{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#### New to Plotly?\n", "Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n", "
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n", "
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Version Check\n", "Note: Animations are available in version 1.12.10+\n", "Run `pip install plotly --upgrade` to update your Plotly version." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'1.12.12'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import plotly\n", "plotly.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Import Data\n", "Let us import some apple stock data for this animation." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import plotly.plotly as py\n", "from plotly.grid_objs import Grid, Column\n", "from plotly.tools import FigureFactory as FF \n", "\n", "import time\n", "from datetime import datetime\n", "import numpy as np\n", "import pandas as pd\n", "\n", "appl = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')\n", "appl.columns = [col.replace('AAPL.', '') for col in appl.columns]\n", "apple_data_matrix = appl.head(10).round(2)\n", "\n", "table = FF.create_table(apple_data_matrix)\n", "py.iplot(table, filename='apple_data_table')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Make the Grid" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'https://plotly.com/~PythonPlotBot/3031/'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def to_unix_time(dt):\n", " epoch = datetime.utcfromtimestamp(0)\n", " return (dt - epoch).total_seconds() * 1000\n", "\n", "appl_price = list(appl['Adjusted'])\n", "my_columns = []\n", "for k in range(len(appl.Date) - 1):\n", " my_columns.append(Column(list(appl.Date)[:k + 1], 'x{}'.format(k + 1))) \n", " my_columns.append(Column(appl_price[:k + 1], 'y{}'.format(k + 1)))\n", "grid = Grid(my_columns)\n", "py.grid_ops.upload(grid, 'AAPL-daily-stock-price' + str(time.time()), auto_open=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Make the Figure" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data=[dict(type='scatter',\n", " xsrc=grid.get_column_reference('x1'),\n", " ysrc= grid.get_column_reference('y1'),\n", " name='AAPL',\n", " mode='lines',\n", " line=dict(color= 'rgb(114, 186, 59)'),\n", " fill='tozeroy',\n", " fillcolor='rgba(114, 186, 59, 0.5)')]\n", "\n", "axis=dict(ticklen=4,\n", " mirror=True,\n", " zeroline=False,\n", " showline=True,\n", " autorange=False,\n", " showgrid=False)\n", "\n", "layout = dict(title='AAPL Daily Stock Price',\n", " font=dict(family='Balto'),\n", " showlegend=False,\n", " autosize=False,\n", " width=800,\n", " height=400,\n", " xaxis=dict(axis, **{'nticks':12, 'tickangle':-45,\n", " 'range': [to_unix_time(datetime(2015, 2, 17)),\n", " to_unix_time(datetime(2016, 11, 30))]}),\n", " yaxis=dict(axis, **{'title': '$', 'range':[0,170]}),\n", " updatemenus=[dict(type='buttons',\n", " showactive=False,\n", " y=1,\n", " x=1.1,\n", " xanchor='right',\n", " yanchor='top',\n", " pad=dict(t=0, r=10),\n", " buttons=[dict(label='Play',\n", " method='animate',\n", " args=[None, dict(frame=dict(duration=50, redraw=False), \n", " transition=dict(duration=0),\n", " fromcurrent=True,\n", " mode='immediate')])])])\n", "\n", "frames=[{'data':[{'xsrc': grid.get_column_reference('x{}'.format(k + 1)),\n", " 'ysrc': grid.get_column_reference('y{}'.format(k + 1))}],\n", " 'traces': [0]\n", " } for k in range(len(appl.Date) - 1)]\n", "\n", "fig=dict(data=data, layout=layout, frames=frames)\n", "py.icreate_animations(fig, 'AAPL-stockprice' + str(time.time()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Reference\n", "For additional information on filled area plots in Plotly see: https://plotly.com/python/filled-area-plots/.\n", "For more documentation on creating animations with Plotly, see https://plotly.com/python/#animations." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting git+https://github.com/plotly/publisher.git\n", " Cloning https://github.com/plotly/publisher.git to /tmp/pip-req-build-obc71o_a\n", "Building wheels for collected packages: publisher\n", " Running setup.py bdist_wheel for publisher ... \u001b[?25ldone\n", "\u001b[?25h Stored in directory: /tmp/pip-ephem-wheel-cache-_a4gf6by/wheels/99/3e/a0/fbd22ba24cca72bdbaba53dbc23c1768755fb17b3af0f33966\n", "Successfully built publisher\n", "Installing collected packages: publisher\n", " Found existing installation: publisher 0.13\n", " Uninstalling publisher-0.13:\n", " Successfully uninstalled publisher-0.13\n", "Successfully installed publisher-0.13\n", "\u001b[33mYou are using pip version 10.0.1, however version 18.1 is available.\n", "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n" ] } ], "source": [ "from IPython.display import display, HTML\n", "\n", "display(HTML(''))\n", "display(HTML(''))\n", "\n", "!pip install git+https://github.com/plotly/publisher.git --upgrade\n", "import publisher\n", "publisher.publish(\n", " 'filled-area-animation.ipynb', 'python/filled-area-animation/', 'Filled-Area Animation | plotly',\n", " 'How to make an animated filled-area plot with apple stock data in Python.',\n", " title='Filled-Area Animation | plotly',\n", " name='Filled-Area Animation',\n", " language='python',\n", " page_type='example_index', has_thumbnail='true', thumbnail='thumbnail/apple_stock_animation.gif',\n", " display_as='animations', ipynb= '~notebook_demo/128', order=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }