{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Basic Population Pyramid Chart\n",
"If you're starting with binned data, use a `go.Bar` trace."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import numpy as np\n",
"\n",
"women_bins = np.array([-600, -623, -653, -650, -670, -578, -541, -411, -322, -230])\n",
"men_bins = np.array([600, 623, 653, 650, 670, 578, 541, 360, 312, 170])\n",
"\n",
"y = list(range(0, 100, 10))\n",
"\n",
"layout = go.Layout(yaxis=go.layout.YAxis(title='Age'),\n",
" xaxis=go.layout.XAxis(\n",
" range=[-1200, 1200],\n",
" tickvals=[-1000, -700, -300, 0, 300, 700, 1000],\n",
" ticktext=[1000, 700, 300, 0, 300, 700, 1000],\n",
" title='Number'),\n",
" barmode='overlay',\n",
" bargap=0.1)\n",
"\n",
"data = [go.Bar(y=y,\n",
" x=men_bins,\n",
" orientation='h',\n",
" name='Men',\n",
" hoverinfo='x',\n",
" marker=dict(color='powderblue')\n",
" ),\n",
" go.Bar(y=y,\n",
" x=women_bins,\n",
" orientation='h',\n",
" name='Women',\n",
" text=-1 * women_bins.astype('int'),\n",
" hoverinfo='text',\n",
" marker=dict(color='seagreen')\n",
" )]\n",
"\n",
"py.iplot(dict(data=data, layout=layout), filename='EXAMPLES/bar_pyramid') "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Stacked Population Pyramid"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import numpy as np\n",
"\n",
"women_bins = np.array([-600, -623, -653, -650, -670, -578, -541, -411, -322, -230])\n",
"men_bins = np.array([600, 623, 653, 650, 670, 578, 541, 360, 312, 170])\n",
"women_with_dogs_bins = np.array([-0, -3, -308, -281, -245, -231, -212, -132, -74, -76])\n",
"men_with_dogs_bins = np.array([0, 1, 300, 273, 256, 211, 201, 170, 145, 43])\n",
"\n",
"y = list(range(0, 100, 10))\n",
"\n",
"layout = go.Layout(yaxis=go.layout.YAxis(title='Age'),\n",
" xaxis=go.layout.XAxis(\n",
" range=[-1200, 1200],\n",
" tickvals=[-1000, -700, -300, 0, 300, 700, 1000],\n",
" ticktext=[1000, 700, 300, 0, 300, 700, 1000],\n",
" title='Number'),\n",
" barmode='overlay',\n",
" bargap=0.1)\n",
"\n",
"data = [go.Bar(y=y,\n",
" x=men_bins,\n",
" orientation='h',\n",
" name='Men',\n",
" hoverinfo='x',\n",
" marker=dict(color='powderblue')\n",
" ),\n",
" go.Bar(y=y,\n",
" x=women_bins,\n",
" orientation='h',\n",
" name='Women',\n",
" text=-1 * women_bins.astype('int'),\n",
" hoverinfo='text',\n",
" marker=dict(color='seagreen')\n",
" ),\n",
" go.Bar(y=y,\n",
" x=men_with_dogs_bins,\n",
" orientation='h',\n",
" hoverinfo='x',\n",
" showlegend=False,\n",
" opacity=0.5,\n",
" marker=dict(color='teal')\n",
" ),\n",
" go.Bar(y=y,\n",
" x=women_with_dogs_bins,\n",
" orientation='h',\n",
" text=-1 * women_bins.astype('int'),\n",
" hoverinfo='text',\n",
" showlegend=False,\n",
" opacity=0.5,\n",
" marker=dict(color='darkgreen')\n",
" )]\n",
"\n",
"py.iplot(dict(data=data, layout=layout), filename='EXAMPLES/stacked_bar_pyramid')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Population Pyramid with Binning\n",
"If you want to quickly create a Population Pyramid from raw data, try `go.Histogram`."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import numpy as np\n",
"\n",
"layout = go.Layout(barmode='overlay',\n",
" yaxis=go.layout.YAxis(range=[0, 90], title='Age'),\n",
" xaxis=go.layout.XAxis(\n",
" tickvals=[-150, -100, -50, 0, 50, 100, 150],\n",
" ticktext=[150, 100, 50, 0, 50, 100, 150],\n",
" title='Number'))\n",
"\n",
"data = [go.Histogram(\n",
" y=np.random.exponential(50, 1000),\n",
" orientation='h',\n",
" name='Men',\n",
" marker=dict(color='plum'),\n",
" hoverinfo='skip'\n",
"),\n",
" go.Histogram(\n",
" y=np.random.exponential(55, 1000),\n",
" orientation='h',\n",
" name='Women',\n",
" marker=dict(color='purple'),\n",
" hoverinfo='skip',\n",
" x=-1 * np.ones(1000),\n",
" histfunc=\"sum\"\n",
" )\n",
"]\n",
"\n",
"py.iplot(dict(data=data, layout=layout), filename='EXAMPLES/histogram_pyramid')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### More Bar and Histogram Examples\n",
"See more examples of [horizontal bar charts](https://plotly.com/python/horizontal-bar-charts/), [bar charts](https://plotly.com/python/bar-charts/) and [histograms](https://plotly.com/python/histograms/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reference\n",
"See https://plotly.com/python/reference/#bar and https://plotly.com/python/reference/#histogram for more information and chart attribute options!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/plotly/publisher.git\n",
" Cloning https://github.com/plotly/publisher.git to /tmp/pip-req-build-yN4EUd\n",
"Building wheels for collected packages: publisher\n",
" Running setup.py bdist_wheel for publisher ... \u001b[?25ldone\n",
"\u001b[?25h Stored in directory: /tmp/pip-ephem-wheel-cache-4E5A3k/wheels/99/3e/a0/fbd22ba24cca72bdbaba53dbc23c1768755fb17b3af0f33966\n",
"Successfully built publisher\n",
"Installing collected packages: publisher\n",
" Found existing installation: publisher 0.11\n",
" Uninstalling publisher-0.11:\n",
" Successfully uninstalled publisher-0.11\n",
"Successfully installed publisher-0.11\n",
"\u001b[33mYou are using pip version 10.0.1, however version 18.0 is available.\n",
"You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n"
]
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"! pip install git+https://github.com/plotly/publisher.git --upgrade\n",
"import publisher\n",
"publisher.publish(\n",
" 'pyramid-charts.ipynb', 'python/population-pyramid-charts/', 'Python Population Pyramid Charts | Plotly',\n",
" 'How to make Population Pyramid Charts in Python with Plotly.',\n",
" title = 'Population Pyramid Charts | Plotly',\n",
" name = 'Population Pyramid Charts',\n",
" thumbnail='thumbnail/pyramid.jpg', language='python',\n",
" has_thumbnail='true', display_as='basic', order=5.01,\n",
" ipynb= '~notebook_demo/221')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}