{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"inputHidden": false,
"outputHidden": false
},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Version Check\n",
"Plotly's python package is updated frequently. Run `pip install plotly --upgrade` to use the latest version."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"inputHidden": false,
"outputHidden": false
},
"outputs": [
{
"data": {
"text/plain": [
"'2.0.8'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly\n",
"plotly.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Basic Carpet Plot"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"inputHidden": false,
"outputHidden": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"\n",
"trace1 = go.Carpet(\n",
" a = [4, 4, 4, 4.5, 4.5, 4.5, 5, 5, 5, 6, 6, 6],\n",
" b = [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3],\n",
" y = [2, 3.5, 4, 3, 4.5, 5, 5.5, 6.5, 7.5, 8, 8.5, 10],\n",
" aaxis = dict(\n",
" tickprefix = 'a = ',\n",
" ticksuffix = 'm',\n",
" smoothing = 1,\n",
" minorgridcount = 9\n",
" ),\n",
" baxis = dict(\n",
" tickprefix = 'b = ',\n",
" ticksuffix = 'Pa',\n",
" smoothing = 1,\n",
" minorgridcount = 9\n",
" )\n",
" )\n",
"\n",
"data = [trace1]\n",
"\n",
"fig = go.Figure(data = data)\n",
"py.iplot(fig, filename = \"scattercarpet/basic\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add Carpet Scatter Trace"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"inputHidden": false,
"outputHidden": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"\n",
"trace1 = go.Carpet(\n",
" a = [4, 4, 4, 4.5, 4.5, 4.5, 5, 5, 5, 6, 6, 6],\n",
" b = [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3],\n",
" y = [2, 3.5, 4, 3, 4.5, 5, 5.5, 6.5, 7.5, 8, 8.5, 10],\n",
" aaxis = dict(\n",
" tickprefix = 'a = ',\n",
" ticksuffix = 'm',\n",
" smoothing = 1,\n",
" minorgridcount = 9\n",
" ),\n",
" baxis = dict(\n",
" tickprefix = 'b = ',\n",
" ticksuffix = 'Pa',\n",
" smoothing = 1,\n",
" minorgridcount = 9\n",
" )\n",
" )\n",
"\n",
"trace2 = go.Scattercarpet(\n",
" a = [4, 4.5, 5, 6],\n",
" b = [2.5, 2.5, 2.5, 2.5],\n",
" line = dict(\n",
" shape = 'spline',\n",
" smoothing = 1,\n",
" color = 'blue'\n",
" )\n",
" )\n",
"\n",
"data = [trace1,trace2]\n",
"\n",
"fig = go.Figure(data = data)\n",
"py.iplot(fig, filename = \"scattercarpet/add-scattercarpet\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add Multiple Scatter Traces"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"inputHidden": false,
"outputHidden": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"\n",
"trace1 = go.Carpet(\n",
" a = [0.1,0.2,0.3],\n",
" b = [1,2,3],\n",
" y = [[1,2.2,3],[1.5,2.7,3.5],[1.7,2.9,3.7]],\n",
" cheaterslope = 1,\n",
" aaxis = dict(\n",
" title = \"a\",\n",
" tickmode = \"linear\",\n",
" dtick = 0.05\n",
" ),\n",
" baxis = dict(\n",
" title = \"b\",\n",
" tickmode = \"linear\",\n",
" dtick = 0.05\n",
" )\n",
")\n",
"\n",
"trace2 = go.Scattercarpet(\n",
" name = \"b = 1.5\",\n",
" a = [0.05, 0.15, 0.25, 0.35],\n",
" b = [1.5, 1.5, 1.5, 1.5]\n",
")\n",
"\n",
"trace3 = go.Scattercarpet(\n",
" name = \"b = 2\",\n",
" a = [0.05, 0.15, 0.25, 0.35],\n",
" b = [2, 2, 2, 2]\n",
")\n",
"\n",
"trace4 = go.Scattercarpet(\n",
" name = \"b = 2.5\",\n",
" a = [0.05, 0.15, 0.25, 0.35],\n",
" b = [2.5, 2.5, 2.5, 2.5]\n",
")\n",
"\n",
"trace5 = go.Scattercarpet(\n",
" name = \"a = 0.15\",\n",
" a = [0.15, 0.15, 0.15, 0.15],\n",
" b = [0.5, 1.5, 2.5, 3.5],\n",
" line = dict(\n",
" smoothing = 1,\n",
" shape = \"spline\"\n",
" )\n",
")\n",
"\n",
"trace6 = go.Scattercarpet(\n",
" name = \"a = 0.2\",\n",
" a = [0.2, 0.2, 0.2, 0.2],\n",
" b = [0.5, 1.5, 2.5, 3.5],\n",
" line = dict(\n",
" smoothing = 1,\n",
" shape = \"spline\"\n",
" ),\n",
" marker = dict(\n",
" size = [10, 20, 30, 40],\n",
" color = [\"#000\", \"#f00\", \"#ff0\", \"#fff\"]\n",
" )\n",
")\n",
"\n",
"trace7 = go.Scattercarpet(\n",
" name = \"a = 0.25\",\n",
" a = [0.25, 0.25, 0.25, 0.25],\n",
" b = [0.5, 1.5, 2.5, 3.5],\n",
" line = dict(\n",
" smoothing = 1,\n",
" shape = \"spline\"\n",
" )\n",
")\n",
"\n",
"layout = go.Layout(\n",
" title = \"scattercarpet extrapolation, clipping, and smoothing\",\n",
" hovermode = \"closest\"\n",
")\n",
"\n",
"data = [trace1,trace2,trace3,trace4,trace5,trace6,trace7]\n",
"\n",
"fig = go.Figure(data = data, layout = layout)\n",
"py.iplot(fig, filename = \"scattercarpet/multiple\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See https://plotly.com/python/reference/#scattercarpet for more information and chart attribute options!"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/plotly/publisher.git\n",
" Cloning https://github.com/plotly/publisher.git to c:\\users\\branden\\appdata\\local\\temp\\pip-e86sgrmk-build\n",
"Installing collected packages: publisher\n",
" Found existing installation: publisher 0.10\n",
" Uninstalling publisher-0.10:\n",
" Successfully uninstalled publisher-0.10\n",
" Running setup.py install for publisher: started\n",
" Running setup.py install for publisher: finished with status 'done'\n",
"Successfully installed publisher-0.10\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Branden\\Anaconda3\\envs\\ipykernel_py2\\lib\\site-packages\\IPython\\nbconvert.py:13: ShimWarning:\n",
"\n",
"The `IPython.nbconvert` package has been deprecated. You should import from nbconvert instead.\n",
"\n",
"C:\\Users\\Branden\\Anaconda3\\envs\\ipykernel_py2\\lib\\site-packages\\publisher\\publisher.py:53: UserWarning:\n",
"\n",
"Did you \"Save\" this notebook before running this command? Remember to save, always save.\n",
"\n"
]
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"! pip install git+https://github.com/plotly/publisher.git --upgrade\n",
"import publisher\n",
"publisher.publish(\n",
" 'scattercarpet.ipynb', 'python/carpet-scatter/', 'Carpet Scatter Plot',\n",
" 'How to make carpet scatter plots in Python with Plotly.',\n",
" title = 'Carpet Scatter Plots | Plotly',\n",
" has_thumbnail='true', thumbnail='thumbnail/scattercarpet.jpg', \n",
" language='python', \n",
" # page_type='example_index', // note this is only if you want the tutorial to appear on the main page: plot.ly/python\n",
" display_as='scientific', order=28,\n",
" ipynb= '~notebook_demo/146')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernel_info": {
"name": "python3"
},
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}