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Abstract

Machine learning tools are increasingly used for decision-making in contexts that have crucial
ramifications. However, a growing body of research has established that machine learning models
are not immune to bias, especially on protected characteristics. This had led to efforts to create
mathematical definitions of fairness that could be used to estimate whether, given a prediction task
and a certain protected attribute, an algorithm is being fair to members of all classes. But just like
how philosophical definitions of fairness can vary widely, mathematical definitions of fairness vary
as well, and fairness conditions can in fact be mutually exclusive. In addition, the choice of model
to use to optimize fairness is also a difficult decision we have little intuition for. Consequently,
our capstone project centers around an empirical analysis for studying the relationships between
machine learning models, datasets, and various fairness metrics. We produce a 3-dimensional
matrix of the performance of a certain machine learning model, for a certain definition of fairness,
for a certain given dataset. Using this matrix on a sample of 8 datasets, 7 classification models,
and 9 fairness metrics, we discover empirical relationships between model type and performance on
specific metrics, in addition to correlations between metric values across different dataset-model
pairs. We also offer a website and command-line interface for users to perform this experimentation
on their own datasets.

1 Introduction

Today, machine learning tools are becoming increasingly prevalent and are being used for decision-
making in contexts that have crucial ramifications. However, the algorithms that are used often are
suspect to many biases that may be obscure and difficult to isolate, especially within complex models,
and it is often hard to determine if they are fair or not in the intuitive sense. Due to this issue,
there have naturally been efforts to create mathematical definitions of fairness that could be used to
estimate whether, given a prediction task and a certain protected attribute, an algorithm is being fair
to members of all classes of the attribute.

However, just like how philosophical definitions of fairness can vary widely, mathematical defini-
tions of fairness are not always agreed upon. Furthermore, different definitions of fairness can often
be mutually exclusive in most real-world data, meaning that anyone trying to judge the fairness of a
model must decide the specific metric that is most relevant to their task – a decision which is not only
difficult, but also laden with the influence of values and politics.

What makes that decision even more difficult is that we know very little of how different fairness
definitions relate to different models. Previous research has shown how some machine learning models
lend themselves better than others in certain data contexts - such as neural networks being especially
appropriate for unstructured data - where there is just as much work involved in discovering features
from the data as there is in optimization. But we lack this same understanding with fairness.

Our capstone project centers around furthering research done in the area of fairness in machine
learning, and how it relates to specific data and models. We have produced a 3-dimensional matrix
displaying the performances of different combinations of models and datasets, evaluated on different
fairness metrics. Upon investigating these results, we aim to answer several potential questions about
the relationships that exist between these 3 dimensions as well as within them.
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For example, we can analyze whether some models are able to perform more fairly for certain
datasets, in the same way some models are more accurate than others for certain data. We can explore
whether certain models, over the range of datasets, tend to be fairer than others using some definitions
of fairness. By looking at correlations between the results for different fairness metrics, we can also find
an empirical grouping of which fairness metrics tend to correlate with each other, and whether these
correlations align with what we might expect given the philosophical definition of fairness underlying
each metric.

Though the analysis done on our end can be insightful and potentially indicative of general
patterns, we understand that our findings are heavily based on the specific data we have chosen to
create our matrix with. Therefore, we have also created a website that allows users to input their own
preprocessed datasets and evaluate them on our chosen models and fairness metrics, so they can apply
the same kind of analysis to data more relevant to their own interests or tasks. Our code will also be
publicly available for those who may want to run the project with their own specifications.

2 Methods

In our implementation of this project, we use 8 datasets, 7 machine learning models, and 9 fairness
metrics, for a total of 504 unique metric values. The specifics are described below.

2.1 Data Acquisition

In order to use datasets that are well-suited for analysis of fairness, as well as relatively clean and well-
formatted, we chose to use previously published datasets from the machine learning fairness literature.
These datasets are usually attached or linked to the papers they come from, and are cited below in
Table 1.

2.2 Data Preparation

Before passing the data into the main pipeline for analysis, we first preprocess the dataset from the
initial form found at the data source into a standardized .csv file. This preprocessing includes one-hot
encoding of categorical columns, conversion of labels to a numerical 0/1 format, imputation of missing
values, and other common dataset preprocessing techniques. In order to encode metadata about the
dataset that cannot be included in the CSV file itself, each preprocessing script also outputs a JSON
config file with information that is manually entered such as the dataset name, the type of prediction,
and most importantly, which columns contain the features, the sensitive groups, and the labels of
interest.

2.3 Analysis Pipeline

Once the datasets have been processed, they are then passed into the main Python file for the analysis
pipeline. Fundamentally, the analysis is a 3-layer nested loop, with every combination of dataset,
model, and metric being run. Firstly, the program collects the dataset CSV file and the config JSON.
Using the information from the config file, it selects the corresponding X, y, and group columns, and
does a 75/25 train-test split to generate train and test partitions for each dataset. For each model,
the script applies the model by training it on the train partitions, and outputs predictions on the test
partitions. Finally, these predictions are passed in along with all previous data into the function for
each metric, where a real-valued output is returned as the metric value. This value is recorded in
a 3-dimensional Python dictionary, which after the full loop is complete, is converted into a Pandas
dataframe for legibility.

The models used in this project are all contained in the scikit-learn package. They are: logistic
regression, Decision Tree, Random Forest, Multilayer Perceptron, Support Vector Machine (SVM), k-
Nearest Neighbors, and Naive Bayes classification. In each model, we used the default hyperparameters
in scikit-learn. These models were chosen because they span a wide range of types of learning, from
regression, to tree-based learning, to a basic neural network; they were also chosen because of their
relative popularity.
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Dataset Domain Description Sensitive
feature(s)

Shape
(before
preprocess-
ing)

Citation Dataset
Link

Credit Card
Clients

Finance Predicts
whether cus-
tomers will
default on
payments

Gender 30000 rows,
24 attributes

[11] Link

Obermeyer
Health

Healthcare Synthetic
dataset of
health data
used for
referral to
future care

Race 48724 rows,
148 at-
tributes

[5] Link

Adult Cen-
sus

Economics Predicts
whether in-
come exceeds
$50k/year
based on
census data

Race 32561 rows,
15 attributes

[3] Link

Bank Mar-
keting

Finance Predicts
whether
a client
will make
a deposit
subscription

Marital sta-
tus, Age

45,211 rows,
17 attributes

[4] Link, Paper
discussing
cleaning [7]

Law School Law Predict
whether a
candidate
would pass
the bar exam
on first try

Race, Gen-
der

18692 rows,
12 attributes

[10] Link, Paper
discussing
cleaning [7]

Diabetes
Patient
Readmission

Healthcare Predict
whether a
diabetic pa-
tient would
be readmit-
ted to the
hospital

Gender 19136 rows,
55 attributes

[9] Link

Communities
and Crime

Criminal
Justice

Predict
whether a
city/town
will have
high crime

Race 1996 rows,
92 attributes

[8] Link

Student Per-
formance

Education Predict
whether a
student’s
final grade
will be above
12

Gender 649 rows, 33
attributes

[2] Link

Table 1: Table of Current Datasets Chosen
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The metrics used are derived both from the scikit-learn [6] and fairlearn [1] packages. The
first two metrics are overall classification metrics agnostic of protected groups: overall accuracy, and
overall Brier score, which measures calibration. The rest measure balance between classes in certain
classification metrics: false positive rate, F1 score, recall, accuracy, Brier score, demographic parity,
and equalized odds, in most cases taking the range of values over all protected group instances. (e.g.
if the protected class is sex, the false positive rate metric takes the false positive rate of a model for
men, and the rate for women, then finds the absolute difference. Therefore, 0 is ideal, and 1 is the
worst possible result.)

3 Results

3.1 Overview

Our project runs machine learning algorithms over a group of datasets, and evaluates these models’
performance on a group of metrics. We can then slice the resulting matrix in several interesting ways to
study the relationships between models and metrics, between models and datasets, and between met-
rics. Of course, metric values will vary in scale and value between different datasets due to differences
in their underlying structures. Therefore, when aggregating metric values from different datasets, we
use the rank of the model performance on the metric for that dataset. These ranks also adjust for
whether a larger or smaller number is better for the specific metric – for example, a higher overall
accuracy is better, while a lower range of accuracies between groups is ideal. Raw values for the entire
dataset are available on our GitHub repository.

3.2 Analyzing Relative Results

3.2.1 Model Performance per Metric

Figure 1: Mean rank of model across all datasets, for each metric.
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The above chart displays the mean rank of a model on a particular metric across all datasets. For
example, the logistic regression model had on average the third-best Brier score range, meaning that
the quality of calibration of the model varied between protected classes the third-least in the logistic
regression model when compared to other models.

There are certain observations we can make from the above heatmap about the relationship
between models and metrics. The Random Forest model performed the best on both overall metrics,
overall Brier score and overall accuracy, and also was the best at balancing accuracy and Brier score
between classes, as evidenced by its ranks on Brier score range and overall accuracy. Meanwhile, the
Support Vector Machine model does well across a broad spectrum of fairness metrics, indicating that
it might be a model better-suited for fairness than something like a decision tree or logistic regression,
which scored poorly across fairness metrics. We also observe that the models that tend to be the most
accurate tend to do the worst on demographic parity, which makes sense, because demographic parity
is the sole metric that does not take into account whether predictions have been made correctly.

3.2.2 Correlation Between Metrics

Figure 2: Correlation heatmap between raw metric values.

The above figure shows the correlation between (raw, unranked) metric values overall all datasets
and models. First, we notice that demographic parity is negatively correlated with all other group
fairness metrics, likely because, again, demographic parity does not take into account whether pre-
dictions have been made correctly. More interestingly, we also observe that overall accuracy is also
negatively correlated with other metrics of fairness, implying a tradeoff in the accuracy of a model
and how well it performs on fairness metrics. In general, however, we do find a positive correlation
between most fairness metrics based on comparing different subsets of results to the true labels, such
as false positive rate balance, equalized odds, and recall. We also find a very strong negative correla-
tion between accuracy and Brier score (calibration). This may seem counterintuitive as Brier score is
generally viewed as just an alternative way of measuring accuracy, but it may be because Brier score
punishes being too confident in a prediction even when correct, while accuracy incentivizes predicting
the correct class without consideration of exactly how confident it is.
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Finally, we also observe that both the overall accuracy and Brier score are basically uncorrelated
with the ranges of these metrics between groups, indicating that simply maximizing the metric perfor-
mance on the entire dataset does not necessarily mean it will improve the degree to which it is equal
for every demographic group.

3.2.3 Models and Datasets

Figure 3: Mean model rank across all metrics, for each dataset.

This figure displays the mean rank of each model (across every fairness metric) for each dataset.
While we might not be able to immediately ascertain why certain models perform better in different
types of data, we still notice that the relative performance of models are not constant between datasets,
and the best model for one dataset might not necessarily be the best model for another dataset. For
example, we see the Random Forest model performs well across a variety of datasets, which is perhaps
predictable given its reputation as a good “black-box” model that can be universally applied with little
feature engineering.

3.3 User Extensibility

3.3.1 Website

In an effort to make our research more reproducible and replicable, we took further actions to make
sure that we were transparent about our work and allow for others to use it. In addition to performing
our own analysis, we also have created ways for users to perform similar experiments on their own
data. This can be done in two ways.

The first is by going to the static website, where users may be informed about an overview of
the project that features an explanation of the models and metrics for users who might not be familiar
with them. The demo section of the page takes users to the webapp, which allows users to upload
their own CSV file, cleaned to the same specifications as described above and with the last column
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representing the target label. Users are then able to select what models they would like to run on their
data, as well as what metrics. Upon submission, the webapp runs the pythonic code and returns an
HTML table displaying the results.

Figure 4: Screenshot using an example CSV with options inputted in the webapp

Figure 5: Resulting table displayed on the webpage

3.3.2 Github Repository

Although the webapp provides a easily accessible way for a curious user who does not have coding
experience to quickly get results, due to the Python code being hosted on Flask and through Google
Cloud servers, errors may be more obscure and performance may be slow for the user, and they may
want to seek further modifications themselves. Users who want to build upon our work or have more
experience with code have an option to delve deeper by simply cloning our own GitHub repository,
where all users have to do to add datasets to our existing analysis is to place them into the cleaned
dataset folder, with the proper cleaning performed and with the JSON config file filled out correctly.
Then, users may run the main Python script at the top level of the directory to run the analysis.
Instructions for users explaining these steps are located in the README file of the repository. More
enterprising users could also add new models and metrics to our pipeline, which is also quite simple
to do.

4 Conclusion

4.1 Overview

In this project, we have developed a framework for empirically analyzing the relationships between
machine learning models and fairness metrics on a wide variety of datasets. While much more work
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needs to be done to understand the ways in which model and metric choice affect how we determine
whether an application of machine learning is fair, our broad survey of a handful of models, metrics,
and datasets has nevertheless produced some interesting insights. These include which models tend to
perform better on fairness metrics, empirical evidence of fairness-accuracy tradeoffs, and how nominally
aligned metrics can disagree, such as in the example of accuracy and calibration.

Our project also offers opportunities for users to extend our analysis with new data, and if they
are willing to edit our code, they can also add new models and metrics to our analysis. We do this
through both a user-friendly website and a GitHub repository with instructions for new analysis. This
analysis can be useful by offering a way to quickly evaluate how different machine learning models
perform with regards to fairness on new data, and for student learning machine learning, it can be
used to learn more about the models, metrics, and datasets at play. Our methods could also be used to
evaluate new models or metrics when they are developed: if a researcher develops new machine learning
metrics, they could use our analysis pipeline to determine how it correlates with existing metrics, and
which machine learning models optimize it. If a new machine learning model for classification is
developed, our pipeline could be used to determine how it stacks up against popular existing models
across a variety of fairness metrics.

4.2 Limitations

There are some aspects to our project that limit the degree to which we can generalize its results.
For example, we used default parameters when training our models for the sake of generalizing the
pipeline and decreasing computation time. This is not always the best decision in machine learning,
and some of the models might produce slightly different results if parameters were more specifically
tuned. Another limitation of our study, naturally, is the limited number of models, metrics, and
datasets we used, which could have been larger to generalize to more models and contexts of data.

4.3 Concerns

Another possible concern is whether our project might be used for the reverse-engineering of fairness.
As we’ve discussed, machine learning metrics can differ greatly, if not be mutually exclusive, and
therefore, different metrics can present a very different picture of a model’s performance. With an
increased amount of focus on fairness in recent years, it is possible that anyone developing machine
learning algorithms will want to make their models seem more fair than they actually are by cherry-
picking a metric that most aids that argument.

We understand that due to the potential for harm or misuse since our topic is based on fairness
in machine learning and there may be researchers who would like to use the tool for other purposes,
we tried to incorporate a disclaimer as a checkbox to remind users that the form is for educational
purposes only. In making this a necessary disclaimer for the user to check before the program will
run as well as making users choose what metrics they want to focus on before running the program,
we hope that these user design choices will encourage users to approach this from a more educational
point of view. While we will never be able to entirely prevent malicious uses of our project, we can at
least try to ensure that any well-meaning students or researchers do not misinterpret its results.

4.4 Further Directions for Research

The most clear extension of our project would be to continue to add models, metrics, and datasets
to the 3-D matrix, which would theoretically increase how generalizable the results would be to more
machine learning contexts. On top of this, there is a great deal of theoretical research still to be done
in machine learning fairness to grasp the relationships between fairness metrics, such as using real
analysis to study the degree to which different metrics might overlap, which could help to determine
how easy it is to perform something akin to p-hacking for fairness, as mentioned earlier. Another
direction given more time would be to delve deeper into the specific datasets that already are in the
matrix and seek to explain why a certain model works better in terms of metric performance rather
than another. This would most likely involve the nuanced differences within a specific dataset and how
the industry works, where background knowledge pertaining to the specific industry would be most
useful in gleaning explanations.
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There are also plenty of directions to expand when it comes to new types of prediction. Especially
before the last couple of years, most of the work done on machine learning fairness dealt with binary
classification tasks, which do cover a great deal of real-world examples; since the datasets and metrics
we used are drawn from previous research, we also chose to focus on binary predictions. But machine
learning is used in many other contexts, such as regression, multiclass prediction, text translation,
image classification, and much more. Therefore, there exists a need to convey our philosophical under-
standings of fairness into new metrics that can evaluate all of these more complex types of prediction,
and similar experiments to our project could be conducted using these new metrics to understand their
properties and how they relate to other metrics and models.

References

[1] Sarah Bird, Miro Dud́ık, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa Milan, Mehrnoosh
Sameki, Hanna Wallach, and Kathleen Walker. Fairlearn: A toolkit for assessing and improving
fairness in ai. Technical Report MSR-TR-2020-32, Microsoft, May 2020.
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