{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Version Check"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'3.1.0'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly\n",
"plotly.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Simple Line Plot"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"# Create random data with numpy\n",
"import numpy as np\n",
"\n",
"N = 500\n",
"random_x = np.linspace(0, 1, N)\n",
"random_y = np.random.randn(N)\n",
"\n",
"# Create a trace\n",
"trace = go.Scatter(\n",
" x = random_x,\n",
" y = random_y\n",
")\n",
"\n",
"data = [trace]\n",
"\n",
"py.iplot(data, filename='basic-line')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Line Plot Modes"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"# Create random data with numpy\n",
"import numpy as np\n",
"\n",
"N = 100\n",
"random_x = np.linspace(0, 1, N)\n",
"random_y0 = np.random.randn(N)+5\n",
"random_y1 = np.random.randn(N)\n",
"random_y2 = np.random.randn(N)-5\n",
"\n",
"# Create traces\n",
"trace0 = go.Scatter(\n",
" x = random_x,\n",
" y = random_y0,\n",
" mode = 'lines',\n",
" name = 'lines'\n",
")\n",
"trace1 = go.Scatter(\n",
" x = random_x,\n",
" y = random_y1,\n",
" mode = 'lines+markers',\n",
" name = 'lines+markers'\n",
")\n",
"trace2 = go.Scatter(\n",
" x = random_x,\n",
" y = random_y2,\n",
" mode = 'markers',\n",
" name = 'markers'\n",
")\n",
"data = [trace0, trace1, trace2]\n",
"\n",
"py.iplot(data, filename='line-mode')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Style Line Plots\n",
"This example styles the color and dash of the traces, adds trace names, \n",
"modifiys line width, and adds plot and axes titles."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"# Add data\n",
"month = ['January', 'February', 'March', 'April', 'May', 'June', 'July',\n",
" 'August', 'September', 'October', 'November', 'December']\n",
"high_2000 = [32.5, 37.6, 49.9, 53.0, 69.1, 75.4, 76.5, 76.6, 70.7, 60.6, 45.1, 29.3]\n",
"low_2000 = [13.8, 22.3, 32.5, 37.2, 49.9, 56.1, 57.7, 58.3, 51.2, 42.8, 31.6, 15.9]\n",
"high_2007 = [36.5, 26.6, 43.6, 52.3, 71.5, 81.4, 80.5, 82.2, 76.0, 67.3, 46.1, 35.0]\n",
"low_2007 = [23.6, 14.0, 27.0, 36.8, 47.6, 57.7, 58.9, 61.2, 53.3, 48.5, 31.0, 23.6]\n",
"high_2014 = [28.8, 28.5, 37.0, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9]\n",
"low_2014 = [12.7, 14.3, 18.6, 35.5, 49.9, 58.0, 60.0, 58.6, 51.7, 45.2, 32.2, 29.1]\n",
"\n",
"# Create and style traces\n",
"trace0 = go.Scatter(\n",
" x = month,\n",
" y = high_2014,\n",
" name = 'High 2014',\n",
" line = dict(\n",
" color = ('rgb(205, 12, 24)'),\n",
" width = 4)\n",
")\n",
"trace1 = go.Scatter(\n",
" x = month,\n",
" y = low_2014,\n",
" name = 'Low 2014',\n",
" line = dict(\n",
" color = ('rgb(22, 96, 167)'),\n",
" width = 4,)\n",
")\n",
"trace2 = go.Scatter(\n",
" x = month,\n",
" y = high_2007,\n",
" name = 'High 2007',\n",
" line = dict(\n",
" color = ('rgb(205, 12, 24)'),\n",
" width = 4,\n",
" dash = 'dash') # dash options include 'dash', 'dot', and 'dashdot'\n",
")\n",
"trace3 = go.Scatter(\n",
" x = month,\n",
" y = low_2007,\n",
" name = 'Low 2007',\n",
" line = dict(\n",
" color = ('rgb(22, 96, 167)'),\n",
" width = 4,\n",
" dash = 'dash')\n",
")\n",
"trace4 = go.Scatter(\n",
" x = month,\n",
" y = high_2000,\n",
" name = 'High 2000',\n",
" line = dict(\n",
" color = ('rgb(205, 12, 24)'),\n",
" width = 4,\n",
" dash = 'dot')\n",
")\n",
"trace5 = go.Scatter(\n",
" x = month,\n",
" y = low_2000,\n",
" name = 'Low 2000',\n",
" line = dict(\n",
" color = ('rgb(22, 96, 167)'),\n",
" width = 4,\n",
" dash = 'dot')\n",
")\n",
"data = [trace0, trace1, trace2, trace3, trace4, trace5]\n",
"\n",
"# Edit the layout\n",
"layout = dict(title = 'Average High and Low Temperatures in New York',\n",
" xaxis = dict(title = 'Month'),\n",
" yaxis = dict(title = 'Temperature (degrees F)'),\n",
" )\n",
"\n",
"fig = dict(data=data, layout=layout)\n",
"py.iplot(fig, filename='styled-line')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Connect Data Gaps"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"trace1 = go.Scatter(\n",
" x=[1, 2, 3, 4, 5, \n",
" 6, 7, 8, 9, 10,\n",
" 11, 12, 13, 14, 15],\n",
" y=[10, 20, None, 15, 10,\n",
" 5, 15, None, 20, 10,\n",
" 10, 15, 25, 20, 10],\n",
" name = 'No Gaps', # Style name/legend entry with html tags\n",
" connectgaps=True\n",
")\n",
"trace2 = go.Scatter(\n",
" x=[1, 2, 3, 4, 5,\n",
" 6, 7, 8, 9, 10,\n",
" 11, 12, 13, 14, 15],\n",
" y=[5, 15, None, 10, 5,\n",
" 0, 10, None, 15, 5,\n",
" 5, 10, 20, 15, 5],\n",
" name = 'Gaps',\n",
")\n",
"\n",
"data = [trace1, trace2]\n",
"\n",
"fig = dict(data=data)\n",
"py.iplot(fig, filename='simple-connectgaps')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Interpolation with Line Plots"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"trace1 = go.Scatter(\n",
" x=[1, 2, 3, 4, 5],\n",
" y=[1, 3, 2, 3, 1],\n",
" mode='lines+markers',\n",
" name=\"'linear'\",\n",
" hoverinfo='name',\n",
" line=dict(\n",
" shape='linear'\n",
" )\n",
")\n",
"trace2 = go.Scatter(\n",
" x=[1, 2, 3, 4, 5],\n",
" y=[6, 8, 7, 8, 6],\n",
" mode='lines+markers',\n",
" name=\"'spline'\",\n",
" text=[\"tweak line smoothness
with 'smoothing' in line object\"],\n",
" hoverinfo='text+name',\n",
" line=dict(\n",
" shape='spline'\n",
" )\n",
")\n",
"trace3 = go.Scatter(\n",
" x=[1, 2, 3, 4, 5],\n",
" y=[11, 13, 12, 13, 11],\n",
" mode='lines+markers',\n",
" name=\"'vhv'\",\n",
" hoverinfo='name',\n",
" line=dict(\n",
" shape='vhv'\n",
" )\n",
")\n",
"trace4 = go.Scatter(\n",
" x=[1, 2, 3, 4, 5],\n",
" y=[16, 18, 17, 18, 16],\n",
" mode='lines+markers',\n",
" name=\"'hvh'\",\n",
" hoverinfo='name',\n",
" line=dict(\n",
" shape='hvh'\n",
" )\n",
")\n",
"trace5 = go.Scatter(\n",
" x=[1, 2, 3, 4, 5],\n",
" y=[21, 23, 22, 23, 21],\n",
" mode='lines+markers',\n",
" name=\"'vh'\",\n",
" hoverinfo='name',\n",
" line=dict(\n",
" shape='vh'\n",
" )\n",
")\n",
"trace6 = go.Scatter(\n",
" x=[1, 2, 3, 4, 5],\n",
" y=[26, 28, 27, 28, 26],\n",
" mode='lines+markers',\n",
" name=\"'hv'\",\n",
" hoverinfo='name',\n",
" line=dict(\n",
" shape='hv'\n",
" )\n",
")\n",
"data = [trace1, trace2, trace3, trace4, trace5, trace6]\n",
"layout = dict(\n",
" legend=dict(\n",
" y=0.5,\n",
" traceorder='reversed',\n",
" font=dict(\n",
" size=16\n",
" )\n",
" )\n",
")\n",
"fig = dict(data=data, layout=layout)\n",
"py.iplot(fig, filename='line-shapes')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Label Lines with Annotations"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"title = 'Main Source for News'\n",
"\n",
"labels = ['Television', 'Newspaper', 'Internet', 'Radio']\n",
"\n",
"colors = ['rgb(67,67,67)', 'rgb(115,115,115)', 'rgb(49,130,189)', 'rgb(189,189,189)']\n",
"\n",
"mode_size = [8, 8, 12, 8]\n",
"\n",
"line_size = [2, 2, 4, 2]\n",
"\n",
"x_data = [\n",
" [2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2013],\n",
" [2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2013],\n",
" [2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2013],\n",
" [2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2013],\n",
"]\n",
"\n",
"y_data = [\n",
" [74, 82, 80, 74, 73, 72, 74, 70, 70, 66, 66, 69],\n",
" [45, 42, 50, 46, 36, 36, 34, 35, 32, 31, 31, 28],\n",
" [13, 14, 20, 24, 20, 24, 24, 40, 35, 41, 43, 50],\n",
" [18, 21, 18, 21, 16, 14, 13, 18, 17, 16, 19, 23],\n",
"]\n",
"\n",
"traces = []\n",
"\n",
"for i in range(0, 4):\n",
" traces.append(go.Scatter(\n",
" x=x_data[i],\n",
" y=y_data[i],\n",
" mode='lines',\n",
" line=dict(color=colors[i], width=line_size[i]),\n",
" connectgaps=True,\n",
" ))\n",
"\n",
" traces.append(go.Scatter(\n",
" x=[x_data[i][0], x_data[i][11]],\n",
" y=[y_data[i][0], y_data[i][11]],\n",
" mode='markers',\n",
" marker=dict(color=colors[i], size=mode_size[i])\n",
" ))\n",
"\n",
"layout = go.Layout(\n",
" xaxis=dict(\n",
" showline=True,\n",
" showgrid=False,\n",
" showticklabels=True,\n",
" linecolor='rgb(204, 204, 204)',\n",
" linewidth=2,\n",
" ticks='outside',\n",
" tickcolor='rgb(204, 204, 204)',\n",
" tickwidth=2,\n",
" ticklen=5,\n",
" tickfont=dict(\n",
" family='Arial',\n",
" size=12,\n",
" color='rgb(82, 82, 82)',\n",
" ),\n",
" ),\n",
" yaxis=dict(\n",
" showgrid=False,\n",
" zeroline=False,\n",
" showline=False,\n",
" showticklabels=False,\n",
" ),\n",
" autosize=False,\n",
" margin=dict(\n",
" autoexpand=False,\n",
" l=100,\n",
" r=20,\n",
" t=110,\n",
" ),\n",
" showlegend=False\n",
")\n",
"\n",
"annotations = []\n",
"\n",
"# Adding labels\n",
"for y_trace, label, color in zip(y_data, labels, colors):\n",
" # labeling the left_side of the plot\n",
" annotations.append(dict(xref='paper', x=0.05, y=y_trace[0],\n",
" xanchor='right', yanchor='middle',\n",
" text=label + ' {}%'.format(y_trace[0]),\n",
" font=dict(family='Arial',\n",
" size=16),\n",
" showarrow=False))\n",
" # labeling the right_side of the plot\n",
" annotations.append(dict(xref='paper', x=0.95, y=y_trace[11],\n",
" xanchor='left', yanchor='middle',\n",
" text='{}%'.format(y_trace[11]),\n",
" font=dict(family='Arial',\n",
" size=16),\n",
" showarrow=False))\n",
"# Title\n",
"annotations.append(dict(xref='paper', yref='paper', x=0.0, y=1.05,\n",
" xanchor='left', yanchor='bottom',\n",
" text='Main Source for News',\n",
" font=dict(family='Arial',\n",
" size=30,\n",
" color='rgb(37,37,37)'),\n",
" showarrow=False))\n",
"# Source\n",
"annotations.append(dict(xref='paper', yref='paper', x=0.5, y=-0.1,\n",
" xanchor='center', yanchor='top',\n",
" text='Source: PewResearch Center & ' +\n",
" 'Storytelling with data',\n",
" font=dict(family='Arial',\n",
" size=12,\n",
" color='rgb(150,150,150)'),\n",
" showarrow=False))\n",
"\n",
"layout['annotations'] = annotations\n",
"\n",
"fig = go.Figure(data=traces, layout=layout)\n",
"py.iplot(fig, filename='news-source')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Filled Lines"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n",
"x_rev = x[::-1]\n",
"\n",
"# Line 1\n",
"y1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n",
"y1_upper = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]\n",
"y1_lower = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n",
"y1_lower = y1_lower[::-1]\n",
"\n",
"# Line 2\n",
"y2 = [5, 2.5, 5, 7.5, 5, 2.5, 7.5, 4.5, 5.5, 5]\n",
"y2_upper = [5.5, 3, 5.5, 8, 6, 3, 8, 5, 6, 5.5]\n",
"y2_lower = [4.5, 2, 4.4, 7, 4, 2, 7, 4, 5, 4.75]\n",
"y2_lower = y2_lower[::-1]\n",
"\n",
"# Line 3\n",
"y3 = [10, 8, 6, 4, 2, 0, 2, 4, 2, 0]\n",
"y3_upper = [11, 9, 7, 5, 3, 1, 3, 5, 3, 1]\n",
"y3_lower = [9, 7, 5, 3, 1, -.5, 1, 3, 1, -1]\n",
"y3_lower = y3_lower[::-1]\n",
"\n",
"trace1 = go.Scatter(\n",
" x=x+x_rev,\n",
" y=y1_upper+y1_lower,\n",
" fill='tozerox',\n",
" fillcolor='rgba(0,100,80,0.2)',\n",
" line=dict(color='rgba(255,255,255,0)'),\n",
" showlegend=False,\n",
" name='Fair',\n",
")\n",
"trace2 = go.Scatter(\n",
" x=x+x_rev,\n",
" y=y2_upper+y2_lower,\n",
" fill='tozerox',\n",
" fillcolor='rgba(0,176,246,0.2)',\n",
" line=dict(color='rgba(255,255,255,0)'),\n",
" name='Premium',\n",
" showlegend=False,\n",
")\n",
"trace3 = go.Scatter(\n",
" x=x+x_rev,\n",
" y=y3_upper+y3_lower,\n",
" fill='tozerox',\n",
" fillcolor='rgba(231,107,243,0.2)',\n",
" line=dict(color='rgba(255,255,255,0)'),\n",
" showlegend=False,\n",
" name='Fair',\n",
")\n",
"trace4 = go.Scatter(\n",
" x=x,\n",
" y=y1,\n",
" line=dict(color='rgb(0,100,80)'),\n",
" mode='lines',\n",
" name='Fair',\n",
")\n",
"trace5 = go.Scatter(\n",
" x=x,\n",
" y=y2,\n",
" line=dict(color='rgb(0,176,246)'),\n",
" mode='lines',\n",
" name='Premium',\n",
")\n",
"trace6 = go.Scatter(\n",
" x=x,\n",
" y=y3,\n",
" line=dict(color='rgb(231,107,243)'),\n",
" mode='lines',\n",
" name='Ideal',\n",
")\n",
"\n",
"data = [trace1, trace2, trace3, trace4, trace5, trace6]\n",
"\n",
"layout = go.Layout(\n",
" paper_bgcolor='rgb(255,255,255)',\n",
" plot_bgcolor='rgb(229,229,229)',\n",
" xaxis=dict(\n",
" gridcolor='rgb(255,255,255)',\n",
" range=[1,10],\n",
" showgrid=True,\n",
" showline=False,\n",
" showticklabels=True,\n",
" tickcolor='rgb(127,127,127)',\n",
" ticks='outside',\n",
" zeroline=False\n",
" ),\n",
" yaxis=dict(\n",
" gridcolor='rgb(255,255,255)',\n",
" showgrid=True,\n",
" showline=False,\n",
" showticklabels=True,\n",
" tickcolor='rgb(127,127,127)',\n",
" ticks='outside',\n",
" zeroline=False\n",
" ),\n",
")\n",
"fig = go.Figure(data=data, layout=layout)\n",
"py.iplot(fig, filename= 'shaded_lines')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dash Example"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[Dash](https://plotly.com/products/dash/) is an Open Source Python library which can help you convert plotly figures into a reactive, web-based application. Below is a simple example of a dashboard created using Dash. Its [source code](https://github.com/plotly/simple-example-chart-apps/tree/master/dash-lineplot) can easily be deployed to a PaaS.\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import IFrame\n",
"IFrame(src= \"https://dash-simple-apps.plotly.host/dash-lineplot/\", width=\"100%\", height=\"650px\", frameBorder=\"0\")\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import IFrame\n",
"IFrame(src= \"https://dash-simple-apps.plotly.host/dash-lineplot/code\", width=\"100%\", height=500, frameBorder=\"0\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reference\n",
"See https://plotly.com/python/reference/#scatter for more information and chart attribute options!"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"!pip install git+https://github.com/plotly/publisher.git --upgrade\n",
"import publisher\n",
"publisher.publish(\n",
" 'lines.ipynb', 'python/line-charts/', 'Python Line Charts',\n",
" 'How to make line charts in Python with Plotly. '\n",
" 'Examples on creating and styling line charts in Python with Plotly.',\n",
" title = 'Python Line Charts | plotly',\n",
" name = 'Line Charts',\n",
" thumbnail='thumbnail/line-plot.jpg', language='python',\n",
" page_type='example_index', has_thumbnail='true', display_as='basic', order=3.3,\n",
" ipynb= '~notebook_demo/3')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 1
}