD48P1AmQy9wRQAq4i6TpDYXjDodHk+pdBFtuKaly35/5gzwILys89vOyF0/qzBVNb4MJnRNACjgPKIP2kAIZQHZeAingPKAM2kMKZADZcQmkQAPh3HnXHr39fX+vs888XW+56I+rIycO5/Nv1sJtxR1JosNT8ceaNYCQSx0RCF6rsyPRoUn2gKNYWtbK+EHpF0Opbrwp1f/+Ip3xHoKjRR/7yET/9+klLextWRtM7JDAvK5Sbn8vc4gzly11d5V0+HBF/G6Qy/ia0nR3Z0mTUxVV2ARN4ZnHScJfFk1V0tzugfB7GZ+5E0AKNMju+ht+rje/92O6/itXVEfu2nuowRl8XB7+AyB8efYdqHlDmY/W6CIjAp0lqbenS3vuPZxRRcp4IfCt70n/+oPj3CoQ/mOwetyhdH5ZWj+YasVyL13TR6sILF3Undvfy1rFpN3mXbKoW3fvO6RwFxGf9iSwuLdb+w8c0mQ+/66rPUNr8qoXLujUxKGp3P5lUfi9jM/cCSAFGmT3ze//l9531ef13c9fVh3J4wMNAuRyNwR4fMBNFJk3cvsO6SMf65xRd/48afFpqXbsmCkLwssJw0sKywPSqgaOO8x8URScMwEeH5gzusIM5PGBwkQ554Xw+MCc0RVmII8PFCbKOS0EKTALtnd/8NN61EMHdMH5a3Xnzrv1pvf+nZ78Kw/Xa1/yu0iBOW05BnkhgBTwkoRNH5u3JPrZ/5Z0776Slp4+pcc+JtVpi1PVe9zhur5UPT38taJNes2tihRoLs88zoYUyGNqze0ZKdBcnnmcDSmQx9Sa1zNSYBaWn77227r2a/+mbdt3avGiXj39KY/TK/7k/6q7uwsp0Lx9yEwGBJACBtCdlQwvTD3j1HnacffB43YWjjvctHn6uMP9+6fvIggvKjz3nFSD5VTryw887tDZUmnnJASQAmwPpAB7ACnAHkAKtPceQApE5s/jA5EAGW5GAClght5N4dmkQG2jjRx3eNZZ6XFPN3CzcBqZQQApwIZACrAHkALsAaRAe+8BpEBk/kiBSIAMNyOAFDBD76ZwI1Lg2KZPdNxhuG5BT6qB+95D0NdX0X03VrlZN43MJIAUYEcgBdgDSAH2AFKgvfcAUiAyf6RAJECGmxFACpihd1M4RgrULuLgRKKxMWloJNGGjYnGx6cfM+goSatXV6ovKgynGfSewnsI3GyA+xpBCnhLJPt+kALZM/dWESngLZHs+0EKZM/cU0WkQGQaSIFIgAw3I4AUMEPvpnCzpEDtgioVacstR95DMDyaKNxRUPtZuTLV4IBUHqho+RkIAg+bASngIQXbHpACtvw9VEcKeEjBtgekgC1/6+pIgcgEkAKRABluRgApYIbeTeFWSIFjF7fzrpJGRhINjUjbbktmnIO+aFE46jA8aiD1raqo1OEGTVs1ghRoq7iPu1ikAHsAKcAeQAq09x5ACkTmjxSIBMhwMwJIATP0bgpnIQVqF3tgPNHwcKKhYWlsc0mTk9M/nTcv1bo+qVwO/+S4wyw3CVIgS9o+ayEFfOaSZVdIgSxp+6yFFPCZS1ZdIQUiSSMFIgEy3IwAUsAMvZvCWUuB2oXXe9xhuT/VkiU8ZtDKTYMUaCXdfMyNFMhHTq3sEinQSrr5mBspkI+cWtUlUiCSLFIgEiDDzQggBczQuylsKQVqIYTjDm/fEe4iCO8hKGnHHTPfQ7B0SXjMoKKBAem8czjusNkbCCnQbKL5mw8pkL/Mmt0xUqDZRPM3H1Igf5k1s2OkQCRNpEAkQIabEUAKmKF3U9iLFDgWyN59iW4eSqovKwwvLQwvLzz64bjD5m8fpEDzmeZtRqRA3hJrfr9IgeYzzduMSIG8JdbcfpECkTyRApEAGW5GAClght5NYa9SoBZQvccdhhcWLlrIYwZz2VxIgblQK9YYpECx8pzLapACc6FWrDFIgWLl2ehqkAKNEjvmeqRAJECGmxFACpihd1M4D1KgFla4Y2DrtkQj4bjDkZJ27Z75mMGK5anK/RWVy9LKMxEE9W40pEC9pIp7HVKguNnWuzKkQL2kinsdUqC42dazMqRAPZROcg1SIBIgw80IIAXM0LspnDcpcCy43bvDYwalWY87XLOqog6OOzzhvkMKuPlKmjWCFDBD76YwUsBNFGaNIAXM0LsojBSIjAEpEAmQ4WYEkAJm6N0UzrsUqAUZjjscHU2qgmBsrKRDh6d/2t0l9fVVNDggDfRz3OGxGxAp4OYradYIUsAMvZvCSAE3UZg1ghQwQ++iMFIgMgakQCRAhpsRQAqYoXdTuEhSoBbq1JS0cVOp+qLCkdFE+/dPP2aQJNK556QaLIdHDTjuMHBDCrj5Spo1ghQwQ++mMFLATRRmjSAFzNC7KIwUiIwBKRAJkOFmBJACZujdFC6qFKgF3Mhxh+eenapUchNPZo0gBTJD7bYQUsBtNJk1hhTIDLXbQkgBt9Fk0hhSIBIzUiASIMPNCCAFzNC7KdwOUuBY2OG4w+GRI8cdbt5c0lTNcYc9PanWrU01OJBq3bpU4bGDdvggBdoh5ZOvESnAHkAKsAeQAu29B5ACkfkjBSIBMtyMAFLADL2bwu0oBWrhh/cObNgQ3kOQaMPGROPj048ZdJSk1asrKg9IRT/uECng5itp1ghSwAy9m8JIATdRmDWCFDBD76IwUiAyBqRAJECGmxFACpihd1O43aVAbRCNHHd45opU4d0ERfkgBYqS5NzXgRSYO7uijEQKFCXJua8DKTB3dkUYiRSITBEpEAmQ4WYEkAJm6N0URgqcOIpw3OFwOM1gONHWWxOFdxMc/fT2ptVTDMJdBGvX5P+4Q6SAm6+kWSNIATP0bgojBdxEYdYIUsAMvYvCSIHIGJACkQAZbkYAKWCG3k1hpEB9UYTHCsIpBrMdd9jfn2pBT409qG9686uQAuYRmDeAFDCPwLwBpIB5BOYNIAXMIzBtACkQiR8pEAmQ4WYEkAJm6N0URgo0HkU47nDTlpJGRlV9YeHevTOPOzz7rPCiQmn9YEVLluRDECAFGt8HRRuBFChaoo2vBynQOLOijUAKFC3RxtaDFGiM1wOuRgpEAmS4GQGkgBl6N4WRAvFRbL890fCwNDxa0o47Zr5oYOmS8IhBRQMDkufjDpEC8fsg7zMgBfKeYHz/SIF4hnmfASmQ9wTj+kcKxPETUiASIMPNCCAFzNC7KYwUaG4U9R532NcnzZ/n5y4CpEBz90EeZ0MK5DG15vaMFGguzzzOhhTIY2rN6xkpEMkSKRAJkOFmBJACZujdFEYKtC6KcNzh2FhJwyOqvo/gQM1xh6WStOq8I8cdrh9MtWihrSBACrRuH+RlZqRAXpJqXZ9IgdaxzcvMSIG8JNWaPpECkVyRApEAGW5GAClght5NYaRANlGEkwtuuTXRyEh4D0FJu3bPfMxgxfJU5f6KymXJ4rhDpEA2+8BzFaSA53Sy6Q0pkA1nz1WQAp7TaX1vSIFIxkiBSIAMNyOAFDBD76YwUsAminqPO1yzuqKuztb3iBRoPWPvFZAC3hNqfX9IgdYz9l4BKeA9odb2hxSI5IsUiATIcDMCSAEz9G4KIwXsowjHHW4YCy8rDP+UJiam7yLo7JT6Vlc0WJbK5dYdd4gUsN8H1h0gBawTsK+PFLDPwLoDpIB1Arb1kQKR/JECkQAZbkYAKWCG3k1hpICbKKqNVKaksTqOOxwYSLXs9ErTmkcKNA1lbidCCuQ2uqY1jhRoGsrcToQUyG10TWkcKRCJESkQCZDhZgSQAmbo3RRGCriJ4riN3HFnUn0HwdCItH37zPcQLF4c3kMQjjw88tLC8PLCuX6QAnMlV5xxSIHiZDnXlSAF5kquOOOQAsXJci4rQQrMhVrNGKRAJECGmxFACpihd1MYKeAmilkb2X9vopuHgiSQNm8uaarmRoGenlTr1qYaHEg1l+MOkQKz4i/8BUiBwkc86wKRArMiKvwFSIHCR3zSBbadFNiweZve86F/0OimbTp8eFIPf/A6vfXVz9PZZy47Lqjrb/i5XvrGy2b8rKurUz/7ztXVf4cUaO8vUJ5XjxTIc3rN6R0p0ByOWc9S73GH4U6CcEfBbB+kwGyEiv9zpEDxM55thUiB2QgV/+dIgeJnfLIVtp0U+PH/u1mjY7fqib/0UHV3d+nSD39Gd+3eq09f8eYTSoFLPvBJXXv1u+7/ebiJc2HvAqRAe393cr96pEDuI4xeAFIgGqH5BOG4w9tuSzQ0euS4w507Zz5msGxZeMSgosF+6ayzUiUzf1ztHylgHqN5A0gB8wjMG0AKmEdg3gBSwDwC0wbaTgocSztIgle99UP6r69fdUIp8JeXf1rf/MxfH/fn3Clgun8pHkEAKRABryBDkQIFCbJmGXv2JLp5ONHQcKKttyYK0uDop7c31cB97yGoPe4QKVC8fdDoipACjRIr3vVIgeJl2uiKkAKNEivW9W0vBa7+zNf0gx/+TP/w4becUAq84s0f0GmnLtSi3gV69MMGddGLnl393+GDFCjWF6KdVoMUaKe0j79WpECx90C9xx3+6mPmaf+h8WLDYHUnJYAUYIMgBdgDSIH23gNtLQXC+wX++ML36MN/eZEeecHAcXfC3ffs0x0779api3q1485duuyqL2jZ0lP1gXe+snr9vvHJXO6gzo5EXR0ljR+aymX/NB1PoCOR5nd36N4J9kA8zXzOEG4lP2Vep/YfzOevY/mkbtP11JS0aYt0082pbhpKtXv3zOcIzjlbevD6RA9aL525wqZHqtoR6O3p1L3jk5r9DRR2PVK5tQROmd+pgxOTmmITtBa049l7ujt0eLKiyUo+N8HCnk7HdP231rZSYNPW2/WC11yqi174LP3O0x5fd1I/vWmDnn/Re3Xjd69RkiTad+Bw3WM9XdjZUVJXZ6Jx/kDoKZZMewl/SxykwAH+QJgpd0/Fwq9hp8zv0P6cyk1PLPPWy+07giBI9POhVLdum9n9kiWpHlSWHrS+pDWrUnV05G119Nsogd6eLt178PCMx00anYPr801gQZACh6ZUyekfCPNN30f3PfPukwI5NUMLF3T5AJnTLtpSCtx481j1PQJvfMUf6P88+TENRfef/32T3vjuj+o/rruiOo7HBxrCx8WOCPD4gKMwjFrh8QEj8M7K9nb36N9vmNDQsDS2uaTJmhtH5s1Lta5PKpdT9a9LNX9ePv8GyRlyd+3w+IC7SDJviMcHMkfuriCPD7iLJNOG2k4KhCMG3/zej+mdr3+BHvvwwfthh5MIOjs69OVvXK/wB//3Xfyy6s+u+ezXdfaZp+uC89dqzz379dZLr9EjHtKvN134h0iBTLcqxZpNACnQbKL5mw8pkL/MWtFx7YsGD09KGzeWNDwijYwmOjA+/ZhBqSStOq+i8oBU73GHreiXOZtPACnQfKZ5mxEpkLfEmt8vUqD5TPM0Y9tJgfde8Y/6hy9+5wEZ/c3bXla9a+Dyq7+or3zzen3/2g9WrwmS4BNf+Ka2bd9ZPYbwqU94lF7z4ueoZ343UiBPO51eH0AAKcCmQAqwBwKBE50+0IzjDiGcDwJIgXzk1MoukQKtpJuPuZEC+cipVV22nRRoNkgeH2g2UebLigBSICvSfusgBfxmk2Vn9R5JGI47HB5NqncRbLmlpEplussFPdPHHa5dW1EX73vKMsLoWkiBaIS5nwApkPsIoxeAFIhGmOsJkAKR0ONchAAAIABJREFU8SEFIgEy3IwAUsAMvZvCSAE3UZg2Uq8UqG3y4ESi0Q2JhocTbRiTJiamHzPo7JT6Vlc0WJb6+1P1nsJ7CEwDrqM4UqAOSAW/BClQ8IDrWB5SoA5IBb4EKRAZLlIgEiDDzQggBczQuymMFHAThWkjc5ECtQ1XpqQtW4+8hyDcSRDuKKj9rFyZajC8h2CgouVnIAhMwz5BcaSAx1Sy7QkpkC1vj9WQAh5Tya4npEAka6RAJECGmxFACpihd1MYKeAmCtNGYqXAsc3vvKukkZFEQyPSttuSGcfcLVqUqjwQHjWQ+lZVVOK4Q9PsjxZHCriIwbQJpIApfhfFkQIuYjBrAikQiR4pEAmQ4WYEkAJm6N0URgq4icK0kWZLgdrFhNMLwiMGsx13uK4vVU8PdxFYbQSkgBV5P3WRAn6ysOoEKWBF3kddpEBkDkiBSIAMNyOAFDBD76YwUsBNFKaNtFIK1C4sHHe4afP0cYf7908/ZpAk0rnnpBosp1pfTrV4MYIgy02BFMiSts9aSAGfuWTZFVIgS9r+aiEFIjNBCkQCZLgZAaSAGXo3hZECbqIwbSQrKVC7SI47NI38AcWRAr7ysOgGKWBB3VdNpICvPLLuBikQSRwpEAmQ4WYEkAJm6N0URgq4icK0EQspcOyC6z3usK+vou4uU1yFLI4UKGSsDS0KKdAQrkJejBQoZKx1LwopUDeq41+IFIgEyHAzAkgBM/RuCiMF3ERh2ogHKVALIBx3ODYmDY0k2rAx0fj49GMGHSVp9eqKygPS+kGOO2zWxkEKNItkfudBCuQ3u2Z1jhRoFsl8zoMUiMwNKRAJkOFmBJACZujdFEYKuInCtBFvUqAWRqUibbmF4w5bvUGQAq0m7H9+pID/jFrdIVKg1YR9z48UiMwHKRAJkOFmBJACZujdFEYKuInCtBHPUuBYMPUed7hmVUUdHHdY975CCtSNqrAXIgUKG23dC0MK1I2qkBciBSJjRQpEAmS4GQGkgBl6N4WRAm6iMG0kT1KgFlQ47nB0NNHQiDQ2VtKhw9M/De8dCO8fGByQBvo57nC2DYYUmI1Q8X+OFCh+xrOtECkwG6Fi/xwpEJkvUiASIMPNCCAFzNC7KYwUcBOFaSN5lQK10KampI2bZj/usNyfaskSjjs8dsMhBUy/gi6KIwVcxGDaBFLAFL95caRAZARIgUiADDcjgBQwQ++mMFLATRSmjRRBCtQCDMcd3r4j0fCwNDxa0o47pl9UGK5buiRVeaCigQHpvHNSJTN/bJqFVXGkgBV5P3WRAn6ysOoEKWBF3kddpEBkDkiBSIAMNyOAFDBD76YwUsBNFKaNFE0KHAtz775EwyPh/6TNm0uaqkxfsaAnrT5eEE4zaOfjDpECpl9BF8WRAi5iMG0CKWCK37w4UiAyAqRAJECGmxFACpihd1MYKeAmCtNGii4FauGG9w5s2BDeQ3Dy4w7LA6kWLWyfxwyQAqZfQRfFkQIuYjBtAilgit+8OFIgMgKkQCRAhpsRQAqYoXdTGCngJgrTRtpJCtSCDscdbt2WaGREGh4padfumc8RrFieqtxfUbksrTyz2IIAKWD6FXRRHCngIgbTJpACpvjNiyMFIiNACkQCZLgZAaSAGXo3hZECbqIwbaRdpcCx0HfvTnTzUKl6msG22xKFdxMc/SxaFB4xCI8aSEU87hApYPoVdFEcKeAiBtMmkAKm+M2LIwUiI0AKRAJkuBkBpIAZejeFkQJuojBtBCnwQPz1HnfY358qvJcg7x+kQN4TjO8fKRDPMO8zIAXynmBc/0iBOH5CCkQCZLgZAaSAGXo3hZECbqIwbQQpcHL84bjDTVtKGhkNjxkk2rt3+jGDcHLB2WelGhyQ1g9WcnvcIVLA9CvoojhSwEUMpk0gBUzxmxdHCkRGgBSIBMhwMwJIATP0bgojBdxEYdoIUqAx/Ntvr++4w3PPTlUqNTa31dVIASvyfuoiBfxkYdUJUsCKvI+6SIHIHJACkQAZbkYAKWCG3k1hpICbKEwbQQrMHf/Jjjvs6Um1bm24iyDVunWpurvmXqfVI5ECrSbsf36kgP+MWt0hUqDVhH3PjxSIzAcpEAmQ4WYEkAJm6N0URgq4icK0EaRAc/CH4w7HxkoaHpFGRhOF9xIc/XSUpNWrKyoPqPrCQm/HHSIFmrMH8jwLUiDP6TWnd6RAczjmdRakQGRySIFIgAw3I4AUMEPvpjBSwE0Upo0gBZqPP5xccMut9R13eOaKVOHdBJYfpIAlfR+1kQI+crDsAilgSd++NlIgMgOkQCRAhpsRQAqYoXdTGCngJgrTRpACrccfjjscHk00NJxo660zjzvs7Q1HHYYjD6W1ayrq6Gh9P8dWQApkz9xbRaSAt0Sy7wcpkD1zTxWRApFpIAUiATLcjABSwAy9m8JIATdRmDaCFMgW//h4Un28YGjkyOMG4bGDo5/w3oG+vkr1NIMsjztECmS7BzxWQwp4TCXbnpAC2fL2Vg0pEJkIUiASIMPNCCAFzNC7KYwUcBOFaSNIATv89R53ODCQatnplZY1ihRoGdrcTIwUyE1ULWsUKdAytLmYGCkQGRNSIBIgw80IIAXM0LspjBRwE4VpI0gBU/wzit9xZ6LhkVL1LoLt22e+aGDx4lTl+x4zWHVepanHHSIF/OwBq06QAlbk/dRFCvjJwqITpEAkdaRAJECGmxFACpihd1MYKeAmCtNGkAKm+E9YfP+9iW4eCpJA2ry5pKmaGwVqjzvs65Pmz0ujFoEUiMJXiMFIgULEGLUIpEAUvtwPRgpERogUiATIcDMCSAEz9G4KIwXcRGHaCFLAFH9dxU923GGpJIU7B8KLCtcPzu24Q6RAXTEU+iKkQKHjrWtxSIG6MBX2IqTALNF+6wf/pb/7x6/plm07NH9et3798Y/QX1z4h5oX3gYkCSlQ2O9G4ReGFCh8xLMuECkwK6K2uAApkK+Yw3GHt92WaGhU1UcNdu6c+ZjBiuXhMYOKymWp3uMOkQL52gOt6BYp0Aqq+ZoTKZCvvJrdLVJgFqKf/cr3tGTxQj30/HXas3e//vydV+qpT3yULnzBM5ECzd6NzJcpAaRAprhdFkMKuIwl86aQApkjb2rBPXsS3Tw8+3GHa1ZX1NV5/NJIgaZGksvJkAK5jK2pTSMFmoozd5MhBRqM7IqPf0kjG2/Vh99zEVKgQXZc7osAUsBXHhbdIAUsqPuriRTwl8lcOwrHHW4YSzQ8HP4pTUxM30XQ2Sn1ra5osCyVy6kW9KS6e0+iH9+QaPeuDi04paKHXlDR6lVx7yeYa++MsyWAFLDl76E6UsBDCnY9IAUaZP+SN1ym9f2rdNELn4UUaJAdl/sigBTwlYdFN0gBC+r+aiIF/GXSjI4qU9LYlpJGqo8ZJNq7d1oQJIm08sxU4bSDycmZ1V7zqimdthgx0IwM8jQHUiBPabWmV6RAa7jmZVakQANJffkb1+vyq7+oL11zSfWRgvDZtXeigRn8XNrd2aF53SXtO3DYT1N0kimBjlKi3p4u3XPvoUzrUswPgSRJdFpvl3bvYw/4SSX7TpYumpfb38uyp5XfijvukG4eKukXw6m23ZZI4c/9M19HUF3crz0x1W88GSmQ36Tn1vmpvd3af+CwpipkPzeC+R+1cEGXJg5N6dBkzVEnOVpW+L2Mz9wJIAXqZPetH/y3LvnAp3T1Za9Xee2594+aOJzPL054W3FHkujwFL/417kFCndZKZE6OxIdmmQPFC7cOhcU/rawq6OU2/8AqHOZXDYLgXldJeX19zLCnRuBffulr/xLRT/+yQN//Q+PGTzk/EQXPCjR+YOJeubPrQaj8kWgu7OkyamKcAL5yq2Z3YY7SIMUyuseCL+X8Zk7AaRAHey+8NXv66pPf1VXXfo69a85e8YITh+oAyCXuCTA4wMuY8m0KR4fyBS322I8PuA2mpY2dvsO6SMfe+CbB8PpBkEYhk/tcYfl/lSLeaygpZlYTs7jA5b0fdTm8QEfOVh1gRSYhfyVn/iK/uW7P9IV736Vzly+9P6re+bPU7j1FilgtXWpG0sAKRBLMP/jkQL5z7AZK0AKNINiPuf4xrdK+tEN03+7turcVE/99coJjztctixVeaCiwX7prLPS++VBPldP17UEkALsB6RAe+8BpMAs+T/zz96mkbFbH3DVv33pcp2+5FSkQHt/f3K9eqRAruNrSvNIgaZgzP0kSIHcRxi1gPGD0qF750udEzr11JmPE4TjDodHEw2PSFtuKalS88Rkb2+qgf4gCaSTHXcY1RyDMyOAFMgMtdtCSAG30WTSGFIgEjN3CkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRfEVS3p0593jJ32W+OBEotENsx932N+fqvcU3lXjItgGmkAKNACroJciBQoabJ3LQgrUCepElyEFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+ieD1SoLbRcNzhlq2l6h0E4U6CcEdB7WflylSDA6o+arD8DASBi5BnaQIpkIeUWtsjUqC1fL3PjhSITAgpEAmQ4WYEkAJm6N0URgq4icK0EaSAKX4XxRuVAsc2fced4RGDkoZGpO3bZwqC8HLC8JLC8JjBqnMrKnW4WDJNHEMAKcCWQAq09x5ACkTmjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4visVKgdhH77000OppoaFga21zS5OT0T+fNS7WuTyqXwz9T9fRwF4GLDSAJKeAlCbs+kAJ27D1URgpEpoAUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4s2UArULOjwpbdp85DGDkdFE+/dP30UQjj0895xUg+VU68scd2i9EZAC1gnY10cK2Gdg2QFSIJI+UiASIMPNCCAFzNC7KYwUcBOFaSNIAVP8Loq3SgrULi5NpdtuSzju0EXiD2wCKeA0mAzbQgpkCNthKaRAZChIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KJ6FFDh2oSc77nBBz/Rxh2vXVtTV6QJToZtAChQ63roWhxSoC1NhL0IKREaLFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+IWUqB24eG4w7ExaWgk0YaNicbHpx8z6OyU+lZXNFiWOO6wddsFKdA6tnmZGSmQl6Ra0ydSIJIrUiASIMPNCCAFzNC7KYwUcBOFaSNIAVP8LopbS4FaCJWKtOUWjjvMemMgBbIm7q8eUsBfJll2hBSIpI0UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4p6kwLFAdt5V0shIUj3ucNtticK7CY5+Fi0KRx2GRw2kvlUcdxizmZACMfSKMRYpUIwc57oKpMBcyd03DikQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFPUuBWkAHxhMND3PcYSs2DVKgFVTzNSdSIF95NbtbpEAkUaRAJECGmxFACpihd1MYKeAmCtNGkAKm+F0Uz4sUqIVV73GH5f5US5bU3F7ggri/JpAC/jLJuiOkQNbEfdVDCkTmgRSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4vieZQCteDCIwW37wh3EUjDoyXtuGP6RYXhuqVLwmMGFQ0MSOedkyqZ+WMXGVg3gRSwTsC+PlLAPgPLDpACkfSRApEAGW5GAClght5NYaSAmyhMG0EKmOJ3UTzvUuBYiHv3Jbp5KNHwyJGXFoaXFx791B532NdXUXeXiwjMm0AKmEdg3gBSwDwC0waQApH4kQKRABluRgApYIbeTWGkgJsoTBtBCpjid1G8aFKgFurJjjvsKEmrV1dUHpDWD6bqPaV9HzNACrj4Kpo2gRQwxW9eHCkQGQFSIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuihdZCtQCDncMbN2WaGREGh4padfumc8RrFyZanBA1UcNlp/RXoIAKeDiq2jaBFLAFL95caRAZARIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KN4uUuBY2Lt3h8cMSrMed7hmVUUdHS6ialkTSIGWoc3NxEiB3ETVkkaRApFYkQKRABluRgApYIbeTWGkgJsoTBtBCpjid1G8XaVALfxw3OHoaFIVBGNjJR06PP3T8N6B8P6BcBfBQH+qnp7i3UWAFHDxVTRtAilgit+8OFIgMgKkQCRAhpsRQAqYoXdTGCngJgrTRpACpvhdFEcKzIxhakrauKlUfVHhyGii/funHzMIJxece06qwXKqIh13iBRw8VU0bQIpYIrfvDhSIDICpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCpw4hkaOOzz37FSlkotIG24CKdAwssINQAoULtKGFoQUaAjXAy9GCkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRXGkQP0xhOMOh0eOHHe4eXNJUzXHHYbHCtatDS8rTLVuXZqr4w6RAvXvgaJeiRQoarL1rQspUB+nE16FFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIgbnFEN47sGFDeA9Bog0bE42PTz9mUHvcYXkg1aKFvt9DgBSY2x4o0iikQJHSbHwtSIHGmc0YgRSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSIH4GGY77nDF8vAOgorKZenMFanCuwk8fZACntKw6QUpYMPdS1WkQGQSSIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFGh+DOG4w+FwmsFwoq23JgrvJjj66e1Nq6cYlAektWt8HHeIFGj+HsjbjEiBvCXW3H6RApE8kQKRABluRgApYIbeTWGkgJsoTBtBCpjid1EcKdDaGMJjBeEUg9mOO+zvT7XA6LhDpEBr90AeZkcK5CGl1vWIFIhkixSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSIHsYgjHHW7aUtLIqKovLNy7d+Zxh2efFV5UKK0frGjJkuzeQ4AUyG4PeK2EFPCaTDZ9IQUiOSMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLALobttycaHpaGR0vaccfMFw0sXRIeMahoYEBq9XGHSAG7PeClMlLASxI2fSAFIrkjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMqve4w74+af685t5FgBTwsQcsu0AKWNK3r40UiMwAKRAJkOFmBJACZujdFEYKuInCtBGkgCl+F8WRAi5imNFEOO5wbKyk4RFV30dwoOa4w1JJWnVepfqiwvWDzTnuECngbw9k3RFSIGvivuohBSLzQApEAmS4GQGkgBl6N4WRAm6iMG0EKWCK30VxpICLGE7YRDi54JZbE42MhPcQlLRr98zHDJpx3CFSwPceyKI7pEAWlP3WQApEZoMUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzHU3US9xx2uWV1RV2d90yIF6uNU5KuQAkVOd/a1ta0U2LT1dj37hRfre//0fp126sITkrr+hp/rpW+8bMbPu7o69bPvXF39d0iB2TcZV/gkgBTwmUuWXSEFsqTttxZSwG82WXWGFMiKdPPrhOMON4yFlxWGf0oTE9N3EXR2Sn2rKxosS+XyyY87RAo0P5u8zYgUyFtize23LaXAn73ur7Vh0zbtunuv/uO6K2aVApd84JO69up33U8+/HK7sHcBUqC5e5HZMiaAFMgYuMNySAGHoRi0hBQwgO6sJFLAWSBzbKcyJY3VcdzhwECqZadXZlRBCswReoGGIQUKFOYcltKWUiBwOjB+UI962kvrkgJ/efmn9c3P/PVx8XKnwBx2HUNcEEAKuIjBtAmkgCl+N8WRAm6iMGsEKWCGvqWF77gzqb6DYGhE2r595nsIFi9OVe4PRx4eeWnh8iXztWffhA5PNfdUg5YukMmbSgAp0FScuZsMKVDHnQKvePMHqncTLOpdoEc/bFAXvejZ1f8dPkiB3O15Gr6PAFKArYAUYA8EAkgB9gFSoPh7YP+9iW4eCpJA2ry5pKmaGwV6elI9eH1Ja/umtGp12vTjDotPtxgrRAoUI8e5rgIpMIsUuPuefbpj5906dVGvdty5S5dd9QUtW3qqPvDOV86VOeMgAAEIQAACEIAABCBgQmDikHTzcKqf3VTRjTdVtP/e6TY6SlL/2kQXPKikhz24pKVLTFqkKAQgkDEBpMAsUuDYPH560wY9/6L36sbvXqMkSbhTIOMNS7nmEeBOgeaxzOtM3CmQ1+Sa2zd3CjSXZx5n406BPKbWnJ7DcYe33Zbolls69dP/rejOnTMfM1i2LDxiUNFgv3TWWamSmT9uThPM4oIAdwq4iMGsCaRAg1LgP//7Jr3x3R+tvosgfHh8wGzvUjiSAFIgEmABhiMFChBiE5aAFGgCxJxPgRTIeYBNaP/oiwZ37gp3ESQaGk609dZEQRoc/fT2phq47z0EjRx32IT2mCIDAkiBDCA7LoEUOEYKfPkb1yv8wf99F7+sGts1n/26zj7zdF1w/lrtuWe/3nrpNXrEQ/r1pgv/ECngeGPT2uwEkAKzMyr6FUiBoidc3/qQAvVxKvJVSIEip1vf2o53+kC9xx3296fqPYUXFNZH2u9VSAG/2WTRWVtKgWe98GLdfucu3bP3Xp268BSds/IMff6jb6/yvvzqL+or37xe37/2g9X/P0iCT3zhm9q2fWf1GMKnPuFRes2Ln6Oe+d1IgSx2KDVaRgAp0DK0uZkYKZCbqFraKFKgpXhzMTlSIBcxtbTJ2Y4kDMcdbtlaqr6ocHg00Z49M58jWLky1eCAqo8aLD8DQdDSsFo0OVKgRWBzMm1bSoFmZsPjA82kyVxZEkAKZEnbZy2kgM9csu4KKZA1cX/1kAL+Msm6o9mkwLH91H3c4bkVlTqyXg315kIAKTAXasUZgxSIzBIpEAmQ4WYEkAJm6N0URgq4icK0EaSAKX4XxZECLmIwbaJRKVDbbDjucHQ0vIdAGttc0uTk9E/nzUu1rk8ql1P1r+O4Q9OQZymOFPCcTut7QwpEMkYKRAJkuBkBpIAZejeFkQJuojBtBClgit9FcaSAixhMm4iRArWNH56UNm488pjByGiiA+PTjxmUStKq8yoqh8cM+lMtXsxjBqahH1McKeApjex7QQpEMkcKRAJkuBkBpIAZejeFkQJuojBtBClgit9FcaSAixhMm2iWFKhdxNHjDodGpeGRknZy3KFpxrMVRwrMRqjYP0cKROaLFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDbRCilw7ILCywnDSwrDXQRbbimpUpm+YkHP9HGHa9dW1NVpiqMtiyMF2jL2+xeNFIjMHykQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtIgspULvAgxOJRjckGh5OtGFMmpiYfsygs1PqW13RYFniuMPstgVSIDvWHishBSJTQQpEAmS4GQGkgBl6N4WRAm6iMG0EKWCK30VxpICLGEybyFoK1C6W4w5No7+/OFLARw5WXSAFIskjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk1YSoFjF77zrpJGRhINjUjbbksU3k1w9LNoUaryQHjUQOpbxXGHzdw0SIFm0szfXEiByMyQApEAGW5GAClght5NYaSAmyhMG0EKmOJ3URwp4CIG0yY8SYFaEOH0gvCIwWzHHa7rS9XTw2kGMZsIKRBDL/9jkQKRGSIFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTXiVArVQwnGHmzZPH3e4f//0ewiSRDr3nFSD5VTryxx3OJfNhBSYC7XijEEKRGaJFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaRBylQC4jjDpu/XZACzWeapxmRApFpIQUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZN5E0KHAur3uMO+/oq6u4yRe22OFLAbTSZNIYUiMSMFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaRdylQCy8cdzg2Jg2NJNqwMdH4+PRjBh0lafXqisoD0vrBVL2n8B6Co+yQAqZfQfPiSIHICJACkQAZbkYAKWCG3k1hpICbKEwbQQqY4ndRHCngIgbTJookBWpBVirSlluOvIdgeDRRuKOg9rNyZarBAak8UNHyM9pbECAFTL+C5sWRApERIAUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNFFUKHAu13uMO16yqqKPDNJLMiyMFMkfuqiBSIDIOpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCriIwbSJdpECtZDDcYejo4mGRqSxsZIOHZ7+aXjvQHj/QLiLYKC/PY47RAqYfgXNiyMFIiNACkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRXGkgIsYTJtoRylQC3xqStq4afbjDsv9qZYsKeZjBkgB06+geXGkQGQESIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kT7S4FauGH4w5v35FoeDi8h6CkHXfMfA/B0iVp9R0EAwPSeeekSmb+2DTHmOJIgRh6+R+LFIjMECkQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtAilwYvx79yW6eSipvqwwvLQwvLzw6GdBT1p9vCCcZpD34w6RAqZfQfPiSIHICJACkQAZbkYAKWCG3k1hpICbKEwbQQqY4ndRHCngIgbTJpAC9eGv97jD8kCqRQvz9ZgBUqC+PVDUq5ACkckiBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBRrHH+4Y2Lot0Ug47nCkpF27Zz5HsGJ5qnJ/ReWytPJM/4IAKdD4HijSCKRAZJpIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIgXj8u3eHxwxK1dMMtt2WKLyb4OhA++dXAAAWTElEQVRn0aLwiEF41EDyetwhUiB+D+R5BqRAZHpIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIgebir/e4w/7+VOG9BB4+SAEPKdj1gBSIZI8UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUaB3+cNzhpi0ljYyGxwwS7d07/ZhBOLng7LNSDQ5I6wcrpscdIgVatwfyMDNSIDIlpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCriIwbQJpEB2+LffXt9xh+eenapUyq4vpEB2rD1WQgpEpoIUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUsMEfjjsMdw+E4w43by5pqua4w56eVOvWhrsIUq1bl6q7q7U9IgVay9f77EiByISQApEAGW5GAClght5NYaSAmyhMG0EKmOJ3URwp4CIG0yaQAqb4q8UPHZY2bEg0NJJow8ZE4+PTjxl0lKTVqysqD6j6wsJWHHeIFLDfA5YdIAUi6SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPE/oHgjxx2euSJVeDdB7AcpEEsw3+ORApH5IQUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8c9aPBx3ODyaaGg40dZbZx532NsbjjoMRx5Ka9dU1NEx63THvQApMDduRRmFFIhMEikQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtAilgir+h4uGxgpEgCEaksbFS9bGDo5/w3oG+vkr1NINGjztECjQUQ+EuRgrUGel13/pPXfPZr+urn/jLGSOQAnUC5DJ3BJAC7iLJvCGkQObIXRZECriMJdOmkAKZ4nZZDCngMpZZm6r3uMOBgVTLTq95i+FxZkYKzIq70BcgBWaJ98679uj5F71Hd9+zX2ecfhpSoNBfh/ZaHFKgvfI+3mqRAuyBQAApwD5ACrAHkALF2AN33BlOMihV7yLYvn3miwYWL05Vvu8xg1XnVR5w3OGuO7qljkktnUUeeCUVfi/jM3cCSIE62f3ghz/T+z/2T0iBOnlxmX8CSAH/GbW6Q6RAqwnnY36kQD5yamWXSIFW0s3H3EiBfOTUSJf7701089Dsxx3eeyDRd/+1pIMHj8y+YoX0p8+bVM/8RqrZX4sUiMsAKVAnP6RAnaC4LDcEkAK5iapljSIFWoY2VxMjBXIVV0uaRQq0BGuuJkUK5CquhpsN7x0I7x8YGVH1hYUHao47VCrpmNMLHnpBqmf+9lTDdSwHIAXi6CMF6uR3Iikwcfjkz+fUOX3ml5VKUkeS6PBU+JWATzsSKCVSZ0eiQ5PsgXbMP6w5HGHU1VHSocl8/jrWrrk1e93zukrK6+9lzWbRrvN1d5V0+HCl+mcDPu1JoLuzpMmpiipsgsJvgDSVbtkq3fiLiv7nxlS7dj1wyevWJHr1y0u5YhF+L+MzdwJIgTrZnUgK7Np7qM4ZfF0W/gMgfHn2HZj01RjdZEagsyT19nRpz701r63NrDqFPBBIStJpp3Rr9758/jrmgWEReli6qFt5/b2sCPw9rGHJom7dve+Qwh8W+LQngcW93dp/4JBwxO2V//i49I73HHObgKQ1q6SX/Fm+fkEIv5fxmTsBpECd7Hh8oE5QXJYbAjw+kJuoWtYojw+0DG2uJubxgVzF1ZJmeXygJVhzNSmPD+QqrqY2+/FPdmjLLTPFwO//bkWD5XzdRcjjA3HbAilQJz+kQJ2guCw3BJACuYmqZY0iBVqGNlcTIwVyFVdLmkUKtARrriZFCuQqrqY2O35Q+unPStq4sUPz5lX0kAenuRMCAQhSIG5bIAVm4Xf7nbv1rBe+TZOTUxo/OKGFvQv0jKf+sv7ilX9QHbl913hcAkaj53d3aMG8Dm4bNuLvoSxSwEMKtj0gBWz5e6mOFPCShF0fSAE79l4qIwW8JGHXx5KF3TpwcFIHc/q+NKRA3N5BCsTxQwpE8mO4HQGkgB17L5WRAl6SsO0DKWDL30N1pICHFGx7QArY8vdQHSngIQW7HpACkey5UyASIMPNCCAFzNC7KYwUcBOFaSNIAVP8LoojBVzEYNoEUsAUv4viSAEXMZg1gRSIRI8UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUMMXvojhSwEUMZk0gBSLRIwUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8bsojhRwEYNZE0iBSPRIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIAVP8LoojBVzEYNYEUiASPVIgEiDDzQggBczQuymMFHAThWkjSAFT/C6KIwVcxGDaBFLAFL+L4kgBFzGYNYEUiESPFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaBFDDF76I4UsBFDGZNIAUi0SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPG7KI4UcBGDWRNIgUj0SIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kTSAFT/C6KIwVcxGDWBFIgEj1SIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuiiMFXMRg2gRSwBS/i+JIARcxmDWBFIhEjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSAEXMZg2gRQwxe+iOFLARQxmTSAFItEjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBUzxuyiOFHARg1kTSIFI9EiBSIAMNyOAFDBD76YwUsBNFKaNIAVM8bsojhRwEYNpE0gBU/wuiiMFXMRg1gRSwAw9hSEAAQhAAAIQgAAEIAABCEAAArYEkAK2/KkOAQhAAAIQgAAEIAABCEAAAhAwI4AUMENPYQhAAAIQgAAEIAABCEAAAhCAgC0BpIAtf6pDAAIQgAAEIAABCEAAAhCAAATMCCAFzNDbFt609XY9+4UX63v/9H6ddupC22ao3lIC9WY9ceiwHv7UFz2gl89c+TZdsL6vpT3+/+3de7yXgx0H8C/pQm6Ry7C5DbPNZe7XYWFUrnkRheQak5qwUpEoFCrZohiKDZnbUJthCyPkEjKpzSWXlOTl0lBnr+exjOWQXhyv83zfv/9yTv2ez/v7dc75fc7zPD//eN0KTP7ny9FvyKh4burL8eGHH8VmG60XPbscFmt8Z6W6PRDP9o0LvD/ngzj93OHx+NPPx1uz34l11lwtuh13UGyz+Q9rfe62nc6KiZOmfubjXY4+II5u1/obP15PUHcCNTU10aP/iHj0yX/E9JlvxYrLLxsH7r1LHNO+dSy22GJ1dyCeqU4ErrxuTNw0Zly8NG16NGncKHbadtPo2eXQaLpUk899/gsvvT4u/90dn/nY9lv+OC4b0K1OjteT1L1A8XPgMacMLJ/4qsHd6/4APOO3KqAU+Fb5v50nP/Lk82Py1Jdj5qy3475bLlYKfDtjqJNn/Sqznl8K3HrlObFS82afHF/TJZtEgwaL18nxepK6EXhwwjPx3JSXYuftNo1GjRrGeUOvjRlvvh0jL+5RNwfgWepMoCgCho28NfbdY4dYacXl46Y7x8WlI2+Ne0YPiqWbLvm5x1GUAvu3/GnssctWn3y8SaOG5a54VEdg3ryauHr02Nhx642jebPlYtLkF+LYUy+IUZf0jI1+sHZ1gkpSChT/739/rdXju6utHDNnzY6Teg+N/VvuGB3btqy1FCjKoh6d23/y8SUaNIillmxMtIICc+fOi65nDo3pb8yKxo0bKQUqOOMvi6QU+DKhin78vffnxJZ7HqcUqOh8Px1rYWc9vxQozh5ZdaUVEsiIOF+gKAk69xwS4+8YBqXiAh/NnRubtDgyRg/vExuut2atpUC7/XaNvXbfruIa4s0X+OCDD+OhxybFGQN/G6OHnxUrLO8MwqpuR/Hib+qLr0SX3kOj9y8Pj61/smGtpcCs2e9E31M7VpVCrk8J9B5wRSy7TNNYd83V4uYx9ykFEm6HUiDh0IvIC/tCMSlPpWIv7KznlwIrNls2llqySay/7hpx0pFtYt21Vq+UhzALCoy49va494HHY9TQ0/FUXODJZ6bEEV3Pi7/+YfAXninwwkuvlacVr7Zq8/I3icVZJR7VFBj/2LNxRNdzo/kKy8XQc06KjTZcp5pBpSoFfrRzh2i4RIPo1fXwaNPqp7WqFJcPXHvTXbF006Wi+Lmg1a7b1HpWAdr6LTBo+OiYPmNWnPOro8pCQClQv+e5qEevFFhUuXr+9xb2hWI9j+nwv0IBVJxK+uSkKbFK82bxznvvx8jRf4oHHn4q/jjy3PL6Q49qChT3Fzj0xH7li4EtNtmgmiGlKgXefW9OtDvh7GjZYus4pv1etaoUp5EXlxbU1ESMe+iJGDjs+rj2kp61nlmAt/4LFGcK3P/IU9Gj3/C4ccRZZRnkUU2B4nv9lBemxfHdB8UpndrG7jtt8blBX5z2enw0d14Ulw49O+Wl6HPBlXHsoXvHIfu1qCZM0lS3jL0/xt47Poac3TmKy0OKy0yUAjmXQSmQc+7OFEg090UtgIpTDLfY89gYMfCU2Hzj9ROJ5Yla3ISyY9fz4qSj2sR+e+6YJ3jCpEUhcNxpF8aaa6xSng78VW4kd1S3AeXXgE6H7ZNQLlfk4n4Sxf0n2u7zs1zBE6YtzgR4+dUZceGZxy9U+stG3RYPPvpMXHHRaQv1+T6pfghcMOz6GDl6bMR/by46b968KH7+a9hwiXjg1kvcQ6J+jPFrOUqlwNfCWP/+kUV9oVj/kjriRZ11cdfyrVsdFzdd3tclBBVcoyeemVLeR+C0Ew4pf3PsUV2BGW/OLguB4l0mup/Y7isVAoXKIcf3Le8vcPC+fkNY3S35ONleh3WPjge3VBJWfdARcdZFV8ecOf+Oft0XfNehz4tfnGJenD1w4ZknJNDJG9GZAnlnrxRIOvtFfaGYlKtex65t1sUX/vsffioG9u5U5rv7vgnxyuszY4etNorGjRrG4MtvLN+l4obL+sTii3t7qnq9BP938OMemhg9+l8WfU7pGNts9r+bTBV3ly9OH/SojsArr82IDl3OLX/72+GgPT4JVsy5mHdxqcDA31wX/XscEys3Xz6mvTajvI64VYttYuXmzWLMPeNj0PAbysuI3IC0OntRJJkw8bm462+PRuvdti3fmeKG2+6Nq24YG7eP/Pj+Ah7VESh+89vljKHRvs1u5Y3kJkycXH4PuKjPL8p3nyguKTi624Dya0Tx5+LR96KrY/edtyw/f9LkF+O0s4dF31OPjBY7blYdGEkWEFAK5F0KpUDC2bc5qne8On1mzH773Vhumabl29Ncd+kZCSWqH/mLZj14xI1x85hx5VuTFY/iN8cDfv37eP5f08o/b7HxBtGjczvXllZwTfpffE2MuvHPCyQb0KuTswYqNu+/jJsQnXsNWSDVgXvtHGec3CH+/sjTUVwecOc158X3Vl8lircw7HX+5eXXg+KSg/XWXj26dWrrfhMV24siTlEA9R9yTUx8dmq8+9775T0jTj3+YDcarOCsa2pqotf5V8T4xybFG2/OjjVWbR5Ht28de+++fZl2/ruS9Ol2RBzQeqfyvxXfJ+6+/7EozjQqCsEOB/48DnJZSQW347ORlAKVH3GtAZUCeWcvOQECBAgQIECAAAECBAgkF1AKJF8A8QkQIECAAAECBAgQIEAgr4BSIO/sJSdAgAABAgQIECBAgACB5AJKgeQLID4BAgQIECBAgAABAgQI5BVQCuSdveQECBAgQIAAAQIECBAgkFxAKZB8AcQnQIAAAQIECBAgQIAAgbwCSoG8s5ecAAECBAgQIECAAAECBJILKAWSL4D4BAgQIECAAAECBAgQIJBXQCmQd/aSEyBAgAABAgQIECBAgEByAaVA8gUQnwABAgQIECBAgAABAgTyCigF8s5ecgIECBAgQIAAAQIECBBILqAUSL4A4hMgQIAAAQIECBAgQIBAXgGlQN7ZS06AAAECBAgQIECAAAECyQWUAskXQHwCBAgQIECAAAECBAgQyCugFMg7e8kJECBAgAABAgQIECBAILmAUiD5AohPgAABAgQIECBAgAABAnkFlAJ5Zy85AQIECBAgQIAAAQIECCQXUAokXwDxCRAgQIAAAQIECBAgQCCvgFIg7+wlJ0CAAAECBAgQIECAAIHkAkqB5AsgPgECBAgQIECAAAECBAjkFVAK5J295AQIECBAgAABAgQIECCQXEApkHwBxCdAgAABAgQIECBAgACBvAJKgbyzl5wAAQIECBAgQIAAAQIEkgsoBZIvgPgECBAgQIAAAQIECBAgkFdAKZB39pITIECAAAECBAgQIECAQHIBpUDyBRCfAAECBAgQIECAAAECBPIKKAXyzl5yAgQIECBAgAABAgQIEEguoBRIvgDiEyBAgAABAgQIECBAgEBeAaVA3tlLToAAAQIECBAgQIAAAQLJBZQCyRdAfAIECBAgQIAAAQIECBDIK6AUyDt7yQkQIECAAAECBAgQIEAguYBSIPkCiE+AAAECBAgQIECAAAECeQWUAnlnLzkBAgQIECBAgAABAgQIJBdQCiRfAPEJECBAgAABAgQIECBAIK+AUiDv7CUnQIAAAQIECBAgQIAAgeQCSoHkCyA+AQIECBAgQIAAAQIECOQVUArknb3kBAgQIECAAAECBAgQIJBcQCmQfAHEJ0CAAAECBAgQIECAAIG8AkqBvLOXnAABAgQIECBAgAABAgSSCygFki+A+AQIECBAgAABAgQIECCQV0ApkHf2khMgQIAAAQIECBAgQIBAcgGlQPIFEJ8AAQIECBAgQIAAAQIE8gooBfLOXnICBAgQIECAAAECBAgQSC6gFEi+AOITIECAAAECBAgQIECAQF4BpUDe2UtOgAABAgQIECBAgAABAskFlALJF0B8AgQIECBAgAABAgQIEMgroBTIO3vJCRAgQIAAAQIECBAgQCC5gFIg+QKIT4AAAQIECBAgQIAAAQJ5BZQCeWcvOQECBAgQIECAAAECBAgkF1AKJF8A8QkQIECAAAECBAgQIEAgr4BSIO/sJSdAgAABAgQIECBAgACB5AJKgeQLID4BAgQIECBAgAABAgQI5BVQCuSdveQECBAgQIAAAQIECBAgkFxAKZB8AcQnQIAAAQIECBAgQIAAgbwCSoG8s5ecAAECBAgQIECAAAECBJILKAWSL4D4BAgQIECAAAECBAgQIJBXQCmQd/aSEyBAgAABAgQIECBAgEByAaVA8gUQnwABAgQIECBAgAABAgTyCigF8s5ecgIECBAgQIAAAQIECBBILqAUSL4A4hMgQIAAAQIECBAgQIBAXgGlQN7ZS06AAAECBAgQIECAAAECyQWUAskXQHwCBAgQIECAAAECBAgQyCugFMg7e8kJECBAgAABAgQIECBAILmAUiD5AohPgAABAgQIECBAgAABAnkFlAJ5Zy85AQIECBAgQIAAAQIECCQXUAokXwDxCRAgQIAAAQIECBAgQCCvgFIg7+wlJ0CAAAECBAgQIECAAIHkAv8Bhj3PToabkqUAAAAASUVORK5CYII=",
"text/html": [
"
\n",
" \n",
" \n",
"
\n",
" \n",
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Help on function show in module plotly.io._renderers:\n",
"\n",
"show(fig, renderer=None, validate=True, **kwargs)\n",
" Show a figure using either the default renderer(s) or the renderer(s)\n",
" specified by the renderer argument\n",
" \n",
" Parameters\n",
" ----------\n",
" fig: dict of Figure\n",
" The Figure object or figure dict to display\n",
" \n",
" renderer: str or None (default None)\n",
" A string containing the names of one or more registered renderers\n",
" (separated by '+' characters) or None. If None, then the default\n",
" renderers specified in plotly.io.renderers.default are used.\n",
" \n",
" validate: bool (default True)\n",
" True if the figure should be validated before being shown,\n",
" False otherwise.\n",
" \n",
" Returns\n",
" -------\n",
" None\n",
"\n"
]
}
],
"source": [
"import plotly\n",
"help(plotly.io.show)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For more examples on plotting offline with Plotly in python please visit our [offline documentation](https://plotly.com/python/offline/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using Plotly with Pandas\n",
"\n",
"To use Plotly with Pandas first `$ pip install pandas` and then import pandas in your code like in the example below."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" "
],
"text/plain": [
"
"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import chart_studio.plotly as py\n",
"import plotly.graph_objects as go\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder2007.csv')\n",
"\n",
"fig = go.Figure(go.Scatter(x=df.gdpPercap, y=df.lifeExp, text=df.country, mode='markers', name='2007'))\n",
"fig.update_xaxes(title_text='GDP per Capita', type='log')\n",
"fig.update_yaxes(title_text='Life Expectancy')\n",
"\n",
"py.iplot(fig, filename='pandas-multiple-scatter')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [MORE EXAMPLES](https://plotly.com/python/)\n",
"Check out more examples and tutorials for using Plotly in python [here](https://plotly.com/python)!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"jupytext": {
"notebook_metadata_filter": "all",
"text_representation": {
"extension": ".md",
"format_name": "markdown",
"format_version": "1.1",
"jupytext_version": "1.1.7"
}
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
},
"plotly": {
"description": "Installation and Initialization Steps for Using Chart Studio in Python.",
"display_as": "chart_studio",
"has_thumbnail": true,
"ipynb": "~notebook_demo/123/installation",
"language": "python",
"layout": "base",
"name": "Getting Started with Plotly for Python",
"order": 0.1,
"page_type": "example_index",
"permalink": "python/getting-started-with-chart-studio/",
"thumbnail": "thumbnail/bubble.jpg",
"title": "Getting Started with Chart Studio for Python | plotly",
"v4upgrade": true
}
},
"nbformat": 4,
"nbformat_minor": 4
}