{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Imports\n",
"The tutorial below imports [NumPy](http://www.numpy.org/), [Pandas](https://plotly.com/pandas/intro-to-pandas-tutorial/), [SciPy](https://www.scipy.org/) and [PeakUtils](http://pythonhosted.org/PeakUtils/)."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"import plotly.figure_factory as ff\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import scipy\n",
"import peakutils"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Tips\n",
"Our method for finding the area under any peak is to find the area from the `data values` to the x-axis, the area from the `baseline` to the x-axis, and then take the difference between them. In particular, we want to find the areas of these functions defined on the x-axis interval $I$ under the peak.\n",
"\n",
"Let $T(x)$ be the function of the data, $B(x)$ the function of the baseline, and $Area$ the peak integration area between the baseline and the first peak. Since $T(x) \\geq B(x)$ for all $x$, then we know that\n",
"\n",
"$$\n",
"\\begin{align}\n",
"A = \\int_{I} T(x)dx - \\int_{I} B(x)dx \n",
"\\end{align}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Import Data\n",
"For our example below we will import some data on milk production by month:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"milk_data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/monthly-milk-production-pounds.csv')\n",
"time_series = milk_data['Monthly milk production (pounds per cow)']\n",
"time_series = np.asarray(time_series)\n",
"\n",
"df = milk_data[0:15]\n",
"\n",
"table = ff.create_table(df)\n",
"py.iplot(table, filename='milk-production-dataframe')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Area Under One Peak"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/plotly/graph_objs/_deprecations.py:144: DeprecationWarning:\n",
"\n",
"plotly.graph_objs.Annotation is deprecated.\n",
"Please replace it with one of the following more specific types\n",
" - plotly.graph_objs.layout.Annotation\n",
" - plotly.graph_objs.layout.scene.Annotation\n",
"\n",
"\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"baseline_values = peakutils.baseline(time_series)\n",
"\n",
"x = [j for j in range(len(time_series))]\n",
"time_series = time_series.tolist()\n",
"baseline_values = baseline_values.tolist()\n",
"\n",
"rev_baseline_values = baseline_values[:11]\n",
"rev_baseline_values.reverse()\n",
"area_x = [0,1,2,3,4,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1]\n",
"area_y = time_series[:11] + rev_baseline_values\n",
"\n",
"trace = go.Scatter(\n",
" x=x,\n",
" y=time_series,\n",
" mode='lines',\n",
" marker=dict(\n",
" color='#B292EA',\n",
" ),\n",
" name='Original Plot'\n",
")\n",
"\n",
"trace2 = go.Scatter(\n",
" x=x,\n",
" y=baseline_values,\n",
" mode='markers',\n",
" marker=dict(\n",
" size=3,\n",
" color='#EB55BF',\n",
" ),\n",
" name='Bassline'\n",
")\n",
"\n",
"trace3 = go.Scatter(\n",
" x=area_x,\n",
" y=area_y,\n",
" mode='lines+markers',\n",
" marker=dict(\n",
" size=4,\n",
" color='rgb(255,0,0)',\n",
" ),\n",
" name='1st Peak Outline'\n",
")\n",
"\n",
"first_peak_x = [j for j in range(11)]\n",
"area_under_first_peak = np.trapz(time_series[:11], first_peak_x) - np.trapz(baseline_values[:11], first_peak_x)\n",
"area_under_first_peak\n",
"\n",
"annotation = go.Annotation(\n",
" x=80,\n",
" y=1000,\n",
" text='The peak integration for the first peak is approximately %s' % (area_under_first_peak),\n",
" showarrow=False\n",
")\n",
"\n",
"layout = go.Layout(\n",
" annotations=[annotation]\n",
")\n",
" \n",
"trace_data = [trace, trace2, trace3]\n",
"fig = go.Figure(data=trace_data, layout=layout)\n",
"py.iplot(fig, filename='milk-production-peak-integration')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/plotly/publisher.git\n",
" Cloning https://github.com/plotly/publisher.git to /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-req-build-iKhEAt\n",
"Building wheels for collected packages: publisher\n",
" Running setup.py bdist_wheel for publisher ... \u001b[?25ldone\n",
"\u001b[?25h Stored in directory: /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-ephem-wheel-cache-1Y3Gor/wheels/99/3e/a0/fbd22ba24cca72bdbaba53dbc23c1768755fb17b3af0f33966\n",
"Successfully built publisher\n",
"Installing collected packages: publisher\n",
" Found existing installation: publisher 0.11\n",
" Uninstalling publisher-0.11:\n",
" Successfully uninstalled publisher-0.11\n",
"Successfully installed publisher-0.11\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning:\n",
"\n",
"The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n",
"\n",
"/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning:\n",
"\n",
"Did you \"Save\" this notebook before running this command? Remember to save, always save.\n",
"\n"
]
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"! pip install git+https://github.com/plotly/publisher.git --upgrade\n",
"import publisher\n",
"publisher.publish(\n",
" 'python-Peak-Integration.ipynb', 'python/peak-integration/', 'Peak Integration | plotly',\n",
" 'Learn how to integrate the area between peaks and bassline in Python.',\n",
" title='Peak Integration in Python | plotly',\n",
" name='Peak Integration',\n",
" language='python',\n",
" page_type='example_index', has_thumbnail='false', display_as='peak-analysis', order=4,\n",
" ipynb= '~notebook_demo/121')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 1
}