{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### New to Plotly?\n",
"Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n",
"
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n",
"
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!\n",
"#### Version Check\n",
"Note: Tables are available in version 2.1.0+
\n",
"Run `pip install plotly --upgrade` to update your Plotly version"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'2.2.2'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly\n",
"plotly.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Import CSV Data"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import pandas as pd\n",
"import re\n",
"\n",
"df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Mining-BTC-180.csv')\n",
"\n",
"# remove min:sec:millisec from dates \n",
"for i, row in enumerate(df['Date']):\n",
" p = re.compile(' 00:00:00')\n",
" datetime = p.split(df['Date'][i])[0]\n",
" df.iloc[i, 1] = datetime\n",
"\n",
"table = go.Table(\n",
" columnwidth=[0.4, 0.47, 0.48, 0.4, 0.4, 0.45, 0.5, 0.6],\n",
" header=dict(\n",
" #values=list(df.columns[1:]),\n",
" values=['Date', 'Number
Transactions', 'Output
Volume (BTC)',\n",
" 'Market
Price', 'Hash
Rate', 'Cost per
trans-USD',\n",
" 'Mining
Revenue-USD', 'Trasaction
fees-BTC'],\n",
" font=dict(size=10),\n",
" line = dict(color='rgb(50, 50, 50)'),\n",
" align = 'left',\n",
" fill = dict(color='#d562be'),\n",
" ),\n",
" cells=dict(\n",
" values=[df[k].tolist() for k in df.columns[1:]],\n",
" line = dict(color='rgb(50, 50, 50)'),\n",
" align = 'left',\n",
" fill = dict(color='#f5f5fa')\n",
" )\n",
")\n",
"py.iplot([table], filename='table-of-mining-data')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Table and Right Aligned Plots\n",
"In Plotly there is no native way to insert a Plotly Table into a Subplot. To do this, create your own `Layout` object and defining multiple `xaxis` and `yaxis` to split up the chart area into different domains. Then for the traces you wish to insert in your final chart, set their `xaxis` and `yaxis` individually to map to the domains definied in the `Layout`. See the example below to see how to align 3 Scatter plots to the right and a Table on the top."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"table_trace1 = go.Table(\n",
" domain=dict(x=[0, 0.5],\n",
" y=[0, 1.0]),\n",
" columnwidth = [30] + [33, 35, 33],\n",
" columnorder=[0, 1, 2, 3, 4],\n",
" header = dict(height = 50,\n",
" values = [['Date'],['Number
transactions'],\n",
" ['Output
volume(BTC)'], ['Market
Price']],\n",
" line = dict(color='rgb(50, 50, 50)'),\n",
" align = ['left'] * 5,\n",
" font = dict(color=['rgb(45, 45, 45)'] * 5, size=14),\n",
" fill = dict(color='#d562be')),\n",
" cells = dict(values = [df[k].tolist() for k in\n",
" ['Date', 'Number-transactions', 'Output-volume(BTC)', 'Market-price']],\n",
" line = dict(color='#506784'),\n",
" align = ['left'] * 5,\n",
" font = dict(color=['rgb(40, 40, 40)'] * 5, size=12),\n",
" format = [None] + [\", .2f\"] * 2 + [',.4f'],\n",
" prefix = [None] * 2 + ['$', u'\\u20BF'],\n",
" suffix=[None] * 4,\n",
" height = 27,\n",
" fill = dict(color=['rgb(235, 193, 238)', 'rgba(228, 222, 249, 0.65)']))\n",
")\n",
"\n",
"trace1=go.Scatter(\n",
" x=df['Date'],\n",
" y=df['Hash-rate'],\n",
" xaxis='x1',\n",
" yaxis='y1',\n",
" mode='lines',\n",
" line=dict(width=2, color='#9748a1'),\n",
" name='hash-rate-TH/s'\n",
")\n",
"\n",
"trace2=go.Scatter(\n",
" x=df['Date'],\n",
" y=df['Mining-revenue-USD'],\n",
" xaxis='x2',\n",
" yaxis='y2',\n",
" mode='lines',\n",
" line=dict(width=2, color='#b04553'),\n",
" name='mining revenue'\n",
")\n",
"\n",
"trace3=go.Scatter(\n",
" x=df['Date'],\n",
" y=df['Transaction-fees-BTC'],\n",
" xaxis='x3',\n",
" yaxis='y3',\n",
" mode='lines',\n",
" line=dict(width=2, color='#af7bbd'),\n",
" name='transact-fee'\n",
")\n",
"\n",
"axis=dict(\n",
" showline=True,\n",
" zeroline=False,\n",
" showgrid=True,\n",
" mirror=True,\n",
" ticklen=4, \n",
" gridcolor='#ffffff',\n",
" tickfont=dict(size=10)\n",
")\n",
"\n",
"layout1 = dict(\n",
" width=950,\n",
" height=800,\n",
" autosize=False,\n",
" title='Bitcoin mining stats for 180 days',\n",
" margin = dict(t=100),\n",
" showlegend=False, \n",
" xaxis1=dict(axis, **dict(domain=[0.55, 1], anchor='y1', showticklabels=False)),\n",
" xaxis2=dict(axis, **dict(domain=[0.55, 1], anchor='y2', showticklabels=False)), \n",
" xaxis3=dict(axis, **dict(domain=[0.55, 1], anchor='y3')), \n",
" yaxis1=dict(axis, **dict(domain=[0.66, 1.0], anchor='x1', hoverformat='.2f')), \n",
" yaxis2=dict(axis, **dict(domain=[0.3 + 0.03, 0.63], anchor='x2', tickprefix='$', hoverformat='.2f')),\n",
" yaxis3=dict(axis, **dict(domain=[0.0, 0.3], anchor='x3', tickprefix=u'\\u20BF', hoverformat='.2f')),\n",
" plot_bgcolor='rgba(228, 222, 249, 0.65)'\n",
")\n",
"\n",
"fig1 = dict(data=[table_trace1, trace1, trace2, trace3], layout=layout1)\n",
"py.iplot(fig1, filename='table-right-aligned-plots')"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"#### Vertical Table and Graph Subplot"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"\n",
"table_trace2 = go.Table(\n",
" domain=dict(x=[0, 1],\n",
" y=[0.7, 1.0]), \n",
" columnwidth=[1, 2, 2, 2],\n",
" columnorder=[0, 1, 2, 3, 4],\n",
" header = dict(height = 50,\n",
" values = [['Date'],['Hash Rate, TH/sec'], \n",
" ['Mining revenue'], ['Transaction fees']], \n",
" line = dict(color='rgb(50, 50, 50)'),\n",
" align = ['left'] * 5,\n",
" font = dict(color=['rgb(45, 45, 45)'] * 5, size=14),\n",
" fill = dict(color='#d562be')),\n",
" cells = dict(values = [df[k].tolist() for k in ['Date', 'Hash-rate', 'Mining-revenue-USD', 'Transaction-fees-BTC']],\n",
" line = dict(color='#506784'),\n",
" align = ['left'] * 5,\n",
" font = dict(color=['rgb(40, 40, 40)'] * 5, size=12),\n",
" format = [None] + [\", .2f\"] * 2 + [',.4f'], \n",
" prefix = [None] * 2 + ['$', u'\\u20BF'],\n",
" suffix=[None] * 4,\n",
" height = 27,\n",
" fill = dict(color=['rgb(235, 193, 238)', 'rgba(228, 222, 249, 0.65)']))\n",
")\n",
"\n",
"trace4=go.Scatter(\n",
" x=df['Date'],\n",
" y=df['Hash-rate'],\n",
" xaxis='x1',\n",
" yaxis='y1',\n",
" mode='lines',\n",
" line=dict(width=2, color='#9748a1'),\n",
" name='hash-rate-TH/s'\n",
")\n",
"\n",
"trace5=go.Scatter(\n",
" x=df['Date'],\n",
" y=df['Mining-revenue-USD'],\n",
" xaxis='x2',\n",
" yaxis='y2',\n",
" mode='lines',\n",
" line=dict(width=2, color='#b04553'),\n",
" name='mining revenue'\n",
")\n",
"\n",
"trace6=go.Scatter(\n",
" x=df['Date'],\n",
" y=df['Transaction-fees-BTC'],\n",
" xaxis='x3',\n",
" yaxis='y3',\n",
" mode='lines',\n",
" line=dict(width=2, color='#af7bbd'),\n",
" name='transact-fee'\n",
")\n",
"\n",
"axis=dict(\n",
" showline=True,\n",
" zeroline=False,\n",
" showgrid=True,\n",
" mirror=True, \n",
" ticklen=4, \n",
" gridcolor='#ffffff',\n",
" tickfont=dict(size=10)\n",
")\n",
"\n",
"layout2 = dict(\n",
" width=950,\n",
" height=800,\n",
" autosize=False,\n",
" title='Bitcoin mining stats for 180 days',\n",
" margin = dict(t=100),\n",
" showlegend=False, \n",
" xaxis1=dict(axis, **dict(domain=[0, 1], anchor='y1', showticklabels=False)),\n",
" xaxis2=dict(axis, **dict(domain=[0, 1], anchor='y2', showticklabels=False)), \n",
" xaxis3=dict(axis, **dict(domain=[0, 1], anchor='y3')), \n",
" yaxis1=dict(axis, **dict(domain=[2 * 0.21 + 0.02 + 0.02, 0.68], anchor='x1', hoverformat='.2f')), \n",
" yaxis2=dict(axis, **dict(domain=[0.21 + 0.02, 2 * 0.21 + 0.02], anchor='x2', tickprefix='$', hoverformat='.2f')),\n",
" yaxis3=dict(axis, **dict(domain=[0.0, 0.21], anchor='x3', tickprefix=u'\\u20BF', hoverformat='.2f')),\n",
" plot_bgcolor='rgba(228, 222, 249, 0.65)'\n",
")\n",
"\n",
"fig2 = dict(data=[table_trace2, trace4, trace5, trace6], layout=layout2)\n",
"py.iplot(fig2, filename='vertical-stacked-subplot-tables')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reference\n",
"See https://plotly.com/python/reference/#table for more information regarding chart attributes!
\n",
"For examples of Plotly Tables, see: https://plotly.com/python/table/"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/plotly/publisher.git\n",
" Cloning https://github.com/plotly/publisher.git to /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-EyzCpn-build\n",
"Installing collected packages: publisher\n",
" Found existing installation: publisher 0.11\n",
" Uninstalling publisher-0.11:\n",
" Successfully uninstalled publisher-0.11\n",
" Running setup.py install for publisher ... \u001b[?25ldone\n",
"\u001b[?25hSuccessfully installed publisher-0.11\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning:\n",
"\n",
"The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n",
"\n",
"/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning:\n",
"\n",
"Did you \"Save\" this notebook before running this command? Remember to save, always save.\n",
"\n"
]
}
],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML(''))\n",
"display(HTML(''))\n",
"\n",
"! pip install git+https://github.com/plotly/publisher.git --upgrade\n",
"import publisher\n",
"publisher.publish(\n",
" 'table-subplots.ipynb', 'python/table-subplots/', 'Table and Chart Subplots',\n",
" 'How to create a subplot with tables and charts in Python with Plotly.',\n",
" title = 'Table and Chart Subplots | plotly',\n",
" has_thumbnail='true',page_type='example_index', thumbnail='thumbnail/table_subplots.jpg',\n",
" language='python',\n",
" display_as='multiple_axes', order=11)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 1
}