{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!\n",
"#### Version Check\n",
"Plotly's python package is updated frequently. Run `pip install plotly --upgrade` to use the latest version."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'2.4.1'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly\n",
"plotly.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Basic Dot Plot\n",
"Dot plots show changes between two points in time or between two conditions. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"trace1 = {\"x\": [72, 67, 73, 80, 76, 79, 84, 78, 86, 93, 94, 90, 92, 96, 94, 112], \n",
" \"y\": [\"Brown\", \"NYU\", \"Notre Dame\", \"Cornell\", \"Tufts\", \"Yale\",\n",
" \"Dartmouth\", \"Chicago\", \"Columbia\", \"Duke\", \"Georgetown\",\n",
" \"Princeton\", \"U.Penn\", \"Stanford\", \"MIT\", \"Harvard\"], \n",
" \"marker\": {\"color\": \"pink\", \"size\": 12}, \n",
" \"mode\": \"markers\", \n",
" \"name\": \"Women\", \n",
" \"type\": \"scatter\"\n",
"}\n",
"\n",
"trace2 = {\"x\": [92, 94, 100, 107, 112, 114, 114, 118, 119, 124, 131, 137, 141, 151, 152, 165], \n",
" \"y\": [\"Brown\", \"NYU\", \"Notre Dame\", \"Cornell\", \"Tufts\", \"Yale\",\n",
" \"Dartmouth\", \"Chicago\", \"Columbia\", \"Duke\", \"Georgetown\",\n",
" \"Princeton\", \"U.Penn\", \"Stanford\", \"MIT\", \"Harvard\"], \n",
" \"marker\": {\"color\": \"blue\", \"size\": 12}, \n",
" \"mode\": \"markers\", \n",
" \"name\": \"Men\", \n",
" \"type\": \"scatter\", \n",
"}\n",
"\n",
"data = [trace1, trace2]\n",
"layout = {\"title\": \"Gender Earnings Disparity\", \n",
" \"xaxis\": {\"title\": \"Annual Salary (in thousands)\", }, \n",
" \"yaxis\": {\"title\": \"School\"}}\n",
"\n",
"fig = go.Figure(data=data, layout=layout)\n",
"py.iplot(fig, filenmae='basic_dot-plot')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Styled Categorical Dot Plot"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"country = ['Switzerland (2011)', 'Chile (2013)', 'Japan (2014)',\n",
" 'United States (2012)', 'Slovenia (2014)', 'Canada (2011)',\n",
" 'Poland (2010)', 'Estonia (2015)', 'Luxembourg (2013)', 'Portugal (2011)']\n",
"voting_pop = [40, 45.7, 52, 53.6, 54.1, 54.2, 54.5, 54.7, 55.1, 56.6]\n",
"reg_voters = [49.1, 42, 52.7, 84.3, 51.7, 61.1, 55.3, 64.2, 91.1, 58.9]\n",
"\n",
"trace0 = go.Scatter(\n",
" x=voting_pop,\n",
" y=country,\n",
" mode='markers',\n",
" name='Percent of estimated voting age population',\n",
" marker=dict(\n",
" color='rgba(156, 165, 196, 0.95)',\n",
" line=dict(\n",
" color='rgba(156, 165, 196, 1.0)',\n",
" width=1,\n",
" ),\n",
" symbol='circle',\n",
" size=16,\n",
" )\n",
")\n",
"trace1 = go.Scatter(\n",
" x=reg_voters,\n",
" y=country,\n",
" mode='markers',\n",
" name='Percent of estimated registered voters',\n",
" marker=dict(\n",
" color='rgba(204, 204, 204, 0.95)',\n",
" line=dict(\n",
" color='rgba(217, 217, 217, 1.0)',\n",
" width=1,\n",
" ),\n",
" symbol='circle',\n",
" size=16,\n",
" )\n",
")\n",
"\n",
"data = [trace0, trace1]\n",
"layout = go.Layout(\n",
" title=\"Votes cast for ten lowest voting age population in OECD countries\",\n",
" xaxis=dict(\n",
" showgrid=False,\n",
" showline=True,\n",
" linecolor='rgb(102, 102, 102)',\n",
" titlefont=dict(\n",
" color='rgb(204, 204, 204)'\n",
" ),\n",
" tickfont=dict(\n",
" color='rgb(102, 102, 102)',\n",
" ),\n",
" showticklabels=True,\n",
" dtick=10,\n",
" ticks='outside',\n",
" tickcolor='rgb(102, 102, 102)',\n",
" ),\n",
" margin=dict(\n",
" l=140,\n",
" r=40,\n",
" b=50,\n",
" t=80\n",
" ),\n",
" legend=dict(\n",
" font=dict(\n",
" size=10,\n",
" ),\n",
" yanchor='middle',\n",
" xanchor='right',\n",
" ),\n",
" width=800,\n",
" height=600,\n",
" paper_bgcolor='rgb(254, 247, 234)',\n",
" plot_bgcolor='rgb(254, 247, 234)',\n",
" hovermode='closest',\n",
")\n",
"fig = go.Figure(data=data, layout=layout)\n",
"py.iplot(fig, filename='lowest-oecd-votes-cast')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See https://plotly.com/python/reference/#scatter for more information and chart attribute options!"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/plotly/publisher.git\n",
" Cloning https://github.com/plotly/publisher.git to /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-req-build-ttsIdw\n",
"Building wheels for collected packages: publisher\n",
" Running setup.py bdist_wheel for publisher ... \u001b[?25ldone\n",
"\u001b[?25h Stored in directory: /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-ephem-wheel-cache-t4Sl31/wheels/99/3e/a0/fbd22ba24cca72bdbaba53dbc23c1768755fb17b3af0f33966\n",
"Successfully built publisher\n",
"Installing collected packages: publisher\n",
" Found existing installation: publisher 0.11\n",
" Uninstalling publisher-0.11:\n",
" Successfully uninstalled publisher-0.11\n",
"Successfully installed publisher-0.11\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning:\n",
"\n",
"The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n",
"\n",
"/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning:\n",
"\n",
"Did you \"Save\" this notebook before running this command? Remember to save, always save.\n",
"\n"
]
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"! pip install git+https://github.com/plotly/publisher.git --upgrade\n",
" \n",
"import publisher\n",
"publisher.publish(\n",
" 'dot.ipynb', 'python/dot-plots/', 'Dot Plots',\n",
" 'How to make dot plots in Python with Plotly.',\n",
" title = 'Python Dot Plots | plotly',\n",
" has_thumbnail='true', thumbnail='thumbnail/dot-plot.jpg', \n",
" language='python',\n",
" display_as='basic', order=3.1,\n",
" ipynb= '~notebook_demo/2')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 1
}