{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Version Check\n",
"Plotly's python package is updated frequently. Run `pip install plotly --upgrade` to use the latest version."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'2.4.0'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly\n",
"plotly.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Basic Violin Plot"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv\")\n",
"\n",
"fig = {\n",
" \"data\": [{\n",
" \"type\": 'violin',\n",
" \"y\": df['total_bill'],\n",
" \"box\": {\n",
" \"visible\": True\n",
" },\n",
" \"line\": {\n",
" \"color\": 'black'\n",
" },\n",
" \"meanline\": {\n",
" \"visible\": True\n",
" },\n",
" \"fillcolor\": '#8dd3c7',\n",
" \"opacity\": 0.6,\n",
" \"x0\": 'Total Bill'\n",
" }],\n",
" \"layout\" : {\n",
" \"title\": \"\",\n",
" \"yaxis\": {\n",
" \"zeroline\": False,\n",
" }\n",
" }\n",
"}\n",
"\n",
"py.iplot(fig, filename = 'violin/basic', validate = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Multiple Traces"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv\")\n",
"\n",
"data = []\n",
"for i in range(0,len(pd.unique(df['day']))):\n",
" trace = {\n",
" \"type\": 'violin',\n",
" \"x\": df['day'][df['day'] == pd.unique(df['day'])[i]],\n",
" \"y\": df['total_bill'][df['day'] == pd.unique(df['day'])[i]],\n",
" \"name\": pd.unique(df['day'])[i],\n",
" \"box\": {\n",
" \"visible\": True\n",
" },\n",
" \"meanline\": {\n",
" \"visible\": True\n",
" }\n",
" }\n",
" data.append(trace)\n",
"\n",
" \n",
"fig = {\n",
" \"data\": data,\n",
" \"layout\" : {\n",
" \"title\": \"\",\n",
" \"yaxis\": {\n",
" \"zeroline\": False,\n",
" }\n",
" }\n",
"}\n",
"\n",
"\n",
"py.iplot(fig, filename='violin/multiple', validate = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Grouped Violin Plot"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv\")\n",
"\n",
"fig = {\n",
" \"data\": [\n",
" {\n",
" \"type\": 'violin',\n",
" \"x\": df['day'] [ df['sex'] == 'Male' ],\n",
" \"y\": df['total_bill'] [ df['sex'] == 'Male' ],\n",
" \"legendgroup\": 'M',\n",
" \"scalegroup\": 'M',\n",
" \"name\": 'M',\n",
" \"box\": {\n",
" \"visible\": True\n",
" },\n",
" \"meanline\": {\n",
" \"visible\": True\n",
" },\n",
" \"line\": {\n",
" \"color\": 'blue'\n",
" }\n",
" },\n",
" {\n",
" \"type\": 'violin',\n",
" \"x\": df['day'] [ df['sex'] == 'Female' ],\n",
" \"y\": df['total_bill'] [ df['sex'] == 'Female' ],\n",
" \"legendgroup\": 'F',\n",
" \"scalegroup\": 'F',\n",
" \"name\": 'F',\n",
" \"box\": {\n",
" \"visible\": True\n",
" },\n",
" \"meanline\": {\n",
" \"visible\": True\n",
" },\n",
" \"line\": {\n",
" \"color\": 'pink'\n",
" }\n",
" }\n",
" ],\n",
" \"layout\" : {\n",
" \"yaxis\": {\n",
" \"zeroline\": False,\n",
" },\n",
" \"violinmode\": \"group\"\n",
" }\n",
"}\n",
"\n",
"\n",
"py.iplot(fig, filename = 'violin/grouped', validate = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Split Violin Plot"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv\")\n",
"\n",
"fig = {\n",
" \"data\": [\n",
" {\n",
" \"type\": 'violin',\n",
" \"x\": df['day'] [ df['smoker'] == 'Yes' ],\n",
" \"y\": df['total_bill'] [ df['smoker'] == 'Yes' ],\n",
" \"legendgroup\": 'Yes',\n",
" \"scalegroup\": 'Yes',\n",
" \"name\": 'Yes',\n",
" \"side\": 'negative',\n",
" \"box\": {\n",
" \"visible\": True\n",
" },\n",
" \"meanline\": {\n",
" \"visible\": True\n",
" },\n",
" \"line\": {\n",
" \"color\": 'blue'\n",
" }\n",
" },\n",
" {\n",
" \"type\": 'violin',\n",
" \"x\": df['day'] [ df['smoker'] == 'No' ],\n",
" \"y\": df['total_bill'] [ df['smoker'] == 'No' ],\n",
" \"legendgroup\": 'No',\n",
" \"scalegroup\": 'No',\n",
" \"name\": 'No',\n",
" \"side\": 'positive',\n",
" \"box\": {\n",
" \"visible\": True\n",
" },\n",
" \"meanline\": {\n",
" \"visible\": True\n",
" },\n",
" \"line\": {\n",
" \"color\": 'green'\n",
" }\n",
" }\n",
" ],\n",
" \"layout\" : {\n",
" \"yaxis\": {\n",
" \"zeroline\": False,\n",
" },\n",
" \"violingap\": 0,\n",
" \"violinmode\": \"overlay\"\n",
" }\n",
"}\n",
"\n",
"\n",
"py.iplot(fig, filename = 'violin/split', validate = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Advanced Violin Plot"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/violin_data.csv\")\n",
"\n",
"pointposMale = [-0.9,-1.1,-0.6,-0.3]\n",
"pointposFemale = [0.45,0.55,1,0.4]\n",
"showLegend = [True,False,False,False]\n",
"\n",
"data = []\n",
"for i in range(0,len(pd.unique(df['day']))):\n",
" male = {\n",
" \"type\": 'violin',\n",
" \"x\": df['day'][ (df['sex'] == 'Male') & (df['day'] == pd.unique(df['day'])[i]) ],\n",
" \"y\": df['total_bill'][ (df['sex'] == 'Male') & (df['day'] == pd.unique(df['day'])[i]) ],\n",
" \"legendgroup\": 'M',\n",
" \"scalegroup\": 'M',\n",
" \"name\": 'M',\n",
" \"side\": 'negative',\n",
" \"box\": {\n",
" \"visible\": True\n",
" },\n",
" \"points\": 'all',\n",
" \"pointpos\": pointposMale[i],\n",
" \"jitter\": 0,\n",
" \"scalemode\": 'count',\n",
" \"meanline\": {\n",
" \"visible\": True\n",
" },\n",
" \"line\": {\n",
" \"color\": '#8dd3c7'\n",
" },\n",
" \"marker\": {\n",
" \"line\": {\n",
" \"width\": 2,\n",
" \"color\": '#8dd3c7'\n",
" }\n",
" },\n",
" \"span\": [\n",
" 0\n",
" ],\n",
" \"showlegend\": showLegend[i]\n",
" }\n",
" data.append(male)\n",
" female = {\n",
" \"type\": 'violin',\n",
" \"x\": df['day'] [ (df['sex'] == 'Female') & (df['day'] == pd.unique(df['day'])[i]) ],\n",
" \"y\": df['total_bill'] [ (df['sex'] == 'Female') & (df['day'] == pd.unique(df['day'])[i]) ],\n",
" \"legendgroup\": 'F',\n",
" \"scalegroup\": 'F',\n",
" \"name\": 'F',\n",
" \"side\": 'positive',\n",
" \"box\": {\n",
" \"visible\": True\n",
" },\n",
" \"points\": 'all',\n",
" \"pointpos\": pointposFemale[i],\n",
" \"jitter\": 0,\n",
" \"scalemode\": 'count',\n",
" \"meanline\": {\n",
" \"visible\": True\n",
" },\n",
" \"line\": {\n",
" \"color\": '#bebada'\n",
" },\n",
" \"marker\": {\n",
" \"line\": {\n",
" \"width\": 2,\n",
" \"color\": '#bebada'\n",
" }\n",
" },\n",
" \"span\": [\n",
" 0\n",
" ],\n",
" \"showlegend\": showLegend[i]\n",
" }\n",
" data.append(female)\n",
" \n",
"\n",
"fig = {\n",
" \"data\": data,\n",
" \"layout\" : {\n",
" \"title\": \"Total bill distribution
scaled by number of bills per gender\",\n",
" \"yaxis\": {\n",
" \"zeroline\": False,\n",
" },\n",
" \"violingap\": 0,\n",
" \"violingroupgap\": 0,\n",
" \"violinmode\": \"overlay\"\n",
" }\n",
"}\n",
"\n",
"\n",
"py.iplot(fig, filename='violin/advanced', validate = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reference\n",
"See https://plotly.com/python/reference/#violin for more information and chart attribute options!"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/plotly/publisher.git\n",
" Cloning https://github.com/plotly/publisher.git to c:\\users\\branden\\appdata\\local\\temp\\pip-5beb6u-build\n",
"Installing collected packages: publisher\n",
" Found existing installation: publisher 0.11\n",
" Uninstalling publisher-0.11:\n",
" Successfully uninstalled publisher-0.11\n",
" Running setup.py install for publisher: started\n",
" Running setup.py install for publisher: finished with status 'done'\n",
"Successfully installed publisher-0.11\n"
]
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"! pip install git+https://github.com/plotly/publisher.git --upgrade\n",
"import publisher\n",
"publisher.publish(\n",
" 'violin.ipynb', 'python/violin/', 'Violin Plots',\n",
" 'How to make violin plots in Python with Plotly.',\n",
" title = 'Violin Plots | Plotly',\n",
" has_thumbnail='true', \n",
" thumbnail='thumbnail/violin.jpg', \n",
" language='python', \n",
" display_as='statistical', \n",
" order=12, \n",
" ipynb='~notebook_demo/201')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}