{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Analysis of the ABIDE dataset\n", "\n", "### Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2021-08-03T20:38:07.505483Z", "start_time": "2021-08-03T20:38:07.492504Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/tspisak/src/mlconfound/venv/lib/python3.8/site-packages/nilearn/datasets/__init__.py:86: FutureWarning: Fetchers from the nilearn.datasets module will be updated in version 0.9 to return python strings instead of bytes and Pandas dataframes instead of Numpy arrays.\n", " warn(\"Fetchers from the nilearn.datasets module will be \"\n" ] } ], "source": [ "import warnings\n", "import os\n", "from os.path import join\n", "import numpy as np\n", "import pandas as pd\n", "from scipy.stats import kurtosis, skew\n", "\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set_style(\"whitegrid\")\n", "\n", "from sklearn.model_selection import StratifiedKFold, GridSearchCV\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.feature_selection import VarianceThreshold\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.preprocessing import quantile_transform\n", "from sklearn.metrics import roc_curve, RocCurveDisplay\n", "from nilearn.datasets.utils import _uncompress_file, _fetch_file\n", "from nilearn.connectome import ConnectivityMeasure\n", "\n", "from neurocombat_sklearn import CombatModel\n", "\n", "import statsmodels.api as sm\n", "from statsmodels.regression.linear_model import OLS\n", "from statsmodels.formula.api import ols as ols_f\n", "\n", "from mlconfound.stats import full_confound_test, partial_confound_test\n", "from mlconfound.plot import plot_graph\n", "from mlconfound.stats import _r2_cat_cont, _r2_cont_cont, _r2_cat_cat" ] }, { "cell_type": "markdown", "metadata": { "ExecuteTime": { "end_time": "2021-07-31T18:11:08.469487Z", "start_time": "2021-07-31T18:11:08.452669Z" } }, "source": [ "## Load data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:07:13.775609Z", "start_time": "2021-08-01T19:07:13.772837Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://osf.io/hc4md/download ...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Downloaded 1803198464 of 1811491701 bytes (99.5%, 0.7s remaining) ...done. (162 seconds, 2 min)\n", "Extracting data from ../data_in/ABIDE/download..... done.\n" ] } ], "source": [ "data_dir = '../data_in/ABIDE'\n", "\n", "url = 'https://osf.io/hc4md/download'\n", "\n", "# Download the zip file, first\n", "dl_file = _fetch_file(url, data_dir=data_dir)\n", "\n", "# Second, uncompress the downloaded zip file\n", "_uncompress_file(dl_file, verbose=2)\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:07:13.788158Z", "start_time": "2021-08-01T19:07:13.779135Z" } }, "outputs": [], "source": [ "def _get_paths(phenotypic, atlas, timeseries_dir):\n", " \"\"\"\n", " \"\"\"\n", " timeseries = []\n", " IDs_subject = []\n", " diagnosis = []\n", " subject_ids = phenotypic['SUB_ID']\n", " mean_fd = []\n", " num_fd = []\n", " perc_fd = []\n", " site = []\n", " for index, subject_id in enumerate(subject_ids):\n", " this_pheno = phenotypic[phenotypic['SUB_ID'] == subject_id]\n", " this_timeseries = join(timeseries_dir, atlas,\n", " str(subject_id) + '_timeseries.txt')\n", " if os.path.exists(this_timeseries):\n", " timeseries.append(np.loadtxt(this_timeseries))\n", " IDs_subject.append(subject_id)\n", " diagnosis.append(this_pheno['DX_GROUP'].values[0])\n", " mean_fd.append(this_pheno['func_mean_fd'].values[0])\n", " num_fd.append(this_pheno['func_num_fd'].values[0])\n", " perc_fd.append(this_pheno['func_perc_fd'].values[0])\n", " site.append(this_pheno['SITE_ID'].values[0])\n", " return timeseries, diagnosis, IDs_subject, mean_fd, num_fd, perc_fd, site" ] }, { "cell_type": "markdown", "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:07:43.346661Z", "start_time": "2021-08-01T19:07:13.792338Z" }, "pycharm": { "name": "#%% md\n" } }, "source": [ "Download the phenotypic summary information file form the preprocessed connectomes project.\n", "- First read:\n", " http://preprocessed-connectomes-project.org/abide/download.html\n", "- Then download:\n", " https://s3.amazonaws.com/fcp-indi/data/Projects/ABIDE_Initiative/Phenotypic_V1_0b_preprocessed1.csv\n", "- Copy the csv file into the data_in/ABIDE directory" ] }, { "cell_type": "code", "execution_count": 4, "outputs": [ { "data": { "text/plain": " SUB_ID X subject SITE_ID FILE_ID DX_GROUP DSM_IV_TR \\\n0 50002 1 50002 PITT no_filename 1 1 \n1 50003 2 50003 PITT Pitt_0050003 1 1 \n2 50004 3 50004 PITT Pitt_0050004 1 1 \n3 50005 4 50005 PITT Pitt_0050005 1 1 \n4 50006 5 50006 PITT Pitt_0050006 1 1 \n... ... ... ... ... ... ... ... \n1107 51583 1108 51583 SBL SBL_0051583 1 2 \n1108 51584 1109 51584 SBL SBL_0051584 1 2 \n1109 51585 1110 51585 SBL SBL_0051585 1 1 \n1110 51606 1111 51606 MAX_MUN MaxMun_a_0051606 1 2 \n1111 51607 1112 51607 MAX_MUN MaxMun_a_0051607 1 2 \n\n AGE_AT_SCAN SEX HANDEDNESS_CATEGORY ... qc_notes_rater_1 \\\n0 16.77 1 Ambi ... NaN \n1 24.45 1 R ... NaN \n2 19.09 1 R ... NaN \n3 13.73 2 R ... NaN \n4 13.37 1 L ... NaN \n... ... ... ... ... ... \n1107 35.00 1 NaN ... NaN \n1108 49.00 1 NaN ... NaN \n1109 27.00 1 NaN ... NaN \n1110 29.00 2 R ... NaN \n1111 26.00 1 R ... NaN \n\n qc_anat_rater_2 qc_anat_notes_rater_2 qc_func_rater_2 \\\n0 OK NaN fail \n1 OK NaN OK \n2 OK NaN OK \n3 OK NaN maybe \n4 OK NaN maybe \n... ... ... ... \n1107 OK NaN OK \n1108 OK NaN maybe \n1109 OK NaN maybe \n1110 OK NaN maybe \n1111 OK NaN maybe \n\n qc_func_notes_rater_2 qc_anat_rater_3 qc_anat_notes_rater_3 \\\n0 ic-parietal-cerebellum OK NaN \n1 NaN OK NaN \n2 NaN OK NaN \n3 ic-parietal-cerebellum OK NaN \n4 ic-parietal slight OK NaN \n... ... ... ... \n1107 ic-cerebellum-temporal_lobe OK NaN \n1108 vmpfc dropout OK NaN \n1109 ic-cerebellum-temporal_lobe OK NaN \n1110 ic-cerebellum OK NaN \n1111 ic-cerebellum OK NaN \n\n qc_func_rater_3 qc_func_notes_rater_3 SUB_IN_SMP \n0 fail ERROR #24 1 \n1 OK NaN 1 \n2 OK NaN 1 \n3 OK NaN 0 \n4 OK NaN 1 \n... ... ... ... \n1107 OK NaN 0 \n1108 OK NaN 0 \n1109 OK NaN 0 \n1110 OK NaN 0 \n1111 OK NaN 1 \n\n[1112 rows x 104 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
SUB_IDXsubjectSITE_IDFILE_IDDX_GROUPDSM_IV_TRAGE_AT_SCANSEXHANDEDNESS_CATEGORY...qc_notes_rater_1qc_anat_rater_2qc_anat_notes_rater_2qc_func_rater_2qc_func_notes_rater_2qc_anat_rater_3qc_anat_notes_rater_3qc_func_rater_3qc_func_notes_rater_3SUB_IN_SMP
050002150002PITTno_filename1116.771Ambi...NaNOKNaNfailic-parietal-cerebellumOKNaNfailERROR #241
150003250003PITTPitt_00500031124.451R...NaNOKNaNOKNaNOKNaNOKNaN1
250004350004PITTPitt_00500041119.091R...NaNOKNaNOKNaNOKNaNOKNaN1
350005450005PITTPitt_00500051113.732R...NaNOKNaNmaybeic-parietal-cerebellumOKNaNOKNaN0
450006550006PITTPitt_00500061113.371L...NaNOKNaNmaybeic-parietal slightOKNaNOKNaN1
..................................................................
110751583110851583SBLSBL_00515831235.001NaN...NaNOKNaNOKic-cerebellum-temporal_lobeOKNaNOKNaN0
110851584110951584SBLSBL_00515841249.001NaN...NaNOKNaNmaybevmpfc dropoutOKNaNOKNaN0
110951585111051585SBLSBL_00515851127.001NaN...NaNOKNaNmaybeic-cerebellum-temporal_lobeOKNaNOKNaN0
111051606111151606MAX_MUNMaxMun_a_00516061229.002R...NaNOKNaNmaybeic-cerebellumOKNaNOKNaN0
111151607111251607MAX_MUNMaxMun_a_00516071226.001R...NaNOKNaNmaybeic-cerebellumOKNaNOKNaN1
\n

1112 rows × 104 columns

\n
" }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "phenotypic = pd.read_csv('../data_in/ABIDE/Phenotypic_V1_0b_preprocessed1.csv').iloc[:,2:]\n", "timeseries, diagnosis, IDs_subject, mean_fd, num_fd, perc_fd, site = _get_paths(phenotypic, \"BASC/regions\", '../data_in/ABIDE/')\n", "sites, site_int = np.unique(site, return_inverse=True)\n", "phenotypic\n", " " ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:07:43.923330Z", "start_time": "2021-08-01T19:07:43.348786Z" } }, "outputs": [ { "data": { "text/plain": "(41.170464362909215, 5.142594423450439)" }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAb+klEQVR4nO3de1AU9wEH8O8FdL05wBYLd2odU2xiKSbQTn0wSTCcOVGRCFasSZtGTWrrNL5ItCHxkYeP1Ems6aSjUhof0UwbiWJ9RI2A4iQYO0Yj6tlqDEaNd1TkPDxhT3D7h+UXUB4rsrt38P3MOHO3+3P3y/PL7eN3JkVRFBAREQG4x+gAREQUOFgKREQksBSIiEhgKRARkcBSICIiIdToAHfjyJEjkCRJ9XhZlu9ovJGYVRvM2v6CJSfArA23nZCQ0OS6oC4FSZIQGxurerzT6byj8UZiVm0wa/sLlpwAszbcdnN4+IiIiASWAhERCSwFIiISWApERCSwFIiISGApEBGRwFIgIiKBpUBERAJLgYiIhKC+o7k9FRUVwev1IiIiAsnJyUbHISIyBEvh/7xeLzwej9ExiIgMxcNHREQksBSIiEhgKRARkcBSICIigaVAREQCS4GIiASWAhERCSwFIiISNCuF7OxsJCYmYvTo0bete/fdd9G/f39cvnwZAKAoChYuXAiHw4G0tDQcP35cq1hERNQCzUph7NixyM3NvW35xYsX8cknn6BXr15iWXFxMcrKyrB79268/vrreOWVV7SKRURELdCsFAYOHIju3bvftnzJkiWYPXs2TCaTWFZQUID09HSYTCYkJCTA6/WivLxcq2hERNQMXc8p7NmzB9HR0fjRj37UaLnb7YbNZhPPbTYb3G63ntGIiAg6TohXXV2NVatW4d133223bcqyDKfTqXp8TU1Nk+MlSUJ1dTV8Ph8kScKZM2cgy3K75WyL5rIGImbVRrBkDZacALOqoVspfP311zh//jzGjBkDAHC5XBg7diw2btwIq9UKl8slxrpcLlit1la3KUkSYmNjVWdwOp3Nji8tLYXFYoHZbEZMTIzqbWqlpayBhlm1ESxZgyUnwKwNt90c3Uqhf//+KCkpEc/tdjvy8vIQGRkJu92O9evXIzU1FV988QXCw8MRHR2tVzQiIvo/zUohKysLBw8eRGVlJZKSkjBt2jRkZmY2OXbo0KHYt28fHA4HzGYzFi9erFUsIiJqgWalsGzZshbXFxYWiscmkwkLFizQKgoREanEO5qJiEhgKRARkcBSICIigaVAREQCS4GIiASWAhERCSwFIiISWApERCSwFIiISGAp3KLh+zwQEXU2uk2IFyzCwsJQVFQEr9cLAIiIiEBycrLBqYiI9MFSaILX64XH4zE6BhGR7nj4iIiIBJYCEREJLAUiIhJYCkREJLAUiIhIYCkQEZHAUiAiIkGzUsjOzkZiYiJGjx4tlv3xj3/EiBEjkJaWht///vfiBjEAWLVqFRwOB1JSUrB//36tYhERUQs0K4WxY8ciNze30bKHHnoI27Ztw9atW3Hvvfdi1apVAIDTp09j+/bt2L59O3Jzc/Hqq6+irq5Oq2hERNQMzUph4MCB6N69e6NlDz/8MEJDb95EnZCQAJfLBQAoKChAamoqunbtij59+qBv3744evSoVtGIiKgZhk1z8eGHH2LkyJEAALfbjfj4eLHOarXC7Xa3ug1ZluF0OlXvs6ampsnxkiShuroaPp8PsixDlmX4fD6x7syZM5BlWfV+2kNzWQMRs2ojWLIGS06AWdUwpBRWrFiBkJAQPP7443e1HUmSEBsbq3q80+lsdnxpaSksFgskSYLf74fFYgEAmM1mxMTE3FXOtmgpa6BhVm0ES9ZgyQkwa8NtN0f3Uti0aRP27t2LNWvWiGmqrVarOJQE3HzlYLVa9Y5GRNTp6XpJanFxMXJzc7FixQqYzWax3G63Y/v27fD7/Th37hzKysrw4IMP6hmNiIig4SuFrKwsHDx4EJWVlUhKSsK0adOQk5MDv9+PSZMmAQDi4+Px2muv4b777sPIkSMxatQohISEYP78+QgJCdEqGhERNUOzUli2bNltyzIzM5sdP3XqVEydOlWrOEREpALvaCYiIoGlQEREAkuBiIgElgIREQksBSIiElgKREQksBSIiEhgKRARkcBSICIigaVAREQCS6EV9TO5EhF1Boa9yU6wCAsLQ1FREbxeLyIiIpCcnGx0JCIizbAUVPB6vfB4PEbHICLSHA8fERGRwFIgIiKBpXAHeNKZiDo6nlO4Aw1POgPgiWci6nBYCneIJ52JqCPj4SMiIhI0K4Xs7GwkJiZi9OjRYpnH48GkSZMwfPhwTJo0CVeuXAEAKIqChQsXwuFwIC0tDcePH9cqFhERtUCzUhg7dixyc3MbLcvJyUFiYiJ2796NxMRE5OTkAACKi4tRVlaG3bt34/XXX8crr7yiVSwiImqBZqUwcOBAdO/evdGygoICpKenAwDS09OxZ8+eRstNJhMSEhLg9XpRXl6uVTQiImqGrieaKyoqEB0dDQCIiopCRUUFAMDtdsNms4lxNpsNbrdbjG2OLMtwOp2q919TU9PkeEmSUF1dDZ/PB1mWIcsyfD6f2Ef981vXSZKEM2fOQJZl1RnuNmsgYlZtBEvWYMkJMKsahl19ZDKZ7vq6f0mSEBsbq3q80+lsdnxpaSksFgskSYLf74fFYhH7qH9+6zqz2YyYmJi7+hjakjXQMKs2giVrsOQEmLXhtpuj69VHPXr0EIeFysvLERkZCQCwWq1wuVxinMvlgtVq1TMaERFB51Kw2+3Iz88HAOTn52PYsGGNliuKgiNHjiA8PLzVQ0dERNT+NDt8lJWVhYMHD6KyshJJSUmYNm0apkyZgpkzZyIvLw+9evXC8uXLAQBDhw7Fvn374HA4YDabsXjxYq1iERFRCzQrhWXLljW5fO3atbctM5lMWLBggVZRiIhIJd7RTEREAkuBiIgElgIREQksBSIiElgKREQksBSIiEhgKRARkcBSICIigaVAREQCS4GIiASWAhERCapK4dChQ6qWERFRcFNVCgsXLlS1jIiIgluLs6QePnwYhw8fxuXLl7F69Wqx/OrVq6irq9M8HBER6avFUrh+/TquXbuGuro68b7EABAWFoY///nPmocjIiJ9tVgKgwYNwqBBg5CRkYHevXvrlYmIiAyi6k12/H4/5s2bhwsXLqC2tlYsX7dunWbBiIhIf6pKYcaMGZgwYQIyMzNxzz28ipWIqKNSVQqhoaF48skn222na9aswcaNG2EymXD//fdjyZIlKC8vR1ZWFjweD+Li4rB06VJ07dq13fZJREStU/Vnf3JyMjZs2IDy8nJ4PB7xry3cbjfWrVuHDz/8ENu2bUNdXR22b9+ON998ExMnTsTHH3+MiIgI5OXltWn7RETUdqpeKWzevBkA8Le//U0sM5lMKCgoaNNO6+rqUFNTg9DQUNTU1CAqKgoHDhzAW2+9BQDIyMjAO++8066vToiIqHWqSqGwsLDddmi1WjF58mQkJydDkiQ89NBDiIuLQ0REBEJDb8ax2Wxwu92tbkuWZTidTtX7rqmpaXK8JEmorq6Gz+eDLMuQZVlcgtvw+a3rJEnCmTNnIMuy6gx3mzUQMas2giVrsOQEmFUNVaWQn5/f5PL09PQ73uGVK1dQUFCAgoIChIeHY8aMGdi/f/8dbwe4+Us5NjZW9Xin09ns+NLSUlgsFkiSBL/fD4vFIvZR//zWdWazGTExMW3KfjdZAw2zaiNYsgZLToBZG267OapKobS0VDyWZRklJSWIi4trUyl8+umn+P73v4/IyEgAwPDhw/H555/D6/WitrYWoaGhcLlcsFqtd7xtIiK6O6pKYd68eY2ee71ezJo1q0077NWrF7744gtUV1ejW7duKCkpwYABAzB48GDs2rULqamp2Lx5M+x2e5u2T0REbaeqFG5lNptx/vz5Nu0wPj4eKSkpyMjIQGhoKGJjY/GLX/wCjz76KGbNmoXly5cjNjYWmZmZbdo+ERG1napS+N3vfice37hxA19++SVGjhzZ5p1Onz4d06dPb7SsT58+vAyViMhgqkph8uTJ4nFISAh69+4Nm82mWSgiIjKGqpvXBg0ahJiYGPh8Pni9XnTp0kXrXEREZABVpbBjxw5kZmZi586d+Oijj8RjIiLqWFQdPlq5ciXy8vLQo0cPAMDly5cxceJEjBgxQtNwRESkL1WvFBRFEYUAAN/5znegKIpmoYiIyBiqXik8/PDDeOaZZ5Camgrg5uGkpKQkTYMREZH+WiyFs2fP4tKlS/jDH/6A3bt349ChQwCAhIQEPP7447oEJCIi/bR4+Gjx4sUICwsDcHM6iuzsbGRnZ8PhcGDx4sW6BCQiIv20WAqXLl1C//79b1vev39/XLhwQbNQRERkjBZLoaqqqtl1NTU17R6GiIiM1eI5hQEDBuCDDz7A+PHjGy3fuHEj4uLiNA2mtaKiIni9XgBAz549DU5DRBQYWiyFl156Cc899xy2bt0qSuDYsWO4fv063nnnHV0CasXr9Yq3FA0PDzc2DBFRgGixFL73ve/h73//Ow4cOIBTp04BAIYOHYrExERdwhERkb5U3acwZMgQDBkyROssRERkMFV3NBMRUefAUiAiIoGlQEREAkuBiIgElgIREQmGlILX68X06dMxYsQIjBw5EocPH4bH48GkSZMwfPhwTJo0CVeuXDEiGhFRp2ZIKSxatAiPPPIIdu7ciS1btqBfv37IyclBYmIidu/ejcTEROTk5BgRjYioU9O9FKqqqvCvf/0L48aNAwB07doVERERKCgoQHp6OgAgPT0de/bs0TsaEVGnp+rmtfZ0/vx5REZGIjs7GydPnkRcXBxefvllVFRUIDo6GgAQFRWFioqKVrclyzKcTqfqfdfU1MDpdEKSJFRXV8Pn84ntyLIMn8/X6HFr67p164Zz587h+vXrYmx7qc8aDJhVG8GSNVhyAsyqhu6lUFtbixMnTmDevHmIj4/HwoULbztUZDKZYDKZWt2WJEmIjY1VvW+n0ynGl5aWwmKxiO34/X5YLJZGj1tbFxUVhdOnT8Pr9SIiIgLJycmqs9xJ1kDHrNoIlqzBkhNg1obbbo7uh49sNhtsNhvi4+MBACNGjMCJEyfQo0cPlJeXAwDKy8sRGRmpd7Q2qZ9Yr37GVSKiYKZ7KURFRcFms+HMmTMAgJKSEvTr1w92ux35+fkAgPz8fAwbNkzvaEREnZ7uh48AYN68eXjhhRdw/fp19OnTB0uWLMGNGzcwc+ZM5OXloVevXli+fLkR0YiIOjVDSiE2NhabNm26bfnatWsNSENERPV4RzMREQksBSIiElgKREQksBSIiEhgKRARkcBSICIigaVAREQCS4GIiASWAhERCSwFIiISWApERCSwFIiISGApEBGRwFIgIiKBpUBERAJLgYiIBJYCEREJLAUiIhIMK4W6ujqkp6fjt7/9LQDg3LlzyMzMhMPhwMyZM+H3+42K1iYmk8noCEREd82wUli3bh369esnnr/55puYOHEiPv74Y0RERCAvL8+oaG0SFhaGoqIibNmyBVu2bEFRUZHRkYiI7pghpeByubB3716MGzcOAKAoCg4cOICUlBQAQEZGBgoKCoyIdle8Xi88Hg88Hg+8Xq/RcYiI7pghpbB48WLMnj0b99xzc/eVlZWIiIhAaGgoAMBms8HtdhsRjYioUwvVe4dFRUWIjIzEgAED8Nlnn93VtmRZhtPpVD2+pqYGTqcTkiShuroaPp9PbEeWZfh8vkaP72Zdt27dcO7cOVy/fl2MvRP1WYMBs2ojWLIGS06AWdXQvRQ+//xzFBYWori4GLIs4+rVq1i0aBG8Xi9qa2sRGhoKl8sFq9Xa6rYkSUJsbKzqfTudTjG+tLQUFotFbMfv98NisTR6fDfroqKicPr0aXi9XkRERCA5OfmOPk8NswY6ZtVGsGQNlpwAszbcdnN0P3z0/PPPo7i4GIWFhVi2bBmGDBmCt956C4MHD8auXbsAAJs3b4bdbtc7WrurP8fA8wtEFCwC5j6F2bNnY/Xq1XA4HPB4PMjMzDQ6EhFRp6P74aOGBg8ejMGDBwMA+vTpE3SXoRIRdTQB80qBiIiMx1IgIiKBpaADToFBRMHC0HMKnUX9FBj1VyG15RJVIiI9sBR0Un95KhFRIOPhIyIiElgKREQksBSIiEhgKRARkcBSICIigaVAREQCS4GIiASWAhERCSwFIiISWApERCSwFIiISGApEBGRwFIgIiKBpUBERILuU2dfvHgRc+bMQUVFBUwmE8aPH4+nn34aHo8Hs2bNwoULF9C7d28sX74c3bt31zseEVGnpvsrhZCQELz44ovYsWMH/vGPf+D999/H6dOnkZOTg8TEROzevRuJiYnIycnROxoRUaeneylER0cjLi4OwM13JIuJiYHb7UZBQQHS09MBAOnp6dizZ4/e0YiIOj1D33nt/PnzcDqdiI+PR0VFBaKjowEAUVFRqKioaPX/y7IMp9Open81NTVwOp2QJAnV1dXw+XxiO7Isw+fzNXqs1TpJknDmzBnIstxq1mDArNoIlqzBkhNgVjUMKwWfz4fp06fjpZdeQlhYWKN1JpNJ1ZvdS5KE2NhY1ft0Op1ifGlpKSwWi9iO3++HxWJp9FirdWazGTExMaqzBjpm1UawZA2WnACzNtx2cwwphevXr2P69OlIS0vD8OHDAQA9evRAeXk5oqOjUV5ejsjISCOiGaKoqAherxcAEBERgeTkZIMTEVFnpfs5BUVR8PLLLyMmJgaTJk0Sy+12O/Lz8wEA+fn5GDZsmN7RDOP1euHxeODxeEQ5EBEZQfdXCocOHcKWLVtw//33Y8yYMQCArKwsTJkyBTNnzkReXh569eqF5cuX6x2NiKjT070Ufvazn+Hf//53k+vWrl2rcxpjtHS+pH6dJEl6xSEiEgy9+qizCgsLE+cRevbs2eQ6t9uNs2fP8vwCEemKpWCQ+vMI4eHhTa67fPkyzGazAcmIqDPj3EdERCSwFIiISGApEBGRwHMKQab+BDVvciMiLbAUgkz9CWoiIi3w8BEREQksBSIiElgKREQksBQCmJrpw4mI2hNPNAewhtNhAGg0JQYLg4i0wFIIcA2vNmo4JUZTheHz+Xi5KhHdFZZCELu1MKqqqni5KhHdFZ5TICIiga8UOqD2PN/QcIrv+sNTAN82lKijYil0QC2db7j1l3tr5yIaTvHNw1NEHR9LoYNq7nzDrb/cGz7nFU1ExFIgoaVLYLXCK6iIAkvAlUJxcTEWLVqEGzduIDMzE1OmTDE6UqfS3CWwd0rtbK53cgUVZ4gl0l5AlUJdXR1ee+01rF69GlarFePGjYPdbscPf/hDo6NRCyRJuu0vfi1mc23rNhuWSd++fdslS1sLqqMXW0sfX6B+7A2/dwMtW0N65QyoUjh69Cj69u2LPn36AABSU1NRUFCgSSlERESIx2FhYeJ4esPHRq6rrq4OmCxNrWv4+evSpQtuVb++4bimNPd1aOr/qd1mS5rKGqgkSTI6girBkhNgVjVMiqIohuy5CTt37sT+/fuxaNEiAEB+fj6OHj2K+fPnNzn+yJEjQfVFJiIKBLIsIyEhocl1AfVK4U4190EREVHbBNQdzVarFS6XSzx3u92wWq0GJiIi6lwCqhQeeOABlJWV4dy5c/D7/di+fTvsdrvRsYiIOo2AOnwUGhqK+fPn49lnn0VdXR1+/vOf47777jM6FhFRpxFQJ5qJiMhYAXX4iIiIjMVSICIioUOWQnFxMVJSUuBwOJCTk3Pber/fj5kzZ8LhcCAzMxPnz583IOVNrWVdvXo1Ro0ahbS0NDz99NO4cOGCASlvai1rvV27dqF///4oLS3VMd231OTcsWMHRo0ahdTUVDz//PM6J/xWa1m/+eYbPPXUU0hPT0daWhr27dtnQMqbsrOzkZiYiNGjRze5XlEULFy4EA6HA2lpaTh+/LjOCb/VWtZ//vOfSEtLQ1paGiZMmICTJ0/qnPCm1nLWO3r0KH784x9j586d2odSOpja2lpl2LBhytdff63IsqykpaUpp06dajRm/fr1yrx58xRFUZRt27YpM2bMMCCpuqwlJSXKtWvXFEVRlA0bNgR0VkVRlKqqKuXJJ59UMjMzlaNHjwZkzq+++koZM2aM4vF4FEVRlEuXLumeU1HUZZ07d66yYcMGRVEU5dSpU0pycrIRURVFUZSDBw8qx44dU1JTU5tcv3fvXuWZZ55Rbty4oRw+fFgZN26czgm/1VrWQ4cOia//3r17DcvaWk5Fufl98tRTTynPPvus8tFHH2meqcO9Umg4VUbXrl3FVBkNFRYWIiMjAwCQkpKCkpISKAacb1eTdciQITCbzQBu3qzX8D4OPanJCgBvv/02fvOb3xh2p7manB988AF++ctfonv37gCAHj16GBFVVVaTyYSrV68CAKqqqhAdHW1EVADAwIEDxeesKQUFBUhPT4fJZEJCQgK8Xi/Ky8t1TPit1rL+9Kc/FeuN/LlqLScAvPfee0hJSdHt+7TDlYLb7YbNZhPPrVYr3G73bWPqp4UODQ1FeHg4Kisrdc1Zn6O1rA3l5eUhKSlJj2i3UZP1+PHjcLlcePTRR3VO9y01OcvKyvDVV19hwoQJGD9+PIqLi/WOCUBd1ueeew5bt25FUlISpkyZgrlz5+odU7VbPx6bzdbi93OgMPLnqjVutxt79uzBE088ods+A+o+BWreli1bcOzYMaxfv97oKE26ceMG3njjDSxZssToKK2qq6vD2bNn8d5778HlcuFXv/oVtm7delcT7Wll+/btyMjIwOTJk3H48GHMmTMH27Ztwz33dLi/5wxx4MAB5OXl4f333zc6SpMWLVqEF154Qdevd4crBTVTZVitVly8eBE2mw21tbWoqqrCd7/7Xb2jqp7W49NPP8XKlSuxfv16dO3aVc+IQmtZfT4f/vOf/+DXv/41AOC///0vpk6dihUrVuCBBx4ImJz1Y+Lj49GlSxf06dMH9957L8rKyvDggw/qllNt1ry8POTm5gIAfvKTn0CWZVRWVhp2yKslt348LpcroKepOXnyJObOnYu//vWvhvz8q3Hs2DFkZWUBACorK7Fv3z6Ehobiscce02yfHe7PDTVTZdjtdmzevBnAzStlhgwZYshbUarJeuLECcyfPx8rVqww9BdBa1nDw8Px2WefobCwEIWFhUhISNC9ENTkBIDHHnsMBw8eBABcvnwZZWVlYrr2QMvas2dPlJSUAAC+/PJLyLKMyMhI3bOqYbfbkZ+fD0VRcOTIEYSHhxt6DqQl33zzDaZNm4alS5fiBz/4gdFxmlX/81RYWIiUlBQsWLBA00IAOuArheamynj77bcxYMAADBs2DOPGjcPs2bPhcDjQvXt3/OlPfwrYrEuXLsW1a9cwY8YMADd/SaxcuTIgswYCNTkfeeQRfPLJJxg1ahRCQkIwZ84cQ/5SVJP1xRdfxNy5c7FmzRqYTCa88cYbhr2XdlZWFg4ePIjKykokJSVh2rRpqK2tBQA88cQTGDp0KPbt2weHwwGz2YzFixcbklNN1r/85S/weDx49dVXAQAhISHYtGlTwOU0Aqe5ICIiocMdPiIiorZjKRARkcBSICIigaVAREQCS4GIiASWAhERCSwFIiIS/gdvpePkXjPiAAAAAABJRU5ErkJggg==\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.histplot(mean_fd, color='gray')\n", "plt.savefig('../data_out/fig/abide_motion_hist.pdf')\n", "kurtosis(mean_fd), skew(mean_fd)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:07:44.142044Z", "start_time": "2021-08-01T19:07:43.925958Z" } }, "outputs": [ { "data": { "text/plain": "(0.492398885189945, 0.6060249878053774)" }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAULElEQVR4nO3df2xV9f3H8dfd7bgjLcWUtfemHZkUB97Upf1jAo3OH2UFDKsUt27GZCkw0/20tmxsQ4fbFMq2qGvclkmDCqiLjirXAP4ALtOaDbYFZbh55+YGixB7G4q1eue9pffe7x+Gj9yvcHvvpeec297nIyFpT8/nc958uJdXP+fH57qSyWRSAABI+ojTBQAA8gehAAAwCAUAgEEoAAAMQgEAYBQ5XcCFOHz4sDwej2X9x2IxS/ufaBiPVIzHBxiLVPk+HrFYTHV1def82YQOBY/HI7/fb1n/oVDI0v4nGsYjFePxAcYiVb6PRygUOu/POH0EADAIBQCAQSgAAAxCAQBgEAoAAINQAAAYhAIAwCAUAAAGoQAAMAgF5LV4PG5LGwDvm9DLXGDyc7vd2rp1a1ZtWltbLaoGmPyYKQAADEIBAGAQCgAAg1AAABiEAgDAIBQAAAahAAAwCAUAgEEoAAAMQgEAYFgWCmvXrlV9fb0+//nPm21DQ0NauXKlFi1apJUrV+rtt9+WJCWTSa1fv16NjY1qamrS3//+d6vKAgCkYVko3HDDDdq8eXPKtp6eHtXX12vPnj2qr69XT0+PJKmvr0/Hjh3Tnj17dNddd+nHP/6xVWUBANKwLBQuv/xyTZ8+PWVbMBhUc3OzJKm5uVn79u1L2e5yuVRXV6fh4WENDAxYVRoA4DxsXSV1cHBQFRUVkqTy8nINDg5KksLhsHw+n9nP5/MpHA6bfc8nFospFApZVm80GrW0/4nGifHw+/2KRCJZt7OjTl4fH2AsUk3k8XBs6WyXyyWXy3VBfXg8Hvn9/nGq6MNCoZCl/U80To1HcXFx1m3sqJPXxwcYi1T5Ph7pAsvWu49mzJhhTgsNDAyorKxMkuT1etXf32/26+/vl9frtbM0AIBsDoWGhgYFAgFJUiAQ0MKFC1O2J5NJHT58WNOmTRvz1BEAYPxZdvpo9erV+vOf/6y33npLV111lW655Ra1tbWpo6NDvb29qqysVHd3tyTp6quv1gsvvKDGxkZNnTpVXV1dVpUFAEjDslC49957z7n9XB+t6HK59KMf/ciqUgAAGeKJZgCAQSgAAAxCAQBgEAoAAINQAAAYhAIAwCAUAAAGoQAAMAgFAIBBKAAADEIBAGAQCrBNPB53ugQAY3DsQ3ZQeNxu9zkXREyntbXVomoAnAszBQCAQSgAAAxCocBlc57/7M+c5foAMDlxTaHAZXOePxKJqLi4WBLn+oHJipkCAMAgFAAABqEAADAIBQCAQSggJ9x9BExO3H2EnPB0MjA5MVPApJPrLIbZD8BMAZNQLrMYiZkMIDFTAACchVAAABiEAgDAIBQAAIYjF5q3bNmi7du3y+Vyac6cOdq4caMGBga0evVqDQ0NqaamRj//+c81ZcoUJ8oDgIJl+0whHA5r27ZteuKJJ7Rr1y7F43Ht3r1bd999t1asWKG9e/eqtLRUvb29dpcGAAXPkdNH8Xhc0WhUo6OjikajKi8v18GDB7V48WJJ0vLlyxUMBp0oDQAKmu2nj7xer1atWqVrr71WHo9HV1xxhWpqalRaWqqiovfL8fl8CofDY/YVi8UUCoUsqzUajVrafz7w+/2KRCIZ7ZtIJFL2zbTd2fK5jaSs/r0L4fWRKcYi1UQeD9tD4e2331YwGFQwGNS0adN066236sUXX8ypL4/Hk/JpYOMtFApZ2n++OPPBOWM5+0N2smmXy7GcaCMpq3/vQnl9ZIKxSJXv45EusGwPhT/+8Y/6xCc+obKyMknSokWL9NJLL2l4eFijo6MqKipSf3+/vF6v3aUBQMGz/ZpCZWWl/vrXv+q9995TMpnUgQMHdMkll2j+/Pl67rnnJEk7duxQQ0OD3aUBQMGzfaZQW1urxYsXa/ny5SoqKpLf79eXv/xlXXPNNers7FR3d7f8fr9aWlrsLg0ACp4jzym0t7ervb09ZdvMmTO5DRUAHMYTzQAAg1AAABiEAgDAIBQAAAahAAAwCAUAgEEoAAAMQgEAYBAKAACDUAAAGIQCAMAgFAAABqEAADAIBQCAQSgAAAxCAQBgEAoAAINQAAAYhAIAwCAUAAAGoQAAMAgFAIBBKAAADEIBAGAQCgAAg1AAABiEAgDAyCgUDh06lNE2OCsejztdAoAJriiTndavX68dO3aMuQ3Ocrvd2rp1a1ZtWltbLaoGwESUNhRefvllvfzyyzp16pQeeughs/3dd9/lt1JMOvF4XG63O+P9/X5/1m2AfJc2FE6fPq3//e9/isfjikQiZntJSYnuu+++nA86PDysH/7wh/rnP/8pl8ulrq4uzZo1S52dnTpx4oSqqqrU3d2t6dOn53wMIFvZzrQikYi++c1vWlgRYL+0oTBv3jzNmzdPy5cvV1VV1bgddMOGDfrsZz+r++67TyMjI4pGo7r//vtVX1+vtrY29fT0qKenR2vWrBm3YwIAxpbRNYWRkRGtW7dOJ06c0OjoqNm+bdu2rA/4zjvv6C9/+Yt++tOfSpKmTJmiKVOmKBgM6uGHH5YkNTc36ytf+QqhAAA2yygUbr31Vt14441qaWnRRz5yYXexHj9+XGVlZVq7dq3+8Y9/qKamRrfffrsGBwdVUVEhSSovL9fg4OCYfcViMYVCoQuqJ51oNGpp/+nMmjVLH/vYx7Jud/ZpvvFuk0gkUva18lhOtMm2XSKRyOmaQjQa1dGjR7MtLa85+V7JRxN5PDIKhaKiIt10003jcsDR0VG9+uqrWrdunWpra7V+/Xr19PSk7ONyueRyucbsy+PxyO/3j0td5xIKhSztfyy53ElUXFyc9XEybROJRFL2tfJYTrTJtl0kEsn5ji8nX1dWcPq9km/yfTzSBVZGv/Zfe+21evTRRzUwMKChoSHzJxc+n08+n0+1tbWSpCVLlujVV1/VjBkzNDAwIEkaGBhQWVlZTv0DAHKX0UzhzPMIDzzwgNnmcrkUDAazPmB5ebl8Pp/+85//qLq6WgcOHNDs2bM1e/ZsBQIBtbW1KRAIaOHChVn3DQC4MBmFwv79+8f1oOvWrdN3v/tdnT59WjNnztTGjRuVSCTU0dGh3t5eVVZWqru7e1yPCQAYW0ahEAgEzrm9ubk5p4P6/X49+eSTH9qe7blZAMD4yigUXnnlFfN1LBbTgQMHVFNTk3MoAADyU0ahsG7dupTvh4eH1dnZaUlBAADn5PTQwdSpU3X8+PHxrgUA4LCMZgpf//rXzdeJREL//ve/dd1111lWFADAGRmFwqpVq8zXbrdbVVVV8vl8lhUFAHBGRqeP5s2bp+rqakUiEQ0PD+ujH/2o1XUBAByQUSg8/fTTamlp0bPPPqtnnnnGfA0AmFwyOn10//33q7e3VzNmzJAknTp1SitWrNCSJUssLQ4AYK+MZgrJZNIEgiRddNFFSiaTlhUFAHBGRjOFK6+8Ul/96le1dOlSSe+fTrrqqqssLQwAYL+0ofDf//5XJ0+e1Pe//33t2bNHhw4dkiTV1dXp+uuvt6VAAIB90p4+6urqUklJiSRp0aJFWrt2rdauXavGxkZ1dXXZUiAAwD5pQ+HkyZOaO3fuh7bPnTtXJ06csKwoAIAz0obCO++8c96fRaPRcS8GAOCstKFw2WWX6Xe/+92Htm/fvl01NTWWFQUAcEbaC8233Xabvv3tb2vnzp0mBP72t7/p9OnT+tWvfmVLgQAA+6QNhY9//ON67LHHdPDgQf3rX/+SJF199dWqr6+3pTgAgL0yek5hwYIFWrBggdW1AAAcltPnKQAAJidCAQBgEAoAAINQAAAYhAIAwCAUAAAGoQAAMAgFAIBBKAAADEIBAGAQCgAAw7FQiMfjam5u1te+9jVJ0htvvKGWlhY1Njaqo6NDIyMjTpUGAAXLsVDYtm2bZs+ebb6/++67tWLFCu3du1elpaXq7e11qjQAKFiOhEJ/f7+ef/55ffGLX5QkJZNJHTx4UIsXL5YkLV++XMFg0InSAKCgZbR09njr6urSmjVrFIlEJElvvfWWSktLVVT0fjk+n0/hcHjMfmKxmEKhkGV1RqNRS/tPx+/3m/HJhpVtEolEyr75Vt+Ftsm2XSKRyPlYTr2urOLkeyUfTeTxsD0Ufv/736usrEyXXXaZ/vSnP11QXx6PR36/f5wq+7BQKGRp/2MpLi7OqzaRSCRl33yr70LbZNvuTBjkciwnX1dWcPq9km/yfTzSBZbtofDSSy9p//796uvrUywW07vvvqsNGzZoeHhYo6OjKioqUn9/v7xer92lAUDBs/2awne+8x319fVp//79uvfee7VgwQLdc889mj9/vp577jlJ0o4dO9TQ0GB3aQBQ8PLmOYU1a9booYceUmNjo4aGhtTS0uJ0SQBQcBy50HzG/PnzNX/+fEnSzJkzuQ0VAByWNzMFAIDzCAUAgEEoADaLx+O2tAFy4eg1BaAQud1ubd26Nas2ra2tFlUDpGKmAAAwCAUAgEEoAAAMQgEAYBAKAACDUAAAGIQCAMAgFAAABqEAADAIBQCAQSgAAAxCAQBgEAoAAINQACaAXJfOZsltZIuls4EJIJfltiWW3Eb2mCkAAAxCAQBgEAoAAINQAAAYhAIAwCAUAAAGoWAD7hUHMFHwnIINcrnHnPvLATiBmQIAwCAUAACG7aeP3nzzTX3ve9/T4OCgXC6XvvSlL6m1tVVDQ0Pq7OzUiRMnVFVVpe7ubk2fPt3u8gCgoNk+U3C73frBD36gp59+Wo8//rh++9vf6vXXX1dPT4/q6+u1Z88e1dfXq6enx+7SAKDg2R4KFRUVqqmpkSSVlJSourpa4XBYwWBQzc3NkqTm5mbt27fP7tIAoOA5evfR8ePHFQqFVFtbq8HBQVVUVEiSysvLNTg4OGb7WCymUChkWX3RaHRc+vf7/YpEIlm3y7c2iUQiZd98q+9C22TbLpFI5Hwsu9rE43G53e6s2kSjUR09ejTrNla+FyeaiTwejoVCJBJRe3u7brvtNpWUlKT8zOVyyeVyjdmHx+OR3++3qkSFQqFx67+4uHjCt4lEIin75lt9F9om23Zn/pPO579TrrdDZ/u6H8/3ymSQ7+ORLrAcufvo9OnTam9vV1NTkxYtWiRJmjFjhgYGBiRJAwMDKisrc6I0AChotodCMpnU7bffrurqaq1cudJsb2hoUCAQkCQFAgEtXLjQ7tIAoODZfvro0KFDeuqppzRnzhwtW7ZMkrR69Wq1tbWpo6NDvb29qqysVHd3t92lAUDBsz0UPvOZz+i11147589y+bhBAMD44YlmAIBBKAAADEIBQIpclnqfNWuWBZXACSydDSAFS70XNmYKAACDUAAAGIQCAMAgFAAABqEAADAIBQCAQSgAAAxCAQBgEApZyuVpTwCYKHiiOUs87QlgMmOmAOCC5TKDZtadn5gpALhgzKAnD2YKAACDUADgCE455SdOHwFwBKec8hMzBQCAQSgAAAxCAQBgEAoAAINQAAAYhAIAwCAUAAAGoQAAMAgFAIBBKAAAjIINhUzWUPH7/TZUAsBqdq2zdKZNNv93jI6OZn2cs4813vJq7aO+vj5t2LBBiURCLS0tamtrs+xYmay7EolEVFxcnLKNtVeAiceudZbOHOdc/3ekO062tZ1pZ4W8mSnE43Hdeeed2rx5s3bv3q1du3bp9ddfd7osAHmEVVKtlzczhSNHjuiTn/ykZs6cKUlaunSpgsGgLrnkEocrA5AvcvmNX2KGnw1XMplMOl2EJD377LN68cUXtWHDBklSIBDQkSNHdMcdd5y3zeHDh+XxeOwqEQAmhVgsprq6unP+LG9mCrk4318KAJCbvLmm4PV61d/fb74Ph8Pyer0OVgQAhSdvQuHTn/60jh07pjfeeEMjIyPavXu3GhoanC4LAApK3pw+Kioq0h133KGbb75Z8XhcX/jCF/SpT33K6bIAoKDkzYVmAIDz8ub0EQDAeYQCAMAgFDL04IMPau7cuTp16pTTpTiqu7tbTU1NWrZsmVatWqVwOOx0SY752c9+piVLlqipqUnf+ta3NDw87HRJjnrmmWe0dOlSXXrppXrllVecLscxfX19Wrx4sRobG9XT0+N0OVkjFDLw5ptv6g9/+IMqKyudLsVxN998s3bu3KmnnnpK11xzjX796187XZJjrrjiCu3atUs7d+7UxRdfrE2bNjldkqPmzJmjX/7yl7r88sudLsUxk2G5HkIhAxs3btSaNWvkcrmcLsVxJSUl5uv33nuvoMfkyiuvVFHR+zfw1dXVpTxnU4hmz56t6upqp8tw1NnL9UyZMsUs1zOR5M0tqflq3759qqio0KWXXup0KXnjF7/4hQKBgKZNm6Zt27Y5XU5eeOKJJ3Tdddc5XQYcFg6H5fP5zPder1dHjhxxsKLsEQqSVqxYoZMnT35oe0dHhzZt2qQHH3zQgaqck248Pve5z6mzs1OdnZ3atGmTHnnkEbW3tztQpT3GGgtJ+s1vfiO3263rr7/e7vJsl8l4YGIjFCRt2bLlnNtfe+01HT9+XMuWLZMk9ff364YbbtD27dtVXl5uY4X2Ot94/H9NTU1qa2ub1KEw1lg8+eSTev7557Vly5aCOJWW6WujUE2G5XoIhTTmzp2rAwcOmO8bGhrU29ursrIyB6ty1rFjx3TxxRdLkoLBYEGfQ+7r69PmzZv1yCOPaOrUqU6Xgzxw9nI9Xq9Xu3fv1j333ON0WVnhieYsEArSLbfcoqNHj8rlcqmqqko/+clPJtxvQuOlsbFRIyMjuuiiiyRJtbW1uvPOO50tykF79+7VXXfdpVOnTqm0tFR+v18PPPCA02XZ7oUXXlBXV5dZrucb3/iG0yVlhVAAABjckgoAMAgFAIBBKAAADEIBAGAQCgAAg1AAABiEAgDA+D8HT5vbAv/BBQAAAABJRU5ErkJggg==\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.histplot(np.log(mean_fd), color='gray')\n", "kurtosis(np.log(mean_fd)), skew(np.log(mean_fd))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:07:44.464848Z", "start_time": "2021-08-01T19:07:44.144550Z" } }, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD7CAYAAACFfIhNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU/0lEQVR4nO3df2yUdwHH8c+VlsvSrppif6SVaGCCTTHtHwo0myDFFhC7lclVY7JIp2Emaldw1cHCNBuUaHBpjImumRtgXFzbjZIBso5jrIvCNPwQf5zTaaoroW0oKx3n9Wj7PP5B9g3Q3nGwPs9zvXu/kiXt83369PNdm354vvc8z/ls27YFAICkDK8DAACSB6UAADAoBQCAQSkAAAxKAQBgUAoAAMOxUtiyZYsqKyv1xS9+0WwbHh5WQ0ODampq1NDQoEuXLkmSbNvW9u3bVV1drdraWv31r391KhYAIA7HSuH+++/XM888c922trY2VVZWqru7W5WVlWpra5Mk9fT0qLe3V93d3XryySf1wx/+0KlYAIA4Mp068Gc+8xn19fVdty0YDOpXv/qVJKmurk4PPPCAmpubFQwGVVdXJ5/Pp4qKCo2MjGhwcFAFBQVxv8eZM2fk9/udmoJrotFoSswjEeky13SZp8RcZ6JoNKqKioopxxwrhakMDQ2ZP/T5+fkaGhqSJA0MDKioqMjsV1RUpIGBgZuWgt/vV2lpqXOBXRIKhVJiHolIl7mmyzwl5joThUKhmGOulsK1fD6ffD7fBzpGNBqNO7mZYnR0NCXmkYh0mWu6zFNirqnG1VKYM2eOWRYaHBxUXl6eJKmwsFD9/f1mv/7+fhUWFt70eJwpzDzpMtd0mafEXGeieMXm6iWpVVVV6urqkiR1dXVp5cqV1223bVtnzpzRnXfeedOlIwDA9HPsTGHz5s36wx/+oHfffVfLli3Td77zHW3cuFFNTU3q7OxUcXGxWltbJUnLly/X66+/rurqat1xxx1qaWlxKhYAIA7HSuGpp56acvuePXsmbfP5fPrBD37gVBQAQIK4oxkAYFAKAACDUgAAGJQCAMDw7OY1IJVEo1FZlmU+LykpUSQSuW6fjIyMlHhEAlIbpQBMA8uy1N7ebj4Ph8PKzs6+bp/6+nq3YwG3jOUjAIBBKQAADEoBAGBQCgAAgxeagQTceHXRjWzbTug4N16RdC2uTkIyoBSABNx4ddGNAoHATY9h27Y6OjpijnN1EpIBy0cAAINSAAAYlAIAwKAUAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAAalAAAwKAUAgEEpAAAMSgEAYFAKAACDUgAAGJQCAMCgFAAARqbXAYBkEI1GZVlWzHHbtl3JEYlEYo5lZGTI7/e7kgPpi1IAJFmWpfb29pjjgUDA8Qy2baujoyPmeH19veMZAE9KYffu3ero6JDP59OCBQu0c+dODQ4OavPmzRoeHlZZWZl+/OMfa/bs2V7EA4C05fprCgMDA9q7d69efPFFHThwQBMTEzp48KB27dqlDRs26NVXX1Vubq46OzvdjgYAac+TF5onJiY0Ojqq8fFxjY6OKj8/XydOnNCqVaskSevWrVMwGPQiGgCkNdeXjwoLC/Xggw9qxYoV8vv9uvvuu1VWVqbc3FxlZl6NU1RUpIGBAbejAUDac70ULl26pGAwqGAwqDvvvFMPP/yw3njjjds6VjQaVSgUmuaE7hsdHU2JeSQiWedaUlKicDgcc9y27Vsatyxr0v63eowbjY2Nqbe3N+a4V5L1Z+qEdJir66Xw+9//Xh/96EeVl5cnSaqpqdGpU6c0MjKi8fFxZWZmqr+/X4WFhTc9lt/vV2lpqdORHRcKhVJiHolI1rlGIhFlZ2fHHPf5fLc0Hg6HJ+1/q8e4UVZWVlL+v0vWn6kTUmWu8YrN9dcUiouL9ac//UmRSES2bev48eO66667tGTJEr3yyiuSpH379qmqqsrtaACQ9lw/UygvL9eqVau0bt06ZWZmqrS0VF/+8pf1uc99Tps2bVJra6tKS0tduS4cAHA9T+5TaGxsVGNj43Xb5s6dy2WoAOAxnn0EADAoBQCAQSkAAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAAalAAAwKAUAgEEpAAAMSgEAYFAKAAAj0+sAgBui0agsy4o5btu2i2luXyQSiTmWkZEhv9/vYhqkIkoBacGyLLW3t8ccDwQCLqa5PbZtq6OjI+Z4fX29i2mQqlg+AgAYlAIAwKAUAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAIYnpTAyMqLGxkatXr1aa9as0enTpzU8PKyGhgbV1NSooaFBly5d8iIaAKQ1T0phx44d+uxnP6vDhw9r//79mj9/vtra2lRZWanu7m5VVlaqra3Ni2gAkNZcL4X33ntPf/zjH7V+/XpJ0uzZs5Wbm6tgMKi6ujpJUl1dnY4cOeJ2NABIe64/Oruvr095eXnasmWL/v73v6usrEyPPfaYhoaGVFBQIEnKz8/X0NCQ29EAIO25Xgrj4+P629/+pm3btqm8vFzbt2+ftFTk8/nk8/lueqxoNKpQKORUVNeMjo6mxDwS4dVcS0pKFA6HY47btj2t45ZlTdp/ur/HjcbGxtTb2xtz3Cn8/qYW10uhqKhIRUVFKi8vlyStXr1abW1tmjNnjgYHB1VQUKDBwUHl5eXd9Fh+v1+lpaVOR3ZcKBRKiXkkwqu5RiIRZWdnxxz3+XzTOh4OhyftP93f40ZZWVme/L/l93fmiVdsrr+mkJ+fr6KiIv373/+WJB0/flzz589XVVWVurq6JEldXV1auXKl29EAIO158nac27Zt0yOPPKKxsTHNnTtXO3fulGVZampqUmdnp4qLi9Xa2upFNABIa56UQmlpqV566aVJ2/fs2eNBGgDA+7ijGQBgUAoAAINSAAAYCZXCyZMnE9oGAJjZEiqF7du3J7QNADCzxb366PTp0zp9+rQuXryo5557zmy/fPmyJiYmHA8HAHBX3FIYGxvT//73P01MTFx3e31OTo5++tOfOh4OAOCuuKWwePFiLV68WOvWrVNJSYlbmQAAHkno5rUrV65o27ZtOnfunMbHx832vXv3OhYMAOC+hErh4Ycf1le+8hUFAgFlZHAVKwCkqoRKITMzU1/96ledzgIA8FhC/+xfsWKFfv3rX2twcFDDw8PmPwBAaknoTGHfvn2SpF/+8pdmm8/nUzAYdCYVAMATCZXC0aNHnc4BAEgCCZXC+29+c6O6urppjAIA8FpCpfDnP//ZfByNRnX8+HGVlZVRCkgK0WhUlmXF3ce2bZfSeCsSicQcy8jIkN/vdzENZqKESmHbtm3XfT4yMqJNmzY5Egi4VZZlqb29Pe4+gUDApTTesW1bHR0dMcfr6+tdTIOZ6rZuOrjjjjvU19c33VkAAB5L6Ezhm9/8pvnYsiz961//0po1axwLBQDwRkKl8OCDD5qPZ82apZKSEhUVFTkWCgDgjYSWjxYvXqx58+YpHA5rZGREWVlZTucCAHggoVI4dOiQAoGADh8+rN/+9rfmYwBAaklo+egXv/iFOjs7NWfOHEnSxYsXtWHDBq1evdrRcAAAdyV0pmDbtikESfrwhz+cNtd9A0A6SehM4Z577tHXv/51rV27VtLV5aRly5Y5GgwA4L64pfCf//xHFy5c0Pe//311d3fr5MmTkqSKigrde++9rgQEALgn7vJRS0uLcnJyJEk1NTXasmWLtmzZourqarW0tLgSEADgnrilcOHCBS1cuHDS9oULF+rcuXOOhQIAeCNuKbz33nsxx0ZHR6c9DADAW3FLYdGiRVM+aKyjo0NlZWWOhQIAeCPuC81bt27Vt7/9bb388sumBP7yl79obGxMP/vZz1wJCABwT9xS+MhHPqLf/OY3OnHihP75z39KkpYvX67KykpXwgEA3JXQfQpLly7V0qVLnc4CAPDYbb2fAgAgNVEKAADDs1KYmJhQXV2dHnroIUnSO++8o0AgoOrqajU1NenKlSteRQOAtOVZKezdu1fz5883n+/atUsbNmzQq6++qtzcXHV2dnoVDQDSliel0N/fr2PHjmn9+vWSrj6F9cSJE1q1apUkad26dQoGg15EA4C05kkptLS0qLm5WRkZV7/9u+++q9zcXGVmXr0YqqioSAMDA15EA4C0ltAlqdPptddeU15enhYtWqQ333zzAx0rGo0qFApNUzLvjI6OpsQ8EuHEXEtKShQOh+PuY9t23H2me9yyrEn7u53hRmNjY+rt7Y05frv4/U0trpfCqVOndPToUfX09Cgajery5cvasWOHRkZGND4+rszMTPX396uwsPCmx/L7/SotLXUhtbNCoVBKzCMRTsw1EokoOzs77j4+ny/uPtM9Hg6HJ+3vdoYbZWVlOfJ7xu/vzBOv2FxfPvrud7+rnp4eHT16VE899ZSWLl2qn/zkJ1qyZIleeeUVSdK+fftUVVXldjQASHtJc59Cc3OznnvuOVVXV2t4eFiBQMDrSACQdlxfPrrWkiVLtGTJEknS3LlzuQwVADyWNGcKAADveXqmACQiGo3KsqyY47Ztu5hmZotEInHHMzIy5Pf7XUqDZEQpIOlZljXlmz29j9efEmPbtjo6OuLuU19f71IaJCuWjwAABqUAADAoBQCAQSkAAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg1IAABiUAgDAoBQAAAalAAAwKAUAgEEpAAAMSgEAYFAKAACDUgAAGJQCAMCgFAAABqUAADAoBQCAQSkAAIxMrwMA0WhUlmXFHLdt28U0iEQiMccyMjLk9/tdTAO3UQrwnGVZam9vjzkeCARcTJPebNtWR0dHzPH6+noX08ALLB8BAAzXzxTOnz+v733vexoaGpLP51N9fb2+9rWvaXh4WJs2bdK5c+dUUlKi1tZWfehDH3I7HgCkNdfPFGbNmqVHH31Uhw4d0gsvvKDnn39eb7/9ttra2lRZWanu7m5VVlaqra3N7WgAkPZcL4WCggKVlZVJknJycjRv3jwNDAwoGAyqrq5OklRXV6cjR464HQ0A0p6nryn09fUpFAqpvLxcQ0NDKigokCTl5+draGjIy2gAkJY8u/ooHA6rsbFRW7duVU5OznVjPp9PPp/vpseIRqMKhUJORXTN6OhoSswjEVPNtaSkROFwOObX2Lb9gcan4xi3Om5Z1qT93c5wq+OJ7DM2Nqbe3t7rtqX772+q8aQUxsbG1NjYqNraWtXU1EiS5syZo8HBQRUUFGhwcFB5eXk3PY7f71dpaanTcR0XCoVSYh6JmGqukUhE2dnZMb/G5/N9oPHpOMatjofD4Un7u53hVscT2ScrK2vSzy/df39nonjF5vrykW3beuyxxzRv3jw1NDSY7VVVVerq6pIkdXV1aeXKlW5HA4C05/qZwsmTJ7V//34tWLBA9913nyRp8+bN2rhxo5qamtTZ2ani4mK1tra6HQ0A0p7rpfDpT39ab7311pRje/bscTkNAOBa3NEMADAoBQCAQSkAAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGb8cJx137HswlJSWT3gOY92CeWW78+V37M+U9nGc+SgGOu/Y9mKd6UBzvwTxzTPUeztf+THkP55mP5SMAgEEpAAAMSgEAYFAKAACDUgAAGJQCAMCgFAAABqUAADAoBQCAQSkAAAxKAQBg8OwjfGDXPvBuKjzwLr3c+MC8a/HAvORHKeADu/aBd1PhgXfpY6oH5l2LB+YlP5aPAAAGpQAAMCgFAIBBKQAADEoBAGBQCgAAg0tSEdfN7kGQuA8BtybefQwS9zJ4jVJAXDe7B0HiPgQk7mb3MUjcy+A1lo8AAAalAAAwWD5Kczy3CMmI5yd5J6lKoaenRzt27JBlWQoEAtq4caPXkVIezy1CsuH5Sd5KmuWjiYkJPfHEE3rmmWd08OBBHThwQG+//bbXsQAgrSTNmcLZs2f1sY99THPnzpUkrV27VsFgUHfddZcj3y+RSy1T4TSV5SGkolRfXvLy71PSlMLAwICKiorM54WFhTp79qxj3y+RSy1T4TSV5SGkmnRYXvLy75PPTpJ/Kh4+fFhvvPGGduzYIUnq6urS2bNn9fjjj8f8mjNnzsz4fxEAgNui0agqKiqmHEuaM4XCwkL19/ebzwcGBlRYWBj3a2JNCgBwe5LmheZPfepT6u3t1TvvvKMrV67o4MGDqqqq8joWAKSVpDlTyMzM1OOPP65vfOMbmpiY0Je+9CV94hOf8DoWAKSVpHlNAQDgvaRZPgIAeI9SAAAYlEKSefbZZ7Vw4UJdvHjR6yiO+dGPfqTVq1ertrZW3/rWtzQyMuJ1pGnV09OjVatWqbq6Wm1tbV7Hccz58+f1wAMP6Atf+ILWrl2rPXv2eB3JURMTE6qrq9NDDz3kdRRHUQpJ5Pz58/rd736n4uJir6M46u6779aBAwf08ssv6+Mf/7iefvppryNNm3R6XMusWbP06KOP6tChQ3rhhRf0/PPPp+xcJWnv3r2aP3++1zEcRykkkZ07d6q5uVk+n8/rKI665557lJl59cK3ioqK6+5PmemufVzL7NmzzeNaUlFBQYHKysokSTk5OZo3b54GBgY8TuWM/v5+HTt2TOvXr/c6iuMohSRx5MgRFRQU6JOf/KTXUVz14osvatmyZV7HmDZTPa4lVf9QXquvr0+hUEjl5eVeR3FES0uLmpublZGR+n8yk+Y+hXSwYcMGXbhwYdL2pqYmPf3003r22Wc9SOWMeHP9/Oc/L0n6+c9/rlmzZunee+91Ox6mUTgcVmNjo7Zu3aqcnByv40y71157TXl5eVq0aJHefPNNr+M4jlJw0e7du6fc/tZbb6mvr0/33XefpKunqvfff786OjqUn5/vYsLpE2uu73vppZd07Ngx7d69O6WWy27ncS0z2djYmBobG1VbW6uamhqv4zji1KlTOnr0qHp6ehSNRnX58mU98sgj2rVrl9fRnGEj6axYscIeGhryOoZjXn/9dXvNmjUpOcexsTG7qqrK/u9//2tHo1G7trbW/sc//uF1LEdYlmU3Nzfb27dv9zqKa06cOGFv3LjR6xiO4kwBrnvyySd15coVNTQ0SJLKy8v1xBNPeJxqeqTT41pOnjyp/fv3a8GCBeYsd/PmzVq+fLnHyfBB8JgLAICR+i+lAwASRikAAAxKAQBgUAoAAINSAAAYlAIAwKAUAAAGpQAAMP4PhLB9SBEgQXgAAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rng = np.random.default_rng(42)\n", "mean_fd_trf = quantile_transform(np.array([mean_fd]).T, output_distribution='normal',\n", " n_quantiles=len(mean_fd)).flatten()\n", "\n", "sns.histplot(mean_fd_trf, color='gray')\n", "plt.savefig('../data_out/fig/abide_motion_quanttrf_hist.pdf')\n", "\n", "kurtosis(mean_fd_trf), skew(mean_fd_trf)\n", "mean_fd = mean_fd_trf\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Binning motion data (to be used later)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:07:44.473432Z", "start_time": "2021-08-01T19:07:44.469383Z" } }, "outputs": [], "source": [ "# binning mean_fd\n", "bins = 10 # approximately 80 subject per motion group\n", "\n", "limits = np.quantile(mean_fd, np.arange(0, 1, 1/bins))\n", "mean_fd_binned = np.digitize(mean_fd, limits)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calculate connectivity" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:08:30.169375Z", "start_time": "2021-08-01T19:07:44.477020Z" } }, "outputs": [], "source": [ "connections = ConnectivityMeasure(kind='tangent', vectorize=True, discard_diagonal=True)\n", "conn_coefs = connections.fit_transform(timeseries)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:08:30.175223Z", "start_time": "2021-08-01T19:08:30.171729Z" } }, "outputs": [], "source": [ "_, y = np.unique(diagnosis, return_inverse=True)\n", "X = conn_coefs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Machine learning (raw)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:10:39.155286Z", "start_time": "2021-08-01T19:08:30.177736Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "model\tinner_cv mean score\touter vc score\n", "cv: 0 {'model__C': 0.1} 0.7100334219236659 0.690880169671262\n", "cv: 1 {'model__C': 0.1} 0.7120691684716075 0.6458112407211029\n", "cv: 2 {'model__C': 0.1} 0.7018831113343309 0.6851063829787234\n", "cv: 3 {'model__C': 0.1} 0.683804187462724 0.8202127659574467\n", "cv: 4 {'model__C': 1} 0.6986948621094962 0.7351063829787234\n", "cv: 5 {'model__C': 0.1} 0.7201791512767122 0.6872340425531914\n", "cv: 6 {'model__C': 0.1} 0.6974297468199907 0.7592391304347826\n", "cv: 7 {'model__C': 0.1} 0.7031858949541876 0.7597826086956522\n", "cv: 8 {'model__C': 0.1} 0.7127732261878603 0.7440217391304348\n", "cv: 9 {'model__C': 0.1} 0.7333955035174546 0.6059782608695652\n" ] } ], "source": [ "outer_cv = StratifiedKFold(10)\n", "inner_cv = StratifiedKFold(10) \n", "model = Pipeline([\n", " ('varthr', VarianceThreshold(0)), # omit zero variance columns (diagonal)\n", " ('model', LogisticRegression())])\n", "\n", "p_grid = {'model__C': [0.1, 1, 10]}\n", "\n", "clf = GridSearchCV(estimator=model, param_grid=p_grid, cv=StratifiedKFold(10),\n", " scoring=\"roc_auc\", return_train_score=False,\n", " n_jobs=-1)\n", "\n", "all_models = []\n", "best_params = []\n", "predicted = np.zeros(len(y))\n", "predicted_prob = np.zeros(len(y))\n", "nested_scores_train = np.zeros(outer_cv.get_n_splits(X))\n", "nested_scores_test = np.zeros(outer_cv.get_n_splits(X)) \n", " \n", "print(\"model\\tinner_cv mean score\\touter vc score\")\n", "i=0\n", "for train, test in outer_cv.split(X, y):\n", "\n", " clf.fit(X[train], y[train])\n", " \n", " print('cv:', i, str(clf.best_params_) + \" \" + str(clf.best_score_) + \" \" + str(clf.score(X[test], y[test])))\n", " \n", " all_models.append(clf.best_estimator_)\n", " best_params.append(clf.best_params_)\n", " \n", " predicted[test] = clf.predict(X[test])\n", " predicted_prob[test] = clf.predict_proba(X[test])[:,0]\n", " \n", " nested_scores_train[i] = clf.best_score_\n", " nested_scores_test[i] = clf.score(X[test], y[test])\n", " i = i+1" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:10:39.395184Z", "start_time": "2021-08-01T19:10:39.157640Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "** Mean score in the inner crossvaludation (inner_cv):\t0.7073448274058031\n", "** Mean Nested Crossvalidation Score (outer_cv):\t0.7133372723990885\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAACaCAYAAAD/7BC/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAe3UlEQVR4nO3deVSTV/4/8HcEgegoqJVAW+qolYqKBx23/kCoKEVZZJG41KqdI2pRHLcWXKkrbhWLY0U8OnhEra0LooJLBQF36zYo2GldUFyIo6hgkADh/v5g8nwJkDwhkIXweZ3TU/LkWT4Xet69z3avgDHGQAghpN5aGLoAQghpqihACSFESxSghBCiJQpQQgjREgUoIYRoiQKUEEK0ZG7oAhrLzZs3YWlpWa9tZDJZvbcxVtQW42Mq7QCad1tkMhlcXFzq/E5nAbpgwQJkZGSgQ4cOOHbsWK3vGWNYtWoVMjMzYWVlhTVr1qBnz54AgKSkJMTFxQEAwsLCEBQUxHs8S0tLODk51avGO3fu1HsbY0VtMT6m0g6gebflzp07Kr/T2Sl8cHAwtm/frvL7rKws5OXl4dSpU1ixYgWWLl0KAHj9+jU2b96MX375Bfv378fmzZvx5s0bXZVJCCFa01mA9u/fH9bW1iq/T0tLQ2BgIAQCAVxcXFBUVITnz5/j3LlzcHV1hY2NDaytreHq6oqzZ8/qqkxCCNGawa6BSiQS2NnZcZ/t7OwgkUhqLReJRJBIJIYokRBiIvZefoTkm08AAG4fmKGxrkaYzE0kmUym9lpFXUpLS+u9jbGithgfU2kHYBxtSf2jCBn332q17S1JKQDAWWSF8jKrRmuLwQJUJBKhoKCA+1xQUACRSASRSIQrV65wyyUSCQYMGMC7P7qJRG0xNqbSDqBx21K9N1gflx8UAgAGdm5f720Hdm6FAJcP8MXAjxr1JpLBAtTT0xO7d++Gr68v/v3vf6NNmzawtbWFm5sbYmJiuBtH586dw9y5cw1VJiGkAeoKS22DcGDn9lwIGgudBejcuXNx5coVvHr1Cu7u7pg5cyYqKioAAOPGjYOHhwcyMzPh5eUFoVCI6OhoAICNjQ2mT5+OkJAQAMCMGTNgY2OjqzIJIY1AVa+yrrA0xiDUls4CNCYmRu33AoEA3333XZ3fhYSEcAFKCDEe9QlKxWdTCcu6mMxNJEJI46kZlCUlJWiV9brZBqUqGgfou3fvIBQKdVkLIcRAagYmBaVmeAP0+vXrWLx4MUpKSpCRkYHff/8d+/bt494cIoQ0fck3nyD3WRF62LcFUDsoTemJgsbEG6CrV6/Gjh07EBYWBgDo3r07rl69qvPCCCGNS93jQ4rw/Hnap3quqmnT6BTe3t5e6XOLFjQKHiHGRJNnK9U9PtTDvi0CXD7QSW2mjDdA7e3tcf36dQgEApSXl2PXrl3o2rWrPmojhKDh4ahA1y8bH2+ALl26FKtWrYJEIoG7uztcXV1VPn5ECNGOupCkcDRevAH64MEDbNiwQWnZtWvX8Le//U1nRRFiirQNSQpH48UboCtXrkRSUhLvMkJI3RTBSSFpelQG6I0bN3Djxg0UFhYiISGBW/727VvI5XK9FEdIU6LJw+cUkqZFZYCWl5ejpKQEcrkcUqmUW/6Xv/wFmzZt0ktxhBgjep2RKKgM0AEDBmDAgAEICgrCBx/Q4w2E8J2K08PnzQ/vNVChUIi1a9fi7t27kMlk3PJdu3bptDBCjEH13iadipOaeAP0m2++wYgRI5CRkYFly5YhKSkJ7dvXf0BTQoyZJqflFJykJt4Aff36NcRiMXbt2sWd1o8aNUoftRGiU6p6l9VRaBJ1eAPU3LxqFVtbW2RkZMDW1pamGSZNDt/I6BSURBu8ARoWFobi4mJERkZixYoVkEqlWLhwoUY7z8rKwqpVq1BZWQmxWIypU6cqfR8dHY3Lly8DqJq06uXLl9xAJU5OTnB0dARQ9Trp1q1b69UwQhT2Xn6EhUm3AJjuyOjEMHgDdMiQIQCANm3aIDExEUDVm0h85HI5li9fjoSEBIhEIoSEhMDT0xMff/wxt071IE5MTERubi732crKCsnJyZq3hBAVFD3P6CBnCkvSqFQGqFwux/HjxyGRSDB48GA4OjrizJkziI+PR2lpKQ4fPqx2x9nZ2ejUqRMcHBwAAL6+vkhLS1MK0OpSUlIwc+ZM7VtCSDXVT9lznxVhYOf2FJ6k0akM0EWLFuHZs2fo3bs3Vq5cCVtbW9y+fRvffPMNhg0bxrtjiUQCOzs77rNIJEJ2dnad6z558gSPHz/GoEGDuGUymQzBwcEwNzfH1KlTNTomaX40uXtOQ7URXVEZoLdv38aRI0fQokULyGQyuLq64tdff0W7du0avYiUlBR4e3vDzMyMW3bmzBmIRCLk5+dj0qRJcHR0xEcfqe5ByGQytfM316W0tLTe2xir5tCW1D+KkHH/rdKyW5JSAICzyEppubPICp91+Qt8HNv+b4lU77+f5vA3aYoasy0qA7Rly5bcwMmWlpZwcHCoV3iKRCIUFBRwnyUSCUQiUZ3rpqamIioqqtb2AODg4IABAwYgNzdXbYBaWlrW+60PU3pTxFTbwveo0cDOrYz2RpCp/k2auvq2RV3YqgzQ+/fvw9/fn/v86NEjpc9Hjx5Ve1BnZ2fk5eUhPz8fIpEIKSkptYbFA4B79+6hqKgIffr04Za9efMGQqEQFhYWKCwsxPXr1xEaGqr2eMQ07L38CD9deIpWWa8B0KNGxLipDNDU1NSG7djcHFFRUQgNDYVcLseoUaPQrVs3xMbGolevXhg6dCh3HB8fHwgEAm7be/fu4bvvvoNAIABjDFOmTFF584mYDuXHjVr9798UmsR4qQzQxhhAxMPDAx4eHkrLZs2apfS5rjvvffv25e3hEtNSPTxnfvoe5gUMNHBFhPDTeF54QhpbXdc3o4Oc0aetVN1mhBgNClCiU5pOY1H9VN1U7vYS06dRgJaWluLp06fo0qWLrushJkTVK5QKdH2TNHW8AZqeno61a9eivLwc6enpuHPnDmJjY+nddKJW9fCkVyiJqeIN0M2bN+PAgQOYMGECgKpBPp48UT9HNWl+ap6qV7+mSeFJTJVGw9m1adNGH7WQJkRVYCpO1en0nDQHvAH68ccf4+jRo5DL5cjLy0NiYqLSQ++k+anr2iYFJmmOeAN0yZIl2Lp1KywsLDBv3jy4ublh+vTp+qiNGJmak6rR6Tlp7ngD9P79+5gzZw7mzJmjj3qIEUu++YQbGo56m4RoEKBr1qzBixcv4O3tDR8fH26UeGL6al7nzH1WhB72bfHztE8NWBUhxoM3QBMTE/Hf//4Xx48fR1RUFKRSKUaMGEGn8SauruucNK4mIco0epC+Y8eOmDhxIgYOHIjt27djy5YtFKAmiq5zEqI53gC9d+8eUlNTcerUKdjY2GDEiBGYP3++PmojeqDucSS6zkmIerwBunDhQowYMQLbt29XOSAyaXpq9jTpcSRC6o83QH/++Wd91EH0pK7gpMAkRDsqA3TWrFmIjY1VGoW+Ohqvs+lQNS0GBSchDaN2Vk4ADRo0JCsrC6tWrUJlZSXEYjGmTp2q9P2hQ4ewbt067tLAl19+CbFYDABISkpCXFwcACAsLAxBQUFa19Gc1bybTsFJSONRGaC2trYAgL179+Lbb79V+m79+vW1ltUkl8uxfPlyJCQkQCQSISQkBJ6enrWm5vDx8ak1odzr16+xefNmHDx4EAKBAMHBwfD09IS1tXW9Gtec0d10QnSP9xrohQsXai3LysriDdDs7Gx06tQJDg4OAABfX1+kpaVpNLfRuXPn4OrqChsbGwCAq6srzp49Cz8/P95tmzM6VSdEv1QG6N69e/HTTz8hPz9f6TqoVCpF3759eXcskUhgZ2fHfRaJRMjOzq613qlTp/Dbb7+hc+fOWLBgAezt7evcViKRqD0ezQtfip8uPMX9wjJ0aW9RY150/c+J3hCm8ncxlXYA1BZVVAaov78/3N3dERMTg3nz5nHLW7duzfUMG2rIkCHw8/ODhYUF9u3bh8jISOzatUurfTXHeeGr9zhLSkqQ96YCvT60afKvWjb1v4uCqbQDaN5tURe2LVR9IRAI8OGHHyIqKgqtW7fm/gGqrlHyEYlEKCgo4D5LJJJaz5G2a9cOFhYWAACxWIycnByNt23uFDeHFKfqAL1qSYi+qeyBzps3D/Hx8QgODubmZ1cQCARIS0tTu2NnZ2fk5eUhPz8fIpEIKSkp2LBhg9I6z58/525Wpaeno2vXrgAANzc3xMTE4M2bNwCqronOnTtXuxaaoLqmyzClHgIhTYXKAI2PjwdQFWxa7djcHFFRUQgNDYVcLseoUaPQrVs3xMbGolevXhg6dCgSExORnp4OMzMzWFtbY/Xq1QAAGxsbTJ8+HSEhIQCAGTNmNNplg6aO5hoixHjw3oW/du0anJyc0KpVKyQnJyM3NxeTJk3C+++/z7tzDw8PeHh4KC2bNWsW9/O8efOUrq9WFxISwgVoc6dq/nQKT0IMS+U1UIWlS5dCKBTi999/R0JCAj766CNEREToozbyP4qBjIGqx5IoPAkxDhpNKicQCHD69GmMHz8eYrEYBw4c0EdtpBoayJgQ48PbA23dujXi4+Nx5MgRfPbZZ6isrERFRYU+aiOoOn2vfqedEGI8eAN048aNsLCwQHR0NDp27IiCggJMnjxZH7U1e9VvGNHjSYQYH95T+I4dO8Lf3x+3bt3CmTNn0Lt3bwQGBuqhtOaL3mMnpGng7YGmpqZCLBbjxIkTOH78OPcz0Y3qD8jTDSNCjBtvD3Tr1q04cOAAOnToAAAoLCzEV199heHDh+u8uOaEep2END28AcoY48ITqHrIvfpbSaRhaIR4Qpou3gB1c3PD5MmT4evrC6DqlN7d3V3nhZk6Ck5Cmj7eAI2MjMSpU6dw7do1AMCYMWPg5eWl88JMneLheApOQpoulQGal5eHtWvXIj8/H46OjoiMjKQRkRqBoueZ+6yIHo4npIlTGaALFy5EYGAg+vXrhzNnzmDFihXYvHmzPmszKapO2QkhTZfKAJVKpRg9ejQAoEuXLjSpWwPUnNiNTtkJMQ0qA1QmkyE3N5e7415aWqr0uWfPnvqpsImiEZQIMX0qA7Rjx47c+JwA8N5773GfBQKB1lNvNAc0lTAhzYPKAE1MTGzwzvnmhU9ISMD+/fthZmaG9u3bIzo6Gh98UHVd0MnJCY6OjgAAe3v7Bs1Pr0804DEhzQfvY0za0mReeCcnJxw8eBBCoRB79+7F+vXr8cMPPwAArKyskJycrKvydILCk5DmhfddeG1VnxfewsKCmxe+ukGDBkEoFAIAXFxclCaSa2ooPAlpfnQWoPWd2/3AgQNKbzjJZDIEBwdj9OjROH36tK7KbDSKG0YUnoQ0Hxq9C3/kyBHk5+cjPDwcT58+xYsXL9C7d+9GKyI5ORm3b9/G7t27uWVnzpyBSCRCfn4+Jk2aBEdHR3z0kepgkslkaudvrktpaWm9t6lL6h9FuPygEM4iK/RpK22UfdZXY7XFGJhKW0ylHQC1RRXeAF26dClatGiBS5cuITw8HK1bt8bMmTNx8OBBtdtpOrf7hQsXsHXrVuzevZubI16xPQA4ODhgwIAByM3NVRuglpaW9Z7Wt7GmAl6adREAMO7/dYOTk2F6n6Y0rbGptMVU2gE077aoC1veAM3OzkZSUhI3iLK1tTXKy8t5D6rJvPC5ubmIiorC9u3blUZ8evPmDYRCISwsLFBYWIjr168jNDSU95j6UP35TgXFO+106k5I86LRpHJyuRwCgQBA1XigLVrwXzrVZF74devWoaSkhJvqWPG40r179/Ddd99BIBCAMYYpU6Yo3b03lJrPdyr0sG9Lr2US0gzxBuiECRMwY8YMvHz5Ehs3bsSJEycwe/ZsjXbONy/8zp0769yub9++OHr0qEbH0DV6o4gQogpvgI4cORI9e/bEpUuXwBjDli1b0LVrV33UZnD0RhEhRB3eAH369CmEQiGGDBmitOz999/XaWHGgB5NIoSowxug06ZN436WyWR4/PgxOnfujJSUFJ0WZizo5hAhRBXeAK15LTInJwd79+7VWUHGYu/lR9zMmIQQUpd6v4nUs2dPZGdn66IWo6I4fae764QQVXh7oAkJCdzPlZWVyM3Nha2trU6LMrTqvU86fSeEqMIboFKplPvZzMwMHh4e8Pb21mlRhka9T0KIJtQGqFwuh1QqRWRkpL7qMRrU+ySE8FF5DbSiogJmZma4fv26PushhJAmQ2UPVCwWIykpCd27d8fXX3+N4cOHo1WrVtz3n3/+uV4K1De6+04I0RTvNdCysjK0a9cOly9fVlpuqgFK1z8JIZpSGaAvX75EQkICunXrxg3qoaAYWMRU0fVPQogmVAZoZWWl0h345oBO3wkh9aF2WuPw8HB91mJwdPpOCKkPlQFa/ZTd1CmGrKOBkQkh9aEyQFWN1Wlqag5ZR71PQoimVD4HamNj0+CdZ2VlwdvbG15eXti2bVut78vKyjB79mx4eXlBLBbj8ePH3Hfx8fHw8vKCt7c3zp492+Ba6pL6R5HSVMQ/T/uUep+EEI3pbFpjuVyO5cuXY/v27UhJScGxY8dw9+5dpXX279+Ptm3b4tdff8VXX32F77//HgBw9+5dpKSkICUlBdu3b8eyZcsgl8sbvcaM+28B0HifhBDt6CxAs7Oz0alTJzg4OMDCwgK+vr5IS0tTWic9PR1BQUEAAG9vb1y8eBGMMaSlpcHX1xcWFhZwcHBAp06dGn0EqL2XH+GWpJSueRJCtKazAJVIJLCzs+M+i0QiSCSSWuvY29sDqJqErk2bNnj16pVG2zYU3XEnhDQU75tITYVMJlM7f3NNbh+YYWBHG/RpK63XdsaqtLTUJNoBmE5bTKUdALVFFZ0FqEgkQkFBAfdZIpFAJBLVWufZs2ews7NDRUUFiouL0a5dO422rcnS0hJOTk4a1+fkBNy5c6de2xgzaovxMZV2AM27LerCVmen8M7OzsjLy0N+fj7KysqQkpICT09PpXU8PT2RlJQEADh58iQGDRoEgUAAT09PpKSkoKysDPn5+cjLy0Pv3r11VSohhGhFZz1Qc3NzREVFITQ0FHK5HKNGjUK3bt0QGxuLXr16YejQoQgJCcG3334LLy8vWFtbY+PGjQCAbt26YcSIEfDx8YGZmRmioqJgZmamq1IJIUQrOr0G6uHhAQ8PD6Vls2bN4n62tLTEpk2b6tw2LCwMYWFhuiyPEEIaRMBM5J3NmzdvwtLS0tBlEEJMjEwmg4uLS53fmUyAEkKIvunsJhIhhJg6ClBCCNESBSghhGiJApQQQrREAUoIIVpqFgHakHFJjQ1fWxISEuDj4wN/f39MmjQJT548MUCV/PjaoXDy5El88sknuHXrlh6rqx9N2pKamgofHx/4+vpi3rx5eq5Qc3xtefr0KSZMmIDAwED4+/sjMzPTAFXyW7BgAT799FP4+fnV+T1jDCtXroSXlxf8/f2Rk5Oj3YGYiauoqGBDhw5ljx49YjKZjPn7+7M///xTaZ3du3ezJUuWMMYYO3bsGJs1a5YBKuWnSVsuXrzISkpKGGOM7dmzxyjbokk7GGOsuLiYffHFF0wsFrPs7GwDVMpPk7Y8ePCABQQEsNevXzPGGHvx4oUhSuWlSVsWL17M9uzZwxhj7M8//2RDhgwxRKm8rly5wm7fvs18fX3r/D4jI4NNnjyZVVZWshs3brCQkBCtjmPyPdCGjEtqbDRpy6BBgyAUCgEALi4uSoOyGAtN2gEAsbGxmDJlilG/IKFJW3755ReMHz8e1tbWAIAOHToYolRemrRFIBDg7duqgciLi4tha2triFJ59e/fn/t91yUtLQ2BgYEQCARwcXFBUVERnj9/Xu/jmHyANmRcUmNT33FSDxw4AHd3d32UVi+atCMnJwcFBQX47LPP9Fxd/WjSlry8PDx48ABjx47F6NGjkZWVpe8yNaJJW8LDw3H06FG4u7tj6tSpWLx4sb7LbBQ122pnZ6fVmMMmH6DNVXJyMm7fvo3Q0FBDl1JvlZWVWLNmDSIjIw1dSqOQy+V4+PAhEhMTsWHDBixZsgRFRUWGLksrKSkpCAoKQlZWFrZt24aIiAhUVlYauiyDMfkArc+4pACUxiU1NpqOk3rhwgVs3boVcXFxsLCw0GeJGuFrh1QqxR9//IGJEyfC09MTN2/eRFhYmFHeSNL0vy9PT0+0bNkSDg4O+Otf/4q8vDw9V8pPk7YcOHAAI0aMAAD06dMHMpnMKM/W+NRsa0FBAe+Yw3Ux+QBtyLikxkaTtuTm5iIqKgpxcXFGe62Nrx1t2rTB5cuXkZ6ejvT0dLi4uCAuLg7Ozs4GrLpumvxNhg0bhitXrgAACgsLkZeXBwcHB0OUq5YmbbG3t8fFixcBAPfu3YNMJkP79u0NUW6DeHp64vDhw2CM4ebNm2jTpo1W13NNZkoPVRoyLqmx0aQt69atQ0lJCTdsoL29PbZu3WrgypVp0o6mQpO2DB48GOfPn+fGt42IiDDKMxxN2jJ//nwsXrwYO3fuhEAgwJo1a4yyszF37lxcuXIFr169gru7O2bOnImKigoAwLhx4+Dh4YHMzEx4eXlBKBQiOjpaq+PQaEyEEKIlkz+FJ4QQXaEAJYQQLVGAEkKIlihACSFESxSghBCiJQpQ0mBOTk4ICAjg/lE3mlWfPn0afLz58+fD09MTAQEBCAoKwo0bN+q9j0WLFuHu3bsAUOsxr7Fjxza4RuD/fi9+fn74+uuved8+unPnjtGObkRU0Ha0E0IUXFxcdLKuKpGRkez48eOMMcbOnj3L/Pz8GrS/xqiJb78RERFsy5Ytatc/ePAgW7ZsmU5qIbpBPVDS6KRSKSZNmoSgoCD4+/vj9OnTtdZ5/vw5xo8fz/XQrl69CgA4d+4cxowZg6CgIPzjH/+AVCpVe6z+/fvj0aNHAKrGQvXz84Ofnx927twJACgpKcHUqVMxcuRI+Pn5ITU1FQAwYcIE3Lp1C99//z1KS0sREBDAjdOp6CXPmTMHGRkZ3LHmz5+PEydOQC6XY+3atRg1ahT8/f2xb98+3t+Ji4sLN1hFdnY2xowZg8DAQIwdOxb3799HWVkZNm3ahNTUVAQEBCA1NRUlJSVYsGABQkJCEBgYWOfvkRiYoROcNH3du3dnI0eOZCNHjmTTp09n5eXlrLi4mDHG2MuXL9mwYcNYZWUlY+z/emU7duzgemQVFRWsuLiYvXz5kn3xxRdMKpUyxhiLj49n//znP2sdr3oPNDU1lYWEhLBbt24xPz8/JpVK2du3b5mPjw/LyclhJ06cYIsWLeK2LSoqYowx9uWXX3JjjNbsgSo+nzp1ikVERDDGGJPJZMzd3Z29e/eO7du3j/3444/c8qCgIPbo0aNadSr2U1FRwWbOnMkyMzMZY1XjnJaXlzPGGDt//jwLDw9njNXugW7YsIEdPnyYMcbYmzdv2Oeff879bohxMPlXOYnuWVlZITk5mftcXl6OmJgY/Pbbb2jRogUkEglevHiBjh07cus4Oztj4cKFqKiowLBhw+Dk5IQzZ87g7t27GDduHLcfFxeXOo+5bt06xMXFoX379li1ahUuXryIYcOGoVWrVgAALy8vXL16FYMHD8batWuxfv16DBkyBP369dO4Xe7u7li1ahXKysqQlZWFfv36wcrKCufPn8d//vMfnDx5EkDVuJgPHz6s9X67omcrkUjQtWtXuLq6cutHRkbi4cOHEAgEKC8vr/P4586dQ3p6Ov71r38BAGQyGZ49e4auXbtq3AaiWxSgpNEdPXoUhYWFOHToEFq2bAlPT0/IZDKldfr374/du3cjMzMT8+fPx9///ne0bdsWrq6uiImJ4T1GREQEhg8fzn1WDHBRU+fOnXHo0CFkZmbihx9+wKBBgxAeHq5ROywtLTFgwACcPXsWx48fh4+PD4Cq6SAWL16MwYMHq91e8T+Wd+/eYfLkydizZw8mTpyI2NhYDBw4ED/++CMeP36MiRMnqtzHpk2b0KVLF43qJfpH10BJoysuLkaHDh3QsmVLXLp0qc55mZ48eYL33nsPo0ePhlgsRk5ODlxcXHD9+nU8fPgQQNX1ywcPHmh0zH79+uH06dN49+4dSkpKcPr0afTr1w8SiQRCoRABAQGYPHkycnNza21rbm6ushfo4+ODQ4cOcb1ZAHBzc8NPP/3EbfPgwQOUlJSorE0oFGLx4sVISEjghktUDJ2mGAUMAFq3bq10zdfNzQ27d+/mZkeoq3ZiWNQDJY3O398fYWFh8Pf3R69eversQV25cgU7duyAubk5WrVqhbVr16J9+/ZYvXo15s6di7KyMgDA7Nmz0blzZ95j9uzZE8HBwRCLxQCAkJAQ9OjRA2fPnsW6devQokULmJubY+nSpbW2HT16NEaOHIkePXpgw4YNSt+5uroiIiICQ4cO5cZWFYvFePLkCYKDg8EYQ7t27bBlyxa19fXo0QOffPIJjh07htDQUMyfPx9xcXHw8PDg1hk4cCC2bduGgIAATJs2DdOnT0d0dDRGjhyJyspKfPjhh4iPj+f9XRD9odGYCCFES3QKTwghWqIAJYQQLVGAEkKIlihACSFESxSghBCiJQpQQgjREgUoIYRoiQKUEEK09P8BCJCOAtL+A2AAAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print(\"** Mean score in the inner crossvaludation (inner_cv):\\t\" + str(nested_scores_train.mean()))\n", "print(\"** Mean Nested Crossvalidation Score (outer_cv):\\t\" + str(nested_scores_test.mean()))\n", "\n", "fpr, tpr, _ = roc_curve(y, predicted_prob, pos_label=0)\n", "fig, ax = plt.subplots(figsize=(5,2))\n", "RocCurveDisplay(fpr=fpr, tpr=tpr).plot(ax=ax) \n", "plt.savefig('../data_out/fig/abide_raw_rocplot.pdf')\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:10:43.271820Z", "start_time": "2021-08-01T19:10:39.397308Z" } }, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAATwAAACcCAYAAADibhdcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACUSElEQVR4nOy9eZxlVXX2/917n+HO99ZcPXdDg6CCONMgIggCoiYyxGjM7KtJ1Jg4JCb5xdf4xgyKiUPemMTk1ajRJBqNRlBUUEHAGUQFgW56qO6uuW7duuMZ9t6/P/atW1XdXdUNNGmM/fjxA9y655x99zln7bXXetazhLXWchIncRIn8VMAeaIHcBIncRIn8d+FkwbvJE7iJH5qcNLgncRJnMRPDU4avJM4iZP4qcFJg3cSJ3ESPzXwTtSF77rrLsIwfMjHpWmK5z30YZ887uRxj8VrnTzu+B8XRRHnnHPOkf9oTxDuueeeh3Xc7t27Tx53nI/TnY6NZ6ZtUpu3xphH/XqP9eN+EsZ48rjVsZZtOWEe3kk8NmA7baL9e6HLxtTNBuG6DSd2UCdxEo8SfqINntUamyaIIEQIcaKH8xMJW1+Avj7uuOMOPv+FzwNwyct+kcuuvPIEj+wkTuL44yfW4OlGnXhqAoxFeIpg3QZkmDnRw/rJw7KFojZf6352gsZyEifxKOMn0uBZa/naZ/6Tz99wPQClYonzLrqI577kpSd4ZD95EMUSSMGOHTu47bbbiKTisuc/fO8uSRL2799Pp9M54t/TNOXee+99yOc93sdlMhk2btyI7/sP+Zwn8ZOLn0iDhzFgTM8jKRVLoPUJHtRPJkSYIdywHtNsUlc+iXxk7t3+/fspFots3br1iGGGKIoeVnZ+reOstaTa/VNKgZL0rn2k46y1zM7Osn//frZt2/aQx/JYhEliTLuNDMOTO5018BNp8IRSnH/xxdx2220AvPGNb8Tr6zvBo/rJhfQDdDJPKY2xQhCPH8AfXf+w4qKdTmdVY/doIUktixIYWluwgrXYDEIIBgYGmJ6e/u8Z4KMM3WgQTx7sJZ68/gH8/oETO6jHKH4iDR5AMLqetlJ41uL1D+D19Z/oIf3EIlmo0Xrgx5TTCI0gmZ1F5gt4pfLDOt9/p7GzdsnYLcJYy9ECkf+Tklxf/a/PcPvXvsZCfQGAK654Phe97OUIeWx1BdYYgGP+/k8yfmINnlCKphcAnFzNHiGSiYPohRq+1iAkaXUGf2T0RA/rMFhrwWhAIJRa9Xv/c0zZscJZ/F7SCcthq8AqSKanSBfmQQi8cgV/YOjRGeJjBCfU4Nk0JZ2vYtMEVSiiCsUTOZyfSlhjiA7sp3XfPYx2mmghSOfnUZls7zuptnQiQxhIfO+hmZPXvP5NTM3MLV3PrkgMH/s4uy/wyEAf7/2Lt2ONQfo+Qgg85ca4CKUEt9xyC29/+9vRWvNzP/dzvPKVr3zoF/0JwYVXXMl5T38G1113HQDPuvSyNReERXzxs5/hS//2ccDFwc8//3wuvPoaVC7/qI73ROKEGrzo4Bg2TgAXh/BHLF6xdEzHmiQmo1NS8T/fDX9U0WqSVmdBCISwZLSmtXsXxWeejywUaHcsE7NJ7+uDFY9S4egv0yKmZubYNXLhcRuuPnATBw4eAKA0MEi5XEYpgZRLxtQYw9ve9jY++MEP0tfXx8te9jIuvvhitm/fftzGcTTYNHVzegyG55HCq/QhfJ+2UqRC4g+PHNNxIk1WJP6shZnpNnHo43uCgYp3zAucMZbpakqzbQg8wWCfRyZ87L2bJ2xENo56xm4RulE/pmN1o0G0bw+FNKGSRCRzs4/GEH860LUSMpfHIkiUwsvliacm0bV55mrpiq/P1XTP21r7tPaYvvdwoLVGa00vSo+LyUkpEEJw9913s2XLFjZt2oTv+1x55ZXcdNNNj8pYDoW1lnhynM6eB+ns2UUy89ASIyaJ0VGHdH4O3Wgc83EyzNBWHpHyjjk+efEVV7Jp0yY2bdrEG9/4Rs580g7qOiRJLa2OYWImOfpJuphb0DTbLhYYp5bJ2fRRu/+PBCfOw5OHr3zHuhomczNgQVhDTqe0fnQ3mVNPIyoMs9AWWGvJhpJKSeGpn76IzkNCLofwfGy7hbSWREi8Sh/S9zGdNsau3N6YQ5IEptMmrTkvwatUAJcpXdxiHu9nXilFEARYBOVy5YjfmZycZHR0KQY5MjLC3XfffXwHsgp0fYGvf/GL3Hbbbb0kwqU//zKe98IXrXmciWPi8QPoep1kdhq/fwCZzaGKRYKRdWseG09Poms1+uOISEqstcdk9FQ2S93zyekUEQQksowMAld18/kvAPDSay7myuc/76jn6kQrb7Q2liSF4DFGczxhBk94HqpSIRk/CIAsFB5CptVNbl6neNZgtaZZbTA9BaY0wOy8xloYGfBYP+xTyD3624qHgkbLrYa+J6gUFXIV7pvptImnJrFxjMzlCEbWHf8tkjaEW7eRVGcwQCoE/qi7jsxkKEpJdWGJ41jILY3XJDHRwf1g3P3QzTrWWuZrDWoLzgjq486PFBghMMchNWGtZXouRUgoF9RDjk8e8ZxxjEhiQp3SnJ8nRSCOYQ6S2Wluv+UW7vraV4gbdQxw7pUvZMeO8zD9g8hVCNK61UTXai7EkyZkcYmI4Bi3tVHXK8xs3kp2NqHR9dJqtXmwFiWPbcXKhILlGzYlBf5jMCV6woZkjcG0WuD5jjQsJeIIXt+R4JUqxNNTeNbdHJnL00old337W9z0wwM0WxEAz33OM7n4omces8HrRKZniAo5uaoheiRYaGhm5pe2iZ3Isn748If5xhtv5MYPfwiF5YrLr2DHjh0kM1MEI+vQ2nlZ3nF4QYk72E6H7KZtTGQKBFZj4whVKqHKffQJgacE7cgS+oJSYSkKctPn/otv3HjjEh3i8isYefJTAdDpo0QEFxzV2I2MjDAxMdH778nJSUZGVhoAYyxaQ73lxtloGTaN+KhDdgQ2TYmnJjDtFjLM4A+PIoNg1WvrTpsnb9vKk7dt5SMf/QhN5fPcY6hLtnHc+/dGvbE4yMW/rnqc6XSIDo7R2buHobhFR3lE+/fglUrIZYmnI15Ta3yje3Hw/rJHnKau6ubrX0exwOWXX3bUsQP0lxRa2xUxvMci9efE2eB2Cxv6fPM73+kVrcu+AS5+4Yu47LK1J3kxSNtUHgKB19ePH4FVHiCpd2MfUlmMcf8/GhotzdTckiFqdSSjg8ffH6+3DHfccQe3ff02FuouZvmyay/i+Vcs/WZrLaLVRM9XaS071nQ6zM6n1BruJc2GkpEB75EZ5iCDmZ0CIFGKBIU/PEIwvLQlLOYVxSMl7roL1BIdwsXSCoU8je49UMfbI7UWz1r0Gi/TWWedxZ49exgbG6Ovr4/rr7+ed73rXSu+Y4yrwvjLt/xvAErFIpdd8gx+5oWXrvhePD3pFmbc/CeT44SbtqwyNIuNI7yBAXSjQSokqRBIf3UDuQiVL/DMJ5/DU7du4eP/9AHaSrHj/Geh8vk1j0/nZuns3Y2uzlFMEzxjEMonXagRrGHwdKNOPDlOOYmxOE/Ry+XZOOKTphaP6YfkQ0spGBl4jO1fj4ATZ/CWBXcWX5j+h0AeVvkCU2GeUhojhKBYCrnoBZfwuB3w/r/7ZwQdnv2sZ5LPHt1Tu/HGG/nsDXdQq7v6zyuuuJwdO3aQpktj1I0GJuq4uEou91B+6cpxL0sT1WrzwOE0jXj8AM8683HsHB5AGsvTzjwDay2JzPSMHUA7MtSbhnLxERgV3welSGYnyKYJC36IVzw2wvElL/oZnv20p/KO//N/ADj/4ot5cKHR3Rq6uRse7IfJr/VenuNBSwGL6iZFjuRFeJ7HW97yFl7xileQpinXXHMNp5122sovdQ9bvAelYpFDH5Mbb7yRb376P6gv82B37Nhx1BiZyhWQ2Twt5aGPlUXg+5ioAwLayqOtPPzhEdRRWAtpdRbhh+goQllDaMDE0VFDH8nMdM9xFEAyM4Xa7MrsPE8cdy6jNQa9MI9NUmShiMqu7X0+WjhxBi+bQyjVK1q3wB+/+72Ih6BwqqWkGmTInLIdISUZYHDAELAPi09fSVE+ZgqF7T38PXTvejIzTTpfdf9RncMfGsZbFjC31tKOLFJw1FR8X0lx/nnnsWPHDq5753VIGlyxbNtg44h4eoJ4Zoq8TvGNIRrbi8pmEKOnQM2sOF+SPrKsgF2YxytVMK02WkhCneIdI5HbtJrYJEFZQySdYg0L97lsKc5b/r9//c4VxzzsWtpGA7/7bExMdrera1jPCy+8kAsvvHDV6ykJYSZk08ZNAPzx//d7jA4e/uwlUq7wYGW4uhSZEMKFW6YmSWemKCcRkVSk81W8ytqlj6a+gFfug3IfDd+NV2ZzR98W+gFCgF/pI5YKg8AmiTvXGrB6ZfbdxMeekX04iA/uxywKStTmCdatR+ULj+o1j4QTl7RQimDjZvTCPC3l0VHqIRk7E8eU4wiLxbSaPdKyUhLV3Qj2lY7tfJdddhnPvvBS3vD7fwY45ZBS3mV4rbWOib4M6Xy1Z/BSbTk4lfSykvmsXNO1DwPJ5nU+ncjiMYtgZazLxjG6Ucc0G66uVSlUoYjMZAlCR7tYnu7PZVcaWN1uY1oNhB+giqWjvzCdDtpq0uosGZ0SSYVemD8qH9IaQzw53o0DGbI6pfPgzuOfll3EkcqeHkGMSHRjk4oqYFk3dPg9u+yyy7j04ot56+tei28M5190Ef7w2hUo/sAQyXwVYwy+6cYHf3Anhac8A2+tF/yQ32c5tlKvcMMmov37AEFD+dRVQLB+w1HfJVUoEY3tpRJ3yOqU+MAYMvAJRtYhwwyGEEOWiZmESlGtWMhtmpLMTvd2PH7/4JoepY1jTMoKzcVMucKzfubFRw1fHW+c0DyK9H3kwBAt5SHXCMweCt1u0bjzOwzFLQyCzt7dZLae8ohWjGxG4jGLJWDdoE82s/IG63odhEDlC4hurv3GG2/kv264hfm6e7AXt8KdyBzxGouQUiClxZAFNMbY3rZbeB6i65F4xiCNxcYxNk3wlGDdoMd8XWMMlAqS3LJxpvUFksmlYL1pt45KabjxS18ivP8eMloTzVdpIfjrt76ViWyBU087jde+9rVHPjCJQUnS6hwZ47yFeHoSW3yURByUckbBaGw3U3s8guKStT0b6fvUuh5XuHHzMZ3Tpinp9CT5NMWzEdGBMcINm/FOWZ347PUNEHfavYx3R3nHlJGXmQx+3wBx1KEjJS1PHdW7A/inj36U+o/voTM5QQ34yD//Mwt+wLqt23jp7/4BmjIWxex8SqNt2Lp+KY4YT45j2m0AdFwDYwnWKkWUSyGORW85PIYxLsIaQzIzhWk1EX6APziMfBi7BHgM1NLqVpP+pIO00Nm3m2B0w5pZsE996lM077+XShIxOTEJwAf+6l1MhzlGz3z86i/oMcCRHTorjB1ao5tN9CLNolEnf/Y5K446dCuszdJv080GwvPxSuXeA9xqGyZmEwwuFjgxm7J+0cMIQryhYaLJcbI6QQuBiVq9wHkmlIyusm3WtfkVq+gVl1/BRS/9hTVX+/1T02yYnWGgmMcLA3JCUE1Tdu7aiV3LoPgBYDDtpbSKDDPLMovHH46a4a+ZsHgswMYx8fg4w1EDaaH1ox+gKv1ktp6CseKIGXaVzZLZvA3dajLvh6TH4N1ZrYknx0G6hbKUpvjWxeOkH6AKqzsAYw/uYubgOFsKBXLWkNcJ05MTTGBptFI0WSxZ5moaITSVbnbeGsNtN9/ce8ZKxRLnX3AB5171C1Trjg5WKcoVzAjh+ahshh07dnD7179OVqf85u++Dq/ShzXmqJ5sOjuDXnBxVJu2iScOktny8GS9TmwtrbUkUxMsUn1snJDMTq/ZU+HAgQM0x8aojA6TL7jUocLy4N49NI4hG/aQx9hs4BVLfOeuO7n5i18iEfDcn3spl/6sc8cvfM6lvP73/hyAHTt24ClBNhTYVou4WwIFYJqNnoewPPEAjg4TJ5bAFwgpUZkCXrFMXfloJCpfQmTz6GbjmBRMVigXH8U4WCHI9w/wtHOfAcZgoohw42b23vatnu+jtUUu05gDt93y+vvp7NmFtIa29F1YIXp0Y0E/EVCKZH6OwBhAoJsNOrt3Mb2/SkM6I5TLSIb7V2bYhefhlcrHZOwASBNs3EE3m6QLCyhryOuYaGwvwvPJrmHwEqHYtGkTv3Xt1STTznH49y9+iURrpLBYlpIK1tKrohBSYqUgnp93j1ehSCL9FeWHU3MGT4kV2+BgZBRdLCGwtJWHEBLdJawHQ2tzBm/58pf4wuf+C1iq+X3Oz284puz3oTixHp4x2EP4WjaKjnrY4JZt/Mqv/Qq6mz1TpRK7/vlfHsKm+Nix+JJbL2BywdFIlns+mVCiqGLIUi64JImUAtuoQ/+hvSJezmVXvuCINmhFhlBrbBKDlCjAtJtg0qPyFL2+fnact6OnE3jBZVccdVukhdtsWG2Ip8ZBeojpSTa26uzLlRmfTmhHBikEAxVFMe/OZ6MOycQEKl8kMBplrKvJzT88San/blhr0caSUkFyZHXmhw2pEEFALBUS5721E8W+PU0ohWRCibGWTFNSeUQZ9oB0dopkapL2gw9QSdq0VEhanSMpTZHdduqqGeVYKZrWQ+XzmFahN9628smKBEGCxe068lmJ50mS2HmVO576NH54801ILL/0y7+IPvXJzCdw2+138IUvfBlIufpnLuWqn3lu73rve9/72PXAA7T2OydgUehg/ebNvOR3/gCtIZ+TR6yMsp6/UuxXSoT38CgwJ9TgLbL5l0Pmj67U0PB8ws1b0I06wg8I12/EfvhjGHxmqimaHJL2Qx6PIYshoLqQ9gwX+QJCLUmgp0JwabdMKNWWVtsAEsUCA5Vl07nMgi15XG7FqxQV7WWlOMWcWrHFsWmKDEI0AoV1qfwwe9S5UfkC4aatNDy37fOHht35rGVmPsUaGKh4K8i1Oa1pegEyE4IFKQQqk6OSRuyZbfGm3/9jwNE2zn/W+fz8VReilMDMV0m63oVvDB4WmS+ANY/JGsrlsNYSJxZrwBKgCWi09KoE9axOCLUmGj/gSr6OoijslcvITA5ljIs1ZnPMZDYQiRBPQ7PlqNPl/COcJ2v4zy/dhLz/HoaTNkmzjabN5//z08itp/G8bU+j0TZIKRisqCP+PpnP49khvEqF3dV5ok7EH77lDzkwVkfIPB/78PsQGLZvG+Cqn728G6LxWPACBBAMjxLbmEbLY6EVUG97YAXiEPdj586d7Ny1k8eVy714/djYGA012OO/VhcE64d9An+l0Xvui6/ilq/cjG8Mb3rzm/GHRx52/PaEx/D8kXVEUuFZg1eu4A0MHvUYK4Qjxi7LmBlCNGUWmhpDActDC2rO1VI0LtNbXdDEiWVkwEcoRbhpE7rZYMELiKVESEmcGA5OpRhr0ZQRxCvOJ0plrNE87bRT+cHoMA3P53ndjFQmlGwa9VEsAJqh/pW3QeXy+IND1LwACWROP4Ng3bEpEMsgoKOWzhfHhtvuajJX0yAEQxXJ05+YI5txD79nDXNBBm9wGDU3hwoDZDfjHUh/BU8NIE4sWSUccdwaxx1DOJWSdgvCfFezzuEP3/AaajOTy0Z4dHHOI8MdVx4c4Tde93uH/7VrZBfn6A/+4A/46le/Sl9fHzfccMMh3z387I2WOaJBSGvz5FP3Qppmk7jTIdyybdW4UzI3S/0738S0m1gBRghsrkT+jMfznft2cse3fwAI8hnBiy7dxgtf4IjO73vf+9i5cydA75+ve93r2L59++pxaW3YNz6Omp8nV8xDEGKEoDpXZarQRtx8W68m9oorLuclV13Y86AyOiWv3UJqmi3S6Wk6nQ7j7ZhThaBS0CA1iia7H/wxPhuAy5euLZZMWjZwtbNnn3U2d935Qyxw2hPOJ04Mgb80T9u3n8Y7//zPSKYmsKnm7e96H1Uvxx133MENn/8yVmS44nkX8AvXPvuwrX7ND8FaMltPOfJcHCNOuMEDSyQVDen3PJKHA8NKIqPFP2zC10KjtTLY3mybXoWGUAqvVCZetj2s1U1XWXfxegFR7DTjAEQQIjHIXI6m52OEJJmd7lUweEqsupVSpTKqsUCzmx30K33I7MMjO+85GPHN7/6YB358P+2O83r3PXc7L/+55wCQSIUSmsy2U9FzcxiTgoAUCcUMm7oL0Bvf9EakFISBexBvvO122Hk/hSRCVudIgA+9/295+q+9iumZJfWa2swkv3/qjx/W2I+Ev9wFsjvv1hgQglTTu1dKubm96qqrePnLX86b3vQm911rsWniwigIDm3JvJrIRFqbJ9vlrJkkQeIqLlYjn7fuv5d0ZhqvVKbqhVigePrjSIeHYGeVZrMJQpDPZFb4QDt37mRi5wM8fvNGHlcu0hSyZ/hWgwgCUiHYODDAuU97CrrdRubzfOFb36Xu5TAGFpoCZECj7dNsLZHUW9U5GvNzfOAv/9zF6JRifztGex7vec97Vlznda97Xe/fVb5A6i/pGwpPQb5MuaDJBAIwSCyNlnMINo6u3HqqXB655RTQmlqQwSBodjwacQVkyFQt5Ic725yx7Qhe9HFIVp1Qg5fW5kmmp1wvBVwT6EVqSZwY2h1LGIgjknmtMSTVOfTCAqpc4kj1hvIhTNChNZROamj17x9p27b8I6s11mpUrtBj2y9mWo86lmyWYP0m2kphEYQbNj1sF769LCTa7FIJ0nRpPhteQDGOEcYgyxXoNBHWMheEdAKDpIkhQyaU9JeWhAMenJkjPzVBX7mEyQQYBNmubFPnGOKwDx+2tyWycYxRPgv1Vk+sQElFuZzj6U9/Ovv37186Kk2xSeKygkJ0A/OL0EeMpdk0pbN3N/1xGwF0du8ke+ppq7IIrE5dTaySmFaL0BokkNbmKOTgKU8+i7u//30Afud1v8RQZek8vtE8cdNG3viGN/Y++//e817SQy9yCBrKQwtAKVSlD69/gLkwi5EpZzzh6Qzf/gCWgPWbn8jkbNIzeNIYNmIpp+5e5fWxOQZCKcKNm6l7PgIIN211DoFnGJtIMWQRpGRDgbGLIZ9lc2Qtur6ATRKmDuynrXyi7+xFBMNY3eLHP/o+9/3oe2zfEvJzVz33yIN4BDhx4gHWkszO9P5b4OoCVb5AvamZri7d6v6SR6W08oGMxvbR3nUfabWK1SmbmuOM5Zd4UpL2MRXXR7FhZl5Tb2o0eWSXtDxQVmsamVJB9ZQl3PiTlYZZSkcSTlOUNQRak9brjqx5DF2lVDbbk7B/KITsQzE66PGEM0/ntO2nccPnrgc0P/OC83p/D4wmMIb2zvtJZ6cRmRz+1s1EyicwmkQ2kbRZN7iyGDw0KUPDo1x04QXQjd8FI+u49xgFIB42Du1fobVbLLUFLEoqrF1532q1Gq1qFbqeWqFQIJvL40lQVBEkhz0r73vf+5i49x42tus0ZmaQCD77bx9HbD+DX/njtx55bFK5WKi2xJMTlJKYtvIR0iOY2UchfzqaHALF/btj1DbBcDec4R2BzuMbQ3qU+SymKR0VEIyuJ5mbxTTqbh5sCylEN9tqyGYEk7Mpm0ZduGGgVGIgUDz/istBClShxNf/798xs0wiczk/dOXvlBhwHtfyrb0Fi4vfLd6mQx2JeOIgptkEoKADmu0JBKeQ8QOcvErCxOTko2aYTmgtrdUppt3G6yo22K6MzvVfuIVbbrm9V1z//OdfzkuvvhAhBLOzs8xOT/F//8+f0Jd0equ9nJlDlJsM93so5pBHXRsdJmdTOpGhExtAAwmb1wVH1dHLhJKNIz6NlkHSRrDSexNC4A+PEB0co5DGaCGRvu9IqJu2HDWlbpKEQGuSR9hYZbjf46zTQ3bui4EmPnMkKT0aTGd2hnBumi/+138R2G5lwFe/xsHZKroygjd4KqAYm0gY7l9SsQ2MQQuByuUxSYztdBBBwDFO+/GDhTDM4fvOex0aHuxurQ6HWWFULIjVice7HngAufdBsoN92FyWFMGumTm8rJMzS1OLUodQdbrEdBO3QQpSKUiFAKORzXkaOgI8NAH1pmZs3D1rgKOiHCIwk0qJwWdiJkEIJ2F16G5HYNCArtexUYTttAmMppTGFAsKhXuHQl/ieYJO7N4XIyRtz3NhJCkRCBZnR2vL1FxKO3L0EkOA7Mao00aD5g++x+mNKkYImvf8AH/74xmfTpzCMwCSdscyOiDJZdwnc3NzLMzN8o4/+ZPe2ONEU/R8Xvfql7HnQEKSWgYqHh//6D+gWCLQH0+cUIOn63V0bZ6CTkiFRHbLmRZX6B6h95BV3YKLj2FXfJa1LtO2lrGzWqNbTYQQmDBPq2OYqaZYC5YchmMXDV2UTXLxwyzTc+mKBITK5fAHhlhQAYE1pPV5VLbgysaKfauG79OFGsnU5IqtvsjmmatpOrElE4oV28u14GKRgg3DPgqN7WYkWx3D5m58xQeMBJFapLX4UiOxtLw+PJyHkWrLTDVl4+iSoW74ASITOjqKlJgkwcrjz4VcAbHy361QqK7RWaQdHjov5XKZYjbL1MEDCCDbFT1da/YyJqW0YSNXXnYJNnFG8d9v/DK7vSz7xmNS7bK8g32KcnHpnn/uXz6K3L2TUhqj2xGaiFtu+C/Muq2MXnM2Bg8w5LOKRscwOZu64n2paCqv5zF5ff3EMkTTR6NlSLWLi21ZF6zwRrWQKGuJp8YxcYJXKlFOE1oqYaTf69FLfF/QV1rS/Kv7AaU06lGdVLHAQndGqguadrdaKNUWTQnBDNZaoj27iA/sJ3Apbjq77mNBlUmSQaQARRODZLhfHaY2dGgQSKQNrMpQyClO3QStjksUBoz3DOxaWIzbPhS1oBNn8FoNZF8FXV9w3bKWEVuff9kFPPNcV1wPcNmlz+r9bWBggHK5zP/6jf9F/etfwWiDymb5xNduJcysXVpmtSYa2+v6DeASC//+77ez/+A8ABNTk2DavPZ1b+T07VuOWrWx0DQ0WhpDiCCl3tIU83LFKiyUoqATfGvQ8zXihSZTchBbikkZ7GZqVyKZnnJyPcaQSkkyO8N8LqTV6Upou9h7bzu0FhbFO1udbtyLDNa6h6XVMQQDQ+Q9xXOe9HiS/WMgLP76zTz4413YzCAGH02ZXfsi+iuqZ/Bank8xjhDZHDIIXH3lxDhy3bGVXz18CLSQCCwiCCGxKEGvJnm1Z194HhZX4iSkRPj+mkFwaV2GVRaKJNNTCCWZ9306qsKtX7+dG268DURIPpflkgsfzzU/+xystTQOjBEu1DH5DKGnQAr2zy9Qy1mGUw24+etEhv6KcvoH3Wu2PZ/ssvIzV8/q8cWbv8ttt90OWCq5Oi96/vm9GlRpravZFcKVaoZZBK43STHvOKIWn+F+j3xWks9KZnDe41fHJ3nwA/+EANTgMPV2h2w2y0w1pbqgkRJKeYXrBKEgTdGtZu/9AbBJSlyrU+4fZnImQZMH7GHUkv7+ftaXS/zOr/2y29WVyvzum/+Aul0gl3F8xEUx3KMZO2OcB9rqOH5oX0kds2LQiTN4xmIWFsAYkm72Mx4/gNfXT7moUGpxRXATtzyeoIxB+QG5s88h3r8f4flU/QyNo5AR04Uat99664qymN3tHLOdAqOjGyjmAjAdHtz14FFrLAFqdc3UbIrB8ePqTU16qBGSkqxOCa0mmZ2mGgzRyKUkaUJKsZsxXCKHmiQhmhiDVFPQMYlxW/1W51AdPcMvvuS5Ry2+XkykLCWYRU9kxFOCREqMsCQTBzGxKwbHaPqSiKkwIRGbAcVC09CJLVvWpQz2eUxW53lwepJPfvSjZG2K6SZmzvi130CnKdILAY9i3zB/uWvFiHiktBQXrXO1tEo6SsQiVPcZef3rX8+3vvUtqtUqz372s3ntq1/Ns575zO4UiBXUmSPBWBiI2ujqHDIMXRmUcC9+qgX1ZgIk5HN54lRQbzrl7RjFQCHP9sE+dByhcgUOztWZkHnWDwcoahiyZDOSLetczXbUPPIYBBpLHgs9jcfisuywNYbGQo0HalXK37uL0BoSIZlcaDBRGuGBvVH32UwPa7602NBoMRO8fWiEbDZLNt9PO3IeJRpmarobkdPgea5OV8jebZRBSGmwRKxcksKiAMvBqZRKyaPYpfr4RlNIE6fM44dYnTANxLrJ6KBPu2OYmE0xBgyZNcngCw3TW/yNtczWUnLZY+uod+IMXi6PbbrMmjBuSoUfOInsMKTdsd3XwlJraFJteyokflfpOBgYIRgYwVpL54s3r137Cc4t0ho9P4/BlcWodI6No4P87ut/lWbHkTQ/8DdvhWNg3yfJSie92bK9+JE1hnhqgs7YXjxr6AiF1z9ItVZkeiolzqVohjCUiZKl4z7/yX+nvWsnodW9WuE/e8c7mQ3W43VpKrXaPNYcvgparTFRhLC2NxeVomJmPqWQlUCKIEVKR3bOhJJCElPQ2nkGynPbxDSllEQIEnAzRegLCnnFVNUZPIAWAitYkSTokkN6LP0/evt7EQIygYshPWx5qCgi8Dys0YwfHMd0f5/nCYShG4Gyve3eX/3VX/WOC8MQ3Wkz01VBtql2MeQ1CNLx/Bz7arPccP31SBzZfWxqlnQw4ClPfQa33XEPAL/+67/EUL9Hqi1CKYSweFis70MUYdKE0GiyJqWdyO6LbOmvKIp5j4GKx8GuwfOMJl2oIbM514KSDpBy9lln8/07v48g5k1vfBWnbOzOnxAExlDEhXMCY1DC0ARq4Sam5pYW44PTyQqD99rXvhbdavHHb3oDWkj+4t3v5nd+53dIKVEsSIx1XqinQNHqhgsEH/nMZzH33A2zM8QI/v6z/8X3P/QxdPZxFAeeTLXWwaY1/umfPoxkgSdsz/HCF76QwGjGxsb44z/+/0AIyqUyaSdGFNbx4FjEdDWlXFQEvkBT6j533WdKazJpQk4ndPbsohHlsJkKYpm4ZJzYx7bBE75PsHkLjbu+RzmJEEDj7u/hDQ4RhGGvdm8RzfYSgz85RFRRCEEiJIaA/ZMJCQNHrLQQYchTTt3Kj0Yd3++XfvkX+d8f/wSGWVfQrQTZUKIpYY+hoVsQCAbKXs8wDFRULyt1w799nM6uBxjpNMl3eWr//i8fZSI8g87ok3n6BRfgSAtZJqYTtm5wD/Hk+ART4wd5wsgIQ7kskZRMS8neB3/AulOey8XP+zm+/MXPk2HnCu/ORh06e3eDMfTHnZ63W+r2amhHhpAxBJpNo0Hv4ZBYtAAhBdZoVxaF214hUlR3Hhe3DKG/FFpYl89x7YuuoPPA/SAg2LiJB5VCev6KeI21zgvzHomspLW9WJo4RADUeXVH9tiq1SpxHBMYje4ePzs329PWO/KlHPUlQIB0pjRrUkIsLdNBpxZNHkGnxx7IZyX1eUEsJNIa15UvScBaBuMWe7OKXbsbJAw4rz615DKit/XLpzFZrUmmJkEKgnUbEYDPDMMDHop5RDf2t7gbEEKQLxbZpgznPOEJmKiDKlcYu/sepsvrabZ1l0zvOpAt57YtKuvk0wSJJT54gLm5Oaq1Ka677m+wSCQxAs3eXT+iv6+E1ZrJB3exMD3DulwBBQTG0qynxPEM5YGIbGghLGHQjB8YJ+w+CZtOOZW+OGL+4AEsEObzEPaTmJB3XPdeDAXAoJhn//4xygV3f0wSE+8fY12nhcIQT04Q5ododiz+wEBvHlZLVB2KE8rD++DH/w3/h3eSVufIYbn5U59k+vrP4z/hbF7w8tdhCLEoosiSz8nejdZS4g8OkszNARavVCFSPpoKtXpKygAg2DcesWk06B2XTk+BMSjjBCv9gSF8a4m6/nmzrakumN5DcjSU8opU214mbGCZjn9t/xjh+EHCcgHCwCUGdMqBmX2Y7FaqC66yQ9Fkci6hkFMM9nlESvG40VFe+qIXoBsNbBzhb9jM//nMd1ig0I1CKSK2MF9PqXQD5na+CosPAJDXSc8gZDOSbEYicZyr5SthIiRGSFS5QtpuIrQl2LKVsT3jKCIkNVKGqTc1fSXFhmF3PWkN+TRBhVm8gUFMvY6JInR3hIfiESabnXd+6Em022athSRJiKIIL/CR3ePTJMGwuqqvEIJ8qcJgJuSFP/sz6E4bVSiw77PXo8MtlIqKgIMYslgLowN+L27b8gI60kMqz6lJC0EssxRSTRQbLApJRCe17DmQ0F/2sDolu7zRz2JdMiCpM9TnIXEe96FxW99apLHoVgNrLKKxQNakeFrTbFtnXMkwO+/CIotyYro2T1KdoZS6nULnwfvxjQGZweJ3S+4yeEyC7cbs0hSlNU/qL/PcC54F1iKyWfb8x1cY8wRXX/0CpqopWNiyPuAT//IuwAnn/q9Xvoqvf+zDfPmzS4IauUI/aLFME7IbKwSwbnFK56uYOEZ130fTapErRWjhkXhusesrqcPoL6vhhBq8sd27KEzPcHrgkTUGP+nQqdU46PtYu5j9lMzWUgb7Vm6DvEo/XqW/91IfHJ8h0hHved+HmJhyvUDf/hfvJ2CC07dv4AWXXkLSqoOxaCndtsMY3G7MMl/XxPFiYN/vSTd96lOfYu/evcDKkh9wcZBfe8Wre5SUYm5ZssJaRvoqnHfeuV3Sa0qwcRM/+ur3mMEnSWyPCOApwUJT019WaCGJlAcIbKoRYQZdmyerMzQ8j0bbYiigKXPPrg7PeGLebeOWvTCe1WSTlPau+/GKZWT/EKkRR4yeWaClfPz+QUy77YRDSxVankdKHksGSZP1Qz75vOxtX6W1eNZtDcPR9TDqFHrRi79Ld+M54PvikbfLPNLhx0jGDsOQdRs2YJIErGFyagrdrfY0+F0PfSUW/ICCTvCGhgnCDKpYIpI39QYi0CgalPJqhQhrzQtoeAEEISJOEJkMrQY0vTLNyB1pydDt0+0Uqy2ubMpokrkZVDbfqzEXuOY6i8mHVEO3mAfbvQe5NCGdryI8Dxl2FZDtgiP/EmLxSLXhB/e3OecMd16TJNx1xzd6YZMPf+hDZK1g85btvPFNv0EUWxotTeBJPvD+P3Gevu9TSp23bNptl1gr91ExTRbkKK2OwWiLUoLAdxnbRdi4g8kViLrCuZHyKIWSgf6NvPFNv0utoWm1LCODHn/9rrejcOEujEEop+TcY2VoS99ASDj6KKml3HLLLbz97W/HGMO1117LK1/5yhV//9SnPsU73vGOXmeol7/85Vx77bVHPW8iFOv7yzx5/TqnDgJEBw7SimMSDYp5QDE65BGvwjRZ9KjarQVSUcAC+eIgiACDZfe+GSRt7AXnO45Uc6m5scD1YRVAJoSoFxazvZfgwIED7Ny5k+3bt9Pfv9RzY9H4ZQLRrdtVHJhKKGQlwwM+836GESVd+ZO1eOUyweh69s3fSUs8wDfv8Kkt1DHxLB/4+79ny6ZBfv/1v4jFtUqU2SyyqzUnPQ/PtpE2IE5MNz5mqLcM4zMJm0YDyLlYje16XqlQCATzUwvMzwi8coWUQTzmV8yfxBXHR/v3OfqLUiRjexmKPMay5V5NcmosSgrqTU02I0mFPKxfg8zloN6ErikRQOALF2d7pGVBUrm33ywuSuIhtawUSrnKG2PQQmJQaA2aPgTpYSRbIyVzQaYnXSSUoq1g0Xt1kTp/RXkhOHpJKiQqDEmjDiKTIZIxLSkxwielgkGxfyJi47CPpwTC81ycTyekVdeA2xtcqilPU0vKICDZPxlTKigGKx7WGCpx7AQK/ADTaqG9BeL5eRZq9/Gp//gk83UfTMwXP/95JA22bszyC9c+G9WVGSsUHbMhkh4I9wJY67L7jsxtMN0ac4DpVhsaNe687esoLJGQ1DtNTK5Mox6TyXj0lT3yOYXFg27GVWZz7Nixgx07dvTO9Yfv+RtiYscJ9QQbt/j0VTy8RWMHyEKJeHKCFIFvLcL3UOUy/uDDK0M9qsHTWvO2t72ND37wg4yMjHDNNddw8cUX97I8i3j+85/PW97ylod08dn5eX5UrbKu0yY0mlQIGu0OHdPdphFgkWh9+AKvGw3Seg0hletna1N8ucA1L/kFGk3TbSmo+NhHalgOIPwAoTz80fU0lYcVgnDLKT0vob/skwm1I5Qy39v+gfPk3v3ud2PjyPG3lOp5ebWGxpDBElKtpSSpolRQpJ7H7lwZv28A3Wog83lMrkQrFaQyC6SEYRYRDHJg/Id4zLoXTghqfgaRzWNaYxgd48kKGTOOZButyBk8yQIZX5CkljgxiHIFv69COj9HJD06UmEs/OunbmT/1KwLuu8/gNWdlUXpwhJNTfLjxhwiTjBC0LnvfuY7fYx7KTazASFzvP8fPoXPFKduLfOm330FCMFMmMUbHMI06shcHq9SwdZbODO6TIk5tUifR2T0FmNxAojiBAvs27ePMAwPa8G4GoSUIGU3PrtM0RrviM2QEilBKWwSu98pJYp54tiSUkJgqNZSQl8w1O9ipn1Jh4xJXdJIp+jGAtpqGn6JZgSGHBaoLqTsORBx+laXqMNalDXYyHHjTGcpBu0UtZfGu9DQji4StZECqs0We8fGkElCZ1KyEFmygU9Ei0w4hKPCdJicGkfiuK5+/wBPv/KFPOXZz0H4HjLM8MfveS9tOiSpRWuLEFDo7losIQhBW7jIngI8a0EYiplB5oQin/foJLB/IiFKzIo4uBPEGOz2hhF4/QMY6erJPeVimfW2QXkrY7Efet97mNq9i9mJcTSCP/34J4k9b21RhTVwVIN39913s2XLFjZtcs1OrrzySm666abDDN7DQSIkdSQNLyA2joDZQVCTgiSlG0sTTM2lDJaXhuobTTxxsPffptV05Sx6nlM3BkzMOHcwl5VLul65PCqfpbNvD/k0puZlkMs6Jw33e0xXXamZJO7F5cDFq6J9e1wQWoA/OMyBAwdot9v8f295OwenLNDi7//hw4yODvOm3/5ZZmdnOTg9xT/cosmmzluMvnIb6AGkl3LxxZfSiizlguKrN04hWCq4j5Uif8bjIY0x9ToikyFn2njs5bRNIffcOYnEiYbqruclhMCr9KFKZSewiAt7TUxOMzY5Rd/GTZRKZbB5du5cKuYfWbeBcG4Gv1UjTbVTZ/FTlDQkxqdc3IQVPhrF9GQNj+mleReSwlnnoNttsMZtaccOYo+w/3y43coWsRiLC8MQ2fXsouNYs6sPaeWpjGa03XS9HsIMCIFvNImEbEYgu1v2+bqh3op7tbg5nZBPY2y9jhUKoTxC0SERJeIUJCkW8DxFlMKByRRPQFqvcaDR5GOf+QwATeWz88AEfQOb2HMgImYYQdQL4WhtIcxSGRxi3hqaUYc07RChaQQlcrkcL3vZS/jhmEQby+iAzw2f/RcUrvBfCEFmyzbSWhWbalSxSCIVHgusG/RotjWFnMT3umIYaBcP7uujPxCcfc6T0O0mqlDm7q/cjRIxFsHEbEKnY1DSErMOyYO9OV0MQy2HIbciNDtf173Qi40jxvfsYWz/QUrlCh4QWsM9RxFVWAtHNXiTk5OMji7JMI2MjHD33Xcf9r0vfvGLfPvb32bbtm38wR/8AevWrd1LIYoiMpkM5cERzjj/mVCdgyBg93e+SyMocP8Du+kkHlZk+PH9B+k0DBuHrKMntBrs3r17xfl8Y+ggmJ3aQ9RdHKMmRJ02iVngwx/+MMmuB1iftIlqNTII/vSXf4EHpucIwgy7lhmBuOUCq/fee697yVoNdt3zQ+hEYA34Pp1mnXaU0Gm3yYYVAMYnJojiDvfdfz9JkmCModhYINflfLVlQMYWaKQt6vVZ4hSyyhJ3GiSI3vWiKGLnj++F1GKDLKSGGW1J2lVIJkiTeYQ1zM6Ok5WGtAlTU1O0FhagsUCr08HDMDa2m0bcJDs4yNXXXA1AIQv/+PfvotVqce+993LWk5/CYM6DfXuY2nk/AhjaspXSRJOh4naedv4zaLcEUlnu/u44rfaeFeO89957V9wHa21XxWTpPsMS7S1N00NKvI4N1lp832doaKj32eTkJMYY2u1275ztrkDCbbfdxjve8Q6SJOHyyy/nt3/7t3vHmS5RN0lTWh2AmP37HmCy+zZMTU2RX5hnbnqKD7z//XQ6bTpCsr/ZobhxEz+8dzetNAsodu4+SCaweNrQbkwxXZ3nlE6D2U6jl76JTIE0mKNRr/eSOpMzdTxr6c9qQnOQhnahj6QTobC0lKYTuTrv9/3f/0e1DqiQt/7Z/8Mz+9myLuSii57DaZddAXt2wcRBdv7g+7SEx6ifYSIzxPcfmCPSkmZHELUscWcaY6bZu3dvb556mKvSarXYPz7H777xrTTbFmSeXBgzNbmPdUM+e/fupRbFzGpLTXpQ7IMkppG0qJtp/vNzN2HkCNiUe384S2OuRVakR74e0Gq10DJ32LvcajkazL59Y3Q6HYYHB3nptdeA5yOKRSY/9OHe8/tQcVySFhdddBEveMELCIKAf/3Xf+X3f//3+fCHP7zmMUEQsM6TDKcwVCphi0X8wSHq9+5EhwWC7Hp8v4DFI5MfBM/jcY8rEoYhvjVs27ZtxfmslEgET3/K45ZY2FKQzyRIstTn5ynMTpEb7Ie8S0iUBXhxTCIVZ555Zu9cuS6588wzzyQMQ/qSDhsyGZJOGxt3UL7HBimYyGZ413V/ysR0SrOt+cAH/gFJxBMf/zhGR0cJyiV+4TnnOwMAoDx+8PGbaFvo7x/CWksxr/AzI3jM9K6nlOK0J55FMjVJOl/FJjFl36OaqTA0somcr4EOTz17K1vWBwS+IBMEjAoLuUxPeuiMC54D//V5clgef8ap5DKSclHxsY8s/b5gfo7KaWfQaNY5sDcgEYLTTj0Nv3ovRa/GQN8gzYzj4il/HYHfWDHO5fMGztBIuZgd9JDKUWAC33mhy3l41hhqt9zM7Gc/STIzjT84xMCLrqH87IsP05sTQiClJLvMK1/MumazWaR0lRSenwE0f/EXf8EHP/hBkiTh1a9+NVdffXVvVyJlt7xdKFRmA5IOgyOnsn7YBcEzYchpp55KS1hCa5jrdBDAllO2MxNLPv3Zr1HvlBDC56u3/hifKQ5uNVz94ueRBiEyaqDoCmIA/TjvduumCjt3zwE+xWKe/sGAM88ooDsZvOFR8knML1/zYqTviM473/oOZsmhgj6ypTKgkH7CzIH7KWWabNmyhS2bNxON7WXhu9/iB/fdRyAEvieIwyx9A0NEMQwqRyu6784EH48tW7awdevWw97Js846Gz83D0imZ8aAKgPldWzfUmT79u1s2bIFUSjS9hRD69eRVquQCQhMDatGEKqCJEAID0Ef0p/HE+OrXi+Xy2FY+S6XCorPdt+/Ldu3E4YhlTRiQz4HUpA77fQV7+eRsJYhPKrBGxkZYWJiqZB3cnLysJhJX19f79+vvfZa3vnOlb1Ij4hOm2ISo+judbSBVNPwPIxURIkmJQdY2h1Do22IYmc4Ot2aw7Q6h+hylpLFsmUpGB30McbFIJYztkeGh7jiuc/FJgnC91HFEjf9wwdp+AM8uD/CU4LBysopmZ2dpTM9wUc/8mEK2m1NNYJOFJNRilJe0WxbwlCgaCFprygt8waGXDxGCGSYQSWzkB1ysjkCfN+gyeEfQoOxxtD40fcxtRrewACRyJGxBmsNKVkkiv6y6vG4PvfJTzC/220fxsbGAPij1/8uu/bsJZvNHrENIQBpgspm8QcGaXeFQ/3hEQK+D8IZOiFEt9a+jeVwpRcTdUjn5w/7XKB7FJhDGSTWGMb+4n/TuOu72MjdI12rcvBv/4qFO77Gpt//k2NqUwhuO7qYETbG8v27vs/mzZvZtGkTY2NjPOc5zzksDJOm0Go2mZ7aA8Bb3/4BQnZy+vZTeOELX8g1P/9S2vfdg241ueGG6+lIj9/70z/ld976PsamZ8iW+6CbN5yeq5NhDHgeo4Us5cgnG/qOtuEpTFKgz5/D9wSSJhaPvoJg/aBPq+PSQgteQEYnCCkxUQfdqFOJG8wXKmgqhL7fndMIEQ4zM/dAd5IFyfQUUkDbD4iFoq08LE6gNTWCRAts3fTmaDW85jWvYc9Bl2RYLOt885vf1BM42LNnT1fBRTopsXYHv1JhQkpKuT6e8vSzmK5aR9WSMLarRpG1M6mSDuuHfFodpyWZP6TtqBGClvJR5Qoql8O0Gquc6dhwVIN31llnsWfPHsbGxhgZGeH666/nXe9614rvTE1NMTzssiY333wzp5566tGvbAw5k5A1ae/BUKUyeydnqVnLJ//zFhpRFqzklq9/H59Jdv9gHoDdu3byzne8g2ZtHgvkKn202+0Vq/+htK2ZahUzPcPXPn89XlcE8mAmRzUJMMjeDQbL3p276O9fMuItBJFUZHWKEe7fF9GJLYWcREl5WJ/ZREpEJgNdSSihFHNeGSGd3FWcGsJA9Aiei/B0SuuH34c4RmazXYMZYGyJqVmNIYch6GbRHA6MT1Ab28fpoyNsK2RJuuZp+Vai0dK0OxZNtkfMFp6P3z9AMD9HUzmpAOn5JNKCqFEuOsWLTCjxaHAox84kCdGBsV721IlzCg5NM5ne5w61W25eYewWYaMOjTu/S+3Wr1C58Nj00Mwh8bfJqSlGR5dCKsODg+zbtw8Txz2pLWNdQq7Qa+0peXDXXuQiVahSwStXkLk8NRXQ8IMek2BoaJRnXfRc5usp2sAPv7cA7MemKX5qulnaTJfILRFxQsMfII4XOZ4+O/clJLrF+mGP0AdlDTmdoqvzzkh6PkVSRDLXm3PHHLBgEpe1xmlK6voCMptHgCthtAIjmiRa9ZIPobcoFbWUAT0UUjrifXtZm9HCMqqVTRJKacz02D7+9R//kaJJEbkCGxLNg1ikBSFcXFkI8JhCHIN8TiaUqzawF8JlvhebVy0qKlmg1XFMgBVdBo+Coxo8z/N4y1vewite8Qq01lx99dWcdtppvOc97+GJT3wiz33uc/nIRz7CzTffjFKKcrnMn//5nx/1wtbzu9ue5TAs6BwpBQQJvlcEXOJhrjrPLvZz6pYNhJ0WQmuq3aY6xXKFvmwGkS0wV0up1jRCOgHQ5XV5HSyRECgLqQBlNVqGh7yaAsSSNzQwMIAq5PmNV/8WnT07sZ0If2iYu//8L1nwB5lc1q3JIpcMl7XkdYpXKGITl130zzyHhvlXTKfJDZ/7HIvF7DOTExSDJRn0nNZYrRFSuZfGWLJpRBQMUG9pFjtK3bcnYrhbbpdIySnr1/GrL3uZ+xVBQLj1FK5+5W8ALhg8V+sq91LslX6JcgUZ+ngDg0ggQWGiNsYKPBuxadRn38HE9YDA4LOkdgugGwuunM1znajAJXm0WGngDlW0mP3sJw8zdr15jDrMfuYTx2TwkiRh/OA4cZyCkExMTDE/P0+nm+UUtvuUdeXI6JYlYlOUUvzmb7r5yeckH/q7pTiu3z9IumEjNklYCJxXq3IFJE0ECa22ca15PQsEaMqAJVWSquezPhNCs4UFmmnM9MwEX/36D0l0EYRlaqrKzFSHuQP7+V8vPYdSGjMxPs5Nn/k0cadNLATSaHKqwyt/5SJ2749BQCEr+fxn95LployRJMhsFh11wBg8A4mvaCnBlnV+t3eKdU3lj+LhgUveVesaQYwgpm+5DmXUZtOmjeTTmHj8ADGQy1oyvkeFNkHWI9NO8JWgWFRMPyg4FgL/Woik11OcBlDFEhaBpo+JGffuZUJ5mF7jajimGN6FF17IhRdeuOKz5bLPb3jDG3jDG95wTD9gEUIpan5I0mX5y0yGYMNmkCFBkOWy513MwcmExFj6iopv334AkFx11VVsKORJ56u9zkdvfOMb+aP3vJ+OHGT3/oh6y1AqOPUFTRFBh4GBAbYKzWWXXYpuNl0vBin45ufvYM7L8MY3OaVZKQR/9Y43rTCCsVSuxtcLEFkJns88Ch2MMjHjGmSXiwpDHtnluYVG41mLyheWGoR3ybdWtzFoNINLq7ZYIlYn3b4ZqlRCL9SwxpAKF2t0hgckEQtNTbtjeitcR/n4I+tcxjTMrOgAt3BIa0hLxm37c3nC9euJJyeYCzJIBF7fIB4WYfLUGm7xCJVAEvUEUsGJOMQHD3TLoSR+fz/GaKI4xpCA8JiYmEBgCUOvFwqp1WpEU2vrnSUz06v+zaYp1mgni2QMUdRG+Xkcs1JSrvT3wjASy+z0NMMD/a6huVJuI2oTQFPMK7IZwZZ1wYp7LjyPcN1G0rkZUiHoKA9VKDA/N061Mce3GMKSQZAyPz9HrCxG+tS9kNTzEEGAjRO8YomJ6gyD7SnmSfCVj6OJWKJUcHCqjY0TtmzcyHzcIUoi6p2YGFC+hy8c6VsKp3izcdTnJvb1xinzeYQfkM7OEBqLFoLESrJW0upYqrXExb4yqssdXPuVV92wjsc8iwINPfgBL3nJz5NW5/jk37wbzxguef6VfPYLN/LA/CTfvPVzNOI8wlqyYcrMxD62jj6yNEFTeU53sVh0IaFyBUOGlCI33vQdvn7rrWAbvOTFF/Kibn+QtXDiamk9j7byXcFzJgtCYNstlOmgTVeK3LgUvKcW42PuBVblSq9FI7ju61N1S60xzt/+wydwCm8WnwMc2L+fci5iZLifsakpbrz+c9iWY4DLbJ5sc5Yg7zvBTuW6eh26TkzueoAPvvevaXQVK/KFIlZnQeUdeVVbZufTwwqqxKKcNRaZzRMogRIRfnaQC57zAppNTSGvuPWrNUJ84q4YQVt5BOs2EE8cRAQhXqnM+O3fQZN0y5N8LCl9JWcAsxlAOLHJ5fLjy2k3SgmngNGD7dFEhFLIbA4tFRpHdG7Vm+xbSPnIP3+064krJsfHKWeWYih5nSCCEJHJYDsd0moVYyWpMfi+I0cL0m6mdmWljKz0r7iHh8IfHDri5zZNl+S9uq+wDLMMj470pJbMEx7PgQMHGRsbw8YJN331a7zrT9/mPDyte7tygeFJj8tQbxrqTXOYSofK5VC5zcwHK+OW1kRIkp62HdaA8BACOkpRlx7SC5BlH5XJUjH7yYeGU845g+/fb9GmK2PVjrFkEYHPS176UpKZaZLJCT77yX/HE4o4CBkJ+zFAf8VjfSBYN+T3tt1ujHlXXeH7pNKp38QtmJlv8MlPfJyUYSwCn4NM7n+AcvFw4QYTx074oEv3aTQ1EVswhNx1X5vHbQnIZhQizOAVC1hriIQiUZJw3XqyW0+hb7rOHFXaC5OApRhW2DBaYfupD68XSw/dxSYYWQpROC5jFmMF9WYHrEKbn4DSskgIQp1gkhivfxDhBxSSWeZxK1q56DSiHJ9uoaeTJX2fcPNWGsrDNwZV6XNOktcVEEXilGCLYJ1CyIYNG5jutIgaNTqdmBTIFcoQ+hS9Fts2HDm4umHDBnKtJsQt2o0GIZDJZihmc1hvyYA4Sb8ljyoWkpGkQ2ePSySoUpnM5i3YZA4brKeYk+SzAk9JBB6GYCkWJQS5x51JuGUbNk1chchHPoUkdirYCAwe2VCsiF/UvQCZyZA2G5iogx+6RkIGSV9JMTGz9KJImktF6ErhDwy6pt/dl6muQuIkxeD3ttAyGMEu4yeqLicsGBrBLNJPZuaQUnLKKUvdpfbtW/JIwAlymhdfy8G/ey/Eh3PpRJhh4GeOXKljj0BpWYwYLhpwpTxe85rX8opXvIKo0+H5l17C0MAAtVrN1dCkaU82a6aqqbec9+tEI9be9vX1D5PvH+Kpz76EyRmnPPPjH36LLC2kgKxOyXTLofTCPKbTYdDG3J/UyAY+vhdjErodO1MgRkhJMDiE6XQwzSZVP+s8GymIZNmFQzyBNrjuc4dA5vIIz0NLiQRCPKzfj6aAwQcSFr3K5b/Ppinx+AF37wR4/YOoch8PjEW9plj1hub+vRFPepwzXP7AIF5fPz8u9NGXRATrN/GS1/w2lPq5Z3fMe9//CSw+P/fzL+DpT8hRKXns2bNn1fncuXMnr3vd65ibc6GS/v7+XmXT6nDb9EUVGbBc8tyL1rxvizhxPS3ShEoaMTc5yT/+0z+5yFe5n6TTBj9mw0jAhmXJYHmIGoZNXZs5ASQT42zMS6YrZ3DFlS+kHRuyoWTLuoAPf2AnEs1VV13F1q1bicYP8IE/ejNCCH7hDW9k8r1/Q9VfXa7oqquuYmOlTPPeH/Kpv/tbBJYrX/ACxr/0LaYyPn1lRZpaclm5wjvI6JSZyUn+47OfodlsEiNofPLTtNttCnnnbc3Mpygp0Hh4pL2OYOBe7OjAXqJ9ro63OV5lRk3yjdtuZqHmJIb+9u/+mbO36x7jXEuJPzRMPDWOri2gZ2c5E8N9XZ913ZCP1vaw5AqAPzRMzQtQVpM9/UzagwNsFANc8eJrqS2kSCn46pc+RsDSShsvS97IMHT1nzMrY3yHYrFiQp5yBuq0M9AP3AvxktSVCDMUnvxUyhes8gBb00sG9D46LE5keeYzn861117NvgcfJFgWA7JiZdpl0dgt4tDud4fC/d1DSVc7naQgSLEoV9tqDIE1mHYb03HPQwggwMhFNW3nikYsSbCrQpH8488iWb+R+U/8h+vmpQKWV1iAq1o5FLd9+zvcf+P1tGbmXCVKuUhuYDtnnfc8FuqaOIV1g4pv3drAZ2rpXNW53kKFhXR2Bh0W+MY373RiuMDdP7ibpz7lSSuvay0VnSCFQEiJNdpVkViLM67aiRQcxelabtTmqg2EV6TUX+GU7Y9n+/bVhWQlEYqFbkY3RtI65sTFiTN4rRanDg7S6LSpzcxgAK9YxmQyZEKfIBC9Yn5YSS8Bp6KwfD4DK/BtjXxWUiooMoFkuN8/zFCG6zawL1ciq1O8Ypm656OPQn9QpTLf+/H97J6ZRQD3TM8iaBHqDmHgMlsjA96KFMzG4UGSZo0YmGu6Lbrfb8jmSgSeodUyrkTJuIdEdT2u2dlZpqenecurf4Ot9RohhlQINjciZgtbAUEm4yScJifHeaAbU+sd97u/w3DU6s2NSaGUGe4FePtK6jBjtygpLwVOMr1YxDFRUmarKbWGIRcuKvAuecJN5eH19WPaLUQQ4PcPwq6VJNJDsVgxkQ0Dcr/2W+g7v030tS+jq7PIvgHWXfsLlC+46IiUFK8rCWW1drwSHEVI4mp2F52/5ZlBz1MIKahUKt2bqYiq8+juiy6FWFEPK44aZLfd/8GiIrsTi/XBGIxUTC3MM9OuY62rGoiNC7JMTCVEie0JB0ALdUgvFL/S53qw9sazUtggnzt8Xky+SM0P6RTLWAELArSEVts6TQlhaXdsN1G1rF44PVw0wbMJvmcpFpbUw7OhZHnZclqbRy2bM12v006LHJzSQBYBTMykjAzonprPkbC4UKfa8tuvfzsgeEM3lr5+yGdifOXOwMTOG5a00DhlZk0FkHQ6hkL+6EmZE7elTRMuv+QSrDH8+0c+jLSWl7/5D/j+n/wf5qqzfOgf/7orXiiQtNm3884VVBGsccFRnRJPHCTQFt+rMdzvEXUb1PSXjzwBkfKIlEe4aUtXmaT7eWyOqI8vpCTtHyApuz4UulBCCMczwwroBpSX5yWf97NXMTA/i4ljPvrRj2CE5Lf+/M95/VvfQcwoSrlWlMaILs1kKdYRYNnSWGB97HqYJghmrKaoFE962kVEsSWbEdz5LUHKfSvHalcWdmm/gsVndj4l1TC/oDHIFXGgdG5mxTnSuRlc2XgZpehxowxl7LISOAEIJZHZLKpQOubuamEYsmHTJky7jR0ZgSteyPTsLKmQVDYfeWUX1m1jlqvCCLuUAxRCsJqWgBbCNRiyFqRiZSTTMjmT4nlOkGBR4cMkMcn0FKbToZhETgEF1w3v4FiVL33xy1hZION5zM9XGa20EUqxbssWvEaNuFVDJs7g5STI4tm0I02SOsqUp+gukKuLkAIoapTyLlbriOOHG7znveAFPOcZT0MvuJjo29/1fhqiSS5jacfgSUGxoJB0VvAonZjGkqKJ8BQql+OlV+3gaU99are8THHqpmBF8sIueszWYuIOwvPxSIjTpe94CjrR2qrSi3DqxSvfu+V6mMJaOvv2kM7NYU1KZ2wv4wo+8e8fY7qb/HrDH76XkD2ctn07l1xyyarXOqFJCxWW0I06sVLEQuENDTujoYrdeEqIpIVkUYFjCarcR67bK8ImCaFpEpoSfd2aW0+JFRyitWAR7J9MiBM3yU6nrr7iO5e88EU8+6lP6W1Tbr79u3RUvveSNVoaS4joxvFEvoASFj22F89Y5gMPr9KPIGZ8co6bvvo94m4v0DhWBFmnjjEwMMDWbMjzn/JEOnt29+Zqzw/nMdKQpJZGq7uFIkfKAKm2vV4ff/LOd7LwjVtdEbrn85a/+RRRZiv7xhOkpJu57sd1Nuj+/kN4bLanSBKSy0iUNKTaeT+9OKW11HY9wJ+/+c29nrB2YJgXXn31Mc05xrjeEt2mP5ZFo7Y6BGB1z8QhOHTDdzgW2wYuNqtZqaknsRb6K4oktQjS3u9LJieWtqTGQFc37rTt29AcZGz6QYRXIN/Xz2DFY+tmd/9+9ffezOwXr6f65RuYfXCXG6OQ6OyI6xgmFse1GGte5im129g0WaFYLTA9hem1EAyPYir92DRlwddMTy9w+x3fJdZO4v3Hqk11YppNo0sGzyuVoZtYE57n4uhCkM8qzjkju2qbRlUooawhn8Ykk5PgKfKPH6G/7CO6/M6+kiIbHpuajX8E6bDlcmIZnRIdGMN278dQ1GIqDBHYHo/SErJr54MIeGwaPLI5vHwWVSxR80KMEHiFIpX+zeT7B3j5L/0a4HoxjA76vPudf7hiqyIzGdrKQxuDV+mjowzVfT/gXe98O/M1NzHlcoG9uyfYvs3VAltrSatzVOIOWghMN3akyfPA3o5rXCI4omKykJJgwyZMuwXWMu/nOLRI3qX8uwYh6qDCDOGWU1jwA1S3D+9p20+hQ5M2liSJsTalmA3pH1zvrmOdmq/KFxGeh2k10UlK1R+grQos1FPasSPNupcmt7T1t5ZkZgp/aIRkegobhByUAYnsSjylttuOUq4cu4B4epKsTul0SZ4Cp2fmKUHLiK4KcLs3L5tHR6m0Gi4TXauhsBTL5V4JmDZ2WdxH8lD4WIvJGyGWFFasOCT4JsAIVhiM5b1BeucSAmGFM3RCrPBCF4/0PdGtCHGNz621mE7H9RC57TbGxsYwwI033shv/tZr2D8Z82d/+XdYPH7pl34WzxOcviWkPr8f4XnkzjqH6te+5DT3hKCtHNez3V7WSsM4ky26oZp4cqKXte6PO8z7Ibqr7DI5mxDFlkwoGaysbkRkEEAQsO3UM+kIS0yTqF1DyJBMTjAyupVTV1Zk4pUdwfqI51ulI9KXb7mF3fv3Uwb+8WMf4ynnX8B5G7ewbcPG7hZd0F/2Vq/uOQROnLbdi59mQkkxL6nOuvaOcm6aD//jB3rfT5KEYtjhxde8rMs8EAz2efzr/7tvlSss+73HNKJHAcIPCDdsIpocd8ofwsOmCRYXqE1SS5QYlBDEJZddWm7whBAkUjm13mKJTZs3kShFlSYLdeeml8tltmw7m22nuK2wrlVJ52bxrMWzlvjgfrCWVAwwOZvSaBmshYgtSwKEy8csXB9WgPnqJLXWPO9857uwZLBI9j+4k/5Kt040jsHLYlpNcsaNO9q3h9/8xZcTBUU+ddMCX/7yrYDgeZc+nc2j3eO6hFPTbCB8H69YIin0U9s7BaqIU9oAz5dYQiyWbtURodGYVgvpB47WkhgwETadJ4o12gh831VaeN3X3SzUIJd1v6vrYS1SQjwmKBcU2oCSbnu1GON60c/8DCMSkomDfPhDHwTgV37t1/hBrPH9kHbH9DKh9kgim10DxDKvzgond7Xc4PnektFLhewaLNvz1EzXcCep6cbwHEtxuYE1h9B1evfzsE9cXwyxuAXuolwpE+NihPsnE9ptRzYGzdCAIvAkxbyiPu8qAZIDY0jjvDQjBAvaJ4oimo1G9zjHIUiSlFpjDpsk6DTuGdj9Y2PObPQPUuo/pbe9a7T0mn04FvErv/q/2L0/Zs/BmM/81y1Y4PLLL+ApZ2bYNBIyNbnvqOc4GoqVPgSWtvKdhJbWbBr2CBjD4nH61pDAP8bSQG2BtCc0e2jVRefQqh0g1g2MhYNTCXEKSlliRgiYZC2cUFoKQrjWb0I5qfUDYwibYIRi/0SMUoJM6NSAxRFatzU8n2J3q/HzL/9FgtH1LEQeb/7jvwIUv/07v0ngO0pGbW4/utnkG7d+jcmxfcTAO//iL1hoNJmJ83zhC1+hE7uXshN1CIqFNR8uQYqJFzCcASgEHWTQjxXdvgthBmsturGMLxiGpPNV8lv7OP+cHF/9chWQrB8JOOMU94KJboUGmRARhEgs+Y3rmbljCqUKSAlWQz508SSP+Z6Ej2edYq6u1zFxhMpkKRrBZKr44hdvRaCRVJk6sI9yrhu7aTUgl+Vbd/+A+8ddPOTGG24AYPeDe/iHv/szUMPk8mWmJ+fYOJLt/r4QoZMeJ87iWhqK2Sq2u1VchD3C5lMIAUHgXB7rjBmIFWVi1i7V4KZpSpqmHJyZ6ZavQSdOugkHyXK2ilscj8WjtOgUotTgK4HsdWaFYGQd5114ITt27EBmMvgjo9TakuqCJgwXa2IzSCFdL9VuTXNn3x46ux5ABgFxt8F1LEJqXh+HebkWrCp2eXxLL3W5UiaDZA7Yt3+S6955HbWFOsgchUKJ/Q8eZPsp61f9VdlQUshJFjfF4GG0ZXwq5dSNqzMSjhWXXXYZFz/1KV1tOweZyzk+JzEQH7OxS7XlwGTSExmdmkvZOOL3vMv+/n7o7+fXf/vVJFMTCCF5/VvfTj01fPo/Pk7CesDwvW+mzE4lFP21WzyeUIOnG/WV2xRjCUxKWzmRxFbHUMwv9pxUHNrWPpGKOT9DuGUbsuvmLMzF3YYgMD2n6SvTawicVGdR9Tobi3k0AoNlcGSUTFogInLlSNbQX86wZeMoay2m/f39VPpH+d03/Wbvs+veeV1viyLCEL+v4qoQrMUgXAPwrlLI1g0hWe7D4vPUM3O9jlKhTpmZmOAzN38V26gjgPSeXWi7HqMbvWJ8zxN4HCBY7NBuXS9S3aiTzE65vghGgk3J2gjodOXMRbcOs3vrlyVtypWyux1Ssu2Ux5HQz4HqABiPHCFDI49jeN3SlirYsBHTatFSPomQSN/vSuZ3DZcQy/rEHj6ZQogV1z8SVqaCluJ8Lqmy+J2l1pO9e3HddXz729+mVCrxgQ98oDtFdsmjFL7zyqdjWi1XcaEZQnT1/mQYktm8FduNNQLQ7pbmWYsTt7SOCxl2t93GYFoNbBKj+gfd7sNabFAgzQ1RKJZodMkGAh+fHPlgHfgh0pcrFIGDdev52//3Qe7d6YxKveWBNBQKii2nnMOWbQOrzlkmlAxUPEYGfSTuGSoXFZ4nWGg+slKvRXgDg6AUptVEhhknwvsw0GiaFVqEqbY02+69X47sKacRjq7HpikHjEEriabY3REKDAlCFUHOrz3uhzXK4wRxhD6yqcwgMORCQeBBo2WJYs2q2SwhesbOGKfU0FP1EC6wnctIbKeN9EOe9NSncfZZZ4GUZLae4kQQU8ttdzb40EevR5Dw6lddxYZhf9UYxhKkq7DokqNhJa3BL1fInHKq26YCptHAZrJYrbsilgKLz3xdIwQU84r1o6N0mnW8pEPQaiKATqaI8UKknydKLEkMdblIj3CeoWcN+8f28/cf/zey8y6TmpZHSLQmk/F41rMvxVonSX/LTQlhtzxJlPsQnnIv23k78AeHEYUypz8xptbQ/NX7vwBk2PHsZ1LMCTat83temMpk8YdHenw81+zaeWqL98Mlsc0RPS5jLLfd1eSGW+pMzVoqRcsLntPk3LNzvblf/KfneQRSsm6ZUs/45CStOAVc0sEJFDue2/Oe9zxe9apX8frXvx5wxsgmMVhQ1j0XWls++tFPAR6CJlOTDYrZlc/ZcnpMMa+oNQzVatolY2ui2DJTTXs1zSKTwRsYIJ6eJJGCyAoOZkooGa3ic4YIAcG6Deh6DZukyEIRlc3y2te+lk5kODAV85fXfRDQvP53X4HvOTGHuHngiGcE6C8rBsoKvxuaKRdc740oXmMVfwgQQuD39cPDNHQPFbZLUFfFEtL3UF7KFc+/krGJGAnksoo7bmuTZ3zN85xQg6eKpRXlRapY7G5tDI2OayKiDTywT7CiMB+n0pHr8ohMkvSMHoByOiGsH/KW4gFaI8KAYGTUbcOkdGl5Y3lwf4znCRQ1JAlDfd5h3aEOhStgLrhyosgZZdeRaiWvSkhJgiSwBlkskPo5xg/UadgMKQNIOqTaMl1NCQPJ86+5lv7pcerfvoPvfOMbaASX/9w13PHpvUSyj107D+AaCEa0Fyp0ZJVUW0Y3bCTfbpFYS63VQQHlisbPFIkz/WhtSbSlkFMIIhZrKkUQEG7Zgul0XC9Uz6PR0szMp92uVwHgOVKt5/pALF8IvL5+V+iOdXW8B1xpURDIpVjcsnDE4tZ0z969fPh6eGAfvX4ljTZ88D+rfPuHbV738gE8T/Yaa7vz2CUvrbuYIVxMT0mngGKNowudffbZPb08gZOwchI6qvuMLD0tDouGWnGEYg73W5Vg04hPveFCLBaPydmUZlswPOAjpMQv9hGs20i0Zzex8Gh7CkniYnrdJK3FhSA1CtudG6HUYWrA4Ly1LetDFFW3PC56+JIjBHmWPXdCsGnUx+2KXL1wqSDJhqs3/j4RKOQltcZyOos4TCIqn8a0H7gP3Wq6+DSGOJ1h06iHJ51HKKRraamOos5yYj08KQk3bmbeC8jrBBNFFNJ57qvl+MpXvkmUSjAN7g7aTB9IOWWDO86mKfH+feS6fKB4/z7CTVuQ3lJ39cVSo0XpbbI5hLSuE5jnGk6rYompuZTJucTFwTEIXCr+aN7dYnKlv+wRZV3AXNA8zJNJZmcIXEoOvdBgYiGDt1nQSEyXe7e04nZiA57nFHmlo0xroFWtEZhWdxvXNUAIRDCC0fMsNDQvvuYaNlZKJLMz/NU73kFgNK/5gzfzh+/6GDWvD6UgF0rCwCV/Dk0AqWV1t1icBmHT0XoNAVHiulENLNMLNHFM854fUEliUimJx/f3/iYFyDU6ld1130pjt4gotvxwZ4dv/7DDs56SP3ze02RpypY5K0q5Pgvuvq30YnTUYWZy0inQQFcr0UcpyVVXv5Aodh7Rxz/6j3jMr9lSUilBMa8wrmstxliabbc4g6tYiedm8QaHqfsBqZRkbYt2fZpEVaHLg9MYkriGDNaOOQHdWvIGi021lRRUSh6t+trH5bKKkH0YCgxWfAo5x+ObX7sY5mGh1XaalZr8YYv+ajDGstDQXZK7QdFaEb8Dp7xTTB0nEsDQZAuWB7BsXR/ie4I0dbzU2780fdTY7YlNWnSRNSm+tdg4ZtvoBpoixwI+cdIArckHHus2bOGUU50XpxsL3P71r/eELt/5l3/JuZddzqUvvorBimtabPHYOOL3gqeOVrIBvTCPNQavVEaGIe3piLvvvpvv3/n9XjnNrbd+nZdec7TaPI0mz8RMiu9BpegdVtVhkoRvfvs7HJiYxAO+d/c9jDzx2YSZjDOCLBpOh8VmwrbdRvghnnUNI5kZp5gNWQgyZMt9xLHLmgpaBGzo6eJ5lX5UscxskEVLSfaU04g8i8JVhHQii21poN3lNh4ZzisW/OCeB1ioT4O1fOcbByntWE/5ief3vtfZswtdnSOwmkBr0vn5wx44dcjC4XkeSim+eY9PnB75ZY9iy/W3LBxu8GyX9GqdRySEBQtxnDAxMcWi3x1FEUopgsAZpSAInGdoDBbIeB6RdlHcx20N6MRunB6zKNYWmDTG0uroXpA9SSwDFY92Z1m1hqcIRtbRVj4+hvX9IcXYUGOejimB8PGFIBNYtm86XFD1SFA0kXRYN+g7DcXlHdaSBIxBhocnJCQxkjm2rlIrfjzQaGmm5halx/KYrhLP0ZyG2fmlOma3RwgOO0ZaCPTKZ8rHleuNDHgoJWh1jOuOt4bW3yIeEwYvo1OUdUHliy59EWfVBffVK9zytW8Akhe88EK2bwk5a3vG9Yjt6q6VK+WlkyyLWK+WKZK+jxxYqcKRCSWB5ya0WCiANeTCo4sWutXWdXfSGhqePuJ2FiXR5QoCiykV8QccQTWXkd0Eh3sw+kvKjddaJzwZBuhu7C/o78cyhyB2SQCxWBPqmsks90iEUoeUylmmZuvc/OUv04pSMHWak/dy6tZBVoPnCQYqikImIes1ECLEI8Ei6e/qo1ljVnTWAlwLTBkgSF37QbE6l2t2fu05PvTvAotvjVPGhi6lBSwaITwWBSMO9e6kUoyOjGLSlLnpKQTQNzDIVHUOgWH75iXP1mN19ZZFzC1ovvOdbzE9tROE4uMf/wgXnv94XnTlBb0lRHg+JnJkiqbyuPrlv8KTB07n1rsT/uvL9wOCjRsHecZZ6zj79HNhMfF0FAj0YTWjyfQUaW3e/dZMhmDdhp7qiTG221HPNf051mbVDxWLiRBtbLdgwGPXWMzIoOe6q62CZscdd8cddzC23zkvX/jCjVx++WW976RSsnd8nPf/3fsBKBQK1KIYE2aQUqwIPR2L2OgJN3idA2MMRy0Ca2jdczei/wyCTIltpZCv08Ci6K94bBlZKm9RhSLnXfjsXkZLBD7hhtWLjdfCYJ/HFZc8g/POfSrGwsZhv1etsRYMjunt+xD4knJBcejLJpTigitfyI5zu704pSQq91PtCBYaKSBRLDDU5/XiFkJKguFRdKfDXPA1UgTZ7Y8j/OYXUTQOyUZmsXTIZx0H7EjYvHkLEQGakChuYzVs3Ho227evLduzftjnomc/mWef92T8bovF7ZsC/MVFRAhUvoBuLHlEMpPFdhNMUrqMm9PvO7x+d6DiUWusvp1bvnUGp6ScpCm1hVqvYU9iLEKEBL5idHRwcVhMLNtau4Ols4+i24w8cDuFhxO+j2KLkpZiDpAZBALfMxRzjkZiOm1su41XKNJWrozNGxqmFQc0OxESD0GL07eE5DKKelOTKax+vThxTeJTKoeR4W0ckS7zkk2nQ1qbx+8fwFrLwakE3W3LODaZuD643vE3eqr7SHztlm8zPuUSZt/4xh2cf/4O8msU9fue6CVRyuUKWH1YZ7vt27ez22gmHtzpjFW5n1YY0owTfvt1r2e2pkBmqBQle46qsnKCDZ6JOnzjs//JwekZCsDnPvUfbDr7GWz+mV+nNuXoCJKIQlasKJoWShFu3IJZ1LXL5Y+5/8Gh8D3BxtGA0a4O/7H2TjVk0JSo1jSIxabFh8eP/L5+VL6ATWJkJktWKWRDkyS2u31yTPrNo0HvYfSHR0ibDbAQCItptwhNndrCAhnmoEuJSNImWU+tIGqaJKacRPjGEO3fx6/8ws/z3fsSWh3D52+4AYHPK171SzzljLVVQSpFRzhuNA1KwUDZWzJ2dLN0g8NgHR/SAtknnAV33gW4FzWKbdcR8zmUh/f8ZxX4wH9UiZLDzU4YCK58dmnlPHoexhiMtd0eFqCCAKkPqXbpnu7tb387P/rRj6hWqzznkkt47atfzQXPfIZLdGi9otLEGIteO/TTQzYUK+gjUsCW9UuLsW42+Ma3v81tX/86k5PTrkLjjrux/RcwNesuYshwcDLB9yWnbMqs2r7SGMv4dNL9vQGagFbb9BgBpCkEK5kOtpvIa3Us8TKFE2MsC01N/zEs5g8VlaKi3jA0Oj6F0ihCL8VBkyOouyxioKyYnLXs2LGD8887j+F+b+m3dfHa174WE8f8yWtfQyXt8Gu/+kv8+y238YODE8Sspx51NSqLI2zZ/ky2b+9bc6wn1ODZNEWmKZlikdRaGipA5QIq/RnEdIzLMEnmapof7+7wxNOWXlIhJapQPOyczqOQh8WSjgbvIbj7qV58ADPsHIsxxhJvsKT043F4RHix5GcRX/ryV7npK9/oufF33HEHQ8+/gKLX3Yq0Wtg4Jup6CP7QCOs2rKN/NksbTZx2QLfJhrBhZKV7kExO4Hc9INPpkBHTFPMDGOu2RIKYckEe1vPjUAjhlG8HK6t/Z7Hnw2yQJRUSL5fHGEMUpYxPLJFSk9TJYC0nFZ93doZvfD/gBzvjFUYvDARnn57hvHNWeqClSh+eNVhtmJ1zXsTwxk3sOzABSOLEGddFAvAf/dEfsXnz5l6XNBPHTIwfRCymSLuoNzWz8xpj3f1TXcXq1VApuixuo23wPcFAWa1YJIUfLE4g2a5CS2R8qnOpE4sgA/gcnE0pFRXlgiA9vIMh4LL/h/bLbbT0klHIZAHD8rTy4juhtaHe1GhyPR3JRwu+J1AenPuMszj7rCe4eal4KClWSJ4dikwo2bzOJ0mdBP2Rwh/J3Cydsb1s7dQBi240uPbcZ/Dzj3sS3z+Y5cP//GEAfvGXfpFsKHnaE3OPrGvZowmZzfHkc8/l7Cc+sfdZsH4TB+sQpxoIMHiMTydkAtlVVTgyjLFMzKZ0IkPK4GHu//GE0W6bNjdf5zvfvJ0o7vANG9GcnWfz+qMHoT21zI3vYvHBsFF3m5KmmMUX01ie8uxryVezfH8v7Ns9AZ7gmU8/hWsvK684tzmkT0RgIkYGPaLEIKnjUSefUcdtayN9n0Quj9MIUJllfDyD6HqkyyuEpKf43ZeWueMHHa6/rcV0NaFSFLz4kgHOOyd3+MOvFEIFkCZoBFqKbqyqW4bf9c6PRBav1Wo0550OH0Cz1erV4M7ML5VrWTw0a+wvcTHJwT6PwVUcCVUscf4ll/Q8QFUsUfMH+exXqswtaFiUaLIuUTJT1VRWeWSOJD6z/L4JKQnXbSCtzvYScYuljwsNQ6ttsWTQZIgiS3H02Ir5HyrakaPcDPd73bYD7r/XDR29z4QQordIHQqrNWl1lu/degtzM26R+9RHP8rpT30a54xuQogNK75/LM/0Cael5J74JNoPPoBpNvH7Bgg2b0XNCKJkcSsEqYZ2ZEjT1Q3eQtMwV0tZaBhSKgiydCKzajekRwIpBRvWDZA6ZhidqINN5lm3fivbth3d4L3oBc/lvPOfQ72lkULQt5iwAEgTUE65eBFpnFJrC1IVMlhOGaONIGHHOVlGBpY8R2sMutmklEROHCFJmDMFVOgER1OG0GTIrrHqPlII6eF7GXL5gqvBVdBq1LoJl5Uvqwx8zj9HcP45WQ5OTGKEYPPmw6ko7sdZ0CmkKZ41SCNc86DuPRCiG6Q3HDFmCAK1TD9qcUt7ePngIzMKQgjCdRswSQw4UnxfapbJQbmwh1RQaxpabbOqwQt8p+242I9EkHZjxUuQYUgwurLMLE4McWrZef+3GT/4AALJ9++6nTNPvfgR/bbV4C0bUimvKOWdJ3ys5WWrottwyfoB2Xx28Y4BEJYKbCkvbec9T7B53dHFCk540kJlcxSe8KQVn935nZv4/M33MV8LQCimJ3fxuK2PX3Pb2e4YF08DnBpIlvl6ymh4/NPxnid41a+/mHsf7DBT1Xzh8zcgyfFbv/VynrD96AZPCMFQv8dARa1QBAEgkwFhkdkcLeUR6pSwvw+TVNCzgnLBx+9mbMsFn1Rbgq43lMxOgzVIa5FY4oUFopGtTMwktNq2K1QZ8OO9Ec8oSpQ6vouBMRZrhds+C4GStuvYxUfMoEnP67kx5mixU526HGwcI3EtAW2aIK0lFYo4Xl6EtvJ3lctlSoXCEodPwHyj6cjUh/T6OFLN9sOB9Jeeu05s2TQacvd9EYsD0KnTXzzazx6seJQLCkkN8JmraYr51dsaAr2FxbVJcOM4zrd6BcJAUsorFpru/Qs8cZhhfjgQno/0Fc+46GKedOqpJHPTqGKJzJattHODdGoGS4Ig5cxtIZXS0c3ZCTd4R0I+k+IzTV75ICSDxdMYHfAJg9XvmqecHPUSn85y6623cu2Lj6236UPFYn3uxGzCTUwj6XDG1vAhxQKPKDaqPIKREeIDYyhr6SgfVcizQWaZrkekqeOaKepYS495D65w3SwsgKCrIF1CAN/+7g/54Q93MVOdA5vwvTu/z+NPecYRxSQfLoR125jZaotKXxVjjTN6ApKoTRiuvfomSYLWmgceeKD3mVKKfD7PyMgI1lrazSZRq0mauher1WggcDJbc1UXM5TCnSvwVz7aQikXu7POMLbabarVKmeXFAenIqx1ggBr8RMfLqyFKLEUCgIXl3ZyVKMDHt4q27nlUJIu709Sbznu2obh1efT8wTFnOolV6QQrBt6dF/1wT5H+jfGHtddVTC6nrQ2j1cug+fUgzrGY3oiYWJOI/ABn8m5dM3+tot4TBq8yy67jEsvfR5TcymtjlMhHqyoNXlE5aJHPkwRJBTzPph2j1/3aEAIwVCfj+8JPGZQtAiP042WYcgd3/wG9x90/KzbbrqJs571PDYMFzgwmXS9EMum0aUYiY0iSFPu/sEPmJxwBOrv3nYrZ117On53HvLZLBiX+j+0fOfhQrfb9MUdlLWkB/dx3/3jWHz6yrMIAUo6A+15imazSXVuDp2mHNi3D901PlJKkqSrMrNcWddafN9nbm6OJI7RnQ5pHDmZdyCoVokNJNr2yNeqG9fzPEmrWSNNU7wjBMN27tzJ175+J4ObLmZ8JsVaS8Q6Mjx4XOZlOfJZibGWQs7rcjUlQ/0DlIsepezRPaHP3fBlxva7utnr3nkd5z/rfC6/9FlrHjPU71HMS1JtuxLtj14YYxEuFnd8ryOUwu9fKZTQnk/pxIa7714qFrjt9m8xdOV5P5kGD5z3Mzrod8uAjk4XCXzBVS88n+dceC7WQikvD+NyHU9obdk/lbhtHFlSMqSpPS7JAJumYOwKYvXCfEyzbTA4WoOgzd7xlC3rpMvaWYNX6cd6HoViwQX28wUGKj6/8pJn8PSnPolObAl9wSkbAzzv+Bi8ZGqi19/ARBFXXXI+e9v9fOTj/wGkvPpVL+Upj1+Ky/3dn76N6f2OJzc2NkYTGNx+Ojt37iSbzfLJT36y993F3sfvec972L17N+vKRTr79mKjDiITkhkZQa3bxIFpzV+8490YCvzKr/4y64ec+GQYSPbs2cPWrVsPG/f7/+7v2b0/5b3v/zgAuUyWmbmU9f2rE7IfLqQUbBj2qdZSPOoYHLF7y3qfjesCpteWcEOIlQkuOLyC5Uh4NOLXjwWEgegZ8MXeG0oe27v3mDV4izi6YskSSgXVq6V9tNFsmx7NwiIxZNg/mbBx1H9I29ojQfg+511wQS/TZy3cUw1INMSx7eY+i0SxYWY+ZXM2gDCDVPCM513O0y95HkJJwg2bACjkPJ55tkeSOq7hQ5nTtWC1xiYrhT1tkrJ1fYCiiSak0bLUmynFvIfVmksvfDbr17kg+3XXXYcR8L/f8x5e97rXYQjZNx5jDBRycoUwlBCCzNZtBOs3YqIOMpPtCUZsHJF4zGOoc8bWgEpJ9YQDVsP2U7cTETFRddn8XCbLYP8A6zeMHpe5ORRhIBno8/GYweJx9ukZnnJmjnxWsnrLcYcXXnkpT3/mc3osBd8TFPOPTk3sTwIKOcVwv+XcZ5zDk84+m0JeMjrgUzyGlg6PeYP3WMWiw5mkFk0ZENSbmgOTdFUqHsm5BcG69U6mPUmQuRwqKZHUErRZzFMFdCInh7UobR5u2ES6UAOte53al8M/zix7odSKbDJAoZxjb6+bFCw0NXsPJpx5ikIptdRbogvdLRN0G98SqbZEkaXdceIKh3b1kkFwmHqxUnT7rwbMNwytjmX9UeS9fvu3X8PEdMwf/em/AZLnv+BKinnJ40/NkLYPPrwJWQVxYgkDycaRoKtfqDljW4ZS4dhfv9FBn05kMNaRn4+VIP8/FYN9Hv1l5UIZQhzzs33S4D1M5LOSG75wOzffcicTUwtgUu6665ucf96ONfmCxwoZZgg3LpXL9aURpXlNs62BEEGTaj2lXJQrG2r/N+mTLcIfWUcsndClKpYYHRhk1/fbuAaKKaW8ZL5hiBNLVglE/4BLHhiDFoKGcovDXLVBrRnxF+/8QJcL5zE9FVD0Vtd8A0fE3T+ZELMRMG5+soqFpllSylkFI4M+GR4gYZj1Qx4bhgM2jgSs0Tf6YWHRNuWzEkGCxSM6vEPiUfE/dYv6cHEsqkaH4qTBe5iQUlDOxygWKOYM2LSn7vtorL4bRwO+dus3ufWOe5ifdZnEsd0/4LTNT1+zfOfRhNWaZGaKoGu8VKmM9DwqJa/X7lB0+1YsVkCJbI7M5s3YNHUN0BfnyiZEScDEdAdEilCKVHsQDq96fa0t01XNXC3Fdttc7p9IGR3iqMZucWweNTxq7DhnbcLxI4HvCQpZ6WK+FABLJ9LU6rqr5n0S/104afAeAS6/3GWTD0wlPS5XJpDkMsff4HlKMFjq4LNAIYzBdshn0i7T4sQYvJs+/R/c8eUv92S6vvapT3LRy15OX9F1RbO4beXmUX8F509I6Rp3W+NkpWrzPPPpT+WO7+2m1gGEwRMJ5VKWMx53yqrXjxO3nf/eXXczU50BJJ/85Kd56pNP4wm/cO4x/w7LMomhRymbOdTvccMXb2f84P1gIt777r/iggvO56XXPOdRud5JHBknDd4jhFKCjSO+o88IQTbz6MVXrnz+83jORZcwObu0HwoD+cgZ7Q8Topuw6GWTjaHZiIhTJ1hp8egrSTaMHP6YpbV5yokj+SbTU7zq567h1NN+yL986k4A8rkC5zz5Sbzo8qetev0wcHOtgHyoQTraRyGbHNOcGGNJKaIpMj6dIARHVbp+JAg8S7kY4tTccHp+J/HfipMG7zhASkEh99+zNclnJesGfZptg6ecbPeJwgWXXMJ5T39677+F5zEfKe644zYO7N8JwN+89694/vOewQuuvLT3vRtvvJHb//NTjI8tiSfs2LGDK573XM6/4GL2HEjQ2tJXUowMrp4AklIwMuBx8YVP4ewnnU02IykXJEN9R08apamjFSWMAorZ+ZTBPo/Z+UNL0o4PhBA8/7ILOLebeYdH17iexJFxTDN+yy238Pa3vx1jDNdeey2vfOUrV/w9jmN+7/d+jx/96EdUKhX++q//mo0bNz4qAz4J17j4UCHIEwG/f9AlH5oNpB/gDw3jtZ13u5w3diRPxgpxiICr+0e54HH26U6R5FjIsrmM5HHbMmxLDJ3YkgnEMXl3tYbmtttuZ2JqCpD84z9+mPN3PJ4LnnUuj5bjVSkpMqHTgMtmjm2cJ3F8cVSDp7XmbW97Gx/84AcZGRnhmmuu4eKLL14htPeJT3yCUqnEl770Ja6//nquu+463v3udz+a4z6JxwCEclLmy1HxLBc867weh7CUVwz2rXzMLrvsMi654FnE4wd68oFepb+n1CuEQD1Ehznw5aHScGtiMexZzPsgst3PXHKhdXTh3IcNV/706J3/JNbGUQ3e3XffzZYtW9i0yZFYr7zySm666aYVBu/mm2/mNa95DeAe5re97W09bthJ/HTB81y3rHZk8RSrejEqlyfcvA3TbjluXWZtQdLjjWLe9YE999xzabQcv23ruoByUbHvKM1xTuInF0c1eJOTk4yOLrHPR0ZGuPvuuw/7zrp1bqX3PI9isUi1WnVdw1dBFEVrCvWthqmpKdrth651d/K4k8cdiiSFViSQwpLLwMRB113isTTGk8cdX13LExY1DcOQM8888yEfl81mj1gbefK4k8cdr+N+EsZ48rjVsZYjJexRSFx33nknf/M3f8M//dM/AfD3f//3ALzqVa/qfefXf/3Xec1rXsOTn/xk0jTl/PPP5xvf+MaaW9q77rqL8Aht5U7iJE7iJB4JoijinHPOOeLfjurhnXXWWezZs4exsTFGRka4/vrrede73rXiOxdffDGf/vSnefKTn8yNN97Iueeee9T43WoDOomTOImTeLRwVA8P4Gtf+xp/9md/htaaq6++mt/8zd/kPe95D0984hN57nOfSxRFvOlNb+Lee++lXC7z13/9170kx0mcxEmcxGMFx2TwTuIkTuIk/ifgJPPxJE7iJH5qcNLgncRJnMRPDU4avJM4iZP4qcFJg3cSJ3ESPzU4afAeRWj96ChvnMRJnMTDwwk3eG9+85tP9BAeNVx11f/f3plHNXHtcfwbAeuOIO4e9ZXySCuu+BSXoqLIagGhou+IC0hBRVq1uOCKESuuVUFQwQX1uVAEZHUtahW3iqKVRa0bSFEUEBAwmPv+4GVeQmYmySQEqfmcwzlhJt+Zm8zkN/fe3+/+fhORmZnZ2M1oMB49ekS9fv9euoD17du3NdwaLZ8iISEhSr2/0cNSXFxcEBcXp7Ru6dKljPt4PB7WrVunSrNk8PX1lTmHgYEBhg4dCicnJ1rNnTt3IBAIwOfzERAQAH19fdr3KUtsbCxcXV0Z9z969AgvX75Ev3790Lr1/0skXrx4EZaWlrSa06dPs55z/PjxMtskr13968j1uqrCo0ePYGxszPoeoVAIPT3ptCpv3rxhXfetaXJzc/Hnn3X1cY2NjfHPf/5TpeNdvnwZI0aMYNxfUVGBN2/eoGfPnlLbc3JywOfzVTq3JAKBgHVBwvLly5U+5ujRo5Genq7w+xs9A2FVVRXu37/PmKa8T58+tNtHjx4ts62wsBAHDhxgHEoOHDhQ6guXNFo//vgjDAwMGNvp6ekps62srAwnT57EgwcP8OOPP8rs79+/P2JiYnDkyBG4urrC0tJSqnwglwsMADt27GA0eNHR0Th8+DCMjY2Rk5ODwMBAjBs3DgCwdetWRoPn7++PL7/8kvEGpzN4ktes/vVje46qch3Y8PLyYrz5r169ikWLFqGmpgZ9+vTBmjVrqJyNXl5etMa5fjvFiDMB3bp1i/ZcXD9feXk55syZg8LCQpiamoIQgry8PHTt2hXh4eFo04Zb3Y1ly5Yxfi8pKSlYt24dOnTogNraWvz000/o168fgLpOBdNDy8rKSqZoOlVMisfD2bNnZTRmZmbU6x07dmDevHmcPo8kyvbXGt3gFRUVYf369bQN5/F4iI6OptXZ2NhQr58/f46IiAjcvHkT3t7ecHNzo9XQDS/LysoQFxeHVatWYfv27YztHDJkCO12KysrTJw4kdbgAUBpaSnu3r0LQ0ND9OnTR269VDETJkxg3FdcXMy4LyYmBidOnEDr1q2Rn58Pf39/FBQUYPr06aw3R2hoKJKTk5Gbm4uxY8fC0dERvXr1Ym1j/R810776qHId1q5dS7udEIK3b98y6jZu3IioqCiYmJggLS0Nnp6e2LBhAwYMGMD4vbBNR9QfwsvTKfL5xKuXDhw4QN0nIpEImzZtwtatW7FixQrGc9YfgUhSWlrKuG/Xrl04ceIEOnXqhKysLCxatAgLFy6EtbU16/0SGxsr9T8hBKmpqYiKisJXX31Fq3FxcaFeHzhwQOp/NpjaTwhpegavV69ejEZNHo8ePUJ4eDiys7Ph5eWFoKAg6Ooq95H09fUxY8YMJCQkcGqDDkumyiNHjiAqKgpeXl5Yt26dUvkBX79+jaioKLRr105qOyEEkydPZtSJRCJqGNujRw8cPHgQ/v7+ePHiBevNMW7cOIwbNw7v3r3DuXPnsH79epSWlmL+/PmMxv6vv/7C2rVrQQihXovbWFRUpPBnBRS/DrGxsViyZAma16tNCwBJSUmMOqFQCBMTEwCAra0tjI2N4efnh4CAAMbrEhoaSuV5lKSiogKzZ8/GwYMHWdsqiSKf78qVKzh58qTUQ7FZs2ZYsGAB6wMQAH7//Xds3LgRrVq1ktpOCJFJ5yaJSCRCp051leH69euH6Oho+Pr6orCwkPV+FfdSRSIREhISEBUVBT6fj927d0vlymRCmd/CxIkTwePxaO/f+tMT8mh0g8c1Sai/vz/++OMPeHp6IjAwEM2aNUNFRQW1v3379gofSygUoraWPc0t3VPm7du3iI+PZ7zAt27dwrFjx9ChQweF2yJm9OjRqKyspE2hNXToUEZdhw4dkJ2dTelat26NXbt2ITAwEHl5eXLP+9lnn6Ft27Zo06YNXrx4gZqaGsb3Llq0iHotOVyh+18RFLkOffv2hYmJCQYNGiSzb8eOHYw6XV1dvHr1Ch07dgQAmJiY4MCBA/Dx8cGzZ89oNbdu3cLWrVsxf/58altxcTG8vLxgbW1Nq2FD3ufT09OjfWDr6urSGnhJ+vfvjxYtWtA+nP7xj38w6lq3bo1nz55R83edOnVCdHQ05s6diwcPHjDqhEIhYmNjsX//fpibmyMsLEzuiIAr58+fV9uxGt1p8eWXX3JKBGplZUW9rm/9eTwezp07J6Ohm5gvKytDamoqBg0aRPs0lzyf5Hl4PB7at2+PIUOGYO7cubTzK5qYuC8rK5Nyhvz111/Q0dGhftiS/P777zA3N6fVZWRkICUlBVlZWRg+fDjs7e3Rt29fzu0KCQnB4sWLafepch1KS0vx2WefoWVL5TIkX7lyBYaGhjJzlOXl5Th06BBmz54to6mpqYG/vz969+6NpUuX4smTJ/D29oanpyemTJnCeC6un8/W1hZbtmyhnQ8NCAhAamqqIh9VKXJyctCyZUsZYyUUCpGamopvvvmGVmdpaQldXV1MmzYN3bp1k9lPN+crObdZXV2NFi1aAJA/JwoAtbW10NHRAY/HQ2FhIe7cuYNevXopnVOz0Q2es7Mz4uPjNXIuOs9u+/btMXToUFoniKpowuBxPUd9HZ/Ph6mpKczNzcHjyZaaVNbBwuY908R1mDdvHmuPT1GdUCjE/Pnz0bx5c2RmZiIwMFBu747r5/Pw8GA9rjJDaCbc3d1x7NgxlXVLlixhHZ399NNPnNpHx/Hjx7Fp0ya0atUKc+bMoeYJ79+/D1dXV5miYmw0+pC2vLycNSSC7kkBAH/88Qfrcem8u6pchKysLHTt2pXqOcXHx+PUqVPo3r07/Pz8aIfQkvNadHD10krC9XlVX6fsHKOyx5dEnT8GJsTFwVXR7du3D0Dd3FZUVBTMzc2Rn59PbZ85cybtMdzd3Tnle1SHQZMH2xSFMrr169crfYysrCyUlJRg1KhRUtsvXLiADh06ME6DHDhwAGfOnEFlZSXs7e1x/vx5GBoaoqqqCm5ubk3L4FVUVODXX39l3M9k8Ni+cCbv7vHjxzFkyBD07t0bhBAEBgbi9OnT6NatG9avX88YAgMAq1atom70GzduYNOmTVixYgWys7OxcuVKWs9bixYtWI+pDrgaqfq6iRMnyrynrKwM7dq1YzwHV+8Z20MAUM+DQB3fS2VlJfVa3PuS3MZEUFAQ+vbti4CAALRt25ZTOyS5fPkyIiMjqftPFdR1v9Rvi3iKx9zcnDEX5qZNm2gfdl988QWWLl3K6LzU09ODvr4+9PX10bNnTypmsmXLlk3PadGtWzdOT3y2pyFTlH90dDTlCk9KSkJubi7Onj2L7OxsBAcH4z//+Q/jMT98+ED14lJSUuDu7g4bGxvY2NgwBh63b99eYdd7YxMaGgo7OzsYGxvj/fv3mDVrFnJycqCjo4PNmzdj+PDhMho27xmbt/zo0aMwMTGBnZ0dOnXqxLmX2tC4urpSxanqw/aQjo2NRXR0NNzc3DB79mw4OzsrdL6MjAysXr0aL1++xNixY+Ht7U0Nj9nCThoDOsOfn5+PiIgIzJs3Dw4ODrSa7t27y2zv3r07SkpKGM9VXV2N+/fvQyQSQSgUUqM7QojSPdZGN3gNcbP/8MMPtPNHOjo61BMhPT0dTk5OMDAwwPDhw7Fx40bWY4pEItTW1kJXVxcZGRkQCATUPqZAZ2WfPlxQ15A2NTUVc+fOBQDExcWBEIKMjAw8efIEixcvpjV4XL1nly5dQlpaGlJSUqCrqwt7e3vY2NjIhOCogjq+l5kzZyIyMlKmqHxsbCzCw8MxZswY2mM0a9YMM2bMwMiRI+Hu7o6goCDqwcA2OR8SEoI1a9Zg4MCBuHjxIiZPnoyFCxdi6tSpnD6LvM+nio7J8VJaWoqZM2fSGjy2OMnq6mrGfR07dqRidY2MjKSWkxkZGclrujSkkcnLy1P7MS0tLWm3Ozs7k6KiIlJdXU2GDRsmdW5bW1vWY+7cuZO4u7sTX19f4uTkREQiESGEkCdPnhB3d3dazd27d8m9e/cY/9goKSlh/ZN8nzp0Tk5O1Gs/Pz9y5MgR6n9nZ2fWtkry9OlTEhoaSuzt7RV6f2FhIYmMjCQjRowgcXFxCp9HHpcuXVJZl56eTsaPH08eP35MbYuIiCCOjo6ksLCQ9TjHjx8n1tbW5ODBg9S9Io/63/P48eMVbzgDN27cIKtXr6b+z83NbVAdIdL3kiQrVqwgW7Zskfo+RCIR+fnnn8ny5csZj3fnzh1SVFRE/X/ixAni4+NDBAKBzH0sj0bv4U2aNEkm3ANQzFXNBNM8hb+/P1xdXSESiWBlZUUFol6/fl1uDY7Zs2dj2LBhePXqFUaMGEGdQyQSMUbAsy1sZltFAgAWFhbo0qULFdhMGMJu6jtLuOqaN2+OvLw8GBkZ4dq1a1IxdvJqgxYVFSE1NRWJiYnIy8uDj48PtmzZwqoB6hxPSUlJuHLlCiwtLRWK3fPw8GC8vjweDwcOHAAAjBw5UmXdqFGj0Lx5c3h7eyMsLAwxMTG4e/cuDh06xLouevLkyejevTsOHz5MGx7ExNu3b6UceB8+fJD6n2k+uz73799HYmIi5VST1LGty+Wqk+Tq1auMPfUlS5Zg+fLlsLa2psJJcnJyYGZmJjViqk/9+fPNmzfLnT9notHDUrjCNqdx9epVxnm82tpaVFZWSt2w7969AyFEaqE9E+pe2M1EcHAwrl27hkGDBsHR0ZEKF2ko3Z07d7B48WKUlJRg+vTpmDNnDoA6D1pCQgKtATt27BiSkpLw8uVL2Nraws7ODnPmzJE71N22bRsuXLiAzz//HA4ODvj6668VXiFz79492rZHRkbC0NBQZsmTqjoAuHnzJubOnYuBAwdi27ZtcsuLXrlyhXYKQB5sCTEAdu/248ePkZycjKSkJBgYGMDe3h579+5lnWtURUe38qOsrAydOnVCSEgIaxKH58+fU0HNJiYmcjsb33zzDU6ePAmgziFkaGhIrcN1cnJSapVUoxu8mpoaHDlyBM+ePYOpqSlcXV0VuvmvX78OoG7s//TpU/B4PPTs2ZMKZqSLOOeSEUQMl4XdN27cYDwej8fD4MGDWdtDCMG1a9eQnJyMrKwsjBgxAlOmTJF7g3DR7du3T6qXrYjXzczMDAMGDMDixYupIOWxY8fSBn1Lwufz0aNHD8bg4cTERFa9mOvXr2Pnzp2oqamBr6+vTLiDqjpxoCwhBEKhELq6umjWrJnc0UdoaCjjuXk8HjVXqk74fD4GDx6M4OBgKohY0WvBRVdQUCD1v/h+qb+0TZKEhATKwScZBA8Ahw4dYpyrdHR0RHx8PHR1dWFrawuBQIB//etf1D62JYX1afQh7eLFi6Grq4vBgwfjwoULePDggUJhCQMHDsTWrVsRGxtLRXoXFhbCxcUFCxYsoNVIPrXOnz8vtVoDYDd4XBZ2i4uX1ycvLw+FhYVyV5jweDxYWFjgq6++QnJyMrZt24bevXvLNXhcdFy8bmLnQ0hICF69egU7Ozu5S8MAIC0tDcXFxTIe0MLCQoWGgJcuXUJ4eDiaN28OX19fWFhYyNVw0XHNZUj3o6+qqsIvv/yC0tJSVoOXl5eHqKgoqR6Qp6cnTE1NWc8pTv4wbdo0fP3113BwcFDIQcFVRzcaev/+PZVUgS4udf/+/ZTBW7t2rVTge2xsLKPBc3BwwNSpU2FgYIAWLVpQHYWnT58qn0FGqRm/BsDR0ZF6LRQKFZ4gDw4OJsuWLSPl5eXUtvLycrJ8+XIiEAjk6pkmVpmws7MjQqFQZrtQKJTr8BBz8+ZN4uXlRb799lty7tw51vdWVlaSkydPEl9fX+Lu7k4iIyNJQUGB3HNw1TFRUlLCeE1mzZpFnj17Rggh5MWLFyQqKoq4uLgQW1tbsnnzZsZjfvfddyQnJ0dme05ODvHx8WFtz8SJE8mYMWPIoUOHlHIEcdWpSnl5OQkLCyNjxowhGzZsIMXFxYzvPXPmDLG2tiYxMTEkOzubZGdnk5iYGGJtbU3OnDmj0PnE19/Hx4f079+frFy5UiEHjrI6U1NTMmrUKGJlZUWsrKzImDFjqD8rKytajeRvrv7vT97vMTMzk5w+fZpUVlZS2/7880+lr12j9/Akh6/KZDpJT0/HqVOnpOan2rRpg9WrV8POzk6uXtkATFUWdmdkZGDnzp0A6uYe2ZIxihk+fDh69eoFBwcH9OrVCzweD/fu3aPmoph6o1x1TLRv357xiT9x4kTMmjULLi4u8PLygqenJzw9PfHkyRPWYUZxcTFtj8XU1FRmqFSfVq1aoVWrVkhLS0NaWprUPjZHEFcdV0pLS7Fv3z4kJiZSy/jkJYDdvn079u7dKxUGw+fzYWFhgTlz5lB5Ddlo1aoVJkyYgAkTJqCsrAxpaWnYs2ePjBNHVZ2Hh4fSc8Vc04kBoF25wpYUgYlGN3g5OTlU5gvyv0DCQYMGyZ0noVvvCYBaYKxuampqaBOVEkIYc6Olp6cjIiICbdq0wffffy93zk4SsdF+/PgxHj9+LLOfyXBx1THB5nWzs7ODpaUldu7cCVdXVzg5OVHDfTYHUHl5OeM+tngsgPvyK00s2xITEhKCM2fOYNKkSUhMTFTIGQbUeWXrx/wBdWm+FJkqqI++vj7c3d2RkZGhdt2yZcuoueKEhAQIBAK5c8V//vkn5ex49uyZlOOD61JAZWl0g8clUwpQ5yGNj4+XiWJPSEhgtPySnt3nz5/LeHojIiIYzycZ/AhIP5GYgh99fX3RpUsX8Pl8REZGIjIyUuHzmZiYyITrGBgYsDoRVNHJ87oxoaenh5YtW+L9+/eorKxUKMGpmZkZjh8/jkmTJkltj4mJkbsUb8+ePfD29gZQFywt2ZvfsmUL4/wtVx0X9u3bh+bNmyM8PFzqGst7iOvo6ODFixcy2UcKCgpY8y7Kg2t9EXk6ZeeKU1JSOLVDnTS6l5YrRUVF8PPzk1qveu/ePVRXVyMsLAydO3eW0XDx7IrJyspCly5dqGSJcXFxOHXqFHr06MGYPEB8PibYzkfn6SstLcVvv/3G6ERQRcfF63bx4kWsX78eVlZWmDt3rsIpm4qLi+Hn5wc9PT2paycUChEaGsrquOBaR+Njq79Bx9mzZ7Fx40b4+PhIfS+7d+9GQECAQkNaOpSt+6CITpwoNiUlBSUlJbC2toadnR1tqigxnp6e2Lt3r9LtUCeN3sPjSufOnRETE4OMjAw8fPgQQF2g6LBhwxg1XDy7YrgEP7IZNHlwWbqjio5ujaM8IiIisG3bNiqAW1GMjIxw9OhRXL16lfJGyrt2YiSfz3TTC+rWaZJx48ahR48e2Lt3Lw4dOgSgbmH9tm3b5BbTYcoeRAhhHQ5z1XGZK37z5g3bR9AITdbgiRk2bJhCPxSgrq6B+MkkdmdXVFQgJCQEGzZswLJlyxi1XJIHyEvLrWi8mSRsToSG0LHBlmxBESwsLBQOKRHDdeJblQlzTVFbWws+n48NGzYorWXLHsQ2uc9VZ2trCx6Pp9RcMddUcOqkyRs8ZZDn2WUzeFySB7DN0XGFzYnQELqPDbGTS9LBBbA7j1TRaZJvv/2WGloLBALWoj310bQzR9F8eHFxcVTGIK6p4NTJJ2XwVPHscgl+ZBomikQiJCUlsQ4juToRuOqaClydXFx1mkSyB67sGvKEhAQQQmScePHx8dDR0WEcbXDVKYpkSja2VHB37txR6TwKo1TUXhNn9uzZtBk54uPj5Qa8EqJ88GN5eTmJiIggQUFB5NKlS0QkEpHo6GgyZswY4uvry3qu/Px8qb+CggKp86pb11Tw9vYmCQkJSn8mrjpNIhngrUyGGkIIcXNzIxUVFTLbKysriYuLi9p1isIWbCzJqFGjVD6XInxSPbxVq1bBz88PsbGxtJ5deSgb/BgQEAB9fX0MGDAAMTEx2LVrFwghCAsLk1t8hIsTQRVdU2HSpElU8eihQ4fC0dGRymrSEDpNwhanBrDP+dbW1tLG+7Vq1QpCoVDtOkWRHDmxzU0SDTmOPimDx8Wzqwr5+fkIDw8HUDc/M3LkSKSnp8vNtqGFGXH93KqqKvz666+Ij4/H6tWrYWlpCUdHR8ZVLFx1mkSVOLXq6mq8e/dOJoyooqKC1XBx1SmKpCFjyyykKcfRJ2XwxCjj2VUFyaVoOjo66NKli9bYqYmWLVvC3t4e9vb2yMnJwZIlSxAfHy93ro6rThOo0jt3c3ODv78/goKCqOPk5+djzZo1cHNzU7tOUSTrB7OldGOqj6JummzgcVOAz+dTT07yP+9gixYtVEpuqqWO4uJipKamIjk5mcrU4ujoKDdejatOE4hrH4sR3ydAXQ/o7NmzrPqjR49i165dePfuHYC6Yam3tzf+/e9/q10nEAgwf/58GYfdo0ePIBAIsH//fhmNKoH46uKT7OFpCj6fr7Gau58Kx48fR1JSEh4/fgwbGxssWrRIqhehbp0mqZ+ElBCC1NRUqg4rG+KgeA8PD1RVVYEQgh49ekjlnFOnzsjICM7Ozvj+++8xYcIEVFVVYceOHTh79iwCAgJoNUwGrbCwEMnJyVqD19T5WAJa/05kZmbCx8cHw4YNU2jdrqo6TWJgYACgLmwpISEBUVFR4PP52L17N7744gtWLV0+w3v37rHmM1RFN3v2bDg6OkIgEODo0aN4+fIl7OzskJCQoNASwzdv3lA97ZcvX8otbq4utAavAXn9+jVrLVGmQs5amBEniRTPuYmTIzCVU1RVp0mEQiFiY2Oxf/9+mJubIywsjMpCLA9NL0UE/v9A//DhAz58+IDPP/+c1dhVVFTgzJkzVE97/PjxyM/Px8WLFxk16kZr8BoQkUikUOFmLYpDF+FfVlYGoVCILVu2MIb7cNVpkrFjx0JXVxfTpk1Dt27dkJubi9zcXGo/l5UIDbUUMSwsDPHx8Zg/fz7s7e1RVFSE4OBg/PLLL1i9ejVtj3T48OHo168ffvjhByp/3pkzZ5RumypoDV4D0rFjR8YnqBZuMC2Funv3LtauXYvDhw+rVadJhg8fDh6PJ2PoxHAxeA21FLGkpARxcXGU06Jz587Yvn07Lly4gHnz5iE1NVVGs2DBAqSkpCAoKAgODg6wt7dXul2qojV4DYjWAa45+vbtS3kZNaFrCNjWpxYXF7NqNb0UkanuzKhRoxhTis2YMQMzZszA8+fPkZycjLlz5+Lly5fYs2cPxo0bxymDsbJow1IakNLSUto8eVrUT3FxMb777jucOHFCIzpN8PbtW5w6dQpJSUl49OgRfvvtN8b3cslnqIquPg8fPkRSUhKSk5PRtm1b2u/z6dOnKC4ulvIA5+bmIjg4GDdu3NBILKS2h9eAaI2d+hEIBDLe79LSUmRmZrJmu+Gq0zTV1dU4d+4cEhMTkZ2djcrKSoSFhVFlCZlojKWI+fn5VE1bPT09FBQUIDY2ljZNPQCsW7dOJu+kqakpAgMDsXXrVs7tUAatwdPSpDAzM5P6X9wjWbp0KTp06KB2nSZZuHAhbt68iREjRsDDwwMWFhawtrbG0KFDG7tpMri7u6OiogL29vbYsWMHevfuDSsrK0ZjBzAXb+Lz+Xjx4kVDNpdCa/C0NCmsra0Z03HR1YNQVadJHj58iHbt2sHY2BjGxsYNVpBKHXTo0AFFRUV4/fo13rx5g969e8ttqyrFm9TFxxmBqUULAx4eHtTr6dOnS+1jK3DNVadJEhIS8PPPP6OyshIzZszAlClTUFlZKddh0Rjs3LkTiYmJ6NOnD0JDQ2FlZYW3b98iKyuLUSMu3lQfRYo3qQttD09Lk0LSx1ZWVsa4T106TXL79m0MGDAA/v7+8Pf3x71795CcnAw3Nzd06dIFR48ebewmStG2bVu4urrC1dWVWqO8bt06FBYW4sKFCzLvDwwMhJ+fH2UoAeniTZpAa/C0NCn+zjUtgoKCpKqnmZmZwczMDIsWLcLNmzcbsWXyMTIygoeHBzw8PBiLqatSvEldaA2eliaFeLkeIURq6R4hhLUqFlfdxwCPx5PrpdU0bKmeAPZ6LlyKN6kLbRyeliaFvKEP08oWrjpNMnjwYKpWCh0NURSKKxYWFujatSscHBzQv39/mWkBTWQ+4YK2h6elScFmmOhysKmq0ySGhobw9PRs7GYoxOXLl3H58mUqDm/UqFFwdHRUukaxptH28LT8bRg9ejTS09M1plM3zs7OTTJ/4vv375GUlIQNGzbAz8+PykzzMaLt4Wn528D12f2xPPPbtWuHV69eoWPHjgDqSiWeOnUK3bt3h5+f30e3cuf9+/dIT09HUlISCgoK4OHhobG8dlzRGjwtfxu4els/Fi9teXk59PT0AAA3btzApk2bsGLFCmRnZ2PlypXYvn17I7fw/yxatAgPHjyApaUl/Pz8WAv0fExoDZ6WJsXAgQNpDZS4Zoi6dZpEJBJRvbiUlBS4u7vDxsYGNjY2cHJyatzG1ePkyZNo2bIlnjx5IpV662Ov16I1eFqaFJmZmRrVaZIPHz6gtrYWurq6yMjIgEAgkNr3MZGTk9PYTeCE1uBp0fKR4ODggKlTp8LAwAAtWrSgQlSePn3KuA5Yi3JovbRatHxE3L59G69evcKIESOonHSPHz/Gu3fvNLbe9O+M1uBp0aLlk0GbLUWLFi2fDFqDp0WLlk8GrcHTokXLJ4PW4GnRouWT4b/4sUpqjzLUWgAAAABJRU5ErkJggg==\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(5,1.5))\n", "\n", "pal=[sns.color_palette(\"coolwarm\", 10)[-1], sns.color_palette(\"coolwarm\", 10)[0]]\n", "sns.stripplot(x=site, y=predicted_prob, hue=y, palette=pal, alpha=0.2, jitter=0.2, dodge=True)\n", "ax=sns.boxplot(x=site, y=predicted_prob, hue=y, showfliers = False)\n", "for box in ax.artists:\n", " box.set_facecolor((1,1,1,0))\n", "plt.xticks(rotation=90)\n", "for i in range(len(np.unique(site))):\n", " plt.axvline(i+0.5, color=\"gray\", alpha=0.5, linewidth=0.5)\n", "plt.savefig('../data_out/fig/abide_site_raw_striplot.pdf')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:10:44.301753Z", "start_time": "2021-08-01T19:10:43.274005Z" } }, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUIAAACMCAYAAAAJOKDsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACHOElEQVR4nOz9aYylyXWeiz4R8Y17zDmz5q4eqkfOIk2RslomdY4NSb73WiL/XBgQLkARsA1DgPXDsH9QgADJgAQZFmDAwoUvaFjGgQFb9pF1qGPLImVREjVy6nmo6por52HP3xQR98f6cmdmDV3VZHU32awXKHTnzj18uXfsFbHWet93Ke+95wEe4AEe4AcY+t2+gAd4gAd4gHcbDwLhAzzAA/zA40EgfIAHeIAfeDwIhA/wAA/wA48HgfABHuABfuDxIBA+wAM8wA88gnf7Am7Gt771LeI4frcv4wEe4AHeY8jznA9+8IO3/d33XCCM45gnn3zy3b6MB3iAB3iP4eWXX77j777nAuEDvHfhnaPcWMNlGeHSMqbRfLcv6QEeAHgQCB/gHcToW1+n2FwHQL3+Cu2P/jDBzOy7fFUP8AAPAuF3hNdee41XX331HXu98XgMQKPReMde8/HHH+fcuXP37fnscDANgiCnw+zSG7Q++JH79hoP8ADfKR4Ewu8DTCYT4J0NhPcD1d4udjQkXFjk9pL2BzL3B/jewINA+B3g3Llz9/W0dDf87u/+LgB/9+/+3XfsNb9bjF99mezSBQCUMbQ+8jcI5xcot7fkNqWIT599Ny/xAR5gigeB8AHuO1xRkF9+Y/qzt5bswmu0PvRRirUbuGxCtHwM02q/i1f53sV4POYP/uAP+PEf//Hvuyzi3cIDQvUD3Hd4a29Jhb21KGOIT5wifeTcD0QQrKz8e6fx9a9/nbW1Nb7xjW+88y/+fYoHgfABbgtfFrjhHr4q3/JjTZoSLi7hJhOK1esUazcIF5behqv83oT3cGMHXr0h/27syG3vBMbjMa+99hoAr7766rTR9gBvjgeB8AFugettYy+9gLvxBvbiC7hR7y0/R/rwY7hMmjym1Sa/chFXvvWg+v2IwQR2h0gvyMv/D7J35rW//vWvT0/j3vsHp8J7xINA+ABH4L3HbV0/aOh6j9+68Zafp1hfJZidIzp2AtNq44qCcnOdatBn8I2/pPen/4vJ66/eoZv8/Y38NvH+dre9HTh//jzOOQCcc7z++uvvzAt/n+NBIHyAo/Ae3NHClrfVW34aFUa33mYMw6//JcX6GvnVK/T+7KuMnvvmd3yp36topTfdoKCdvDOv/eijj6K1fK211jz22GPvzAt/n+NBIPw+gveOcjKmGA2wRX7vjytzXD65p9OX0hrVPqr20J25t3yt8cnTRyR04fwCKklxeUZx7QrF9avkly+y83v/J6NXXnjLz/+9jDSCkwuQxvLv1Dwkt+4Lbws+8pGPoJQChKL04Q9/+J154e9zPKDPvIsoSss4KylKS2A0cRTQSILpQr7l/sM+tm5eVEVG5NsE8ZsfNezuOj4byg9BhJk/jtLmTR+jl07j4xSfjVGNNqoz/5b/Nh1FdD75LOX2JkobwvkFXFngrcUO+pS7O/hsgm626P3RVwhaHeKTp9/y63yvotuQf+80Go0G586d4+WXX+bxxx//vqPPuDzDZRmm073j9+DtwINA+C6hKC39Uc4kr/Deo5XCe49S0EjCW+6vlZoGwX1URfamgdAXk4MgKA/Aj3qo9puf8JTWqNnlOz+vrajWruJGA0xnFrN0AqVvTS6U1kSLB8+jw4jGE08zeeUFfDZBRRGm3QatyK9eek8FwncTH/nIR9jd3X1XToO+KvG9LcCj2vOo6N4t9cavvUT/z/5ETDkWFpn9O/8PguY7Y8zxIBC+S8iLCuf9NF113mOdp6zcbe/v8YDisCztbjumt7eS2Ly7d2Kb9x7f38ZnI1TaQtcnw/KNV7B7ohBxvR18WRCeeuSenjN9+FG6P/a/s/v7/xe236fcWEeHEd7e/u9+L+Dd0qZ/+ctffsde8/HHH+exRx7GXnkF9jfsvU3M6SdQ4d2Docsm7P2vP8ANZePOR0P6f/wV5v7OO6OmelAjPITKenb6jnH29ncytVZopZDgJlBKEZjbBzfvIUzSI/cNkzdPe1TcgJvSYJ22AHDjAXZnFdvbumMzxK1dwq5fxve2cWuXcds3JLWtg+A+7Pb6bR9/O9jhkOTUGcLjJ9FpSriwhHcO9xZqng/w5phMJlN9+jsJP9w7CIIA1uL7O/f02GowmAbBfRRrR9kK3nuqQf9toWE9OBHWGE08L1+27B/Ijs9rTi+/fftEEgcUpSOODEWxXyM0pPGtafE+wrSJiWK8tegwRKk3vz6lNWb+hPAAnUU1OqgoxY37uN7m9H7V3jrKOrAVqjOPmlvGrV7EXXkVtIbOnDyut4WZO4YKInxVHLyQNpRXXsfnOWZ+CTN3e/L0+LWXyS6K/tj2dknOPYkCTLMF1VvvTH+/4AdFm+5uF/RuUzK5HYLZOWkGbm2Cc+g0pfHkM9Pf2/GI4V//BXYyRhlD44mn72sp5UEgrHF9y3E4K13ddhybV4TB21OwNVoz046prEMB2uj6hPjmUEpTVRllPsEEIUHSeNMUWQUhprtw5DY/GdZKBwfO4TevQ3MGZQJ8b0vSYefkpGg99LZh4QRKSyMnPP0I+YWX8ZMhKkrwfoxflxOI3dsi8h4zf7TG6LLJ1IQBpF7ohoPpYn7gS/jdw3sprWgT4L4DytN3C9WaQcUpPq9Po2F0z402n00IV45Tbm9hBwNcnmOHAyaXLhDOLZBdvICdSMrvrWX8youEy8fQ4Z0PDm8FDwJhjfKm0plHdKLh2/gOKaUIgzfv4N6MYjTA1qcxV5V474karbf0HK4qcYNtvC0lyA376KqE7gLKhLjBLuQTsBU+G8mCdsfQ88fkupttlNZ4pfFlju+PjpwCq+11zPwy3lrya1cot2WX91mGqps78YlTVP0eKAhn5mg884G39Dc8wFE45+mPcqzzNFqzVGVx9wfdZyit0acex4964D2q1b0rQ2Ef5c424fwi4eIKQWcGgPHLL1Dt7RKffgjb72E63en9vbX4IocHgfD+YmlGMRgf1AbbDUUav3Pt+7tBAdaW0yC4D/sWF7x3FqpCnnGwh88zqVLW3T41dwxMALaUjp8JQIE5+Si65hdWN66Ad+i0ga9K7Pp1dGcWFciiVGGMHQ3Z+8rvU6xdp+r3UVphxxNMq0kwO084v8DM3/rfiY+f/O7fnAcgKyqsO1i/QRhRVvYtb7TfLW7HQ/XO4fq7qCBAtw4Fs6qivPYGbrArHP58gvIOFUVUuzuoJMHlUjt2eY4qCnQkhEzTaktJ5T7hByoQjjPHjY0SYxQnlgKi8KB+sTijMRp2B544UqzMvftBcD/VaaUpSaDI+3tURYYJ42k6rO+xBjNFVcrO3Z7F9XdQjXatJnFgLaozj27P4aoSigkqSm5Z2IcL4ioI0d1ZsBaCEBXF+KTF7pf/B9n5VynWVtFxJGTq8QjwmFYHUOhGk/zaFYL5RUx6sxzjAd4KbkeWd98D6kVf5OSvfGuaLpuZBaLHpPZXXnl92mhTQNhukjeauMkY3Wyho1DoVUC4sEh84hR2PMI0WySP3N+a6z0Fwq9+9av88i//Ms45PvvZz/L5z3/+yO9/5Vd+hb/4i78AIMsytre3+eu//msAnnzyyWmh+NixY/zmb/7m/bz+e8Y4c/zFc+Pprnl9veTjH2gc6dJ2moooVDQS7qle93bCeU9/mJPnJfOz8zhvcc5hTICvSlQYobQmTN/irhhGoA3KWVTahMkIlTalwxwlmJUz+PEAhjvg6wAYBKhmZ/oUZmEF29s+eMrjD2FOnIUixyweY/Ttr6MOxMq4yQSqCh2EU+J0ubHO3h/+T0xDapytD32UcPEHx6HmfiMOA7LioL7jvSMK3n1SSLVx/aBmiNSQ3aCHbndxvaPNlbDdZOn//f8he+M18uvXKLc2iZak1hx0uzTf98G37TrvGgittfzSL/0SX/ziF1leXuYzn/kMn/rUp3j00Uen9/nn//yfT///t37rt3jppZemPydJwu/8zu/c58t+67ixUR5JHbLCsbVbsbIg6dzGnuPSqsN5iAJ44oyh8RZTY+c9gwkUlScJFa1E6oDWeSY5KCWSq3sJskVhKUpLXhTS/UUznlS0mhEmiYiSJsqYt8y+V0pjZldwgx1Jg4d7cnucopfPyP832pgTj+J622AMemb5SK3HzC0S6fdhdzYgjKhuXCb/8n8FPGbpJD6ZQUUReI8rCnxZEMQz6FaLYH4erKXc2iCpGyTeeyZvvP4gEH4XCAJNpxmTFxVFPqHMx++oMuOOuA0bYN/aTaVN/GBveruKU4JOh9YHf4jWB3+IcnODYu0GOm0Qn3nobb3MuwbC5557jjNnznDq1CkAfvInf5Ivf/nLRwLhYXzpS1/iH//jf3x/r/I+wNyGn6frm6zzXF5z01SiqODqhuPxU2+tvrI98Ezqkt2k8FgHrQTW9zy2fu5wAiszdydDO++prANl2CdSOzzWOqJGDAqK8QDvHEEUY6Lk3hd+GKFnFlFFjm91IUwwN50sVaODaXTu8ARgZuYxM/OUNy5TXb0wNdyrVq9gThjKjQ1Qimh5Be8c8emzBJ0OOknxtiKYm5/We0DqRQ/w3SEMNGEQUWTDu9/5TeCLDJePUUGISlrfVUA1C8tUm6vsCwFUGKM7sgGGpx+luPCiqIzCiPDs40ceGy4uvWOb410D4fr6OisrK9Ofl5eXee6552573+vXr3Pt2jU+/vGPT2/L85yf/umfJggCPv/5z/PjP/7jb/p6eZ6/6SDm7xRlBdubhqL+vjUT2Fy3bG9AaRXX149KeXa3HG5476aW3sPAHg0c6zhCXZK7o8z6zRtjQv3mX3yPwqoElKZfOGLt6Q+G9AYOv7lFQlWHR48CHJqq/gcK5R1xOcK4CqsD8rCJV5rAFsTliKDKCGxBZSKs0viiwilFFTUp044cX+8AVeZ4E4LWhNcuEO/tye35BF1k2H6f0ajCKgXtGWi2GFmHP/0oKptAFAstZ3X14EkfanDjbfjcfxCxryz5Tr5HgS1IioNAWpqIPLr38otylmi0g6kKbJiQN2ZRpoHp74IxVHEDauNYecEOxAkEIVxbBVbv+NxvJ+5rs+RLX/oSf/tv/22MOThJ/eEf/iHLy8tcvXqVn/3Zn+XcuXOcPn1nImQcxzz55JP387KmeOpJz+ZuhdGwMBug9cGXXTctw8lB6nxyUXNyUTPJPWHAHRUfIH0Gj2d11x8pUEcBJCH0byL5z7cUzeTuu2xZWnb6E/Z2thkUBY8//TTNWDPZ3aLIZLG7KkcHkXAK45QgSYnSFnZnFZ8LVcU7B3hUoyPsf9Oi2rwCLkAZDcM+KowwXdl99cIcem7lluvxRU7x+vO4fIjShuDMY7DycUb9dfywh5uUkCREp8+S3FjDq4Bg5SQohQ4juh/4AG48Zvzy81SNlKrq4Isc0+nSfPhhktMP3fU9ea+jrDxag9Hf+Sns/PnzAN/R96jaug7l0cBnls6gzL2FCnv9PD48eLzqNDErT7/l63g78GYbw13/uuXlZdbW1qY/r6+vs7x8e0H+7/3e7/GFL3zhlscDnDp1io997GO89NJLbxoI3y445xlNHAuzwW1J0o+f0lzbdExymGkp5jrw3AXLOPdoBWeWNctzR4vP3sPqLuyNABTtFNS+KljBTFMRaBhmntJKkEwC7pmWE4aGpbkmX99bx3tPuxGRjwaUxQRX5vU1OLxzU5XJfoq5X6D2zmH3NsFW6KrCj/u4MsdPBnKROkBVBc45dD6BMMYNdlGNDoQxqt7UfJEz+euvYrfXpaPXnqG8/BrJBz5BuHKS4mXhChIlTNY3qYZDqsGIajwheeQcjaeeIb92hb2v/Hd8WWFmZymuXiHozhDMzDF++QV0mh4xafhBgnOezb4nrxOFduqZbb5zzQ7vPZQ53ltuWZ03ZQfee/z2qtSZgxC9cAKVtuT2Uf/ofb8Dd/N3A3cNhO973/u4dOkSV69eZXl5mS996Uv8+q//+i33u3DhAv1+nw996EPT23q9HmmaEkUROzs7fOMb3+Bzn/vc/f0L7gH9keVbr0woSglqTz6ccGzxKBEzDBRnjx2cZC9clyAIQkO4vO6Y7x7VAvfGtSX7/uuMFWeWwGiIA6Ynzkbk2RrIfZwRpom+x7O4usl1xhY5eKbqAe88KD1l2Ouay0cY4YsMO9jGF2MhQI/7uGwoRFQQLaj3QpNBi7O8dxA3hFCtNWr+OJQ5xcvfpNpYxXuP3V5DRTG61aVcOI6KYqJnPkp17Q2qwZBqcx3d6pA+8RCYgPSxx/HOMXr+W1Q70iksNjfQsfAN91FtbX5PB0LrPIOxF2bBfeaYDjKmQRDE7r8Ze6K3Sdl0GL4qsTs3hEBfFnhn0bHQmVSjcwsp2u9t4nbkcOTLAnvjAubsM3K/MIbyQDeuwnfIkfa7xF2/jkEQ8IUvfIHPfe5zWGv5mZ/5GR577DF+4zd+g2eeeYZPf/rTgJwGf+InfuJIYfXChQv84i/+Iqq2mPq5n/u5OzZZ3k6cv5xTlAdB7bVLOcvzR1Pjw/Deszv0lJWfnh6dF7v1w/zUyU1cZuc8W31PIwYbS9fYOs8ohySS5/FAb+JZaH9nC1ypOggCRhtMpIiaHdHsRjFBbcRguotUG0J8VkofLEjrREqHliOt96gwRan65JdnIptzDqoS9/o38UkLN9hDuQo36OOrCm8rVNqivP4GOghRxmBWTlLlb0iavbCCbgoHzFcV5cYaLstwZUG1t4cd9MAY0seemP5tpn3n5sy7jUkuWvT9GvOxec2Z+6hFr6y/zW1SXnm74Ya7UEvydBjhnRW5XJiib2Ps4SeDozdYC9kIGh3M8mns2kXpFgcheunU2/8H3Afc09v87LPP8uyzzx657ed//ueP/Hy7TvGHP/zhqQD83cQkP7rISutlkd1mHZeV5+XLju2+Z6fv6TQ98x1NEkHjJjehZgI79Zrw3jMpPU0PWQlZHXij4LBxluA27lj3hKrIcFWFUhDEKUopCX5xQpVneFvhqhITRqgwJlg8CUrSZJ+P5ULCUDiIzuGLCVgnHeSkKelzbwtf5Pit66JCmQxg5RFQCtVowbAPJkClLYLlE/JcQYAbDfGDHsHMLL65IBxFahnh0gq9r36F/PIblNtblOurklLFEcWlN4jPnKVx5mGi72GVyY0tNw2CIFr05Vk13eDuht4YRpmsoW7j1l5UI1aMDq1TraS+fBjWOkrrCLQmeAscQfG5fJPrvEmXrLRBJ6072mepOMUPD6W8SkG0f4JsY86+T06Fh4j/d7y2qmL86ouUW1uYdpvGE08fcTZ/p/ADoSxZng+4dOPg+DbbMUThrR9QXnpevGjZ7nvaqQevGGWedgqPnBDOXmUlhUkj6KSwMivB0DqYaR49MY5zTyvRhMYf0TI3v4O0Kg4NxWgAWuOtwlcFcauLCWO5vYYd9kk6s2hjUFGKTlqiCQ5jQKE7c2KpNdoFZUQjPNwD58RVJkogGwvxWim80ugywywsY7fW0d15MAFmbkmI3SYgeORp8q9/FYKAoNHGKA3NOdAGl03o/dEfMDn/Gr4scVmGiiKUNphGS9LxLCM998RtzV2/V3CzFh3ufWbxZg/W92CUS1Yx14YnT8ChniJppJhvwbCuSXcb6kjGUpSWwfhgDTfigPQ2Br6H4Z0lHw1wVYnShqjRxtxGm6vSlmyK+wiiN/UQVLPLqHwiwdCW0OhCkUnnl5oaFt1bSjx65UWK61cBMeYYTiZ0P/nsXR51//EDEQgfORURBIrtvYpWQ3P2xK0f8iT3vHDRsrbjGE6gP4bj89BtaU4sapJIsTOAtT3JKAMDZxZhvi3/rIPrN7kQ7QfFpa6iP/ZUThZ86x46xjcjqd0flFIEtetvkDSw5c0+fh5XFWgjO7SZO4bLxxLo4gZKa6wH22uACdBa45MGZBN8kaFmlkBpKHPhkbVnocgIZpcwswsws0z+4tcpL7yEr0rM/DKuqnCTMZQFzoOemSdaWcF5xfDb38BXFUopVBQRzC9QbR0MiFLGgFLkN66TPvzOl03uFYszir3hwYmtESta6e0/x/5YsoJmXGcN9TjPYR1r1nbld2dvKoc2kzuzCcbZUQ++SV6RxHce6wBQTEYilUSCYjHuk3TmDurO3qODEF3zRX02kjXRenMnIKUN5vgj2K3ruO01VD7GXnsdvXgSPXt33p/d3aK8ch67vcb44hVUlGAWlnFFwfjlF8jeeJ349EN0Pvlj6OCdCVE/EIFQKcVDxyMeOn7nCTrruw7rZDEOJ56ilBrgTFMMGKw7CIIgp4GNHix14cYu5KWqmyQepSE00Km/KEYrZlvfXdHb3kY4qrRG36brom66TcdH6zwqStCHp8yVuQjeg0hY/1WJml1C1f1DdfIcoKnWrmFf+RZuex3VbKOVBucoz7+ICupCeZ5J3fHRp6m2RIanmy3RIBc5ycnTTMZDXFFCGBIurWBa7e/p0yDAfEejTsLOQBoYx+Zv/3mu7cJ2fUDfRDIGrWUteSAroPJwbRuWZ24tt9yMsrq9YLiyjryoiEKpdXvvyQtLWVmipEmRjW8hqXsnDINiMpyadWhjiFszEgzfhEB/O/je1pFA7HbX7xoI7c4mxevPU+6T8LMhtiwhCJhcvky1u4O3lnJzAzcaMfcT/8+3dE3fKX4gAuFbQSNRLM3CcOyZ7yjOnTQYrSiqgyC4j9LC1W0o6s3aOUUaygIPzZ3VI957JnlFUVqMVqRJSGDePBCM81K8CPMJ3jvCtClyuSjGlEV9MlQEcXLb9OcwdNrCFxl+XFMdrAMTyonAWUibkhopjYoS6MxRvvRNsdwqC9xoAN5Boy23OYvLcujtSkBzDq8Dgq6cLJRSJGcfptzZJn3scdJHHmP4ra+j4pj49FlM2vierg/uY66jmXuTWOG9nP4OY3sAy124sUMtv4Q08mQlvHrdc2Je1EdZIRzzZiwdae+FTrN/EAy0JtaVnJ7rYuUoqxhnFZ1WTFFaJnXbOYobaBOgwxCXH+Tv2hi8s0cci5y1VEV2V7fz+wW7vYYvi+mXKZrtUmQVbjTEDgYEM3PT70126Q28tVMK19uJB4GwxvKsZmtPHKrjEFSqSEKp86WxIgpEJzw5lIk24oNmyT6yUt2105cVB4vWOk81Kphpv3lh2XmPMkZSBaXwzlFlY8K0Sdzq1KRp3vRk5asSnw2leB4n0hnUGrd5DXvpJanzyLOgls/gB7v44R5+dwPX35a5JWkTFSfY3W0Y9ISTWFboJBEbLidjAPJv/Sm61SE+tkLVG4BWtD78MfIrl7B5TuPxpyh2d/C2In7oYW4lr703oBR0m/Chh+DPXtunVUnmkFcwyjwbe1KHdl4xzj1LXY11cDgbrlxAM9YoHFVlpxunR9Jke9PMlyCIMHEDPNiqQJuAMG3e1rB1f+0cua0qcINdvC3RSQvdmrnlPnp2Gbd1YKevZpaETfBm5OsgkpnX9Yapw5DWQ4+hV05jf/9/1A5F9fO/g45EP9CB0DqP0Yqs8FzfcgQGAuPpFZ4kUewOYXfo4KSkRqcXYLMvBe92CnMt2eXLQ2srfZNUx3tPfwK7gwrlPan0I6i8o6wcUXjnnU9RG6pWJbauuVGfDL332KrEO4sJY/RtdlBf5tjt67jJED8ZQhChO/MEc8dQaQsOz4GIU9z6ZVTcEJ5hEOKzISpposKI4MRZ3HiEq3JZ1GWJHw3Qs4tSZ0wb+CID38ZUGY1PPsvk9VfY/Z+/R/bGeaJjJ1CNBtmrL+GtpVq7QfLwOTqffPb72o5LKVjoSHNkH4v1CbLThMdPCO+0qIR0bxRUTppv5RCU9mggChyN+HZTAQ2NSFPe3KWppyDaQ/wEj0drjakpTAfPoYVTOg1+iuCmxob3HruzOu0muzKXzdN7wKOaM7Ipz62gkqZkEt7h9taxW9dRSRN97KysjZsQHDuN6+1glo7jdjbRjRbB8YcITz9K+4fH7P6P/0vq4O0O7Y//yJHTYDUcUly9hCsK4uMn76sO+T0RCL/2ta+xvb199zvWKGxIL5+lciFGl3ivccgbbp2hcgFxcHD0e+3FCbPJ7YfQWCJyNY8jxJAR+y2+yR0msgUtVDRDFEWEYYAxigAJQNlkwGS4O92xTRARhDHeWXZ2dvDe8/KLL5CEAVpJR9E6x6WNv6KZRMR1EPUeeuOM8qYTwoyxzBjLXOCms/B2q8v0naFfeJaKPUJvcUph1R6pzQmwGO+olGHiFKMbOwRlThEkdIYZ6aQgqAoCW6Btxbg/QHuHyzfpFRp7VXSjuy+ep/PCN9FlQTDowdUreGPQzuGCAFu8Qrizy5OnztB4/O2RV75TWOpKI2RSSKMkPRQLjs1KOaUvvSu6TSHf77sVAThgnEsDrj8+oF4p5LkCowmMFkOOGnEka6I/zqflm3wyvG2GoZQmbs1Q5RPwHhMntzYkyvwIpcY7h7/8EqqmyBCuynQ6E4ifZdLEXnxh+hifjXBb1zHHzt7mHfIEJx8mQGrHuqZZFetrVOurNB5/Cjca0vrIR2k8LtK8am+H4be/yei5b6DCiOjkaYq1G7Q/8jcIFxbv5WO5K94TgXB7e5vt7W3m528/HyErJEgkkeyke/kcWZUwsU2s0zhvmE220cqjlKN0ETEHgVCrO/MkDAUNvzodtokyYJrgSnA3Ma7rTm5ZFhijieNETkTFGAVESZNs1CMIY5JDheuF5ZMMe1sUlaURhYSBljknSnN6oUNWWSrr0HgaqqSdePYyS89q3DTn9KRaDBqMAoNnNnAYC7s6JDORXDPy5bNKEdenhsBbjI4ogxBjK0JXop3F2BKvFB5FZUJQitLEFHEDW1Mpiigl6PdkFIBSuCTFDIcoW+HDCJuk5FmO7fenneR3AxevF1xfLwkMPHwqZmnu7l8N7z29kWd9xzPJPVGkOD6vmWkpmvUhKy+FPxhHEiAfOwaTQtEbe4pKLNmaiZpq1I0WWWYUKBY7MKgnKnZSRVirmjrNiLywWOcJ66DoPbQbEnVH/W1RCN0B2hiiRuvO/EITcGR0bDaSlHf/92WB728fzL6uylu4iAdllgNUa1elSQK48QiVpKggIJhfYXzlqsz3ThJ0klCs3qDx+NN47xk9903KrQ1xq84yyrUbxKfOkN+4+iAQ3oz5+flbpnZZ6/nmKxP2BvIFm+8GPP1ozNdfs1zdEJss5z29oefYwspUS+zcwfCtOISnHjLEt+Ed3oyskAL3/i7eTmC2JU9knefalmOQCa0mCT1lkTPTPOCLBUbTbcX0R/kt8427rRhfZgy316VhYi3aGIIoxnsvzZPBDi4bo2yOURrT6hIefxQVxrjJkPLyi7hsJORqrWlGKYvdBc7NrqA7C/jhrizqZhd78UWYDCXFDUK8Cnjk0DW5bEJ54UV8WYIxYu4aJURnH8fMzOPLQtKeY2eYXDzPzu8dnDJcVaHjWFK0suTa9WuUaYPoXRrwvrZVcuHqwcb3/OsTPvnBJslt0tPDeP2a4/qWY21HuH/H5mXcwwceMSSRoj+BqzLrHJC0eXlGKFRpJD6VSkEcaoaZx3s5Ie5TaJLo9oRtpRRJHEggHuZTRkFeQKcV472jEQXkgx46CAiS9MjEw6rIKSdD+YxcRRCnmEZnmsoqE6A787jBtqQYOhDC/WEc6hyqKBZHoUMjWVXjaEruioLi0qsoXTdsNm+gopjg2GmqzRvYrfUj5r++KKb/tZMJ1d4u5foqeI8dDYhOnELH90++954JhLfD2nY1DYIA272K3X5AUi9CkB15vntAjm3EinOnZNEUJbQa9+5W3Z8cBMG89Azr3bydiiehq38rRXDFbNOg9cGCiiM5ud4+pZEFinOi+PAWZz22MmhjKEcD1HAPqgLjLVZr/MCjd9YwS6fRaQszu4wf7AJeZHeNjlBrqlJ4fu256ev5Rguv1HRBu6KAKsPnGa6/C0Bw5hw6jCEIxIdwYRlshd3ZIH7yQ1I/qkrSs4/SfPp9jF58HpwlffQcnR/+EfLLl8hXrzNWAZNTZwneJYndbv/oSdR7ue3Y4p0D4Tjz7Az8VLXkPPRGnsVQ0Rt6kjnFVo8jsqLtgQTDwwQB8bD0uLpJ14wV3ea9rbeyckdoVR7Ii4pWEpJGIbYqsFWBsxVxPSvEO0c5HuCthf4WzjvsJIJJH7NwEhVIMNTNrtSOnQVlsJdfOhjRYAxECXbruujcWzPoYw/jbrwhzZXOvGjUa1RbaxQXX6a6+gaEocy+8V7WcY2g3eZwNSc6ISwCHceSaWxuoJIEP5ngnceNRyQPPXxP79O94D0dCPPi1vQgLzxPnA5Y2/H0R540hvmuZmVOcXzeHHGGsR6u16XHuRbTdMd7qQEZLYt3H/ub5KSQxQ2w2Xes7noKK6y8ViJ8w8DA0kwsQ3esJwrNtFmSxgFlZafPl0QBRmvKvCRIElxVYL0H72raTIgOErxSaGdFVuecNDpcJcOawhizcAIfJjil5NgLuHEf7T3VtfO4retCqakKiJuoIBDO4fxxgu4i1fN/SbV2VYbxjPpS31k6jrLhVG63/0ZMXnqOoj/EVxXBzCzdH/00nU/8TapeD5/n6DCm8/EfkdTnd37nqMziHUa7aYDyptsOotW1TcfmniMMFKcWNd3WQSorWnT5Yfp5xQf69MO4mRG4O9w38lWEgayn/QziXnC7/VkpRXyo5uedJR/2cNYSRLHozL2HMhMKFOC8xXiPmwzRcQPvHSpKxUShNlwwp5/A9+WE6KsSe/7bkkGgsK0ZYSGYcLph77MXvK0oL7+GQiSafjzEj4dizdbs4AZ7+LIgfvgpiFuUmxtUO1sU6+vY8Z8TLixRbW9hBz18ZQmPnyQ+eYb0sScenAjvFcvzIZeuF0fqL0tzAUms+NSHA66si+1Wt6U4tXizpAkubxws7sEEHlmRxXp+VQJhFAjh+kRdmmwlinzoyWudcWgUWSkpuAa8EjpOt6nRytEfFTjviUODMYrKOqkRGc1MO6GqHLr+GaRriAcTRjhr67qkwjkvBfS0g66KmsJgRC6ntHAEvccN9iAfga1wo12UCvAmwG2toqoSv7OOVxqlFYz6cOys3D4ZAB4zO0+1elmMGcJITqjWQhBNbwNJfSdXr6C7csKs9nbJLrxGML/A6PlvTiOCaYsfYfv1F6kaLdyhKWXvJI4vBvSHIatbJUYrHj4Z0WpIAFjbsbx40ZGV0tAYZY4PPxbQSkVZIpxQqQN2mjL0a/9EFwZCtjdauIIL7aOnwfxo7KW0YtxxJzOQmxEYTRjoaRlF1f+80oDHe0+VS63OO0uZjes0WeEPRVGtjfhv9LfxWk773iMnvURKHioIUXMrOFvhXvwz3PYN0ZwHIX53HZKGnAI9uJ1VVGceFUbCGaw3XbO4guvvobQhfPojFK+/gO3toFsd3O4m0cML2CSWU+v6VbLLF3GDPtGpMwRzC5K1hCFBt0u0fKtf5neD93QgbKaajzzV4Op6iQJOHwundZ84VDx28vanEOc9uyPw/mCxeC9dvK0BXNuS28JAuMizLeEUNuvTXlEJJcc6zzj3RAE0UukGOg9aeQJVTtPxwahgMJK5E1op2s2IwOgjdBpnK5ytJA12riYuy++UHAExUYrtLGHyMUp5grSJ7i4KV3DUw0/6+HyCmwzlwtNIdvnBHj4b1/ZJtU7UKBn2bmrim7VUl18Xmo2t8JMRvv4iyFjPumPoPZOr18iuXUetrxMurxB0Z7HDgcwxroOgd47hX/0ZyWNizx6Mh0xef4Xm0++/Px/+W4DWiqceSXjibDz9eR+vXXXsDOSix5mYdQwnntm24snTms2e4sQCdBrQTBVhoJjk8PoqrPekMUW9To7dpFyLwqMORoHmliBYVPKaSXRriUYpRbsRUVaOSV4yHBdkpcUGTSJd1g0TjzlEj/FVRdTsUCiNz8ZoHDqI4BDTweVjfDbCF2N83EB3FtBNSa3d2iVcf6umR3lIm7IZHlYbeCSNDiN00kCnTdxkJAKA7hzBiYcIFo5ht9cxcwfNjurGFUYvvUKxeo3s0kV0GMqaCSOileNoY3DOkj7xFNHysXv8dO8N77lAeGW1YHO3opFoHj4Z0W0bum1DVfl7yr62eo7La45hBpXXLM4qjDqw0NoZygZXWjkl7lMd9qVSgZHFP8z8dPd3XhEFNSk7hG7DM5yAs55xXlCUDmM07TQCA4NxQRQYwAs1wluywZ6w7LUmarTIB31UIPVBqRt6grQBSYpuiYdcNLs05RT6fSPXbCQGnFbI1Sobw2QkC3k/mIURyll8VcgJMYxwudQHCQN85nCTsWiNZxeh2Sb5wMfBWrLLF/HBKlWvh8szyo01Gh/+KI3Hn6RYPSDf+iKva50H770dHDX1fKdxu5NYdlPjfzgR9RHIHJybx756L2qjvZoiM8hrvqCVtbNwqAw625TTfF5JwLMKrm07ug1FO1XsDGUdgrjRLHe5xVRYKZkXOJzUw8mcxUQNhtmIsNmRWvChAKpMgAkj0u4cvjNbG/hKvc73NuVvqN3Pp+WT0R662cXbCkZ9VNycatOp9ekqPsT/DGOolSo+z1BJA7+3g0pSwhMPYVZOyVpT6kgAHZ9/DTvoU6ytCrG67iC7yRi8Iz57jmj5GOmZ+1cb3Md7KhBeulFw/op84Xf7lv7Q8sEnUp5/PZOmiYeHT4nm+HaLvqw8b9w4mGSXZZ7eEObailYqC3qUwfYQCisqgcDAzkiCYRLBes8xzDxxoLAeOg3pKBoN7VTTSfdjTsZgVFA5KXgb6+hZR1LXB4PAoJUijioSO6Ac9sQKSwcESULUaOJdJSlMHGLCiKQ7h9texVeZfEH21vFzx2rDgwQ3HkjnVmuU15JCWSd0Ca2lML4v0g8iqCp8OcTnuTjJlqID88OhfIFcRfHacwQnzhI99j50e4b84qvkr74gAbeq5Iv+xgWK46cgCKaUDRUnhAvLqEP1rHB+4Z1ZKG8B8x0JhqNMgtHKvLotg2A/YxjWabKp9cXWAUr+u9mXQLg3gq2eZ1x6GhGEgSPQUppxHnZHHqM9w0xO2Pv2X3sjz2L31t28KKojG4pSirnUMFy7ivcWY0KiVhcTRpgwIhvsiV1bEBI225IaO4sdiM63fhaRV8Kh51ayBrvzoh0fDyBOCc59REx+h7viQTi3IuvPOfJXvokvclQcg3eoRj0MKgwJlk9SrdXOM2WF1yHRynHya1dqlyVLdPI0treHm0xwkzHxqbeHWfCeCoQb20e5TIOx44U6CK5uluwNLK9dyXn/YwkffaZBfJMhYVYcFLiVgm7qaSRSG0wieGNNFrlzsqE5B2fmpf43zGAwsWz2PUXpcV4RGs84Fw7YUldN3YaVko5f5RzOebzzWCUd52KUo7UWVxjlycYFFD2Ur91anKMqIGp2pjs2gAljMces8ukJwBcTfDYSaVyjIzrhwTYKMcTTxuCVQY8GuCqXeuK+hZKXU6YvMuzaRcyJR/EmxOcjOQlojbcOnUa43jb5S98gOH4GbTR2kglJNwiwZSU1n+1NlAmIj5/ApE1Mq4VqNEVdEoSUrQ7Jw4+9PQvju8DZYwbrHJX1BIY7llOu78iJr7KiHmklB/HDGKFSOSfB8vo2jOsph5NcasseT6dxEGAnRa1EGh9MQKysYq7tp/NMnPNY51BKJthVuaSoDVPRMXLKU0qJh6WHpD1D1t+lKnK8rbBlgUduV9pg5k/gRj0pNNYWawC67jgrY9AzS7jddUjbwjo4/rCcFr2cRv2oJ+YLc8dwo8GBG3oNu72ObrTxtiI89QhmdkEGujfaFH/2x/iqJD5+ApdNpPzjHeHiCo2n34fSmtG3v0n32U/fd/3xeyoQlpVjr29pNTRBoKbyuSx3UxqNtZ7+yHFlteSxM5LPDifS4GilcsI7rGBa6CiSun6/N5Iu8VDiAFpBPxf5lNYin1NIk2RSeEaVmC8Mc8/5Vc/xOfGZ814Cbmg0JVLHcb6myCjpLlvrCAKNt4Vwr6oKnMUhCzJpz1BlE1xVooOAMGnefj7EIYqC6S7IYj007lHNn8JtXkXvbkinOYjkecbDuvquhEOWjTAnHobtNdTuZs26ruTLXlW48QC7u0G4sEC0uEixsY63FleWVNubjF99mXB2Dh3HtH7sw4CI6l1R4IKQqtV+R8T1bxVzHc2HGopxBknkb/GxrKxohc/foGYGKKqaVbDUEZOFmSZTrfp4f0pCvYd5ar25l6CmlZLaX6oYZgdBEKQmPczE2DXLK0b7YuR69Kt3HlWOaGiLpqZZaVPbbolMriqyaQMFpImStGcAUEGI6S5gugu4bCyd5Sid2vYD6MUTqFYXn0/Exr+2hPO76we64/FA+KwLtxpp2L1tmYftPbrVIXrsfQR1oE3PPcneH/5P8hvXhVzdbhPMLZCePbBnc2WBHfQIZuZuee7vBvcUCL/61a/yy7/8yzjn+OxnP8vnP//5I7//L//lv/Crv/qr00FNf//v/30++9nPAvBf/+t/5d/8m38DwD/4B/+Av/f3/t79vP4p1veamBnL1l7F+jY8dDziA4/HjDOZXLePKBSqwn5n98INy8aum6Y+j5/S7I2gKMWZeuWQ3VIScVC4rt1onINGAlEgXLAoEO2o0XISCI08b2FhZ+hrCo1MxfPe1F8CAIUxtX0+qrZud4RogjCkKDNAobQSCoS1og5wToKVUrgwkiFM+2xwpW8hwuqZRfwoxleFGLc22uhml0q/DMOe+BVOhkKt8NQR34CtMK0Gyi/hJ2Oqa29ICO/vSkPl8uugNbrVpfPBDzF+4w2yK1dw1oPWlNevUm2u450lOnac/No1sjdeJ5hfwGRjGtcuYyeT7xmtsXOevPBTKszr1y27fU+npTh3UjPb1pSVeFiOM1jd1RjlCSOxZJsY+NDDsh6GmcjjVmYlowDQeApbp75ajHvXCk8SwcqMZA9zTTV1pdkvw0yyHG89WW4JAznBWycd4jSSQDyoKuJIyefnZTa2qR3Nb2ewYKsCDWDCaTahk8a0znczVNoSjuEhCD/10M/ZGB2GqDilWr8mZh1JQwJorTpywz7V+jXCEyLFS04/JNZySYrpSH2z2trEnz473SSV1ujGvY8XvVfcNRBaa/mlX/olvvjFL7K8vMxnPvMZPvWpT90ye+QnfuInbplgt7e3x7/+1/+a3/7t30YpxU//9E/zqU99im63e1//iN4g48ZmRH/8gtTfnOZKluP6A5yHGzstrq7PEBpHt5Hz/I5ne37A6y96NifLjIoWlZe34vmXMk61LxPqimvAtw+9TkXInnoKqxoy8wPL5rDP5MZVoqSJShYANZWq4SoIDn2xvQNvoewT6ZwkiQmjhsz8UDD2YG1Z02Q8zllsMWLG5DQj2dnzsmJvvEb24qtT3alzHo/HaI3BEdiCYVYydJrKv3DH9814R+QKQGHRLFR9YlfSsDmpqzDe4ZUmz3fp93I2V0fYsiQqKnRzhaX1N2hkE5zWuCwj2+uz11nEKE9lIoogRceexupV8OC1Zpy0CP5//1/wjmAywoUh42aXIE2pdrYwJ979GRd7fcvzr0/IS08SaQpC1uvv+VZfMoxnHg64uGp56bIlK0CHMh0xswAKo+D8GnzgjJgt7CNsCvF+MJEg6L1snEkozReNNE6KytNMFe1MjBkAqjJHB56ygqIS+lQUGirnKEqHVRWmrDAmoHIl4PA+IGl1STpygjJhTDUZ4bxFmxCjFW7zmsxeNCFmduW2Zgl3RRjJwK99aE157SI+n6AbLTEEmV/Cba3J5MWRdB1d+2gr3VtRHe3DNNuYTgc3GqHDiPSJp94WitVdA+Fzzz3HmTNnOHVKFuhP/uRP8uUvf/mehjD9yZ/8CZ/85CeZmZkB4JOf/CR//Md/zE/91E99d1d9Ew7TXJSC0Lgp2bQ/jtkbpoTGUVqDMY6lmYzCtxhlEVmVTIOgPJdhXDbpxremmQElXf8qfR7DqhRNCd5QhYtEuoByAEa4e36ygQoSoA6E+xInV4DSFD6h6m3R7ELg6/nDXpTBriwAj7MVxlsqrclLi2dfhqWIQzPdvaPAEIeGUV5i0ViTkGlNdRvLJRCd8bypmCv6KG8ZO03hFaXSBCgKHTAwKR0r9Iq+aZDriEkQY8MGk0YXU5XM716ncBZlK8KqpDXcISxz+t1FnA4IQ0OhW5TtDjiPi2K0rQhGfVAak2XoPCNSAS5N37XhTb2BZTCydNua4djzZ98eYYyimWpGmePiekW3c7BGLtzwWGd59aqlNxIXIV05XKxJUkUcStaAh42+NFy2B0ddi2TNKvoTx6RQOO8xCInFe0mpQyNNuLxSWOuozAHHUOv6NqWYTEoq58FDUpWEQYCrLCZKCNM2zYVj0wFqvnalVoS1MqA/nS+DLbG9Tcz88YM6s/f4cR9f5qg4RadHpXP70PPHsdlYmm1KoWZXsOdfxvZ3IM9QSYof9kEb7LXL09qhimL82cdRNTk6Pfckg7/6mtQOlCI+8xDdH/5RqXceImrfb9w1EK6vr7OyckBeXF5e5rnnnrvlfr//+7/PX/3VX3H27Fn+2T/7Zxw7duy2j11fX79Pl36AmU7MYhnz2BPCQfMeluYMWe7YPJ/TmnXsD41rJJpzT3ZxXj7kS2uOomRa+1meVTy08igPHzeUlThVN5KjsrcLa7DVl6CbRlKb7DSEF7aPudYjpJE4Gg9zzygDpTxJIGkywKk52NwbUNUuxKI7NeI9uB/kKEi0xWBxlXA5okan9iSssEUuxW9niZrdKV0mTJqE6e1TG7u7LiqSvZouAVDk6NaMzK9wFt2ZF9JtkXEybcmAp0N8NDfoMfqjMdX1y9jdTWQonqPRbTPfiomfeB+uqrCmyejl5/CTjPjEScq9HfIowKQp1e4uLhtTKMPgxGmCzv3NFO6Er33ta2xs7rDVb7DVT8mKkFaSM8wjQmMZTOTvbKc5SWgZssI+s8d6jXMBo50ee8UMhU2YjCxGW9JU421AqUrGCHd1+9oG334uwhOgKVBAYiaE0T7fqgGmgciBKtAB11wlmyquziIqfLZFszMzdQ3fL5MEYSzWa0pjgghLgbEV3lrWNrbwboONbz/PMCtETtpOUQgZ2wAtN2GQFXjnSLUnULBnNX2rGTvNjLE0DslAB1YzcHcIRt4TeotVGu8vc+rqi4SHRkmMz79Bb2aZxc2rKO8ow5iynzG6tsGoJSdWVZWkKiSc9LBxSpZZqt/7vVtean5+nk984hPf6RK4BfelWfK3/tbf4qd+6qeIooj/+B//I//0n/5T/v2///ff0XPlef6mE+lvh/F4zPE5ePyhmEnuGY4qvvHyhMHIcul6SRRqTizLnzrJoTd0tJvCrzq1pFjfqd1BElELLM9pVrcdl9fFJMGjOL2kOb2oaMQS/MJA6j3iOKxQSuqMHjDa46zGe8ViV7PgPbsjz94IBrUeWStY3ytRfupRCUhtKgrN1EbLekNovHT16pQlbnep8gn5YDT1JvQebCGjOBUeVU5wtpB6ziGjTJdPsHsb+PFAAp42B7ZLNadLaYMb98V/znu8LaF7lNqimm2C4w/hihzb25YudNqUxk5djNdxTONDH6f9sR+mXLuBHQ4gCNn7g/8bO+gTzM5hWmcYWdhLW2/5c/9OcfXqVa5uJqgwpjdO8F5ROUVlDaU2REFFUQWMi5A4dDTCEUZFyJnN04hGaOUwyhGqEpQj1BWp69P2FSVdwKMpyOlQqBk0DuNHxAwobEDoK1ABVBNpYHkLQRPlrGQPyRLgYbIhTat4lnzcJ260UUiXGa/qUQ1y2nPOUk6vUgKmrZVLw0yEAvvKlTAwGKXwpaEZh1RFTgTkXlgQM8ZROI4EQYCGcXcOhEpRKllrQZkRlDnaVjhtaj2grP3JTSMB9GhM68Yqylpss0V2/DQTE+DN/uOOYnt7m/F4fF/Xy10D4fLyMmtra9Of19fXp02RfczOHuT5n/3sZ/m1X/u16WP/8i//8shjP/axj73p68VxzJNPvjVPuvPnzwNwaiWiqjz/8b+P2OlZolCRxIr+yDKaSCqyOKcJD/3VgdH80OMKreHKuswtubph2e47dgaaUQ5h4FnbkbbuY8eESL+6W3eIAymIWye26kUFgfZsGk80EX+6OFTMNsWNWClQ3hOoirwo0DjCYP+alJhpBobKyaINooiomWALaZYESVq7DbfIhwOUsigTosOIKpuIPdekj43EDIFRD7NwQhosVYHbWQU8PgigmOCiFBVEIs2KYtEZ6wDG/YMZFlWF27qBOfHI9H1TWpM881HM/JIE0Vx2fjfsocIIu7mKOXGmno4XEB07KJSV7/8Q5boMizeNJsXugEbaeMuf+3eK8+fPE8SzPP30+3n1crY/3nlKQ3noRMjGdkVpFQvzCQuzAeNcFETtpuL8NSm9ZIVnuycNlZmW4uNPnWChaxhMpO53dRPeWAdVk7IbkVCx5tpwasHXSiNfn9AU2/2KtZ5khVkhG+TMiXm6TYNRcGJei2mqdfTHBc55xlkpm6AVPmoUQFL2UL7EKLHcCsKI5vwKOghxVUk22KMYD+V3QQjjHkyGBFEkA77q4KNmloVkfdjSK6jHxELdePG3DIC32xsUb7xEyRnhk0YxShvs3g46yKAdE516BIKAYn2D0fU1nHIQauKVJeJjy3Q+8aN3/Pz2RwS/1fXyZoHzroHwfe97H5cuXeLq1assLy/zpS99iV//9V8/cp+NjQ2WlsQt9itf+QqPPCJfmB/5kR/hX/7Lf0mvJ/W2P/mTP+Gf/JN/8pYu/q1gNHH89Ytj1jYrdgeWNBZtcVmVjEaOdsuQhIrIOBQaj5wCjy9oXr3qMLXf28au5/K6xynhA04KCIxjcUZzeVOGOEVGFmw7htB4emPpFFfWY62YO4SpYm/kSCN5rVaiyCsYjisKK3MbQg1UFqskCIaBZ5KVNZUG8I5JVhEHBhMl0wl2SimiRms6xa7MxpgwQqiKHlvmaBNAVWBHPYLOvCxKvPAExwN8sy3a5YVTkI/xG3XRPEqhNXPUPb+6SWKB1HeiM+cwrS7ZS1/HbqyiqkICcBhCWVKcf4H4iQ8eeVzjmQ/Q297E7uxgWrevOb3diAKL0jDbNuz0LXGkaDdlPo2tOYPtTsz8jBjothuw2fPklQTBvaHI7P5ffzMkjaDVODgldeqKxF+fFwWSRuhSk5qnutQVuZzCcWPHTe239kbSYS5rwU2gYBJAO3UEuqI3lNpwGOg6cCuSKJDZN8bQaUTCPy1Dyt4arqqE3xelFOMBSWcOHYRTugzewWBXuKf7Xdn9E5hS6DjFt+dw/VpTikK3Z/H5GLt6ET8eSmMljPBodKOJWjhJtX4NADO/hN1aw+cZ1WAX05lFeY8rM4prb6A7sxS7O7isbrJ4T7m5jmm1cWWJPjR7x04muPGIYOYmneJ9wl0DYRAEfOELX+Bzn/sc1lp+5md+hscee4zf+I3f4JlnnuHTn/40v/Vbv8VXvvIVjDF0u13+xb/4FwDMzMzwD//hP+Qzn/kMAP/oH/2jaePk7cCl6wVl5Tm5HLI3tAzHjsAo5mc07UZAFGpaTUM2KfnhD0Z4r2gkQlUZTqSQPBjLTr83dHRaB/WYfT7XODsQzhsNExnAdSRoeKTT571ndwh5UruT4MkKDwjxVRQnBqUsRmvSJMQYhXUVUSjKEpUPKCtPEAfYskDRwdTBMGw08SM3HdkYxMmBIaZz2NEeTIawu45rzaI7tTtEnqGMEUJs2pE83TnU/DFwFhXG9Zzbg4V42KLrZui5JcIzjwvZ2xgZ69nbRbe64i6SZ9NiOMDk1ZdQJiBcXMJXFemNq4weefytf+DfBZa6I9JYszQf0m0bji2GnDkWUZTSLOm2A3ZHjtH1grOnIoxWDMdCqZkU8mlv7nk29xxPnrmV/zjO5VS3Pw9ZKWmgPHVKSitF5bm6fTCcaVJ4vKs5rH7fPAFE/lagtGcw9oyUeFNqVTdYjCY1mjgytGo77HFvQOnsfgKNLXNMGEozTml0IEok29+BSjZSkzShzMTII4zR7TmUNqhmVwa6lwUqSvDDPaprr4vRAuB0gO9tCjUmjFGbN0DvW3m10UmDcv0aWhtUEOCsxe1uo9td9ImzuEtXhF1Rf4O8dZhG80gQzC5dYPzay+BBRxE6y3DJ/XOegXusET777LM8++yzR277+Z//+en//8Iv/AK/8Au/cNvHfuYzn5kGwrcbVR2tFuYCjvUMF66W9AaOUWZZnIWZTsDVtYJHTsaERhHUSo/ACGn6yrqvlSOOsoTB0GFCTTMVBxilJOVpRrLIi7JWoDQUhVWUVlj/Hk8cyiyTwy7oCkUUeEKlsBXi8gKy8LWislYUKx7CwIge2IsOefo3Fvk0EGotxGrvHcEkFfv1KIVsKHOJi7EESVVhd1dx+RgzsyS60rIApXCVELaVszLO0xh8MRE1SmdeZpA0u+gZEcdXa1exW2sQRoQnZC5F/uq3qVYv4/p70t2rUyWfjaXBUtcoXVGgjMH2j3bkdZlLveEdRBxaPvHBBnkhJOn+0LG+U3Lpek5lPUXhCLVnUhqGI1dr1mFtm9rkQD77Fy5anFc8eUZPFR/eC3Vmn3SvlMgzzyxKEPReyiT7MtvaUY3KyXrZrxdHgUy8884xyR2BBqdgb5DRacWUlTxHFGgatR+c955yPKxVQvLE+wPeQcw7lDZEzQ5VNsTZGG3q+cimiZ5ZRt/EEVRBNPUptNur+LLAl6Wsz3FfeIHWQijEav3wB3BDcSzCGKLH30fx8rfwRY7b2cRnE3yjhd24gWk2QQdYK67V8cmTNN//IexwQLmzhU4bTF57ZSrTcUVBvLXO5OSZ+7oe3lPKkhNLIZu7FVkujYt2U5yCK+fZGzjSxBNHijQW5cn+8CaAsyualy45BmMnJ7BAgYJuCrkVGoP3B9ZJC23Z7U8twGwT1vYUWQmtxKORkYzj3DPKmZpuVjUlwusApRzOyZfNeyl/Wyu0iCjUaAVWyZcrDIx0YMscW+QorQjT1kEtR2lxqNZGAtvSQ6jBJm6vEn3w/ioqM5T36GYHW9QSpjLDhwkqSkWS19sGW4p2NG6gTzw6fZ1qa21qtc5kRDEaoGfmhCS73wV1buphp6KE8MRDAAy+/heUW5tiD3bTXFQbp++KH6E4PSvWtkr+9JsjXjif0RtY8sLTaWoW5wOaacBiN+LkimZv4Hn9miMvhE0w01IERuZgX1ytR7PGEvkGYyXDuZB1stCBk/Pw6nUpqYSBzJwZZwfvRRyAqqBCAmigoaoURW3pWyowytaMBzHynWknhMHBe+drQr2rN5/9n5XWDDdugJJhTXF7BtPsosrs8Bty1DzhdnAWP9gWGy5bgavwUSr+lfVdTGcGM7uI6+2gkgZmZh7T6DL5yz+EKEJHc+i0iV2/RtBoYTpNgjOPE515hPjYcfLV61O7Np9nVP0e4aL0JVyRo/dNIe4j3lOBcGE24MNPprx2KaeVlsShmu74Qc0LW5wNaLVDfvdPc6yHU0uGJ04ZdgaeynryUoJdoKUR0m3LTr3fYOmk4jQz05QZFEKZUazMwiSX4BkFnrVd+W4r5Rll4lbtvMJoj0bTig2NSE6iWS5KFofHW2imssC9l8ylnIyoigytFSYMKccjXGWJW50pr0opRZik7PMWnVEipZscmjdqDL52p9bNrpz2arMFbx1+ew3yMWpuBZKmaEpNiF46iTIBbu/ogCxXFpSvv4gf7MmpL0pQCoKVM5il44SnH0UnKZPzr1Fu1VQda0VnurCMGw4wnQ6TE7fOt3g74ZyQ7vfxJ98Y8dzrE3Z6FmtFK641NCeObsuzMg9LM5qr645HT2gurzkyIyf32bbY8+8NZRjTMJdyiXgVygkwBVZmpAa4vweMJp7CKeJINsDAwHIH1nriYB5oWWetVFMWAdZWVNbhcARGY53Mxg7DkpnW/uAuT1Y6ShWilEMHCq0NQdog7+9Otc++lmXGra6cGMd9STs7c7c0Pm5BEOFHNZdIKfncna3TW8SQodlF1SyCfYSnHwEF5eplfDahvPAyeIdutghOnEUnAfExcbXO3nh9unerOMEOr2PmFymvX8X2e4T9Aem1y/h9O7r7gPdUIASY6wZ87H2G/tDx6uWMNFZkhZzQOk2NU4YXL+8z+2G7b1HeUzpFUHfrjYbCeuZiTWxkh08OOVe3EgmCW4P6y9ASi/V9B+tRTh1wFO0UBmOxWnJOvOW0qgiNJQll8JH31Gl6fcKj1hwriNIWoMHJXGNbZNiqwlYF3om3nC1yqR8aQ5S20EGATpoES2fEe7DMxaG62UUnTXxVoH0CUSL64o0r6OYsrtmRF7cVfncDqhznPX4ywJx6HJU24JCSyvV2ZO6I90Kk1ZbgkadJ3v/xIyNF7fCovZYyAenZR6bjGP3q774NK+H2uLFRcnFjFucUf/HciMfOxPSGlrKWXO43LuJIoZRnnFn+6vkJn/ywNCi6Tc25k3BlwxMGcgK8uu5oN6GfKYpK5Jth4HEoWomsl5UZuHZoH3EeQg2dhpRcAqMonWexq6Ylnn3yvI4T8jzD+xKt9LRMA1AdmiMzHBcUlcOHLbw3RAaSZjo1Vzh4bT8d8q6SpjTOygnV6hviSN6aFU7pbYKi7sxJsy0Uwb0yYu5LZx69eAq1cAx37XVwFaozj64HPLlsQnnjinhahqHUjI2R4WWrlzFzSweBzYq7uhuPUMYQn3kI02pTek90/CTWXiUY9ig31ohWjt9yjd8J3nOBECS9/NEfatJuaa6vlzz9aEJViYB9s6e4tm2JooO5JFc2Hctzmm5TYZ24fCg8rVSxMKNoNjRFJSsviUT0/sbGQVmrP4azSwczjaND60cphTEeXx4unJcUhWWildRGrCdJgunC368JOu8ZjQvRRZeeyFtc7RmotKSY452N6QhQHYS4fEIcxagoRjc6xI9+GNvfgrJAxQ1pmFQFdmdd5H7OoWJpc6qkIfzC4S5+330kjMWlur9FsHwKN+zLzBKt0e2uOBcHIW4otaL4zLlb5ioHs3NMLr4hQ+C1RgUB5m3q/r0ZysrzysUM5+Sz7I8cf/btEeNMrNcUsnZM/S8MNc4pwlDx/GsZD59JWd32JLHmoRWhzYilomd3oCgctJuewCgmZZ0CGymjtBKO2O9JyUMyjcp6BhNHZeUUuG/zZa3kwGVZyIk/MLV2/WBTTuO6/urE8byy0iCM4yZOa6I0ofDD6Sxj7+Qz91C7lu9KeSQbTd2KQDY2M3erC7Rqz6K7C6J+suIpqNImptHBlxnuha+hOvNgAvzeDkYZlAkZ/9n/xPV2pGGjjZjGRmLJ44cDyiyn97U/Qim5zuzCa2L/BqSPPk584tTB8PerYt1lx/cvRX5PBkKAJNb88AfkaD6aOP70W0P6Pct231JWIaWVeqHC0x8p3v+wNDDGuXTuFrqax05qHlqRL3VeL+xGLCnO4dq+92LEuR8Iw0Ax04DeWLp2M01FXsqpEDymdgM+1Cupd/k62NaLe5JVFJV0+nzUIM9HhEjA00GId5Yqn0wJ03bUR1UTbKMtNIpGF92ZRze6YCsZ0K4NRClm+bSMZTQh7uorUOTSLElbUBUy9SwIobcFcytyIg0C4sc/IPIoY6huXKZau4pudcQM1gRTe/59FJvrTF5/FTcaUq6v0jj3BK0Pf3TaFfSHSXxvM7LcHZkjstOzDMe2rs1KGWO2Y3j8TMJuv2IwdgTGs7pZcmolpNuQE9xwAu2GUK++8bplcUazvuNReCaZYr6rplSshY5QYjYHUk9e35NSy3xbkUSe/kTKJkkoNevBRLimUSBZTGxKhjU9OgoNRbEvs1M04oBGImMYNnbHDMcFSkGhhALUbUuKEiQpYd6gnAyx1mJCkdcVoz6mmOCyEXawA2j5XKwVu7W6ywzgxwPs1g18MUGffFw4pr0tfKONKmWcg8y7qbBrV3G50MOq3W30zBJ+IkFMaQNVia4pPG5rjXI8YXTxKuql1wkWlmXecRSjWh1MmqCiCBWGU5mgQBEt3T+7/vdsIAT5kl25UfLKpYy/emGM89BqGpw1KCNOHY1EsdBVLM5ouk1Pp+kYZ0KcXZ49+HIWJYxrKl1wmzLKzbd1GmLmKqc8LT2EgQxxClEE2hPU5Y0kMjTTEO+pydX1sPlDY732O3eRz0SKBdjKSkDcV4QU49qJZn/x9rFVAUXN0xrsiI40SuQ+USJp+PFHxEKpzFBVE1od2FmXHb8qpBPcPZgZvd8YCY6fwRc5dndTGiNnxE/QTcYys1Ypxi+9gLeWcHGJcHEJnaQEM3O4smDwF39KfuUSnStXyZbur/X67dBqaNJDIzo3dkommWM49sShpjWvOfdQwoefSPjLFyZoI+/zOHP0h07s3YxitqY+Xt+yXNsQHmC3VdOqtMIEmspJ5rA9kDVwY0cabo8e+TM1cegBzyiTE2FRigLpxBzMtTXjiSiXQNaD0ppmEtJIA4L65N0f5gzHBWIAK/XNonKksfxea0M6syBN3LhWE4Fog0d7uN6muJZ7j3Uxqj2P0vuzjcEXOdWF5/A9mU3q1y5jnvghzJMfo1q9SPXN/wX1BB2PpxqO0VP1iKJavybZxr43oXPoZkdq1K0uxY0tcV+vSlE+jQYEs/PEKw8dvFNBQOsjHyO7fJGq2aGYW8C07p8LzXsmEG5vb08Z5wDWKa5udbix08Y5RX8So5QnMpaokRCmTUoPw8Ly6mhEtvYGE9ukn88wqlp4r4hNxkK6jopnyJRIzLTPiXyfUrXE3siPCchJ/Trq0NyHW6BCcadRhigKiQPHjnI4W1EWEybDvVseEsUNoqRJUc94DcOQUX+LNApIQkNgNEkYiM5UK1I7YTzJyMvLcq01j8xzENAn7jl27R0K4t5zrNil4TIsBo0j8Jbh6g688CITHdPTKc3xLmGZU4Yxw+YcXmugT/zaRTr9LZR3WBOw11miceE1OFSh8tow3Nyl/crzJBu1f11ekDhPsblOtLh820u7H1BK8cEnUl58rmBcBGgltBXrxCS10zJ0mobV7YrKekmZLcx2DCuL4ZFD6zgTnbpSnqJS7A1hcQa6bYUJYGcgRq2hESZLVshpcLEt2vV9BBry0pGVcipNYkUSQjvR5CWMC4WznkA78tKilaKsLJOaFWGto6jEgFUr0EahvBUCPo6sv4v3niBOMFFUswhqFBNAoUwoXoa2FJpMVaAXTx4YL4x69cS6absFe+MNMV+9cQEVBPiqBG+FGpPnwilszaAabRkXkDTET3M8wnTnSD76Y+TP/Tlu0ANTe14qBU42/cMT6nQYESwsocOQcH6RyfX771fwngiE8/NyWhnlIZu9BkVlyAtD5RTOqboB4gkCS2Qss409chWTBHVtTXsKlzAum2Q2mbrZFDZmaBcJOVA/lKpDpVIafgvnDYqK1K9y18TOl/hiF+J5ilx4WHEk6bC1lppCe+QhRT5GaU2el1hrpw7XlXUEtVusq4v7g0nBXlmRWCHSptrjEFXDxB0EwztloMZblvNdUlcQ+wpFyVhH4KHhSqzSKO+JBzu42rk2qAqUc/S7S+A97ToIAhhb0R7tkrc7BIMD3mDV7hKMhpjxgTlsHEeE3mH39uBtDIQgA72OzQ3ZHSYsnYq5cK1gdyCBpJUajIG9geX8lZzKggkUiQ3Ibcg3XrM8tKKZ7yiev2i5si48vsBIySQMNdZrlBOXmevbkGv5fPZVatd24Fxd36+sZ3vomZQwyUXNEgbiXrM3djhfe1ZayMucONQyy0YpisrV7tTiRRkFhvEkJ7BjAuVpRBHj3dFUn15ORgT7noR1BhFECVS5ELeVklJIFKPnjqEP+1iGUc0ssEK09x7Vmq316UDagmKCH/XFoaY5P61JoxThI0+jwwg3t4hqtAhWTqFMQPTMR/H5hGh7DzDYrECFAfHJM3R+5McotzZQQUhy5uwRgvXbgfdEIPzEJz6BtZ4//saIucpx+UbJxnaJBmLjmekY5q10cY8tBHQ7EXEaglJTo8yTC4+iFFxaF44YyAKen9FYZWqhOwzG0jA5s3RiGvyeOPkhtKppNnc4bFnnubFzMAC+KkviwJLUaU8UaNrN+LaP/d3f/V0CBT/5E38XgGI0oCoOKCfee+JmhyBO8GVOtXEV70p0EIn1OtRTyJQs8pu4Yj6fUF1+Gb9R/2wCVGtGus3jwfQ1VNqi3N2bkqsBUJr0h34UXxZk3/ra9L7V3h6YkOYnPkV+5TK2t0swO0/y8KNUuzvspSH5xfPTpwkWFgnmDtLvtxPj8ZjRcMiLLz7P3ighm4SUVcDlKiPId7iwNiebaWnQcYusdCi7RmxyvqUrWmGfvXyOYdmuE0JoxjlJs1HTORSWCE2FJQYUmozAZ2xdG/DS19dQeHTcQYVdCSbJHCgD1ZjreCiH0xIIQJLEGHu0+z7qb8lnn7ZodhdJA0VsPFWZs70+IjaKUV7i6sCXlRXDSUEYyPgBnONYVLEcWEIlG+dwa5c3Xl8j81JCSJSjoR0L4y1m812Zf4xitL3Dy5d3mC/7zFcDYlcS+Yqhjul5S3NvE3f5MlvtZXZX+zftwOKR2e5v0RruEFQlOMs4aTJszpLHbfj6Nw/ufuHSkb97e3ub9D4b+L4nAiFQ11g8w5Ejyx1RqFjbqtBK6AzzXcOnPtri5LGQVtPw4kXHtS1HXmcK/TEszQrdZbumUsy1FfNtRWYV6z0xVChKKZTvf6xhIJPNVvekgRKFnmbimWSyw3eaipmG0CqOUBicPTISoKjcdKfOCysC+lpXejNu5k4ppURXjMijlNYoHeFtJSqSIkclLczCyVuCIIDrbdVyBjmVKls72lgr6pOJdBTVcA/Co9pgXVt9qTASovawx/j117DDIbozh/vzP6H98b+JSQ8E8sH8wnQuRbW1gQoC2n/jR97R4U1pmLM7NOwMUpTydNIMpTxre01GeSj0pkYIkRDXh2WHwmZ0oj328hlGZYuskuxBa08nsMRqSEEHjxHbLT9BqQJHivEFIQMqEsbqmFi4JQsYVdYpqJYuvrdgM5keeGjBlGUuNUilCeMEby2N9jzgCZOGfP4upyhzRKok7oZxaOqBWfI8RWXJ9+kLKDIHpQfrFVaJZ06oPJmXIDgX1JPswhhfhUycxyqDU4a5asB22KFpM7QWiaB30B1sYqgogoC0mDDJhmQ3+xh6T5INsEGIDUJoiCN1vngKnWcEwz4uiqlanXekkfaeCYTNRBMaNZ0FkReStpQOEg1xpLHIf5uJ5qFjcH3TEdbBqpFIGv0332+4umEpKuGMHZtXrO1BbywnvnYq0rm8hGbND7u+I3HEe8/2wLE98MSB3H+Ue5zTzDTV0eRXKQJzsNL3Z1X0R/l0YHdWVLQbt7rxBrFww/ZpM0GcyrCkfYQRlLkQZZ1FxYkoOsb929qvK6WEXtFoi+uM3IrqzOO2b9Q27B4fxpilBbx1UI/53G+QAESPPs34hW/gihLdncPMzOOKgvzqJRrnnjzyeu2P/rA0TYqM9NyTmEM1obcbjUaDihkeWnqc5mwJXqzZOi3DicWQznbJdt9CmFI6TRRqms0GzUSzMneSZgKvXHHEXjKAbktxbGGZxVlDWcEgE2bBTHOOohKzhcUuJIEQrmcaUhccFU5szpRwkjsNWOhIShFo4ZxOSkmhZ5uKxa6iP8hkbCcwnAhdJgpkbEBkLJHLp87lqhzjQdRGShM22xgTEDU7U/OOauMKdufGkffnoWOPoo2h2r6BrwoIIukQrytU1Jiqg051F1DNLj5bEX36uE+1epmymuBdAEHESpoSPfPULcYbANm3viZSzxoqaWCOnWX4jb/Et2XDjlaO0/rAh4887nAv4H7hPRMIjVG8//GEF89n7OxZyqoiiWuyL4rNnYprawXDkeWHP9BkvqM4uaQ51JglCiGNFedOHX1bAi26z86hjSmJpNZTVAfa0KreEStfc7RqZojblcUah5CVHoWi0wgJlMyiLStLGBj6w6ymyxy8UFZU3AylNXF7RubMKn0Lb890F6l2VuXbpQ0qSoVYXWTo7sIRf0IA1V2E/ja6NYOPUqHBPPwMPhtir702lV2ppIFSDvPok6hGV7rPh06nKooJT5wl2DyqQDk8bQ9E9jX8+l9Q7sj9bL9H+2OffNvrQIcxLkKONTU7ewqvZOOsKk+roWk2YqK1kl4ZYL2WLmwBzVgkmb0RwAGNZWlG1d1fyRDmWtQ2XbLxdRsS/OZasFGXSz2yVgorOmTnZS1572sDVU1/4iisUGkqp9gZuJpsLOuiqrysH2SGtiXEBRpjHHGk8UET7x1VBiglGYI2FKMBrizQQSCUqrhZm2yAilOUs7hxDzfcww33QCtUmEwHQXk8Ph8LJ3K4Jxvl7JIMc+rO4W9cB+RNc0WB7d+0HmqEpx6huPhKTZ/ShCcfZnzhvLhiFwXlzhbF6nWiY8fvK1XmdnjPBEKA2U7Aj3y4xQ893eC3/2CPSzdKnK0dX5S4UDsPm7sVp49FnF7WXFpzNW0FTi3J/I8rG461HU+We1bmFZ2WobKHomAtpC+tFMSvbMptMw0h1xrlj/DVhhPPqzccaQSNWLHY9ngMRmvyPEcrKYDnlaMsLXEUHHqpW9OCqshwZYEyAcFtUl0VxoTLD1Gh8MWkrhN6VBhjt29gFk9OKTYgAcyceQo/3JPF3pqRE6ItMQsncTs35HYTCAcs7UgX8DYIFxYxjSa2Jr8qY4hPHp1FW25uTIMggB0OKa5fJXno/g/uvhOMkprx8nzAlTXx9JvrGIJAmmvnzqZc3tZc3/TkhXA+04RaOXIwDH6uI9nEyqxiZV44g/t1Yt+Q+w4yuLEr2URla8/KQFHYuoVV64qNgjQUb8MoUOR9xf5SsNbSz0saoScvq9rF/KBEo7QmCQ2tRkq7GWOrknywJ97/+5p0lBCha1cbtndhtI0uC3GcmVnCtGexox5u2JOMAgdO4atc6sbKQBCi2gvoVAIt4z5+MpTnSFqoVhfX35PB7HjU9cvYwS7mpvkkZn6ZpD2DGw/RzXY9K+U83lqyi+dlciMw+Ks/p/ujn0JH0S2b+P3CeyoQ7mOfTB1HE25slPiBZb5rSGoO2X6DYnlWM9eWSWHNRBb31Q3H1Q3HjS0JZps9z5klT6cRMM7lce1UlALXtuHy5j49QjqAsy2ZZ5xXB9zCyoNxEjh3h15m2ab1/Agvk8tsZafp8T4UB8qBwGhsWeJsSVmTUyHHVaVoRm8DM3eM4sbr0uULI1TSAluKScJN0+1UEKION0EA6kWtvZVh3kqhjz98MOPiNlDG0P74JymuX8WXFdGxE7fwvQ6nQ29229sB5zxXNjus7TV5Y3fEcGSZ6RgePRXivGdnz/LwqYjTxyJeW63ksEI9lnUMJxfh/HUx5qisot3wHJsznFrWGH3gLrO+JwFvt9YXRyFcXJeTYGWhGkuW4ZE4pevO7VxbdPEgwXF/rIO1Uu+OIyOa48pOU+D9MaDNRkRrv5TiPa4qxW2mdhnyxuCswwQB5WAXs31NDBlimWOtghjdmqXauiY6dVezGZRmf1aBas1IueWQ4Qdzx1Bxgp47hopSgt0diskY5ZyMdN3dYvxHXyL96I8RLB8d8amieOqmVO3t4ouC7OIFXC4eiabTBaXY+4P/jm5IWh7ubFHO3d968nsuEF66kTOaOOY6ho88mXJqOWR1sx5vCCzOBizMHvzZYaCOOFb3Rp7R5GDQe2VFBH9y1lM0RRKXRKIYePWa/N4osUuSGSaKbkMxmHg6qZwGKntgrrI/lAekVpblvl6sclsSBXSaUe02bGqbr5goMOTDPWyRYQ7NDrFlcVvxufcON9xFOSuzR4Lo4D7q1gbMzXA7a5LyaIOaWUTPraDac+jZpbs+VocRyUOP3PH34dIK+rVX6iFVcpqJjt06A/ftwOpmyY2dNoNJRNzwjCZiAJjlnvmZgOUFzUefaZAVjnEu5GRRnUDpPJfXPJNc6s8zLZhv6zoIKspKToRRKKM731ibZn00Y+EVyuwaplK5ND5wqW6nTIMgiCJpa+Cn8r9GLGumkYaMJ9CIA1AiB+y2Iky9yFxVkQ97U7K9LQtxK9IGWw2pSofKx7JGnMd4QGlRk9RcQhWEIoVzTriHxQTCCFfmwhO1DlOfLlXawpx9Zkq0D5/6IartLWxlhUOYNsVo4dobmIUVsXLbXAUTEJ54CDO3RLW3y+Avvyacx5kZst4uyanHCGZmKTfXxSgkTSl3tmhdeIWBfvq+rov3TCCcZI7f/9qAK2sFRitWFgKeeSzlb7xfTi/DsexizfTNg0AjloXv6wFKWolHXLcBsx0JalE9ryQrxZ9wP30xNWcsDDSzLU+3If6DWvsjtcj0MEumNleAg4bJ/kwJAFvkwh2r4Z2vh7qH9cPVbbtqfjzAZ0Mx0ywyfDbEB5HMMb6L1ZLb2zwY1g1gAvTpJ++b04eOItof/yT5lUt4a4lPnbmvKoE3w3bPYp2mqAw2c5Lq9h1JJDW/514d86MfblA5RWQgR8omQSAa8qz0U0MMpRSFZepN+NJV6NcinhNz8PAKbMvUSvoTabiVlTxfaUFrzULHT+dfH589+v4mkeL4nDzG2YBxLo7TeV6ilCcrLWkUMNtJjmQS9tDAJGorfe/ddESe9w4VpoACLbR7hZJZxcqgghDdXYQwwQ62p5pinMf3t2VzREnJJYrR3lNdvyDvSRQTzK4QPfFBilefk0KoUjIn2Tmq9etUN4TwT1lQvPEySbNDfuPalDURzi/ghgNUID6JCkUwO0exeo1qd5dgNKB5+XXya1duKbt8p3jPBMLXr+Tc2BQCoHWeta2KbqvgsdORkGUb9+Z3tzijePmypzcSTcaZZU23qZntSFCMAhhM4MqWLOZJLvSZubak1+1UXr+yok2WVEdOhnjpMu8bOACksSY5HNTgCM/G+6ONBl2TW/cRJI0jX4Lp4+ovg9IG3Z4TtUB7DtO9e0oxtVnah60gG0Hj7rb6vhZhq7v4C5pGk8YT93dXvxccX6x9+mp5s0bSz3Hm2d6riMOQ1y7n9AaOQIFWovBoNzXH5oUAv92Tk6LRcqLvDR3bI83e6OBzuLotG6VozqVxMslhyl02Uv2NQ5FjxoGQ3rNSdMf7sFYGfllnZPJblZNXDqOEtjPOS5IsmLpTw8FmKe4x4vRQZbIAnaswJsQ022iOo4bbMjS9PY+eXZn+v+tvYZq1kYL3UlIZDVD5BJ+2UFUJeMhzXL6KX7+CmV2CIMYN9wgfeQo36lNdv4RKUsz8Mro9Mx3s5fNMhn45Rzm7gDriYKyJH3qE9NHHZaZxljF6/ltUe2J95JXGhRHZ5YsPAuHNGE9c7cohUcS6OqWog8RwbMkKz2zbTAXxt8O1Tc98V9NtCWcwjTVPndFHgs1+ipMV4kFnHcy3FGdXICsc/bFMxRvlYuKwPKNZ7O67FYsBw6Tw4pKtA4aTcvrcYaCn7jPeeyalIkpaKCWWS2EYEDXnpO5ngls6xvtQcYqvvQiVUhAm6NYMLh/js5HMiG10bmu1pKIEP+odukGJU8hdUFx+XVIePMHSCcLTd599/U5jYTbkzNIueTVPlGiKwmHrsQneezZ3K/7iuRF7A0dWKcIopNMOCZTGVopR7qc1Pes8SiuubnrWeg6LwmjpMu9nDTNNKbP0RgeO1eIqLQyFk/OA8uwMwOeydtupZ7YpjIeNnrgmVVVJWZZExuOsxytPqHRdXqmmgbCcjCjzMc5W2MkQtMaVFc5ZdJ3jO2cJAD2zSLDyEEF89ESpm11U0pTSRX9HLNbiFEyE72+j5o7BxlV83QzBVlC7Iakqxw97KFvS+OH/jWpzFbe3jUobBCunsDubVOvXqNauTq14qrXrhI8+TZGk0/kl4eIS6SMH1CxfFOSX3wBjKObmxQJM3/l7/FZxT4Hwq1/9Kr/8y7+Mc47PfvazfP7znz/y+y9+8Yv8p//0nzDGMDc3x6/8yq9w4oRMLXvyySc5d+4cAMeOHeM3f/M379vFH8bCbMDCrOHGppyg4kjzxFnJQV+7lHNlTepRcaj4yFMNGndIkfcdg6UQLbc5d9RAWdfUCJAdPtCyw8cBxIGWYds1PMIlnG0evF4cqqnVEgQYrSnqZkl8yMMrKyyF9QwKTxIoCm9I0/ZUNvVm0GkbbIUbD8QyqzWHLzLc3vr0usjGBAsnbnmsmltGZSN8/UXSCyfEjv0OsP1d8pe+QXnlPFQlKk5EaB8ntxTHvxdwcn5IKy7prJzmpQsTLlwtxQ7Ny8TDb786QSlNEivSZm3OkQaMCyl9KCXzQvLCs7ELcx1fD1+qPSmt3K/bkNLJVh+spz71SRCMAs+peQl0vbEIAFqJsBZ6I+iknrKSx1lrKQoxRSjqyXEaRVV5VF3GkbTSU2aTmhdqQBsJfgG4opLTXm25H6Ytoma7bqSUYr+VpOggxmVjXH8LN9oTo15t8N6KC8zsMjqMsN7JQC9jJEMxodQSoxhsiQprY47FY7B44DRhFlbQa1cBD9pgZudRUYQfD+n+yI+Ji3kYEt6kMkofeQz/6b9DdvECvjcAFMnDj3G/cNdAaK3ll37pl/jiF7/I8vIyn/nMZ/jUpz7Fo48e7PZPPvkkv/3bv02apvwf/8f/wa/92q/xr/7VvwIgSRJ+53d+575d8J3w8En5gBdmAhzwzKMxi7Mhk8xNgyCIyuTSjYKnHrn9CafTVGz3DwJZK5Wa3doe7A5lgXdSqfPs2/an9eTMqCZR3wxzF2Z8EGiCQwoS54QiMRqXOORkOy49Km7ilKEYD2vLfrHov1NgVHEDVWTCHyszqRV6X3vPSdVeRQmmc3TRKRNgTp2TTq4JblsbtDublFcv4Moct7GK7W1jN25I97E9g+nMkr/23PdkIASw+Q2qvT9F5XMYP4PWkOUBldVywNGePJcZIbacYHSP/l6tsvCa0oV4mWpPbDKaTYMOYuwEsePyA/Ibl+mrxylUC48hYIjCE/iMpt7hpX4HTCL/lJah7ko2wue/vQH5NipdodFICYKAIDDgSknLTTCtqa2XBc+P95gMtplvpRRFQTOJSKII6z2R0SRRgHUO5yAvK65+60Uq5+noiuORRdeWIRulJtaywbeNI8CRyKBkPLBVaXayEacnGWnl0WWJ9g5sxmR9jUoZtsIOG2tfueN7H5Q5c3t1MXVvBFxh2LzK+IXX7vq5mfGQQdygdfwk0fL9cyy6ayB87rnnOHPmDKdOnQLgJ3/yJ/nyl798JBB+/OMfn/7/Bz/4Qf7bf/tv9+0C7xVaKx49HfPo6aN63aL0t9z3drft4+wxjVKO/sjTTBRnVjS9MWzXZTPnpAD+1CnhD5YWkhCWZ+qiuhcKxTj300CpmnDA+JIdvChtfTowU06a9zKntjfM8V5OnqWtjSydlfpSlcuQJsBbRzHqk3TnjvAC95/L7qxNLdT9sJAvTpFNybN4jxtso5sdlLn1xKfuEGB9kVO88ZKkNlVJef2iOBXbml0+GkBnFrxn9Pw3qXZ30a0WjcefwjQPmiKuTnfcZEK4cuxtJ83uY9+kAxznTuywO0zYGyV4xJzDgRxYtEWrikajBJVQOjFqlRTXobCUPsR5g3OKhuqR+Gz63KVqEzAWF3ICShpoLJoCazrYYAblK7SvQMUiX6zG4EqUSfBBA1/2gBRrrbyuq3BeuKQmiKazhaOoQRlNyMoSWxTkCpIoknqh9lTWUdUdu2FWUDlPqhwPxRWhkiCXO1gMLCOncQjn1ivN0MrJ1ANrZUCloB+IoYLyHuUdGs9G2GVoUoZBzTH1nsa4R1RMqIKIUXMGrw1VGDNuzNAY7xJnY5zWuNZRjuGdYBstGmcfZXZ+/u53fgu4ayBcX19nZeVggS4vL/Pcc8/d8f7/+T//Z370Rw+GM+d5zk//9E8TBAGf//zn+fEf//Hv8pLfGjotTSvVDCcHR7Vji3f+swOjePTE0brZzvCmO9WKkfedETrMfrcYJG1a7Chu7IiWODCwPZCFONuSus++kzDARJV0WjFGa7LCMpqU0985FKHRaBNQlDmtRoTPj16M9x5XVbeeCst8GgSnMCHejaY/qiiVIFvkqPTeVR1uPJzWd3xdjAePbrZwoyEYg5lfpuwNcOOroDR2MmY4HtP9kR+bPs/w639O1ZcdJl+9Tuv9HzoyCP7twic+8QkAJpnlD/9qxMNnC66tF4wmlrKS5tY4k5rzXDeh2U5pNAyjTGbOpLEMZkpiTVF6klDst7wyNFMxZj0xp1jf2+eOSo1wUsJiB0q7AN4RBg6UcFKdkzS3Gc1NuYNpqDi7rCmKknFWYYzCOU8UylrJD6mOjNF0m0/STEP+4H/83+ROcfbxJ7FFhqsqYRnUrISHmx3CpEG1egG7eQ2/P2/EGFTSRjc6IqOzojBRYYxO2+juIk+lLXyRUb3+TVxvC+U9JE3Mw89wZvaoc1B5/eJBhxjQ7ZkjUrvs+b/ADXrTDTc89QjByqm34RO/O+5rs+R3fud3eOGFF/gP/+E/TG/7wz/8Q5aXl7l69So/+7M/y7lz5zh9+s6dnjzP33Qi/XeC2MPuWOM8zLU9OxuenY17f/yojNjLjiop3KDPqr69/6DziqGVDmvlQioMCk/TjEh0Bvpo0LnhLZoKpyTd8urgY9Guwo130OWEy+dfwsg9cHI+xAMFtbTlMLyjme0dubUMYiyaRiGifj+2sDdktDvBq7cwRa4qidfWpsEw0CGqcmBiVAK21WVvUpLvDPB+cOSh11tdVJzgR0N49dWjzzueoJ545t6v47uAdfDnLwSs7cg7VBRCdWqnMM4UGsVsWygnVV7SKyP5GVAORiNNmTtC46icI8PiPYx7GjXO0MOCnUmDSVU3MfIYg2LUr5hU8vk3Yo82BptXJCZHAVtEU9LAWBUMdwtSPZY0XO0nsA6nQpyKkL43KF/R28pROHZ6AzqNhLXVVcDV60VccTxQbO6ivKeZ7RGXOYHdLx0pJrmiHFWELseiqUyMVSVBbxO/sU2hYxq9VVRVYqoS5SyToEO+tgNrO0fe4+jyK6hDLkmsrpKX4nyuypzo0htH7u93ehS7N5863hncNRAuLy+ztrY2/Xl9fZ3l5Vs94772ta/xm7/5m/yH//AfiKLoyOMBTp06xcc+9jFeeumlNw2EcRzz5JNP3vH3bxVvXMtZ7ReEDZjvBrz/XPKmXePbYV8psFPXCJdnYKZ55/pE5RyX1j2l9WSFlH8Creg05mjFDu/KI/dPooBmGjKalGRFRVZUU3fqlAnDTY2OGix2WpggBDzOWsJGm7jRmjLzb4abDMRZpp4PYWZXQGncYFuUIjW15uY5tvcCe+IY5dULMgjq3JMy6zYbo1tdguNn0O0ZRs9/i/zGtelJRIcR3fd/AKU1djKht33UYDM+doLmffzs3wwb2yWNy0O6Vrh5yjhGE8expUj8HceOMFRklcF6TRyHtFqGINCcWJCT8IcfC6is59Wrjrz07PQ8pVWMtOaxY4aHm3B+VdZNFVBLLKUsphQsdqT+O9fyLM0I4+HiutwWh9JUy0pPWjfWWgnMtiTwVdayuTumrOTkGoWG2Y6M9rx08Q1mm8lBJudlzIKqHaS1NgRJA7+7JvSYYU9KJmmbdtI4qAnrAJIUt72K13HtWg0qmj8i/VRpE3Pq8Vve41wXMt9m/34mIH76GZFvVhVZ2T+iQzcz80SPvX2f/5sdsO4aCN/3vvdx6dIlrl69yvLyMl/60pf49V//9SP3eemll/jCF77Av/23//ZQ/QV6vR5pmhJFETs7O3zjG9/gc5/73Hfxp7w1DMeWN64dNEq2exVX10oeOnH3ruthKCVKgZV7KGM479nsSU1lVI/p3E+l6mfDaDV1EFGIVT+InK6yjiQKcM4RBwpTFXjvCGuelXeWIGlggLj55h1knbZFSufcEY2m6SxA57uTKJm5RczcUUletbVGdeU8xWvPoZodfJGTX76Aywvi4ydo/dj/Nv2SmTQleehhsvpUoMPovnYB74YgULSbmp090YIPRg6lpJmWF54gEIPWRuIpnLzHWQlLLYhCzfF5TbshahLvPWvbntwqrFfosefyumMr1XgnFm/jXOR2jVjMF+JQyjCdBpyc3yfVK+Y7blpbLquaKlMHwv7Egy9Jon3ZXlCPkxUUpSMMzHRW9xQ1KXnfrchaK9LM7hJ2+5qcNJtdGb9ZFrhiIrOpncXvreOrUmzYTAhBhLYVKj6QWfogxO1u1I2yuSOpbvHac7jRALu3g5lfxG5cF2PWICA8+TDllQuARwURwYmzb8MnfW+4ayAMgoAvfOELfO5zn8Nay8/8zM/w2GOP8Ru/8Rs888wzfPrTn+ZXf/VXGY/H/PzP/zxwQJO5cOECv/iLvzh1xf25n/u5I02Wtxvjya2p6+g2t90NeyOp8wRGajzJm8TRSSF1oTSSuSR7I7l/WLtLN2JNFMbkhRVTzdBMeYNaK7qtWOpFCsrKMtjpEydNNDIP+HDafC9KD6UOFTDvANffEdF80kB15m9L0L4TvPe43U3ccEBx7Ty6pk3kV96g2OmRnH2snohn0MlRRUvj8aeIjp/EZRPCuYW7krDvJ2Y7hpNLEdZ6XjyfUVnP8nxIWXk2dkpmOwYF7PQ9x5Y1D50wIgUMYKGjaKYwGDkub3h2B56dgUMFhkYsG984h3EpapRxgRgrGGEWLHXhkRUJZsZ4doeecSG/76SiMikrySL2KVy+nmY3wuOckol0Sgl3tmaH72c6RWUPDTm6Pbz32GIiBZY4xWcjXG30qmMx3PSl+FhSSbrqbSmfb9oUAo9zQpcZDXCDPXni3XXM6SekrthoET3zMfK//iOC+SUwhvLqBdCaYOkEwfJJGQSfjeuG3Tv3+d+Me6oRPvvsszz77LNHbtsPegD/7t/9u9s+7sMf/vDb4h12r5jpBEdOXwALs2/tze6NxWFmH6McHjv2JrHl0PoLA81MS8i6cQCtRE0NH/bNFG4HrWXjGE5KfCBSqDQOKYuCEKiyMXFnbmrG+t3Aba/itlfl0nug8glm6d4L1uXFV7Hba7hsTHnhJVTSQLe72FE+NVLY5yDa3h5Bu3Pk8UG7Azfd9k5AKcXZEyH9UUUj0UxqMnOWO5JYo5WcFL0xRKEMfgpDKYNd33ZcXPNs9TynlurgU3pwDuc04JltC4F6f9rhvsRSiNgHhhx7I8+wVsQVFWz0pE4ZhcJL3RrI8zsnxr1TnbrWOOvoTwqsdcSxod0I6/sYxoU0SBSI16Pz5OOBcAadaIADPHgnPpXUXERb4K2MaMUDcQM/PkSujxKRaS6dRlknAXTt0sHvrRXS9Xw9j2AyOkrCBezeNsGSNMUOmy68m3jPKEtuhyhUfOiJlIvXC4rKc2IxYHn+rXneDSZHf7ZW0pz2HeS6aQzB+IBPGAeKlRl1REx/L6hq3zkVRGgt6gQVRJLGaENwD6Tqe4HrbR752fe28IcG97wZfFli6zqfHw7wRY6vKlGtFAU6PRTgFO+YFf/dUFWeb7w84dKNnPVtCYTbPcvadimzjRUMR/saPMeldUfhSjqtAI/HWk1RyUmwLEVF5LyizBy6oRhNFIGGsyviUFRuH4xxGGYywGkf2aFyscw39jhfd64VzDQ92wMo///tnctvnMWaxp+q+i799b3tOG0ndhICOMBwOeEIDcw5HEZmmCxgxeUPYIOEBBsQSCBWkWAFCqwQKBJ/ACA2eBGhIJFZjEAz0lGOOIFgmEBuduy4bbf78l2qahZvX+22u+04tpOu366d7vRnu/189Va97/NIjZjVYsqgNap+VDOFoEbsuUIZGSdEJl4TFq3g1C3VtAbKxUawu7A4pNYQUYT63ZsxBu0myIUmnoKKKZpcSg4A1RJYLAkeT4LFEuDCBgSg/U7Zwi37h+6KQGeA5o53Gbe1EAJANi1wNN3Bnr5mgNkNp8NPqNPX6nDGMJyllaPWNH+8as+mB0St7NVKof7Z55zXgrrlOq/cIFwAiNoeb6Q0rqOqJZolDQLAtmFnBuAevA/B9FUwS9DcaHxt+67t5NK1EEsliUptiiiINPIDHFMXJSxB2yeVAIjHOFyPI5LA/JKChoIGg52hVT7ntA0S1WIZPJfBc+shTArXixzQVO6yWmmcS5AtWx3HopUg0OxvrVcbUtP+ouAM3BYIQgkr1I2pJLLwoimXIJQIq1UwP4TtxmtjdhIy8GHVolWFZQOxOO1HMg4NgGeGaBQPGjyRoW2MmEfGDJriG1gyBzG4jyZILAe8peePJTJUWtd6W2FZFPBe/3fHhT12F8JLv1KMZzINa+Tg1v9Sb5DbXghXEkmNX68oFIrkA3jHsEAmufYf/mCS7uJ1h5F6YPcfc0AqRhbsK8tkztmaK8Ze4Zwh6dkoVQJECnA5lS1ScXDXI/OFLYAPjlBpo5uPe4XZNqyhEUSzV8AdFyqK6MQ4ngSzXbjj9yJ+5L4tuc6txA9qJ/IxhqVaW2XFp/J3MGuhXFG4cDmAYzM4Doeq/XCUpnJZKo29WY5MnE5hq4FGGDK4MQ7FOIQNXC1wZBIkcpwBtk0i6NptiyNk4hTGXgnrqz0KfAc0HIturJbQUEqBM3JUT8QELMHgh5IapSMFJaltWyoNx41TnjUA3bJXw2o30sZjxijjJpGh2XJhg2fzYLYNvXgdLEbTV0xFlE7npWgyqbwELSMSQWGBjx2huE+lwFK5VeapVn4/xGCe9hi7OB/tFH0nhJeukQgCNC/8y2WJh+9uTnesRAjgcJ7G6QSnfJLzVwDUKqfRQeCemzRF5joWHFvgXKkIO+5SyckY5dNuETw1QFbt1RIdlvRgrtCKfWgcPDsIuXc/1Nw07T/ZDuw7jmxqZbkd5AdsXJqmA5EwohNjO0EGBrbFkExwJOIcrsPAmILj2Ii5FjhnyCY0Asq0wr49DLOLDIdHGC7P06lwwgVScY7lgMGyqMtvoUQtVEFILTSHWiwdBacsEq01KgEwNd10N9eaeg2jsJlEp5VEscIhGIfn2qj4EfxQgnEG23KBmquzsGxoKakU1hqW68GOJaBkRActilauau5ibY8Q0GEVnAtwOwa14kargyrgpaAuT1HrFb0JxIEjJKbp9bc9mGUBnEMuzoNZFnhi+/eF16PvhHC52v44kiSI8S5///U7+R+zaKyetAamF8h3br1yeS2kVA3/wZVEUsEPZN0GDiU/gBtP1k7WqBVCrGOEsBGY4zZMNTeDyA5CZAeBg3dDBz41zG6Rd+HNIJsW+NM9Hn6/EsASHEPjAok4x7ffL6NcpXyZP98XRy4toAHMLFkIJBn4JmIctgXkBzhyKQbb0hCC7PVdhzJPkh6HX6hNIGoqcW3Q7zFSZNu2smJgjCGIyMMylHXzVgYGhXIgoZQkQeMaQSAaeTyDmRjSSQfzi1SaKp5EVc5DRuQhqKIQKgohwwCxdA5uKksW/loiKs6Dl4vNHT0loUsLQAeRYk6MPC7rIggAMoJemAUb6r4S0IEP/6e/N0pokRuCc9f227CtRd8JYSrOsFxplguOBcR61ACt2w6FAdQC1je48FFKo1j2EdUyK7yY3XaKHEmFpWW/8V7CTUBF5UbJQfGdO9dqsB43IqjbyUBGYOoPKiWnr0fg88DjDydwbT6CbTEcHnWxJ0fh6vNFhTNnJcKIjgH2ZBju3i+Q9Bj++Tvt18ZsDT9iSLhN5xnXptWgJYCkR50DAHUijAysviZLUD9h6001EwdkICEZvbdUGlI2P4WR1Eh6DsJQoupLMC5QLFVgy6DtZqRkCBVFDUdzclHlNH4nmjZzGho6DMCSORI9rcDiaXAv1cjIbkWr3trRomuXm/uIAGRhFmp5EXyNmIntpu+EcHSIIYoY7RG6DIeGeU+HJgBtju/LARdmaVgDAEZyq7oDulLxI0SyPqsLlKshXLtZntcNGer4ksHSNFLHOYcdT64yWdhqtNbQ89NQxXkwYYPv2UcOxj0iKxUEVy+DCQFn3+i2JtT1QmFJolhu/hFLSQ3Mf324/Xu0LGBvTuA//szw2xVquh7KUswrYwxDWYZ/XpCo+ORctDcrkPSon3S5QiIYSeonBEh/kmtUHwmXXlcJ6OfvWnTSbFscXCloTXG1rb/6eu51NhVD6CkopcDCRSQ9F1G1RD6BkvoKubDb/ScdOr3VFZoPh5MECwPoIvWL8cwQeLy5OmTxNPlS1sfmGAPvwegXQCOIqe1rYdjhmTtD3wmh4Ax37t/8aupwnj7IhRKZbg5nN/5/qA53UakUeO1D2kmXi5UQ8dzWBtash16ca/YXwoe88ivlUnQwcl2JLJew9N//1fjw+39cQPrf/rajDbMr4YwhCDTmFiJcX5CQUmO2YCPmctw5tnpVm01yPDze4eajKclOa1rRlcoah2uTbX5IPYMpj0wXlKbPzt5s52uqG3ZUA4XZJSCQDNeWAMEEXJvmhJ3aDZMzhpgr4Nii8VrHFgirPjzbQihpHzCqliBsB8J2oGSEtu/ALwFeEiKZAZSCDqpt45aqON8uhIyRPdsi2fez9EAj6rUb1mC+YdoLkLMRT/fmOLMd9J0Q3iic9z5utxa2LRC0GBfSyWCrcasFP5CNRnApw8Yp4HahG0HvNaSs2fV33+T2L/3RtgKQ5RLC2Rk4w/u2+jI3TSrBMbcQYeZ6hIUi7cUe2Gfj/y4HyKUFlAKuzUcoBxyOI5BLMewfYquqh8WSbmuPKlU1wkjDthjc2iL47hFgvkiRAHvT3feTy0HN1QckPpGy4Vn083RtgYRnr3kQpSJaZSmtIZwYlJIQjtsYxWScw3GTiPwqtFYQrtfYZpFhtT0IrNbE3ZasKCywgdVeA63Uy+XW0pynMnDueQhydhrMsmDlR3fVjdEI4Q4Qq+U4+qEE5wyea7VbpddG7cKISrHK8sK2XyNzPGistOvv7e7fsWy/yaX8RiksSYwMWQhCDaU0XJc1pkvO/VZFuaoxs8AQSWBowELZt8AYx+hQuwAlPIag2NzIoBli8hJYKJH4MZDxglLUjH9gTz2+symKWmuENWfraEWbKOcCybjV4mq+NrzlAI1bAlyItq8J24HlerBcD1IGFNtZg8USbb8nFk9vfNxy9iKtGBkDz+Xb2rFEKguRyvb8/20nRgh3iJhrIbbOmF291NkpWC5PkY+lJUCIrnb9rTijB+Bf/L0R12ml0rCHuseAbicxl/b49g5YqPi0gqnPgy8t02FCXZDmFyUGsxYWljVGV0Q/HxrmiCKFYoX6Uu/cRw3pv89SZonWwMwiZdt4NvUV/uN3Ml8AgHQcyGc15pY0IrInbDNSACgKoteuBMv1UA0jxGwLjFvwckNQEbXMWI7bFgXL04NQWtF0iOXAHtzfNFhwYmBe97CuVnSxAL0wV3ugoa5fBYunNrS3vFMYITR0hAkBsf8ucp1mfEPtMMLzkP7rvyOYvkKHJcP7dl07TTIuMDZs4+J0iOFBG8sVCcFpqmR+MUIuY4Ex0Qh4Bzqbbbg2w7/cISClbpge+CGJIED7gkoB5SoJYSWgRMO6EC6VaSVVfxMN6jfMJqity+KUcte6MtNaI4wUpFJwrKZpB0A30GIlQLESwMt0OJpugQkLYmCkrfxlTqyntMKOdBi3036lqxDqKEK0UIBIJlcZczSeoxSqv/6CYOYquOfBG7931dz6jWCE8DaH8mzVqm7/Xtns67jjIHbg0KZeu13cfcBFGNG4XDZNo3S2xeAHAldmQuzLMyyWOfbkBBIxhrG9a4t5q8dlazUpaqu5+tdkLdqhFT9CYz8RIDH0bIa017ksXa6ECEJarpYRIZ1wGjnYm6FjHKxW5Erkl2nePT3YtSJg8TRQaHE8ZgDrIqrRQgHF//2e9pQZEL/n/o6fm+qF31D57RcAgCwtQxaLyPxtYstusEYIb2NUZRlqaY5mRG0XIpfvmE3Sr0xdDDA9R4cQl6YjRErjjv0OBjICnstwx6iN0b02PE/0tD9Xx7FoRbdQG98bSFFrDECl8GLLwokxYCDBUAqa+4zUMtP5/aRUDRGsU/WjGxLCTqil+YbrjJYhZCGENbS+KxFLpMH3jkEtXANjHGxguOukUuWXn5oHaxqonD8Hd//YqoOUaK7dUl75VcjlIqz01vQhGiG8TdFakbNMveEx9KGW5iFy65/4bTdaa8jiErjrgrsbG++7UeYKzZNt12VYXpCIIg3LYkjGBY4cioExYKmkEUV0MNIr+wfRmDVOxSjYq06uQgFgALAnBSRiDHYFqPhks5WO7/xo4ipXmSig+eIuFQLPDoFnh9Z9TivK99vfV8qag1G7EPJkCig0owCYEODe1s0tGyG8XZGyKYI19Da34HRDVSso/s/3kKVlgAHeXUfgbaNLddzjKFfpZ7Qna0FJmr91bYbxQy5CCZy7IFFfgA3nGA6N9L7yWtk47YfAtUUyXU3HgcFUs2ROe2uXwq0IweFYvK39ar1Dt83CLAdatjQ813KStxpn3ygqv/zUeGwP7gF3V/dxeneOQxaXEC0UwCwL8Xvv3zLjEcAI4aY4f/48fl4ZPHQTuX6dOv03anK7147afsHLimNJ/r2n1x45cgTj4+Mber+NUvltikQQoLJo6me4+0bX3DDfasYPuKhUFEpVBddm+M+/pLEnK2j6jDFMXW6KIABMFzSGB3XDXHcjaA38PksiCNChCWMkhhslGXcQhNRn6tiirQd17ffXkH6VmqptG1aXkpWnByELERD5lG2T2XtTTDS8w3eB2zbCuWsQyTTcQ4c7X4/rIv2vf4Hyq2CWveU9iEYIbwG8TZYA10OBjKVgMY2q4liSO19ytaIqK8ovTavE7RLCuMfx2J8SKNeEcGWol5SrX9Ppa71QDZoiWKdY2ZwQMsbgbtDlIywvI6qPxgXUOG2vY5DKLBvW0Ch1DWzSo7JX3LGDcMd68yi8WdsnPf00z5w5g3fffRdKKbzwwgt46aWX2v49CAK8+eab+PHHH5HNZnHixAmMjpIjxSeffIIvvvgCnHO88847ePzxx7f+u9hmxsfHb/pqqR9w8iMI55oO2cLzINLZbb+OeKzzimooy1BYbh5iJGJsQ/uEdc6fP4+ffv4FJdbu0mLpZfwD82u8avN0qiCG0iviaJXG9eUV9us3wHZUEDeTrkIopcTx48fx2WefIZ/P4/nnn8fExERbCNPnn3+OdDqNb775BpOTk3j//ffx4YcfYmpqCpOTk5icnMTMzAxefPFFnDp1CmIXjdYYdg53lGJdg+kr4DEPscN37ap+w4E0xz0HgOuLGq7DMDyw+VURg4Kr5+GzHAAGjgBO6+TOFtKpglg5Kqf0Sh+l/qarEJ49exYHDx7E2BgdnT/99NM4ffp0mxB+++23eOWVVwAAx44dw/Hjx6G1xunTp/H000/DcRyMjY3h4MGDOHv2LI4ePXqTvh3DrYY7eqAhiLuRbJIje4ODEa0VhFQ0QuducxdT5FcQlOvjdAxuMr1uFGy/0VUIZ2ZmmkHRoMD2s2fPrnrOyAjNFFqWhVQqhUKhgJmZGTz00ENtr52ZaQ/1Xonv++sGMRsMhs3BQHb+CgzAbNfn9xO77rDEdV3ce+/NS7s3GAz9yXoLrK4bMvl8HtPT043HMzMzyOfzq55z9Sp510VRhGKxiFwu19NrDQaDYafpuiJ84IEHcOHCBVy8eBH5fB6Tk5P44IMP2p4zMTGBr776CkePHsWpU6fw6KOPgjGGiYkJvP7663jxxRcxMzODCxcu4MEHH1z3/UxpbDAYbgb+iimWVpjW3Y+PvvvuO7z33nuQUuK5557Dyy+/jI8++gj3338/nnzySfi+jzfeeAPnzp1DJpPBiRMnGocrH3/8Mb788ksIIfD222/jiSee2LrvzGAwGLaAnoTQYDAYbmd2T9OWwWAw7BBGCA0GQ99jhNBgMPQ9RggNBkPfY4TwFuDMmTM4duwYnnrqKXz66ac7fTmGXcxbb72Fxx57DM8888xOX8othRHCXU7d9OLkyZOYnJzE119/jampqZ2+LMMu5dlnn8XJkyd3+jJuOYwQ7nJaTS8cx2mYXhgMnXjkkUeQyWxNjkc/YYRwl9PJ9KKbcYXBYNgYRggNBkPfY4Rwl2OMKwyGm48Rwl1Oq+lFEASYnJzExMTETl+WwXBbYWaNbwE6mV4YDJ147bXX8MMPP6BQKGBwcBCvvvoqXnjhhZ2+rF2PEUKDwdD3mNLYYDD0PUYIDQZD32OE0GAw9D1GCA0GQ99jhNBgMPQ9RggNBkPfY4TQYDD0PUYIDQZD3/P/OyuP6aYNfacAAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(5,2))\n", "sns.stripplot(x=y, y=predicted_prob, hue=mean_fd_binned,\n", " palette=\"coolwarm\", alpha=0.4, jitter=0.4, dodge=True)\n", "sns.boxplot(x=y, y=predicted_prob, color=(1,1,1,1))\n", "plt.legend([],[], frameon=False)\n", "plt.savefig('../data_out/fig/abide_motion_raw_stripplot.pdf')" ] }, { "cell_type": "code", "execution_count": 15, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:01<00:00, 652.30it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.028\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.111 (p<0.0001*)\n\n\n\ny--yhat\n\n0.126\n\n\n\n" }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(partial_confound_test(y, predicted_prob, mean_fd, cat_y=True, cat_yhat=False,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_motion_raw_partial')" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:10:53.212459Z", "start_time": "2021-08-01T19:10:49.083740Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:01<00:00, 511.06it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.028\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.111\n\n\n\ny--yhat\n\n0.126 (p<0.0001*)\n\n\n\n" }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(full_confound_test(y, predicted_prob, mean_fd, cat_y=True, cat_yhat=False,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_motion_raw_full')" ] }, { "cell_type": "code", "execution_count": 17, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.11075648305937133\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cont_cont(predicted_prob, mean_fd)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cont_cont(yperm, mean_fd))\n", "(nulldist >= unpermuted).sum()/len(nulldist)\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 18, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.12636970891102528\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(y, predicted_prob)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cat_cont(y, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 19, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:10:59.660707Z", "start_time": "2021-08-01T19:10:53.215364Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:02<00:00, 466.23it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.019\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.169 (p<0.0001*)\n\n\n\ny--yhat\n\n0.126\n\n\n\n" }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(partial_confound_test(y, predicted_prob, site_int,\n", " cat_y=True, cat_yhat=False, cat_c=True,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_site_raw_partial')" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:11:03.792354Z", "start_time": "2021-08-01T19:10:59.663247Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:02<00:00, 496.97it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.019\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.169\n\n\n\ny--yhat\n\n0.126 (p<0.0001*)\n\n\n\n" }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(full_confound_test(y, predicted_prob, site_int,\n", " cat_y=True, cat_yhat=False, cat_c=True,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_site_raw_full')" ] }, { "cell_type": "code", "execution_count": 21, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.16862432442215103\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(site_int, predicted_prob)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cat_cont(site_int, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 22, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.12636970891102528\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(y, predicted_prob)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cat_cont(y, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Regress out motion from the feature" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:11:08.732782Z", "start_time": "2021-08-01T19:11:03.795694Z" } }, "outputs": [], "source": [ "# regress-out motion from connectivity\n", "X_adj = np.zeros_like(X)\n", "for i in range(X.shape[1]):\n", " OLS_model = OLS(X[:,i], sm.add_constant(mean_fd)).fit() # training the model\n", " X_adj[:, i] = OLS_model.resid" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:13:16.799521Z", "start_time": "2021-08-01T19:11:08.735495Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "model\tinner_cv mean score\touter vc score\n", "cv: 0 {'model__C': 0.1} 0.575732134573598 0.679745493107105\n", "cv: 1 {'model__C': 0.1} 0.5862695012085257 0.5922587486744432\n", "cv: 2 {'model__C': 0.1} 0.5971689023518292 0.5494680851063829\n", "cv: 3 {'model__C': 0.1} 0.5795941847771116 0.6558510638297872\n", "cv: 4 {'model__C': 0.1} 0.5901033873594849 0.6446808510638298\n", "cv: 5 {'model__C': 0.1} 0.6414546515156271 0.45\n", "cv: 6 {'model__C': 0.1} 0.5846736980883322 0.6701086956521739\n", "cv: 7 {'model__C': 0.1} 0.6039699542748325 0.5945652173913043\n", "cv: 8 {'model__C': 0.1} 0.6184660706002169 0.5201086956521739\n", "cv: 9 {'model__C': 0.1} 0.6278473595546766 0.5266304347826086\n" ] } ], "source": [ "outer_cv = StratifiedKFold(10)\n", "inner_cv = StratifiedKFold(10) \n", "model = Pipeline([\n", " ('varthr', VarianceThreshold(0)), # omit zero variance columns (diagonal)\n", " #('fsel', SelectKBest(f_regression)),\n", " ('model', LogisticRegression())])\n", "\n", "p_grid = {#'fsel__k': [500, 1000, 2000],\n", " 'model__C': [0.1, 1, 10]}\n", "\n", "clf = GridSearchCV(estimator=model, param_grid=p_grid, cv=StratifiedKFold(10),\n", " scoring=\"roc_auc\", return_train_score=False,\n", " n_jobs=-1)\n", "\n", "all_models = []\n", "best_params = []\n", "predicted = np.zeros(len(y))\n", "predicted_prob = np.zeros(len(y))\n", "nested_scores_train = np.zeros(outer_cv.get_n_splits(X_adj))\n", "nested_scores_test = np.zeros(outer_cv.get_n_splits(X_adj)) \n", " \n", "print(\"model\\tinner_cv mean score\\touter vc score\")\n", "i=0\n", "for train, test in outer_cv.split(X, y):\n", "\n", " clf.fit(X_adj[train], y[train])\n", " \n", " print('cv:', i, str(clf.best_params_) + \" \" + str(clf.best_score_) + \" \" + str(clf.score(X_adj[test], y[test])))\n", " \n", " all_models.append(clf.best_estimator_)\n", " best_params.append(clf.best_params_)\n", " \n", " predicted[test] = clf.predict(X_adj[test])\n", " predicted_prob[test] = clf.predict_proba(X_adj[test])[:,0]\n", " \n", " nested_scores_train[i] = clf.best_score_\n", " nested_scores_test[i] = clf.score(X_adj[test], y[test])\n", " i = i+1" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:13:17.042359Z", "start_time": "2021-08-01T19:13:16.801739Z" }, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "** Mean score in the inner crossvaludation (inner_cv):\t0.6005279844304235\n", "** Mean Nested Crossvalidation Score (outer_cv):\t0.5883417285259809\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAACaCAYAAAD/7BC/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfKElEQVR4nO3deVBUV9oG8KcBgdZRUCMNMcRRIxERq3UU9QMhIkRlEUFwiVEzJWpwGbcEXHHHLWowRsTSwRI1Ji6ICi5RBNyN26BiJnFBcaEdRQUbaaA53x9U37B0c5uGXnl/VSm5t+/t+x60npy7nSNgjDEQQgipMzN9F0AIIcaKApQQQjREAUoIIRqiACWEEA1RgBJCiIYoQAkhREMW+i6gody8eRNWVlZ12kcmk9V5H0NFbTE8ptIOoHG3RSaTQSwWK/1MawE6d+5cpKeno3Xr1jh69GiNzxljWLFiBTIyMmBtbY1Vq1bBxcUFAJCUlIS4uDgAQEREBIKDg3mPZ2VlBWdn5zrVePfu3TrvY6ioLYbHVNoBNO623L17V+VnWjuFDwkJwbZt21R+npmZiZycHJw8eRLLli3D4sWLAQBv3rzBpk2b8Msvv2Dfvn3YtGkT3r59q60yCSFEY1oL0F69esHGxkbl56dPn8bQoUMhEAggFotRUFCAFy9e4Ny5c3B3d4etrS1sbGzg7u6Os2fPaqtMQgjRmN6ugUokEtjb23PL9vb2kEgkNdaLRCJIJBJ9lEgIMSF7Lj9G8s2n8Ghrjoa6GmEyN5FkMlmt1yqUKS4urvM+horaYnhMpR2A8bYl9Y8CpD94BwC4JSkGAPRuY9tgbdFbgIpEIuTl5XHLeXl5EIlEEIlEuHLlCrdeIpHAzc2N9/voJhK1xdCYSjsA42mLopepcPlhPgCgd/tW6N2+KYLEbdG9hbTBbiLpLUC9vb2xa9cu+Pv74z//+Q+aN28OOzs7eHh4YP369dyNo3PnzmHWrFn6KpMQYsBqC0zFn0Hitvii98fcNg3Zk9ZagM6aNQtXrlzB69ev4enpiWnTpqGsrAwAMGrUKHh5eSEjIwO+vr4QCoWIiYkBANja2mLy5MkIDQ0FAEyZMgW2trbaKpMQYoQUwalOYGqT1gJ0/fr1tX4uEAiwaNEipZ+FhoZyAUoIIbX1NHUZmNWZzE0kQohpqRya+u5pqqJ2gL5//x5CoVCbtRBCGjlVoWkogVkdb4Bev34dCxYsQFFREdLT0/H7779j79693JtDhBCiruqn4tUZQ2hWxhugK1euxPbt2xEREQEA6Ny5M65evar1wgghxo/vLnl1xhCalal1Cu/g4FBl2cyMRsEjhFSlrHdpqNcuGwpvgDo4OOD69esQCAQoLS3Fzp070bFjR13URggxcLXd6FH8bEqBWR1vgC5evBgrVqyARCKBp6cn3N3dVT5+RAhpHJQ9h2nqYakMb4A+fPgQ69atq7Lu2rVr+Mc//qG1ogghhkdVb7OxhWZlvBczly9frtY6QohpS775FNnPCwBUBGdMsCt+ntS30YYnUEsP9MaNG7hx4wby8/ORkJDArX/37h3kcrlOiiOE6E5tjxgVFRUh520Zuji0wM+T+uq4MsOlMkBLS0tRVFQEuVwOqVTKrf/b3/6GjRs36qQ4Qoj2qXqvvLouDi0QJG6ry9IMnsoAdXNzg5ubG4KDg9G2Lf3SCDF2qnqY6lzPNJbh7HSN9yaSUCjE6tWrce/ePchkMm79zp07tVoYIaT++B4zUiw35htB9cEboN988w0GDx6M9PR0LFmyBElJSWjVSnkXnxBiOPZcfox5SbcANN7HjLSNN0DfvHmDsLAw7Ny5kzutHzZsmC5qI4TwqO3Gj6LHGRPsSqGpJbwBamFRsYmdnR3S09NhZ2dH0wwTomfq3PihHqf28QZoREQECgsLERUVhWXLlkEqlWLevHlqfXlmZiZWrFiB8vJyhIWFYeLEiVU+j4mJweXLlwFUTFr16tUrbqASZ2dnODk5Aah4nXTLli11ahghpqr6qTmFpP7wBmj//v0BAM2bN0diYiKAijeR+MjlcixduhQJCQkQiUQIDQ2Ft7c3PvnkE26bykGcmJiI7Oxsbtna2hrJycnqt4QQE6VqRCM6Ndc/lQEql8tx7NgxSCQS9OvXD05OTjhz5gzi4+NRXFyMQ4cO1frFWVlZaNeuHRwdHQEA/v7+OH36dJUArSwlJQXTpk3TvCWEGDl1HjNS/Em9TsOgMkDnz5+P58+fo1u3bli+fDns7Oxw+/ZtfPPNN/Dx8eH9YolEAnt7e25ZJBIhKytL6bZPnz7FkydP0KdPH26dTCZDSEgILCwsMHHiRLWOSYgxUXesTApMw6UyQG/fvo3Dhw/DzMwMMpkM7u7u+PXXX9GyZcsGLyIlJQUDBw6Eubk5t+7MmTMQiUTIzc3FuHHj4OTkhI8/Vv0PSCaT1Xm60uLi4gad4lSfqC2GR1k7Uv8oQPqDdwCAW5JiAICryJr787MOf4OfUwsl3ybV6+/EVP5OgIZti8oAbdKkCTdwspWVFRwdHesUniKRCHl5edyyRCKBSCRSum1qaiqio6Nr7A8Ajo6OcHNzQ3Z2dq0BamVlVec3JUzp7Qpqi+Gp3o49lx/jh4sPACiey2xqND1LU/k7AereltrCVmWAPnjwAIGBgdzy48ePqywfOXKk1oO6uroiJycHubm5EIlESElJqTEsHgDcv38fBQUF6N69O7fu7du3EAqFsLS0RH5+Pq5fv47w8PBaj0eIoUn9owCLMy9yy3Tzx/SoDNDU1NT6fbGFBaKjoxEeHg65XI5hw4ahU6dOiI2NRdeuXTFgwADuOH5+fhAIBNy+9+/fx6JFiyAQCMAYw4QJE1TefCJE3+jmT+OlMkAbYgARLy8veHl5VVk3ffr0KsvK7rz36NGDt4dLiL6oe/PHVWSNUf/XiQLThKk9LzwhjU19e5YV19ooPE0ZBSghldDoRaQu1ArQ4uJiPHv2DB06dNB2PYTonKrQpKAkfHgDNC0tDatXr0ZpaSnS0tJw9+5dxMbG0rvpxGjVdg2TQpPUBW+Abtq0Cfv378eYMWMAVAzy8fSp8uGzCDFkqkYwotAkmlJrOLvmzZvrohZCtIZGMCLawBugn3zyCY4cOQK5XI6cnBwkJiZWeeidEENXOTzpIXbSkHgDdOHChdiyZQssLS0xe/ZseHh4YPLkybqojZA6U/boEb0BRLSFN0AfPHiAmTNnYubMmbqoh5A6UeehdjplJ9rCG6CrVq3Cy5cvMXDgQPj5+XGjxBOib9Wvayr+pLAkusIboImJifjf//6HY8eOITo6GlKpFIMHD6bTeKJXdF2TGAK1HqRv06YNxo4di969e2Pbtm3YvHkzBSjRCb7XKSk8iT7xBuj9+/eRmpqKkydPwtbWFoMHD8acOXN0URtp5JSdoivQqToxBLwBOm/ePAwePBjbtm1TOSAyIQ1JMY4m9TKJoeMN0J9//lkXdZBGrLY76dTLJIZMZYBOnz4dsbGxVUahr4zG6yQNJfnmU2Q/L0AXh4q5gGgcTWIsap2VE0C9Bg3JzMzEihUrUF5ejrCwMEycOLHK5wcPHsSaNWu4SwNffvklwsLCAABJSUmIi4sDAERERCA4OFjjOohhUvQ8FeH586S+AGgcTWI8VAaonZ0dAGDPnj349ttvq3y2du3aGuuqk8vlWLp0KRISEiASiRAaGgpvb+8aU3P4+fnVmFDuzZs32LRpEw4cOACBQICQkBB4e3vDxsamTo0jhkvZu+mEGBszvg0uXLhQY11mZibvF2dlZaFdu3ZwdHSEpaUl/P39cfr0abWKOnfuHNzd3WFrawsbGxu4u7vj7Nmzau1LjIPimmdMsCt+ntSXTteJUVLZA92zZw9++ukn5ObmVrkOKpVK0aNHD94vlkgksLe355ZFIhGysrJqbHfy5En89ttvaN++PebOnQsHBwel+0okklqPR/PCG1dbioqK4CqyRvcWNec7N7a2qGIq7QCoLaqoDNDAwEB4enpi/fr1mD17Nre+WbNmsLW1bZCD9+/fHwEBAbC0tMTevXsRFRWFnTt3avRdNC+84bel8t32nLdl6OLQQmnNxtAWdZhKO4DG3ZbawlblKbxAIMBHH32E6OhoNGvWjPsPqLhGyUckEiEvL49blkgkNZ4jbdmyJSwtLQEAYWFhuHPnjtr7EuOjuGEEAF0cWtB1T2L0VPZAZ8+ejfj4eISEhHDzsysIBALe65murq7IyclBbm4uRCIRUlJSsG7duirbvHjxgrtZlZaWho4dOwIAPDw8sH79erx9+xZAxTXRWbNmadZConeq7rYTYuxUBmh8fDyAimDT6IstLBAdHY3w8HDI5XIMGzYMnTp1QmxsLLp27YoBAwYgMTERaWlpMDc3h42NDVauXAkAsLW1xeTJkxEaGgoAmDJlSoNdNiC6RXfbiSnjfRPp2rVrcHZ2RtOmTZGcnIzs7GyMGzcOH374Ie+Xe3l5wcvLq8q66dOncz/Pnj27yvXVykJDQ7kAJcZF2SyX9DomMUW8jzEtXrwYQqEQv//+OxISEvDxxx8jMjJSF7URI6TocVZ+HZPCk5gqtSaVEwgEOHXqFEaPHo2wsDDs379fF7URI0NjdJLGhrcH2qxZM8THx+Pw4cP47LPPUF5ejrKyMl3URowIhSdpjHh7oBs2bMDRo0cRExODNm3a4NmzZxg/frwuaiMGiAY4JuQvvAHapk0bBAYG4tatWzhz5gy6deuGoUOH6qA0YiiU3RSiAY4JUSNAU1NTsXbtWri5uYExhmXLliEyMhKDBg3SRX1Ex2qbFrh3+1YUlIRUwhugW7Zswf79+9G6dWsAQH5+Pr766isKUBPC18Ok0CREOd4AZYxx4QlUPORe+a0kYpxUhSaFJSHq4w1QDw8PjB8/Hv7+/gAqTuk9PT21XhjRDkVwUmgSUn+8ARoVFYWTJ0/i2rVrAIARI0bA19dX64WRhqfstUoKTUI0pzJAc3JysHr1auTm5sLJyQlRUVE0IpIRo+c0CWl4Kh+knzdvHvr374+NGzfCxcUFy5Yt02VdpAFReBKiHSp7oFKpFMOHDwcAdOjQgSZ1MxK1PYZE4UlIw1IZoDKZDNnZ2dwd9+Li4irLLi4uuqmQqK36NU4Fut5JiHaoDNA2bdpw43MCwAcffMAtCwQCjafeIA1L0eMsKirCLUkxAOppEqIrKgM0MTGx3l/ONy98QkIC9u3bB3Nzc7Rq1QoxMTFo27ZiwF1nZ2c4OTkBABwcHOo1P72pqtzjdBVZU0+TEB3jfYxJU+rMC+/s7IwDBw5AKBRiz549WLt2Lb7//nsAgLW1NZKTk7VVnlGr/ixnTLArureQmsykX4QYC97h7DSlzrzwffr0gVAoBACIxeIqE8kR5SoPWEyDFROiX1rrgao7L7zC/v37q7zhJJPJEBISAgsLC0ycOBE+Pj7aKtVo0ONIhBgWtd6FP3z4MHJzczF16lQ8e/YML1++RLdu3RqsiOTkZNy+fRu7du3i1p05cwYikQi5ubkYN24cnJyc8PHHqgNDJpPVOn+zMsXFxXXeR9dS/yhA+oN3AMDdJJrW9wN0byGtUrsxtEVdptIWU2kHQG1RhTdAFy9eDDMzM1y6dAlTp05Fs2bNMG3aNBw4cKDW/dSd2/3ChQvYsmULdu3axc0Rr9gfABwdHeHm5obs7OxaA9TKyqrO1wDv3r1r0NcN91x+jB8uPgCgeGe9qcqbRIbelrowlbaYSjuAxt2W2sKWN0CzsrKQlJTEDaJsY2OD0tJS3oOqMy98dnY2oqOjsW3btiojPr19+xZCoRCWlpbIz8/H9evXER4ezntMU6N4IJ5O1wkxTGpNKieXyyEQCABUjAdqZsZ/70mdeeHXrFmDoqIibqpjxeNK9+/fx6JFiyAQCMAYw4QJE6rcvTdFyt4gyn5egN7tW1F4EmKgeAN0zJgxmDJlCl69eoUNGzbg+PHjmDFjhlpfzjcv/I4dO5Tu16NHDxw5ckStY5iK5JtPkf28AF0cWnDruji0QJC4rR6rIoTUhjdAhwwZAhcXF1y6dAmMMWzevBkdO3bURW0mrXqPUxGeP0/qq8eqCCF1wRugz549g1AoRP/+/aus+/DDD7VamClT9s469TYJMT68ATpp0iTuZ5lMhidPnqB9+/ZISUnRamGmpHpvk0ZHIsQ08AZo9WuRd+7cwZ49e7RWkClRNn2G4k96Z50Q41fnN5FcXFxqfaOI/EVxY4gCkxDTxBugCQkJ3M/l5eXIzs6GnZ2dVosyJXRjiBDTxRugUqmU+9nc3BxeXl4YOHCgVosyZpWvd1Z/LIkQYlpqDVC5XA6pVIqoqChd1WPUqt9dpzvrhJg2lQFaVlYGCwsLXL9+XZf1GJ3KPU66u05I46IyQMPCwpCUlITOnTvj66+/xqBBg9C0aVPu888//1wnBRqy6j1OullESOPCew20pKQELVu2xOXLl6usb0wBquw9dYB6nIQ0dioD9NWrV0hISECnTp24QT0UFAOLNAaqZrpULFOPk5DGS2WAlpeXV7kD35jQdU1CiDpqndZ46tSpuqxF75S9OUS9TEKIKioDtPIpe2NQ/VSdQpMQwkdlgKoaq9MU0WRthBBNqBxa3tbWtt5fnpmZiYEDB8LX1xdbt26t8XlJSQlmzJgBX19fhIWF4cmTJ9xn8fHx8PX1xcCBA3H27Nl616IKhSchRFNamxdeLpdj6dKl2LZtG1JSUnD06FHcu3evyjb79u1DixYt8Ouvv+Krr77Cd999BwC4d+8eUlJSkJKSgm3btmHJkiWQy+UNXmPqHwUUnoQQjWktQLOystCuXTs4OjrC0tIS/v7+OH36dJVt0tLSEBwcDAAYOHAgLl68CMYYTp8+DX9/f1haWsLR0RHt2rXTyghQiumCKTwJIZrQWoBKJBLY29tzyyKRCBKJpMY2Dg4OAComoWvevDlev36t1r71deDaE9ySFNOkbYQQjdV5PFBDJZPJap2/ubpnzwvh0sYSbvZmddrPUBUXF5tEOwDTaYuptAOgtqiitQAViUTIy8vjliUSCUQiUY1tnj9/Dnt7e5SVlaGwsBAtW7ZUa9/qrKys4OzsrHZ9zs6AT8e7ddrHkN29S20xNKbSDqBxt6W2sNXaKbyrqytycnKQm5uLkpISpKSkwNvbu8o23t7eSEpKAgCcOHECffr0gUAggLe3N1JSUlBSUoLc3Fzk5OSgW7du2iqVEEI0orUeqIWFBaKjoxEeHg65XI5hw4ahU6dOiI2NRdeuXTFgwACEhobi22+/ha+vL2xsbLBhwwYAQKdOnTB48GD4+fnB3Nwc0dHRMDc311aphBCiEa1eA/Xy8oKXl1eVddOnT+d+trKywsaNG5XuGxERgYiICG2WRwgh9SJgJvLO5s2bN2FlZaXvMgghJkYmk0EsFiv9zGQClBBCdE1rN5EIIcTUUYASQoiGKEAJIURDFKCEEKIhClBCCNFQowjQ+oxLamj42pKQkAA/Pz8EBgZi3LhxePq05myihoCvHQonTpzAp59+ilu3bumwurpRpy2pqanw8/ODv78/Zs+ereMK1cfXlmfPnmHMmDEYOnQoAgMDkZGRoYcq+c2dOxd9+/ZFQECA0s8ZY1i+fDl8fX0RGBiIO3fuaHYgZuLKysrYgAED2OPHj5lMJmOBgYHszz//rLLNrl272MKFCxljjB09epRNnz5dD5XyU6ctFy9eZEVFRYwxxnbv3m2QbVGnHYwxVlhYyL744gsWFhbGsrKy9FApP3Xa8vDhQxYUFMTevHnDGGPs5cuX+iiVlzptWbBgAdu9ezdjjLE///yT9e/fXx+l8rpy5Qq7ffs28/f3V/p5eno6Gz9+PCsvL2c3btxgoaGhGh3H5Hug9RmX1NCo05Y+ffpAKBQCAMRicZVBWQyFOu0AgNjYWEyYMMGgX5BQpy2//PILRo8eDRsbGwBA69at9VEqL3XaIhAI8O5dxTi6hYWFsLOz00epvHr16sX9vpU5ffo0hg4dCoFAALFYjIKCArx48aLOxzH5AK3PuKSGpq7jpO7fvx+enp66KK1O1GnHnTt3kJeXh88++0zH1dWNOm3JycnBw4cPMXLkSAwfPhyZmZm6LlMt6rRl6tSpOHLkCDw9PTFx4kQsWLBA12U2iOpttbe312jMYZMP0MYqOTkZt2/fRnh4uL5LqbPy8nKsWrUKUVFR+i6lQcjlcjx69AiJiYlYt24dFi5ciIKCAn2XpZGUlBQEBwcjMzMTW7duRWRkJMrLy/Vdlt6YfIDWZVxSAFXGJTU06o6TeuHCBWzZsgVxcXGwtLTUZYlq4WuHVCrFH3/8gbFjx8Lb2xs3b95ERESEQd5IUvffl7e3N5o0aQJHR0f8/e9/R05Ojo4r5adOW/bv34/BgwcDALp37w6ZTGaQZ2t8qrc1Ly+Pd8xhZUw+QOszLqmhUact2dnZiI6ORlxcnMFea+NrR/PmzXH58mWkpaUhLS0NYrEYcXFxcHV11WPVyqnzd+Lj44MrV64AAPLz85GTkwNHR0d9lFsrddri4OCAixcvAgDu378PmUyGVq1a6aPcevH29sahQ4fAGMPNmzfRvHlzja7nmsyUHqrUZ1xSQ6NOW9asWYOioiJu2EAHBwds2bJFz5VXpU47jIU6benXrx/Onz/PjW8bGRlpkGc46rRlzpw5WLBgAXbs2AGBQIBVq1YZZGdj1qxZuHLlCl6/fg1PT09MmzYNZWVlAIBRo0bBy8sLGRkZ8PX1hVAoRExMjEbHodGYCCFEQyZ/Ck8IIdpCAUoIIRqiACWEEA1RgBJCiIYoQAkhREMUoKTenJ2dERQUxP1X22hW3bt3r/fx5syZA29vbwQFBSE4OBg3btyo83fMnz8f9+7dA4Aaj3mNHDmy3jUCf/1eAgIC8PXXX/O+fXT37l2DHd2IqKDpaCeEKIjFYq1sq0pUVBQ7duwYY4yxs2fPsoCAgHp9X0PUxPe9kZGRbPPmzbVuf+DAAbZkyRKt1EK0g3qgpMFJpVKMGzcOwcHBCAwMxKlTp2ps8+LFC4wePZrroV29ehUAcO7cOYwYMQLBwcH417/+BalUWuuxevXqhcePHwOoGAs1ICAAAQEB2LFjBwCgqKgIEydOxJAhQxAQEIDU1FQAwJgxY3Dr1i189913KC4uRlBQEDdOp6KXPHPmTKSnp3PHmjNnDo4fPw65XI7Vq1dj2LBhCAwMxN69e3l/J2KxmBusIisrCyNGjMDQoUMxcuRIPHjwACUlJdi4cSNSU1MRFBSE1NRUFBUVYe7cuQgNDcXQoUOV/h6Jnuk7wYnx69y5MxsyZAgbMmQImzx5MistLWWFhYWMMcZevXrFfHx8WHl5OWPsr17Z9u3buR5ZWVkZKywsZK9evWJffPEFk0qljDHG4uPj2Q8//FDjeJV7oKmpqSw0NJTdunWLBQQEMKlUyt69e8f8/PzYnTt32PHjx9n8+fO5fQsKChhjjH355ZfcGKPVe6CK5ZMnT7LIyEjGGGMymYx5enqy9+/fs71797Iff/yRWx8cHMweP35co07F95SVlbFp06axjIwMxljFOKelpaWMMcbOnz/Ppk6dyhir2QNdt24dO3ToEGOMsbdv37LPP/+c+90Qw2Dyr3IS7bO2tkZycjK3XFpaivXr1+O3336DmZkZJBIJXr58iTZt2nDbuLq6Yt68eSgrK4OPjw+cnZ1x5swZ3Lt3D6NGjeK+RywWKz3mmjVrEBcXh1atWmHFihW4ePEifHx80LRpUwCAr68vrl69in79+mH16tVYu3Yt+vfvj549e6rdLk9PT6xYsQIlJSXIzMxEz549YW1tjfPnz+O///0vTpw4AaBiXMxHjx7VeL9d0bOVSCTo2LEj3N3due2joqLw6NEjCAQClJaWKj3+uXPnkJaWhn//+98AAJlMhufPn6Njx45qt4FoFwUoaXBHjhxBfn4+Dh48iCZNmsDb2xsymazKNr169cKuXbuQkZGBOXPm4J///CdatGgBd3d3rF+/nvcYkZGRGDRoELesGOCiuvbt2+PgwYPIyMjA999/jz59+mDq1KlqtcPKygpubm44e/Ysjh07Bj8/PwAV00EsWLAA/fr1q3V/xf9Y3r9/j/Hjx2P37t0YO3YsYmNj0bt3b/z444948uQJxo4dq/I7Nm7ciA4dOqhVL9E9ugZKGlxhYSFat26NJk2a4NKlS0rnZXr69Ck++OADDB8+HGFhYbhz5w7EYjGuX7+OR48eAai4fvnw4UO1jtmzZ0+cOnUK79+/R1FREU6dOoWePXtCIpFAKBQiKCgI48ePR3Z2do19LSwsVPYC/fz8cPDgQa43CwAeHh746aefuH0ePnyIoqIilbUJhUIsWLAACQkJ3HCJiqHTFKOAAUCzZs2qXPP18PDArl27uNkRlNVO9It6oKTBBQYGIiIiAoGBgejatavSHtSVK1ewfft2WFhYoGnTpli9ejVatWqFlStXYtasWSgpKQEAzJgxA+3bt+c9pouLC0JCQhAWFgYACA0NRZcuXXD27FmsWbMGZmZmsLCwwOLFi2vsO3z4cAwZMgRdunTBunXrqnzm7u6OyMhIDBgwgBtbNSwsDE+fPkVISAgYY2jZsiU2b95ca31dunTBp59+iqNHjyI8PBxz5sxBXFwcvLy8uG169+6NrVu3IigoCJMmTcLkyZMRExODIUOGoLy8HB999BHi4+N5fxdEd2g0JkII0RCdwhNCiIYoQAkhREMUoIQQoiEKUEII0RAFKCGEaIgClBBCNEQBSgghGqIAJYQQDf0/O9TK/5MmDv4AAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print(\"** Mean score in the inner crossvaludation (inner_cv):\\t\" + str(nested_scores_train.mean()))\n", "print(\"** Mean Nested Crossvalidation Score (outer_cv):\\t\" + str(nested_scores_test.mean()))\n", "\n", "fpr, tpr, _ = roc_curve(y, predicted_prob, pos_label=0)\n", "fig, ax = plt.subplots(figsize=(5,2))\n", "RocCurveDisplay(fpr=fpr, tpr=tpr).plot(ax=ax) \n", "plt.savefig('../data_out/fig/abide_motion_reg_rocplot.pdf')\n", " " ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:13:18.135344Z", "start_time": "2021-08-01T19:13:17.044411Z" } }, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAATwAAACMCAYAAADhuBXHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAB81klEQVR4nOz9eYylWXbWjf723u905pgj58rMypq6q7uq2wO2wTaf4d4rhtYVMlwhpisxWEKy4B9ksIT8BxJggZCwhGSLz8gWtoAL5n6Cprlwv4tlDAbaQ481dM05xhxx5vOOe+/7x3rjREQOVZlVWUNW5yOVsk7EiXPec84+a++11rOeR3nvPY/xGI/xGN8F0B/3BTzGYzzGY3xUeBzwHuMxHuO7Bo8D3mM8xmN81+BxwHuMx3iM7xo8DniP8RiP8V2DxwHvMR7jMb5rEHxcT/yNb3yDOI4/rqd/jMd4jE8p8jznxRdfvOvvPraAF8cxzz333Mf19I/xGI/xKcWrr756z989sintZGa5tlGw168+7kt5jE848sKxvV8yS93HfSmP8THjYzvhfRDs9Su++VrK4YjImdWQzzyZfKzX9BifTOz1K775esrhPNEzF2POn4o+3ot6jI8Nj2TAu7pRcHwebnO35MqFiM3dio3dEgUsdAwriwHLCwal1Pt6ntdff53XXnvtoVzz/WA2mwHQbDY/sud85plnePrppz+y5/uo8dbNguPDk2/dKDi7FqL1+1sT98LjtfJo4JEMeLfDAxu7JW9eL8gKx/WNEu/hyoWY9ZWAF59psD9y3Nr1OO85taQ5tfTJy+bTNAU+2kX8aUdZnhwVt9bzaZgef7xW3h8eyYB34VTIYGznt0+thOzsV4ynjtHUYp2s6Fnm2OtX7PQr3tlkfiq8uuVIIlhov3vQe/rppz/SHe3LX/4yAF/60pc+suf8tOPMWsDbN4v57fWVEGMe7ukOHq+VRwWPZMBbWw75/lizN6hoJprx1PLSGwW7/YrRxNFMFEGgiCNZ2MMpWOfJCggDCAPFcAoL7Y/5hTzGh47L52IaseZgaOm0NOfWw4/7kh7jY8QjGfAAum1Dt23IC8fLb2Ys9Qxp7ihKzzR1PH0xIQoV3Zah19R87fWK+uDHQhuunP1or9fVeZR+n/XEx3j/OL0acnr1caB7jEc44B2irDwe0Fpx/lTE6VVPM1acWYuIQsWZtZC3NxzdlmI4lfqN857uR1j6mKYFWSEpeBIZmkn4vhspj/EYj/H+8cgHvHbT0GsbhhMJKIFRXHki4cyxHb2sYLGjWGhLHU8rhfP3H3BKC4GG9xOjitLOgx1AVljCwBCF5sEf7DEeGNZ6ysqTxJ+8JtVjfPR45AMewIvPNri+WZBmjrWlgLXlk+nL6oJinHqUUiig01QUJVzbsnjg1JK6awMjK+HGHhQlBAbOLUPrAel+1t1JdrXWweOA96Hj5nbJG9dyrPMsdAyff7pBFD4+WX8345EOeNZ6dvtSm3viTERQd9+c80xSRxJpolCxtqgxBvpjTxLJSe/lq3ZOTxhOPM9fUrQaJ78MW30JdgCVhY0DeOrMg11jGBjg5DRIGBpcXVB82HywxxDkheO1q9n8Mx6MLVc3Cp5+4v7ntwcTx9UtR17Ccldx6bTGPP68Hmk8sgGvsp7f+faMaSYnqHduar7/c02K0vP1V1OywqEVPHMp4exayHJXs9yVv93cdye4WB44GPs7Al5WnnzOogLnQD9AdhQYTbsZkeUS9JLIkOUVeXlU02s1HjP/HzbS7Ihvt3tQMRhbdvYrem3N+vJ7NzAq63njpsPWB/S9oScOPefXHge8RxmPbGFjZ7+aBzuANHds7pa8eT0nK+TnzsPrV+X2NBXS8XjmGU48aX6SfZrcJeZ0bktfm/F7B7vKeqaZ1I0OEYeGXjum15bTxWGwA6nplZW943Ee44Oh25bT/WBs2RtUVNYTGPjvX5/ynbczpu8xV5vmzIPdISbp/TGWrYNpJlnBY3yycF8nvN/8zd/k7/7dv4tzjj/1p/4UP/ETP3Hi9xsbG/zNv/k3GY/HWGv5G3/jb/CjP/qjH8oF7xxU7OyXjKcWa/2cROosvHMr5+ZWhVKwshigNYxTz++9ZjFGkeYerSEKYDzz5AUsdBSLHcVy786d+9SiNCqmmQTEUwvvfm2z3LM/9nOC82ILOredGg9J0Sd+Zj3hI3vW/mRCa8UXnm3w61+doJDm1mhqSXOPQiZzvviZJgudu9dSm7E0qqpjQa/deO/T3SSFG/uSCSgldd+PkhHwGO+O9/yaWWv5O3/n7/BLv/RLrK+v8yf/5J/kx37sx7hy5cr8Pj//8z/PH/kjf4Q/82f+DG+++SY/8RM/wa//+q8/9Ivd3C15+a0MkN1za7fkXD0IvnNQsrwYYAzs9ius85xaCckqMw+KO32px3RbimasaDfghSc1jXt08IyGM0v3f33DmT8x4zucedoJJygoYWBI89tqesEje9D+xKKqPP1RxSxzVA4OhhXDqWOpZ0gijfNwc6tgodO4698bo7hyznBty1JUsNRVnF1574C3NZBgB+C93H4c8D45eM+A961vfYsnnniC8+fPA/DH/tgf47/8l/9yIuAppZhMJgCMx2PW1tY+lIvd2C3ZH1hGU0sYKBZ7AWdWQ5JIUVWeIFC1WIDUcM6sBTSmRy9xOPWUlXRcdwcO52Aw8Zxb1Tx1ztCIP1h95vbD291mNsNA026Ec6pKIw4w5nHAe5hwzvM7L8/Y2ivZ61ekqSMI5STdSjRRPYHzXjyjhbZi4cqDHb1vT2MrK+vgMe3yk4H3/DS3t7c5derU/Pb6+jrf+ta3TtznJ3/yJ/lLf+kv8au/+qukacov/dIvPfwrBYZjy86BdBKyHLLc8X/9wTYHI8fmXkWaOVYWDMsLAZ2W4bNPNnj1mmU49RIQjUIrmGXSmQ2MjJjNcofz8OIDLu7b0U4Uw9lRlGvF3JVgHEcBcXTncymg04hIB3sobYiabXTweELgQbE3sExTh7WAgnZLs9Q1LPeO+HhGKy6cfvD39mAMe2P5/+WO/DdJ5WeTDNIC8JISg5zuHge7Tw4eSuXoK1/5Cn/iT/wJ/uJf/It8/etf56d+6qf4D//hP6DfpcKf5/m7KpPejqKEV98wXN80RKGnEUO35fnq13a5umnY2NEcjBVvXoNLZxw/8NmKV1+FyimycURaaGIigsCzO4lxlcF5x3AoW7IqclQ6JQqkuzcuErIqJNCObpwS6JMV7MobSheilCdSBVpJoCtdSOUNRlkmqmT7ARZ7gEN5x+bmJiDd4wKDhMLHuF8MxoqNDc1wotjY05QVbEfQTDynlx197zm35njrTRhOFEkMvdZtqioOJlmA0Z5WbFEK8sqwl3bm97kOtMOUSdFgVCQ4r9DKE+qKRlDSiXOYZIx3Hv5rPJSHepDv0GPcR8BbX19na2trfnt7e5v19fUT9/m1X/s1fvEXfxGAL3zhC+R5Tr/fZ3l5+Z6P+yAS7957fuN3pozzKWFkKS2cWwp5+mLC6fWQW/2Ubq+i05Uu6epKyOc+27uDXb914Li27WgcOHYHDq3BOUUUwvnzms89HaC1YmcIfgiH2gJRCE+dPnqcrPTsDI++IEbDmUX1gcfF9jdvEhh94kSddJfQ5jFJ+UHgnGdrPGKYFXS7opjT6wW0GppJCWudiN2JR2tNEismFXSjgIVeTFp4Wgnc2vXQAAuoluK5Jwy7QwiHtz2Xh9iCG8ltBax0YbENFz+cyg4Ab775JsBjm4S74ANJvH/uc5/j6tWr3Lhxg6Io+MpXvsKP/diPnbjP6dOn+Z//838C8NZbb5HnOUtLD1Dtfw+MJo4bWwWNWKO11Ouu3ipZWQhY7gXMMkt/ZNntV0xTRxgoZtmdtINTS5ovXDH80PMBl89osgLSQgJXI1JzEvA4Pfl3RQn5MU7eNLvzNHA7Z++9UFnHaJozGGfMshLvPdVtPAilNepBSH+PAUiHdqGjOb0astDWnD8tklCVPZQN8+z2LQfDo+bRN9+0vLNp2R14fu91S3989BkPp57RVLKK29GIYFbAaAbDmfy/Uo8HaT6peM8TXhAE/MzP/Ax/+S//Zay1/PiP/zhPPfUUP/dzP8fzzz/PH/pDf4i/9bf+Fn/7b/9tfvmXfxmlFD/7sz/7UIfj40gWq6+7AHGkaTYUt7ZLrlyISSJNXgjdwGhFVjh67buvOOdhu+85GMFKT7HSgyTSzHLmNJc4hOxIQg2tpdEhwgN35+I9CAHfe894WswVVA67tpOsmAddbQxhs/Oe76MvUtxkgPcO3eyiG50Tv3fZFDcdogDVXkDH3x0twyTWLHTkc7m1U6LUUS2tmSiGE7ldlp5rmyW7I411ikvnIylppJ528+i93+5bKqsoKzCBJjCK5Q7EAVzbRdZMKSc872G19/G87sd4d9xXDe9Hf/RH7+DV/fW//tfn/3/lyhX+1b/6Vw/3yo4hiTWfuZzwG787wXvRtFvpGaJIsblXcHo1JAwUo4kjDBXLveCeIo9vbzrGMw8KqkrRH8OZQ7pB/c9aT050WSHB7fSiEFFvHUjXLQkVYXh0AmhGED/AjKZ1fh7sDlFWDg8MZznNxdX7ehxvK+z+JofSpq7IQAfoWKgWvshwfSlHeMAfZKjVc6jg0z/Z8dQTMd9+PaslxDyNRDOcVMxSz42tEudgsWN460bOxl6FiSJubBfkpePKEwnDibynVeXZPHBc24ZmrFjuCp3p2QvCBuhPZL0cjiBqDesLwvU8hHO+DriPTi3WW4vbvoafDiBMMGvnUc3Oe/7dJx2PDN31B15oEQbwuy+ntJqalQW59CQyREFFI9Es9YRsvNi9dz4xqbuovZZid+DnqeqppaM5ySiAJ0/JKNmhSsrrG0eUg6yUut9KV04Q9xPsqspRWkdgFIHRchI49vv3UuH13uGtQ5kjjw6fz257FPDZFOqA5/LZ7Y+C62+DtaggQi2uocwjswQeCCsLAX/giy2GE0unqYkjzRvXMr79RkZlodPUoGTmttcyYBSlU+z2Lc9fgc98NiDN4dq2xdWTE1lxOP/syQqP0YpZIZthEkktF6DTkDLHwcQznHkCDUZ5FtqKTuPO9CAtPEUlp8TkEyJu4PY38JOB3Cgy7OY7mEvPP/IllkdqtX/huSZKKQ5GEnl6bUNZiqz71p7s2s9djnn20r0lTRqxpLRRAGdXFErBsxf0XdVSDnfporqTX5WVivsdgc2Kiml6VORrJgGtZsQsLXBe5m2b8b0pElWRUc4meO9RWhO3e2gToG6jrHjvIZtSlRkqTOD236cTfDZDBTEeUNMh+sKzj9TJ40EQBmq+MQIMxo7ubaWObjvgYCpyYUp5AqO5eEqxM3DMcs/GvmN/5OdjZpX1rC9qPPDWtpCMjYFRKie9lY6c+N/akmme0skJrxF5DqaeUwue1Z6eC8EOZ/4Elelu0zkfC7Lpydu2gjKfb6aPKh6pgKe14oufaXJ9s2BjpySJFN95JyeJNU+ej7HWs9CVbtxxpLkUnb2XE97hWNnpZcX3PxeQRO++wKJAOrXFscZEK/ZMUsgrTxyqe3LuANLs5GRFmlcsdRtEQYL3766Y4r2nnE3n9UvvHGU6JW73UFED1erhp3XrsColkLkKX+YQN1FJG59N6t9bVHBUefd5CtkMGq13ff2fFnRaeq6bCKKd+Plnm/zm13Kc90SBYmUp5L+/5Oaf9WDsqSxo5fEoqkrWzSRT84mKJJT/1nqw0IL9sWgw2lpstrAeYyHW0tSYpMLP894zum0+d5RKcCxKi1aKOJITfVFaitKilCKJP3hHxLuajqXv8VhJS9bG/M0KIHr0rVAfqYAHMJ5a3rie4z0cjCxXbxVcPhcRBApjFHlxcgHtjxxv3pT62Na+I44Up5clICp1lIa8Fy6swGZfanudBsSh56DeBKe5p7Sw2DoZuLz3d63X4eV3Sqn3JqV6j/cnu7eHixXAdFfwrQXAY3dvnBzvyGeY00/irdCDnL6FH+6ffPw6pfXpFJ9NUEkb9SkNgJfPxUxTR39kiUPFM5cSlNZMc5mzLSxs7kN/Yum1FY1Yo5Q0rJqJIokUpxYV64ua4e3VAu5sXAVaxGPxtcqOkv8q57kXt9I5y3BytEEWpSWJA8az4sTP3i+897jBTr0JKlSrh+neSR/TK2dwtsJPh6gwRq+d/1RkAo9cwNver+bf6ShURJFiMnMsdA3OSnqxvV+yuiiculu7R/OtzgvFYKEtpzHrPG9tSBMjDhVPnNL0Wnf/UOPwJK/qxt7J308zSUcOkeaO4aRAa4dzIkd1qHKcxMH9Lx6l8M5iywKlDSaMMOFJfsS8DmdCqI61l+vmxOHv9eI6djqESr5QamEFFcW4/g5u9+b8z/TqOfTih0gi+5gQhYpnLsY4B41Emlxx5FnoaDyKN25aZrnU3Hb6nlPLjnZDNtKzKxCFmuWuIgpFU/FgclTqMAYcUrvrNWFvBN4rCuvJvQQ4a+X+jUjW3mjmRZHZHtWBI3Nycyutw+cnOU/Oe0wQYY9/1vcJn46PTvx4/HSAT5qo6GSqqrTBnL70wI//SccjF/CiUFKJonBEkbhQLfcCitKx17cMRjAYWbotw/d+tkFROQ7qGkwUyAntcH91Fg5GMlNrHbxxw/KFp80JkUfrYJZLZzgJpXCdlSL/ZMxRGnt8dx/OPPujEmsdCmglGqM9cSjS7g8i717MxhxyKrytIIoJkrtTS0xvBdvflhemDbq7cuL3KkowF5/Hz0bStKgf57CTewh3sPXIB7wsd7x2NWc0sSx0DVfOx7z8VsZgbElzx3jiWFsOUMDFsxGTVBMEioW2zFtnBUxTePqc5vIZSQMK61ldkA86NHB5HTYHwtssS7i1J13aJ1al6TWYwv5YsdLR5JUcvo2WgLfZd5RWyhnaSU15saUoSnWidAKHxk+3NafuoqR9P/DVnYRRXxZ3BLxPKx65gNeIFTe3C6apI8tFVslaqZOEgeap8xGtWgpIiMhi03iIi6cUp5Y0Wnv+18uOrQMhlC51NKeXFWkO7fqzzwq4uiv1mHEKgfY0Yi9dOC/zvI1IFuJyR74UzsvOPa+51Y/TbWriyNQKyPcH7z22yFFKE9T1E8WdEx3ee9z4AJ9N8DrAdJZQjTbeOez4AJRGJy1UEAqZub1w+xPd/sz3fY2fVLz8Zka/9i7e3q8kM3CQFY6tvYqscES16MTByPL8My1u7Sm81+QFNGLPZ57Q/MBnAmY5fOe6xToYThzri57za4Z3dmQD3R7IhteIJOBt9iXgLXekZgfS1QcwCopKTnWHCAM17/YbFVCWdv4JRKGhlYRU03yukh2HBudO1oXvFypuCtXk6Ceo7xJuJjyCAe/N6wUXTkdsH5S89EbGYGTnihSdpsZZ+OJnJGKNZ5440pxaEupAFMBKV3HptOH/+zsFN3cdRSUnuNI6GrE+0XndHYG1slNnhTQookAY9acXwTs5DUSBqlMhP6ebaG1w9S58aBwU3FYwPKzj3QtKKZTWJ3bzu9EC/HSIm/TnJzs3qlDeY7fewZcZKINu9QhWz6Pu0mXTC2u4/c0Tt+8H3jnsaCAnx+Yn50vjnJ8Hu0Pc2inY3C3ZOXBkuSWJNLe2K8IAWg3DUjdgsR2yPYAkFp7n558UPufGnj0hBrp14Km8Z3+kwDNfQ81IMoHSwqU1Ob01I8+x8hvN+KhuXFaeqrY3MbVSTxBoFjqJNC20Igw0SikW2jFl5dD6znX0INBxA3pruNkQlEK3Fu/o9n+a8cgFvDSXlTcYWrxjPkqGh0nqOBhVOAethmZ9KWBv7GjEaj4WlBXwxk3LrT1HGEhdzytN6RTKGAYzxVJblC8GUwmkeQl5JQvbaKnX7Y4kxW0lslC3+47BVBGHCuc8pp5/dc7SThTd1pE1Y1ZUpFmJ96Kc0kykphcFhijQVHmGiWL5WaNNMRvPg2N4l4aCm/Rx4/1ah8gIQXR/Q4IdgLf4bIKbDjB3C3jLpyFp4od7gEI1u+/5Odg0ZfI7/xObSvU+ufQkzac/GXOdWove4da++J20G4rdfcs7N0sqK3Wz4cSx0Da0GhpjHLtDy0Iv4NSSwTn4zBOaTj1pYW878A5TxSCXzEFrKXs4L3Ve4yTojVPotWCpowhmwrNLQkWnIRuZVo5xPaKYK1hqqxPXn8Qnv5pKqfsqhdiyoEyneGcxYUzYbN+xqepmBxXF+DJHhd89wQ4ewYC3thyytVfOZyPD4GhKotXQdNuapy/GnFkNiULF6oJndyALazKTE5mfOEZToRsksQatiUJRP97qy0IeTGXRznIorKQmoRY1DK2l+BzEsjhnuaPycDh8oZR0cvGGJApoHKO9WOtOcPKyosIYReBKerWmUDEbE9iSqNnBRDFJEOKsRQd3Nju899h0IrWZQ1JYOkE120d3ck7qf8fgxn38YAdQqMU1obRMhN5iJ4P3bFzkV9+aBzuA7J23iM9dwDQ//g6vcxJgdvuWonSERqG1fFam/owq65lljiRWVNaxM4ClRUW3blrtDj1n64GX5S68edORFXVzwgSEgaKwgJUTmnNS+tAa8uKoKKCVYuEu3XvvFb2m/F1gZJ0t3OOt896TFRXW+netAXvvKabjeVe/KjKU1ndskm46xI0Ou24KvbCGbrR5N/iqxG1fl/pv3ESvX7hrtvBJxyMX8J67FJNECqMhrQUCxlOHMbDc0/yR39/l4pmjvPTJM4ZTi5689Lx5S9LfzX2pm6S5RwcyD/nEuqbbUlQWru9KWuI87NcNLefBKUUrgcUmROZI8vuwBHa4DpVSJIG6q6Do7QIBUNs2FkeKBd47stFATnpBSNjsYO61E3sHrpSA5SxUCt2QmVqbziR1cTJZ4a2keT6b4jbfOXqIbFK/iKPrfa/GhcvSO3+W55+IgLc3sMwyR6uhCI2h2ZC6WWBkoqWqJOAlkSKJdf35KZm+QALmND0qOQwmopJtjKdyisLVEu6IBHygZdIiierg5+/Pz8JoNU9v361pP54VlLXWfF5aWo27rwVv7R0UJluVHL+31Hv7x3+Cm/TfM+C53RtzvqfPptjNdwgufkae42CHausGAMGp85ilT27D65ELeMYorlyIuXIh5vueb/LVb83Y3i9JIs2lcxEvPnvnrpPEwpssK9gfSfBb7GhasUNpWFpQrC1oFArv5USnEDFH52VBr3ZhnEEcKNoJrC8oWrFnnHq0UoQlc5tIrSC+yxSG90ceHNY6rPUoDa0klHqKVkRGU07ryfY4wVYlfjoi6S7e/Q2pFQ1U3EAdBq0gxCyewhcFVDnoOs2tcnyR4aejE9dEWeCr4jbhgTsbF85ayquv4afjOwKbaTQIegvv9tF9ZKgqx/XNYm6kNM3g9GpAUXpubRdUlZzsOy2NUp4nTkdcvhCitGI89eyPPJ0WfPMty7MXDKNpHRwjRVbC7tiLmAUKzVG5IzRySus24N2ocpUFoz3ZsTVzr+kK65zMWXshI1vnKSuHUvqO4CZjhyd/bu5Wn7vt77iPjq9Pb5u8KDK8rfBZSvHWK0c/futV4riBbn0y524fuYB3HO2m4Q/9QIeq8jjPXU2Wtw4cN3YcOwPHYORJC09eQachCzYKFN57tg8cF09pLp9SjLI6LTl2ctMKeg1YW4Bnzkot75AeFWjoNVU9NQG9hpqPDoEElcmsYFKnskYrcS7zEChNUVkaYUSrbuXZqkQHwVwb3NnqXRscutnFZzO8K1FBhG60Udqgm20UJ3dbb8s5Y95XBX6wK82OqIFHz0nHtzcuvPekv/kV7F5NYdGa+MqLeOtRcUxy+alPzJxlGCjUsWllrRSXzsT8b9/f5re/NeVbr2cMRo4k0Sz1DKuLAV98JmRaKL4+cCx1FZ0mTFPPt96qpCkGpPU8bRJodAhRKbJQoZbfl3WDq9eUoHc3TDPP/kQ2Ju89oZZaX1pIdz8KhZ5ySI1S9f3SXHxatJLNMml2SU90W+s6X6tDmU5w1hFE0R0UJqUUqtnBz442PX0fogCq0cKPjz1flKBMQHU7kR2PG/UfB7yHgbLyjCaWTksThUdfriBQ7A/Ee7TXNqwsysvKCs+1LUdReUZTIYa2mgqTyQ7rPBSlp9eEKPB0Ek+3qbhyCm7uyzhZWUlRepRKh+3imiza0cyxN3Z4r1C1E9oTK4pWcueXPi8qBpN8TlWZVZZWI5pTVMrKERnHJC9IwgB12PCwFToI0SbA24oim+Gdw0QxYb2QlQnQrR7+WLDRbTkNqqR1YmGjtFAQEo3qLeOufUeCXdJGd5fwVY5aWEM12+jbqCu2v3sU7EBOBYMt2j/6x9/fh/khopFonjgbMRhVjCaORqIIQ8VSN2B3IERzOc1ZQqN4+lLCYi8gzjyrC7VKivVs7HlCAysLinc2HKX15KWilVi6XVhdNFRO4ZENUCOnt7NL0LrHFNbxudkwUFgPk8yTlRLgqlxS6rXaRc85T1U58kII94HRJJGRUofRFOkErYN5k0uI6e+uRam7K/gwxhc5Kk7ukBS769+snhcC/bEaHnDXVFjdgyf6ScBDsWkE+I//8T/yT/7JP0EpxbPPPss/+kf/6KFe6N6g4tuvZ9haauezTyacWpET0bWNgjeu5/P7Xjob8eT5mDSXKYuqEv5UaeUUuNiW3ftgLAv6tWua86ccJtBMcuFPPXtWZiJDU/sUICq2ReXrBVrTDbynESmKyrM/vvtCzwo7D3YCRVnaE5w8rTVxEBBojdYaV1U4W2HiBB1GTPY2JSUOQpytoMgxGlTUQPdW8XETqhKVNFH1JIaOm/hmD7f1DliLXj0n6etoX4jHS+vyN/U8pQpi9NL6fdMU1CdUer7dNFw8E/KbGyL3ZJ3ia6/MePN6xrVbxVz3MIk1pfU4K2vo1EpAI5LPe5LWUxNteZUmkNuLnToQlQ5npbPuvGyGCpmRXXiXctgdjEdfay8eeyuPi8mOZznW+7ldgtKKsrI0koS26VDVtdSgKohaR911Z2190qswYUTYOOrWyimvCw8Ql1QQYs5euePnemEZs3oGu7sp1ZSV05jFlbs8wicDD8Wm8erVq/zTf/pP+Zf/8l/S6/XY37/9mPvB8ca1nNffeJPpRGoJL33bcXl9AMDb2wtYe3TCeenbnidP9XFesTs7RWZj+vky3msCnbO/qylchPcahyI0lulMsdbcQtXeFInfxRJTqqNFtANce8MSxgmYJkRdOSHZHHzFjWrCN6sZSod4m0J+AHiipEVn4UgWXylFVRZUNW2kLDJcPuHsYgvlPVu1p0VpHdO8IA4DOflRa+nlM0xVkBbSeR1azdTdJZ30nlPlAFPXbLR/hcBbCi0BLXQlpQrmFXOLIn/pO3ilmOiESgcnHuvM/pBGKg42HsWmbZB++csP9DkuLy/zQz/0Qw/0Nw8Kaz39YcUsl0JaGIiJttYSYMqq9icOFcbAzZ2CwChubJV85smEV687ssLTboqM2KH4RGkBJfU8Y6AVQbclTa60kI3ys+drI+5cmmG3i+B0EsXg2CmvnUBeKYpjTfTD5ldZWaZZhXNiR2ArsZxUQEiJDmPKSjbOKs9E89A5TBBSFfl85rrKZZ1FH4KenVKK6OLT+HMyhvZJ5/Q9FJvGf/2v/zV/9s/+WXo9kXl9Ny+L94ui8EwnUybTCe1WG+v03P7uXucMrTyLyT47s3U04kzmvcF5XachFdqLeq0JNIXuobAEfoYlxpBz+yCOVl6CndyS+VUAC0onUtBzOSpoSfG46FNkU/JsSpQ0wXuKPGU63EcHAd5arC1Z7jSE7+Uh1BrnRd0lNIZ2HM27eEZ5tHKkx06MbePmAc/gaRohQJdlNQ92ALEr0TiKum9X6oBMhYTe4lEE3tJ0cpxt2ILtaAGnjtqIG2eepjPaI6wKxu1FyvjBOrIfxkZ4N1zbLNgdWKyVTv7WrmN9Oay5bIqi9EShIi/gyXPhvHEwyxxfe72i3dSsLig29jx54dgdSHnDO1HIUcD6oqbyisTA5VOS4a/2pIb7+sZRH2Ctd1L9uNtUZKWnP5XsQikhJ08zqSk3QliqpcqKWnmgqLtoWmsCBa1GyK6XJkVVOQl4hQQ8pRSuLKjKfD6dA2DLB/QguA3ee3ye4sscHTdQtymnfNID3SEeik3j1atXAfjTf/pP45zjJ3/yJ/mRH/mRh3qhp1blUtutNp9/4fOcWgl5/oq86Te3Cr5z9SilvXIhPkFNeXvD8tuvyriOsPA9Snmcr7uqRrOyFLDUkaN4YOB7npT0ZHsgqa1S0qnNq4q9EeSlpyilLpiEybybqzTz6YsogKdOG+JQCs+HqsZRzZ4/THNdVZJPhtgio0inc85cmLRAa8p0KnU958B74ioReah5FAwJ1i6IAvLeTTl1Us9bToaoOmi5yQC8R3ekxue9k7RUKfxkgK9KVG/laD54/QK69/DSky8/4Gnw/WI0EYvGycwxnlrGM0eaOeIoJo5hbckQhdKhjY5xJGcFpKlnd+QxWkoY3ouG4tkVsQHoj+VU99Q5wyir00ykhpcW0q093vTcHcFSW/h7IM2JrJR52tHUsTWQOzdCRa8lvNJDIQFrPc55gkDLWJl3xHFEXlqsaRAbS1E5Yidd2/l6UOqOWVv9AYRe/WyMvf4abn9Dmmi9VcypJ4Sw/ojhoTQtrLVcu3aNX/mVX2Fra4s/9+f+HF/+8pfpdu/N2H9Qm0bnoR3t43WHK+fjE56i505FdFpm3rRYuE3x2Hk4vaIYTaU7FgaKVgP2h0JEXlzQrC8J5cB74VMdTmasL8gureoZyLe2arl0L/8GWh7fqHpuNpduXWU9lZUh8Ytr5g6mfFFapmmJdY5AeSEtK40OQjwKj8JaC1XJXF9IaZRWONOmKnK0dyJxtXQGb0vc6ABvq6Najdb4Rgu3ewtshWr1hCx6+GVwFq8lVUYbKEZQZEcijx/Crj2bzT50a8H+geKdawG2hKJQBAqsVbzyppxek8jTa0t99+oNhar5iWkVY3Vjfpre2Db0WiV5qdnagWZUkZUGX1RsBlMmtj3fNAHaYUZhQwp3cv3Z0ZBA11MVLiZ3Mc5ppq6F8xJ4Z3gm44xIl+yYKUZZLAFeRfjDDch7ZuMSryPyykodeDKjP3HElCcyHXl1IxHJAMoPYPfZPLhBMtlH1eosfjSi2D9gsrwv6+YRwkOxaVxfX+eFF14gDEPOnz/PxYsXuXr1Kp///Ofv+bgPYtN4iLffehOYcPHsnSS3XsfQ69z9zV/qKPaGitUFSWeUcnSbitAoysoTJxAYz6maER8YCWSHOPwCjGZSvylt3QxxUqNxyOmgER6psSSh1I5Gqejh3Z2mUlBVDqUU7ciQeI9SGh0noDRVNsUEEdoEuKrEeWnYOG2oZiOMc5hGG7t7nWqjBFvhvcX0VlFBKCfIdCJiAc6hTIBaPi3phzb46UhoKSAioNl0ztFS7d59jZg9KJrN5oduLfiM8+R+zDdfS1FGBCbS3LO8YNjvS3qYNDTtpuH8esi5UxH9mWYwEVpJFMqe4Gae82fE13Z34ElLWFxQnFpSeKN44ZyhP5X6W7cp89XDqZj6WCc1vE4TLq4dnYTS3LM79oxTh5vKRMihfE+SNFhfMKz1FEmoGE9zDkYpthYNaCQhC+2YaVoyOdgiMZ7lXpswCml3hI4yV8VudUUWrL79fuG9x76R4oyVFjLIxrx6CnPpaVT4yfNHebcN9T0D3nGbxvX1db7yla/c0YH9w3/4D/OVr3yFH//xH+fg4ICrV6/Oa36fBCx1NZdPw+a+Y3fg6bY049RzddPRaSrM1DGYwFPnhFx6ZunuzHfnhUPXa9ZpjJJaUGU9pRZSdFgbeRuN8OyMqg9nMh5UlA6PZ5qW5MUhO9UznhXoUKGcJwwD4eE5K2NB3pNPR2jv0NpIYHMOogRrK9ToQIJZGOPzDDcdYnor8+kJpfTRxPp0hD73lDyrCbHDPflSKI1aPScjQ8ekox5FaK34A19sUVnPO7cKJjNHIxYayPnTIaOJY6FjaDc1N7cr9qeadjOg1TRkJUShF6MmI8Y9uiGn7aKCMyvyPnqE0nTl9MmFkpVHTYvRTDKFSXqkwNOIFd1KyiEiBMtcmCArwTlHHIjwxGRWCNnYerRWFEWFVglGeZLDGTnAKId3lqS3jHcWpc2J9Pb9wJcFPp+hGm1Uq4tKJ/hxHfCiBNXsfCKD3Xvhodg0/vAP/zC/9Vu/xR/9o38UYww/9VM/xeLiPSYDHiL6o0qGwDuGhXuc7g6xtihNjkOKyfVth3Ui295MoCwcK23FmRVxo0oLOBhLTSYKZAdvJ1JwVkoRR7KWuk1NXnq0drRiGTkbpIekZE9be4rSMU1lPCgMDQrIipLDFMNVJYHLKLVB6xBtHWEjRpsIW6SyiJVGh0fjYVhbj6PVnQ7k4XQstBS9sA5BiJu9fJILcWyRqqSJOfcUbihCbnph7Y5i9AeFnU3Jb16X5ysKfPTRfEnaTUPPvIzOSnwWMU0TfF6SRCX9cZODPU9ahDTjChV1UQoW2ylRZLBO040HlDZitOupXEBWxQS6Ym/jqFZ8M9kjNke3HQFTdQZLTKFk/d+4MSFiSuK2CVQJ8SoqaOCrGQRNVPMMoMA78nHK4NY23043iJI2naV1gkNJfu8pi5TXX+3j8gnNKAClefut1/HOkpeWUXp0LbIxx0SBYZaXjA4X/n2gaTMWqumcun0QtGi4ipYVCszIZIw3U/zXv/O+P5/7wYfR0X8oNo1KKX76p3+an/7pn36oF/duuLpR8OYx7t0zF2POn3r3L1N47NXebYaxkYjkelHCO9siKXVQT3mt9mCtp1jrwqzwLDSlkJyWtbyP0QRa4bwjqXzdtFBoSiYzR1GJ8rHznkYcEgVG1Gy9R3mLR4jQyiusc7iqRJsQ72xNMRCWvVIGXIXxFsoSpQNJVw/5Dwp0b/WIELp8Brt9HfCopI1eOmpAAahGG3MX8qhLp0I0NgHB6pn3paph05TR//xv+FphuXXtTaaXnn7gx3m/GPT3ael9zl9YZpYHDGcJlVXYVoa1iqIyDGcxTS2TMQezDitBTjsasdrYxXnN1myNQbaAwmNNhVKexOQ0gymxyXGE5GoRR4j2BRVNStXCERIGmigMCQnw1oAuUdECoFBhD29zKITmgw7kP5MAiiAUwYj5N1Sp+ucJs3SKrSoRDw01XimK6qQ4xFq3SaOe3GlGIVopBrOchnZEylN4RXqMyqTxtIzHuIrlso9ynlIHVMrQsRm70QL98N3nbR8mPqyO/iM1aQFgnSLNHFdvndyxrm4U7xnwFjqKxbaiPxHl2rI+vRkt3rSLtUTPMJVUY3KorlSTQw8msNZVx6R8FAtIg2J76BjOJFXpNhWNqKYWFJ7SesrKYq0TY5bQ0ExCbD0fmTmLcQW+KrE2R4UBtgwo0wkKLSlKbRcZNlty3+4KylcoFC6KwFp8VWEW1zHLZ+rrrv0wOj1Jg1u9+2pEuNmE/JWvzet5dm+L+LPfO58AuV+UWxvzYAegbEUwGjzQY3xQLC8v86UvfYnRxLJzUNEfVvTHQlH63ZemHAwtZaVImglhbDh1OuaJ0wbnP09ZwOuvW5I2c1Wei+uKK+cDAqM4s6T49nXFJJPNtNeErQHgYZx5AuOJA1hqL9CKPXmtkp0Wfj62qICy5tZFBlZ7Kyy0niM21dztrrIO5zxRuEwjDjFG04qgHB/gaxWdqNkhqse5bFUy3r554n24EAQ0GyfFP1VrAdNdxnuH3b0hiiibV/EHM1TclHXXW0W1ugSXP/e+3n9f5JQ338GnE3RvieDMxfuqKX5YHf1HKuDtjRr0pw2+/F+HXL1VsLYUsrYsFIN3E+ndHzpGM0+7oXjmgmGaejyGNJdpiziEM8uaaS6Lt6yOurCHOPyM7vY0/YnHOhEVKOoC+aGQqMw+VmilsAhxuLSudi0zZHnJAeDTmTiNeYuvHLYIsFUh2mnzIKWEVhJGKKOBSGShrJNai5C1hJZiAlFALlIpXpsAyhyfTqDRqW34FL5I8aN9MAF66TTEDezeJm7cx03HMrrWW8YNDzBL92cQPsfdAuQDBs0Pirw0/PpXx7z6dkazYcS5bGx54kxEGIgfShAoIisyUspbxlPN1S1HFIpskwIWWh4HvLOj6m+N59vXoJHIrO50WtfsIiETQy08YWSM0WhHXoGqxWp93XhvNcDlsul2miL4OcthcSnEOk+7cdjxd0ShmTvcZWlGFEZ447BVQTbugxJysdTwTgpZK2VOjhmC3O4uC78un0k9dzqQDm+Ro5ImPp1gzlx63+9/8dbLuIk8r5tNwDnCC3dObHxUeGQC3mhq6U8azPKA7f0K65hLdT95PuLC6fiuf3djx3FrT04q233PLBcpKBB5p9UFuV9/Am9vS+3OKOnSthP5eRzKQl5oygK+HfmxbELECGQ2N9CKpB0wGJY4xPNUKTUvVs8y2b0NjkppXJBgrNTsqnwmnKdDfwqtMaF0bFWzixvsoIzBFSm46siYpUhx3WVMa2HOxzsOXxX4G6+J2EA2E6eyhVXwHrvxNqqzSHnrOnZ7U2qAZUF1sE1w7tIDB7zo9FnyG1exE7k2FzcoO733+KuHi61+m7EW/9/JzKLwBIFiNLGEoabbNkIqrgUivJdOq/PMO6iVk2CGgm5HU1TSDMpqHmZppfGglXTqwwDOLcv8dTsBpTz9mdyntBLcokDud8jhM1rKsiBrTGtFrx3jnMc5x3B6ew1ObASqPJ3zOcvZFG0CgrhB3OqRT0d479HaEHcWYLR7UilFHbr3aVw6Ofp5LAR54iZ66RS6zhgeFL4s58HuELa/9zjg3Q9mqXxQRVUTkJuaOBTBz6eeiHnizN3T2Z2+u+P2YcA7jpv70qQ4RBjAFy8fLeZZJp23NzeFl9c91sSMw6NmCMj40KkFXS/EgLIRkpd2zpj3Hvb6U5I4RNfKKQHCm1MVKC9UFqMUOozRxhDGDUwYoYyhKHJIOmALgqQtBsk1vKvmaaRKWjA+wM/G+NlYTnE6mPuN+nwmvLs8xRe5nPripnR68wmUEX42gTCkvPo6SmuCMxfxeYqKknumuIfKLjoM6f7AD1PuCfVlmrv33TV8UGS5Y+OgzdagxWrsxGRJSTr51IWIp56I5hJRk6mQ0nUoVBWvqIni4kUxTeXgHIaQJDBKhTZia9HPys2ZJUShEI1XuuJTsT92XNv12JqYfigWutxRjGaeUXrocyHP2XWehe6x2ppWaG2IAkNRi+wpoNlsUU7782CnlCh22yKXgNddJEiauKrERDEmjHB+ETfcPXrsmoCu4obMUwchPmmhilQEApZOYc5/gJqrMaLDeMxdTTU+3u7/IxPwlnoGpSQ1OMTaUkCnrTm9cu+6lNaAve32XdCfSkATMxVq82WZjxylsDs8uu+NfXgqFK2yvJLaDV5oBVHtbnbrQNzQGjG04oDxrKSsLEEgr8Mjf6+1IYxCKAKMcigfQyW1vkOLRhOGNJfWAE82PJCLCEIIQmw+wwQRvixwZSYp76SP6yyhTYhO2lTbIs6oTIjfvi4G3UoJVy+nluvN8dZSblzH9vfAOrwt0J0eRDEqDCmvv0m1twVlgTIB4aVnTwyKe2uZvfJtis1bqCim+exniE6dIVqvGyUfoa/pN1/PmGYR3te0odLTamoasebUcsATp2P2DixKwc6+iD988dmQZy5FWO/4t//VMcuo+ZqeVgKtJkwKhceThDItgVYEyFppxrJBNiJRvD6YSCPKcZTCag1oOWiVVe1VqyXoNWOhrzTuYgzfboaUlZkb+ZTOQdhA5Tna1B187+YlF6UUQZxAfNR1180uKkpEJSWKUbWNpy8L9NIp3HSEavbAWXQQY05ffuC67XEorQkvPk35zneEEB83CM8/+b4f72HgkQl4Uag5uzwmCiy9bkASK7ptzZULMXF07yLouVXNWxvuxO3bMU5FUeVQtLG0cHqpVjweS8A7hHWOWe753bfEgjGJFZFRXF5XrPY01nk2Do68cGc5FIUlCjXWasrSii3sscmLKApxQRdDhYsS9MyivFyMDkK8c7VPgZPu3PFFGDfROOxgRzxptcGO9sA79LlnpFh8TP7He+R+YSy1vKqAuIGyFeVohN3dpNzbwecZmBB99iIqaeFGA9x4IOmIUrgiJ3/pd4hf+AFMLU6aXXubfEOK5T7PmH7r6wSLy+j47uWGDwtZLiNlAN1mTrdlsNbz5PmYz16JOb0qG+SLzzbY2q/Icsf6ckC7eSjXpXj6nGeUSiF3f+iY5jIS2EA4cb2mGHJPanOoSQZ4CXZLHdg4kI0Rf6QpczgrHZgjH4zDjbUZiQx9cLubdw2lpL43TUuyvMTnU+nWo1DOYctCKEsesvHg5Ojh8ccJoqNAZyvswSZUhaS+YQJBgIoSdHvpoegbmsUVdPcHJcgmjY/dzPuRCXgAjajiwuqIL/3xRSYzSxzpI0+Le2B1QdNuKMapNC2ad5FdH85kkVauNupRckq7tiO77yyXxdqO5UtQVg6HLFSHRyVwY9+z0EI6svZIydZ7Uaxt1t4JVe1VG0WyW3svPgWdZlILPCryyJOPBiJwEIZy8konKG2wZY4rJX3RJiBqd2XcbPOtetYtEpPxcR9dlRBE84kLX6RgQsyl56FIhdt36bOgNM47/P/5byg3b8gXRxuU0bh0igassxJw+3vodlckvZ1DhTFm7QzR5Wexg8GJ99WmM2avfItw/Qym1Tp2xPlwEYVq/v6HxnHpXMTqYsALz5xU5TRGcXbtzuwgDBTn1jRbB/W25SHO5IC6GMvhutOUEcS1BZm3TiJIAnj+CVkv/Ymc4PISvFckkUzJyASOks5sfboTlW1Pt6lpJ7cRmYuKLK/qTq0jLx1UOZEv0VphncIEUgYJEjm5u6qkytO5ZuK94CaDuXG71JYtZvHckbH7Q4Iy5mNPZQ/xSAW82WxGmqYPvWWds0ipOpJmEmNpsrUlem+Bn6LJqWgS6pyks4ZRTnZDYIqjvzeRAnBWG6NEPShH8wJxM1YExpM0u7Jreo+1FlvlWCst4SKbkqdjcJa1XpPmoZGpAmc909qduRmHGKUoraW0jsl4Qldb1kKLwQNDqnq2d/PaBtNKsZju07bCscl1yPDaJrvhyeZB02ac3t5gIU3nrWibF5SzHBtGWB2gnaXa3aMME8KqoDIh6SiDl1/i4Le/TvOd14n3drBxjI0TotGQotsjGg2pGk2IEvInPvyURmvFs5divvENj3OKZqJ56sLJU6Zznq29ijR3rC0FNBLNeOaZZZ5xKie1K2c1zsGzFzSvXT9KF0sLF1YUa4uSASRhPY5Ym/FUVgLdLFP1TKuc/C+vKwINaekYpZK6mtr6s5UoLq3rEyOIVXVk+JTl1VxBR3uHLTJAxjWcE4kvE8Zz4YByOsZVFUGciICsszKNc/yEZe+ioGJL6ejfBd5a/MGm1HCbHdTi+sd+YntQPFIB78NCyIiKBhDgCdAUOGSIv1ItIl8QMqXpNtE+QRGAjyTIeQ+mIUY60YJo45UTvDDk8NUMbzRxaxVjQlDCkwrCCK0VqpCGg24atDG4dIh1nllREhqRsTr8pgVaYZT8pwKDMZqkYdBlxcwqOsaj8SQapk4TAO0ACh0xRuGUwqOJauKyVUepsQJcFONMgLYiF+W9J6wKFJ7ETrA6wNiKyoSUYUJ2zMC5sXkdbwKqZguTzghmM/LlVcJhH/AE6RSjDM297Y/kMz21EnJpvU9lNT/4QvOOL+Y3X8vYH0pz59V3ClrtmP4E+mNHYERG6uyK4sUrAd2W4spZuLUnzaRLSyI2YZ1kB0odadj1JzJTuzeC/YnCeWjF0sToNhXdhmd7oDgYy4e60IQw0LQSdbuPEqU9Kj67ujmhtUKVFd6VgOjkOe8wOpQGRRhS5TNMlECZU8xqapHW0vxo9+YlEZW0pHF1CB1AeO9JG7d19cjIZzZG2wq1eg7vHNXGVWx/FxUlhOefRDc/OpLyg+CRCnjNZpNms8mXvvSlh/7Y3kvT4ta+7NCTrKYiAKvd86wvwunFF9kdWTb7nrKSwe9mVMejY1+oTqI4u6RJIkVeVEzSkqKsmMwKKisTEx411/JTSmG0ptuOaIUeX8xOXNuhGbezlVANrJWmQ5kTNjVRcMhvCHCTIQQhvTDiDArdXkTlGRy3adSaL1z+3FzpGKSek3/tNygaIdXulhCVdQBhhB8eAAaMxqyuceqpz6GjeM6pU3GT2ebOiWvOr18lOnue9Dsv1y9C0jN/jxrVhwGtIAocB0PLja0SpeCJ0xFhqObBDqA/VYxzi0MzzXwd8GA49dzac3Rbhk5TcXoZkujIr7Zu/N7J1/QwyWuaiRL6yqHJT2mhtIqljhdl5RxaeIISNvuizhMaVZPGPc56bJ0peA9xqKEC4gaBy1GANgYdhDhXQaUwoZzq8B5bFhjvIYpxzlJlszlBWTe74D0um6B0gO4s3vPE5p2dB7tDuHEfvXqOausG1aaMD/ospXj928Sf/32fGI+T43ikAt6HCaWEM7XUgZ2B/H9QUwjOLEkNb+MAltqGeNWyP64VVZTCOs80P2p6xAEkdaetql2co8AQhwFgCQNdD5/b+QLzeKzzhHFC5UpcJemGNgFxZwFblVTZjHwymkurqzLDmwBvQpQr8UUufha2AO/w1uLSEcGpJ/G7N0VqSin06rkTwQ5AmYDo+R/El5Zg/Txea+xwgN3bwoYR3uX12K6rO7TPzOkpZuU0+fi/z/l2AMnlKzL50W5jJxNMbxH2Dz4yHl5ROjb7bcZpRP83R6wty3TE/qDi+SsJ/aGlqDztpsY6A078JqYZGO3oNjUgJ7RJ6nn1mp0P+a8vKi6dlvev15QOv2xcopm4M5ZTHV4c8DQSrJox9KeS5AZG04iO6r1KyXONU0+34ekPU9LSkmUlxmjCWo2ish7tFXEYYeoasHcWZyuCpAHe13qKwZGtwLHA42/jZupWD926j89EabH+OzHCpnD9bezOyakOX+b4dIr6BBr5PA54t2Gl/ozGM+HaNSJ4Y0O+661YqAatWGGMmLcc6t51GoqyEkGCpe7RLinMeY93nkYSyqlOK4rCzus1WisCo8X9qiowYUwQN05MWVTpFGcrIYli0Tqod3GHbveEu2dLdBCJYONE6CsqSqAqpFGRTSGM76lOqxstkh/4v+BGfbxWVO+8TuEq3KQv3L2kha8qyltXCS4+hVk9g0szqvGI1ue+wOylb1KNR4RLy7Q+9yIuz8mfuES1twtBQP7qdyiWPxrP0pffzJmkEdMsJJqIveHZtZD+xPH/+18Tppklyz0HQ+h2Y4wOCGtZMKUUswwurCvWFxUbe24e7EAI7J2mZ3es5v60q13xsogCyRTsMW6eV9LUAOrPXALRfBLCiy5jYKTBMZnlpEVFZYXP6JwnTDRlJem2aXaw+RQTxARKxCd0FKG1kVNhWW+YSmNqE6hDmOiolummA9x0JHJPnUV0clLB2nsvn3sYoYJQjHy2r4mxe1lAWeCqAsZ9XFnOeX1o/b5Nur33J8YRHzYeB7zbcLhLr3ZFPOCl60cztWkBSy2YKeFZgezOYSA8r4OJJ9Bwc89zZsnTTmSx2spRWhHrbDUjcZAPDFltZJBEAQpH5GaUNQXm8GSnlKIqMjHuAYIkwebMjVjCKp9z9oL2muyus3FN+KzAWmx/C9VefE+zZZD02SyIRL9+9gXscJ/yxttz+0ZsBbakeOtVxv/Hv8brENNbILn8FN3f9/tlsR8G8uSkV22x2/+An87946BOWU0tvDlNPde3SsYTW1OQHEmsaSWaS2c009LQTDxrC35OGTm7qlloK3YHJwcKvYeN/pEABRxxMPdGsNWX21khP2s3JJ3NS8kcJpkExMBIQJzkMo2hgKW2Ik3tibEwkBOrdR5/SFciwRnD8kKLcjKYW3nKCc6jtMHjiVrSxffWYaKIoA5ELpviRkcD+q6/jVo9P98MfZFhb75xIivQC6vib1zkVDvXoa7/meU13OZh1z4ifOIpVPDgoaXY2WL2yrdxeU7z+tukZy488GO8Fx6aaxnAf/7P/5m/9tf+Gr/2a7/G5z73/oaNP0kYzE5yZV09GnQbc4BOorg5dXOKzKzwbA8crXXNLCsJQ0NYV7XL0qG0pMFGq7nGXqId6li24WxVF6GjE0UiE8ZCJzEhUbOFMUamJcJIXMq8l3GzbFILiYIvUtxwB9rLskiVQrUXTtRYvLVztePDnysdoFsdoovP4Ib74GUeUgUh0zfeoNjcQMUNXJbh8pzkiUvEZ87d8T66siS/+jaNm9eo2h9NmtNuymtIoop2w5DmljTz9NqGmzsleSEjW2GgGI4sl58QjURrPbf2PEkkop+TmeXMimKn79kbeioLyz1F+7a9I6+EhvLmlmQHCglyK12ZzAGpDceh4vQizHLPLIOZ8Xglai1RAJPU4q2v/SxAgpfCaLHzVOg5tSkMDeNpQQJU2VRmdJ0lTFoytQPYsqDRu5NT57IJLpsJk8AEskEW6Tzgub2NWm0bqfPt3UJ1lkAb3Hgfv3VVft/uoRodoguX0OeflQmc91G789Yy/fY35qc7M5sQ7269x189OB6KaxnAZDLhn//zf84LL7zw0C/y40KgJRWJQpGMAqGYnFsW9WPrPK1EFurxlAcgr/wdAgQgHbUyl926rBd1uxESBBpruQNVkZ8w4lZKEUQJcXdBxEBhbqwNcvLTrR5usI0vMglk6QSmY1yeiY+FNlJ7e/p70Z0FEQqoUxVMgF45S3nrGm46otq4inceN5vKiJCz6N4S1fVXTlynHQ5wtTvW7Zh+8/co9/cIJkOCyZDsnbdILn249JTnnkz47d+xlJXh2Usxq8sBr1/NCQPY2D2iY2gl5Ykr5zRXNx3XdyTYLfcU09Rza9cznMp4WVgThrPCMRg7lo5ZCXQbono9To+8LfJKaCurXZneacZHzznNxOYzt7JJNiNZKXlR0k4MRSG0o8BoOq0YpaTuN56JLYDRGmxJlRdUqiRMWsKTLDP8iVV3d1UNPx3isym+zPC2QkcNGSc7VLk+Ng4GyNqwFX4ywQ/2UI02frSPH/chTNBL6+gPIBrr0tkdqay+x3r6IHjPUHzctSyKorlr2e34uZ/7Of7KX/krxB8xq/7DxGJbFupyB5a7cGEVPnsBOg0l/rNKFndWMjdeOUQ7Vmgt7PjjCAON0Zq8sEI8BoaTnLTSJzpk2gTYIicf9ynrwW5tAsJG62Swuwt0o41C41EwG0E6xQ33cdMhfrgvgTCdYK++hCsL3O5NKXyP+7itq2T/4/+DO6i7rkFMtXENr7WMIy2sopIGYa8LWqEaDcBj0xnpG68x/K3/SrF7RD1xeUa5v3fi+vKNGw/+YTwgui3DxbUhl0/1+cEXW1w5H3N6RZzLVhYDlnuGS2cjLp+PWO6J0dIzFwzPPWFYWxT+3c5AOvHTTBRxBjNJd8czxe6BpRFJcBStRJF38k4Cna4FAgIjc9kX1yVbqKxnOBMbSKNl3jbLxcVsNBNS+yyr0EZOdc5JquvqNNsYWT+mmuHyKT6bYmsBAWUMOoxOuAiZKL7jxOWLTJoQWs8No9AGykxOfYA6rMcdIm4Ixy8Xm1SVtFCL6zgTYbMMWzmZx36f0M0WOjlZ97MfArXlobiWvfzyy2xtbfEH/+Af5J/9s3/20C/y40Jg4PKa7NxGH+3Qae7rcbO6i5cJz2owkZS3GcPZJQlenWZEmldY6wlDTVU5yqrAHE6zy8OQl57u4iK2yEVuPQiZ7t4SEUhAa+HpvRd7HoCqNuwZ7cr+bgLAQ57V4yEODFJ8TieSmszGUHvOutkY5Tx65exccUUFITpOULF0ZTsrZ9HLr1Hu72InE+LzF4UGMRkz/cbvYf7AH8SXpQRJY46UmkFS7Y8AtxPVvYdpFqLTCJ/FbN+CrVvQTnJefcnRaYi5+V62TlYlpFUToyyjcEw/W8J5Q2jkdBiZnHx3i3Y0OfGcQ3WZTK0CGkVF5Qd8a2ef1zmAoC0CoMpA2IFyAjqU//cWyjGdVkQcSmqgjcHZipvX5XMJkxY4TxgaGqpg6hz5bEQSCGcvrzOGaSayYtY5svL2tMET4FkLHYn2JKoW5fBDZtc2GdqX5pafLZuRuALtHaGvUHwVXVNknNLosiAZ7TM2DZz6JlYHHCyeoT3tExUpVRAx7izj7nNyQ2cpyc4musjZx2A/BJuBD9y0cM7xsz/7s/z9v//3H+jvHtS1DGQBN5sfzYiKr2kom3Wd/dzKUcDLqzvThMgoLp+Srt3hWBNIitlMjrqilXHMsnKuV6Zrtd3ACDH0MC0os/REkHA19cB7j6vKeQfXVyXellI7OZT7CQLhySUtGTYf7uFNCFmtbFqb+BA3RUAAL4Y+3uOzFFeWMNuDuCVuZ1GEOaQYWIvpLROcuYAtLa6qcFkmp8Y67S52ttn63/8JvqrQ7Q6m2aLc3Sbe2WLa7HDDa9SH7FwGUBQn0zKloN0oaTdK1tyMvDBsDdtMs5hpBoNpwvmVIcvxNgOWqFxAYmYoBY0wJaskUIe6IDEph6btMqGToHC0/XU8IV4ZtC8wFASItpSK6mKet+AqCNvyryugHKNwaB3LZ3uoKmAhafXwztXUpZJsMiKIDZF2JEGdlisZXUyLkqy0JGFAO4noNBRZWTFJc5YDS9c4SgcORekhUcI2yJys2cN/AaYmYapjTpWDORXKKY3yDqs0psiY6XjuXWxcxeJgk6Ce4DBFhR5W9JfOvveH5RxRfx+dTgkmY1plhctmvPIbv45af3h2kB/YtWw6nfL666/zF/7CXwBgd3eXv/pX/yo///M//66Ni/fjWvbmm28+0P0fFNbCzki6a9bJ8PdhWWE4k4DXbdTpa3oy6MWhLLz3cq0LjGa5J2ngLLMo5QkDQ7d9eylAhD5tKYPd3lpcZZn19+aNFFPlmCrH20oMkrsrmO4yKmqI41ieouIKFk+hvMMvrGFQUGbQ6qJ7a7jNt/G1AoebjLBphmp28NMJdtTHLK0RJk0RbwRMbxGzuEy5s83sO69QbN7CjobY6aTuyi6SvfU6qtFAm4By6xaFh+bnXqCczgiihGdfeBH9EXhbHK6XexHVN3ZLXnnrqE7kPXTaAdtDQ6uE5Ug4eIGB07EiDkWkUymZyf7MReHqvbMjNV7rJaVtxrWjXSBlkcW2CL/eqmdzi8ozmknjIQ4VxkAj0lRVSVUWJIEEtyyvDbjrDzwwWjh5GsgGhL4gqAUaw6RB0l0SGShryUYHJ16rnvbhYGOewupmF7N+EVBQ5jLv2lpA30Yn8bbCvnUyoyMICS5/jvLGWzJTfeL+9g6FleQLv3/eDCn398hvXqfqH2AWFkjOP0G4vMrstVfJEkO5G1PuwI2NDfLeAqeKGb2LFzGN+6e5fKiuZZ1Oh69+9avz23/+z/95fuqnfuqR7NLePBCHKYCdIfOZSpAscHcgAa8RKRaaQhJFQa+hTtTwysrXHTnmCrXHYYxmbalNVQn9IAzvjJImjAmimEO7Rm003lnKNCdMGtKBG+2LKc9sBHjcYBvKDLN6HtNbRbcXcbMRVKXU4LykpjQ6KK1xOzfAWqnxrJzFT8bihlZTXnxV1daOa5iaP2dWz6CbbezGLYrNW7WfRgLTCfmNa9jpBJulaGvRnS6uKABxY3N1KmvHQ/TyA6onfwg4TiuprNBJZlsivSRTGtK0Wuholjqib9hraU4vK3ptOZlvHsg4mVYymVM54WsqLeWQxfbhcymSUMQn9kZSC2zGimYiWUFsHK6qiIwQ+0JtsGFNLPZI3c4olIa0sAREMlnhNY1GLMISVSmnfnuy+C/Nhn5t41mfSrMpFBnBmlA/5HQ/wY4P0EkLFcoGrEwgGonToZQ3nEWvSic+WDuL3d8RpW7A9JbFm2V4FGxVFM9nc8vdHUa/+7+Yfftr2MkU01ug+dnP0/ni91H19/FVSX7jKtWgTzAZUfaWwIOdjB4o4L0bHopr2acBzh0FO5ACdGlh/jYrCWCH6DZlNvI4rJPC87g+NGhVF7PvoegS3E0+uYY2hrjdg8kIXCWjQzVNwFUV5vDbWubMiazOCdM+nQrtxASYzpJ4ZVz/jqS/gGq0UOee5ngHz0/6EjizGX48xIcNVNzAO4sOIsLLz6CjBN1o4WYT7PZ17O4mtizxVjq/djomvvw0QWePan+Pyjl0FOONwTuHTme4pInpfjTTFu+F1cVgbuC+M1QMZyLDX5SeZqJIc+Zy7FBzHxUsduS9zwp4e0e0Eksrayg+9Cb2Iij77FnP6UWpBy+1qWdoPXEoj5UV0IoVzajCKEVaCw5Y72nEAUbrOV9TlNfFaL3CgDcUZYXBATJ6aPN0Tlr3x8l8StdddtnQPOqESIDtb+HHB9K8CmP00hmUFSVtl03wezfx2Qy9sIqb9NHZGippEX/u+yXABQGmu4jLUso3X8KlU1QYE156dt6My29dJ3v7DcodaYjZ2QS0xo2G6CQhfect4Ztai7KWYDJCGUOwcFsD5QPgobiWHcev/MqvfPCr+hggbX/Z6QG6LUjLo1NApyGpinUnTwYgu+PBxDNOPcOZGLc0E43zMq602r17wLsXXFVSplOcc0IErmknYklbycWaUKYmnMWXEmEPd+XbfSP8cO+IUwX4dIqfjdC9FaqDbahK3O4tVKOJVoZqewOf55ilNXSjBVWBjhroWuKnfOc7mCgkXF+jfP11VBBillegrKh2t0ie+Qz5229ixyNaL3wPVf+A4tYNwsmYIozwlYUHN0F76NBa8X2fbfDK1RKMJ4phZ+AoKlkHUShltHbj2Jz0sU1ufywBq6x9KrJKDHlaIVReZP6v7nqyAjpNUWKZ1I1M4WFCZRWtWG5LvTcQnp1SYrqdSbCrrCMODcOJq425Ddo5nC/xJhCD9rJEm4BiOhZpL2vRJiRodWHWwU4O6iAowe5wMsLbEru/KTYB3uFRmL0NOeXvbdSz4hrd7ID3KA/uYBtz5jJofVL6PwhRnUVMq0Nw/sljfizyPXGz6fy2m00pNm5KwGu1KbY30WGIWVySkUwFrS98r3SeHxIeT1rUUEpULm4dyCYYBfD9TwmfajSTTuxmH7aHcGEFWglMc09WSPqalX7uEJtVEFaeMFDHGQL3BV+bbnvn5MRWywspLRp4UaMlVANjCDqXcdMhro/UeqIEooZIux/H3S7COXw6ADyuyKAqUY02QRSLDFCRY1alWKxMgIoTvLXYwR7F9Tcprr9FVI4pIo0KAqL1M2TvvCketM6RXL5C0FvApSnVwR4qCCh7i/ggIL9+leYzD1a/fVCMJpab+x0qq3nrRs7lc9FdB+O1VqwuBkwyRxh6JqnH4wkNrPYUl86IbqFSsNxVnFk+egzr5K1tJ7X/hbytVL5Wzg6EUpKWoDLPYOrn82aHPhYLdQ9unCqUcjRCOflrrQhDw0JoqKxQWJSCSVpinUXbHOMKlFEo70AZnLPYssSWOSYI8d5RZTNskWG8R3VWME7kn1TSmguz+KrCz0Z4V7+IbIqzDtPoSBprJZX1QTjfOL2tyF/5XezGNYgiwisvYJbXmf36/zH3sdCvf4vW//Z/l7QWSC5eQccNVKOJnYzxKNxsilVK3NcaDcKFReLzF8miq7i4QfSQSx+PA94xdJsSyIqqHvnJ5NSXV0enOudE8HGlK7wsgFnucF7RTkTvrHJSowkRnbMHgbeVyO1kqRj4AEHcIOksg/foIDzJ1+utQm9VxD1RdzfS7i7hd2/I74NQ6n5xA7f1DsqEmM4i1e5NSWvDGBNH+LaknSqKCS8+A86Sv/o1quEB2be+CnkKJiBMAmi0sMMD6eR6hy9Lyp1tTLeHy1JcnmF3RzQPDsjWT81T8w8L1nq+/p2U0SwmKwJ++9sznIOnnrg7R3S5q9jaB1B85qIhK+D0MvTHhyd+xbkVfYda9nKnFphAar29WhR0MDma148CqcGNZ/JvEkqdz3lYbGmCQEbLKm/Ic0dVORY7hlbj6HM+nODx3tNuhqQp+KzEBEYELDS4Mq8FYiVt9c6iUNhazRhlMCZANTsiD6WNqF4Dc9meQ3iPLwv8/iZuNj5SKU2noroy7kNRUF19Xe6fTSle+l/o1XNS03MWFcW40YDi6mvET39eXsfiIs3nP4/96m+JZcDuNqbdgbLEzaaoTgeVNPDe4aKY9PSdUzsfFI8D3m0Qsidc25XP2HkYTKX+cojKwSQ7qo+EgSgqOy9zk0Wp6DWFoHw3heV3gzIGV5XzYOdtRZlOCZOGzEXeS3AxTPB5Wndmjwq84jX6NqCkUN1ZxJy6hB/s4rJUUmJb4pOmNC9MgE5amPPPYM5emXfcqq0bQlnZPOzKyRB81GmgeosUPiY+fwnT6eCLQnZ1a1FJg2o0xBU5qioJphPUu3lqPgSMpyLx3p8IO3xvUPHVb8+4fC7CmJPv3/Z+SX9kWWpr4ljc4RY7itdvOLT2pLmQj8vKcmpJnaAchXVd7ua+xIRuE545K6NlN/dFQDYtXT0WJsFTxZAEQvJY6Sp2R5AXjuHUonAUyhIYaCaG2+cClFK0GxHeebwLwGtCVckpTMkctC1yCRi2rOeaxcLUBxEYg8dB1MB0lgBRNsEEqNYCKpuKL4YOULMNcFbk/bMphAmm1YMoQcUNqv7uiWvzeUp59TsiTwb42QTdXTxBRrazKb4saT73OVyeMS0K7HSCz2tNSAX6/EUWfvjHmP7u1x7SajiJRy7g7e/vf2gmvYdI1Sr2qF1BSZvrpOjaDSj0Q+IkRuljtQUdcqOaAh7KMdgHH4uZzYTlfnZ1iYVWTGjEX7SsHOm160yygnFa3PF3Cs9qaOcfZukh9woNmCIjqY6uxfh38N/4Og7FajVEebAoYl+xH7TxaUpQ5uSvv8OthfPYugbTnPZpTwd0Rru08xxjnRT0FYyzjK2kg756df48Nmniwoh4+xbN3R10UVAphY0b+OLO1/Aw0WxoRhPL8WOLUrA/qFhbPqopXb1V8OaNoy/kmdWQzzxZd5IdHIw8w6kE5wNgb+g4tXRUH90cyAnv/DLsTWRjvLoD6z34wmWZ0NgZHRm+iwG3IjSKta44n4HjYOJQvgQsWlUMJyVFWbK62KDTPHkqjaOAMDCkqgBfoYixVYmJEunS2gpXeZy1KOekO681RscQtwg7C9LJLTLszvU6WGrMwjp+2pcySlWBCqAqRGax1atHCo8Mm1SSwBB8WWBHA/lMm21RUVFSI/RlTnjx2fnf2Gk9MdRooMIAnEM3GtBoYIdDdBBhR0N2/9//L8JWl3J5nYeNT55C37tgeXmZ5eXlj/x5AyZEfoghJfIHRGoChVBBDuGzXch2INt9X8EOIE1T0jSdq9uaWiPNA9Y6kvDu+1NLewIgUB6jPMuBY8E4mtqzqCsCdXSdiSvROAIcFkPsChq+IPAVC6MdknGfcDomGA1Y33qTJB2D92RJG68UWdzGBhGVCalMQBHG3DzzLNOzT1AuLOHCmKrdIz17gWJxmWA0wuS5UF1aHRr1sPqHiShUXD4fz4nBrUSzshAQ3NYtv7l9MrXe3CvnrmDLHebBDsR9bm948nny+s8PxT5tbem5PZQsoRFJhz4KPFVdRg0NnF0UwyeljoIegEFc1KTZ7hmO85Od1hpaK5q9BaJGiyBKSDqLQmE6tGzUGh0Y+deEonZsNKHWqJqyYkf74KyMFk6HuMkB5vRlglOXCC48i2600O0FdHtBToa1xt3hnG701AuY1dPYsXwP9NIqfjyUcgmgwpD4hR+SlLVGsLA0V1Gx4zGm2yPoLqC0QScJXkt65fOM5s1rmGMNjoeFR+qE90M/9EMfyfNMs6OUFqRDe2FVOml7Iy8O8ko4eYFRRIZ3NRNyzst4mXMiBBqZu6amX/7yl4kCw/d+8Qu4qqJMJyKz3mhiwhitDUlv6Y6/s8NdkeuxJViLrwp0bxUdN8Rse7iPbnZFNXnSR3eW8JMhduNN6bDETTABwfQ6rYa41PgsQyWaz5xfIzh9gfDi07hsRrV9i/La67j+Pnphifjzv48nF+9eWJ584/cYT/sUiwvY0QC8J7l4kXB55a73f5j4wrMNvvrbE8pKc+FMxHIvYKl3crnfzgoyxziTq4ua1a5lmHqasfDuvBeC8fbwKEX1vv4XCWamlrsTeShFf+Lm5Q+F1IgnOXRbYtjUjBW9piHNrDQfoJ7C8Vjn5tMrt0MpdWLMUJsAV1XYUjYXHHJyi2LiJMFkE1SVYWcDVNIGW+KKHJ/WRtllhh3sYrrLQkReO4c/2Kn5exbV6uFnIxEVaLaxW9cwZy8TVRavDNXOLXyR42YTdKMlNcA8w01G6LYIEugwpPM9v4/0zdfAe+ILTxAsrVBs3CS/cfVIlFaBC8LHAe+jQiuBJ0+JPWNoat9ZRCElP6REeenenlmSBX8wcRitaCcnvzgA41lBVcuplJXDeU8cGXStfnIcYd0d0UFA1OxQHTYjlCK81zC10lKLKXNwDueqeZ1MJU0ZMdt4Bz/aFxn4Mpe0pebtURVSq1NyKnC1NIwvCjCGam+T4MIV4eVNx7L7N1r1dR0lCdVoiC8KgqVlqSfNptLxzbN54VtFEcHKh086jiPNxbUBsyzkC88meBQbOyUri4YolGu+fD7m22+kZIWIdl48HQodRcNo6ims1GMrKye89TOKa7vHOrK+Fu1EGhVxJDXg1Z5w8MZpTVupFGFNYq6sbJyVFZWdZgy9lkHrkDzNwYvIp/eHExaKNC8BRRyauxLZAbTRmDjB5DFVNpN6bB1A/GyEPqZP57MJXmtxLfMWZUJUGOFH+9h8VruWKczZy7jNq1IbBnzSxG28jZ+NZN3u3aLqj/B5Rrl5U+ayw9olL8so3vkOfjJAt3tEV57HLK8RLCzS+d4fwHvP9Ftfp9jaIDp1Rjbj4QCMIVw7BTdvYj8Ep7PvioDnnGdn4JlmnoW2Yrn73pl8HMLqbVyx2+ewPdK8GM6OfjLL4dQC80Bmnast9sQABu/p5xVJHKCVotOKCI4R+w7d5UEaGGGjTdRoY+LkXR2ilFL4unaitJYdNmrIYrYVPh2j6nTDTYaodg99+pLIQnkPUYJZWBYGy3gEWqN7S5KKaoOdDChf+zbl1ddAG/GaVZpCaxrf88MM//tvkN+6gWm3CTo92t//g1QH+9jxkGoyxmczgpU1woUliutXaTz17D1fy8OCrmdnb+1U7BzUAqpG8b2fbdBuGtaWAj7/dJOvv1Gx3lE4pXn5quVzlzVXtxxLHUUcyamulSi6LS2jh9Uh7UR+15/IWNk4lZNfpyG1PM2hQKwEudLWJ8PEz01/tFKsL0C3GTKeJJRVSVV5AqOJI83BcEZWirJOYDRrS02C23mW3jMb7GFzMcfVYSTq2EaaMMbEKI6oSa5WS1Fai3KK1pA08ZOBbJDyqBIQj21oFLnYdrbauKLAZjP8YASdJVRtOKXDSERIlYJ0it3fxh7s4quK8NLThGcuAnUD5oUvYp98Gu8sQbfH5NWXmHzj9/BVQdFbwrY+BrWUTwPe2nDsj+TEszvwFOtwevm9g15pJb093ImTSJGVRzUVo2Qu8nhxvLRCYznUC9BKUVWWrJBAVlWWqK7FOe+ZpiXdVkRRWkwYUZYFUbNNmaUoIEia4iD/btBGFnCUSApU5ijnpMu2sIq79faJu6swEhHRhVV0FIvabbNLdO5Z3HiCHQ+wB7sEa8LDM6fOU73zGnZ0gO3viSx43MDrGPv2OwxfeoVyZ1tOBlqTXHqS6be/iQpDwrVTVAcHqF6P6OwFdLNFubfzkQQ8gLw082AHUBSer357xtm1kFPLIZMMum1z7P4wGEtnFiUyYK2kppko2B0dkdOTSAKY+FLUFKYS3trisIlNK1E474hCoSrFASilSYuT+nitGKrSnCiNlJUlL6t5aaWyjuE4Z3nh5MmnTKdUWVrPXDvpiBuD0TIOp5qtuRKO9x6fjuUClRKXslomyiOcPBXV74f3qOVT+I238dMhbtQHm+OGRS09M4YiBbWIWVwRDqitf6dFocej8OMB5Y03sXubqB+KCVaPxADMMSXV/I3XqDZvAdDe2aGqU+GHiU99wKusnwe7Q+z03XsGvNvreMtd6b55r5jlIuXea6m5/PtxHM86vPfkpZ0r2DrviY41O6rKMRjnOO9pNHtYW2GiZC7FfT/QcQPdXpDUo8jEjDtOUCbAD/dRrQU81+b3V0GEWjsnSijNLsH6BfSpS3JKLMuae2VklKjZRsUNyquv4Q525YtsLeXODtYkqHaP4o1X8c4TrqyDcxRbG5hWG7wnWl6lWl0F6+ZplfkIzV32D/pc3z0afj+YJBjt6TWlO9vrglUn3+tbr+8yLdtk9ujnzWDCO68pMrVKpVpymvEWKCjUMtIrVzgiZqRoKhwRAyrioKQXT9EuB1+xCbxczaA4OeBvTEjS7s2VSaqqpNU5WbMti5TRwea8o99sNllqJzTjkKju6sehwVpPVlmKyjLNcnSR0dWWUEOsHBzzXCu9J1CKWHsMMHWKkTUcVJrMaxKbc7roY5WmVxV0KlGQsQ7KcYrb+cZcr2/SWsIbjVWOcDom3NtHOUsZTXA6YLr3b9hbPn+HZFQw6rP4tf919DqznOa1hy8W8qkPeKpmtR9XJL6di3U37I6Ogh1ITWalI/y6XvOICNqKxfuiNiejGZ+cnT0MdFEoHgNV7U2A97V+vPD3jq4toKwc0V0EBW6H906Y7yZEd1dkF67TZhU16vtYaWCcuYzbviGp6tp59MKqkP6bvRP6dCoMMYeNkWMOYz5NsYN9UaU1RtSZA2kpqijBTaeirDGd4g/2CVfWsdMx4fIK8ZnzFNubBEsrBN0ejac/mtPdYUf/+l5FXgSUVlNWBmccO8MmgXEYMyNuQW4bKDzdaEBkCgLdx5QVhY2IdU47GpOzhCFH+4KKBK9CtK8w5DgiPBpDTsis9iW2aF8RVzsnamjyht4pb21tyXS4jwnCuYdJo9lBm9pnwjuK2kciTaWu1mw2sU42VQUEWlM5z3CWz7v9DV8SakfLQKx8rbbjyR2Awii52sKBwZO4gu0ywjvHWjWj6XKZ1/VQKUOhQ7R3uECjK3Gzs9qQhwk2DLl+/nmiMqM73KU33AYT4oG83sSDqqC4LeCp4qhjrrOUdp6j+3vMXn2J5nPPv/9FcBs+9QHPaMXZFc31HYl4WnEHY/5ucCcPhSeGyEEEO/fGkqYE2rNQK6bcrnzsaqUL6xyu7ua5+tTXbkYYrebp7tFz3Z2Ya2u5dx3IgrP9rTmPSi+sodsLqPEAPxvIc2czOfV5UN1lggvP4SdD3ObbuF1JHWgM4fzTd77+dIbd35J6XauNN0byOqXASPHcOQtlLpMZymBnM8qtTYK1dcqdTYLVdYLFZZLPf5FgeUVqSh+R+CccdfUr69nYKRmOLb/90pTZMdJ4rxPw1KU2aS3yutjRfO6yxnt4e9OxPxR5qPNrmnZTc3VHJnCG06MGRVFRd+rl8y6rJYYzSXUvrMCl9ScYZ45xLU4RGljrqTuaW8dxWPN1zjGaFljrSWJTrxk956J+6UtfwlkrythFjjGihXjochfEDcJsDNkUX8zwVYEvC3EoixJ01MSVOX42kMbXqA8+YP30OmRT1MJFfJZir70iTbEoBtMSB7wgJItjaDRptZdQzTaEIZ//43+sbnxA8c5r5C/9tpiBdxdRjSbJCz94h3OezTK2/vcDiu1NGZ1rNmg+/wLZ9asES8tED0kT71Mf8ADOrGgWOoo083Sa4ir/Xlhqw61jitXthizoQ+zXwQ6gcmK2fLt6CsjJLo4MRQllVREYRbsZi4M84liWF3ae5Hrv7ioXVaQTquxIziXIxujDv/ION9zDrF1Ad5dwCrFWLHN0s1MXp1PstZfx/T3IJvgoQfVWIZ3g0wnqmKOZS6fk3/4dbH8XO9iTUSOtUSaEssRbS3zmLKWKhP6QZ0S9NnYypmok+HRGNZnUxj6XsemM0X/6MjqK6HzfDxGtn+KjRGAUF05HcBpefTtjlh06minQRqSa6hHAWS7etOOZmPaABK53Nh0vPqW4uKb4zk2Zn20lsoEmIVxal9O9c0JAPu2ku3+osLPY0nQSOc3fSz3nEGlenrjGxW4iHhb3gFCYJMB5bdBVhYkiMYBCDKHmf21CmbyoivpzNfJvkcu4YFVK/c1VUh7JUxGfKHPZXMuaNrOwioqbmMEEl6XzMnawuCallLqG7KYjMXqajvD7Jcn3/vBdbULT77xEfP4C1XCAm81Innpuvk7saAiPA96DoRk/2JjXQktMfEapLNrFY/P4zh0RSQ9R3sNKMzCabitmlpWifRfoObXAOo8xml47ljpfNqUssrng4yG893UH7ghVlhIlx05LrqLWDxL1FA9E8bwzSzbFjwdH9y8ycTC7XWgAqDauUd58C7u/I7aMxgir1gRCMB0oTLNF/NTzuOmU2dWrqEZH0uVdGSnzeSaUlv4+o9/6jbmAQX7tKmv/z79C8BG5l92Oz15pkNzIKStPq6nJSnMXPp4Ifx6HR6wel7qKU4vSmT1EfehldyTljWYsxj23N9WD+yilZHnF/jCVtWI0hIYsr2g17q0Yko0PcM6B0jjnqIoJSbAw97KwYYz2HopUJK6Slsy7KoWfjXHZtOb7aQhimYce9+u1VMg6OTzda4P34piiF9cIn44p33oVgkj4mk9/jvy1b2L7uzLWeLBHsHpamhqAT2d3XL+dTSm2t9CNFq3PvUj21hsnxg+DpYfH23woNo2/9Eu/xL/5N/8GYwxLS0v8vb/39zh79j5knT/haDfkv9uhtbDni2NBLrn3eiQKDVFo5iYux38OIgjaNHpen7kfyLysP3a7Cd5j+5t1fVDmG33dvcVWIh8VJjJTi5efNVonTncAdrBfjw3UL9BaYdBb0WILVk7jy4L81g2m33kNj0aFfXxVESwu42ZTTG+R6NQp7Gx6Qq3F5RnZW6/TfuF77vu1Pkw89URMWXn2BhWthubFczG39o4oR2sLikas6LXUiWaXVkfSUKtdmOXSkVVKNA/3hnKyA6GnFJVwNB8EznnGs3w+7VFUMnlhg3uf7ryzIhlWQx0afXsRD7VFBl7JrGzSIYxj/KQvqe10iCtS6aVqJZL/6VTIxdpAEIhwqwmEnuKP1oRau4AdD3F7m5i1M1IyWVqjeuc1yptvS22308PnKba/h1mtT/XmLrXpY9QXnTSIzp0XebJmi+Ti5YdKVH8oNo3PPfcc//bf/lsajQb/4l/8C/7hP/yH/ON//I8f2kV+ErHSUfSnEvSSEBZb7717d5py0rPOEwWaJL6/A7ZSiiBpUqZHzPNg6TSqTGsv0RjdWRRO1eF4UW3X6IsMP9iVoJWlIgy6dAqKFH32KfTynamC6S5SGgNRBEUBQYheXENFIeHaWVCKYm+f/MZNMLHc3toQ86EoJr54ieTSFUyjyez1V6mGA0ynKycOxYlxo48aUah48dmTu9jqgszMRqGaa9+tLijyUrM7EO/a82tqThkJA7hyWkjFh3SUV24zYhvO7i/geS9rSLQY3dyK87COa52/ZwOr14yZ7u/gqgJnLaZOFYO4iQ5CbJnjnRNakzaSvjbaaKWwgx2Rg3LS+PIoVADeGFTUFfmoZgcVNdDnr1B9679JWntYL15ax6YFevX8/Cibv/5NTG9lvsH52RTV6swVkZUJCE6dv+N1mEYD3Wwye/VlUBCtrNH7Q3/kQ5nIec9v3HGbRmBu03g84P3AD/zA/P9ffPFF/v2///cP/UI/aQiMemBhT60V7eb7EzMMk2atelxhglC6frfZ2hGcfGxlAigLKApcPaamihTT6qIWV9G95buaJgdnniDo76K7S1TDffxsgopj0dsDzMopyBy6NURNptjBAUppgpVV4vMXiU6dJlhdJ335m7g8n3uOhisrJJeukFz8cD1pHxTGKJZu+yyVkiB3fu3ep6vjp/rAnCxrvIuY9Ryl9ewOpTzinCfQIq4Zh0bI6h5ajYgkOvk1LUpLr9NjqWmoigxVE1m0CcSzuLeI1oYynVAdL4U4hytLwvaiqF9PB7hyIKc2XyunUAvOHpLYw0hGES88J7XeMEKFMUqZY0yDGtaiwhCCAKoKX6ToTg9z5gnCc5cxvWX5PWBnM1QYoMNI1HRmM8LFJXxZoMJQRAU+BDwUm8bj+LVf+zV+5Ed+5OFc3WPUO73UV0wQznfxu0EFQk9x4wPwDoIYl05h9xa+ygElMt4XPwPjAXYyFAmo5skTl251SJ7/Puz+NmZnQ4JmnYoobQgvXKEYTgh6i5R7ezKKpjWm2SJYXMJXFdOv/y7VvkgIhadOo5Rm5f/x54jPnHvXiZFHFacWhLfpnJwATy2899+MZhLsrBWvCw90EkNRWboNQxwFtBonP+8sL5lmFa1GTBgKqT0IDDoIiVpdkmNUoiBu1nJRvpbvn+LjhGqoUa0unLkCw32EhFyn70aJXuGkj8pm6CtfAKXw0wHMxlIiWT2LWlpHD/q4Y3Xh8NIz+HSGWT1D8fq38IVo9OlDbcUwxJUl06//DmX/QMQTnnxqXpk5Lv1f7mxjLl5+4M/hvfBQmxb/7t/9O1566SV+9Vd/9T3v+35sGj/tOCSTHr4vh6omoqehKKnp/u+FOkhCzvLGDcLDAXE8ylZMb1zD1eKPdn9A2rt31zTa76Oyk0PchfkWzmuYTPCtDjRbEIakSsOrL0O7C/09SI+ZhAQBo8EINfrO/b0ZjxgGWYNxEWOdphkW+PGEd2GdADCzTSofzP8DSEc5WnnGekaoj46MHoVXIU4FKA95YWkazXSWQi1btjOaYtk48RwKT+gKknyMQxFWO2jvqEyEQ9GuyjrWefGcdY4iHVPqgNJX2O98E48iKFKCYor3Cj+ZUW5tg3PYylIFCbbZxZkOWkM42CIsKwgSGI3xr79CORxTPPEs/uZ1uHW9VvMGrl+XTGXrFjRaqFbdRGsvoNL3b+x9L3xgm8ZD/I//8T/4hV/4BX71V3+V6D4s+N6PTeOnHYe2gs899xzee7Lh/glOnjYBJkqOUlrApWMZ2jah8PCOETq9d5TZJm6rBHF2BmtpLi+hm/XYTtKq63OxND5uQ9lNqDaOTWmEEfHnXxSqy4tfwE7GuHRG/z99mezqO6gwIAwWYW0dOx5LulSPm6189rMfwrv28WOag9uG44NQpxZFYurdME49/alnljuyUigo3QZYW7HQhE5TtO8AhpOcyoqncVlaprMZlZvSaDaJo5AgimksrIia8W1w6Rg32MFmM9zYSiaQtFBJi2qrFIpKVcx9Jk1oiI0hOHUGZULcwbasnaQrMlF5ill9ci4Oa849dSJLSL9hKbPR8Z4a0enTJM89x6RImWxcI9+6Sbm/h5tKpqDCEJ2lxO0m7S98L63PfeF9ZwIfqk0jwCuvvMLP/MzP8Iu/+Isfi17dpwVJaEiikHwyxByqTtSwZUGZzQhtRQly8pv0cbMxOmmiogRbpJgVSRm9s9j9DWj3ZAd1TgrR3s8Dm69yGOeiaAvopXX0ylF33VclvqpweQrWYVZPEz0htdtDez7rYfQ//huzd97EDvqYZgsdJ3jnaDz3PL4sMHFC64UvfnRv5EeMu1GSinvQlI6j05DaW2gUaiZy8GVZYpTHOxhNHd1WRBhITc97j7Oe0jp0mDDJLGfbSzSbESZK7hrsAFTUkDno6QDKHK8UKm6IgfeZy7iDLSmDaANhgkonNRWpqs2iQnyZihR7be9YvfY7+CLHO9C720Qv/oH5yKBuNNGdRZm9BdCG4MwTci2BodzZxvYP8NMJbjbFRTFhaxXdbKKSBjpOKHe2PxS+5kOxafwH/+AfMJvN5k5mp0+f5hd+4Rce+sV+mmGLnE6jTjPLAlsWJ7p1riqOHKCKDDsdYGwJ3uLSMdoEkuxWBYSxDIhXhThTnb2CHx2gu8voM0+ivIcyl0VeS4IDuP4OanH9iCX/5su48WBuzmwWltGtLvlr35wv5uHv/S7laIo9OBBHqrLEdBfQSULrsy9gWk2CThd9e4PlU4RWcqhhd/Sz7n2+3HZD0W4Y1nqe0dSS5Z4o4KjzWVjCwBAazSwvKSqLVkrklJDufdi4u1fHIbyt8FYczbwTET+fTqC1QLh8BnXqMsXVl3DpCKU03gRQSEdWdZdQ7UXcd35burRlLrVAD9VQzKbIv4W3luiz348b7OGrcj5VQVkSPfP5uWCAThoEi0tU/X2Z2IkTIc6XBcymFLdukHV7khVcvEzzmc+8n4/knngoNo2//Mu//FAv6tOO2wVBkzgQ85XbEMQN8beo7fb0YRe2KpAUVR+Wb/BVWauV1Bpox7hvursE3SWZqW0eJV5uOsSN98WcBQXN2qXKBCLmeJyoDLiDHVxv6WjnBqqByHubVkt261w03fAwe+VbtF/4nk91sAMZFbu4BnsjGS1baksQfBAYreg0NM7d2S0GaDVD0lqMUWtFVeZS27Xu9oe6A95ZlDYSyGqTKKoS3VudW3sGpy5T3XwNl88kPV1/An36Mmo6gp0bqCAUY56qwGsj/iZViUszmGV4C242mxu2qyAgeup5zMLKXOUYIFxeITp9FjseoaKYqr8vyj1RjHeOcGV17oCUX79K48oz89T5YeC7ZtLik4TjgqB5YamcI77Lh2qimLAhRdxiNqGqhRgJQrQTiSdvS5GBMgG6vTQ/nelGW1KYw2OHNnfaN4ZRHewAxKmKMhc3KxPIl8TZk/c/Vpgp+33ZnfMcs7AsGnwofFVS7myAq8jeeZOFH/3DtJ5/4YO+bZ9oNGNRxf4gCAJNFJq54IRWiiSu62Ra02lFOO8pa6ll7x1xfO+u/SF03MCbADfal81IKVRjCTcdomvSuU6amFOXYH9DgmwQ4m6+gSoLmI2FvpQ0UcFpIS0XJXaWipCsdjKVY8J5wAOwgwNMZ0FoKsi8LDqg/eL3gFYUGzeJzz+B6XQlCI6GuHQqajt1x/9h43HA+4hhrQiC4j1ZYbHOkZcVnWZEWdm6SK0Ikwb6WAMiarbFfMVW0ubPJvjpAN1dQcdNdHdJZl1rqCDCLJ/DpSNAoZvdIwntGjpM8L1VfJ5KoGy0ZSQsamKnQ8zpCyILNRogvgXiNq87C6Svv0q+uYGKEzQG00hIvu8HUXFC9sZrmFoR2ec5s1e+TfPZz57Y6R/j7pB1IPW6MNAnCvdxZEgiQ2A0RT7FViVJdD+nn5qEPhnICT6IJIDZk4VGPxuiaw9Z7z1+fwO6y5A0YTaEIkcvnZLurN8Ad0tKLvUeaAe7QkUJQqqdDdSoj+vvYFZOM716jdk3v4YHkicusfTH/gT6WHMzv3WDg//zP5K9/iq63cEkDVHOfoinO3gc8D5yqFo0oHTiWQCStlTWMynBpSmN3tLdCcFRDNT1mnAJOu++A6owwoT3ZqurVhcVN45sHRVU/X3y3/xPuDzF5xkqTsSku9PD7m9TAtHTn2fyxpvohRWSM5fw1uKylMU//Eep+vuUt25QjcfY4QG+KEHJ7h602/e8lsc4QniPUTKjNb12QlFa0smQqszmdd5De0YTxnc2L7yT+ezOUs3HRLKCIMSX+TytvQP6iHvJ0mmoSszaBYIrLxJ5sNk/w+7dAhRei09L+c5rMqrmPeHyOr4smf72f2P8+ltgAuxsSrm3g+ktsPhj/zcAyoN9pi99EzcaYnoL+CInPH3mZFH0IeGRci37NEArRTMJ580IpRRRTT3Q2uC8v2uw+zCgGm30qSck6CVN1NIZite/LSNqRY6fjrDbN6Vjl6X46Rh7IGTioLckaWxV4tIpptMlWFwiPnue8PRZqkEd7IIAs7BE+vorH8lr+rRDa0USB1Tl0QRFPhlSzMaU6ZRsuE8+HpBPRmLoQx2wokRGxeKmdF61weWz/39799LcRpUFcPx/+3a3XpYsWbZlOxgHAzZJSGoYCI+ZKZgKw2QRVlD5EFmwYceWBR+CysdIaqqooabCaiYF8whDTTkkYMd5WLZsSbHe6scsrpEcFCCp2Jawzm/llqXWVSKffpx7z8Ev3MbfWiMMQ6yRTGefSimsqaOdYqRK21izi6jRrLmf5zhEjv8GK5ZEuVGTnR+bwEql0eksKhrH27iLd3eZ5t1V/NImrburhI0GYaNB5d9fmXXWQCt/D69cNKsvtL3T0J19+TuQM7w+iEZsslaM0nbDnPHtXLZ47b2faLlb2KiZe3lu94hupbLmsgXwt0tmThZ0792FoVmHa2mTGLEdUIro84uU//YZrbV7ADhg7skcmWXsz+fwikWCRh0nO4GdTuOXSvv62YaV77XNygjMZajXqOG3m6ZPbbtJZGQU7bjodI5ge4vQ2almE3id713YrJplYPEUynbNAc+JmHt/rQZho0ZQLROu38JfD1HJMazcHNFTrxO2mvjlLTMtKr+KzpjCsn69hl9YA99Hh22CRp3QDzoJFCc7Tns9jzU7R+PmdVq3Vwm9Nl5pC2d8AisaJTr//J7/e0nA6xPH0aRTURpNHwiJRmxTUHMfhL5HcOeGCXiAGs2ic3M9z7MSKazkGH69hnIjpnv86JgpIoBZcuY8/aw5K52aQafHcC2NFYthRWM0bn5L5MgsOjFC4oXjeNv3O/u2M5me9xN7Kwz8nuKxfquBdlxz5pQ2CQX//iZUSw++2DffPeVGTXWdHcqNmlkB293MfHh/izCeQqXGiL70e/xCnrDdxIuZij0KCCem8ctbYGvc6RninqJ2axUrGicydxR3agYrHjdFJ2wHPTKCX691kirxF14kOuhLy8TjcWzdmUm/n8JyoRPszPYmYWocFXswa6ssi9jpN2n+90v84jr2kWfQY5MobbK1lmOmDphmMT406ygVmNJCmDOMoN2iufx9d+2t1ljJJEGzQfGvf8EeTRM/cQod763DJx6fWXXjEHjtnUordKcvQU+iCsCKJvCrZTrZBmXt6lbWK/xRLUbANO9hpwJKzkxW15kJk+SqVbDHp1FK4W+YcmXxo09jpzPoOVPe352ewZnIUb+xRP3mdfyqKUJhyorN0Fxdxs3lcLJ729JTAt4QCB8yxy/0Wih6g44VHyH26h8feKx9dxnvzjI+2/ilAmF125QJx8MrbRKUt7AnjxBdPEblq6t45VLntfFjL9LK36O9sW72tbVJ9dq/SL3+hz39jMMsMjLaSVrYkVhnTqel9UObQSk3ih6bJqjdN+WeEqMPDYyd5ydSUOCBpWIqMdrzPCuRJHLilc524+t/oJyIaQvquMReeRM99TSg0HETYP1yead38U5vjMp99E4BhHZhQwKeeHxWMoNfLnQf0BoVT/30C37EX7/3wHb73gpom+hTT6ETCfxaFWcqhzOeo7bUXccYhiGVL/9O845pHuTmprHiCbxyiTAIDiw5c9gppR5o5Rn4nklCaPsn16OqSAz9iJ3xlBvFmp4nLObNJWt6sqdo7MPY03M07lwhqG6j0+Po3FM9Z/ZBs0Fsbp7mRp6g2SBoNakvfYOdGdvT5j2dMe35HsXAUfEk1sw8YXlnOU8m93jzm7SG9q5tq/u10fE4rfV1vG+X8FoBQbPRadTjFTcJqlWwbYJKhcat74k/fww7k5Fgt492z9/cs32OpGEk/Viv8ddW0dkcOmuKjXi3v0Mvdieg11e+p/Kff+IV1rFGzXdCadvM19Q2fmV7Dz+BIQHvZ1y/fp2lpaUDe7/NzU2ATkeq/fN156fFxUUWFnq7lu3mHDlK6+b/+OGaxj26QLBdwi9uUL+1gl+rYk8eIajXTJfqnSRw2GjgTEyCpWndWTVrbW1N4uRL+/XBxIAIg8DUYtz9WLUbwJqrK5Q+u2Q664Uh7UIe7TikXn4N5TgorfF33RrZKxLwBkhsn6q8Pik9NkkkkSTYLmMlklixBOHkDLpYoHbrDnZqvNMsyEokSP3uLYJGDW9unsbKdwBEnzFVjtNv/elAWzUelMN7cOx6lIPjD5RlYY2kCCrdTL2V6mbqm7dXCOp1FAo7mSLEVE/+IdgBsrTsoC0sLDzyf/BhZ0VinaopYO4b6bEJ3KPP0S5sdB630xnsZBKSSZxMFr9Wob2xjrJt4ovHD2Ww64dBPTju5s4fp73yLUH1PlYyjTPX/VtSjouVGOmcxSllET92AjuVxq9VcSeniD23uOdjkoAnnkjixCmq31zDK25hpzPEj5/q/E7ZNsnfvkrQbqEsvefrIgeJHBx7qUgUd+HkQ38XfXaBdmGDJhBUKkTnn2X0zbf3fbqSBDzxRKxojOTLr/38c5xfroAthouTGSN95izeVgErMYKdfPRZA09CAp4Qoi8s18WdmjnY9zzQdxNCiD7q2xmedC0TQuyHZvOni3Co8MerjYUQ4pCSS1ohxNCQgCeEGBoS8IQQQ0MCnhBiaEjAE0IMDQl4A+KLL77g7NmzvPPOO3z66af9Ho4YYB999BFvvPEG7777br+H8qsjAW8A+L7Pxx9/zMWLF7l8+TKXLl3ixo0b/R6WGFDvvfceFy9e7PcwfpUk4A2Aa9euMTc3x+zsLK7rcu7cOT7//PN+D0sMqNOnTzM62ltiXfwyCXgDIJ/PMzU11dnO5XLk8/k+jkiIw0kCnhBiaEjAGwC5XI61tbXOdj6fJ5fL9XFEQhxOEvAGwMmTJ1leXmZ1dZVWq8Xly5c5c+ZMv4clxKEjxQMGxJUrV/jkk0/wfZ/333+fCxcu9HtIYkB9+OGHXL16lWKxSDab5YMPPuD8+fP9HtavggQ8IcTQkEtaIcTQkIAnhBgaEvCEEENDAp4QYmhIwBNCDA0JeEKIoSEBTwgxNCTgCSGGxv8BvF+NXNOagCsAAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(5,2))\n", "sns.stripplot(x=y, y=predicted_prob, hue=mean_fd_binned,\n", " palette=\"coolwarm\", alpha=0.4, jitter=0.4, dodge=True)\n", "sns.boxplot(x=y, y=predicted_prob, color=(1,1,1,1))\n", "plt.legend([],[], frameon=False)\n", "plt.savefig('../data_out/fig/abide_motion_reg_stripplot.pdf')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:13:22.257490Z", "start_time": "2021-08-01T19:13:18.142609Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:01<00:00, 792.96it/s] \n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.028\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.359 (p<0.0001*)\n\n\n\ny--yhat\n\n0.02\n\n\n\n" }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(partial_confound_test(y, predicted_prob, mean_fd, cat_y=True, cat_yhat=False,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_motion_reg_partial')" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:13:26.317643Z", "start_time": "2021-08-01T19:13:22.261618Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:02<00:00, 498.13it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.028\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.359\n\n\n\ny--yhat\n\n0.02 (p=0.09)\n\n\n\n" }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(full_confound_test(y, predicted_prob, mean_fd, cat_y=True, cat_yhat=False,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_motion_reg_full')" ] }, { "cell_type": "code", "execution_count": 29, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.35940432840757963\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cont_cont(predicted_prob, mean_fd)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cont_cont(yperm, mean_fd))\n", "(nulldist >= unpermuted).sum()/len(nulldist)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 30, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.01983830774607609\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(y, predicted_prob)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cat_cont(y, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Regress out site" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:15:35.079692Z", "start_time": "2021-08-01T19:13:26.320436Z" } }, "outputs": [], "source": [ "# regress-out acquisition from connectivity\n", "X_adj = np.zeros_like(X)\n", "for i in range(X.shape[1]):\n", " tmp = pd.DataFrame({\n", " 'x': site_int,\n", " 'y': X[:,i]\n", " })\n", " OLS_model = ols_f(\"y ~ C(x)\", tmp).fit() # training the model\n", " X_adj[:, i] = OLS_model.resid.values" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:17:32.666545Z", "start_time": "2021-08-01T19:15:35.081996Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "model\tinner_cv mean score\touter vc score\n", "cv: 0 {'model__C': 0.1} 0.7512998189827458 0.6956521739130435\n", "cv: 1 {'model__C': 0.1} 0.7602222431490724 0.653764581124072\n", "cv: 2 {'model__C': 0.1} 0.7382248101760297 0.7797872340425532\n", "cv: 3 {'model__C': 10} 0.7533220502732698 0.8308510638297872\n", "cv: 4 {'model__C': 0.1} 0.7311433384604116 0.7856382978723404\n", "cv: 5 {'model__C': 0.1} 0.7137365152609055 0.8664893617021276\n", "cv: 6 {'model__C': 0.1} 0.7290465552660674 0.7478260869565218\n", "cv: 7 {'model__C': 0.1} 0.7255997722461138 0.8108695652173913\n", "cv: 8 {'model__C': 0.1} 0.737317238841629 0.771195652173913\n", "cv: 9 {'model__C': 0.1} 0.7495317617268836 0.6157608695652174\n" ] } ], "source": [ "outer_cv = StratifiedKFold(10)\n", "inner_cv = StratifiedKFold(10) \n", "model = Pipeline([\n", " ('varthr', VarianceThreshold(0)), # omit zero variance columns (diagonal)\n", " #('fsel', SelectKBest(f_regression)),\n", " ('model', LogisticRegression())])\n", "\n", "p_grid = {#'fsel__k': [500, 1000, 2000],\n", " 'model__C': [0.1, 1, 10]}\n", "\n", "clf = GridSearchCV(estimator=model, param_grid=p_grid, cv=StratifiedKFold(10),\n", " scoring=\"roc_auc\", return_train_score=False,\n", " n_jobs=-1)\n", "\n", "all_models = []\n", "best_params = []\n", "predicted = np.zeros(len(y))\n", "predicted_prob = np.zeros(len(y))\n", "nested_scores_train = np.zeros(outer_cv.get_n_splits(X_adj))\n", "nested_scores_test = np.zeros(outer_cv.get_n_splits(X_adj)) \n", " \n", "print(\"model\\tinner_cv mean score\\touter vc score\")\n", "i=0\n", "for train, test in outer_cv.split(X, y):\n", "\n", " clf.fit(X_adj[train], y[train])\n", " \n", " print('cv:', i, str(clf.best_params_) + \" \" + str(clf.best_score_) + \" \" + str(clf.score(X_adj[test], y[test])))\n", " \n", " all_models.append(clf.best_estimator_)\n", " best_params.append(clf.best_params_)\n", " \n", " predicted[test] = clf.predict(X_adj[test])\n", " predicted_prob[test] = clf.predict_proba(X_adj[test])[:,0]\n", " \n", " nested_scores_train[i] = clf.best_score_\n", " nested_scores_test[i] = clf.score(X_adj[test], y[test])\n", " i = i+1" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:17:32.931014Z", "start_time": "2021-08-01T19:17:32.669160Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "** Mean score in the inner crossvaludation (inner_cv):\t0.7389444104383128\n", "** Mean Nested Crossvalidation Score (outer_cv):\t0.7557834886396967\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAACaCAYAAAD/7BC/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeuUlEQVR4nO3de1TUdf7H8ecIgugaqOlARq6aFt4OtYruD4UVJZOLiIJd1fZoFqZraQtqhpZpamnpmkjHlo633DSNFCxTRLRMK3VRsS0vKF4YV01RkAGG7+8PDrMgDN9hYIZheD/O6awz872832772u/189EoiqIghBCi1po1dAFCCNFYSYAKIYSFJECFEMJCEqBCCGEhCVAhhLCQBKgQQljIuaELqC/Hjh3D1dW1Vuvo9fpar2OvpBf74yh9QNPuRa/X4+vrW+1vVgvQWbNmkZ6eTrt27dixY0eV3xVFYcGCBezbt48WLVqwaNEievbsCcC2bdtISEgAICYmhsjISNX9ubq64uPjU6saT506Vet17JX0Yn8cpQ9o2r2cOnXK5G9WO4UfNWoUa9asMfl7RkYG2dnZ7Nq1i/nz5zNv3jwAbt68ycqVK/n888/ZvHkzK1eu5NatW9YqUwghLGa1AO3Xrx/u7u4mf9+zZw8jR45Eo9Hg6+tLXl4eV69e5cCBA/j7++Ph4YG7uzv+/v7s37/fWmUKIYTFGuwaqE6nw9PT0/jZ09MTnU5X5XutVotOp2uIEoUQjcDGQxdIPnbJ7OUHdnSivq5GOMxNJL1eX+O1iuoUFhbWeh17Jb3YH0fpA6zXS+qveaSfvVOnbRzXFQLQW9vCrOWLi1rUWy8NFqBarZbc3Fzj59zcXLRaLVqtlsOHDxu/1+l0+Pn5qW5PbiJJL/bGUfqAmnup7RFgRYfO3QCgf+e2FtfWv3NLInw78mz/h8xavj5vIjVYgAYFBbF+/XpCQ0P597//TevWrenQoQMDBw5k2bJlxhtHBw4cYPr06Q1VphDiHvcGZl1CsH/ntrUKP3tjtQCdPn06hw8f5vfffycgIICpU6dSUlICwDPPPENgYCD79u0jODgYNzc3Fi5cCICHhweTJ08mKioKgFdeeQUPDw9rlSmEQP0osqCggJYZN4GqgdnYQ7AurBagy5Ytq/F3jUbD3Llzq/0tKirKGKBCiPpVXVjW5iiyKQfmvRzmJpIQoipzw1ItFB3pem59MjtA7969i5ubmzVrEULUk/LgtCQshflUA/TIkSPMmTOHgoIC0tPT+eWXX9i0aZPxzSEhRMMxde2yYnBKWFqPaoC+++67fPLJJ8TExADw6KOP8tNPP1m9MCHE/5gTlBVJcNqGWafwXl5elT43ayaj4AlR32q6Ey5BaZ9UA9TLy4sjR46g0WgoLi5m7dq1dO3a1Ra1CeGQans0Wf6dBKX9UQ3QefPmsWDBAnQ6HQEBAfj7+5t8/EiIpqq6UKz47GRFcjTpOFQD9Ny5cyxdurTSdz///DN/+tOfrFaUEI1FTXe7TZGgdByqAfrOO++wbds21e+EcERqb+jUdLdbnp10fCYD9OjRoxw9epQbN26QlJRk/P7OnTsYDAabFCeErdX2PW85mmzaTAZocXExBQUFGAwG8vPzjd//4Q9/YMWKFTYpToj6UJvRguQ9b1EbJgPUz88PPz8/IiMj6dixoy1rEsJi8p63sCXVa6Bubm4sXryY06dPo9frjd+vXbvWqoUJYQ5zTrklFIW1qAbo66+/zvDhw0lPT+ett95i27ZttG1r+eCnQtQHU3e/JSyFLakG6M2bN4mOjmbt2rXG0/rRo0fbojYhjGo60pTAFA1FNUCdncsW6dChA+np6XTo0EGmGRY2I0eawp6pBmhMTAy3b98mLi6O+fPnk5+fz+zZs83aeEZGBgsWLKC0tJTo6GgmTZpU6feFCxdy6NAhoGzSquvXrxsHKvHx8aF79+5A2eukq1evrlVjovFK/TWPeRkHATnSFPZNNUAHDx4MQOvWrVm3bh1Q9iaSGoPBwNtvv01SUhJarZaoqCiCgoJ4+OGHjctUDOJ169aRlZVl/NyiRQuSk5PN70Q4hI2HLvCPg9eAstCU4BT2zGSAGgwGdu7ciU6nY9CgQXTv3p29e/eSmJhIYWEhX375ZY0bzszMpFOnTnh7ewMQGhrKnj17KgVoRSkpKUydOtXyTkSjdu+p+sLI3hKawu6ZDNA33niDK1eu0KdPH9555x06dOjAiRMneP311xk6dKjqhnU6HZ6ensbPWq2WzMzMape9dOkSFy9eZMCAAcbv9Ho9o0aNwtnZmUmTJpm1T9H4VHeN08+zmYSnaBRMBuiJEyf46quvaNasGXq9Hn9/f7799lvatGlT70WkpKQwbNgwnJycjN/t3bsXrVZLTk4O48ePp3v37jz0kOn/Uen1+hrnb65OYWFhrdexV42tl9Rf80g/e4fjukIAemtb8JcufyCk+32NrhdTHKUPkF5MMRmgzZs3Nw6c7Orqire3d63CU6vVkpuba/ys0+nQarXVLpuamkp8fHyV9QG8vb3x8/MjKyurxgB1dXWt9cANjjTYQ2Pqpew651nAsQfhcJQ+oGn3UlPYmgzQs2fPEh4ebvx84cKFSp+3b99e40579+5NdnY2OTk5aLVaUlJSqgyLB3DmzBny8vJ47LHHjN/dunULNzc3XFxcuHHjBkeOHGHixIk17k/YL1PPcMp1TtHYmQzQ1NTUum3Y2Zn4+HgmTpyIwWBg9OjRdOvWjeXLl9OrVy+GDBli3E9ISAgajca47pkzZ5g7dy4ajQZFUXjxxRdN3nwS9kue4RSOzmSA1scAIoGBgQQGBlb6btq0aZU+V3fn/fHHH1c9whX2q7rglMAUjsjseeGFMEVesxRNlQSosEjF0JRTdNFUmRWghYWFXL58mS5duli7HtEIbDx0gdnbjgPytpBo2lQDNC0tjcWLF1NcXExaWhqnTp1i+fLl8m56E1PdEafcRRdNnWqArly5ki1btjB27FigbJCPS5fMmx5BNH7V3RCSI04hypg1nF3r1q1tUYuwM/eeqktoClGZaoA+/PDDbN++HYPBQHZ2NuvWrav00LtwLHKqLoT5VAP0zTffZPXq1bi4uDBjxgwGDhzI5MmTbVGbsCE5VRei9lQD9OzZs7z22mu89tprtqhHNAA5VRfCMqoBumjRIq5du8awYcMICQkxjhIvHEf5KbucqgtRO6oBum7dOv773/+yc+dO4uPjyc/PZ/jw4XIa7wDKT9uzruTRv3NbCU8hasmsB+nbt2/PuHHj6N+/P2vWrGHVqlUSoI2Q2iuXQojaUQ3QM2fOkJqayq5du/Dw8GD48OHMnDnTFrWJenTvdc7y/5TrnUJYTjVAZ8+ezfDhw1mzZo3JAZGF/bj3KLOcPJIkRP1TDdB//etftqhD1FH5VMD3DuxRTo42hah/JgN02rRpLF++vNIo9BXJeJ32Jf3sHbJvlUhQCmFDNc7KCdRp0JCMjAwWLFhAaWkp0dHRTJo0qdLvW7duZcmSJcZLA88//zzR0dEAbNu2jYSEBABiYmKIjIy0uA5HVn7KfvZGEb0e9OBfL/25oUsSosloZuqHDh06ALBx40Y6duxY6Z+NGzeqbthgMPD222+zZs0aUlJS2LFjB6dPn66yXEhICMnJySQnJxvD8+bNm6xcuZLPP/+czZs3s3LlSm7dumVpjw6t/DGkLm1d5E66EDZmMkDLff/991W+y8jIUN1wZmYmnTp1wtvbGxcXF0JDQ9mzZ49ZRR04cAB/f388PDxwd3fH39+f/fv3m7VuU7Hx0AWeSjxI1pU8enjdx5InH5DTdiFszOQp/MaNG/nss8/IycmpdB00Pz+fxx9/XHXDOp0OT09P42etVktmZmaV5Xbt2sWPP/5I586dmTVrFl5eXtWuq9PpatxfU5kXvrr51P08mzXKXkxxlF4cpQ+QXkwxGaDh4eEEBASwbNkyZsyYYfy+VatWeHh41MvOBw8eTFhYGC4uLmzatIm4uDjWrl1r0baawrzwNc2n3th6qYmj9OIofUDT7qWmsDV5Cq/RaHjwwQeJj4+nVatWxn+g7BqlGq1WS25urvGzTqer8hxpmzZtcHFxASA6OpqTJ0+avW5TU/FB+IWRvfnXS3+WU3YhGpjJI9AZM2aQmJjIqFGjjPOzl9NoNKrXM3v37k12djY5OTlotVpSUlJYunRppWWuXr1qvFmVlpZG165dARg4cCDLli0z3jg6cOAA06dPt6zDRu7eYebkQXgh7IfJAE1MTATKgs2iDTs7Ex8fz8SJEzEYDIwePZpu3bqxfPlyevXqxZAhQ1i3bh1paWk4OTnh7u7Ou+++C4CHhweTJ08mKioKgFdeeaXeLhs0NhUH+5DnO4WwL6pvIv3888/4+PjQsmVLkpOTycrKYvz48TzwwAOqGw8MDCQwMLDSd9OmTTP+ecaMGZWur1YUFRVlDNCmauOhCxw6d4P+ndvK851C2CHVx5jmzZuHm5sbv/zyC0lJSTz00EPExsbaorYmreI1T3m+Uwj7ZNakchqNht27d/Pcc88RHR3Nli1bbFFbkyTXPIVoPFQDtFWrViQmJvLVV1+xYcMGSktLKSkpsUVtTZJc8xSi8VAN0A8++IAdO3awcOFC2rdvz+XLl5kwYYItamsyKg5BV/5mkVzzFML+qQZo+/btCQ8P5/jx4+zdu5c+ffowcuRIG5TmuGoaGb6H131yzVOIRkI1QFNTU3nvvffw8/NDURTmz59PbGwsTz75pC3qcxjVzbcuI8ML0bipBujq1avZsmUL7dq1A+DGjRu88MILEqBmkvnWhXBcqgGqKIoxPKHsIfeKbyWJ6lUXnBKaQjgW1QAdOHAgEyZMIDQ0FCg7pQ8ICLB6YY2d3E0XwvGpBmhcXBy7du3i559/BuCpp54iODjY6oU1VhXnWpe76UI4NpMBmp2dzeLFi8nJyaF79+7ExcU1+RGRzFExPOVuuhCOzeSrnLNnz2bw4MGsWLGCnj17Mn/+fFvW1aiVH3nKabsQjs3kEWh+fj5jxowBoEuXLjKpmxBC3MNkgOr1erKysox33AsLCyt97tmzp20qbEQqjp4khHB8JgO0ffv2xvE5Ae6//37jZ41GY/HUG45KRk8SoukxGaDr1q2r88bV5oVPSkpi8+bNODk50bZtWxYuXEjHjmXh4+PjQ/fu3QHw8vKq0/z01iSjJwnRdKk+xmSp8nnhk5KS0Gq1REVFERQUxMMPP2xcxsfHhy+++AI3Nzc2btzIe++9x4cffghAixYtSE5OtlZ59Uae9xSi6VIdUNlS5swLP2DAANzc3ADw9fWtNJFcYyJ33YVomqwWoLWd233Lli2V3nDS6/WMGjWKMWPGsHv3bmuVKYQQFjPrXfivvvqKnJwcpkyZwuXLl7l27Rp9+vSptyKSk5M5ceIE69evN363d+9etFotOTk5jB8/nu7du/PQQ6aP8PR6fY3zN1ensLCw1utUlPprHofO3aC3tkWdtlMf6tqLPXGUXhylD5BeTFEN0Hnz5tGsWTN++OEHpkyZQqtWrZg6dSpffPFFjeuZO7f7999/z+rVq1m/fr1xjvjy9QG8vb3x8/MjKyurxgB1dXXFx8dHrZ1KTp06Vet1qhuW7pn/64aPT8OevlvSi71ylF4cpQ9o2r3UFLaqp/CZmZnMnTsXV1dXANzd3SkuLlbdacV54YuKikhJSSEoKKjSMllZWcTHx5OQkFBpxKdbt25RVFQElA2fd+TIkUo3nxpK+aNKFUdYkrvuQjRdZk0qZzAY0Gg0QFmgNWumfunUnHnhlyxZQkFBgXGq4/LHlc6cOcPcuXPRaDQoisKLL77Y4AFa8TlPCU0hBJgRoGPHjuWVV17h+vXrfPDBB3z99de8+uqrZm1cbV74Tz/9tNr1Hn/8cbZv327WPmxBwlMIUR3VAB0xYgQ9e/bkhx9+QFEUVq1aRdeuXW1RW4Oq7lqnhKcQoiLVAL18+TJubm4MHjy40ncPPPCAVQtraBWHpZOH5IUQ1VEN0Jdeesn4Z71ez8WLF+ncuTMpKSlWLawhVRwURAZEFkKYohqg916LPHnyJBs3brRaQQ2lulN2GRRECFGTWr8L37NnTzIzM61RS4OSU3YhRG2pBmhSUpLxz6WlpWRlZdGhQwerFmVrcsouhLCEaoDm5+cb/+zk5ERgYCDDhg2zalG2Vn7qLqfsQojaqDFADQYD+fn5xMXF2aoem6t49Cmn7EKI2jD5SlFJSQlOTk4cOXLElvXYnBx9CiEsZfIINDo6mm3btvHoo4/y8ssv8+STT9KyZUvj70888YRNCrQFOfoUQlhC9RpoUVERbdq04dChQ5W+d4QALR+OTiaBE0JYwmSAXr9+naSkJLp162Yc1KNc+cAijV362TuAnL4LISxjMkBLS0sr3YF3VHL6LoSwVI3TGk+ZMsWWtQghRKNi8i58xVN2IYQQVZkMUFNjdQohhChjMkA9PDzqvPGMjAyGDRtGcHAwH3/8cZXfi4qKePXVVwkODiY6OpqLFy8af0tMTCQ4OJhhw4axf//+OtcihBD1zWrTGhsMBt5++23WrFlDSkoKO3bs4PTp05WW2bx5M/fddx/ffvstL7zwAu+//z4Ap0+fJiUlhZSUFNasWcNbb72FwWCwVqlCCGERqwVoZmYmnTp1wtvbGxcXF0JDQ9mzZ0+lZdLS0oiMjARg2LBhHDx4EEVR2LNnD6Ghobi4uODt7U2nTp3qfQSojYcucFxXWK/bFEI0LVYLUJ1Oh6enp/GzVqtFp9NVWcbLywsom4SudevW/P7772atW1fyCqcQoq5qPR6ovdLr9TXO33yvgR2d6N/eg8fuy6/VevaqsLDQIfoAx+nFUfoA6cUUqwWoVqslNzfX+Fmn06HVaqssc+XKFTw9PSkpKeH27du0adPGrHXv5erqio+Pj9n1+fjAqVOnarWOPZNe7I+j9AFNu5eawtZqp/C9e/cmOzubnJwcioqKSElJISgoqNIyQUFBbNu2DYBvvvmGAQMGoNFoCAoKIiUlhaKiInJycsjOzqZPnz7WKlUIISxitSNQZ2dn4uPjmThxIgaDgdGjR9OtWzeWL19Or169GDJkCFFRUfz9738nODgYd3d3PvjgAwC6devG8OHDCQkJwcnJifj4eJycnKxVqhBCWMSq10ADAwMJDAys9N20adOMf3Z1dWXFihXVrhsTE0NMTIw1yxNCiDrRKA7yzuaxY8dwdXVt6DKEEA5Gr9fj6+tb7W8OE6BCCGFrVruJJIQQjk4CVAghLCQBKoQQFpIAFUIIC0mACiGEhZpEgNZlXFJ7o9ZLUlISISEhhIeHM378eC5dutQAVapT66PcN998wyOPPMLx48dtWF3tmNNLamoqISEhhIaGMmPGDBtXaD61Xi5fvszYsWMZOXIk4eHh7Nu3rwGqVDdr1iz+/Oc/ExYWVu3viqLwzjvvEBwcTHh4OCdPnrRsR4qDKykpUYYMGaJcuHBB0ev1Snh4uPLbb79VWmb9+vXKm2++qSiKouzYsUOZNm1aA1SqzpxeDh48qBQUFCiKoigbNmywy17M6UNRFOX27dvKs88+q0RHRyuZmZkNUKk6c3o5d+6cEhERody8eVNRFEW5du1aQ5Sqypxe5syZo2zYsEFRFEX57bfflMGDBzdEqaoOHz6snDhxQgkNDa329/T0dGXChAlKaWmpcvToUSUqKsqi/Tj8EWhdxiW1N+b0MmDAANzc3ADw9fWtNCiLvTCnD4Dly5fz4osv2vULEub08vnnn/Pcc8/h7u4OQLt27RqiVFXm9KLRaLhzp2w68Nu3b9OhQ4eGKFVVv379jH/f1dmzZw8jR45Eo9Hg6+tLXl4eV69erfV+HD5A6zIuqb2p7TipW7ZsISAgwBal1Yo5fZw8eZLc3Fz+8pe/2Li62jGnl+zsbM6dO8fTTz/NmDFjyMjIsHWZZjGnlylTprB9+3YCAgKYNGkSc+bMsXWZ9eLeXj09PS0ac9jhA7SpSk5O5sSJE0ycOLGhS6m10tJSFi1aRFxcXEOXUi8MBgPnz59n3bp1LF26lDfffJO8vLyGLssiKSkpREZGkpGRwccff0xsbCylpaUNXVaDcfgArc24pEClcUntjbnjpH7//fesXr2ahIQEXFxcbFmiWdT6yM/P59dff2XcuHEEBQVx7NgxYmJi7PJGkrn/fgUFBdG8eXO8vb354x//SHZ2to0rVWdOL1u2bGH48OEAPPbYY+j1ers8W1Nzb6+5ubmqYw5Xx+EDtC7jktobc3rJysoiPj6ehIQEu73WptZH69atOXToEGlpaaSlpeHr60tCQgK9e/duwKqrZ85/J0OHDuXw4cMA3Lhxg+zsbLy9vRui3BqZ04uXlxcHDx4E4MyZM+j1etq2bdsQ5dZJUFAQX375JYqicOzYMVq3bm3R9VyHmdLDlLqMS2pvzOllyZIlFBQUGIcN9PLyYvXq1Q1ceWXm9NFYmNPLoEGD+O6774zj28bGxtrlGY45vcycOZM5c+bw6aefotFoWLRokV0ebEyfPp3Dhw/z+++/ExAQwNSpUykpKQHgmWeeITAwkH379hEcHIybmxsLFy60aD8yGpMQQljI4U/hhRDCWiRAhRDCQhKgQghhIQlQIYSwkASoEEJYSAJU1JmPjw8RERHGf2oazeqxxx6r8/5mzpxJUFAQERERREZGcvTo0Vpv44033uD06dMAVR7zevrpp+tcI/zv7yUsLIyXX35Z9e2jU6dO2e3oRsIES0c7EaKcr6+vVZY1JS4uTtm5c6eiKIqyf/9+JSwsrE7bq4+a1LYbGxurrFq1qsblv/jiC+Wtt96ySi3COuQIVNS7/Px8xo8fT2RkJOHh4ezevbvKMlevXuW5554zHqH99NNPABw4cICnnnqKyMhI/va3v5Gfn1/jvvr168eFCxeAsrFQw8LCCAsL49NPPwWgoKCASZMmMWLECMLCwkhNTQVg7NixHD9+nPfff5/CwkIiIiKM43SWHyW/9tprpKenG/c1c+ZMvv76awwGA4sXL2b06NGEh4ezadMm1b8TX19f42AVmZmZPPXUU4wcOZKnn36as2fPUlRUxIoVK0hNTSUiIoLU1FQKCgqYNWsWUVFRjBw5stq/R9HAGjrBReP36KOPKiNGjFBGjBihTJ48WSkuLlZu376tKIqiXL9+XRk6dKhSWlqqKMr/jso++eQT4xFZSUmJcvv2beX69evKs88+q+Tn5yuKoiiJiYnKP/7xjyr7q3gEmpqaqkRFRSnHjx9XwsLClPz8fOXOnTtKSEiIcvLkSeXrr79W3njjDeO6eXl5iqIoyvPPP28cY/TeI9Dyz7t27VJiY2MVRVEUvV6vBAQEKHfv3lU2bdqkfPTRR8bvIyMjlQsXLlSps3w7JSUlytSpU5V9+/YpilI2zmlxcbGiKIry3XffKVOmTFEUpeoR6NKlS5Uvv/xSURRFuXXrlvLEE08Y/26EfXD4VzmF9bVo0YLk5GTj5+LiYpYtW8aPP/5Is2bN0Ol0XLt2jfbt2xuX6d27N7Nnz6akpIShQ4fi4+PD3r17OX36NM8884xxO76+vtXuc8mSJSQkJNC2bVsWLFjAwYMHGTp0KC1btgQgODiYn376iUGDBrF48WLee+89Bg8eTN++fc3uKyAggAULFlBUVERGRgZ9+/alRYsWfPfdd/znP//hm2++AcrGxTx//nyV99vLj2x1Oh1du3bF39/fuHxcXBznz59Ho9FQXFxc7f4PHDhAWloa//znPwHQ6/VcuXKFrl27mt2DsC4JUFHvtm/fzo0bN9i6dSvNmzcnKCgIvV5faZl+/fqxfv169u3bx8yZM/nrX//Kfffdh7+/P8uWLVPdR2xsLE8++aTxc/kAF/fq3LkzW7duZd++fXz44YcMGDCAKVOmmNWHq6srfn5+7N+/n507dxISEgKUTQcxZ84cBg0aVOP65f/HcvfuXSZMmMCGDRsYN24cy5cvp3///nz00UdcvHiRcePGmdzGihUr6NKli1n1CtuTa6Ci3t2+fZt27drRvHlzfvjhh2rnZbp06RL3338/Y8aMITo6mpMnT+Lr68uRI0c4f/48UHb98ty5c2bts2/fvuzevZu7d+9SUFDA7t276du3LzqdDjc3NyIiIpgwYQJZWVlV1nV2djZ5FBgSEsLWrVuNR7MAAwcO5LPPPjOuc+7cOQoKCkzW5ubmxpw5c0hKSjIOl1g+dFr5KGAArVq1qnTNd+DAgaxfv944O0J1tYuGJUegot6Fh4cTExNDeHg4vXr1qvYI6vDhw3zyySc4OzvTsmVLFi9eTNu2bXn33XeZPn06RUVFALz66qt07txZdZ89e/Zk1KhRREdHAxAVFUWPHj3Yv38/S5YsoVmzZjg7OzNv3rwq644ZM4YRI0bQo0cPli5dWuk3f39/YmNjGTJkiHFs1ejoaC5dusSoUaNQFIU2bdqwatWqGuvr0aMHjzzyCDt27GDixInMnDmThIQEAgMDjcv079+fjz/+mIiICF566SUmT57MwoULGTFiBKWlpTz44IMkJiaq/l0I25HRmIQQwkJyCi+EEBaSABVCCAtJgAohhIUkQIUQwkISoEIIYSEJUCGEsJAEqBBCWEgCVAghLPT/7OeBOO3Ami0AAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print(\"** Mean score in the inner crossvaludation (inner_cv):\\t\" + str(nested_scores_train.mean()))\n", "print(\"** Mean Nested Crossvalidation Score (outer_cv):\\t\" + str(nested_scores_test.mean()))\n", "\n", "fpr, tpr, _ = roc_curve(y, predicted_prob, pos_label=0)\n", "fig, ax = plt.subplots(figsize=(5,2))\n", "RocCurveDisplay(fpr=fpr, tpr=tpr).plot(ax=ax) \n", "plt.savefig('../data_out/fig/abide_site_reg_rocplot.pdf')\n", " " ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:17:36.932716Z", "start_time": "2021-08-01T19:17:32.933004Z" } }, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAATwAAACeCAYAAACvprZXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACSQklEQVR4nOy9d5ilR3Xn/6l6w82hc0+ekUYSQiKIqAEFJIGEEgaJaIN3vWZtYyzwDwSYXYc1GBwkggzYXofFIBsHTEYIkSyEAhlJgEZhRhN6ejr3zeENVfX7o27f7p6Oo8AI09/n0aPpe2+9+T116pzv+R5hjDFsYAMb2MAvAOSJPoANbGADG/hZYcPgbWADG/iFwYbB28AGNvALgw2Dt4ENbOAXBhsGbwMb2MAvDDYM3gY2sIFfGKxp8N75zneyZ88errjiimW/N8bwJ3/yJ7zoRS/iyiuv5Kc//eljfpAb2MAGNvBYwF3rB1dddRWvfe1recc73rHs97fddhsHDx7kK1/5Cvfccw//5//8Hz75yU+uueO7776bRCJx3AccxzGuu+Zhb4zbGPeIx/08HOPGuJURBAFPf/rTl//SrAMjIyPm8ssvX/a7P/iDPzBf+MIXun9ffPHFZmJiYs1t3nfffevZ9RIcOHBgY9zjME7FsWkfHTWtkUMmbrcf9/09kcf9PBzjxriVsZptOX7zeQwmJiYYHh7u/j08PMzExASDg4OPdtMb+BnBKEXtO3fQPrgf1WjgZDL0vPAy/MGhE31oG9jAY4pHbfAeKYIgYO/evcc9bnJyklartTHuMRzXGB3hyKf+jdLD+xDA4NatDDZaiD3nIRznCXOcP6txPw/HuDHukeFRG7yhoSHGx8e7f4+PjzM0tLZnkEgkOP300497f6lUip07d26MewzHDemYmoCZSAGQcT0yiRykt2ASGTJJQX+Pi5TihB7noxlnjMHEEcL1EEKsa8zP+hg3xj0241ZzpB41LeXCCy/ks5/9LMYY7r77bnK53MZy9ucMMpdj2+7dZHMZsrkMg8ObqCQGifEwxlBvaUpVdaIP8xFDB22CQwcIDh0kOPQw6jH2Gjbw84M1Pby3vOUtfPe736VUKnHeeedxzTXXEMcxAK95zWs4//zz+eY3v8mLXvQiUqkU733vex/3g97AytBBQDQ7jYlCnEwOt7dvTY/Gy+XJPvccynfeha8V7o5T8HfuRvpe9zft8OdXVOc/P/Np7rz1Vqq1KgAvvuIKLnrNa0/wUW3gRGBNg/f+979/1e+FEPzRH/3RY3ZAG3jkMMYQjo1iOhNSHM6ClHg9vauOk8kUyeFNTCYyGGPoO/ccYjmM1vNGLumvbjSfyBCd61EpV5CY7t8b+MXDCUtaPFoYY4imJlD1GsJx8foHcDLZE31YjxniWhVVLgHg9vTiZHNrjjFhwJ3f+hY3f/lmAC598aU8/4ILYA2Dp5oNdLNJy7GPg1CKwT6HmYoiig2ZlKQnv3zy4ucB57zoRZz93OfwN3/+Z3hG86xTTyEuz+IWV78uG/ivhyeEwVPNBvHMNEYpnHwBr7dvzTFxuYSq2iWK0RHhxBjJHSetmFX8eYJut4gm5hNB4fgYiW0eMpGk2lDMVhTGQC4j6Ss43SWrcD0Qgkq50h0r1kHuVtXO7zvbMVFEwgRsG04/hmd14uD1DxJOTpCNIwyAlETT08hMFun5j9t+jTHodhvhOEj/8dvPBtaPE27wTBwTjo1CZ/UUz84gXBc3X1h13De/+hVu+dxnAcjn8jz/+c/n/OEtOOmf/5dUNZvcdddd3Pylm0hguOjiF3POS19GLBNMl+aXY9W6wvcE+Yw18sJxOO8lv8Ttt9+OMIbnnXceXs/ak4fWmrg0SzqOCOX8tp6oMEqhmg2E6+GkUusbE7QIpINrFPHMNML18MMQHieDZ5QiGD2MCSMAnEIBf2CD13iiccINnm63usau+1mrCWsYPON5XU8mn8uDEMhHUKr2RIT0E4igTX91lgQCf/Qw4cQY2l96TYLAQMb+W7dbqGqZZBwC1lMLpybwhzYh5PIJeaM1ulFHt5v4RuErhfD9J+y11GFIODqCUTZr7ORy+EObVh8TtMFxSasIB0NcLoHWiKc8/XE5xlu+9CW+8/nPoiolAiG5+NLL2LNnDzpfQCaSj8s+N7A+nHCDt9ySaz0v2wtfehW3fu1rJJTibe98J17fwBPaKzkeGK04PeVRzWXQQrBr0xDh2CipzTsAb9FvU8nOMlTFtA7sJzx6hMGoDUA4OYY/uIm4XFo5TNBuIXwPb3gzddcDYxCet/xvTzBuueUWbvvcZwkrNrZ56YsvtYakp2/FJeOnP/1pRg4eYHOrQTA9gw98/uYvk96+nVedfxG4j23c12iNW7becrlaxQFQ1is3cQxPzHnk5wI6DMGYRzUZn3CDJz0ft7eP9oH96KCN19uHzK3u3YHNDtddn7oLyR27fgZHai94XCmBMbiF4uMyW+swoP7jH6GmpwCDRiKlJJ6dwUUx2JtitqLQBvIZSTZtjfwX/+M/iB56gFQcIqZncIDP/fVfMZLKMXDSbn75TW8DIJ2UiwjEOA46aBPXq/S3m0gMzft+gnDcJ2RpmYBFMUoA9MocwdHRUR7c/zDFbVvwsjmM0Tw4PUMumYHHoX+VbjZ43nOew7NO3sUn/+ojaOBZT3oSwnWQqbXDLarZBKOR6cyadKJfFBhjiMaPohoNAGQ6jb9pyyO6Pifc4AGYoI2TL+CYPEJK4pkp/MHhtQf+DKHqNYKjRxCdGJeq10hs3fGYB6NNaQbCCJFMIRC4RqOjEM9P4GSyZB2na+QWYnR8HD12lNP6e3GTCQQGiaE2eoSpxGYmZ62X4bmCLYPevNGLY1S9TvDwfgpxSCjstlv7HsAt9hz3+UVRxJEjR2i328t+H8fxIyopjOOY7du388tv/B0qJevhFfJ5DrQCxIGDK467+uqrMcbQ01PEdDyEer1OdXYG5fk85msCKYlrVaKJMVyjcIxBNev4W7atGFaYQ3D0CLrZxCiFDgMSW7bhFor/ZVYujxRf/fzn+eq//wswH68/75deumacfzmccIN3y5e/zNdu/Edg/mSed845J/agFsComPbhA8Szs8SlWZxsDrenF7RB1WvIdWSUjw8CpMQfGqbhePhK4fUNkn7qM1Z98CPpkNu2gytfcA4mjjFRhNPby+GbbmWkHnD9dddTrdUAePnLXshLr3yhPb96Da+vn/DoEdqOg0YABhME6Hb7uA3ekSNHyOVy7Ny5c9kZOAiCRyQLtnDcyOHDCGPYvGULwnFWnelHRkYQRrN5cAgdhaA1MzMzVPv6OXLkCCedfPJxH8tqkKk0cXkWVangGkMkpM2ea73qONVscMfXv86dt9+OrMwigbMveiFnX/JiElt3rGosjdY2FPFf1DAKrRbH66HLNT1enHCDhxDMlis4zJ+MeAQaWI8XTK2GyWYQjn3gVL2GzFo6w+PxgMlMFi+bAdel5CdRAgoveOGa5GGAUiJF5qxnEs+WcJJJZDZL/Za7wCYKqVTKnZNaOtYtFtFC2q+EQPgeMpM57uNvt9srGrvHCgYwQiDX8ZxIYxDGoKMQE4XWQ5eSXCpJqfnYl5gJIcCAjiMScYQPRDOTYCCODVKyOKQwd05KQRxTjNrUajXaAMZgwgjVqON23o1jEZVmiUszoA1ONos3tOm/3FL4oiuu4K5bvowArr32WhA8Ys7tCbcsl1xyCV/94hfIRyHXXnstwnFw+59AtbidgLNIphHJBKYdgFLIbAInl6feVFQbGimgmHNIJpbOxKpls6eAXSauEvsT2RyJYgG3UORoKkvT8fD7+td9uKmTTqHNPuJyCRF4tJyYQr6Ha992Lddfdz2gueLyi+b3ly+AAG94C01pHwc3VyC5+xTkIzToT5QXzgoGxEQqZnZ6GqcTs4uVQkq5nN1fPF5rdLOJ8Nx1x2uNUuBKgiMj9EYBAI37H6DxpFl0zq4GevMuxWOI3NLzeeYpJ/G0gV6+8Ml/wwDPPPu5wMrX04Qh8cw0d911F3fccQfVWpWacHjZ636VSy65ZF3HC7Yc0RL4HZxc/hFN5FFsqNQVGMhnJb732HWPkJ5PxUuQUjFOJoNT6HnEiYsTbvDALsdm/CSJbdsRfmJdL4wxBkdr9DG/bQeaRkvjuYJsWi47mx4PRNp6OUII/IFhdByT2LodN5ulHehubAygFRi2DXu4zvw+dRgSHh3pelWqUSexbSdylUyoW+xB+AlAkNQxOgzXtbSURtO87ye0Dx9EplLIbJ58HFDyZ+nJO0gaSFqLjk+k0iS2bEY3GjycLaKEIPvM56wZb3qi47bbbuM973kPYRBw6cUv4r+/5jXd7wSghOgSrZfDEvrLcfDoVK1GXC4hjSESgqpOYB4+yE+aD3LzzV8GoDcXcvlll3QNk263cPuHEF6CEEksJUQdilB6BU87CiEx/1xUyhUa6zrCBefZbhGMLng+6zUSW7cf1zaUMoxORt1SxFpTs3XIw3Mfu4kvlpKa9PE3bXlU23lCGDygw6Nb3yyqw5DWvgfY1G4QSUFcreDmC9SbapEBarYlw/2PjmIhUmn8/n7iWgXhOCR6ervs/Ju+/J98/Rvf7sbGLr30xVx52bldIjDA17/4Bb7yKSt536VRNOrIYs/K59duEY4dIdHJPoajIyS271xz5u0LWjT3PYCuVjCxQpVLuFrj6pievIuzwusgPR9Z9InmSMePobH7nbe8jcnp2e7fxqxqZ1bE3LjB/l7e/rvXrPpbpRTvete7+OhHP4oKQ377jW/kJZddxsk7bCxsplRCC4kQ4YrbiMuz3Hn77V3PCeCFv/I6Lrns8jWPNZycAKMRGHxjCNsRTq0GTqIbVujJLS4VFK7Xub+G0HFxjQLHWT3ZkUwCmmef8WSesWMbH/vYx5j00+v27m655Ra+cOPHSBndjZ/v2bMH1Wqtm9AN0GhptDaWLN8x6Fe/9IW87CUvXPc2flZ44hi840Dzwb3EU5MkdUxSQ/vgw2TOfBpf+vI3ufWbdy0yQK982fmPeqZxslmc7NKYgSPtjNaNjQH+Mvsy5ZLNBnYCrWvFKFWthlGaVBzhGU04fhSZL3SXtkoZGi2NlPM0k9L0NExP8OXPfoZkx1BqJPVylaneLZSrCo2HnAvoPc7QxhDHhompWR4ePv+x2/DEN9f8yb333suOHTvYtm0bIyMjXPCCF/Cf37qdU057EmC9Oy0EShtGxkMSvi3RcxZ4vqh5qstcwFyskXgAiKtVvGIvsmMwNIIUAVE2y3POOItbb78XTYq3vv11bBqY987+6v/9P0o//Qk9cZuJiQlC4IN//Tf0n/Yk3vCWty67L+G4OJkU4cQ4QgrajkPSqHWvCABKpRIh8/FzAHGcq6KF9njuXXiCRDWW4Alh8Bytu/SLtWobjdaoDvF0DqpaxijVvcgLDdDjeeFfcvlFnL3nfP743dcBhkteeM6iGJ5RimcP9TPRU0Aawxm+xEiBzGS77v+yS27XJRwdoRi30QhUs0k8PYXf108cG44sWD4kfMnmARcNxBiMEGis0KEGWk4O7Q4wW41R9GCoL3suJo5xtSIWj413F8fm8aC5rQvHth3oGxhg5PChbqhEC4HBwWgbe4pihVKGTQPzqwEnV2DPnj3s2bOH66+/nlgILr7iyrV3LgEpEYkkBoEA8pv6cTf38MB4m5jNCCJ+tLdNpW44Y7dd1ezbv5/xI0d46tbNRPkCWghGjhyh4a6+QhGILoUr7MRgdbu1LoN3ySWXcMsXv0gxCmwyAJCZzHHzSzMpSdKX7NmzhztuvwNBzEsWxImfSDjhBi8uz9LTCe4Ghw/iD21e1ptaCJnOoMJy92/hJ5Gex5WXvYBnPeccrvuL6wC45IXnLIpXrQWtrdilFMsQdJeBMWDtjgA06eRiY9E6sJ/W/T/BNwowGBWhyrOUqopyzXoQubRDf89iaoWJY6LyLK42IAy63UQ4Dp/5zFe45dZ7qTVi0A0uu/Qi9uzZQ6tt6Ovvx82kufySC1HNFhhNcsdO7v7E1ym48w+wZin5NS6XCMZGGQyahMJBB8GjLi17vIydwWZeETaOO3fdlDZobSc4c8zOrWCAYytIhOhQbxbf21agF23PyWbxN29B1Wo0HberJLMWhJ9ANeo4yVQnvmwwUYiaGiXMbUESYDrHOzYVsWvLvEHbctLJvOV3r+nG0667/nrKcvUwhkgm4Rge9vHcOyUls34Sb2AQ4biPKDMvhGDzoEerrXEoIwiXfXdUvUbUEQlxc3nc/oFHleDS2jBVimm0NK4jGOhxSSVXn7BPqMEzxhBOjJPQMRqB0YZodnpVgyekJLFtJ4E5SCwkSghSp5wGQDIh2dzvAgqDOK6lbKwMoxMRquM5+Z5ky+Dql2e2omgHGutTCSZnY7ZvsqReozXR7BQ6COaOHB1ENMpNvv6V27n99m9TrTfBRLzqqgt5yRUvAmwpVHD/T+kLmuiZGRTwqX//JEeS/0k5uxlNglqjDkjm5OrmXu+251M4/4W0Rw7h+AmE59Fe8qIuviZGa9qH9hPPlkirmDQx7ZGDpHeftu5rZ4xBt1qLStKs4Vn3JtYPYwnVGJulxPfR2t6/OfT3Dy5qOzA9Pc3w8PCqMVDPFUtePiedwUlnaK7hZS06vHYbr6eHcGwUZYz1tGtVHKUI6i1i8hh8xmdihgBngWFQUuJv2mqreYCq56PWiKe6uTwmCGiPHqYYtoikJK5U8QfX76UZIXALxXX/fiWkkhLJ8nFRE8eEE2PzIiGVMsLzcFeJZa+F2aqi0bJhhlgZJmZjtg+vfq9OqMHTrSbh+BipDvUjmpkisY4sjN/RvhtPZojEYoHLmaoCHAQwU4nRxtCTX/00b7nlFr7wpW9SrtmLd+mlL2bPnj0026u/sUG0+HttDLECXwJa4+SPpaAY6BumOjJLyBC19gToJkE0/yKOj4xgRkcZ6O/FTybwMGgVc2iyQiJ5Kq/5lf/Ox//5cwgUJ5/6LBwB6eT8S+MVe3CzOXQYIBNJtGgD8xOIpLnomD/7qU/h3P9jBDAxPgHAX//Zn3E4k2f37t1cc83qCQIdhjQf3Isq2cSEKdo4o+cKovhxXtMaA1qj9GJD9eQznsLBgwcZGRkhiiJuvfVWbrjhhm7GFUCgurbfkdY7eCwgfR+lNOHUBCmtrEfZaiJqJUwuwnReuSg0+N5SaoyTTncVf6I1vLvuPlMpdBiAEHjG0LzvXhBPOSHqLBofg0MUm0UOh263uevOu7pajflcnj0XXsQLX/mqR7yv4BgVbq3NoolvOZxQg6eqlUX1habVQibXlx1yUqkl3kusDO1gcWC53tT0LM/ZPAZiUewPli6NjkU6KQgX5ABcR+B1Dukzn/885X0PkgkCRLlCCsOn7ryLA/eM4AxdwGVXvIwvffEmIObss+crSxyjyW7dyuV7no2u23ibNzjI3lsfZhqHdqjQ5NF4jE1F9Obnl8OeVoTjR0FK3GKv5VXRRBDTk3dwKC+ZgY+MjeGMT7BteIhM1i5nQinZt2/fmlfsli9/mXv+49/IVmaJhOCs551D3/kX2Xiq4+B74nGJodqF4spwXZc/+IM/4PWvfz1BEHDpJZdw0uZNqHoNhMTTmkhKXEewfdjHcdbgDhrDek/j7z/yYQZ+eBeDQQsnjAmAQ3vvY7Ti0fuyCxE0AclJ23w2D7iE0aOfFFSjjmksyMAbQzQ58TM1eGFkePhIQMA2BJoDoyHbhrzuElMmkyBYVDFhjkOkQhpNUsXE9Spu1r7QSV8QLHicpVx7VXfCY3huTy9Nx8MxGrd/ALdYfMTbkgLkMQ/uemJ4l1xyCRdedDFvfut7AMGePXtwHbEkJrcQxhi0MTTbBk0SSZ3hfrf74oyOjvLAocM8c9tWetMZDAYhHFpHp9HOIRxnD/a1FdRbGqUMjiOIhSStInQQYLTCyWSR2QK+ChBeyNHJGIPfybYK9o+E7NySwNWKbBSiOkZSNxokOqIKkpCevLv8ckMIvB27+NVffR3x9CS62cTbvIXKv/w7q9UhGK3xRw+xuVVHNxuEgFOvYGOVqrt8HOzvXZRZXUhLmXvV12NM5uaewZ6ijeF1jh0pcQWLvEkpBS94wQt4wQtewJGRw+h2m9LUFEYrQKC1xvFtnMtd4wVR9Tq9URtpbK2rP7Rp1aWx2ftjwloNPBfpQhIoh5pyLaZHenY5ToTvCRKeJJWQVNdx/qvCcdFhiDBgOqcjEj87wVGtDQePBDxwoE3EFgQxh44GGGM4badd4QjX5fyXXsVtd9yJNIZ3vPvdeOssMIirFbY3arho6t//Lv72HaRPOoWevIPSlhbjOdDf464ZEzyhBs8p9BDNzuB20v1ONruuDJHRGlUtk43CrmAl2Ae9t3jM34X1LQs8V+AyiyZJb8EltwZpebaiqNY1jgCDj6JAs21Y0PeGM3bt4neveinBof12H4OD/N1nb2NcNTHGEFNAoGgHitHJiK1DHgmtaAsXN1cgiq1RcxIJYqlxqJPyBYIWEhsGaEeW/pFQipGREa6//noqHQVj0TvAvgMH2L1796rnXvcSeH19xKUZnFweoojBoMmEWCWAXa/x1E1DnHreudz31S/jGc2mZp2mUot4Ch9+/3WLhgVBgO/7mCiary+VEuGt3j4xaLXwhMBgmOwsvXEkQlgv0u+Uq1obOL8d33XRnocwuhOfNXiuuyrxew5GKcLJMZJK4WhNNDWJ9Hy8geVfVB1HpOKYbDbLQC5rtR4dyVRL0HKSSBUiiNEkiGLDji3emkH2taAadeLyLMJ1yaqQpnRxikUSw4+OoLsajq3dbQWa8dmIUlXZ7DcOlZqiktOL+qI42Rwl377fx+N9tg8dwPIQAGMIDx8iuWU7MpFgsPf4TNgJNXjCcTBK42mFEXadr6NozYcxmhhDNRoktSKpFXG51A1+5jMOLlMYXLYPe4sefh1FlsKiNe4yYowChUODYm5tI9loaZSC6YrqxGVcpkoRroNVMzGGTBQSTU+iWjZuZo6OklI1tBHMlGIMEkHEdFlRyLk02xrHaIQwOOkUiAHQMTKdJpINBAnbH5YIiGx8MmczU0ObNuGFNkFSrVifIdc3yO7du9c0eGBfbmdBOMEzukt8Xg43f+EL5O+/l56wRbpllVEOP3AfmVaLmakpBjatLMpZrVRoVMqoTkytUCiQKxZhHZlQgeh6MYs+F4LlHK9CoYgrQLda3ZBFsa8PmUwxVaksHbAAOgoJx46SjUK0FFaN23FWNHhCOmgsHQiJJR9Lj7aMqXl5kq7GwXIyd21NkFtG9eZ4EY4dJZocRzgOFcejKV0yZz7tcZOuj2ZnrDhCvY7wPBJbtqFk1ir7LPCWlTJkkmItzYR1Qbdbi6uqOrXRj4RJcEINXlwpEc9OI4Rd1kST43j9g/gDg1YDKza4jlhktD7zqf+g/tCDgFXCkBj+7B1vYzqR5uRTTuGaa65BYBBEi8YZrQlHD2Ni+5KpaoXE1u3IRBJjDJWaJqIHgeW4rUVJ8VxBraEXpCItnaXZNmQ7YUnfaJxUilhI4noVDaRVi8i17rdLDYH1FOPOkiyUDj1K4RSKGMoQhchkirYrcSnzvLPS/Nu/lzHkcKXg5K0ejiO47JWvYpPnYMKQ66+/nrZ0eM+HPrTue+Gk0kQLgmOxkB36xvKYHB8jmJ1hMJ0E10FjaEqftNbEYbDiOADRuWZqQRKhwzRZZZBYFLwT0JXqWhXSeoEykbRMAAEykVxT5NQoRTgxTjg2SkZHxNp6YjpambgtpGTaS9AXthCpDFI4OIUC8eg4jq4QuSk0KQRtfO+xCW6Gk2OYTiBLCoEPx2XsPK1wtbbcvTXi5yYMiGdDvvONr/Ptb3wNzxgSmSynnXcBfc96Of1FB0GAALZt8unJu8uHDMzisMdq+KsPfIDWT++ByUkA/vXj/0jN9Un+eC/XvOlN6z7POZzYLG0QdJc1wgDaoFtN2oFmYiZGdQzPYK/bjacdGT1KdWSE7du2MZDPktWKpIo5vP8hDplVppN2C+N7tvylkynyij2c/5KXctazLuTQWIglCsD+kYBTdljv79Of/jSHDh1idnaW2Vmbiezt7aWnd5DhbU/j3AuuAgySpq23nXuQhaAtHSvkmErjaI3MZqm4+3FMRDHvIIgBgRSChG9jhmGH82WiEIHAKfaiahU8rYikQxiBzySGaZ56WspGhGK7vEhu34lqtSh5iTXpDMfC37SFuF4jnppAeD5116XpuGhtCCOD7y2eeIwQ6KGtnHrKTqLxoxjA6+llRq5uKAFy+Txpz2VmehoDZDLZtcvZhEB4HiaOkMZgEJgohG5J1srjZCKB8TwCx7U8vnV4Bn/7gfczue8himGL5rSVa/roP91I4eRT+B9nPWvFcXU/SdSUuJksOpVGJhMEUlL2XRqBIGAQQ46bv1Wh9owsZ+5efwnXsTAqRnoJVBBiMDhK4UjWbUyi6SkKkTWWwZERvKHhFVVZ7IAIEj4yaBPXauQx5H2X1ORRNpkJslu34nMUMJyyPUFfcal5ScURaRXTPrB/Xeou4w89wPjYBJuzOTIYAulw+9ExdqbXlYlcghNq8Nx8ARxBIWzjaUMwdoTkaU/ic1/8Jt+87U4qtToIn0svuYDXvvIFdpAQ9O3cxVt/982d5j8ar2+Q93/4w8TxKmVTC16ouUxRb6dN3+RsTL2p0fiAYWw6Yvsmn4QvGR0dZd++ffT2LpZn2r/vfiDmtF2/jMMsAmuw8hm7n5mZGe6fmuDv/vVfKYYBSgoC6bJvfALRm8BzJZI6Bpcnn5xg27DfNSh11wcERsVEszN4fQOk44iK73SD8xLdDf4vDNg7qQ7h9ThJcNL3yZ7xVFQYglJM/9un0MLn8JhdOgthJ55Myp5fKB2afoLM6WfSiBUmDnGyWVsZIlzCSONIsbhcqwMTRzac0flbSLmu+l0hpWWiLMh6mDhe18st1qGOshCHDjxMdeQw+aFBvHSaUEoOj0+SSq3eLjOhFa4x6KCFiW3xfyQcmm6R/SMtYuxyeGwq5kd7W/iuIP8IOd7CcXEHBkFK2ocOkIsjAqmofu/bZJ585qoCmUbrLt9vDnFplsjLWtUTIJ91FifuEkkQmqc9/ekc/s5d+EZx/sUXIxNJVGUKmRnorK5aZNPOognyQx/6EAcefJD6wQPMAtdffz0A/btP5b+98S0obWksxkAyMc+JlMawbdu2biUIwIG//PBx3cuFOKEG768/+o+4P/oucnaWOvDFL3+F8tdv5VDP6Sg86kERZIKxUorJ2bgboGy5Ht7AIOHYEWQmi+iU0azmV4hkCum77Nmzh+986zarrfWnf4abz/P9nzYpVRSKHAaXo5MRjZYm4dubvXv3bm644YZF23vzm98MwGCvi8cUIJYIFQgE037SLqN0p0oA0LrOc85M8QlGkASctmtxLLEtJXG5hG42kZksOJKUiiiTot7UKHoBTattOmU99syNsrSUvrCNga6owvHAmStJEgJNDt0xnMYYZsoxmZT9fqxcIZ6a4JOf+xzJOEYDM36G5z9HoJTGmA4ZWCwm15ZLJVTQ6bnRWR6OjY2hhCCRSDA0tHwwu1QqEYYhrtGEofVKxifG8X2f/k2bj+sc1wNtBKcNDfCal1yJajQQrsP7b7uTluMSK3stgtCQSkj6ik6XbO4ajcGgwxATx8S1KlIrAjPE+HSMIQU4TM/GJH3Jtk0R+WXyC0apJUoLYWTDPEl/fiJJbNqMqlXQYYhnFK4ytPb+BOE65J753FW9J6MNjlFoOpNYDNPT805Ds21VT+aknoTr4g8O2N4S0FXHVsksEzOKRkoQk8bQwz0PNjlzd6qrzr1v3z6OPryfHYV5z2xkZISK28/4TES5qmgGhsEel2RCsLlT5teWDvk4JK6WbTuI/gHMo+A6nVCDN/7AXoamJun3PVwgViFjMzOQ3sorf+X3+MS/fB6A0097EvsOB/QV7IX3VEzrwb3Es7Po8aN4HU+tLV2aLY3B7SwXFyOxeSvB0VEbLxSSaHKcf/jbv+FHI4o2u6nUDRDz5S9/nX0/afO/r33tovGqUcdEITJtibwGh9lKjCaNPIbEMdjTw66Uz9v/v/+PYGwUVSnjZLL8wz9/golECs+TuCvUtRbiTk1xUoOK0fU6SkgiBjk0FqJxEBiabc2urfOJmXh2Bt2yxyGAaHoSJ5N9xEKlhsVeV6zMovKrBFBzfbu8FQIprDHU2jB69CgArhQUClkKBWt4wyhChSEJ38eTDkbYiSAIVo/7RVFEEAQ4vo/TOZ8wDFmJIffOd76TW2+9lZ6eHr70pS8d97l7aPtCC3BzOWQ6TS6OaDseoxMR0yVLas+mHIwxDPbZsjVXxWRVjGm3Ue02ptWmNwzwTZpmS2NfOUGsrZRZu70gDGMMUWmWaGIMow19YZtmR2iiXFXMVjviE0Kwqd9+LhNJZDJFNHGUQhShBKh6ldZDD5B92jNXjFXqIEBVK/SGbVytaR85RLzraQCrqp446Qzp057MjJdgKGiimk1u/+G3uLeZYSy5l5laBuGk+Ot/+CYe45x5UouX/tIVAGw9+WTe/eb50rk/v/4GSiLF7Xd8m1u+9j0AXnD+2Vz0gmdT7niZWggcYzBRZEMlj1LJ54QavL6wzXA+x7NPOdlKdafSNH+6l4opd85LIVDkMhKlTJekWYxCdKOBUyggmh6q2aSFR9UdZnwmIqZ3SUXBHEzQXsRgn9i3jyPjIQM7tpHwPEBRKpcYobmIFBpOTaDmsnpiGkcL2rKPck2hyWJILjIGKRUhTYe8rBQyk8Eb3kzT9Uhr1aGlZDGkmZiJ6Cu6uI6gPD1NbXqCT3zhi/hGIY0hcFx+MusgB3ooVRSaHII2haxYxDvUxyYLdKeOkyTlmiKmiGT5XhNGKaKZKXSzgfATSKORYvH2MinZPb++nh52OJrXXHqxbYMIqOIwBxwHISWqkxz6yAf+hFZtFtERJVCdqhpn4YMrRDeB4ayQqZ0b1zu4hT/50/dhtGJ8csrq2i2Dq666ite+9rW87W22eZHRGscYBDbDJ9YoFzNYuotMZzDttvXYMEhjuOkr3+eOO+601ySd4ZznPZlffdX5CCFo1WpErTaz0QQeBoUgNjlSzTJKAh1pBykhmRQM9c0fRyEOae9/iHBizGaDlSID3PzFm/jnT9+GwSOXy3LuOWdzwQueD8CHb7iB6Mc/5KRqCdOwE+gPbv8West2LnrRy2hJgSOhkHMWcVL/8YYPML1/P63JKVzgnz/+cSb8Iundz2L7jh3djPacItAcPvShDzF+30/xJ8dJYLjjm7cyWm0x4m5F7HgyidRcVY9hqhzz4MMz3bFaSBsrnp3BaE3D9QmlSytwqDcVRs/zRFWnYiKlYkLp4PUN2G3Ua1bBWkhqDYXriOOi9pxQg5eNQiSg2m2IQhwVU3N8PGPYOmyNj8Gh2dYM9LjdJabscHIEHQ29VJrAzcECj0STJlZmCfE4rlXJhW37krVbGAE7d2zhspdfSbOlEULwpS9+Dmh3xwpjUJUKOgpQtRpoTTp2aS9IhhlcWoHplnnNkWNVrUo0NQkYy3Hr4NDRkJCtgOT+hwM2Dyp2b0+gOufVdhxSYYSLoWEkLa+XDIp6UxFTAPI8dDhg+6b5g5DpTNfDAxCug0gkGZ+ICGPT4Qv6VGqKwjHUm2hmClWtotttMFUKYcBsokZP3qEV2GXUQrpOtsM500FAXKkgpCA9vAVpDI4jO16Ypl0v83u7H1z3M7EW/ny/gzFz939Oj2Qpnv3sZ3PkyBGgo3wchYiuyqXGLLMCWIjRao1maYrP3/hxHKNpS5fq9AxTvds5RRhqHYJ3Jp1BLyhtE7ZoDb/rexo8E5NQdRxPMUUASHryaXZs8tmx2SNsQnV6Cr88w2dveB+uNgSOJJ4pUykUIYyoNhyQLplcgXrL7RqEkQfvZ8vYKH46ies6xAhm6nXGym3OKIOTtBNJo2WXp3OrgSOHDtI4eoSeTt26EYKJkYdIeQVe9epXd1RPAq68fLGm3b59+2gdPshT0mm00TRdjyAq0yvLPOfFF3N0IsZzBemU4M7bvoJhZtH4ufpkgLZjiMmwaduZ9PRPAXDW088CrKhGq7b8vTG4xPQyVYoJQk0mKdm+eX2B0BNm8Ewc0Wg1kY06Dx0IEdj1+ky9TaXYa9VKCNAkcRxBb9FFSsHMzAxHpya48cYbSakYF00gHI5UXNzisbV1sLAtVVyzL3ReRUgMrft/SoQEAgo5h2rdsqgEAQ61RQF3o2KiyQlMrNBRiJqaYMzUue669zE6XgPhc+073sNpJ/fy5je9kcBxyQUBqlLGGNvsOho7SmlinCOR4E//4v8yOatBOHz8nz7HpuEU/+t3X0pffz8ym+U3X/MKTBQhfB+nd4BDH/kCNcdjshQTU0SgmS4pHjoc8JRTLA/GLfagWy2kVrgYkJKg0SaMF8+AjZZeYvB0q9Xx8Kxn3BO1qXqWWrBceXdKRba0z9ZlgZDg+2A0DnG3GdBjjs7yBoNd6qxjH9VqhUa53I391Rt1stnVkw+xENSwawwjJBKDAlxiXnDuM/jRD+8GJL/2P17H7m3zMdi+VIJ87JL0Xat/KF1yWpF328QJK/AJmnRC0t/jsHkwwcGDkDGGns65OGiSyuBicI1mz4WX8qlvTmNIcdlLriCXkTgSFNATBgwV8zz59CcT16oIAd89PEo5UeS7P/ohN9/8ZQySiy++hJe/5BwynZhaIF0GN2/m9b/8y4Ctx/3gP36cGVG3njwBksZSQQWtOW3TJl5+9rO7lUAf+8S/YFSN552V4dv3NNBK4Lp03qPFdSRmjpUhJWNjs4Qk+PxnP8XsdAkhBP/3724kwX5O272dK6+8kqbjkY/nPT83XyQWGQyCr3zj+3zrW3cBcPnFz+TVV79gTTrZugzenFy21ppXvOIV/MZv/Mai7z/96U/zF3/xF92A82tf+1pe8YpXrL5R6dASDgZDv7Sxkpbj0aSNwBYGe8xgEJy8zV+0dKsiKXu+lTTHoel55FSV9lyAHYkgXsR1+vSnP83svofoD1qUpmfwgH+/6WbGj45xSBT4+Ef/HkMCg2By/DA538agZmZmmJqa4voPfICBoEVKd+IotVkS7jCaDNmcDyZk5MjhjnIKBI6L6zhopXBSaZxsDpRChQHTbciRI5nNAoKZcglB1K3dVVLiDW0Crbvxt8bkXqb9p3H3jx6iHRmMavG1b3yH+38S8+7fuxKjFMHIIVS9Sl5FBNK1DWDGj4C3hUYoUOQAvWICd87YWQiSamUvKHBc0kLY7KqKMVqgG3VEutAxQhJ4dPGWFbHg+OVKJ7MI9jlwFsYy14gF9fb2sjnpcfUvz0vD1//pRkw625HLrwGGbcMJ+jrVPUbFOAIC6SASKYywBf1hs8lUo8XkwyNEsVUqPPBwibGHH+Dhe2Ne+ktX0FvIU0i4XHLJi9DtFjoImP7Od6mmcszWQXRKCT3Xnn4yIQnqGt9o6q6PTKVwfQ/peoxOVWh3zrXScJD+AOOlNPcfbHcnx4bjYvwkTt6uOpxcgbrrEYk+Gi2NIYEiQTvQizQec3FIKAUilSIaP0rcrNMEqsC2QR91huGhgyGOBJ+HcRbEttNxRPvgfjAGN1+k1WqiXIUkJJuyN9ahwYH9D+F0yiBDx6EkErh9/QjXxUmlsb59AqVF19OOlaTZ1su2MF2INQ3eQrnsoaEhXv7yl3PhhRcuYe9fdtll/OEf/uFam+tCSInMF+hNeDz77OcgXI/krpPZ96nP0pbz8QaBjYt5HePV19dHoVDg7e94G/HsDHFpBhMrPvrP/8xI0so1aRJIrN7YUJ/1DEdHRzly6BCbBvsoZtLzqrexwvgeDg1MJ75l4llEYv7SFNEUwja9YQsDNBwPYWIK8ThvetNvgjEkE4L3Xf8+O393ymmaroeTTGAWvGgxgkwqxYte/BLGphRawz0/+hGGw3idbJivY+LpSYwQOLkcTiJFozFBOzhKuk/guS64Ho0oYHzyQSu2Watishm+d/vtXdWTu27/FnvOORcnblGuJTB4gKYdLtZ+E8agg4BodgaMxu3po+l4yFXy3g3Xx3E9ex+TKdyevi7h1fomP5ueGMtVXRyLQqFAPpfreIbW811PZ7xIykU6V7FwiIXlQlr/VZJNzZcgCselLV1CIRFSYBwHgWRSJ5kRKQQGTwoQHhrJdAn2P3wYsJNc2U/g9vZhYoVMJZm6+yc0HY8oMp17F5PLOEiJFWaQkkA6hMJB5otIFeMNDtJ44ABKtnn2c57L128fBRxOOeUUmi3be0IACEHT9ck987m2DtdxaDkZjp2k6s15g2eMwTWGlFKoZs1KPAlBqnO3jTG4juSUnXZ5KUh0n4P6zDSt0izX/8WCUsPGLCI/zOt+9XWAXSwM93t88LrDS+9zGBDPzhAZQzEqM+vleepTnso9P7oHQcw555y9UKR6Rax51xfKZQNcfvnlfP3rX19XudJqMFoTOQ6zXgJ/eDO61ez0mjS0HJdsWhAygCHJ0cmQs05fTNCUqTRx6cFu5YQ0hoSKO4R8+1kr0NRbuttj4uTt23jFBefajl6eh79lG9+94cMkHbj2bfM8n+uvuw6XaQCGikW2OJrXvfa1NO7+AardwhsY4uOf+RwVBH0FG2Och+q+AJF0cHv7iSYnQAicXJ42AuMPIAxkUjag7FDGIbQF5SomG4ZEpRLh+FGcVIrUk55MHUgkE5x++knMVhRGw9T4KAbferJz3piQZHM2LjMnSe74HsN9bmd5Ya9REFojDZCJI3QU4RZ7MMYgfZ9IiK6XsByUlMx6SdJPOhOkxHQSJqbaeHyNnRAI1wHTkWrvGGWlTFfLcDn+n5AScZylSA3XNo3RrSbCcZn1EihRZHQyQlEAYsamI7IZ2Z2gZ/0EuzsCCmiNzGYw5TqOm2Lnrl2UOlU1iYSkwhgxNnbVcDwcY7rkcW9wmLKXRAnbGc/KLqUpVRU7NntdflzZS9AbtiAMQCuEEbQcm/3OZ5zOaseqT5eqimI+JndMvmZeHXkpcX9xbklQKpfpqZW452slXK1QQtCjFL5R1EpNYrVw4wKNfW9dszT44AloNh9i65DHTEWRTUuG+9xF02wuCkmqmObenyJcB29wmKRuk4+PkstIBA1Exxuc44iuhjUN3rFy2UNDQ9x7771LfveVr3yF733ve+zatYt3vvOdbFqllhIgbLdptwPaxjAZa4gNTE/TbrVpxIKvfPNhWqoASH744zFKM4bdWzVBEBAEAQ8dGcXMlCBog3TYNz1D2fH5s+v+L7OzdUDz7nf/KdJU2b6lgGk1KdSrTJVKUJq1D0ipjNQxSpeZHDtAK7A3OGyOERGyd+9enFaD8bFx/ubDHybXapLAECd8ZqOYMNHHT/buZ7YikNLQajdx9Cx79+4lCAL279/Pte//IIlyiSyadCpNVWUwTi+Hjs4SxVbhJY4aEI+xd+9e3Ead/lqJ8e/YLCC+D9KhR2umgimCVgObDgBtqsRRmwceuJ+pmVnas7MM7NjBlVdfDbGCvgEOTExQ8TXNNgRt6/4fOHCAZsXgSEsHKdarHLr7h6Btb1TyOSZiRagD9u7du+z9m7sPh6amIJyPsehUpptUgLUlto4XxkCoDRhDbAwaaDZbxMfM7r//v3+PH/zg+5RKJc4991ze8IY38LKXvWzRb6IoWvb8JicnaTabNIEDlSqEAcJPMBnFRCbFocNHaEcCI7Lc+f3DHD2qGe4xTE9NYFotlNGWKyZdVBSTMhoHSanept60z5jrQBSWaJLi0KFDNFotQq048NMfQ7kEiSStQwcZl8P85Yf+klLNBeHzqf/4Fxw1yY5NggsuOI+41aQRxZQdD3IFaAc4jQZNX7F//35U3MTgMDllS7MyrmJW2/MDFp1/u1lBS8mBAwdot9uA4uiRh5g4On9dqrHCNxodxxg0GkFSQK+RfOeegxyZcREIillotUOkaXLo0CFEKkW/53L11Vd39/eD938AB8nhwweIFVRmYfwoNJotBIZDDz1EfWqCmUadv//7v7fHKCWHpmfwMllkdIigXceIPHvvP8DkGBSyPwM9vAsuuIArrrgC3/f513/9V97xjnfw8Y9/fNUxiXTacpuigCHfwzgSb2iIau1zVGLFl7/+YxpN6zX88If3cc8PyzzlpAaJRALHcXjyU55Cu5DFdATp2h/7BA1t6Pd9cp2OUH7S5cj+u8mmdiBqVUqzM3zvzjtIxgqJpuW49MaKhoCzn/0kjDEEoeFT/5ZA4HL66aczfNLJiDigVa8TCJsXbHsJWokEQWaI3v7tJNJ2iZhM5nAJOP300znppJNszMgY6mOjxECyb4B0IklgYO+Pv9+RWzdUy2Pk3HFOP/10eqWhx4Fs0ocwRIctsq7HJgmNaJyTdhSZrcYYI5gej0j4EaeffjqpVIpt/X3E1YqV6k5nkMkE0vOJY8ODBwO85BCgeMoZu7sk7oznkkr4bNk8T951e3pxs9/GBU4//fTl71/nPpx+znnEpVnLT8xk+c6Pf4IUBtPJFhX6hvjz/QuLyudoKR3v0a6vup/P4Vh6SpeWMjRMak4Ru1SyKacwolSudrebzWZ5/wc+iOsIgiAgsYJn53nesueXSqVIp9Ok4oiT+i3H0y30kMpkcXAYGtyM59lnbHBwiF07kxRzDqmER78jaLdDSlojOvHelr+ZwPHpSSRoBbb5Um/RpTGdxafBjh07SKdS+Psf4K7Pf56waSemfKtNxY9IJtJkYysYkfIERyeOkk3m2LFjB1sEbDUxuUoJNX4Et7ePoiuppVI86bRTSLlfIqbI1i1D9BUcnnpqiulJe34cc3/tZwHPf86pfPY/2ghCzjzj9EXXZXBokKiZ4ilPOhXdqGG04tYf3ct08Wz2TwxwdNoKgQxGDk5yC2kq7Nixg0QmS6RiTjrtNMDgFnuJpIN0MmzbvmvR9U+me3FosX3LFlzPoykkfiJhs+zSQQqJ9hNs23EqfnIAkOR7tuImJTt2Jjl08IFl7zesw+ANDQ0tksuemJhYwobv6ZnP473iFa/guusWSwKthKbj0hO2ULWKpQ6MxmSDFmMmiyJFIl0ADApDaeZhHubIIoE/f3gL0fQkJgxoIIh9l//vzf+DetNO9wO9Hh/48wOAzb02sCzXOVpLIGx5U0rYpjNHpyJiZYjp6/L4XvKqVzMsITh8gGh2BiedJbFjF+/5wN+ivR4azU7WSQgMLhqbcr/qqqvYNjhAMDrC3/7ZnxI6Dte87W28410fIYzSCHRHn86goxLC6SwJDcQ4IBxUFOH4CYyJiRDkCHnSrgQ/fhBbukW1G9wFK7/jLJN9rLc0yaRAYj3f9oL+DcJYwrZIJtHNBjKVxutff+Nv4Th4/QPHfKo7FBDBe9//4UWZvqOHD4ExDA/NrxpEIsHIyMiiLWzfvrg36sjICMaYJZ+DtZlzvD/H77SafJS1+Z5WZOOIuFTCqBjdbOLrmEg2rbI1aQSKfNYuo+LYIJSib9MWTKsO7RZODDEQpgr43gCNpk04RBFU6zHg4WDrs0/buQPVKOPGIZWmjSX3etDIOPz2G3+j2wOlt+DwkQ+9D8E0utUkqFVoNao8/J07cdHEQpJvR5Bv22wubQTTbBn0KGScVTUe55BMWBUfTYpKzS4150IEoXS4d3IaVa0wpGO8hM99uoeqHOTO7/y0U57pcogWtbIma+aTFoHjkty+E6O1ZSBgViCOdz5LJskVChTyBX79TW9CVUq4fQO88Z3/i8lymf/1B9cxPhWBUdz48RsBOGWnxxUvfv6K57amwXvKU+blsoeGhrjpppt43/vet+g3k5OTDA7aGsFvfOMbnHzyyWttFgBfa4JOgb0NKGs8mcBNbeasZz6LiekYRwoyacn+nx7oxObmD1n6PonNWwGomBihIxK+IOHb3wwt0MpK9g+QyaZ56WteTeMndyM8H79/kJ/8/T8A0hJzF8hDa9JdBZPk9p0ktu3oUiKMiqm6Es3iGNecGADYjF04NooOI1IqJh+HtA89zEAqJi4McsFllyEkFLIO//Gvh0l02idWvSQ5p4lTyKOadYwUOMW+bk2G50qG+j20NtxDBMhFmmPLYS7GOBfbjDsk7oQviKTEMRoTtEFKdNBGJJc2+lkOY/se5E9/89epVqvUpIvbN8DLuksWqz13LK3BMucWplnlkt+sBAHoOLaGekF8MZfLUak2MDj09ffhyJXYeeuHqzX1I4f52Ec+TKNRRwNT9RaNXMw//8snqdQ8hPD5fzd+HY+jnL5LctVLLuaK1/wKs1/6LM37fkK1PIsUEs8X+H4O19HE2l4axxEIajjYie633vg71L7/HcLJMW767GcAaEqPZsplx2afTDm2kkspp9Mox8rbO4DsTLVzkjMehs0q7DgHmogBJmYiWi29pKBfhyHCdRfVMqvOpA+SmUpMuSbYOmRjcztOPY0jxjB6YB9NDIViDtWaV90W3X55BoGDkYufJdVqWbEJpeiPIyZaM1x33QcxOAhCBIpD+35Cb28RISVlL0FKxTiZDE4uj1soMNkOiJ3thGwinfdB1zAoJiYn8GkBj8Lgua7LH/7hH/L6178epRRXX301p5xyCjfccANnnnkmF110ETfeeCPf+MY3cByHQqHAn/7pn661WXuxheDo6FH+/t8/iW8MmUyaMZUB4eJ7kmzGIYo0g70Oh6l1XxNPWwqGiWOcbA6342GYcILevEusDdmUXJROV1JS8pJ4mzaTxjZWEb6PB1QRy2rhL/xMdDrV28B3AilCK8iZkLRD3QmgqvkSs3bbdoUPAyS28Yxq1EjHTVSibWdRAcWc03no7QPT8BNUvCRutoDYJHBzeaRrVT7qwqfeUmTTAt9zcKhjcNbkHvmuoB3MsTmcTjZt7gG1j6cKAuKZKZxMjuDAfrJRSH0VmaFd/X1sGx7EiSMa1SoegkyhiOu6JBKJFUvFtBAII2zwUqwvWwo2KSW17hCrzYJAu9O5Tx1SurT/xcrgH2d/1YXYuWsXNCokVUhQr6OAk7bu4Me1JNPTE6RyJ4NTRCEpz0Z4VDviBgqnpxfSaVS5hAHy8Qy+qqJt0Y1VNDFOdwICq+CS2HUSGE3UaU41kUjRcD3yWYd8doGwbWdyFKk0Ti5PDzEDhZxNkmQy1CYmqWeyqFgR0YskIJty0AYOjQUUEpZPNxg0qX33DoTrkdp9anf79eZco08LpU3nM7jmmmswSvHe3/5NYgy/+qY3c91f/l+U53HSs89kYjoijqG/x+HBe/eTZL6We9++fbz1138NF0MhX0DHMcXUJug4MgYPlxkWJk+0kMQIVK1qdfDaLQr+IPXkMK985cs4PBYShIZdWzy++Om/xmGxIMKxWNfTdv7553P++ecv+myueB7grW99K2996/LNglfD1lNPY0ZF1A8fRAAiX0D7EuNnrGqCL0j6DsbMv5wYQz4Ku93A4koZui+NoZhfObP40P79vO9976darSCMoZjPMxVExAmXbFouybYm/NVfGIc6zzwjRa2piSKDQ2m+0XXHWOggoO24hMbgD26m7PXhEpNLS2JlaLU1MF8FoKTkwPgYn/nGN6g1mzb7nMkyHrqY/CZabcPkTEzCF2gcvDVuMEAx71CuKxRFQNAObRG64wgcrciqGMLQCli2mqh6jaRWtFdRb7z0nOfTd/azAfjnGz8OBv7H297KwXbE0NAQhw8fxsqpL9UW1EIg/ePLmJo4RquYmZnp7mdRFCNcmwWcWxppPWdQHl3C5H++8Y2U//Or6EadL3zxi4RS8sY3v5m3/t8v0mYXu5/8AmKtcSTsv28G1TEQQjo4xR4c37NGHehTJdJqkrbnIGOFI2xQv0yGhaTC5Oat+P2D3P9v/2EJzx2vS2tj2QfHeMJCyo6CsMFohY4VIgxwlGbGTXB0RhEzgEEyU1b0FiylhoQllmdUhIliTBTT2PtTjo6M0AwCfv/3/zcjR8oAXH+dVTU5eVc/V7/0EkwcExw9Qja25H3dbuGIiJR+iGc9OcmddyvCyHqiBh/RoXrNsTra+x7AA0QuTyJdJJ3t5W1vm7cdxZzDH//hAltiDANBq1OtBMJz8UgQhyH//u+fQ+NhcLmHacYO/JieNRTOT2hp2e/8zu8QHj3CX/7RH+Ki+c13/B6//5d/iyOL3fpZzxUUcrJrSFwzr7am4xhVLRNXSuQwrFCJAsCWLVuI4xjRbuBVygjAz2aRiQSp1LyqQ72pkbSWZZkvB2Mgl+6ITM4ZO0D4Pm4hT1yzwfS2dHH7+tHCIxaSUk3RbFuJJ00KTaN7nFGtRBxb0QAHyKQSpLJ9qMwmKjVFrEEHGoPGWfWsbe3jvn37iOhj7MgkoPjIX76fHTs28463/JrVIcRgzAIxzs7/VyP1CsdBCJdodta+OAbCqUlMtmjjsfaxJowMjmPw3NVjR1EUoRcYWGsw6SqozE0Ic8ekxeKl8XLxoPUulZdrii6EwBsYRKfSNFwPDTiZDLXKJA1TZO99D2Gn4JhGtU1a1tAG3GIvtFsIzycyttCnIlMEAoK2QsegXUOolooz2INR5OIIxxgiISh5Axw8GhKGhlRSLFqSGq3pC9poIZG5ArRakEwzlQyIZIYj41HnmrhMlWIcB3Zs9jEhROUyE7UqN/7TjYiOvmCrXKZpDII2+XyWuTKlkZGDuEwBlxCXS5gwpOF4pFWEqlZRAvYe2kv1Yx+k1BoG4ZNKZpgt10kW7YR0zTXXEM3O8JdvvxbfKF73mlfxl5/4LLP+Dsano8577nBsdMbX2lYNzZ1zFJOMyphOssIeY8fIeT2wRoeQE2rwwvFRWvseJInVTlL1KhDiMcZwn8eWAQ/XgURCdovelZAc7vRuEKUZHCxrOxG0MYkU1boiijuySQuWtFdddRXbt2yhte9B/u76v8DB8Kv/7Vf5s0/8G82ON5ZJSbJpZ00jAtajUOQ5eNQ2He4vLp1ZvJ5enFyeST+NZ2ydbs1JEDNIq61ptgzZtMCQQRGjteGqq65ioHUJzft/ylc+9UlC6fJLr30dD336Lib9bZRrMZWaQmnQHeWN1bBv3z727dvHjt2D5PM2oTJyZIQ5s6altEz9TI5odhbpeQjXRQvbvWwliHwBqSPM+Biu0sTSLjt0IttRrLHXNIwMrrG0nTmZqCAIOHz4MHFss5iu63b/7Xk+CAeDSxgG0EnKSMfFB3IZGxMSrkdUqxPEEePjE7ZsTDjMTE8BmmTCZWho7SYxU7MRlbrlTuazDv0dgyISSfyBIVQ2S8PxiITE7elFmBATzSKod1RyjNXlU2WkADebJbFtJ40H7iN2XNpCMGMKzMhTCUtN6JC/q+UKQbVJpOe7jd1yyy3c9dlPc7Rj7DM9m0kWXGoNzcRMRKNl6C86hPTjMw1hQFZFlOsNRo4cwcQRAYIH2zAabOUfPvo5SqUSyAR3fOvreExz4GTFS15yJU0hSWFIxxEOhqhTlex5Pv/7D6+j0bJ8wd6Cy7v+z7XdycV0NCeVENRdy2UdPPVJ7PJTBPi02gEQkEl69BeLDG+xCU2jFN/60hd5cGyMDPDRG2+kEiRopVIoZeOGWit2bl4cRhEY2tJdRADXpoqjJrj8irfQaGv6iy7ZtMM/ffzvSbA4+XUsTrDBG7dlJlqT1DHtffvwpyd5uPown//kB1HkAetxHd5/L709Oc466yxEGEIU0K7XaSMoFPtIJBL42S1MlWKMgUpdMdy3mGFpgjbS86h5CYQx+MObLUMcOg+U7WCu8VdsKDwHTRqDXZZpbZicjZcG5AHpujRdj1xkl+BJo2kToIzBc61UvJ2FBe3A2ORBHCOkJOqIZHr9gxgcNL0cGI1oh4aEJ4g4mbCT5VsNu3fv5p1/8Pbukv36667vLjWUlDQdF+m6JDZtwUQx0vdpzj1kK0BkcySLBdsrwvPRUiKlQ7PZZGq6TNyZqmdmqwgikgkYHhrE8zyk1rapjopRCHBdpJRIKdm2fWfX4xofn2AhXVULYWXdO93KBKB1TBg0cFwPTITAcjW//717+du//VuUUrzyla9cUg4J0Gi2+ZN3fBAQZNMu5z7/6Vx15Xn2/ITA37KVeHbGFshLBzdfoKfo47GTM856Ou0A0knJT344QnpuSev7+INDJLftoL7/YcAw5u4idIrMv24dz8TEIBYE9TuKLoWijXvVA01rfIwP/9XHUOQQ2L7CE5MxOa8OrkffQD8maKFUiIoUGvCTA0RxiMAhmd1KR46C8aP7SXdEE+L+QfrSCV5y2aXguHh9ffzgz/6CI15/t7m16wpagV70TDvZHOHEOIXYSrnHpRl+63euoRFKDh0NuP7DX0KguOyKS/A9wbPOSBE0jnZiDJDvdCWsewnaURpJlXzWQRtDOuks0k4EmxUOHYk/vAndbiMSPhOAiUvs3JJgpmJ1BV1XIGlh1jBpJ7aJj+dhMCR0bEt1jEYBeTePImsD8rStO23szHLVVVexc6dNbb/7Db9JQgiuvfZa/uL6D1B2djA2FVtOXEKQOKZvwEKm/ZyIYCwlmuyiDuaKAoJpVoPBwwC1hvUofU+gcXEWLGvBxpHyUdBdvLjGkFEl+osuzZaxrSU7xtX3BKbRQOZzJLbvoCVdlLAKwrVmjXIQ0Dw8jX2AQ8JWg9ik12w+DFaodLaqCEIrRy87ed+ZmRnqU5N85BP/1pHdsY/36JEjiN5+4th0EgFLjZ9bKOJmMui5WJPpVDwohZDzj1Yca8LOOfbkc3iyCMDY2FHCH3yH6M5v2kY0xV4qL3sNmeddgHTmrpjoxuK0ELb+yAbomPNSEwl/EV3lwIEDfOhDH+LGG2+kp6eHX/7lX15SDqmNrT6o1a2HlUkPEcRykSSYiZVVVF6wtNdkELSQQuA6Nj5pF4R2QnPSGby+AfyhTVYr0EAj1QOO143rAiRcjwSDZBntfnbJpZfygqecYRVrgP/1f/6USksgyXboTlZNGAyIBMJ1uejlr6J8+zdQpRIPP3A/bcejJ93PluQWTjn3hUyXFb4LQ/0et3/1MAZLMTNSUvZTpJ90JuH0JMSKfmxfErCx0GZLo4xB43XDNTKVBimJhUQYg/QT1MemmJZ9pFMOHhNoCvQXHTYPevT3eIw2rHjoOS98IXv27Ome7/++4WO0MeQ6KuGus7RCxgjBDw4f4a3vfg8CQ7K3n2acJJXtI+ELfFeQTNilvq27WV0F54QaPH9oGNMRcYwRJDZtJV0YoKf3ybzoqtfie4JUQnLqTp/3vutti8YKKal7foeQaZe6TTfffTnagaHZOsbb8ny8wSG0AGHAKRRoS2eZWUF0ibMroVKeoBr08pd/9W/YZHzA2MFxevLzNyyuVggnJ+iN2kRCYrTCNQ18Ixju85gux2RSEkkTh7pteNJ50d1cgZrn48cxJDNUZQ66tY6iY3CtVJJah8Gzy257ns4xwqMGQzoOyaoYgaElXVwksTPA4fEQKQT9Pc6SwmwhBMldJ9tieQP+wACm0sJxJNlcjlhZZ6zVmKfroA1IG39q/MNHiB64z1a9AKZWZeJv3o9z69dI/vrvEsUhTud6aCEwYUSlXEJry/CPte7eqzDSNgkjBQ888ACbN29m27ZtBEGwbDmk0TY+ODxoOaWv+9XXkU4KUklBGbsEC8eOgLb1o9k4Iq5VMXjMzNb5zrdvB+GR8DzK05Nk+u1kaowBR5LYsp22dAili6QMLC4FsfKA7SVZRW9omGh6ChO0yeSTFHu3cOUrrmR8Ku5M4pJbvvgP+LQxxuD19JDccTKB2U/d9am7Hi3HJZB9GK3JZQSeI9g66HLscx1KacvmOrHTGPB1hGoHTDcc4tjgOKDoQXRWEiaOcFJptJAkTExcLlEpRVQGs4TGQRLicJTdO5Js6ncXTZTe0CZktYwOQ5x0lli2EJ3Qh+sIBnqWmqO5ezbXGH53/yCpzACJRJJUUlLIOTRaNlziWL7Fkm0sxAk1eN7AEMLzmU6kEAa84U205QCBkyMIbdWDUoaZ8vLZwsBxCaRDYvtOSn6auXhPs6063cPkkmWmmy8w69tAqj8wZKkmx3hldEzwatC6hXByzMVkDALh5qET/zNKEU1N8O277mJkfAIf+O6t/4ln6gTGiiP0FRyKOQdBo0tnEdk8wpPoVhtPa5R0SCYdUrmtGJEm31/ssvWb1MkwrxP4SNDX18eOVIJfe/UrCcdHLUesUGDyc9/iYJDkD/7oepBpUukUF55zGi+98vxF5FUnk2MykbZSXYUCVBuA6Qaf59tPdB61zgtQveObi4xdF2GAuv9e4h/eBU97FqBsC0bfRxvrcURaoTF4vk+sHAweQWgQwpBMSKanpxkYmCdDL1cOKSWdJWIDQxLXFWwZ8rvXUrda3HXHndxxxx1dUvStX76ZHTu2ECCYqVZBOKS8NMP9aXbtOgmAuFxCVSq4xSI1L0FCxUimkTTxvEJ3EkinBUFjmmM7bUjPJ7HJar7XPB9BzGk7kwz0xMxWVKd/chVJYDku0sHv7SOenSaSEtcYQulisOKwRoMWUK6rDhV8/no3HA+ZShHNTCK8BBVARLMIo4ljietCT4f1MFcTK/wEd951F+Wj1jO98Z9uZOtZL6LINsgWiOkFLAvg2JyXkNImdeb+RuEyy45Nvr0fy4RQrrnmGmCeFXLDDTfw229+N3O0mXzWoScv2LHZX1HcdiFO7JJWCLyeXsaSWdIqwkmlaEmfUMxRRAxaOWRSy8eSPK1IaIVq1CnPTFBuVrnx4x/tkCY78Y6jUEyuHueSNMhnHOpNjeuKDrFzdfT1DpMlz+t+9aXdz/754xUSWNFJ4qjrrYlCEd8ohNY0ZYqa12MlrA0EocKQRXc8AOE4JLbtoH3oYZQBKQzRzDRpVablxmTT9kF0BESVKRyCdXl4C9VRjvkC1xhEMolIJNGtFrrZxJBAyjzVtkF4eTz6mK4leXgk4MknL+7BEThuh0W/C3VolChs0qh3Kh6AKLYEcuv9uCAFs1/6zFJjN4cwIPrGTbhPPQu3QzDu6enBkxKUYnxiHAkMDA4zOlWdOw0AomjtawH22ZMOHS5jk9N3JRdRmoQ/v/yci6kZ1+XaN/8aP9rb4q//7tOA4Vd++RKKeYennpLiyJFDtvk2li7lYIgdB08a0moCL7mJILJ1tL15h4mpYM2VxFxhfG/BpSfvdsUmwC4TCUKElCR3nUzzjjsJhEALHyVDhgd9JqZj6i2FKy2LwDB/7w7s38e7/uRPKGrbPDwVRpR9wZZtOcRUtOzzIoQgzhfw8zkkln2g/ARpXzNWn5OwD4kizUw5ttL3a2C5Rk+r/p46inz3nq9FRVmIE2rw5mCEoOH6JLZuJ3KsN1eqRCgNhZwlyR7bpyKuVrot5uKZaXp0yGzc7tSn2rItSYRwi2hh4zTRzDSqXqMQBTSc+RshsDOF79l2iXKJx7cctC0/szpBNo6+MLvr+Qhh2LNnTzdu4fX38+97P8jI0Ulu/NiN1Bv2uGqlCXZsnVdDFkIQV8ok5rLX1Qo90RQlt47vS6QjcB0oUUcQL0nlLz5KF0WBA6MhyYRc2qldCCuTHkWYdttWMUhJSmmS2Sy92SKGNOedfy5bh11KVdWNd64Gqwu48EGeP0jp+UQzM0vGLDru8gwJ3yORWHCfXHcBt050ZNqtn9aNvfnQ39/P1NRUd9xy5ZBg+7i6nSXlsfxN6fuce8WV7Hn+80AbZCaDP7QJISVP3p3C5xCaNJsGPHZt8bv9V2UyhW40bOUQc2sFB58a6YREdYL3jgOaImaNrGJ3Mu4k1Gzv13l4m7YSl0rgulQ6z3S1Ns0RLfnMp/+dmCIOLfZ+b4LRI4co5GySZPfu3aTjiJmDB6ijOTmbJ5KSmSDk997xFmKK3Uz7yMhhCpn5JN4lv/RSXvDMZ3RjjeNlQZDN0K47SKoIbNy3FTy2whHz16TNgUNH+Yvrb6BarSB1if6ix759+9ZUcXpCGLyFsC+KRzIpqdc1UWwYmQiJ6V0U71DVyqJxPYVhdg7087LXvIJKTVPIShK+5MaPfxyfFqZWJe4op3paU9BBV31Vk+TIxAI9fdI4K/TEmD9OW2kx3Od2aTDuAg6QkBJ/eIhoZrpbEeIUeti5czuaaRRWeRdg69bNnLSrZ/EOYoXfkd0JJyfIxjVcKmwZcJguWRLp0X2W7+auMsFZsrH1NNuBnXWPRdXxQDqIZMIuO3r6iJ0mrmkSixyKTj1lpwxsNT6vlBLfT9DT10OsbP65Up5FsNhj8PoHUMe0CVwIf2CY7du3LvpMCIHwfeJOfwzHlTaeZwS1mp1s6sTs3HkSo6OjjIyM0NPTs2w5JFivUOMtE9LoHGNPr+36ZsyiipCkb2O2IEklpe0k1smHucUeTBgia1U0gpbjomSK2uwhqs59xCoLAhrliEapSbpnLQK2i+NAX8Ehm15ahufl8+gdOwmPjCCkfXukqZM2gygyHY6nj6DKwuqJa665hnBinL/6X28npWJe+epX8pG//wcm6k0UmQ5zwFYO6eAoIlOcv25aIzwfXbaGduikLUy103htWx87x2Fdi7gPNjb35je/mdnZWYzw6enp5+F9D7N790nz+1OKdIforJpNdp50GiE1FBka7SaYPnpQ7N69++fP4BkMM6VJ7vjWN2lHdsb6zu0Vpo6MsH3rfFxmYS2lMRCKjnpFj0utHto2iwmJpIEkwLRbkEpy1113dWMyb3vzm5gtVyjXE1x/3fVUqtZgVStldm1bvGw7FpbOWWbbsD/fS/PYeEwyRWLLtkWfvfl3fp2jUxHVesyHP/KPCELe9Ue/Q3/PMQmBVLpDshUI3yN0UpQmD/Hdu75BMxBgWrTK+9gynKLVXt4CLSy5mkMQLv6tMIasikAKhOMhs1n84S1AG6h3SJ8DZNKSdFJSzDtkUnIJGUYYg9Zz5F+bffZdgecKaoQcq7XW95KrGf3I+5df1voJxLkvpFypUCwUln4/t09hib+Yud4WHf0/1+MNb3gDr3/964njmJe//OWccsopi8YqbePDEZsxuIxOhAz3e0t19JbRBKzWNYYkAnvOU6WYVIfzKYTAHxrGGxxiPJkhoRVbtvczPZ6miSLSMcgkEod8z8ns2LHykk/joeihVLXhjnpTsmlg6e9vvfcnfP/Tn2R8fJIQyBT6GerfxFPPu5jDExFhpOnJnY3gsyR5GKDblzbfMSTR7Az5TIZd/Sfxm2/7o+62k77kz99z7aL9RVMTqFoNmbRxPSdqsX1TgWJO4jCDQJL0ZTdJthIWGqdS1SBcj3xPnh27n8uuk2ysTytF8yd3M9RuEgtBMHKI//aa1/HAmCCO6YoGvOGa/84ZnabmK0mawQk2eMYYdKuJqxVxRy7opB2bCMgQkyVSADHa89my9WR27pz3gmQ6Q0LFaGEpBkEnUJvNOJy6M0GtodixOYHPuDVE3tKYTCQkQ0NDZHqHiElRa7Ywqs62bdvZffL6OpsvJDevB74n2D7s0Ww7+DyMJGLg2GUmtscA2AlACEF2cBv9qR4CcoQqwCjNpuEc27dtYiWdTlsvq1jY2OPY402omJSKUM0mqlYmOHIYXa0SCYErSkisZ/mUU1I4jqAn73SNgo4igtERdtbLIASz9+/DlrI7lkjasa3HttoxSpF77vPxvvblpYkLP4E87UzcZ+xhPXCk9SqLPQWi2IYW6lXD8573fF796levKA8VxwZtTDcYf3g8Qsj5fqirIYiWLukX0llUvU5cnsXXiqbj8tvvfCujkyFfvLXMrXccwSDYtHWAfHYHV1xyHjC57H40aUaOjCyajPvyMfuXWbqF0iFZLJIEInximaDW0iht70OlrojJMBdm0M0G37njTg5Mz+ADn/7yLUw3W5BafK3aoV6S+FP1xcR8Va/hD22ikHPxmcYAmwfXvo5zCYlYGd70lvcC80K86aSkXR8lODJCPDtLUkd4WtN++CGcU1PE8WJFn2P5eyvhxDXxUYpg5CAmjChGYZfV/5Y3v56bvlVldCLizjt/iEBy2aWXcNK2BE89NcnR0cOoep1oapJQOrhG4yZ9Qifqnk4qKdky6FPMO924n8gXkKmEjak9//l4/QO4+QKNlmbf4TbVuu7OFn/4B69f0lR7OWhcxqdCak1NOinXRVgGSxGxBOcMGoejkxE9eWdxu7mg3bkmDk6+yHOfu4Nh72RiIbn55tsROLzmtW/gySenV83SulRQ5JDCUi6OrQiRGJJK2fiddPF6ehG+R0IrmlqDjJHUFnVHm0M0NUE4OmK9QGOIJ8cRczXEnffDRg3m6N0WtXKJer2O97r/ibz7++g7b0WXrPRP8YqryT7f8vDmGkAvhDFzPqSF6PR5ixVdtZA5/ZCVYIxhdnaWWq3B+KSVw//o//tHXMo86eQCL3nJFSuO1drQbGki+jG4TM5G9Be97vJNBwHheKcnrzHk4gjdbrFlMMVpO32+eUcZiUtPbphUUjJVUmzvW35fO3fs6JLbq9UKIOnNJ5cs3S655BJeeO65dr9a8+fXv58fz0xS+d69hDoJOLhS0ag5pHPzjdaN65DM5W2lhZQYIYg6l3xuwrLP1jGrAs/r6lDO/b3o+xWv3vJYLkTSnSzbtvdtUneUfipl3MokmwaGmZxVWCmy1roTFyfOw2vUMcn5l8jXGtVsQCLNKduSaA0uUwg0vUVnUQf0uBP7MUIQCQcTRjimzsHREn9+3V9Rr44h4gn6eovdQKaQ0lYSKLVIkqgVaNIpuaCBd5tUch01tDiEDPOD+1oYA9mMQ0wf7joqH6ZmYyZmI2KGAUOtqQgiw/Zh++CEk+OEY0dt2VynkU+hmEAEDrWKvcmSEGNgoGetLF+MS4mdW5ZXPgmki68V7dHDmHoVkUgjUimEsR2zVIc4sVyW945vfIOf/ufXuj00Hrjne3jPej5diawFD3K3znXBh67n4T57D4UXXUq+tw+tDR1qHc4yNtwohQ4sXUcLK8EFEAZNVLkEwlIxYqW62d1lr4kQhGGAUopMbhBMiCBkZOQQLqkVx4H1lNqB6ei+eUxMKwpZpyuFrlsN7rrrrkV0lq9/6Sae/aKX0WgbDCkMLu3Ado47tnvcQlzzxl9jbDqmWlN8+K9vRBBw7Tt+k6E+l2RCcvDgwe5vnXSa5M6T0EFA35OfzPD+aWrUiZQLJsD1PfK5HFu37gTsCun5F1zIc5/9bBsPN4Y//fg/EcsWzbbuLKMFQ71AV/LJwusfss3CleroIc4nhCwd3COKzSLtytXguZZIP5ckAchnJNMNcDJZ7rt/LzPT9r36/M03c1IQc87VZ1LIJvCYRhAty+FbDifO4GmNUYq4WqEvaGI66/Pkrt3ksg47N/t4naznYK9H/8ITWvjiGasUsXn7U4nEGNCkWq1ilKGvlyWz4bExmYQnmK0oy48iBlyaLU0hy6qI6SViC4fHbLexYsFB43WXSCuhFWgOj4XMVGI0CQQBtYait2BVTEwQoOKQe+67jyOTttrj7gce5KwXXsZ3fqypVG3jb2iSSzs0Wmt3aloNvla2zGtmGtWoIXMRfjREe3qC+wOF9voRTpo3/u57cKhz6u4t3aWI8WyN6VwPDTwXUERRi9KssU2IBLYSZe72CUE2myWbWXCBOwkBKcXKzcSMQbdaNmCOwTGgo7izXBWEHYKbdFxcx+02fVp+UwZwkI7HuRe9kmxKcvpJCT7+d3+8iKe2HNqB4fa7vs/U5CEAbvrcJyjveTI7Np1rT2+BCsxc6EQJjyPjIdOz9tg1mliB79mYc9BYuh+w4YekL3i4EmE65WjNtmaqFLNteOkEJqTESaW45k1vQmvDXXfX+KuPfRdDmtNO38VAj8MLn5cHNd4pnduG22yAMch0huYn/h3QpBISr9eSuKW0S+uFZHUnnUbu2GVFPD2vq6UXd3X0HEbGw0W1yWtBUkPRSxwbBvtsbew04A0MEheK6I7K9VQixUmOg5f0Gci6SOpoUkyXFcWcs6hT4XI4cUvaVJpoeoJwcoK0tn1MdRwTTYwxtGk7rgMuMwgiztydXMTYdos9hK0mSRWT0DFBqcRLL34xKtNDOzT87d/8NYIWN9zw+90xBw8etDHDRh0Tx8hMFul5pBICV9r5Za50J1qdcwxARJGZSou77voBQRwBhuZ0me3Dq4+bmI5otjVag20LOe++e66wzXgcD5XJkszlcDEYKZgwfRTyEWPTNjOrSTBbVdSaj87g5YMWuTjuCMk56HaARlMJIlpRgsHBud4kgoNHyl1eGMAFV13N889+LuHYGAjwN2/lnqPjJDxJEIWAxPFcfFfi+/OPmvB8W4RujM0Or+KNdaH1ol4Z9jPVFZ49PDKOwaHYU8CRq2cIY2U63jwMFB2UnqtfWbvtVcIXaA3ZbL7DKDA40nQNtZPOcO6LL2XP82wM0snlaaf7+c/v1Tk6HXd4dwlrZMTyOozd44wNrUCT8ObUggT1ppUtW0v6arai6C14OLQxaHJpSSHrMjWj2Fy0vxFC4GQWz+wGByFsTKzWVKjYdFgLi6tzlmuKVKktjhdX66rbQGs12HLOXkDguoJSVZNOdhRsEknO/++v5+yLXmTL/ByJ1zeAcF1qTUXIZsDpvldzq6SVcMIMntAKt6eXH99xB6PTs7SBv/ngB3jGeS/g7Jf/CrWG7sTEoiVrfCed4Vv3/oTRo0eJgQ9/9B/Z/bRL2fSUc3BSKTTpZeMI4djofO/V2WkSW7bj+D59PS6F2OrZCehyqlbD5uF+Inw0sVXq0Iqh4UFOOWnleFrciYt4niBlJBABHtmUQ2/BtbNTMmX5e+ecy55zzsUYTWLLdn4yYkm12tAJIPvMVmJUvA7SMVCqxgShWSLxnYtDWqUSd//g+ySDNhqYfeBBCEOSmX7e/e53dX97/XXXY5inA0nPJ7njJJI75ikE+XqTbdu2cHjE1mwODy+VixdSLvKE1gshHRuS6B7AfGjCGivTzZa6q5BZ51SoDDBdVkgBE7NxpxJhZWhtaAaap591FkNbziThW4Z/f9FdlAzyBgZxe21gTjgO5ZmQWBmaTdVZAVheXTvQ1BqGlearuTs7110O7OSYSqytEt0KNNIRODTRxGTTLqmkRIjVn5eH9+3l+uv+gkrdxQiPTCbL+NFpdm5enbUQK8PYdNRpEq/svO2yrjrvZmsxZ9MY023TAFaAI7XrZHRkNRvnJsgDR8IukbpcU2gDrTWWtiduSSsE0k8S5/I4uVy3NFq5Hnfd3WSyFBOwHYcK0+WYob6lgVGvWGTuU9eJcZl7aCMkIUGouwF9EwToBR3M0Ya4XMIfGqa/aLltonMMhczamdf/+WtX8YOftmhHmi/f/BUc6vzh7/3mssH9OTjSkl37i3Yp6lJCUudJuxLzvU2lxN+82TbG0Qo3V8BJpylkA6ZLtvjfeiehlQlf4wEGy8WbozY02xpFBqejv5fr60e2miSDJiaKibDZ66LvkfRcylUrfT+XUFmJs7YQ9mVcrJp7vGz6JehyALXVbxN0++BaaATaxoPE8mVKc3Adgerw9+6884f2M44ydeAoPYWVX4l6UxOGhoEel76iQxgaNvV7y45Z6LVKKejJOZ17ZX3JMDKMTyuEWJnE7bm2ltyWH7YxeAz3eUvJ48sg4Vt+oEMDQURPQdJXcOjNrzx2LvSjqVJrJBBukXTGZdPmk9myffUYz3Qp7pgsq+89W4vZ1G9XUGthuTDGclnXhfc7ig3f+973u0mne398L898xtOWjf0uxIkzeIkkMpnk2RdcxFlPfzomikhu38lROcB/fi9EGzAkifEZn46WGLyLLr+Cc556ZncanKpCkE8jE15Xz24t6fM5ZNMOSX/+JZ2YjSmEZon+/0JsHvRoBpqJqRiPCQQBhTXcd9Epwp8qQS4jrGAA5SXHKX0ff2jx2jibluQykmpDIgiQtPAdQTaz+i00iEXBYLBE6zmDd/all5ObOELrwfv5yY9/jBKSy1/1av75s59jILuLWBmr6BzbOkyxTO/SZc+143FJKZDiMTB4QtjeC0qhhMQIW8iuEUTKnhPQVa555zvfya233kpPTw9f+tKXFm3K9pOIrYJAt5mSC24O5iT6l8FCb0UKq9KxnvMq5l168y6e5yAJ0EjymTzSsZ5JamWqIUN9LvWm7ATnA3ZsXnlCXYjegpW+t5GwPMN9HgO9LidtTTB6ZPkxc7FZpQy/9Za/QZPhsit/iYRHp6fF8vQZsFUVd//oO4wdvR8hU9x7zw95xqvPWdMT1dp0jJRd7YDlb+YyktIqxTiOhISnyGVSIDod8rJyTZrYiVvSzgVNGw3M5i04mSzCcag90OTwkUMcevgw5Y5a8F3f/iFPO+2cReOtUdhMXJrBGEP/jiKT7RS6s/4VtBdliUQigXRltxwGgS12xwovfuFL32TkiM0E3XXXXezZs4dseuWLJ6Xg1B1J+osxstN8ZKYaIySL+g8ci2zado6KYoPL9LpT+GEMu7cnyaRj9t4zhcCwa6tPbpVjtJiXUZrDQqMle3rwdYxuNIjv+ymxcIgmx1G4KKyIg+8KdKcq4figV83UaW244+4GX7qtxkw5pq/octl5OZ7/9Myyk1WtUqFeqxJ2SgrrtTp+pkCo5pRvsYkfY2XEXvva1/K2t71tyXbAvjCOhCsufW53+fuVL46RZAVrgBWIneseBvYZXk8XMNcRnHlKkgcOtrlvb4iDQ8KX9OacNWNcc8Kkx8bQjoUO2hilkKm0NTIGtDId9ZIpnnpqknx2va/7nGK17X8SRHQ4sStjLmZayNmkXT4Vr5mlDULN2HTc0T/0ELQY7niFaxlKKQVXXnouz3veHsJI4zpy1dXVHE64eICTXewqF7IOSVch0KQSCTAxvbnlVRCcbHbR+G3KBnkX9ZZYAH/zVlS91i31kgsKxA0OhUJx0e+Pbe68HNqB6ZQZWcxWVFffayXITlD9eHwezxFdpQ3b1qTOrq2JNb1YAYsUnKWYa9fY+T6VJrF1O06+wMx/3oqPwR/eRM1xcc2CB8iYLifssYDWhvd9bIofP9TuVn9U6iF/9x+zfOfeJm/51YGl59Z5CZzOctF6r4Jms03coaiUZktk0kme9axnMTo6ykqYSzjEylCtK3KZudjoykj4kuF+j2pdIYR9VtcT7wV7z7cO+zg0MXjksg6n7ExSyLrEa4t8rIpwYtw2ucHWG/tbtjFThbAT3zU4zJQV2fTaDZ8AvnzL15iceBhEiiOH9/L0p565ZvazN+/wjGeezelnPId8RrJ9HZ5oqapsNvmuu6wKtzHcdutXefGLL1nHWUMh55BJS+LYduBbj6T/E660bPOgz8UXnMEznn4aCNg84HHGyasHTOfgOMLe1BXiTEJKWxt5DC655BLOPe9FjM/Mj5NSrCv+cGxQdk5Yci20A01MHoPHbCUmn3VWDbTHSpNKCnryEkEdh8qqHuhCSNpsH/YJY9OpA13YeyOBm06iW02afoIagtTu00B+BU83uuIIjsN8R7bHAHfc3Vhk7OYQhIZ7H2xz591NznlGZtF3uWKRbCbdTWsbKYmM1XmS3UCQgXXENedaCRpjiLWh2hCEDOGs0RMhnZTr8uqOxXQpJo4NHkdQFNnU7zLc79Lf4zI+dtyb60IH7a6xAzBxjKqUieICYWS6tdRHpyJ6iy6FVVYfc3CkIZfWICW+q8llHIZ6XVqrOJmlqs0ee67lJIaRwV9jQRAvSLjNORvH23fJdcSq782S3x/f5h9/+J7gqaemqDUUUti1/HpjcWDd5JABwGNixhIS1zM+nbJKIrWG7URVzK89G7ba2mZeO3w6sC/EWuOabc3oRETEMCB58FDApn6v2/tzOUQxpBKCZkt0uFx5Zipq3Twn1xUreiP+4DBOJkfN9VBIhOMiUSjZxHftvrNpuaagwvHgS7fVlhi7OQSh4abbqksMnhUPSHRFH6SUoAz5bJJEItGNFSb89fS6FSgVcdMXPgciQSLhUZqdYbj32Kbijw2UhkpdI3ER1Emn5JK+K48Ei7LW3c9i0inJF7/yPcYnrWrMvffew7bhZ6/L4L34xZdw3gteZI20spnv/h6XkRUMXtShz8B8AqJaX5sulU07zFbjrqJQ0pfrKkl7NHjCGTyw2aneVbJlK8EYw33726iOHt6+w5Zdd2xvi5WQTS9V9V0J9aZicnaesGfw6ck763qgbrr5Vr52648Yn7RLzR/88B4uOv8Zq8oupZOS0cnQLgPII1BMzMT0rsMwg/UoyzXVUQhJLFqGG6UIJ8ZIxxGuMcS1KlXXIxaWbqG1IQwNy3bZeoRYTrVlvd8vbBrtOIJ0yiGZsJQdKdaXrEokEjiOS7NZA9EgnehloLeX4U2Z4/Yy1oOkL/C9uWiqNcqPxFM8FjKVtrJZ8fz1cnJ5elIOnqPJZZJgFNmkNV7rbV2ZTtqY2HJtNo/FcnPLKv2fuijmLeev2db4nqC4StXJY4UnpMF7pPjCF7/GF7+2r5uqvvueeyjkzlq3wTseVOralhDdfgejR2wJ0bfv+DqXXrp2/ME+IIbcgvijEKxKAustOPzoR/fwgx89zPTMJEY1ufVbP2T3trPXlOExSMam4+7DrihAR2rLRBH1H99N+8H7KcYhEQLdbuIYF4EkjjsMegURw4g19NvWi76iS6W+ct3xahny5SClOC5zPDQ0yPT0NIO9Ppo8V7zkcnrzDtuGfYR6FGvMFZDLOuQyDnNJpN68sy75pLUwl/xTlTJGxTi5PE7aesZXXrqHC85/Tve36eR6PN/FWM/k4To2sVKtq+4xrdd4rVVe91jjv5TBs/dSLzIkx7O+P/59Wdj4w/rdgpdc/gLOeubzmZiJUcr2G00lJNllZJfmIKUgl4pxqJNNGSCF5+h1eSMGf8nMPpeAMLUqqtLh/GlNSivaD++jL6hTdYdotDT1liIIrcy37ST36HHZeTn+7j9ml13WJnzB5ec9uv285S1v4bvf/S6lUonzzjuPa665hle84hWLfiME+IygyHDqjgSFnMNQn7cibePRQGvD3vt+xPSk7c1w48c/zsUXnMbLX3rR+sbjY3AXcUvnID0P2b90Kd5fdHA6QpwJT9B7HMrAx4v+oks2ZZvLJxPycXvvHi3+Sxm8Ky5/IU96yrlMlWKUsi/O1scpJlDMOYvUjAtZZ91eie9Jdm726S86BJGNkWRSa8f+rrzsHM565nNotzWeK8ln5ZrZM4vl0s2dz8y8dJanVdfJFCjScYVGW9FqG4QEg+5Iaz/6Nd/zn57h2/c0lyQuEr7gqacmed7T06uMXhvvf//7AVaUh4pi67Xa8Idh55YEmdRjt2Q/FmFkSPmKXCoC4ayrjcAcZspxJ/kAo5MRg73uukIvUorj9pQfDR5tPPJngf9SBk8IwUlbE/QVXWJlyGecx+0mpJOS7cM+zUB3WsUd334cR1DIHd/lL2QlWnvd3hvrjd9JInJph1qnXEcQLmgalMVLesSVEkZYvp0/vIXxRouJyQN86pP/QkwWicNMKSTtNddVa7zmMUnBW//bAHfe3eSm26pdHt7l5+V53tPTx5WoOl5obaxOnDadlgDw4ME2Z+xOLitJ9VggmZA873nPW9SmcD0VE1obvvzV2zvN021533nnPY9XX33B43Kc/9XxX8rggTUkjyTh8UjguoL8avrqjzGEsOfWuwozfzkYJJ4ryGcc0imJ22kCAyASSVI7d+L2DnD0s5+lLR2SO3YRukMEyTSSfhQ9tn8HsyCS3UbZK0Fpq0ay1jJfSsE5z8gsycb+LGA0hGHUjff+zd/8HRdfeCZX/9L6lpjHC9cRDPe5Xe5ZLrP+BBmwhCO6gUeG/3IGbwOLYZBE9HN4PCTq8J5i8t3SMrCKFG6xSNXxSauYViMgLp5OSg6z7aTnEMaG/l7J3rtbuMyiVqku09oQx/MZ3ePRRftZwdba2n/PxXtt2dzji1RSLhZ5XQekFFzyonMWeYbr1X7bwFKs68rddtttvOc970FrzSte8Qp+4zd+Y9H3YRjy9re/nZ/+9KcUi0U+8IEPsHXr1hW2toGfJSLyhAxz6/cqHDwS4TiSGk8nzYO2B4XWBEeP0HrofopRQNtxaZoETdlDxBBTZUUcGeptg0LioTp1x8tDaShXGl3J86NHJygUUqv2pvhZQwiB7xmSSZ+3/O5vk05KUin5uMV7Hy36iy6phCSMrFbdz0Os7ImKNQ2eUop3vetdfPSjH2VoaIiXv/zlXHjhhYtENT/5yU+Sz+f56le/yk033cT111/PBz/4wcfzuDewTlTqKZpkueO7k9jbbYjiTQRxnWZbY2oVojrce8+9TI+PY4Af/uB7SJOhrQRqtgxI6jVD0PRJpWsrFsyHkSbWPrVaBekkEUKigSiW6+Jz/awwJ/Gey6YYGEqgDWSS8tELHDyOyHSIyht4dFjT4N17773s2LGDbdts963LL7+cr3/964sM3je+8Q1+53d+B7BlWu9617tWbvy8gZ8ZlDIYHLTIEGlAWAUTkOAO2trRIERkbQxtTrk4LVoU8z00yooobmMJgiEJp8GOrZtW2Jst3PdSQ0zOjOGKCgiDIwTlEkyMWWWROI5x3eNfkj3W45LJJFu3bsXzfnYx2A2ceKz5BE1MTDA8PC9VNDQ0xL333rvkN5s22RfBdV1yuRylUone3t4VtxsEwart1FbC5OQkrdbx13T+Io7TGrZsKjAyFRCZGIQLRuFJSS4lOXzoIaamp2lXyvRt286VV/bZUoXN27j85EE+/Y0m0zNtMBGOjNm9s5cLzt/O3r17l91fFMNUWTA+I5ipeEgH8mlbU7m53zBQtJ7VnErx8eCxHtdut9m3b9+yY54I925j3CMftxpOWPQzkUhw+umnH/e4VCrFzp07N8atc9z/etsp3PNAk2/9oM5USeFIGOzzePmLnsKpO1Mkk0m2ZNPoeh0DuL39eIUCZwC7T2vzre83aLY0mwc9Tt2R5JQdCYQQK+6vWlccHg85cCTCdUxXDuv0k5KkU/IJc12eKPvaGPfYj3tUfWmHhoYYHx/v/j0xMcHQ0NCS34yNjTE8PEwcx9RqNXp6eo77QDfw2KO34HL2UzOcvM1nYsbKbp2yI9XlAAoh8AeGYGBoydgdw0l2XJGkHWiEYNV2kHPIZx3O3J1ixyaf6XKMEFbEMrURaN/AEwBrPoVPecpTOHjwICMjI4RhyE033cSFF1646DcXXnghn/nMZwArpnn22WdvxO+eQEglHbZvSvLsMzM868zccROekwm5LmO3ELmMw64tCXZuTpBKbMTJNvDEgDDrqBP65je/yXvf+16UUlx99dW84Q1v4IYbbuDMM8/koosuIggC3va2t7F3714KhQIf+MAHukmOlXD33XcvW/KzgQ1sYAOPBkEQ8PSnP33Z79Zl8DawgQ1s4L8CNgIrG9jABn5hsGHwNrCBDfzCYMPgbWADG/iFwYbB28AGNvALgw2Dt4ENbOAXBhsG73GEWqaj1AY2sIEThw2D9zjiqquu4kc/+tGJPozHDfv37+/+OwwXN+S5++67f8ZHs4ENrI0TbvB+7/d+70QfwuOGd73rXbznPe/h93//96lUKif6cB5zXHvttd1/v+pVr1r03R//8R//rA9nkQFeCVG0tEn77OxKrZNODB544AFuvvlmbr75Zh588METfThPaPz5n//5cf3+hEunPvDAA49o3Dvf+c4VvxNC8N73vnfJ52edddaikjchBD09PTz3uc/l2muvXbX+97d+67eW7GNu7C/90i8tO+ZpT3san/zkJ/mXf/kXrr76as477zzbPLqD3//9319xf6vhU5/6FFdfffWK3+/fv5/JyUme+tSnksnMy6ffdtttnHfeecuO+cpXvrLqPi+++OIlny3krC/pirYKn/3R3IfV8Ou//uvceuuty3737W9/m7e//e0EQcAZZ5zBu971rq5I7a//+q93SyNXO845zEmf/fCHP1x2X4/0/Gq1Gr/927/N2NgY/397Zx7XxJnG8V8ELHgBiorHqltkTVu0Kp5gpYtQIECVYkV3PaFUFKSCFRXWg+KtlXogXohQ3XoUAUmCrmjFC1uPKlIBLzxABFEOuTTA7B98Mk3IzCSZhAB1vn9pJk/yhkye93mfc9CgQSAIAnfv3kWvXr0QHR2NTjLT+NTh0qVLsLW1pb1eWVmJV69eoV+/fnKP5+TkgM/nU8rY29vLfUbZdnA8Hg9paWkKMhEREYwlp2x+D6mpqViyZInKz29xhVdTU4M7d+7Q/kA++ugjysc//fRThccKCwsRFxdH6zujOl6Wl5cjMTERK1euxLZt22jX6e3tTSl74sQJ3Lt3T87akaWsrAy3b99G165d8dFHH8kpPLZs376dVuHFx8fj0KFDsLCwQE5ODkJDQ+Hg4AAAiIyMpFV4gYGB+OCDD2hvcCqF1/RHTXetKZp8D6tXr6Z8nCAIVFRU0Mpt2rQJMTExsLS0xMmTJ+Ht7Y2NGzdi6NChtPcekzui6RFemZwqn09arhkXF0feJw0NDdi8eTMiIyOxfPly2vdkIiwsjHYjEIvFWLt2Lbp164a6ujqsW7cOQ4YMAdBoVFBtBEDjpisLQRBITU1FTEwMPvzwQ0oZKysr8t/bt2/HggULWHwaedQtFGtxhVdUVIT169dTLpzH4yE+Pp5Szsnpz4HXT58+xa5du3Dt2jX4+vpi8uTJKr+/sbExZs+ejeTkZMbnjRo1ivJxe3t7fPHFF5QK76effkJMTAx8fHywdu1atRoquLu7014rKSmhvXbs2DEcP34cHTt2RH5+PgIDA1FQUIBZs2Yx3hw7duyASCRCbm4uJkyYADc3N/Tv359xjc+fP8fq1atBEAT5b6DxJiwqKlLyCeVR9XtISEjA0qVL0b59e4VrQqGQVk4ikcDS0hIA4OzsDAsLCwQEBGDx4sW038uOHTvIxrayVFZWYt68efjxxx8Z1yqLKp/v8uXLOHHihNym2K5dOwQHBzPeD4DiCUSWsrIy2mu7d+/G8ePH0aNHD2RmZiIkJASLFi2Co6Mj4/0itVIbGhqQnJyMmJgY8Pl87NmzR645sCweHh7kv+Pi4uT+zwTd+gmCaHsKr3///rRKTRkPHjxAdHQ0srOz4ePjg/DwcFZdcSUSCerq2M0e1NOj7wRy48YNHDlyBN26dVP7dV++fImYmBh06SI/kJogCEydOpVWrqGhgTzG9u3bFz/++CMCAwPx7NkzxpvDwcEBDg4OqK6uxpkzZ7B+/XqUlZUhKCiIVtmHhISQ/5bdvan+rwqqfA+DBw+GpaUlhg8frnBt+/bttHL6+vp48eIFundvHFhtaWmJuLg4zJ07F0+ePKGUuXHjBiIjIxEUFEQ+VlJSAh8fHzg6OqrykeRQ9vkMDAwo7199fX1KBS/L9evXsWnTJnToID/PlyAIhYa9sjQ0NJANUocMGYL4+Hj4+fmhsLCQcYOWSCRISEjAgQMHYG1tjaioKKUbpCzqbP5ffPEFeDwe5f1rYKDeHJIWV3hs20gFBgbijz/+gLe3N0JDQ9GuXTtUVlaS101MTBRkqPxU5eXlSE1NlbMYqaDaZSoqKpCUlES7o92/f5+VsgMaj+xVVVWUTVJHjx5NK9etWzdkZ2eTch07dsTu3bsRGhqqkgP8vffeQ+fOndGpUyc8e/YMb968oX0u0w7N5EzW5HvYtm0bbZeds2fP0sp9++23ePnyJanwAMDc3BwHDx7EwYMHKWWio6MRGBiIdevWYdmyZXj06BF8fX3h7e2NadOm0b4X28/35s0bSvcOQRCMR2ig0V9saGhIuTn9/e9/p5Xr2LEjnjx5QvrvevTogfj4ePj7++PevXu0chMmTIC+vj5mzpyJ3r17Izc3V84fT+UCYQvT96ouLd4t5YMPPmDV6l22J19T7c/j8XDmzBkFGapAh4mJCUaPHk3pE2z6frLvw+PxYGJiglGjRsHf35/Soezh4UHrA9EW5eXlMJaZCPb8+XPo6enJ/bClXL9+HdbW1pRyGRkZEIvFyMzMhI2NDQQCAQYPHsx6XZ9++imt30iT70FVFixYwGjxqSonkUgQFBSE9u3b4/fff0doaKhS647t55sxYwbj66pzhFaVnJwcGBkZKVhnEokEqamp+Pzzzynlli5dymisrFu3TuEx2WBObW0tDA0NASgPAgGNs0n09PTA4/FQWFiIW7duoX///mp3TW9xhTdp0iQkJSW15BKajbFjx8LV1ZX2OtsorSxslWpTOT6fj0GDBsHa2ho8Hk/hZlZ3rXZ2dkhPT1d7XdqC7X0lKxcbGwug8ccfExMDa2trjBw5knzunDlzKF/j5s2btP3YWhovLy8cOXJEZ3La4OjRo9i8eTM6dOiA+fPnk4GRO3fuwNPTU2FsLBMtfqR9/fo1Y0oEnWn8xx9/ML4uVXT36NGjGDVqFAYMGACCIBAaGor//e9/6N27N9avX08bEQYap7f16tWLtJySkpJw6tQp9OnTBwEBAZRHaENDQ8bX1AZs96umcuoGVQD2zmS6SKsUbWwEbF0lsnJVVX8OK5daX7KP0REeHo7Bgwdj8eLF6Ny5M6t1yHLp0iXs27ePVMCawOSiUEeu6VqkJx5ra2va5r+ZmZkoLS2FnZ2d3OPp6eno1q0brd83Li4Op0+fRlVVFQQCAc6ePYuuXbuipqYGkydPblsKr7KyEr/88gvtdTqFt379eloZuuhufHw86XcSCoXIzc1FWloasrOzsWbNGvz3v/+lfc2VK1eSX/LVq1exefNmLF++HNnZ2VixYgVlqoGJiYnKkSi2aOOHDTQ6hptSXl6OLl260L4HkzOZKXh0+PBhWFpawsXFBT169GCttJsbT09PchpfU5ju2YSEBMTHx2Py5MmYN28eJk2apNL7ZWRkYNWqVSguLsaECRPg6+tLHo+ZorDqoK37hUrx5+fnY9euXViwYAHlyWbz5s2UR92BAwdi2bJltMFLAwMDGBsbw9jYGP369SOnIRoZGbW9oEXv3r0p/wjKYPJn0JU16enpkX+gc+fOYeLEiTA1NYWNjQ02bdrE+H719fWkFScWi+Hl5QUnJyc4OTnRJh6r+2W0JDt27ICLiwssLCzw9u1bfPXVV8jJyYGenh6+//572NjYKMiwdSZfuHABJ0+ehFgshr6+PgQCAZycnBQi0pqgDct3zpw52LdvH5mgLCUhIQHR0dH45z//Sfka7dq1w+zZszFu3Dh4eXkhPDyc3BiYfFUbNmzAd999h2HDhuH8+fOYOnUqFi1ahOnTp7P6LM0JVboO0Gj1z5kzh1LhVVVVoU+fPgqP9+nTB6WlpbTvVVtbizt37qChoQESiYQ83REEobbF2uIKrzl294ULF1I6zNu1a4fi4mIYGxsjIyNDbtesra1lfM2GhgZyqHNGRgYiIiLIa3SJzitWrGA8emvjuKutI21qair8/f0BAImJiSAIAhkZGXj06BGWLFlCqfCoePLkCVJSUiAWiyESiSifY2pqimnTpmHatGl4/vw5RCIRBAIBvv32W5WtIWXQJYKrI7ds2TL4+Phg9+7d5LjA3bt3QygU0kZ2pRw7dgx79+5FUFAQ/v3vf6tkWfF4PDIC7+DggB49emhd2WnrfqHDxMSE9rlMieFMv7/u3buTubpmZmZyGQBmZmYqrUtKiys8ZZYVG+j+4IGBgfD09ERDQwPs7e3JRNTffvtN6dAhV1dXTJ8+HaampjA0NMSIESMAAI8fP6Yt+WFKzWBKqgaYk0WBP9NuDhw4oBU5AwMD8kd58eJFuLq6Qk9PDxYWFkq7vhQVFSE1NRUpKSm4e/cu5s6diy1btjDKAI1+WKFQiMuXL2P8+PEq5e7NmDGDVnnweDzExcUBAMaNG6exnJ2dHdq3bw9fX19ERUXh2LFjuH37Ng4ePCgX4W7K1KlT0adPHxw6dIgyWk5HRUWFnD+7vr5e7v9sUj2uXbsGkUiElStXAgA2btzYrHJXrlyhtdTHjh2LyMhILFy4kPwuCILAtm3bMGbMGNrXXLx4MczNzcl8wcTERJw6dQp9+/altTTpaPEorTRULZvuAagWqqaDKSWirq4OVVVVcjdsdXU1CIKQqzul4ubNm3jx4gVsbW3JBM+8vDxUV1drPTjB5/Nhbm5OJjarknajidyUKVOwevVqmJmZwdnZGQkJCeQm4OzsjJMnTyrIHDlyBEKhEMXFxXB2doaLiwvmz5+v9Ki7detWpKen4/3334erqys++eQTlRPGs7KyFB67desW9u3bh65duyqUPGkqBzT++P39/TFs2DBs3bpV6bS9y5cvq2wRy8JUHw5Qp3pQcefOHaSkpJBBtc8++0xpyou6clSVH+Xl5ejRowc2bNgACwsLhevV1dX4z3/+g8zMTDKdJCcnB1ZWVoiIiKA1HDw8PBAbGwsTExNcvXoVQUFBpP/84cOHjKWITWlxhccWJifulStXKP14bArkm5Kbm4uHDx8CACwsLPCPf/yD9rlXr16lvcbj8UgrkYo1a9bg119/xfDhw+Hm5kamiyiDrdytW7ewZMkSlJaWYtasWZg/fz6AxghacnIypcVmZWWFoUOHYsmSJWTO3oQJE2iVqhQ+n4++ffvCyMiI8npKSorS9QKNlvnOnTvx5s0b+Pn5KUT/NJWT3YwlEgn09fXRrl07pZvxjh07aN+bx+ORrgNtkpeXB5FIBKFQCFNTUwgEAuzfv58xuKKJXEFBgdz/pVHappUeVDx9+pRMara0tFR6uvr8889x4sQJAI0R8K5du5J1uBMnTlRajii3zpZWeG/evMFPP/2EJ0+eYNCgQfD09FRpt//tt98ANJ79Hz9+DB6Ph379+pHJjFQZ57I76NmzZxUGijPtoGw6WdAp5bt376KwsFBpwjVBEPj1118hEomQmZkJW1tbTJs2TekNwkYuNjZWzspWJc2gtLQUJ0+ehEgkwosXL+Di4oLExESl+XePHj1CSUmJQgS0sLAQ3bt3V1qidOHCBURHR6N9+/bw8/NjPA5pQ05d9u/fr/BYTU0Nfv75Z5SVlTE2Jbh79y5iYmLkFIK3tzcGDRrE+J58Ph8jRozAmjVryL+fqpsPGzlVXSeyJCcnkwE+2SR4ADh48CCtv9LNzQ1JSUnQ19eHs7MzIiIiyHxINzc3xhrqprS4wlu4cCH09fUxYsQInD9/Hr1791YpD0sikSAyMhIJCQno3bs3gMYfjIeHB4KDg5VGSNVNTF29ejUMDAywePFihU4Wb968UamTxfXr1xEdHY2Kigr4+fkpKFw6KioqIBKJsHXrVgQHB2PKlClal6OySsrKynDx4kXaNANfX1+sWLECf/vb31BYWIjU1FQIhULU1NTA0dERwcHBlO81d+5cBAcHK/yIc3NzERkZiV27dtGu09PTE6WlpfDx8aFM7qVzLbCV05TKykrEx8fj559/houLC7y9vWnLDdPS0rBx40Z8/fXXpD8zKysLe/bsQUhICNn1hk5WJBLhxo0b+OSTT+Dq6oqwsDCl7gW2cmxcJ7LJ7k0T35kS6KOjo5Geng5TU1MUFhYiMTERPB4Pjx8/xpIlS3D48GHGtcrS4grP3d2dPMLU1dXhyy+/VKlyYO3ataiursbSpUtJ66qyshIbNmzAe++9p1RpqluhIBAIcOLECQXrs66uDu7u7khNTaWVzcjIwM6dOwE0Wn1MvcmkSIv4xWIxSktL4ejoCBcXF1K5a1uODmmaAdXfKjU1FT/88AM8PDzg4+NDbjKPHj2CUCikdSh7enrS+sxk7wcqmHxRTIEgtnJsKSsrQ2xsLFJSUuDh4YGZM2cyBjqAxqPbzp07FdJg8vPzMX/+fPJYx4T0+xeJRLhy5QomTpwIR0dHhSCOpnJsXCeyRkZTg0OZAaIt/3mLR2llFYg6nU7OnTuHU6dOyf2RO3XqhFWrVsHFxUWrawTYdbI4d+4cdu3ahU6dOuGbb75h9Nk1xcbGBv3794erqyv69+8PHo+HrKws0vlO529kK0cHU5qBi4sLxo8fj507d8LT0xMTJ04krV+mANDr169prylLD2JbT9ocdah0bNiwAadPn8aUKVOQkpKiNBgmpb6+XkHZAY1db1Tt5tOhQwe4u7vD3d0d5eXlOHnyJPbu3atU4akrFxYWRrpOkpOTERERodR1wrZ/IgBKq5ypKQIdLa7wcnJyyFY/0kTC4cOHK3UMU9V7AiALjKmQ9ak9ffpUwcfGdJRi08nCz88P5ubm4PP52LdvH/bt26fy+0mVdl5eHvLy8hSu0ykutnJ0MKUZAI0bgZGREd6+fYuqqiqVGpxaWVnh6NGjCkfsY8eOKd2t9+7dC19fXwCNFqbs5rZlyxbaYzRbOTbExsaiffv2iI6OlvuOld3Tenp6ePbsmYI1XlBQwNiGjA5jY2N4eXkhIyOjWeR4PB7GjBmDDz/8kHSdDBgwgFbhPXz4kIzuPnnyRC7S+/TpU7XWyJYWV3hsOqUAjRHSpKQkhUTV5ORkWs0v7VpcW1sLW1tbhUAHE7LJj4D8jkSX/KjJMcnS0lIhXcfU1JQxiKCJnLI0AyrOnz+P9evXw97eHomJibRR16aEhoYiICAAKSkppILLysqCRCJhjHACjVUuUsW1Z88eOcV14cIFWsXFVo4NOTk5rOQCAwMxZ84czJ07V+7vsmfPHixevJj1etgOVGKSo3KdHD9+nNF1IhaLWa1Dm7S4wmPLypUrERAQgISEBLmbo7a2FlFRUZQyw4YNYwx0MMEm+ZGucaYqVFdXKzxWUFDAWKuoiVxTa1OVNINdu3Zh69atZAK3qpiZmeHw4cO4cuUKGY20s7PD2LFjlcqynaPBVk6XODg4oG/fvti/fz9ZyTFw4EBs3bqVtvV+S8HGdbJ8+XLKCLYuabMKr2fPnjh27BgyMjJw//59AMp/NJs2bSJ3pqaBjo0bNyIsLIxWtmnzgO+//15p8wBlbbmZnPNsahU1kaOqcVQGU7MFVRgzZozaqSFs/UCa+I90RV1dHfh8vspVDbLQlTASBMHo/2Mr5+zsDB6Pp5brpDVMh2uzCk/K2LFjVbIMAOWBDiaFx6Z5AJOPji1MQYTmkGttSH2+sv5eQHlXYLZyukQ2QyEiIkKtoT1M3YOYnPvNISdLYmIi2TGIbSs4bdLmFZ46sAl0SGHTPIDOampoaIBQKGRlVSkLImhbrrXB1ufLVk6XyG5I6pZUttbotWxLNrat4LTJO6Xw2AQ6pLBpHlBZWYlDhw6hqKgI9vb2sLW1xcGDBxEbG4tBgwbRts8G2AURNJFrK3z99ddwc3ODg4ODSmVMmsrpEk2O1snJySAIQuHeTkpKgp6eHq17ha2cqsgqcaZWcLdu3dLofVSlxROPdUlRURECAgLkOhHLBjp69uzJKK9u8uO8efNgbGyMoUOHIiMjA69evQJBEAgLC1Pai59traImNY5tgbS0NIjFYly+fBmjR4+Gm5sb2dWkOeR0yccff0wO05EdrCOFyef75Zdf4sCBAwo5f9XV1Zg+fTqOHz+uVTlVkU3wZ0ouZmr4oU3eKQuPTaBDFnWTH/Pz8xEdHQ2g8cYaN24czp07p7TbBsAuiKCJXFtBOk6ypqYGv/zyC5KSkrBq1SqMHz8ebm5utFUsbOV0iSZpG3V1dZQJzh06dIBEItG6nKrI2lNMwRhd2V3vlMKTok6gQxNkKzP09PRgbm6ukrLjUI6RkREEAgEEAgFycnKwdOlSJCUlKfXVsZXTBZpsVrW1taiurlaw5CsrKxkVF1s5VZGdH8zUWUhXkfJ36kira/h8PnkjSaODhoaGGvX642ikpKQEqampcp1a3NzclOarsZXTBdJRoFKk9wnQqBDS0tJoZWNiYpCRkYHw8HBScebn5+O7777DqFGj8NVXX2lVLiIiAkFBQQr+6wcPHiAiIkKhwSzArqWbtnknLTxdwefz/7IjKFuKo0ePQigUIi8vD05OTggJCZGzIrQtp0uaNlQgCAKpqankWEImfHx80LFjR0yfPp1MPu/QoQN8fX3xr3/9S+tyZmZmmDRpEr755hu4u7ujpqYG27dvR1paGm1ViLTSSd1r2oSz8JoRXQziftdYtmwZ3NzcMHbsWJXqdjWVawkaGhqQnJyMmJgY8Pl8+Pn5YeDAgYwy0qR4giBQU1MDgiDQt29fpSWFbOWAxvrXiIgIVFVVobi4GC4uLpg3b57KJYZSCgsLIRKJaK1JbcJZeM3Iy5cvGWeJ0g1y5qBH2iRS6nOT1grTjVPUVE6XSCQSJCQk4MCBA7C2tkZUVJTSZqhSqMYmZmVlKS0pZCsH/Ol3q6+vR319Pd5//32Vld2rV69I10JxcTEcHR1VktMUzsJrRsaNG4epU6fSXld3AAkHdV+78vJySCQSbNmyhTbdh62cLhk/fjz09fUxc+ZMyiJ8Nom5TP0MNZGLiopCUlISgoKCIBAIUFRUhDVr1uDVq1dYtWoVpUVaWVmJ06dPk66Fzz77DGKxGOfPn1f7c7GFs/Cake7du3NKTcvQVQbcvn0bq1evxqFDh7Qqp0tsbGzA4/GQm5uL3NxchetsFF5zlSKWlpYiMTGRDFr07NkT27ZtQ3p6OhYsWEDZENfGxgZDhgzBwoULyYahp0+fVnttmsApvGaEM551x+DBgyk7xTSXXHPAVJ9aUlLC6jWbqxSRrqO4nZ0dbZJ7cHAwxGIxwsPD4erqCoFAoPa6NIVTeM0IVWieo3koKSlhlcvFVk4XVFRU4NSpUxAKhXjw4AEuXrxI+9yWLkW8f/8+hEIhRCIROnfuTFmhMXv2bMyePRtPnz6FSCSCv78/iouLsXfvXjg4OLDqYKwunA+Po00RERGhoKCkk8DCwsJoByOxldM1tbW1OHPmDFJSUpCdnY2qqipERUVh5MiRjNHllihFzM/PJ0c8GhgYoKCgAAkJCZRt6oHGuvOSkhK5aWW5ublYs2YNrl69qpPkb07hcbQpmjrRpT/QwYMH004D00ROlyxatAjXrl2Dra0tXF1dMWbMGDg6OiqdINYSeHl5obKyEgKBAK6urhgwYADs7e0Z10o3rS4nJweRkZHYvXt3cy+bO9JytC0cHR1pu9NQzYPQVE6X3L9/H126dIGFhQUsLCxUalvWUnTr1g1FRUV4+fIlXr16hQEDBihda0lJCeV8XT6fj2fPnjXXUuVo3RmYHBxNkE0vmTVrltw1f39/rcvpkuTkZPzwww+oqqrC7NmzMW3aNFRVVbEOWDQnO3fuJGeS7NixA/b29qioqEBmZiatjCbT6rQFZ+FxtClkPTDl5eW017Qlp0tu3ryJoUOHIjAwEIGBgcjKyoJIJMLkyZNhbm6u1sBpXdC5c2d4enrC09OTrFFeu3YtCgsLkZ6ervB8TabVaQtO4XG0Kf7KMy3Cw8PlfI1WVlawsrJCSEgIrl271oIrU46ZmRlmzJiBGTNmKARCpGgyrU5bcAqPo00hLdcjCEKudI8gCMYhMWzlWgM8Hg8jR45s6WXIwdT5BKCe56LJtDptwUVpOdoUyiwBusoWtnK6ZMSIEeToACqaYygUW8aMGYNevXrB1dUVH3/8sYJbQJMRpc0JZ+FxtCmYFBNTojdbOV3StWtXnbVJ0pRLly7h0qVLZB6enZ0d3Nzc1J5RrGs4C4/jLwPbuQi6mqegDKaZD62Zt2/fQigUYuPGjQgICCA707RGOAuP4y8D2727tez5Xbp0wYsXL9C9e3cAjZPDTp06hT59+iAgIICci9xaePv2Lc6dOwehUIiCggLMmDFDZ22e2MIpPI6/DGyjra0lSvv69WsYGBgAAK5evYrNmzdj+fLlyM7OxooVK7Bt27YWXuGfhISE4N69exg/fjwCAgIY51W0JjiFx9GmGDZsGKWCks4M0bacLmloaCCtOLFYDC8vLzg5OcHJyQkTJ05s2cU14cSJEzAyMsKjR4/kWm+19nktnMLjaFP8/vvvOpXTJfX19airq4O+vj4yMjIQEREhd601kZOT09JLYAWn8Dg4Wgmurq6YPn06TE1NYWhoSKaoPH78mLYOmEM9uCgtB0cr4ubNm3jx4gVsbW3JFk15eXmorq7WWfnVXxlO4XFwcLwzcN1SODg43hk4hcfBwfHOwCk8Dg6OdwZO4XFwcLwzcAqPg4PjneH/DEYznh2YgP8AAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(5,1.5))\n", "\n", "pal=[sns.color_palette(\"coolwarm\", 10)[-1], sns.color_palette(\"coolwarm\", 10)[0]]\n", "sns.stripplot(x=site, y=predicted_prob, hue=y, palette=pal, alpha=0.2, jitter=0.2, dodge=True)\n", "ax=sns.boxplot(x=site, y=predicted_prob, hue=y, showfliers = False)\n", "for box in ax.artists:\n", " box.set_facecolor((1,1,1,0))\n", "plt.xticks(rotation=90)\n", "for i in range(len(np.unique(site))):\n", " plt.axvline(i+0.5, color=\"gray\", alpha=0.5, linewidth=0.5)\n", "plt.savefig('../data_out/fig/abide_site_reg_striplot.pdf')" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:17:45.768794Z", "start_time": "2021-08-01T19:17:36.934602Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:02<00:00, 484.24it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.019\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.042 (p=0.04*)\n\n\n\ny--yhat\n\n0.173\n\n\n\n" }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(partial_confound_test(y, predicted_prob, site_int,\n", " cat_y=True, cat_yhat=False, cat_c=True,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_site_reg_partial')" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:17:51.250595Z", "start_time": "2021-08-01T19:17:45.772238Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:01<00:00, 509.17it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.019\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.042\n\n\n\ny--yhat\n\n0.173 (p<0.0001*)\n\n\n\n" }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(full_confound_test(y, predicted_prob, site_int,\n", " cat_y=True, cat_yhat=False, cat_c=True,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_site_reg_full')" ] }, { "cell_type": "code", "execution_count": 37, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.04243881759371848\n" ] }, { "data": { "text/plain": "0.004" }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(site_int, predicted_prob)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cat_cont(site_int, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 38, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.1730211479165208\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(y, predicted_prob)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cat_cont(y, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "metadata": { "ExecuteTime": { "end_time": "2021-07-31T17:31:34.153662Z", "start_time": "2021-07-31T17:31:33.891286Z" } }, "source": [ "# Combat on binned motion data" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:20:30.274771Z", "start_time": "2021-08-01T19:17:51.253817Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "model\tinner_cv mean score\touter vc score\n", "cv: 0 {'model__C': 0.1} 0.6645641721861234 0.7067868504772005\n", "cv: 1 {'model__C': 0.1} 0.6695913247742515 0.6813361611876988\n", "cv: 2 {'model__C': 0.1} 0.6594625984869887 0.6930851063829787\n", "cv: 3 {'model__C': 0.1} 0.6608973956534931 0.8074468085106383\n", "cv: 4 {'model__C': 0.1} 0.6629321394565297 0.7287234042553191\n", "cv: 5 {'model__C': 0.1} 0.7064102865932134 0.6425531914893616\n", "cv: 6 {'model__C': 0.1} 0.6678523035230352 0.7581521739130436\n", "cv: 7 {'model__C': 0.1} 0.6746544453861528 0.7472826086956521\n", "cv: 8 {'model__C': 0.1} 0.6961607077460735 0.6646739130434782\n", "cv: 9 {'model__C': 0.1} 0.6957503670918306 0.5815217391304348\n" ] } ], "source": [ "outer_cv = StratifiedKFold(10)\n", "inner_cv = StratifiedKFold(10) \n", "model = Pipeline([\n", " ('varthr', VarianceThreshold(0)), # omit zero variance columns (diagonal)\n", " #('fsel', SelectKBest(f_regression)),\n", " ('model', LogisticRegression())])\n", "\n", "p_grid = {#'fsel__k': [500, 1000, 2000],\n", " 'model__C': [0.1, 1, 10]}\n", "\n", "clf = GridSearchCV(estimator=model, param_grid=p_grid, cv=StratifiedKFold(10),\n", " scoring=\"roc_auc\", return_train_score=False,\n", " n_jobs=-1)\n", "\n", "all_models = []\n", "best_params = []\n", "predicted = np.zeros(len(y))\n", "predicted_prob = np.zeros(len(y))\n", "nested_scores_train = np.zeros(outer_cv.get_n_splits(X))\n", "nested_scores_test = np.zeros(outer_cv.get_n_splits(X)) \n", " \n", "print(\"model\\tinner_cv mean score\\touter vc score\")\n", "i=0\n", "for train, test in outer_cv.split(X, y):\n", " \n", " comb = CombatModel()\n", " X_train_combat = comb.fit_transform(X[:,np.sum(X,0)!=0][train],\n", " np.array([mean_fd_binned[train]]).transpose()\n", " )\n", "\n", "\n", " clf.fit(X_train_combat, y[train])\n", " \n", " X_test_combat = comb.transform(X[:,np.sum(X,0)!=0][test],\n", " np.array([mean_fd_binned[test]]).transpose())\n", "\n", " \n", " print('cv:', i, str(clf.best_params_) + \" \" + str(clf.best_score_) + \" \" + str(clf.score(X_test_combat, y[test])))\n", " \n", " all_models.append(clf.best_estimator_)\n", " best_params.append(clf.best_params_)\n", " \n", " predicted[test] = clf.predict(X_test_combat)\n", " predicted_prob[test] = clf.predict_proba(X_test_combat)[:,0]\n", " \n", " nested_scores_train[i] = clf.best_score_\n", " nested_scores_test[i] = clf.score(X_test_combat, y[test])\n", " i = i+1" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:20:30.525567Z", "start_time": "2021-08-01T19:20:30.277074Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "** Mean score in the inner crossvaludation (inner_cv):\t0.6758275740897691\n", "** Mean Nested Crossvalidation Score (outer_cv):\t0.7011561957085806\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAACaCAYAAAD/7BC/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfPElEQVR4nO3deVTU5f4H8PcAspmCmAxk5MWFRMWDXkW7KCRKKjvKaFZq92gWLtetC27hluSSGl4T6dDFI0rmRqiDZYqApmFuFxW7hYrgwniVFBxkgOH5/cGPbwzMzHdmYBaGz+scT853vsvngXr3fLfnETDGGAghhGjNwtgFEEJIW0UBSgghOqIAJYQQHVGAEkKIjihACSFERxSghBCiIytjF9Barl69ChsbG622kclkWm9jqqgtpsdc2gG077bIZDJ4e3sr/U5vAbp06VJkZ2eja9euOHbsWLPvGWNYt24dcnJyYGtri/Xr16N///4AgPT0dCQmJgIAoqOjERkZyXs8GxsbeHp6alXjzZs3td7GVFFbTI+5tANo3225efOmyu/0dgo/YcIEJCcnq/w+NzcXRUVFOHHiBNauXYtVq1YBAJ4+fYrt27dj//79OHDgALZv345nz57pq0xCCNGZ3gJ06NChcHBwUPn9qVOnEBERAYFAAG9vb5SXl+PRo0c4e/YsfH194ejoCAcHB/j6+uLMmTP6KpMQQnRmtGugEokELi4u3GcXFxdIJJJmy4VCISQSiTFKJIS0YWl5xci4er/Z8hHdLdFaVyPM5iaSTCZTe61CmaqqKq23MVXUFtNjLu0A2kZbMn8rR/bt59zna5IqAICX0FZhvZpq21Zri9ECVCgUorS0lPtcWloKoVAIoVCICxcucMslEgl8fHx490c3kagtpsZc2gGYRltU9Sgb5N0pAwAMc3f6/3/aI9y7O94Z9prCeq15E8loARoQEIA9e/YgODgY//nPf9CpUyc4OztjxIgR2LJlC3fj6OzZs1i0aJGxyiSEGJiqoGwakE0Nc3dSGpj6pLcAXbRoES5cuIA//vgDfn5+mDdvHmprawEAU6ZMgb+/P3JychAYGAg7OzvEx8cDABwdHTF79mxERUUBAObMmQNHR0d9lUkIMSJlYakqKI0RkHz0FqBbtmxR+71AIMDKlSuVfhcVFcUFKCHEfDQNTGVhaYpBqYrZ3EQihBgG37VIdZpfp2w7YamMxgH64sUL2NnZ6bMWQoiJS8srxrL0awBUX4tUp60HZlO8AXr58mWsWLEClZWVyM7Oxq+//op9+/Zxbw4RQsxP015mZWUl7HOfcj3I+EgvswnBluAN0M8++wxff/01oqOjAQB9+/bFxYsX9V4YIUR/tH0kqIG59SBbSqNTeFdXV4XPFhY0Ch4hbU3j0NT2kSBTeA7UFPEGqKurKy5fvgyBQICamhrs3r0bvXr1MkRthBAe2tzQaRya1JNsHbwBumrVKqxbtw4SiQR+fn7w9fVV+fgRIUT/tOlJNkah2fp4A/TOnTvYvHmzwrJLly7hr3/9q96KIqQ90+b6JIWicfEG6Keffor09HTeZYQQ7WnzJk4DCk3ToTJAr1y5gitXrqCsrAwpKSnc8ufPn0MulxukOELMEd8pOAVk26EyQGtqalBZWQm5XA6pVMotf+mll7Bt2zaDFEdIW5b5WzlW5Z5vtpxOwc2HygD18fGBj48PIiMj0b17d0PWREibou3oQRSa5oP3GqidnR02bNiAwsJCyGQybvnu3bv1Whghpkiba5ZeQltM+VsfCkozxhugH3/8McaPH4/s7GysXr0a6enpcHLS/h1YQtoaTcNSVY+y/uFzCk9zxhugT58+hUgkwu7du7nT+okTJxqiNkIMytyGWiP6xxugVlb1qzg7OyM7OxvOzs40zTAxG+ruiFNYEj68ARodHY2KigrExsZi7dq1kEqlWLZsmUY7z83Nxbp161BXVweRSIRZs2YpfB8fH4+8vDwA9ZNWPXnyhBuoxNPTEx4eHgDqXyfduXOnVg0jRBVVoUmBSbTFG6CjRo0CAHTq1AmpqakA6t9E4iOXy7FmzRqkpKRAKBQiKioKAQEB6N27N7dO4yBOTU1FQUEB99nW1hYZGRmat4SQRtS9zUOhSVqLygCVy+U4fvw4JBIJRo4cCQ8PD5w+fRpJSUmoqqrCd999p3bH+fn56NGjB9zc3AAAwcHBOHXqlEKANiYWizFv3jzdW0LaLW3f5qHQJK1FZYAuX74cDx8+xMCBA/Hpp5/C2dkZ169fx8cff4wxY8bw7lgikcDFxYX7LBQKkZ+fr3Td+/fv4969exg+fDi3TCaTYcKECbCyssKsWbM0OiZpXxqCk272EGNRGaDXr1/HkSNHYGFhAZlMBl9fX/z444/o0qVLqxchFosxduxYWFpacstOnz4NoVCIkpISTJ8+HR4eHnjtNdX/MchkMrXzNytTVVWl9Tamqr20JfO3cmTffg4AuCapAlD/vOWbPV9CkEfnJmtLjfozaS+/k7amNduiMkA7dOjADZxsY2MDNzc3rcJTKBSitLSU+yyRSCAUCpWum5mZibi4uGbbA4Cbmxt8fHxQUFCgNkBtbGy0HvDVnAaJbS9tWZV7HkXPatHPtTOGudubdC+zvfxO2hpt26IubFUG6O3btxEaGsp9Li4uVvh89OhRtQf18vJCUVERSkpKIBQKIRaLmw2LBwC3bt1CeXk5Bg0axC179uwZ7OzsYG1tjbKyMly+fBkzZ85Uezxi3hpO1wselqOfa2d8++Ebxi6JENUBmpmZ2bIdW1khLi4OM2fOhFwux8SJE9GnTx8kJCRgwIABGD16NHecoKAgCAQCbttbt25h5cqVEAgEYIzhgw8+UHnziZiXtLxifHPuAexznyosb3ydM9ybxmYgpkFlgLbGACL+/v7w9/dXWDZ//nyFz8ruvA8ePJi3h0vaPvV3z+0VltNNIWKKNJ4XnhBdaTNa0TB3J/i4WGBx+DCD1UeIrihAiV5oMm+PukE4CGkLNArQqqoqPHjwAD179tR3PcQMpOUVY1n6NQD0tg8xb7wBmpWVhQ0bNqCmpgZZWVm4efMmEhIS6N100kzTB9vjI70oNIlZ4w3Q7du34+DBg5g6dSqA+kE+7t/XbB5q0j4oeyOIepykPdBoOLtOnToZohbSBjU9XafgJO0Jb4D27t0bR48ehVwuR1FREVJTUxUeeiftW8ONIjpdJ+2RBd8Kn3zyCQoLC2FtbY3FixfjpZdewvLlyw1RGzFhaXnFmJx0HgUPyzHM3YnCk7RLvD3Q27dvY+HChVi4cKEh6iFtgLLTdkLaI94AXb9+PR4/foyxY8ciKCiIGyWetE+Nw5NO20l7xxugqamp+N///ofjx48jLi4OUqkU48ePx+zZsw1RHzEhFJ6EKNLoQfpu3bph2rRpGDZsGJKTk7Fjxw4K0HZA1SyVFJ6E1OMN0Fu3biEzMxMnTpyAo6Mjxo8fjyVLlhiiNmIgmr6rTo8pEaKIN0CXLVuG8ePHIzk5WeWAyKTtanpDqDEKTELU4w3Qb7/91hB1EAOj1y4JaTmVATp//nwkJCQojELfGI3X2bY1jO5OvUxCdKd2Vk4ALRo0JDc3F+vWrUNdXR1EIhFmzZql8P3hw4exceNG7tLAe++9B5FIBABIT09HYmIiACA6OhqRkZE610EUpeUVI+9OGYa5O9HUGIS0gMo3kZydnQEAaWlp6N69u8KftLQ03h3L5XKsWbMGycnJEIvFOHbsGAoLC5utFxQUhIyMDGRkZHDh+fTpU2zfvh379+/HgQMHsH37djx79kzXNpJGGl/zpAfgCWkZ3lc5z50712xZbm4u747z8/PRo0cPuLm5wdraGsHBwTh16pRGRZ09exa+vr5wdHSEg4MDfH19cebMGY22Jco1vHpJz3ES0npUnsKnpaXhm2++QUlJicJ1UKlUisGDB/PuWCKRwMXFhfssFAqRn5/fbL0TJ07gl19+gbu7O5YuXQpXV1el20okErXHo3nh1c+l/q/zjwH8OYf6oM7GnTNdHXP5vZhLOwBqiyoqAzQ0NBR+fn7YsmULFi9ezC3v2LEjHB0dW+Xgo0aNQkhICKytrbFv3z7ExsZi9+7dOu2L5oVXP5c60HZ6nebyezGXdgDtuy3qwlblKbxAIMCrr76KuLg4dOzYkfsD1F+j5CMUClFaWsp9lkgkzZ4j7dKlC6ytrQEAIpEIN27c0Hhboh0aMYmQ1qeyB7p48WIkJSVhwoQJ3PzsDQQCAe/1TC8vLxQVFaGkpARCoRBisRibN29WWOfRo0fczaqsrCz06tULADBixAhs2bKFu3F09uxZLFq0SLcWtlON3y4qeFiOfq6djVwRIeZHZYAmJSUBqA82nXZsZYW4uDjMnDkTcrkcEydORJ8+fZCQkIABAwZg9OjRSE1NRVZWFiwtLeHg4IDPPvsMAODo6IjZs2cjKioKADBnzpxWu2xgrjJ/K+dO1QHF1zD7uXamO+6E6IGANe5aKnHp0iV4enrC3t4eGRkZKCgowPTp0/HKK68YqkaN6HKNpq1e11H27rqyqYPb6gPybfX30pS5tANo321Rtz7vq5yrVq3CkSNH8OuvvyIlJQUikQgxMTHYs2eP5hWTVqPq3XUvoS2m/K1PmwxMQtoqjSaVEwgEOHnyJN59912IRCIcPHjQELURJVTNQVT/f0kKT0IMiTdAO3bsiKSkJBw5cgR79+5FXV0damtrDVEb+X9NbwjRHXVCTAPvm0hbt26FtbU14uPj0a1bN5SWlmLGjBmGqI3gz1P2hmucdEOIENPB2wPt1q0bQkNDce3aNZw+fRoDBw5ERESEAUojAE0bTIgp4w3QzMxMbNq0CT4+PmCMYe3atYiJicG4ceMMUV+70/QOO52yE2K6eAN0586dOHjwILp27QoAKCsrw/vvv08BqgfK7rDTKTshpos3QBljXHgC9Q+58zw6SnRAM14S0vbwBuiIESMwY8YMBAcHA6g/pffz89N7Ye0FTa1BSNvFG6CxsbE4ceIELl26BACYPHkyAgMD9V6YuWsanDS1BiFtj8oALSoqwoYNG1BSUgIPDw/ExsbSiEitpOm1TgpOQtomlQG6bNkyREREYMiQITh9+jTWrl2L7du3G7I2s0On64SYF5UBKpVKMWnSJABAz549aVK3FqJeJyHmR2WAymQyFBQUcHfcq6qqFD7379/fMBWaAbrDToh5Uhmg3bp148bnBICXX36Z+ywQCHSeeqM9oreJCDFPKgM0NTW1xTvnmxc+JSUFBw4cgKWlJZycnBAfH4/u3esfGvf09ISHhwcAwNXVtUXz0xtLwzVPepuIEPPE+xiTrhrmhU9JSYFQKERUVBQCAgLQu3dvbh1PT08cOnQIdnZ2SEtLw6ZNm/DFF18AAGxtbZGRkaGv8vRO2TVPQoh50VuANp4XHgA3L3zjAB0+fDj3d29vbxw5ckRf5RgUXfMkpH3QW4BqOi98g4MHDyq84SSTyTBhwgRYWVlh1qxZGDNmjL5KbRWNBwGhx5QIaR80ehf+yJEjKCkpwdy5c/HgwQM8fvwYAwcObLUiMjIycP36dYVpQk6fPg2hUIiSkhJMnz4dHh4eeO011WEkk8nUzt+sTFVVldbbqPLNuQe4XVaNnk7W8BLa4s2eL2FQZ2mr7Z9Pa7bF2MylLebSDoDaoopGcyJZWFjg559/xty5c9GxY0fMmzcPhw4dUrudpnO7nzt3Djt37sSePXu4OeIbtgcANzc3+Pj4oKCgQG2A2tjYGHVSOfvcpxhgb49vP3yjVfanrfY86ZepMpd2AO27LerClndE+vz8fKxcuRI2NjYAAAcHB9TU1PAetPG88NXV1RCLxQgICFBYp6CgAHFxcUhMTFQY8enZs2eorq4GUD983uXLlxWunRJCiCnQaFI5uVwOgUAAoD7QLCx4c1ejeeE3btyIyspKzJ8/H8CfjyvdunULK1euhEAgAGMMH3zwgckGaONHlfq5djZ2OYQQA+IN0KlTp2LOnDl48uQJtm7diu+//x4LFizQaOf+/v7w9/dXWNYQlgCwa9cupdsNHjwYR48e1egYxtY4POlRJULaF94ADQsLQ//+/fHzzz+DMYYdO3agV69ehqjNpDXteRrr2ichxHh4A/TBgwews7PDqFGjFJa98sorei3MVKkax5MQ0v7wBuiHH37I/V0mk+HevXtwd3eHWCzWa2GmqvGrmTSiEiHtG2+ANr0WeePGDaSlpemtIFOWlleMvDtlGObuRKfshBD+x5ia6t+/v9o3isxV49cz6ZSdEAJo0ANNSUnh/l5XV4eCggI4OzvrtShTREPSEUKa4g1QqVTK/d3S0hL+/v4YO3asXosyFY3fb6ch6QghTakNULlcDqlUitjYWEPVYxKU3Wmn5zwJIU2pDNDa2lpYWVnh8uXLhqzH6GjuIkKIplQGqEgkQnp6Ovr27YuPPvoI48aNg729Pff9W2+9ZZACDYnG8SSEaIP3Gmh1dTW6dOmCvLw8heXmFKA03TAhRBcqA/TJkydISUlBnz59uEE9GjQMLGIu6OF4QoguVAZoXV2dwh14c0UPxxNCdKV2WuO5c+cashajaHhMie6wE0K0pfJNpMan7OYq87dyrvdJp+2EEG2pDFBVY3Wak+zbzwFQ75MQohuVAero6Njinefm5mLs2LEIDAzEV1991ez76upqLFiwAIGBgRCJRLh37x73XVJSEgIDAzF27FicOXOmxbWoQr1PQoiutB5MRFNyuRxr1qxBcnIyxGIxjh07hsLCQoV1Dhw4gM6dO+PHH3/E+++/j88//xwAUFhYCLFYDLFYjOTkZKxevRpyubxV60vLK8Y1SVWr7pMQ0r7oLUDz8/PRo0cPuLm5wdraGsHBwTh16pTCOllZWYiMjAQAjB07FufPnwdjDKdOnUJwcDCsra3h5uaGHj16tPoIUHTziBDSUnoLUIlEAhcXF+6zUCiERCJpto6rqyuA+knoOnXqhD/++EOjbVuDl9CWTt8JITrjfROprZDJZGrnb25qRHdL1FTbarWNKauqqqK2mBhzaQdAbVFFbwEqFApRWlrKfZZIJBAKhc3WefjwIVxcXFBbW4uKigp06dJFo22bsrGxgaenp8b1eXoCN2/e1GobU0ZtMT3m0g6gfbdFXdjq7RTey8sLRUVFKCkpQXV1NcRiMQICAhTWCQgIQHp6OgDghx9+wPDhwyEQCBAQEACxWIzq6mqUlJSgqKgIAwcO1FephBCiE731QK2srBAXF4eZM2dCLpdj4sSJ6NOnDxISEjBgwACMHj0aUVFR+Oc//4nAwEA4ODhg69atAIA+ffpg/PjxCAoKgqWlJeLi4mBpaamvUgkhRCd6vQbq7+8Pf39/hWXz58/n/m5jY4Nt27Yp3TY6OhrR0dH6LI8QQlpEwMzknc2rV6/CxsbG2GUQQsyMTCaDt7e30u/MJkAJIcTQ9HYTiRBCzB0FKCGE6IgClBBCdEQBSgghOqIAJYQQHbWLAG3JuKSmhq8tKSkpCAoKQmhoKKZPn4779+8boUp+fO1o8MMPP+D111/HtWvXDFiddjRpS2ZmJoKCghAcHIzFixcbuELN8bXlwYMHmDp1KiIiIhAaGoqcnBwjVMlv6dKleOONNxASEqL0e8YYPv30UwQGBiI0NBQ3btzQ7UDMzNXW1rLRo0ez4uJiJpPJWGhoKPv9998V1tmzZw/75JNPGGOMHTt2jM2fP98IlfLTpC3nz59nlZWVjDHG9u7da5Jt0aQdjDFWUVHB3nnnHSYSiVh+fr4RKuWnSVvu3LnDwsPD2dOnTxljjD1+/NgYpfLSpC0rVqxge/fuZYwx9vvvv7NRo0YZo1ReFy5cYNevX2fBwcFKv8/OzmYzZsxgdXV17MqVKywqKkqn45h9D7Ql45KaGk3aMnz4cNjZ2QEAvL29FQZlMRWatAMAEhIS8MEHH5j0CxKatGX//v1499134eDgAADo2rWrMUrlpUlbBAIBnj+vnwqnoqICzs7OxiiV19ChQ7mftzKnTp1CREQEBAIBvL29UV5ejkePHml9HLMP0JaMS2pqtB0n9eDBg/Dz8zNEaVrRpB03btxAaWkp3nzzTQNXpx1N2lJUVIQ7d+7g7bffxqRJk5Cbm2voMjWiSVvmzp2Lo0ePws/PD7NmzcKKFSsMXWaraNpWFxcXncYcNvsAba8yMjJw/fp1zJw509ilaK2urg7r169HbGyssUtpFXK5HHfv3kVqaio2b96MTz75BOXl5cYuSydisRiRkZHIzc3FV199hZiYGNTV1Rm7LKMx+wDVZlxSAArjkpoaTcdJPXfuHHbu3InExERYW1sbskSN8LVDKpXit99+w7Rp0xAQEICrV68iOjraJG8kafrvV0BAADp06AA3Nzf85S9/QVFRkYEr5adJWw4ePIjx48cDAAYNGgSZTGaSZ2t8mra1tLSUd8xhZcw+QFsyLqmp0aQtBQUFiIuLQ2Jioslea+NrR6dOnZCXl4esrCxkZWXB29sbiYmJ8PLyMmLVymnyOxkzZgwuXLgAACgrK0NRURHc3NyMUa5amrTF1dUV58+fBwDcunULMpkMTk5Oxii3RQICAvDdd9+BMYarV6+iU6dOOl3PNZspPVRpybikpkaTtmzcuBGVlZXcsIGurq7YuXOnkStXpEk72gpN2jJy5Ej89NNP3Pi2MTExJnmGo0lblixZghUrVmDXrl0QCARYv369SXY2Fi1ahAsXLuCPP/6An58f5s2bh9raWgDAlClT4O/vj5ycHAQGBsLOzg7x8fE6HYdGYyKEEB2Z/Sk8IYToCwUoIYToiAKUEEJ0RAFKCCE6ogAlhBAdUYCSFvP09ER4eDj3R91oVoMGDWrx8ZYsWYKAgACEh4cjMjISV65c0Xofy5cvR2FhIQA0e8zr7bffbnGNwJ8/l5CQEHz00Ue8bx/dvHnTZEc3IiroOtoJIQ28vb31sq4qsbGx7Pjx44wxxs6cOcNCQkJatL/WqIlvvzExMWzHjh1q1z906BBbvXq1Xmoh+kE9UNLqpFIppk+fjsjISISGhuLkyZPN1nn06BHeffddrod28eJFAMDZs2cxefJkREZG4h//+AekUqnaYw0dOhTFxcUA6sdCDQkJQUhICHbt2gUAqKysxKxZsxAWFoaQkBBkZmYCAKZOnYpr167h888/R1VVFcLDw7lxOht6yQsXLkR2djZ3rCVLluD777+HXC7Hhg0bMHHiRISGhmLfvn28PxNvb29usIr8/HxMnjwZERERePvtt3H79m1UV1dj27ZtyMzMRHh4ODIzM1FZWYmlS5ciKioKERERSn+OxMiMneCk7evbty8LCwtjYWFhbPbs2aympoZVVFQwxhh78uQJGzNmDKurq2OM/dkr+/rrr7keWW1tLauoqGBPnjxh77zzDpNKpYwxxpKSkti//vWvZsdr3APNzMxkUVFR7Nq1aywkJIRJpVL2/PlzFhQUxG7cuMG+//57tnz5cm7b8vJyxhhj7733HjfGaNMeaMPnEydOsJiYGMYYYzKZjPn5+bEXL16wffv2sS+//JJbHhkZyYqLi5vV2bCf2tpaNm/ePJaTk8MYqx/ntKamhjHG2E8//cTmzp3LGGveA928eTP77rvvGGOMPXv2jL311lvcz4aYBrN/lZPon62tLTIyMrjPNTU12LJlC3755RdYWFhAIpHg8ePH6NatG7eOl5cXli1bhtraWowZMwaenp44ffo0CgsLMWXKFG4/3t7eSo+5ceNGJCYmwsnJCevWrcP58+cxZswY2NvbAwACAwNx8eJFjBw5Ehs2bMCmTZswatQoDBkyRON2+fn5Yd26daiurkZubi6GDBkCW1tb/PTTT/jvf/+LH374AUD9uJh3795t9n57Q89WIpGgV69e8PX15daPjY3F3bt3IRAIUFNTo/T4Z8+eRVZWFv79738DAGQyGR4+fIhevXpp3AaiXxSgpNUdPXoUZWVlOHz4MDp06ICAgADIZDKFdYYOHYo9e/YgJycHS5Yswd///nd07twZvr6+2LJlC+8xYmJiMG7cOO5zwwAXTbm7u+Pw4cPIycnBF198geHDh2Pu3LkatcPGxgY+Pj44c+YMjh8/jqCgIAD100GsWLECI0eOVLt9w/9YXrx4gRkzZmDv3r2YNm0aEhISMGzYMHz55Ze4d+8epk2bpnIf27ZtQ8+ePTWqlxgeXQMlra6iogJdu3ZFhw4d8PPPPyudl+n+/ft4+eWXMWnSJIhEIty4cQPe3t64fPky7t69C6D++uWdO3c0OuaQIUNw8uRJvHjxApWVlTh58iSGDBkCiUQCOzs7hIeHY8aMGSgoKGi2rZWVlcpeYFBQEA4fPsz1ZgFgxIgR+Oabb7ht7ty5g8rKSpW12dnZYcWKFUhJSeGGS2wYOq1hFDAA6Nixo8I13xEjRmDPnj3c7AjKaifGRT1Q0upCQ0MRHR2N0NBQDBgwQGkP6sKFC/j6669hZWUFe3t7bNiwAU5OTvjss8+waNEiVFdXAwAWLFgAd3d33mP2798fEyZMgEgkAgBERUWhX79+OHPmDDZu3AgLCwtYWVlh1apVzbadNGkSwsLC0K9fP2zevFnhO19fX8TExGD06NHc2KoikQj379/HhAkTwBhDly5dsGPHDrX19evXD6+//jqOHTuGmTNnYsmSJUhMTIS/vz+3zrBhw/DVV18hPDwcH374IWbPno34+HiEhYWhrq4Or776KpKSknh/FsRwaDQmQgjREZ3CE0KIjihACSFERxSghBCiIwpQQgjREQUoIYToiAKUEEJ0RAFKCCE6ogAlhBAd/R+dCLRir1aAHwAAAABJRU5ErkJggg==\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print(\"** Mean score in the inner crossvaludation (inner_cv):\\t\" + str(nested_scores_train.mean()))\n", "print(\"** Mean Nested Crossvalidation Score (outer_cv):\\t\" + str(nested_scores_test.mean()))\n", "\n", "fpr, tpr, _ = roc_curve(y, predicted_prob, pos_label=0)\n", "fig, ax = plt.subplots(figsize=(5,2))\n", "RocCurveDisplay(fpr=fpr, tpr=tpr).plot(ax=ax) \n", "plt.savefig('../data_out/fig/abide_motion_comb_rocplot.pdf') \n", " " ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:20:31.576275Z", "start_time": "2021-08-01T19:20:30.527895Z" } }, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAATwAAACMCAYAAADhuBXHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACK6klEQVR4nOz9V6yl23rXDf7GGG+aea5cuWrncHY40QnwccCiAVkNGCQEmAuCJSQL7iwsIS6QEL7hwhKSJQtkhOmG/tof3frs426M8Ne28XH2Pnmn2pWrVl5r5jeOMfrieedca1XVTmdX1fY+px6pVDVnzfCuNcd8xnie5x+U997zOB7H43gc3wWhP+4LeByP43E8jkcVjxPe43gcj+O7Jh4nvMfxOB7Hd008TniP43E8ju+aeJzwHsfjeBzfNfE44T2Ox/E4vmsi+Lje+Ctf+QpxHH9cb/84Hsfj+A6NPM/59Kc/fd//+9gSXhzHvPDCCx/X2z+Ox/E4vkPj9ddff9f/+9gS3uP4zo7yYB87HBAsLRP0lz7uy3kcjwN4nPAex0OI9MrbpG+/ubjdfOElkguXPr4LehyPo47HCe894q233uLNN998/wc+oJjNZgA0m81H9p7PPfcczz777AN7Pe892dV3TtyXXX3nccJ7HH8m4vGU9s9QpGlKmqYf92V89Libnv2Yrv04/ozE4xPee8Szzz77QE8/7xe/+qu/CsCP//iPP7L3fNChlCK5+CTplbcX9yWXnvwYr+hxPI6jeJzwPuHhqxKfTUBpVKON0ubjviQazzyH6fexgwGmv0TQ63/cl/Q4HgfwXZjwyspzddMxmnpaDcUTpzVJpB7Je3vvSfOKyjoCo2nEAdZ5nPOEwYfvLviqwO7dBu/kjtkIs3oWpT7+TkW0tkGJYvrNr+LynKDbo/Xpz2MajY/70h7Hd3F8IhOec57LNwt29isaseKZSzHd1gc72VzddByMpac0nHou33a89MSjORVN05K8tACUlWOWFigtyUkrUNrgnf3Ar+dm46NkB1AV+DxFJa0Het3fTnjnmH79K7iyAKAaDUnfep32q5/9mK/scXw3x8d/FPg24tqdghubBVnhOBxbvvJGinMfrDE+mp183CT12A/43I8aRXmUzJzzzPLq6LaHKP5g01nvHXawg92/gx0f4Mv8gV/rRw2X54tkNw87Hn1MV/M4HofEJzLhHQ5PnoKK0jOZuXd59MloJSfL12asMPrRlLT6+Pt4afAfj/lp7/3CT4b4dIwKY/AeNxvjnYMwRn3ApPmwwzQamFb7xH3hyurHdDWP43FIfKBv2G//9m/zl/7SX+LHfuzH+MVf/MV7/v/OnTv85E/+JH/tr/01fvzHf5zf+q3feuAXejzarZOXbbSimXywZPHEaU2nIYmmGSueOvvocn4zCZmnOG2gEZ/sKJTFB4Ok+DIDQBmDavVRSQvd7mNWztyTRD/OaH/m84Rr65hGg+TCJRrPPqYSflLCTYe4we6fyerho8T79vCstfyrf/Wv+KVf+iU2Njb4m3/zb/IjP/IjPP3004vH/MIv/AJ/+S//Zf7O3/k7XL58mZ/6qZ/iN3/zNx/aRT95LmY6cxyMLGGgeP6JmCC4/xd9ksqQYpZ7ltqKJ89oPvWEwXmPfsTJIQoN/W6CtQ5jNHjIigrnPFFosHeVgO8WKkpwszEuHYGtwISopPOewwqfTvC2QjW773mSdNMxbjpGd3roxvv3AqvBIXYyJlhexTSbFNublPt7BJ0u0dnzdD77PQCUhwdUoyHh0vIH+hkfx8cXdusafnQgN5TCnH0a1ex8vBf1gOJ9E97XvvY1Ll68yPnz5wH4q3/1r/I//+f/PJHwlFJMJhMAxuMx6+vrD+lyJcJA8dkXm1SVR+u7SsVj4b3n7VuWvJTbB2OP2XY8dcY88mQ3D60UOqiHJEpOfR8mbFViTSQ7r7WgDTpu4sb76Pjs/Z9z+x38dCg3wghz/jl8NsUPdkEp9NIGqtmh2rpJefOIJRE+8TzB6ql3vZbZW68vWBVKKcK1DYqdLQByJBk2X3yZ8R//PtXgEICgv0Tn89+HMh8/fOZBxncKK8d4y6licOK+7OvfYj/sPnBWzrtFsbtNcesGKoxILj2Fabff/0kfMN434W1vb3Pq1NGi39jY4Gtf+9qJx/z0T/80//Af/kP+83/+z6Rpyi/90i89sAt8r3i3U918gFFaFskOJAGOpo/iyh5OVHlKMZONBecwjS4miuR2XebeHX42Pkp2AGWB275x4j47G6MvvEB15/rJ97tz/V0TnitL8mtXcGVJtbeLr0pmb71O45nnF4/JN29hev1FsgNJgsX2JvGZcx/mR/9EhEdRIbCbgBTFwxuGzRk5j5KG+Cii3N9l8qd/dHR7Z5veD/4IKngwgJIH8ipf+tKX+Ot//a/zD/7BP+C1117jZ37mZ/i1X/s19HuUTnmev6eMy7cbt3c124cKPKz1PQUNKquY5AHTzNCIHIO9GRu9nEd9yDu+/O/31vNd+91+LxHV4nlRPkO7IRYNKKwOSAf3lsRBPiUZbd917+Y9j8tHGfrO7ZMwlyAkD7v3/1nKEn/7Nty+AWW9q0zGDHSAatalsDF4/SZq8673CxPUcHzf1/2khvPQPf1pKicn10Bb1ppjHtY8bL5WjldaDyoawy1MMatvKdLuBktxE2vtQ/nOHg9/5W3YPble7/zB76OWVx7I679vwtvY2GBra2txe3t7m42NjROP+ZVf+RX+/b//9wB85jOfIc9zDg8PWVl594t8GHp4B8OK28OU45f30oWE3ZHi8m3HqS6s9hVGr7J2RrPWfzQDC+sc42nBNC3x3pPEAe1GRHLX0OLy5csA7/p7SYcHRzg9Z2E2JAwjdJSge2soc+/H6Z3DXvsmVHVSUgrVX8Uf7p54nDn7NNXaGtX2rcV9wdknCM9cfNefazDcZ3K4d/QaFy6igOj0aQCaz75AuHGK0Zd/G2/lupUxdL/vBzDfYSeTgwlwcPK+08uw/OCqsRPxfmvlo4R3z+HHh1DmqHbvkeI609CQ3gXC77700odi63wkPbyXX36Za9eucfPmTTY2NvjSl77Ev/23//bEY06fPs3v/d7v8Tf+xt/gnXfeIc9zlpcffXN6NL0XmmKt48JGiL3rv6aZZ+0Bv39pPeOZp3LQitUCAjNNS9K8wjq5iCyvUEoRheZd+4/3izBpHJW02hCuniN8n8GC0lp6dsNdvLXo7gokTVxZ4icDUKC6K6hWl7DVRbc69dCij1k6CSPxzmEPdvDZDNNbof3pz1HcvonLUkyni2l3CDdOEywtYRpNonUph9uf/z7ym9dQWhOfv/Qdl+zg/voIn1TNBKU1qvdgTlTHw04m2PGQYHkFHSf3fUx84RLF9iZ2IhVAfO78A6Umvm/CC4KAf/kv/yX/6B/9I6y1/MRP/ATPPPMMP//zP89LL73Ej/7oj/LP//k/51/8i3/Bf/yP/xGlFD/3cz/3scAjlrv3NsKXe4YkVijAes/+0DPNAK9Y6Wo6zaPr3BnC/ljKzdWu/Pmg4b1nZ+gXiTUrPShJfJV1J4DRznvwHusc+kNwX4O4gTIBrizRQYAJow/0PBVGqNWTAw1z5kl8WciJL5DBiXcWlSQEnR4qundBllffwB7sAFBt3iB68kXar36W7MY1AHTSQMcR2Zuv470n6C9hOl2KO3JqTC49RdDtfeCf95MU3SbsjmSOBGCM3Pc4JLJr7zB7U05eSinan/kC4dq9w00dRXR/4AexwwEqDO/Bcn7U+EA9vC9+8Yt88YtfPHHfP/tn/2zx76effpr/+l//6wO9sG8num3Di08lXLtd4D1cPB2y1JUf8Zlzmq9ctuQFLHcUKMXbtyyffkYmtqMUdo/19rcH0IzlzweJvOKeU+Qs97RiRWg0hVGL/9dao7QiMB++pDZBiAk+3GT3eLhshj/cgShG91aPkl2eYm+9LTAXQC+fQq+eWTzPF/ki2c2j2rlF84XPEp+/iMszVJww+t0jDGZ+8zounRHWJ730nbcIlpY/8QDkaQ77I+nbrXSg04DQwJMbMKiHYv2W3PdnIbyzgqkrUpnSd9dQH3CzfCDvby3p5beObntPevnN+yY8kIT4sFSyP5Fc2veKM2shZ9buTQjLXc36kqeZHJ20igqyQpJaeh98ZVp88IRntJS0lZV/R4Fi3opoNerF5eXDbiQh7Ub0gU7BtixwVYkOQkwY4b2nTKfYbIpyFWF7CeUq3OQQ7xy61cN07t9OsPub2Df/WPp/JsCtniV48hWUMbiDzUWyA3CHW6j+2iIhomQ4cmL0UuP+TLuDaXcod08mRJemuPzkL9aOhn+mE9545qmsp9dS9203FBVc3zkqV6c5PLkOjRiiANb/DB5g3XAPn9eZuMiwg22CtfOP7gK8v4cj7svyXR78cOM7LuG9V7QTmBwjM4QGkhCs9WQFHE4UUSBJTiloRlBZuHMgC7sRwZkliO5zwMpLUWLJ6s+xHUNnqRYG0IpOK6bT+nAubWU6pcxmi9thowXeUw134XALbytypTCNNsp7fJXjBjuwcRGzdBJO4p3F3XxLkh2ArfCDXfx0gOquHNVi88dXFl+Vi4SnwpBg/QzVzm15gFIEpy+ceE6wtIwOQ1y9mHWrhYpPniSCBzRtexjx5g3L4UQyWRLBpy4ZwrugT+P0rt6ch1EqCe9+4b3ncOqZ5RBo6LcVSfho2z2+uAuyVBXSvnhEUmIqCIhOnaHYvAPO4Z0jPn/vMKwaHOCyjGBlDR1++1XMe8V3VcI7t64pKsfh2BNH8MQpw/ah51s3HGmhMIEiDBWgePq0LOKbe7LIAaYZ3NqH86sCeD7OwR3NPM1Yk4Qe5yEwctL7KFHl6T23ldIw2IGqhqBUJTafYVpdvPdQFZSb7+BNQNA9dpKqSsALnMSWKBOigoo5Nkd1lwWzV5WUd27ibYXJS8JLz2H6kqTCi8+gl1bx6RTdW0YnJ5tUKghof/77yC6/hStygqUVyt0tyu1Nwo3TtD71yp9Zbbzh1C+SHcjJf+vAc379ZHKKAkl4kwwKK7dPv0f1NUrlsSCP3xt5zizzSIHvKorx2dHpHRM+tGRnhwe46UiGXp3+4v7WS5/GZRmz17+BbjQp93eJzl1YJLbpN75KfvsmADoM6XzPD2DaD57d8V2V8AKjePa8wXuPUoo097xeJzsPVJWn14JuU7Fc/66nxyoy7z37Y4/RoLU0pXv10GO+frVWzIu/hxHaGJwt5VvnnPxtK5xzqDKX3VxrqptvwuqUYEN2UhUloI2UNs7hyQRy0OrL63ZXQGmKN14DE6A7y/iyoLz6BvrV71/Q0Ux3Cbrv/g0Puj3an/0CxdYdJl/9U1QQEm6cRoch0akz7/q8jzsqe+9I1d7nvk4DKne0CeJZnOqPh/MwmnFivczvLyuIH84B5r6hu6s456SHF0SY3oPGJ0iUt69R3bm2uB1eeJpgQwDmviywg8PFGij398iuXqb57AvY6WSR7EBA7dnVd2i9/OkHfo3fUQlvMrN8652c8dSy3At48amYOLr3mDXvnc0yX98+KlOKUiZs82hER2VwUXmUltaVB4YzTyuWRNppKA6OnRA6jXvVUD5sBEmTMj2ihgRxgyCKqRodGO6AtSijIQikR1IVkmm1QWmNHe5glk+JqgpA0kStnIZshooSVH/9BK9Wd5ZQjQ4KLX2XspC/ixyVfDjhzjnFbB6uLCkP94nWNt7lGR9v9FvSzijqg5BSsHofnKb3J3t1gZHEdmb55GOubMLmQJKh0XB+BeJIPp5HPcxQJsCsnFls9L4qqfbvQJFCmGD6a6jgow0xXFVRXP4G2Ard7IAxVJs3FwnPTiZSgRyLOfTEV9U9r+erh9Pj+45KeF9/O2Oayih0f1jx5jV45dl3/6J2mgqtoBV7Jpmc8poxbBxrPJ9egltOhhrGQO8utEZlZdG3E0VopJcXBtB4ACrKYdJEm5Aqn1EVBWU6xVUl8dlnKIsZvizQQYBqL4NS2OEeVDlK1303pfFlsUh4ygSyu89/vvvwWXVvmepgF7u7Cc6ikgZRVQIfPOF557CjEcWdW5hWC9PpUR3uk115B18UxGcfYcP8A4Yxik89Ydg+EH3Etb6m3bj3M1RKEpg/9qsL7vo1TjLYGkpZ7L2idJ6toUxxl95lGPIoYr4Bu+GuJDuAMsMOdglW78/Dhrr/u3sLPx2iogZ67RwqPloP3lqK1/9U1oz32ME+4emLEB01NoP+Ekop8ts3sWmKabVoPCs0xKDXJ+h2qUZHeonRuZP94QcV3zEJr6r8ItnNYziWRvz+yLE/9IQBnFnVxHXTOAoVz57XXLnjaMaepY7m0il9YgeOAlmo3sMsV+wfO8UZdXKAEYfqgZcqOghw02pRMouiiifor+O9A7T8X5iggphq6x28LfC2RPfbqGMAT718Crd7+8TtuyM4c4n87a+LBLOWhlX2x79F43t+GN38YJio2etfpxoNcXlGdXgA6ibB6jrV4KBuTKc0nnp05kj3i629kq29iihUXDob0UxkXVzYuH8yGk48N3YcZeVFikwp8Aqt4VT/5GO9P+JwK6VQKDSeU331kfu6DyL83bzrMluc/u4Xbu82bus6fiYnMjc6IHzxe4/+f7CHz2bo3jJusA/W4qYj4iePWCDKGFSc4IscnENpg60FR2AOTr+OS1OiU2ce2iT/OybhBYGi1dAnkl6vY9gfOd6+dXTfcGp55SlDWcHOgeP6jkdrT6AV7eTdyw2lRDzUe5jm0pfpNdVDaz5773FVifcO56xQs7RCa4MtK1QQQ56ijezAlDlutC87r1eoMEInTZQ5ysB6aQOVtPDZFJW0UfdjaSiF6fTRSZPqznV8VWH3tylef4345e9BRfcfR0rf5TJ2OCS9/CZmaZnkiaexaUp+7cqCdQGQ37r5sSa87f2Sb1w++tLf2LKcPR0TGMW5tZNgdJD+3lu37AJHWUwc59e1TFyje4dT7YZUCvNWiFKw1L432TnvGafSKklCWX+PArCvogY+P5r+Eybv+b5usIcfH/Hm/MEmbjJEt6VUmJeqpr+ySGrBpWcJNo5Ojd5aXJYSX3pqcV91DMakw4jGk8985J/t/eI7JuEBvPxMwutXckZTy3I34LlLMde2T/YNsgL2Bp4b247tgWM0lVPcmVW4se1Y6Sqi94ANtBvqvqXOgwxnK/LxEO8d3lmK2eTEVM2EIQQRhI4gjNBljrcleIEaKBOi2305oSGgYj/al95ebxXdaNfvIydgfay0VVqju0uUNy7L88oC3V2m2tvCfvk3MMvrBGcuSLnsPaa/igoCpl/9E8r9PfCOYmeTsKoI1zfQSYJOTiZJfT9czyOM7f2jnlFWyOQ0ShzNhmaSWl59ypxYA5P0XlD5ZCb93Ou7UtKe6h8xK7SCTz8Bb92RVkivBRfvMyfYH3vSetieFsLS6bfkfSvrqCoxewo+oMGT955yNsGWBcoYomYbfR9+te6t1kDkDKIY03sfOTd/1w+vjQxA6t6IWVqlup3giwzdaKHaPaLzJ0UNlDGYRgN7zHdZtx6998onLuFlueP1KzmDsaXb1rzwZLJQO243DV946SRUIgruNcUZToXvWtbrvqhkYTYTKUU+5u8jVTary1VwVSllkdKAx1WFwEGUgqiB1Qadz+QxYYyfJz9ANdrCoLjxxtFUZrSPvvAC7sbruM2r4D167Rzm6VcXSTV68kWqzRu42QQVRvjpkGp0QHjpWVw6Jf3d3yBYPwNBSBXFhE+/Qrm/h68qXDojWFqhGh5KwtOazvf+ecp6iKG0pvH08/f8zI8ykmODrHnCmUuNWSfrY61/lPDmuMzjPffKKw7riqysBK70bHzUz2tE8OolGaTfTzTI+aNkN49pLgyNrKiYpkdN+1YS3iM0cb8o0ylVjbnzlaOYjIi7S/daCZgQs/LBJ+Z64yJ2sAtlDiZAdU5CkpQJiF/8HHZ/C7zHrGzctxJovvgK06+9hisLdJzQfP5TH/gaHlR84hLeG1dz9oeSqQ5Hlm9ezu5JcsfjzKpmMDkSAW3EcpIbTP09zeYogFZDMLiTXG43Hh0DZxH+GO/Wew9KE8QxShvK1OPxx2AvHhUl+CJFNTpgAkChu6uoZhe3d/vkN7UscHfewd1+B8HlFVTXX8cDQZ30VBiie8sEG+fweYarT5s0WvjZBF/kuCxDt0P592AXl87Irl2Rb7iC5MlnaL38aYKlFdnZZ1PseETQX0bHHw6A/aDj4pmQ/UHFNHMEBlb6wYkTXSNWVNYTmKNe75OnNTe2HZWF5a4ijJRwsuvwXk6L7btmO++mkKaQk+Bx/6h5yZtmJ6eWaV6+b8KzVUmZTiW5zYcTzuKd+8hiq6a/Bk+8hBvsoJRGL62jmieJ5ioMCU699zAqXF2j98UfxaUputn8wB4uDzI+cQnvcHTyxDacWJzzlJUnDO6dgMWh4tWnDdMU8sJz+Y4jCqGqBILSbQJKcW5NcW7dUJSKqzvyvQVY7hwBSw/GsFfLuK105M/DCBPH2BpYbIJQGsr16SuIkpPlrQlQcUOSYJGh2ssnYAZK63tkKP34sIaxlPhMYC9u5wau2cGckz6KCkKC0xdwWYru9HCT0aKMBU4MQ1Cyyy8SqzYoExCdPrs4XZhmC9N89CXM/SKONN/3apPRxBEEcGsXDicepaSkvHzbkhXSs336rKYRK9b6mtWewnkBnO+NOJHwlBJ2xvtFWnhmuSTTXhMOJr4+wUN/0Ts8+YnNf63WuoXN53FLz2I2ocpTbFngXSUiEzU0aZ5UvHe40T4+nUIQYDorJyatJ9/PCwsnHaPiJmppA7N+Hl1Pcj9KolLGPFAF4w8bn7iE1++YxQkPZPf9o2/MGM8ccSj+FqtLwYljvFaKThMG9YQ1DBRn12TBnltTPH/BLFgTN/eOkh2IztlqR9STN4+Ee9k6hDiU13NOTo6heTC9vSBKUChsmaN0k1gbGWDgMUEH5yxVNkPPhigFTilU0kafevLe8qW3BsN9SW7ewWyMU0oUj20lbkIoVKMjTIsiR0Ux4ZmLFFfewGcz3HQCYQQ1w4IwQtUIeWUCgpVTmE6HxrPPU+ztYqcTZm+/TvgnZ2g+/exDI4J/lFBK0evIxvHcBXG+Uwpev+7I6lJzmnmubjnOrmrywtNvH/V3VzrSChnOpIzd6J+Ep3hPnRyP7pvlnr3aE7mybsHj9l4muHND+DgKSPNqkemSJMQ5z3CaL5Jfs7PEbHSAd27ByDFRhM09tiyIGm3CZnuxHvxkgJ/VsI/SYg+3MRsX7uuD4vfu4A636+cNUUWKOf3kx3Iie9DxiUt4zz8R8813vPTwWgbrPeOZyC9duVXyzcsZLzyV8PwTMRsrJ5txzWOHksAoei04u2pOUMTubk7jwXpZ2ONU9t5mJIt780AoaiD/v9EX0YAPEs55KitNaaWgzKasdhsYpSlnE4JGCx0eCQzkVUmVpZR+hi0zAu9w2RSHEvUUO8RUJdgClEZ3ltHNLioIMZdeFGvH0b48XincyhncznXQGt1fQ7X7NchMvrVmZYMgy3CjQ4KNszJ98xA9+4qAkacjvHcEK6dQcUJ05hyTr/wJ1e4O5c42Ko4Z/8HvUu3v0v3+v/CxyULtHFS8cyOnqDxn10OevnD/cjoKFc7L6et4XN+yjKb1FFLD8xcMnaacyM4snwQcz2N/LFJjzkO3AWdXpHydZEevPculj5x4RWAUgymcqtdSIw7IC0tWWoyW98pLe6IzoVAEUXwCzKuUJkgaaBOQ3MWGuYdP6y2UBdxHBswdm8hCnSyde5zwPo5oJJrPf6q5wA397mtSku0PLKOJZTRzfOtyxrXbBX/tR3qLXRxEFmpjSbEzkEVyalmgBccj0KJrpoBWIoyJWSYnOiGOe0YzTyvx9FsQ17uyBw4njn5LEwXvDS8oK8t4WiwKl4ax+HxKJ4lQKMZ7mzWrIpHenQnJhvtSaljhvzpbYMocpgNc/VYubmFaPVQY44a7wqYIIilvusvYdLy4Lt1fQ7W64P1C+04vbZxUTS5zVKd3BFg93CX7499Ct7voTp/omZcWj2888zzZlcsUQYBptzGtNj7PsLMZxebtjyXhZbnj62+ni0Rx7U5BM9GcWT+5Ec61CrVWdJqKcW3Wbq1fMC9ANsM7+47nmu/eEytKWSvzGM2kD7za5YTc+3xjnS+T4linJi8tzouTHcAsq0iie9/Te482BhNGJxzvguQ+Pe0wPgIbz9/4XWTGVBCeZDqY4OhCP+HxiUt485h/CVf6hlvbjqxwjKaWaSqYuqLy/OE3pvzY93dPPOeJ04bz69L0N3eVoLNcTmrdBqSlJDitYbRVly6Bp6jq3V7Jl0Ga25pJ5pniyStPaIR69G4G37OsPNGlSdOM0OYIRBW8rbBFhglDqjzD2iNajvfgXYUPEpgJG8IrA1UOVYnTGpXPJJmNDzHt/hHTot3HD/ePfh9JE33+echrqtlx9HxVUu1uUl1/G4IA3enLaa+WfHfjAXbnzkIxRSlFfO4CdjImu36VajzC5Rm62YSPYRoH0t+9W3X4cGRPJLy3rufc2ipkbZyNePpsyLUtxzT1xE11Dyn6eLvDWjicymfSa8mQ62BSy70DrVg4s3OubbepyMrj4hJHJvCN8Pjr3svh1fVjrZu3USxVIUTvqNXFFhnOWkwYoed932NJSjU6uGwKVYEKQhlqvYuAgF49g70zH0Ap9Oq5D4QP9NZi9zbxRY5ZWkO3P4SC7iOKD5Twfvu3f5t//a//Nc45/tbf+lv81E/91D2P+fVf/3X+3b/7dyileP755++RgX8Q8eUvf5ndvf0TO2VpFTf3uhxMErYP2ygFgwFo5cmGI8ZbB4TBvdLv94uCHoWqwZRAplYAafp7IpKwJAkKtAnJx7K73nEFlGMImvK3l63al0O5fZ9odVdO9E6SMKAbVrLr+4rDw0PyyjLNruM8RIEhNBqtJCFGoWEwzTnrRkReJnFzqbrhcIZCQK4HpcahmDjNyMr7NWxO0+V4FGPTwH3zKoF3FCrAH1vUnfEejdmIOJ8SFjnKXyFL2pSjTL7hSpG+dZXxMUUWVeS0btyicfMG4WSMjWPslau8kf0608tXAFhZWeEHfuAHPtDn8VGj0zI46xnW0v/dlqbbPvq97+yX3NisT0bec/lmTr9jeO78USJ444Zd9H4BNpbmODn4+nXZJJMQmmM4tyzVQV5rO2QlrHVFlgyk3XFmaX6/ZprLY+NAgMnzCAO96CPOIwoMSRRQVvKzzI6VnUopgnqzKtMZxXSE9xDECWGjhU/HuOEeCo9XGtPfOKFoLZupX6xJ1exinngZsinEjSNNxPeJ4q2v4SZD+f1s3SJ69mVM78+WD/EDMeK+du0av/iLv8h/+S//hV6vx/7+/nu84rcXeeH46lsFuwcRy70G6/0pgXHc2O3inKYRWoz2eK8wyhOHFXkVUPkQ40u0ev+kpzlJWHYkaAoUFgvkrkGoAgFz+jHYEmyK9w5Vjk4CNNXJ3fP4VK0sMqJYyg6tDVYFpJWlFYZ4AkprsdYtIAtpUVJqTRIGeDyjNGeaFayGDo8YigfeU6HwaELlSa3C1ceTtnZM6tupiamURnlPZAt6LkUhg4+9oEtZg5WDMgelyJM2edwC7whsRXewTVAVlGHMsH1S2045R7Z+ClVklHmONwYXxeiyQJUFe6NH61QWBoqi9OweVDjvcS5gbeloyd/PA2U0tfSPWQU8c06zNxCdw+WOWrAw3r4jA67KShWw0a/ZeEom+6NUlkMzFmzdPGaFTGoDLbza+1UBUWhoJSFZIS51jSQU4/b6/94tbFVSZkdiE2U2w9kKPdyVia0ChceNDxY4PDcb48b7NW+6La0OpQXK0noXxzprwZYnkqabTXCTofwZDWrrgADzmT/3rtf7ccQDMeL+3/63/42/+3f/Lr2enI7ey63s2403r+WkeUi7FfL8p17BOZimFjMr6SSapa4h6ZXiXeE8WaFYW004/0yC0cKZ7bffu+nqvYh9DmrWza29o77LLJdT32rHUlqPMZ3FZC0OPWUlkIW08BSlZ7mtWO1qtHJMZgXOy2s1koAoMBSlo6wcZVXhvOzS3pZQlSShkuRdN4p1EFJMxnhXobSRhnSZUR1uo6ZD4UK6CtVaYrWzhJuNUUnrRJP5s2vnwYRU19/AbV+DIsWnBXr9ErrGVKlWD3NWqD/lzXeoto4kewhCihuXsdcO8dqgQs2Ffkjrx/4qSmum3/o6+c3rQJOiTAlXVhbQFR2G9L74F/m1X//1B7ASPnhs75UkiebZS/H8UMrOQcWF0zIdWOoart05+Zylu3xRjFZsLN9NNYOtgcj6g5S2O0MRnaisnNjWasjScSGKSeZPKOpMc8dGT98jMgqQxMEJ7N0CDvQepaU/plgt09sZrsgw+QylDWGteDN/nLeVCAnUDRafTXB7BeRyildL68LYORZuuIfbvSV82DhBn3la5OK1xqUz7N6RxWK1JQZP+kMo7djphGo4ED+UhwBjeiBG3NeuXQPgb//tv41zjp/+6Z/mB3/wBx/ohY6P7cbee67eLmjVDItZ5jAaWg1NHMLB0KIDgwfu7FSc3Qi5se3pvw/8RymZqG30pUJsRuJzUVTypxmLAEHlPM4r8tKTRIp2rIlasF2b+ESBfBl2R55WVOJqafdpLgj6ZhLSrNHzeVlRWUcYCCUMExK3IjRO6GXOkY0OUdTNaO+ZDfYIwhhVVZC0Mb1VSXLOihz8yhlIj52m6uFFdeMN3JWv4rMZaI23Fn+whY+bMnywRyfc4MwlfFXiDvek19dfIf/q70ufzzl8nlG89XXM+lnCJ16ok1393NU17GRMECfoMKT5qVc/Mvj124njnbD75YmVfsCzF2NubMpntLYSUDo5Fb4XvXD+WkYJU8N6GUIstaQ3N9fK6zROGvlMc49z0geee6AUlaOdKNa66l2TWVZU0vf1csJrN+5fYupjpafwsEEHEdQMHGct2hh0Q7Kxr4UoFr+vqsTt3EQ3ZAP06QR1/rkF59rbCrdzcwGX8XmGO9jEbFwU3vZxnwyl6r7vATp5DyWWSoZwyhjyWzeYfrPOLUpEQx+0YfsDGVpYa7l+/Tq//Mu/zNbWFn/v7/09fvVXf5Vu992blh/WiHt4qCmKgiiKsE7G8sv9gNHU1Sc6eOHJmMmsIjCaWRUQGMV4aqmqgPID/KTzU8AcT3VuVRblrX25v6hk0BGHet7PpR2zsGOMAodzUDhISxleBLi6tLKLaaAHDscZRVmhUBTWEYeWZhIRR4bAaLLBIbbM0CYE73G1L4Czdc9Oa+gs42cjquEuKp3glUJlU7yzBCtnoJZoV80uvjbvWZwCnBNZeOdER88E0OoLpWwyBBQul6mN7vRQvWWUEfFUP5Mhiooi3GhAceXNE79HHUXEz71A85kXKEcD+Znrbv9sNnvoZs7zqCzs7xoZLlVQVApjLaMDfwIf19CGG/sN3roZkVtNI3BcXJtyup8zyQKKStNKKpLwaNOtZn0msy6FlSSjXclXXj/kVGeMtVI+TqeON45se5lWTWaujfUK6wMMjmw0ZVfBpk6JtAyzvAoAA3jwFai7Epy3oMXf5Fuvv4E6lrQ0DlP/AfBMwHuCKsdPMkodUR7moLbAO1rZYDGXMdkE8gxrjsriYpRStKQPp6uC5uHJI7HdPyQ9kJJI6waxikSQNk7g4JDi1h38/oi7w3sPVy/D3o58kU6fg90tKI41L/cPUJ/+wnt8wh8+HogR98bGBq+++iphGHL+/HkuXbrEtWvXeOWVV971dT+sEffTz3hu3brDLPes9QPiUFzAnjgXMRhaisqTFY69gaPT1ASRYnZMrXitd/9ydpJ6ZplnUijSXBGFgq1qxaKcEgbSeK4s7NVk76SlWO3KBC4+pntXWTn9Hd32aCMc2KpyFNYRaIVznjQv0UqWqgaK0rLaNyRRSD4eUBUptqqwZSkin8cmd9oYOQ2EMTS7qFGdyLzDlzlqCCydwvSPSOGuzOsGdLTY2X1g0K0uamkD3al18Pa28M5S3byCbncxKxtUWzcJoxhz6VnKP/5tKDJhU7R76EYTfEnQ6VKNR3hrqQYH6Fab4Zd/a/H+Qa8P3tNsNh+KefS7xXPPea7czPnmOxmtpsYaReoNX3jh6Oj1jauWKLXo3OMyz8zC9qxPs6tRiSIACuDCGQ1Khpcb5xT/v28qimpOE4sowharZ2CtLmOt80wy+XK3EsXeyLE78uSlTPijQLHW7aC1otuAfkszy8TDeB7WOcwxuph1nqq0tHelT37q7EX67eQehpGrKvLJYFEKa2OIO/fyal0+wx1u4/MU9CqkkxorIKFPXRQ1bOTnsNcC4dTO/3/tLHpJ8oF3jnJ1CXuwCwqCjXOE55/ifpHfvsk00DCvHl2Ja7fQ8VE7TAUBS9/GWnnoRtx/8S/+Rb70pS/xEz/xExwcHHDt2rVFz+9BRRgoTi/JvP9zn2oyTR1vXMkYzxyqJ+vBOcFeXbud8/SFhG7T0G2HPHPOsL508oMuKsfX3rGMZlA5ReUVZ1ZEnP3WHjx75uhUB3LqW+sqpplntVvDChREgRfBgVr0MzSe0sqXoBEpkijC2RyHF+l3pUjzUk57SjB5zgtMZjgpCDoeZys8tfads2K6HTcwYUyQGGxxrBTx1FLvxxrwZc7deAzV7EjJsbyBvzOFdAq9VXR7CaUNureCffsb8pJ1D8dNRpgVWcxuNCBYXif51Ocpb76DMmahj6dbXdovv0h27QqTP/l9dJyQX3uHcm+X5Imn0ElD+jKTMVXn0UAVdg8qNvdKkkiTFf4EHnM4sRyOqoWFZ2XlM5tl4jqHl8RyZdPx1Fl5nvOeP3zDstSpE4+HlY5hlimGM8gqqCbw5h3ZCNuJZ/PQMclkIwyNYDd7TUmSk6wWJKivqRnX0996Cuu8r//tQesFhMpahz4Gp/IeisqSRLUyjvc1xcwSNjsL3GYQvYsElOCcFmR/HwTSlPSgOn3UMQc8pRTm7NO4/TuC0Wz3Ucc2VaU10VMv4i+Ui6HFu8Vc7fh4BP0l3DE1lfsZ/XzUeCBG3H/hL/wFfvd3f5e/8lf+CsYYfuZnfoalpYdLJ2o1NJ/7lOzSr72esj+suH6roCg9vbbBVp4nzgR85vm6Ues9m/uOg7FnMLJc2/EcjDxJBK2modNSDCee1Z6iskIliwLB5O3VrS2j5WTXbwoNSSsBmXqkRFpqQrehsc5TWlHOtU5htKbTjMnLiiyrKCuLMZq8rOrEJ3vqdFbQDEEVmTh/eYf3YLTB1P2wqNHGN+YYLNGuK/Zv1IMLByhU1IDoZKNYmQDVXcFf/SbKVhDGMtQIQkHSZzNRRilywe2pGle1cweUxqycAmcxS6voVkdOgkWODyLy0Yz0y78l1nvGYJot7HQCzlEdHhKdrq/lOIjtIcbOQcXX3pIvTl443r5eEAaipnNqNcAYdeIUs9rT7A4cac1+CAxMZopu+2jTSHPICs8cmFdZqLygAtKippEZOJzAzX2RgxqnkFce76XXN809jUjW1dzWE69Y7RwxdIJAk1eWdGGUoQgiWXveQxIFuLt+j8c1GYvpGLs4gSnidk/kxN4l3HRw4rZqtNErZwWiYgJZG0qhWgJAV1GMOf3Ee/7+1bu8n6vLVR1FhMurIjaxeBK0P/s92OGAanBIsLT8wPt38ICMuJVS/OzP/iw/+7M/+2Cv7gOEc6Iesj+oyHKLUooo1JxaC5lbXzrv2dxz3NyVcuKtm75evKJwoYwnSWQQAVLGzqf/6z1pl01SWaSrXUVpYTxzHE59PaVVlJVnZ1QPLErBByYhjDMpWRshlJWjstL8C43GOun5GSWiB87DrISGE1yU9x7vHdYWlNkUW8ioOIgSwmNo+vDM01RbV6RUjRJ0d+2+kzG3ewudNHHeQ5lLXy+doto9cJbwwjMU73wLFQTo7jJ2fxs3m0AQkH3jDzHtHr4q0f0V9Mo6WEd++w7Og51Oya5dwU4nRGsbhKfOyC+u/i7qpEHVude74GHE1t7R8OX2ToX3nrxUuKlFKXjhyeQE9OTcmiYrDDe2HZNUPtNWolg+ho1zHnq1Vt00h1mhaCZy0tMakkASZVbKRF8rFiD1ysq/AwOR9Rxk0G0oek2NUorSHr1PIw6Y1clOKUUcmoVpezMJQcF4clRShoEmDHTd33XHkh2Ap8pT0TtU7zIUuRfjvGDP2OuvH5WvUSKS7ZMhNNqYlVP3KKa8W3jvmX3jq+SbtwCIz12k9eLLNF94ifzGNZTRJE8+S9DuELQ7D9UC4BPLtACRdf+jb8yYzBxF6RlNPOsrmlOrIVpDM1Hc2XPc2XPc3HVEgSSzGmeJUrIY09RhWyIw0IjFe3a+NpSClTZsHohSypVtT7cptDLrZdcOtPztUfRqNH0UsJAXsj6gqFKKoi5flaJynigw4C167ghWL2wdNXAl0isDsJYqS9EmIB1YwkaLqNlegE1Nf11UbLMJaINu9+9LCp+vbhVG+HnZq7XARxptTLND8ur349IJdneTqr8iisd3rknXv7MkZbGzkGfodo/ijTfwHqppKmXRZCwnw+EhzedeJDp7HtNqEZ+7CL/xGw9vMRyLKFRMZpbb2yU3t0qaDc0rzyTkpayJJ89FHAwrlrrSC/Xek2aeVqIJA0l4Kz3FU6c13ZZilnumGbx9ywk8SYm0+0pXkWSyac4Te2igmwidLA4UWeUXjmjWQWGFBVTZI4hJWvhj7neKViNc/F9lHbOswlpHUVrazYhuO4ZiTBIawmpKOhwLv9k7XFViamaNsxVlOqGYDtFBRNTqnNgoAXSrhxsc8WxVo4MygYgH1MlOPI3fFJZGGMvJbzYmeOKld1XAPh7l9ib5nVuL2/nN6wQrq/g8x07GYsf4iHw+PtEJb3OvZJo5lIbTayGNWHodzUTTTDTrqxFXNuX4P3eXWuqIjE9Zyd+DiacRK1banl7iefI+plpXd2B7IP8uvWdvBK1Y2AzWeWaFAFNbsZQ8qt7d5+oXqj7RBUbXz5GTaRQbAmOwzqGVIokD+bvVIR1kmDDGFvlClklp+ds7S5nNRDQALwrHzQ4031uvSq9dwNYQFx8nUJb4dIJrtERaKm6gwhATLmEP93CjQ3w6xVeVwEoU4Dw+T9GdPiiFaTapxmPBWzVaRGcvEK6uoZOE/o/+X9DRoxcUPLce8j++PGZ7v2KWiQ/F/tBy4XTIcOx47Q0pdzstw+debDCYeMaZxxgIUQto0fqSppkoRpuWg5Gn24TB1DPLFd2OYncoJlD9lnxfKyfDrvNr8plfWlfcOZRfW1bICW8+fyisrB2j1T22AnEYkOWyORalRSH0RQ+MpjmRcnSaDWxZCPWwzAkT0ZfzTiwBFIoynQBSCrt6Om9C4Vb7PBVZr6SFWTkrt4MQldTYt+NlczaDPK2VdRCVnWwqijvBquDthgeoRovw7KWT8BRqx7IiEypbDZ0Z/9Hvk7/zdt1jhGJrk/4P/9hD87KYxyc24R2OKi7fyNk7rOi0NFGo6XcNT5+PWV0ytBqancP6KIdQd/LC45yUMM57tg88Fzc0q0sK6xR39j0XN+7FYI2Pyf8rVF0iCcZqbySQGFsPKsJA+jTHqUHN2FGkdjHh0/UJodeOaSURWVGRFxatFc0kJAwNvtOnTKfYMMbZqk58kkzx4Id7VNNDuS9po/vr78t3NGtn8emE6s47kM3wcQOVjnG3RtiDbXSzI6+3cga7t42fjnHZTBZzp4+9+oYMOPor+MkYs36GcHWNbHMTby0qighX1qAsiZ95Dh1FuCzFO49pvrtI64OOykIYSk8tieREdWOz4NKZiFbj6OQ7nlq2dkssBq0UZ1ZkU/Tec35dkh3ArV3H5oEnzT2TzBPGGq88ceToNDTLbeHSKiUT2ubcFTPSnFvxlKXn+p6jqNdIryl9YoDIHHkbz0NrRa8TM50VTJwMtPJaOSUvLeiKIAgJgwDvJJHZ+YldKUwYgffoIFrAgeZJz5UljDePjNzDGN1blwHEce5tZxkOt/G2wudTvLegw6POp/cQxVR3rlFt3pD7JkN8OiV+4TOL1/FViT/YpLojOE3dXUJ1etjB4Agi5aE82KXYuv044d0v9gcVr72RMplZ3rgqGmFry4ZuS5rSq0tSqnSOAbWDQHFuDS5syMQ2MIpvXbPsDD3jbH4SE8T8uWO/87yEThN2xyz6HVqLkoqQvNXixJiXnrTwNCJFK5FTXL+pMMriAk3lHFrJJHhtqUGzVoxsNSJad7XcgqQpNKFaWE2HYc26iLDTITofU5oQE0YYJvisKYrH7xF+NoZsimn1sOkEBru4QHB+HGxiW0sCFr1zHRe3Cc5cxOcZVRhjd+/UizwBJSeJYmebwR/8AXZacy7HI1QUo5styp1tDv6/v7roDUTrG0dAx4cc7aZmOHZ14tOEITQTzZPnIt65dbQTVZVnb1Bx9lQtiWUUSx0AxcbSUWI8nEgJOt/YtPVEgcJaaDc83abi6dMnryEv4dqO9PSsqyXFtJwAjdEkoWe5rRdtj3vCC5IgCjSlld5vWQmN0FYljVABirIo0Dicd6AE/+etJWy2sUW+EBgAhDJWZvg62bmqwI/28bMRKmljljaOhCaiGHPheaq3/hSCSPQS06kMMMIYtX4e3epRXHnjxGW7yXChqQhQbd9GKU/jiScpdrbBlbSefYHpN79OyRErA6U+FCPj241PVMKbzWakacr//n/8DpM04mCSUJSGvDIcHkArKdnbTFHKc2FtSBQ40qrBOO+Q2QahKbn+5oBmOMM6w2G2zIjzGOMJlCUyOb+zk9LyN/FoMrWOIxTkBxFWxSg8DbfJt27NoHEKFa+Aq5g3BffLGcqd1B5LgpzQGHRQ69t5z+U3J9iqxFYFdi7OeSzaSUgjCokCTaANha1I84p+KyHBYqqMyjo0nmleclhqxu69qXOdakbXpijvWSmHdJwI/Jn6JyyzguzwkCIv8aMxE5NQRAlJPkVZ4XWSljAcM24vY29vEd+WKS6MUdevUS6t4OMY7xXKO7LTZxdJbpJ00OsP34g7CBTnToW8eS3HWpFs31gJaLckwVRWJvXbNcd2MHacXo+Z5nLyPrsqKscgkJVuU/p4XpBEREZKXvDEoVqc6OaRFfDaVURmSnmasQyxWrFnVkJbScK8z7xgEVWtHxXVQ4uqchSVAw1lUeAI0FRobUR2vRZyNXU5qVAiHOAF5mRMQNJbhlxAxd4LkwLv5IYtcaP9k14XthIVnSjBt3oiJpC0MZdeXHhaqLiBz46gJMoEJ2SnfC7fhXBpibBGbkRr69innqE83Kfc3sJ7T/P5TxFfuPShPudvJz5RCW8eWs2bwBqtwWhfCwfUcuZeMU5jVjopjSAlqxpYX4FXDIslKmsYlktULsJEFRAQmZxGkDI/xhX0cNSqvoAhp+2uoalQJkHFa6BD+V+TgCtk8bgCVCAI+To8hrAWC5hLtltb0Wj1sbakKjKy2Yjq2IQtiQIaoaERi9qt0SFJKP+ulCZSikhZlHcY48gtjJ0C3v0EVegArDTdcxXQqb/ADsH1axyxK1DpjNQ7gqogLFM8iizpkMy/LCjKKJbacT4c8R5Tldgiw8YxpshQ9qQcf1AVPBpgCjxzPmZzV3p4jUTTamgUii+81OT6nZydg4qLp0OiUFNZz2RS8rlPNUV+6VgmCoxiuauJQieS7GNoJr4GpStWO4qNfs219lLO3jk8amnMISnOyXPKylNW0sMbp9BvOpxXtBoQHOM+B8eoIKHReCdakFUlPa8KQ5HnnGu2hDVjjJSs3qGdQgcBJork8/GOsNFCmwCvFXY6qNdq/fnVdgDzk9/9QmkjIPfeygkDn/DckxTpVPxmtSa8+MwJDrdZXhNzn/nrBCG626f18grl3q60SJpNdLOJLytR1n6I8YlKeM1mk2azyY/8xR/ij7854+rtgvHULnbtVqK5cEZ+YesrEc1mQBjA69ctw4lAC9qNmgFRHAFIk0Sz3NFsLGlWu7DR/zRXtznB1AB48tSnaURwY9cymHm8k2FFbmXX1wo6jbPkFQRa0alP6InJqaqqBom6hUKGHHzqqRzQ7xwh5kfbt6hqtQullCyMIERrLTis2RgzG2CCgKDd53wkvRj9PoMLt38Hd7iDGx3U5cxYPEqLnMAYXFURdVr0Ln0Ke7iPHw9QnR5UFbr3DFhLeO4Jouc/zehP/pD9X/m/C7fWOWxg6J+7gIpi7HSM8p4nX35FvgAKfm8wxTUefi+vqkQFu0h32N/3bFWGwd6Mm9dyljsp/VbG1tYSW8eeEwaWN97wzMq2SCvpgiTICXRFoArGZZ/KhWhlcbog0xXNYMZXbnp+X61jqYUSKLBEVDSxKiFpNFBKkYQVo8NKNkmXyx+PyIr5ErzCZ1sEPiMwHuccQRSTNDqAwnm7wA42jQyt0umQr3/960yzgl4zplHb7ZXWMStKWlGI9Z6iEl3AwTSjco5AeVra0TWC83SIOfvMKQb26yd+l6vlkNjNN2/PxCRY9QfMdIw7ttkFVYE1If7OHxKUOZ3RLmFVMG4v40xAI5vglGba6mNv/X8wsynNG+8cvdH1GxSXr5BvHJ0wH4aU2Ccq4RWVxjppJv+5T7d4+nzMre2CsvJs7Ve064Z0Xipu7nq0LgmM5tqWo9eS/xtOhUomoE8pdxqRY7WjuLh+pF3WbZ5MeGEgumd56Znmkjw9kjCboUxtcwvWKZJAhECLEtpxhbUW63w9rRUpces8WisCraisoyisrH+jaSeBQAxsJQR/pTA1NkoHtVOYdxAnmCiuAcquLq3fO/TKGdTyaXQ6wd58Cz8+wO3cwMcNiJtoZfCjsez8ZY6KG+hmB93to0xI/NIXFr2W7ue+l2p/l9nr3xQ5+iRGxw3ya5fRSYNwaQU7HNB46hniC0/g/vCPHthaeK+YpI68lFNbViiMMcyKkCVyDicJS+2UVlIwzSIqp7BO025apmUH5xXjoktWNQl1Tiuc0olGrDT27vteFY1FsgNpfSg8ATNpxueiqGPwkuwUYGIEUNmWakDJYgrDgJgx2Iwo1ARhTFmk2LIkqstTvCfz0tfLy4rCSYJrOc+kPla2kpB2EmKUJkCGMKV1JFHAJCuovGJoDWOr6RpHpCDzMLb3tkT2gi4NVxD4irbNaFv5UnRUynbYwykZPVfz3p+zbGxfIcmEFdUZ77O9/gST1hIKj61Pk/cDoatj9z0MiTn4BCW8N69lXN/pA/B7X53xuRcbnN0IObshu5r3noOhJS88v/PVnElWMckU1opgWajFaNk7wUXFoSbNPdPM02vBc+dFaWUey20pR0YzSXbrNX0tr+EseY2lqpwkQm0UWEmkc1ZXFFgi43DaUFm34DXOFW2r0hHEmrywhHUJU1nHNM3BWYIowVYF3onYaNzuUuWZ8BRbPczBbWyeomyBtyVufEiwfhGz9N59MqUUqtmBc0/jB7vo7gputCfyUbs7uDyHrVsCJWi0cUWO37qFWVpFRTHV4R4qjjHNDit/+f9K7we+KMBWbdj/tf8m1oydLuHGaZTWNF98GdN6dE5VMrSwOK8Ig5Bef4l2U/PsMwmNRPNDn5dT3P96bcrV2zmthiZJAnq9mHEKm/tzgx1FM1GcX1e8+lSw0MLLCmoYklDE7py0gGC5I0Osm/uyhlY60iPNS79QPHZe2BvHrRqbYch6t4f3DqOEhRMFRmiJSuAqviZ7dJrP0m5K8nC2IhsdAjKwKPMUlJIJq3MLhk4QN4ia397n4Eb7uK3rJ+7Tq2fwKsDubkIQiMvdZMzst3bB9+VB3nNWlUTnZRKo212iZ18FpRj97m9RDg+hsphmk873/MDC8OlXf/VXv63rfL/4RCS8ycxyc6skLQKmWcCXvzLlzm7JD3+hzUpffgSlFCv9gJtboj2X1TRUkEUXRrDaA2s1jVioY0kkrYznLhi8l6nbXMVIKfEhWL0LTB4HskiNUlQKQi0rMNBHyUzVVDFrFVkp0IhmEgrxu3IQSE9nXr6GgSKq3eW9s5SzEdpavLOCtVOauNOj0V0mGx3gbAT5DOIGTAd4W6J0gC8zqp0bQg9KWtwdPpviDrbAWlRvFd1dhlYPd7iD947i2lvgNeGl50Vmfm8bqNVRAJuljP7bfxCVFe8wnT7B+acI1s8QrIsEUOPpZ8WQO8+w4yFBb+moz/eIIjCKi2civvG6IwoqGrGi3dBYB+c2QoxR5IXDWs/52jmnqGBvYDGBWfTwanoqlT2iJu8M4eq2PD4O4ZnTMrWfH06UEpmonSH06+rdOUVRKfot6HhZe/tjv0h2c61Eo+WtvZe14ZAmq5KDHUGgF9CRMDj6nWoTYIIQW5Un+mfe2hqMrHBVRdD9KFPQe3vDdjyk2tlc3HbDA4KLz3K8CeqLHF+vc+895e42tnyN6MJTmP4S2fUr+KrCdDroR2Dj+YlIeHnhmaaO0SxmmoeokSXLM5qx5ntfaS6SHsCtrZL9/YxBHi0SyfqSNHw7DcVKX7M/FGpZWYk6Suk072zJYj21JAv13Qya4lDRCBUDL01ogRkIePTsEuyNBSsXh6CVoarLzHk5W9a+osfVLZIoWOzyPp+KU1U9fVNaEzZahHUC0ybEzYcBtek2KGk4a40ykXjN3pXwvK2wt95efDPdaB/X6gmqfjIQrq0ywsCoSoGXrJ0Wmz4TQBRjRwPcwQ6mv4rdvk118x2q/R2CpVX0Ey9SDUdMvvYaxdYmpt3BDgeESyuPFIM3j+efiPn9TgpteOrZSzjr+Z6Xmpxeq/tclScvPAcj6a32O4bVjsdEmiyHqPQEgRKj7q6wcJyDy5tHfrRZIcnvUxfEqcx7WGrLRpre1f+fYyhDoygqRysRkde0ENiK0dCMA/AFRjmsc4RBLeuvFc1GuEi6cWjuUT6O2j1sIXxqEydkw/3a9U408UwUoWyJHUlprltd4Vx/wFDtvkCS5uyfIBTuNIB12NkIUATnnyI89xTlzbo/F4YEK+uUBwdM335L1sbqBvGFp3DTMeG6qKX4qiK/fpXGM8994Gv6duITkfCWuqIQbJ1a8F3jSDOeWl57Y8bp1Yi1JYPzItutFYS+oCoNa72QJ04HNBPFp58WfF47cdzedXjABAJaBtm1v34dllti6Xh2WUrYygpVyOhaCaOhWKpOZsRuAzoNoZUdhxu0mzFxIFp4cWQoKktRJz1f49IaSUhRWqyVaXMUBjiT4GonqrDRxoQRZTaTXp1SIuqZR3jFEQWoyKSRHN/ndDcbLZKdL3PRxkunonGXTmDljIgCFDl2eCAJNIzBWjFvnk1w+9tgDC6bLeAGlAV2PGT6v36T4OyTuOlUpm6tFtHqOuoRDCnuF8u9gHMrI8aziJeeTjh/Klx8zgBRqLm9U7BzUFFZSGLF3/jRiGcuBmwfOjb3HXkBZ1cVp1flZOXcvYOscSZr4m67xlYCwyNZOdqJYqMvIPVACx97Fgg2zwFrHU+vqalKjfcBRSXWo2GoacQh7WN0s+ObpfeeYjbGliUmCAgbbQKtsUV+0sjHe+zBncVR1WZTzOrZBe7u/UJpjbnwHH48ALwYQm3dgr1tisvfwE1qzTtnaf7QjxNeeBo7GWGWVimuvM70q1+lPJDa35cVxfYWPpsRrKwtxGFdOrv/mz/A+EQkPK0Vn3+xyde+XlJYQ79jSGLF4cjWiPWSzb2S0MB4Vt/nHKFRnN8wbCxrzq0dlQNxCP2OEkcpqyjqjWowld6LrUvir16TIcZwJgt9pSvlytkVWai1kg9aUe/YipUOHE79AmzajD2zTKZklRXrPaUUVWUpK1mQ07QkCg1L3ZhMJaJabIK6VIkIkwbZ8IAyT1FKoYOQqNUVLuv0EFcJIlZphQoi9H3UKlR4zLQlmyKUtBoz5SwUKWZlHVfkuP09aLbRrS7VzctgQpQxqGZbBArmRw2loNHEZtmRb6nWaAKhoAH6PSSCHnY0oopGVPHU+aMvtXPSQ9s7PJLWV8rjvOG1ty0qsJxb02ws3Xvdxhz17ebRacivY5zKhtlOZJOMA/l3WkqPtxU79kZS7BkFeMHwNSJpeZzqa9K8ZOYEBBUEhjQrF/7Fw0lOtxUTBCc32nx8SDYe4mpbxbAxob12hjBpUmbzBKII6vc8Co/PpicSnrcVvixQUXyPo5m3FrxD94706oKNsxSv/ym29rDQSRN3uEd1+yrRxWcXycUWJfryFXR8iE9asu4UQlWbqycXBdVwwOgPfpfo1BkeVnwiEh7AxTMRF9ZH3N73NBJFt2VIM89y7+iDGaeO7b0KpTzNhiDMIiPT0it3HKdXhNLzzp2jaZDSjnbtM1pWwrkNzRFOKgqOSphZJvCT4fQIe+W8fAnmiPlmrGjGajGgGIwrrJUpGUASGppxyAxqZRd576K0FGVFEDcovcdbKzt2q02VZ2S1GxSAthXaBMTNNjpqnOjbqCC6L5tBJU300gZusC3c3DCGRlv4l81uXR57QOONcHq9dwI87S1h2j0pY9IpbjbF20rKXhNAMyDodkBrovUNZm+9gZqM8UWOjhOq0fCR+tI657l8s+D6To+8NPzGl8dEoSKJFVnu6z6rtEo6LU1h5c9w4tkbeiap5dWnzH2peqeXHG/fgTiCVqJ5+rQoYo/q3PKtsSS6OJS2yJMboJRna3D0GnPLAOc9Rgl2bzjzJ2SerBOV67A+/XhE6r0dHOHUvPfk04noJtbAdRELGBO3u5gwEln3MIQiw82O1hBQf+aS6Krdm+JlbAJUo4NZObPoA7v9Ten9ei+ir6eeWKy5ow1QQb25uekEN5tQbd0SSbHldYJT53AqILtyGbKMaGmF5qufJWi1KUcj0htfp9zZwvSXqQaHhAd7lMsPnmb2iUl4WitO9aesdWd88Yc+Q1F5vvF2dqJ8XGprBh3NYGzRSrHUDdg6hLghjxrPPMcPHN57xmNHWjiKUqM0LLeF+oWXZDfnPHpgmsmUbZh6Lq5K0nNeLfpvx0MpgZ9U1tUKtvKgmXWcWUvQGrJj7sveluSjCUZL+RB3erU4ABTFSbFEZ62UK0GI7q5gDzbr11fCqTXv4nmwdha1tC7+BlvXxHkeMKcuok8/SfHmV/HaiL/tpBSYQBCg48aCEB6//D2Y5XXs6JDy1hV8kRNeehY7mZG+9Qam3yc6dYZgaRnTEeWN7MrbtD/9+ff/kB9QXL5ZcGOzYJKFDKYNrt0uOHcq5Otv51w4LXzaqvI1fctTOEUQqIVIaFbIBLV5dCjGe89rb1vevuWk52bgz71kSALDzTrZTXOpEiYZnOpL0juYnPS1AJgVRyKxeek5mHpO9yUBhspjtBPIktEEWpg5RWnJi4qycjSTgDiqZX9qALEA7gUJUBUZMV3BbQYhLp3gsim+Fp0VXbsGqiETWzfckyl9VYp3bc3A0Oeew2Uz7M7NhWSUnwzxw13U0gbV5g1U0hQbR+/w0zG+0SJYP0vxxlcWXFl7uEfruRco7txGxxHKBJhGg+ZzLxL0+hz8xq9hx1ISV6MB8cUnCcfDjy/hfRBfWoD//t//O//0n/5TfuVXfoWXX375gV7oPIz2LPXksqep40rNjTRa8eJTCVprJjPxaR2nECfHplbIrl5aGE4EnHo4hjOrilPLwiDw3i9K005DTnFKCTdSa4+rhC70zrZneyiiBEYrktDfY8Qy95E9PrWaE8Cj0BwlPO9x+QxCBQhPtZxNMF0Z0auaED53l1ewkPkxa+drz4oputlGN0+epFw2w9c7u2r10LEsUHXxRXw6luFIoy0qG+MButnGd3q48RCfzUhe/l4II/x0jO4tY5ZF4dZ0lzAvfm7xPkEfojPnsJMxo9/7nRPX4Iu7OvgPOfYP5YtWVpLA8tIxnckJKM0crYYWsQclUKas9HS6kfT4vMcYGWYdj+EUrm27ugyWdujr1x2rfdkgnRPxz7ySU/+tfUl4aQmdhLltMFCLh9bwpWndE9wfW9pxiVOKXkvXg69QJN+zksr5etLvmKQlYWCoslmtjuLwzkqfzRjp39UtBjcb1c5koLQCE57gzAL4IhUfiqKmiDlLNdiF6Ri3fUMQAc0eelk2U18PLnw6Q7e7hE88VwvFKpJXvw/wJxzUwONGB4TrG4THqIX5resy+Jj/Ur1sQnZ4iHtIjIsH4ksLMJlM+E//6T/x6quvPpQLnYdzgskbjCzdtuHzLzbJS8dSNyAKFZ9+XvPOzZw092ysGmbFyZ5HHML1Lcf+yNfNak9eagYTz3JX0Yo8z5w7eq/hTCZvN/dE804rv5B4EgVbEQqYCz+2kpPX22qEFLWMu9GaKJDFHAaGbisizUqmmcVYS+YVgXHEUYAtc7LxQMoIExBEMdoYvPOEjQZBnIiL1PhAfCzie8UDfJnjDo9gAz5PUavnUGEkJUncxO3dhp2bqFZXeJF5ilnZwPRXIYrxtqK8eVl6g+kENzogevbV+6raKq0Juj2C/hLV4HBxf/QQBR3vF62mZpo5wsBCLptMu6nRByIdBrBzWJKLQDMGQ1bAt67KfT/82egeUr+1nvlw3HmovOJgqtg8kJJ0byTfWaPl/0tb31Zw+0BxcQ1GqfQPew3FwcyT1slOKbDOUlqpMuebpveesjpKsnlRYbQijgKKosDlqfBlnaUqMun5xslicwziBDe7y0DHlvdAEFQYgz5KBUppSCfYvU2Rkipz/GAbX+WY5VPo5hMA6P4ydriPWVoVjGYQEj35Im568j3dbAKlFVXtu/X44hgVBIQbpym3N2XDaXfJ9V1fpAcUD8SXFuDnf/7n+cf/+B/zH/7Df3goFzqPnWGL1pY0aMczR154Pv380Xi9kWheeuZI1v3KHcfusBZh9J7dQ0+3Jb4CKEhzWVxFJRtMXineuiPl7Km+JLultiy4m3tHXqQgi/l4NWvvQxRN4oBWFS5EIAMjKrZA7W9hKStL5TWRc1RAMDc6PqY/FjYECe29XQg82sNtKOvdtiokqfaOygCfS63lbSUeFlrjsjEmlMaz27wiE1gkGZpuFzt0onYRNyg3r+OGB7jhgfTnnnkFrCV/62uEZy+he8uLL2exs0V2VaAI0dnzsmhvXiNYWX3okj93x9MXYmapIwoc3WbG+VMhw4lluWfICk+3rWg3FIdDKJ0Rqp93aCyK4IQxk/eew7Gwc1qxbIClE852v61EG68pgyzrBLe5M5R+8FIbFJ5x6hmmsNqRaqCoPLNSestRIKcaXU+Bk2MHm+rYgnLW47X0er0HV1pMVYnLXdIEbYRmWIvCzntsSpu7RArUPbhI3VtDFxm+FC8TGm3Y3xY3tDIXnmw+w2dTbJhg8hl0lgR7aS12fxuimPDsEyhj5PS/vI492MEe7OLzGcH6eZgOcGWO7iyhtCa58ARBf4notAwpgl4fHYR0v/ij+P/xPx7kkljEA/Gl/eY3v8nW1hY/9EM/9NAT3jQ/edTdG4iEd1HWk9FjJaxSiqfOGs6tOb5xVdDzcxcprSX5hEaEGZuxNLXRirKSBXtjT4ClSgnTYjhV7E/k+Y1onrzq90LUku8OpRTdVkxZj3TDY+DRWVpi51CRoEFpc2LlQQcLFeR5uKoUqpmzVHmGDkKC8qQqi8+nwLHkYkJ8VeB3bh3h7zzo9rL0fdLpiecrb4lf+T4oC6rdOxSXv4HP0losUlPeuYZOmuhmCz8bo7tLxM+9SjUeMfnKH4N1FNubUtKGIdHqGt5ZRr/3O3R/4Isf6PN9ENFMNN/3aos7VwcY7Xjq/Ke5syubZGU9W3slSikOhhZrNTqQBOGVYTCFwcTRa8lmc3XTsTOQlNGtVa6LqWyac2OotBD8ptY1M8dAqCEJPFklAOOsEJ/iU30Rjm3HinHqZO1FEAYB7dAvEl5gNF77BW5TYDHSE24kIUobbJmSF5Y4CtG2wtQDDW0CqiKnylJUmKDydGHlqNt9kfc6BllRQUh4+klh38xEB010DC3+cEewd076hX7vFlUUE60K0Dw4fYHg9AXswS7VneuoMCI4fYHoqRexG+fIv/p7qOU1ABpPP4OdzgifeJ5w/dTCaDt56lny61cphwMaF588ob7yoOMjDy2cc/zcz/0c/+bf/JsP9bwP60sLIg+VpYqvffUo4YaB5cblksEsAQ/NuOT08viEYnRhI/Yz+aVPy9aCBK7xxEFKPx6QjUa8uX2agh6eAE2BIeMbfg9HiKYkYIYnRsUdRt6CLbhj6ixXTUQp5UNEq7uKNoaoxs1VtmI6HkAxYal98khvncOcSIKeMJ+e4CTmXrFffe3EY865CV0nC6h0MLt+h71vvkOuQk6Vh5hjUIVMh+x/4yoAzekh525dJSwyAlugPFTjCWmzy6zZxd7ZAeDwm2+hRiPi3S2C8YhgOkZnM8xshg9Cqm6PstNneuM2+17RaDQemS9tmU8YViv8zp9OsdazuhSQF47B2PLsxYQz6yIhFemAZmKIIzn5Xdt0pJnnYOy5vi2+wv22iMSWlWetL6yNnUM4tyYQpVt79bReixWAVnAw9TRiOFXTEotKjHuGU6lR17qatJDp7JllTSvWTFMx0A4DxTQFj6dyHqMUjTjEqGNKKkkHW6YEUSQwJW3kfdIptjjaDIPumoDZA+m/2e3r4B2q2UF3V0Xm3laYzjJ0luW021ml/OaXpV9nK6m1dQDO4fZuUd25IoKxvVXc4R7FO99cvJ8dHhC//D3oZhuVNBZrVClFuLpGcunIutFOxuz+P/9vlNub6DBiVhQiWuo9szR94GvlI/vSTqdT3nrrLf7+3//7AOzu7vJP/sk/4Rd+4Rfec3DxYX1pAQ4PD9HBgBu7UlY0wopuI2N/fAS0neUhw2nCUvvoA9fqaBraCqYULiLQJSvJHklw9LiKFlZJonEEOB8KR7TeHS1TEr8Ped18MY2696Hkb28h7IIyUE3Bzneq4y3ro6jKnFAlFLnItU9GQ/a2b7DU7zPNS5pRWA9MZCprorswWF7RUp7Kg0UxrBRt7Yi0J3eKqVOMnSYpLbErCIGGrgU/tWIQtFkqJ2hEcmpo6kFIVRLnM6IiRdsKq0MUnjKMyeLWEQEc0OmMaHebeHsTnWX4KETn9XDFe6gq4r1tyk6H9XOX6J8//8h8af/oKze5ut2n1atwDnYOSpyDRmIYTysq61npaSxiSN5pGNaXNXf2PYdj6fNOM1jpwe5ABmaBkQHVYCalqVGedkMtmBVzn9pWLCiNovKkpWw2zUhK17zGfcprycdhlGVzv8R7TxzAaFoRh4Y4Cgh9nfCScMHDBilXw2aXuH1sAOHsApM3D2crdGsJXxYyjZ0/djbCBRFutIcbH8rQY/kMZvkUbriHWdqQCmHruiQ9eQPw4Ac7FNffwuWFAIaDENOv/WuLDDcdCfXw1PmF2jHIifB4jP7o98jeen3heBdUFeHKKqpS37aH8UP1pe10OvzBH/zB4vZP/uRP8jM/8zMPZUr7fd/3/Xz1zYz+oKQoPWtLAWfWQ964ehL+fm4j5PknTp6Qrm1Ztg5ksUQBvHjJEAawuS8CAq1EsT9VDKYCRNZadun1u+Bjz56tcXqVZ2twjDPofe2Jc3S0XGp6rC2xTr4o7UaEOaZz5r0nzY9sG//P//kbLPX7/PiP/3j9/7K4lNbYqiQfD+ZPhMkhYVBj55TCrF3ATw5xdUmilEK1+iig/NrvgPOLKd2zL3yvDCVAdtOaVTEvcfLXX8NNlqmWmlS7dwBF9NSLAj8Iw0VvUSVNsv0hbmWZYnWJ7NpV+bYvLeGmE3xZ4p0FE3Lp0iWCdof2U09++A/+24i9QcVXrywzSmPcwSHWaULjiMOKJLQc7InF4jQLCaIIFcZk05KD/QqvYqzTWAKsCxgcVgSmJFAlrbhke78LKLwrKQ52aHBAquQQUKo2lojQTwgNRO0V9inQVFBN+frkKsTLKNMQtRQtviRva0hMSc2mJTa1Ao4CY0KsLUknA/J0TNxo1/dVZLOR/I6PxWqncQItUFSW4SynoR1L5mSjOcLRDnwNrVL4q1d5Jw9YzcT7RHnPSuVp2oqsUhjEyGjy2ldIxgeilWg9UZHJyb/eDPdvHWBrWFVYpIRVQREmVFvHFHOcY/kPf4doOETPJ/k7O5Tb2/juMvb02Qe2HubxQHxpH1XsHVbsD0UfLo4Uo6ljtRAYiT0Ghlu7D0r+0inDet9TVKJgq7Xi7VuW/ZE872DksWhWO0qs99QR4HgeHs84nRs31wq4C3epmoJ2rI93OClozSte65lmJd3W0QOUElEBaqHRk0j4elpWr1sThETNrpQqrkDX0975A9xshBvs1CwKYVYopdG1Vh2zMT5OUEunoDjqkSithSN5LOZTNhUl4lbmPfZgl/iV7yU8cxG7vy24vGYHd+d/gVJEZ84TrKxR7u+ho5j89nXscIgdj9HNhOpgj6DdIb91nWjjFA873ryaU9iA0gbSf7QG5xT9VkYYOMrKoJXQ9GxVYJTGRRGTIiaKwOBwTuTI0JoQiM0MG67jiNFaYUJPqgyBywj9iFJ1Ub5EEeCRzcWWMwImiPKqE7HYYoBPIpQOpSrwFnRca+WJBZoyARpRK3a2oioz0olMvtPJ4L4/s1YyENNK0ayby2lRLWSjCqcIA8H6OQ9GeZrGi4SUgsyBQtFUlkIHxK7CK8Ve0CU0JaUOadicXEeYoh52KUURJQRVibEVNoiYNXoEVU5jNqSMGuRJi/I+vF1V5Ng4wcZCV9FZhvKefHUNnZfEe1tU4xHBAzRvfyC+tMfjl3/5lz/6Vb1L5OW9ZaEHPvOCgEut9ZzdCE+ICRyPZqJozhOEFyNuEEhJUSk8jl5bY5TACvotgZrMVTPiwC+GHgJChl5T+i1ai2rw4rq8R9dg4HnY+41xP2AU6YQqywCPsiXKAfoYqaIq6qlsTdUpUygi3HgIcx5tOoXdm3DxedxgFz86gCBEr5xGxUcLUrd7Mp2dDNH9VdCaYP0Myrsa6yeAVe+cGPXMDZbjhNaLL6OiGJdOUUENMu10cOMxLs8XANaHHVXl0VqgSugEX3jaTcPp0z3iSPN9rzTYOaj4P/9wigc67YAgCjmzHpFWhvG0np5WwqN+8ZJhnJ6i9JrcimBDqwHNuM+ltbM8f04gKdd25M/uSFg8p5bg9LJfTPcvrCraifTudoYOpRRZ4RmlDk1JEsi02ChHFIqJuzYCZ1rqfvZEH9dVVc2jLUApKWWVWhg+BVGCMoaku4Q2AW46pNq7LeukKvCIP4WbCMdVhTFkMy60ZIrqKgGf+zJDLW1g+mt4bfA7N3DTCeXt66juMioRrb7o/FPopTWyr/0+5fW3ULFGdw3R08+g2x1UGKN7y/iqYv/X/hv5rStUNie4eHEBZTJLS1w6dZavfe2rANjh4NEnvD8rsbYUcPlGsTjNaYV4FTTNCWjKBwmtFGEAo5SFiU8cauJAaEPjWa1grmTBr/VkAme9EMZFC09OfO1E1JbBL8yXp5kHB2nh6DZFKUVrdUIW6oOGq0qqenIlemc5JpuitSaIG9KsDkJ00sKlE+asC6UN5DNU3JTms3fCX5wMcaMjgUWbTTGXPrWAMkRPPE/xtijf6mYbs7KBCsMjwYA6lNa0Xvkss29+DZvOMO0O1eFBDSKtGSPnLmAnwhRRgSF58iSc6WHFcl/EJCqriQJFt63p1IDeRqI4vR4ymVk2VgMmM4dXhqWuYbVvSAtFmnu6sfTkmrG0OfLSkzmPq7cylwqMZG7AHWhhWhyMJfkppTicOpTytBrCr90bgdaORqiIAhERcE5k3yMTUFQ5kdG0ExmMhoEmCMxi29wfpmR5hakyIjfB25p3XVt4zndA7z0eh0JUrLUJcOkYHcUQxbg8g+kA4gRdtfH5DF/mmHqTAqQq8K6mpY3xh9uodh+9dh5tdgicx2UZKowJT5/HLK+TfeXL5K99WfCjLeFepwe/SfTUiwDo3jLZzgH5tSsAmE6PanBI65XP0HrpVYq93WOfoiJYXuFBxicq4SWx5gsvNbixKZOscxvhggf77cTFDc2fXD5KnssdRWGFWRPULxsawVd1GlLiFqVAYJyHyCh6TXG1F/SAIjDC1cwrUIQUtiQvHWtd8F5zOM5oxEFdyn6wcMe8IapC6HSutYT2Fqc14coZUApfGy77SnpBqtXDqTsCNJ6bu7T6uMPtWj2lFnpTGt1bQdUGLipOiF/6Ar6qqDavYw930K0uwdkn7rm2cGWV3g/+CN5asutXSevkFqyuiclyq02wtk7Q69P78z/8yHxqxxPLakc2iXa7RRxrLp2NObMmE9ks95RW8dwTMTv7FaOZot8xBKFmMvI1z1lAxWEotp6T1NfmH0L9EpcMz/ZAZKSKEm4fQFYPLqJQ4bzGeUe3IUopg5msjeU2rHVhmiuyAtZ7shlaqzFaEYUiDFtUwpjoNiNGk5xpWghGc7ZL7i2BAq8rfBigjfQD7w5dJ7A5Js9bi88muCJDTYfoRhvdXUGhYSqsHF+V+KmwbQhCGVqkE/xshN+7g+osoRsNsCV6eRWzdobq5jvYwX49o/NCNQsjSbJ1uOEBxa2jIcYcrB6dOkPrxZdJ33mL/OZ1XBiTr20soCsPKj5RCQ+g3TS8+NSHS3LOe27vCoA0juDCurhSrfQ0z5737A2Rvs1CfueuF6i3135bMd51pIV4hRIqpvlJOpl1ilHqj/prKsJ6MVdZOM3nFVFoThi1vFeYUNzOZDBSJ+gwEgd4rRfJTC+dwo72xV1KKdz4AHrL+DJFVRXETem7TQYwHeEnQ+kfxU2q2+8QtvoLJLy3Fm/LIx5VVaEa7774lDHo+Ghhm2aL5OlniU6dJbl4iXBt4319cx9UFKVnlns6jYJmUnDpibOkueeZCzGNhubp8xG3d0pubhVMU0ccap44Y+j3DXcO5NS23JUTWKchA60kUQynlmkhpa6pT/5lJTadoxRu70srxNftBmshasgJ0Tko7NHmmhbQjBS9piLNtRhzW4ctxQ6grGSyr5VGKygrW3OyQZdTwcQhfWXpA4oCiQnEk9Y7izaRmPfUBHKVtLCTw0Xrw3RXapqHxZw6DVWFmye8MhdbT6UgT4V+1uqhnMdT4Yf7VOOJ/JCDA+xkjHIO3WiiG+0jtoWtUI0l7MEuut1FRTHRuXPkd24vPi9lDMnFSwA0nnqWxlPPMh3f1UB/QPGJS3jfTmzue27vSf9slsMsswttvNNLAhOYiwSs92SP3D0mLLFaM7aSUNFKFN3qqNzNSlhqnezVCdDULyAKjdDVTmsn1TDmp0jnxGjFBBH2Ps5RSmuido8qmxGEooYy37XNMc6hTlrgHdVshM8m9XBCYZ54WZQ4tMHlKdo73HQgyHpboYIYRvvY7esEFwUG4MYDcA6zcgRBcgc7sPTurIno1BmKO7coD6Rcjk+dof3ZLyz0zh5VRKGqWwySmJZ6Ac8tB7zy7FHbY3+Qcnu7pKhEf3Ccez63pOm2YLkjXNvRDFoNxfc8H/D1K5YnTineumWxGCID/ZYmicWmcWsgyS40IjpQVEdUsyQ8Wl+BVkdKynVLt9dS7A4dtqpqoVgRC9Ba04iknJ3MCvK8oqgcceUIlUF7W2+E8kJBLJTDIExq8U/hp5bZDJ+OYXwgvO2yxDRaJ1SxlQlRSRtWz+AGO1KSdpbAVvjpaFEJqHYft79JtbeFy0t03MAXLey3/gTd6og6yukLqMEu3jp0bwk/GeJGh7jxIdGTL9D9gR/EV47Zm99CJw26f+6LmNZ7m089qPiuSHiD8cljfl4eqWHEITxzRm6HwdGAohXLLtxKZCevrHgXbA3EeKeV+IVFZGiOPEa1EjHQ/fER1cyhKawjrF9bwQkPi9FUzMQbrR7Vu1jlmSDEtHtEzQ5lOhVsVRAS3nXq8lW1mNTW9+DzGfrcs3Jz7zZOG1R3BQ62BT8YHPVs5qGOlSGL++L35jcqY+h84fuFR6sUQa//no9/mPHSMwl/+qcVeRWw0gt47tJJTbw3ruR0WoZpCiVBLZ8uEmCNSAZcy1144pRUA4Hx3Nip2xqVoygVX3hO4dAiLCEknYXZduVgpS06iaDQyhKZOW9WEmOj3qsakWKjJ72/QBuUMgsKmVKKsrIUVS2voqAgRPuCULu6ktAEUYLWBleWEIqIhneObHwoU/rNK1CVUi14h52NsZMhVDkqbom5E6CXT6GXT+H27lBtX4PhgQjBOovurtSn/dqT0lnsbIxPU3RnGZodKHN0o0l08QdQvSWq62/jO33cdAzGyJBDa/o/9GP0f+jHHvm6+I5KeFXtRBYEJ0unRizKKfMwmhNqGCLgefK1WsnJ+7YH8hqBEcCpSxXrfVGy7SSKSSYpr50otobqyA5SgTEB1lbkRSlskEa4IIMPJznWirItQBBEVNa9a7mrtCZ6j91QxY0j5Qm5B4JIhAb27+BnY5ELmgwEVO29lCxJSxbs/HfSbBNsnKXaltJDN1oEG6Kq4CYjqt1NlNGY9bOouIFLU3RtSTg3Yvk4o9MyXFgbkRWGovJ8+Ssz1pYMz1yMubNTCvRIi5qOstLkjwJRzRG5dXG0W+rIWmo3FIdjT14KP9Y7uHzT8RdeFY61AlY6kvCsg/jYmvLeM0wVy23ISunlra5IyTyPMNTEx8y5g0AvQMZz0VKtNY1Y44IWkVcYlxEYse10zor2nTHYIiOIE2wpqinUsv3gcU5Ojm4yWNQbXmeUd94hPP2UKOt4L0rao0NxwnMeVcuWuckQ4jZmvYHf3oSqxOelAI8bTWi2MKuniZ54Djs6rKf1IaauDPQHUEFxZYEqS/x9BCo+anzHJLy3r+fc2JLT0enVkBeePALSnlvTzHLHJPUEGi6e0veoYdwdWSEUIetE5Xgu4xMHCq2kJO02FL2m7MJL7aPXi8zRlA5A41FKVFBAnjuY5AtuZGXdglMLLPp0307oKMEsn8ZNDqUsiRJMu4/bvCo9GQTfp4MQTl2SpjReBEJXTp94rfDCM5j1c+Jx0eoIn3M2IX/jtUVCza9foSrBlSU6adB+9bN/JhIeQFFqvnFjjduzCf2OYTAyfPXNjNVlQ5Y5stIThR6vFKfXwoWhzoVVzc7AczhxvHnDcmZV04znxH6BICmtGM1kkBGH4kEcBNAIZcCVl1LWwpFnRRgowuAItzmPyoo6dLsZMZrmFKUlDDRL3UTUUpyjrBzWOowRmIrWMYEyhEZTzDnRvrZUV2La4+dryjtxsZpbAdhan3FhmWjx0wF29+aR3PrBFqq3KoOt2Uj4tNqg2z3sbIhOmoSnRQ5MFRXm9IXFhNj0V3DZjPLK6/jRAJtO0d0lgvUzmI0jMLH3nqpufwTLK9jxiPSNb1Ee7NF+53WqVgdv7QNtiXxHJLyDYcX1zaNS8M5uyXLPcGpVdogoVLz0hCEvpW9m3gcWYp1gqeYl6SQ9eSIMjagaS7K79/nLbU1WOgZTGV60Y6EVHY/s2OCisg7nPUprqrIgDD7aB2xWzqKTNr4qRDYqbuLuXDn2AIMvC3R3ucbfKfTGBSGW3xXiQXvU+7IHOycA0unVK6hmF93p4bKUyWt/RHTqDL6qiM5dIFxavuc1H0VUleetO8vsjlpUxnJ9s0QrsXDMy4hTawG7B5bzp0KazRCCgNt7nk5T8ZXLllaiuLPvqCwMZ5YnTyniSPp0GJnPBpHi2q5MWzsNgSxdWpeT3SwXTbyydjebH1by0jNOHXtKMZh6whB87dMSaoevKkrr603Q028n5LUy9sw6SmtpNyJCowlqQU8TRiLzX5extiqx40MZclmLDmPxOaltA7ytBHKSz6QvF0YLuuFRiDGUTloy0a/vo9FC90VEVgcR5vRF9MpZqoM9sBVm7XTtY/EGviww62dQ6QycJXr2FfSxodj4j39/ISNWDQ4hCMne/JYcl8Xcj/zmtRPc248a3xEJbzK7F9B7v/vi8INNCSfZvVJPcd3fm6SygM8u3z/ZgezkF9cMZ5cdzgnEZTCpThAp5jZ7xmiSOBRQcjkldgImDZOWKHh4T5Wn2LKoOZIKHQREjfa7+kUoraU8nY1l0uqsQAvmHMuygLLAj2WxqaUN9OoHo/Go4GSZ4bKUoCMnOm8t0298dQFELjZvn/AafZSxN6jIykCodZWjKCV5aaPYH1Z0WjFPX4x46akGp9YCXnvLLkrQG9uerQO7OKFNM1jrKb73ecNrV0QirNUQ68eyEihTZGRAMj+5NWO4sOoZzETGvagEjjJOHXntc3EwlWl/vyVrZpKWGI6GWUVpGU9zAR7XTmXWeVqJwJpcFVPlmfgX2wpX5Fhb4HOBsnhb4YG40yc4dQldZnhnscNdMW+yJbgKrzTm9DkUx6wP2n2obQVUlNQg5RratHwK88RLC1ynUkoqgWPh571opdBxgh0fUlx7k/DUeczKBsXWnUWyc2lKcfsmNp1R7e2C1jSzjPTMBex08kDXxXdEwlvumXvo+Sv9b/+UFN3nqXPw8YeJwGicEr6s4siLNgoNSWQYz8paGFTRNI5EO9CaKs9wVUXSXaKcjUXqp5D7TBgCMcVsRNK9/+nJO4vduy39F8BNBuhGC7e/BWGMzybojYssJMIbrcVifr8wq6exe1u4uoyKTp/Fh03B4V25THVwQHHnFuHGKTABxebtjyXhhXXroRGVaKUoCik5NTAYOfabFadXG5xaDXCuPrnV0Upgc/8InhSHitEUTj1n+PMtJRxqr0hLRTrv39d/5vJOk8yzP/bHNkVFM/Kkhdg1KgW+9rWYT3Sd8/dsoh4WUk7eS094bgRlwqg+3ZVU44GUflUh/rRzkybvZbrf6UGrjypz1OG2VABBJL4lcZugv4rPU5nmIjJS6syTMB2L6MD4AF+Vguls9aDMT7Bz7o5gZYNiKAyOcuuWoAa0wY0HRNaKF8b8Z7QV1WREubuDz/NasEMRzCaEa+9tKv9h4zsi4bWbhpefSbh6p8Q7z4UzEUvdb/9Ha8TiHn9QDy0bkdz+sOG9ZzTNyUtLWYrvQLcVLRzj+x0pZ7VWlPMmYR3OVtiqoirmfRf5RkrSi3HW4ooMPx2K1E+jg649Cnw2XSQ77z1+9xZOawjrgcbShvB0Fxf6wX8mFQREL34ONxkKk+LTDdK3XmfylT8Fo9CtFtXhAb6qiC9cQj0ioPHdsdwzrHZn7A4Us8mYvAwIA4vxBc5rIjdhI9rhS7drLnW2Qlo1yW2CtVC6CEeAB1JVkQ1z/tfoMlbFTNV5CtXGyXmM7c0JKEPgZ3zrG4If00EDEzUI/RTD/DNMUUEHwnox6RB0yI6rwBUERtGJC1QtM+a8pSpywigWQLlzuKpkOj5gcCDyXM1mkzg0dGsSd2g0nSTCIwgAYzSusuhyhrIVaVHSwHE0L/FUfsD21U1GVqOB0FUEriTwlthXhN7iUYSuOqaj59kLe0yCY0nPe5JsQlCVFFGCdpbOcJflw9vYIMZvbuOVZvD6Wxz2NmhdfRvlLDhH++YtlBPetqpKyjCm7K8QrT9Y3vV3RMIDWF8JWV95cFOd00sydTuuQpuXQg2a82z7NSIkLTyD2pqxFUO/JWBka0WiO69rI+c8B8OMsnS0mhGNOFj066q7ZbeVGDCrui+jtBGnsPkRQCnswSaqxmBJP0ZJz8W5o2ZvOpWGc10iQ82ZPCYhpJfWP9TvRmmN6S5RHuwz/M3/AzseYccjkvOXKDbvyO3JCNNqE5+/hK8q0nfeEjeq5RWSJ5956Ng8pRSvPBtyc09h8gKjHaUNmOURS+0U60ztcSwJrxsdMip6OK8JTYnRGYEuFyeulWQPpSAgR1GAN6AMhoJSdWj4LQyOkg5eaWIvia9ULbQvRGLMe7zLUT6BWooLmws0SAVU+YBRYYl1jvcVxoQi+FqWRCbA2YqySInihqhklwXNZpOisotEVFpHWlQLGiNA7EucF+BoHBhcZbFAgCfRUOFZRdHQInDRKyd0bYryktILHTA2DRKX0/AlhZK0kRR7vKXP4Gr1nO54jySTErQ1PUA7i7aWwFWoEsooQXlHdLhHY5LjwhBvGnitmV18knh3G13kuHYPGg3ilz/zwNfFd0zCexgRHfvtOC+DjHmPZppJb7Xd8OyNjsy3x5lM5LpNUJrFovO1g5lWiqKyqEy+TEn9JmHSOsazVYKQ14aw0aKYTjBRBIXg8bQxhNosAKfz8NkUV+a48SE+HeGoTYS0OaGIonsrQgHIptBo33dY8X7h8pz9/9f/g3JwiB0NKfd3KXd3aX/28/hiTQClP/CDoBQHX/p/k129vPAucEVO61Ovfuj3/LDx6me+l6/dOsQ5z/7Asr1foRWcP9fn0tmIl55+idNroTAbrOLtWyd/n40IVnqaXkvRaR7Vml+7JjAl62qXshzCZI0zy7JBOg9rXXG4qxysdc9jtK9LWSlNs8IRR5o0h7zmXy+1TuOcpR2L8vF0VlLWU3y8JwwMjZqSmKVjqiLjL/3ID1EVuZSmWmNMgI5ivLVU2Ywym2GyMbrmxFLlIkDQ6Mpz8hlozQag4iakU1QulYP3Hjc5RLeX0L1VoSSmU1S7C0WOtxWXnnqK4NKnwDmy136X+QZiD3bw2QzdXaK8IfaeurdMleW4sINZE0SADkN6P/ijjP/oy1SDAdXgEFcWtF/5LO1Pf44HHY8T3geMND8JJQDxN4jCeytCWcCidNFsBORlPbDwYAK9EA8oS7tIeNoY9icpgdY0esuL01gQJZggEqCxOLzIl6bMseO73hhZoEoh/ZqqgLglMkRzAUetUZ0VARZ3vv3eWrG9STUaUI0G+OkUHYSUezsUt27QePYFWq9+DqU16fWrpG+/Dh58WZLfuIZpdx56wrPWc2urYJbaBTtOKU8ci+SWUop3buZcuyPlYxIbdBieEHZY6YmBOwiU6Oa242DsmRSKymkmmQwsAi2n/q0BrHelIlBK0YgUxnjOr8DOiIWdp1JKBGyVIgpkmKEBays5mcey3mZZKYBoRCk5PPZttVVBIwqoamVjVQs2RK3ukQhEs00+HmJxMBtCkaJchXUeZR34ChVJ/xVbieCDc0DN3kinMtwa7sm1B6EYO6UzgbhEMQz3cNvX0OsXTuI/nZMJcLOD7i3hTIBudyGwmGPOeq4sqQ4PaH/2e0gvv0mwvEK4tv5AJ7PH43HC+4AR3qcCi+rJ7d0Dk/gYoLTTjNFKMUkL8twSBHrBsjD3ARdXtb3e8VBaY/TJXpgKY1Srj58O6guM5dSWSkmhlBJRzyhBXziNH+0JgLS3cl8WxYcNFYbopInPxBVNBYHY8J0+R/fP/7CYPwP2YE+UVoq6hHbuhCz9wwjvPV/67RHXNwu0UmztlxilWOkFLPeFnL+9V3LuVMS8ss5ySyswzEW+Woni1LJa2Clu7nu2DuVTDpTHW4dClFisk9lPXsqp79yKJMAoEFGAKJBke3yRtGJBgYSBopPIxqmdI4zls3NWRGF13dowkSIMBHeXxAGhViy1EspshlIi7S7afiXBsc83ancpjcZmE3yRyvRUaXwNKHboRb8XBaq1LCfBw20Roag9jn2RQrvmXaYTMWUPG9iiwN54m6h/iuDUOarNGwDoTl+Sd831VkbsQI2ucHebCLVaIi32CE79jxPeB4wolCnt7gjwAk1Z6bLwsD2Y1HCDaI6wP0p6rYb067K8IitkeBEYvTjdfbthuiv4VhecQ4WxYLDGBwJDqUMlMoGdK6F8lHB5SnXjMm42QbX7NJ57nmJ7EzcZo5pNGs+8IM5TxxDyptsjOnWW/PYNsA4VBLReffClyvHYG1QLEHoUKc6uR5SV59XnGowmFueh01SEd8GUksjTaSuSSHF6RXFzx7F9KAlvPPO0G5KMtIJew9NrS083L0EFAj9aFnM5nrxruNhrKg4mRxlv9f/f3pn8xpXcef4TEW/JnclNJCVRS7FKqtUlLwVUdTfcGKPdRsPGHGx4Tv0HtA+++OaLDz7Uwb74WDAE2IeCL7YPXupYM7APxoynF7hcLk3JUonaSYninplvi4g5xMtMJhet3Fx8H4CAKDEzQ5mPvxfxW77fuqSaz9z6yrmZrbWUGyEj9zQWzvWum7etVQJCX2G0ZqjigprJUkzWRnoBUklXkd0Q8IQQqKiFKJVJhcx3+u75RFBylV8vcP7E9REnPDo65Sqy7VVXFMsFCYjaztFMedgsQS8vIZSrvsYf/Tvhy593Tcdt12hMlpLeuIoIHhCcPe/6ALUmXlrFopxz2cw5ZKmMiTr9tpc9zO/uihH3T37yE37+85+jlGJkZIS3336bEyd2X555P9ggKbaFY0Nu6iIzro+q+3PlwF202li0Ecwtw2TTtZtYa2l1UuLUHa3KoUcQqE2GPE+PUH5PeVRIiagOoe/f7JmybPYBfRKszkhvXMWsLCIq1dxf1AUSuzhP5cwZys/9G+sf/Ac2cd4G/sTLA89ROjODXnMyUdZoqp/5HOHUswffhy+cgd2UUuD7bkKi2XAtTC89V+Lj2binrdjqgAokncywsOxGueLEqabUK06kUyCo5W9n6MOrZ10+78o8KAMjDTePbezmBbmRQ19ZVtvOD7mTWIyVNMr9iZxyySNruSZ0pST1aojtFh4Cr2fvafIet57KtwCBwQsqPYVkuUFo1cZtbJblqir5m2M0VihkfQRVqoAA21rFaI2QCtkcczJkq4sIE2FFNxUAcuw4eu6G2wlWAkS9Ccag793BP/0CstY9spbxJk/2FFjABbPqiy+jJqYRvodeW2Pl9+8T37qJXl0hnD5FeHaGyvlXBm6cu8WuGHG/9NJL/PKXv6RcLvOzn/2MH/7wh/zoRz/a9cXuJesR3F2ERDun+BOjrviwGd/rCbL3iFLXjNq9cLVxzzdUgSjRxHmTl7XQzics9gJrNHZ9qa+CYTR2fcWpXjwF2c1PiD743+j7ziBZ+AHhK/3dmV1bovT6W1gsrT//l5Nwvz6LEJLKeRf4hFLULnwe+9oFlz/cB4mosWGP4+M+t3NrRikF//RmjUZV0Y4M4yMejaqiVpXcuJOQGfBDJx+9suaC0lrL5cwy7cbBGhvuG4EHZ6dcLrZWhpMj/VGyOIXpbQRlrLUst2Cp5eZplYBGxZBpwWg+r+spSbMeunYS6Z6/O2a48X2z1lINfaQQWKMR0scrVTaoSW96j/3A9cEZ49zHrMlNWySq3nSz1FmK1alTTMFidAp5QcNG7bwKLF0lrpwiRicRInAFr+7Ne5uPVg4NI7yg34iMQI1NoCruDV378E+ky0uk95xRWOfKZTrXrtL+yweUZ85Rff1zjzV/+7jsihH3m2++2fvzhQsX+PWvf71rC9wPjHVjQF2dzbWOM1Oeesw4sd0d3VhXuNhO1l0by8N27WnUJuuqC7uOZYSQeOXqwHFl6wOTgbEvwElAPQV6aYH2//mfZLevuaOG52PWltBLD1DDToW2K/We3Lg2IPIY35il/MKLA7nI/ZSIEkLw3/9bg4+uxiyva54/FXB8fOsvTaOqePWFMsvrhvf/IyPJLKttQ+R6X0m1ZXnd6euVQslrz0lePCX7asbr7u0eqUE7cUWt4ToDwbFLO3a7uvWOM+axEuLUHY9Hahs8YoUYGC3sVnXbUUqaOVEJmUZ40v2c1RqkdZV4XJFLbnqvVWPM9U0qP9+pCYSQCOUhtJu0sICsDfeDZmcdUa7i1UfQ924ikg4it3C0cRv1/OsQ3nUqKOCk/Me3nuqE8ghe+ix6Lj91jE+5IIvrLdWdNqbjlD1MmpAu3CecOoGJItIHC0RXLlN56dUn+vwfxq4YcW/kF7/4BV/84hd3Z3V7yEap9STtB7sunXibB+1AOXC7wW5sE0A1zOcjPdnb4XX/bUclFAFDlZDO8kLvSJIlMX6pgpCWpLWG8ryea9gWcq28jUFP+A+XdNoOE7VJrv7FHWGNwcaROy6Xq86Um1xNZTq/6W1KQu+YE9hHPE/ymfOPJ/s/O2doVAULKxZjnJbh2JDzno1yk6jxIcF6x/JgFTKT59e6JuyCnlnTUDm/lsTgCSHJLCttS2pcf1xXkUUKtux6u6ISnnK7vHaUEiXuGkozjV5dRfohmbXOJ0IKgnIN5fsD+ohdRFDCmz7v7BPTGGE1VmfIivOKEEohjDfwOQrp+gy7/2693LK0MoTwQ1RzAtWcQC/dd7JTw+M7yofJUhl55tzWdSmFPzyCjiKy5UXSBwuYdgsbx1RH3TY5W13Z8rhnYVeLFr/61a/48MMPeffddx/5s09jxL0bpJngznKZKJGEvmGyGRF6hvlWA2P7H3jNj4iXHn93ZKwgta7D3Rcp6/c3qJ+gsN2Lx2bMs32VsqwEoRIsLy3mj3MBUq+ukWssk87Nu8raDiidEKZthDVkKiReikHMDfyMMBovWnPtDmENu8lYR60s4N27g/JKBNpV86ztYOpN2sMn0OVR1yx7bdat0wq4e7f/BCdPMffxx49+0/aB+8uCe0tONXhqzNCsbd2OX7lVZ7XtE6USbQQeApNokkxS8SyeTVlf0awuC+4/8CmHubE0ltBLiTIXZEKVsrJgaGehu+n5MUMld4No6zItXUdbgbZuxtd0WsTeOqv3st5aLBIr+kkTYVOsyL2PcdqKZRth8rvr2nobi2FuNepdIzsRxJp6tObkrawlTZcwcg1pNMokZMIDqUi9kFT6lFbuIUyG114l7Kw6hWMgro6wrvObSZa6QLn0kJlXnSHSBNuVLtuADavY9XXn9ZxlICRZ3CH+f5cgc8d1sYtx4pmNuLv84Q9/4J133uHdd98leIxxoqcx4t4NLl3XNFX/oleh4OUZxZkY7i65PEyj7I6zu1RXeCyMzli5dwepJI1GnvTNKyheyRn1AJSGRnp/fhqsztDXL7k2FgBlUadmBmZp9doyidIwNUVaDtELc8jGMOErn6f0+ltbn/Sll8gufJZs8QFqqHlgCikbsdbyyc2EhdsdGkMKqaBt4PWzVSqlwQ/2xlpCKp0mjM1nm09PSqLEsrBsOT7mDJg6CQwPuTnWOHVV2VNjbuLGWCcYe+M+NOj/Xp8cd0oqi+uGlbYlTixR5tRcRmoVxhqTNDY0NS+tRnk6xKGk67uM4owk0ySpRmUhaWcFX0pKYUi5Xqc+NvnI/Gg2Pwtmg1l23EZWm5i1RYRXQ1bddSebE8hyzU3stFbQc7NOMSWJc3vOBurMDNnsx+j1RRAS7/gp/ONntr7m/buk1//qxh9lQnDudWR58MzfqVdYSTpkS67pWK+sIGs1mudfpPHWF584HbKnRtwAH330Ed/73ve4ePEio6O76zK027SiwTt8O7ZoY6mEgpm9t0vdke5sa6YN0vMxWYr0fLxS2d23RX/64lmw68sDY2XoDLu2iBjp/+d7jvHzt/BPnyO88Peu+vaQqpnXGMLrBupDwJ8+jvjL1Yi5hRRjYGY6oFFTLC5nVCb7wT1JLY2qyKuyljCQHGvCmSn3eRhjub/sAtjxccnCmmBxtZ81qJVgzHUGcf2em8AQ0gW5WuiKGPWyq9K2IjA+RJl7HaWcqU/gQSnId3CbcrDGWKplj9V1Z97k+vIkBo9Ua4TyH+uasNYO9D+KoIRUvuvnLFWdB3H3Z+MOlGsujVEfxi7OuceX+wPl+v5t9ErufGcN2e1Z1PA4coMCt9UZ2Y0ruU4f2CQmu/UJwQuDOTl/fCKXIVtC+gFy/Bil515wzeu7nPvdFSPuH/zgB7Tb7Z5X7dTUFO+8886uLnS3aFQEixsk32tl8Uh9vGfB9d65I0sp9Hq9d3GS9fI0ge96kuI0Y6RWdsFOeVRGjj28SPE0bLcL2JyDA/zpGbyp04DdIgl12Fle0ywsZ7QjzeKKy31d+iTi/JnSFpc7Pw82w3XoHhvDAOYWLZ3Y0qwJzk07wVhj3CmgG5MC350IUu1GzLo5XGtgteXEQGt5HAk8weSwK4Zp4+TGujuyOOvPa6s8Z2fzP1dLPl3D9nx4gaQVoa0kyVJK1Yqbm83l23fCRutY61RKnEk7yKExV9HX7gZok47TSRQSq5uu5QkQzXHs/I3ec4l6E7NNktt2WrAx4GUp1gwmx22yNU3k1Rs0v/QVVn73PunyIsGxSaqvXdhVP9reaz3ODz3KiPunP/3pri5qLzk7JQHDastSLYv8+70hzTStqL+banVSPClJNjhQgaakLZWSh68U7STFC8u5EXLixnd2EVFrQjDveqgA/ACxg8yU8DysMaR3ZhF+CW/8ALfAT4DWLkcVx5ZSKIhiF6G6fXgbEULw/AnFJ3c0ncQZ6rQi0xsjXFixKGk4O6WQEiaa/ambML8PWOt2coHnjrdd4ZvRej+QgevVHK1tr7UI7uaotSHLDKk2BJ4k8SSB75qPuxu5IAiIozU3VZFXRjZXZgfej7VF7PoSdGerMcjmJDLfsYlyg+zeLDbuIEquX1I/uIsan3avOzTmJitaK4ig7PxQlhfQDzbkhqVEbmp/kmEZ4QfoxfsQBMiwjBwe33aNwcQU4//jXzFJ4oooe1TVP3KTFr4nODe9Py0Saba1OJFq3VNP6RInGSVf5H1X/YvXZNmWxz8rQirUqRfd0dZaRK2548VlOm3a/+tXvdYDNXmSyj/8S29nEs1eJbp2FYDS2RlKZ2bI1laJr1/Dak04fRp/l42UH4fhhnKuZcJ5zdqa5dRUwPjw1p1qkhrS1PDKGZfnyzL4z78OHitXWv3vR2pOOKJLvewCXa0EKy1Xea2EbiM92dy6tlIgaFZgtZOrtJRF7zjbSTLX4iRcdd9p4Tkh0FoloB05/cSwWqUTRQSeyyf65aobF8sVU0yWYa1LjQghnOsY+Y4yKIEQvWBn09hp4AnpdvI2j/Q6hSzp5XpldQiq/ZSFGjmGn6WuR1N5+CfOIjalPPTSAjbqYJMI21pFnT6HN3XqoZ/dXvsWH7mAt59s137iKdmzz+viHBTVQKsM4Hwn9gAh5Y67uo3El//UC3YAeu4W8Z//L2QJ2doqnbl7qKZrH2h/fAlRrtD+8E+uqx9I5+9Sf/Mf9j23J6XgC69WSTXcmksYqitKoeTU1OD7efd+ykefRE4H1QqePx1y4pgi8Pp+FODSHl0aFTgzAWttt8Mbyk9wzarrw1tqOTGBY0Ps2GvZqIheoaKTWOaWjAt0xm6a2e6+ru0pHndZaceuNWZoFB1HRCsP8v+H64kRea4vrDVd78vGk+WGFIbprAPWyY8J4ZrV08Tl9B6RG/SOncA7tvNEVXZnFpTqWX3aNM6bn/fXtnMjRcDbQwJf9WZoweXwfE9RDi3rnf5Rtxy6O/FKO6ZWDnpqtpstGPcb2+kMfp8mpLeu4o1Pka2sYJYfIIMSIm9Ajj+50gt24BLlyd3bB1LMCHzBP36hxr3FjLWWZrihGBnaMG5lLZevO3vM1bb7WmylPLcqODkumV8yRAk0qoJTxwZvXNXQfW32WhpruK/HRZtBaTGtPQQpSkq0MfieuzmGO8xcO8FqTZILRlhjnBxUEKI8H2sMWdzGq484r9kcWe/f7IRwTmmiVOnbAQiJzOdqnwW7SSTCphnxzeuIICCYmNp3v2IoAt6eUyn5lPMkTfcoGAYenpKkedGiuxPMjGG5FVFu7mx2vZ/4Z14gu3VlcC616XIwquqCsUkiVB7w/LHxLY2i8hFetnvNsRGPYyNbL3NjIM1co/FqJ+9xzJyI6/K65cLz3pYd90bml533sBDOqP1J5f/B5f02xkylFJ4vqIUWbS0yN+/ZqVEdXDtTn1x70Wi6A5DWWGStgfBL2CRCBCHC6x8bRaUBHdeTKWvDoHzU6PFdOV14EydcSwouPdO5fRcWlrFZhj82ztBTtJw885r29dWOKNv1Ryklt5WHOkz4k9Pw1j+TXrsEXog/PUN25xoAXqNBePwERgZI3yc8M0Pp7Ax6fY3k3nz+M0MEJ6YP8r+wLVlmmb2TsLquiVOLtR4CwVAtV5/Oj387Bbu1jlNJAbfLurfi8nabvY0fhb/Nb18YKMqlx+8acIHJCZQJqZBSDLSpqCBE54IPslzbci26kbBpZ9cpJCIsP/G8c1/2fRDv2AlEUMKsLhIvPCBrd8hu3gQLye2bhCdPUd4j3budKAJewUPxT5zBP3Gm973wlNM8s1D7wt9tSULXPvuG2+UZjdc8+Abk7fjzXyMerGTUKop4OcOXMDLsMZJXcMebD/+F7yTb/90TBzwlGK7CStups1RCJ1zxJEipCKt10nzAvzQ05o6pxiD9gCxq93aBUnmE9ebWoCckIvdDeRKsMaQ3rqAX7iKUh3fyObzxQW9j1RxFNUdJ1jtkCwv9x8Yx8Y3rRcArONx4EyfxJjZZ8mlNfPM6em0Vf2ycYOrwSYNpbblyM+b+oubqrZiJEQ/PE4yPeIS+ZOZ0QDu2DNcEo0MP33lXQ7i/6e8qT9k9VC8LaiV6TcVPgwpC1DbtS1kcDRx5jc7QSYy3S2kGvXAXff8O4Hru0tnLyHozbyLetMYhlxO0+XqE72+ZuNgPioBX8My0/vxfJPOuJyu+c4tKHO2ZRPfTcvl6zO17KdZAq224naWcPu5yWZWS4PjY46cXqiWYHHY5PHCFiqcNeOBSHnvR+r7Z88T93RNY1D0Cs77ZY8Bi22uwTcALJ6eovPwqyfxdp+A9NEzp5P6nO4qA9xAuX77Mx/s4BP/ggRvV+c1vfrNvr3n+/HnOnduqZPG4mDTpBbsu8a2bhy7gLSznOwvpChlzD1K0sZR8yfOnnjxajdbdV5fDeK1IIRiplXpHWGsti+vRlvG1x2XztSLrQ4PNx0JsEP8cRChF4+//keiTK5ioQ3D85IGcBIqAd4golx9PzugwIaTKXew3SGDtgVLts1ItSeJcYqnZUIw2FZ85V6JZ91Dq4OWsnpTHuVaMtSy1Ikp5dcQ1Nu/eDs8bn8LGHdd87Pmu+fghk0GqUqX66t77VjwMYXdzj/sEXLp06UDUUgp2n+jaVdqXnUKFkJLa597AH91+hOigWG9rPrgc0Y4MgS94ZabEaLO4338aeVhsKT7xgmemdHYGf3wCvb6KNzyKDHdZ8GAXqFUUf3ehSicyhIHYseWk4NNNEfAKdgVVq6FqT97asN+US4e797Fgbyk+/YKCgiPDge3wDkrivaCg4NNNHO9sSHNgRYuCgoKC/aY40hYUFBwZioBXUFBwZCgCXkFBwZGhCHgFBQVHhiLgFRQUHBmKgHdI+P3vf89XvvIVvvzlL/PjH//4oJdTcIj57ne/y1tvvcXXvva1g17K3xxFwDsEaK35/ve/z8WLF3nvvff47W9/y5UrVw56WQWHlK9//etcvHjxoJfxN0kR8A4BH3zwAadPn2Z6epogCPjqV7/K+++/f9DLKjikvPHGGwwN7b8x0qeBIuAdAubn55mc7JtcT0xMMD8/f4ArKij4dFIEvIKCgiNDEfAOARMTE8zN9ZVj5+fnmZiYOMAVFRR8OikC3iHgtddeY3Z2lps3b5IkCe+99x5f+tKXDnpZBQWfOgrxgEPC7373O95++2201nzjG9/gW9/61kEvqeCQ8p3vfIc//vGPLC0tMTo6yre//W2++c1vHvSy/iYoAl5BQcGRoTjSFhQUHBmKgFdQUHBkKAJeQUHBkaEIeAUFBUeGIuAVFBQcGYqAV1BQcGQoAl5BQcGRoQh4BQUFR4b/D/G3BCA5EavxAAAAAElFTkSuQmCC\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(5,2))\n", "sns.stripplot(x=y, y=predicted_prob, hue=mean_fd_binned,\n", " palette=\"coolwarm\", alpha=0.4, jitter=0.4, dodge=True)\n", "plt.legend([],[], frameon=False)\n", "sns.boxplot(x=y, y=predicted_prob, color=(1,1,1,1))\n", "plt.savefig('../data_out/fig/abide_motion_comb_stripplot.pdf')" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:20:35.822321Z", "start_time": "2021-08-01T19:20:31.578789Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:01<00:00, 906.33it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.028\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.002 (p=0.64)\n\n\n\ny--yhat\n\n0.111\n\n\n\n" }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(partial_confound_test(y, predicted_prob, mean_fd, cat_y=True, cat_yhat=False,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_motion_comb_partial')" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:20:39.928951Z", "start_time": "2021-08-01T19:20:35.824981Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:01<00:00, 503.86it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.028\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.002\n\n\n\ny--yhat\n\n0.111 (p<0.0001*)\n\n\n\n" }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(full_confound_test(y, predicted_prob, mean_fd, cat_y=True, cat_yhat=False,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_motion_comb_full')" ] }, { "cell_type": "code", "execution_count": 44, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.001963925089027347\n" ] }, { "data": { "text/plain": "0.187" }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cont_cont(predicted_prob, mean_fd)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cont_cont(yperm, mean_fd))\n", "(nulldist >= unpermuted).sum()/len(nulldist)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 45, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.11138396090241687\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(y, predicted_prob)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cat_cont(y, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Combat on site" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:23:08.544003Z", "start_time": "2021-08-01T19:20:39.931634Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "model\tinner_cv mean score\touter vc score\n", "cv: 0 {'model__C': 0.1} 0.7501508477118233 0.7290562036055144\n", "cv: 1 {'model__C': 0.1} 0.7358902020487387 0.7576882290562036\n", "cv: 2 {'model__C': 0.1} 0.7447366355902941 0.7026595744680851\n", "cv: 3 {'model__C': 0.1} 0.7346093044263775 0.7696808510638298\n", "cv: 4 {'model__C': 0.1} 0.7258576084795597 0.7973404255319149\n", "cv: 5 {'model__C': 0.1} 0.751687881261052 0.6675531914893617\n", "cv: 6 {'model__C': 1} 0.7394399626106943 0.7913043478260869\n", "cv: 7 {'model__C': 1} 0.7423432578920385 0.7369565217391304\n", "cv: 8 {'model__C': 0.1} 0.7492881383125284 0.7266304347826087\n", "cv: 9 {'model__C': 0.1} 0.7345418589321029 0.7728260869565218\n" ] } ], "source": [ "outer_cv = StratifiedKFold(10, shuffle=True, random_state=42)\n", "inner_cv = StratifiedKFold(10, shuffle=True, random_state=42) \n", "model = Pipeline([\n", " ('varthr', VarianceThreshold(0)), # omit zero variance columns (diagonal)\n", " #('fsel', SelectKBest(f_regression)),\n", " ('model', LogisticRegression())])\n", "\n", "p_grid = {#'fsel__k': [500, 1000, 2000],\n", " 'model__C': [0.1, 1, 10]}\n", "\n", "clf = GridSearchCV(estimator=model, param_grid=p_grid, cv=StratifiedKFold(10),\n", " scoring=\"roc_auc\", return_train_score=False,\n", " n_jobs=-1)\n", "\n", "all_models = []\n", "best_params = []\n", "predicted = np.zeros(len(y))\n", "predicted_prob = np.zeros(len(y))\n", "nested_scores_train = np.zeros(outer_cv.get_n_splits(X))\n", "nested_scores_test = np.zeros(outer_cv.get_n_splits(X)) \n", " \n", "print(\"model\\tinner_cv mean score\\touter vc score\")\n", "i=0\n", "for train, test in outer_cv.split(X, y):\n", " \n", " comb = CombatModel()\n", " X_train_combat = comb.fit_transform(X[:,np.sum(X,0)!=0][train],\n", " np.array([site_int[train]]).transpose()\n", " )\n", "\n", "\n", " clf.fit(X_train_combat, y[train])\n", " \n", " X_test_combat = comb.transform(X[:,np.sum(X,0)!=0][test],\n", " np.array([site_int[test]]).transpose())\n", "\n", " \n", " print('cv:', i, str(clf.best_params_) + \" \" + str(clf.best_score_) + \" \" + str(clf.score(X_test_combat, y[test])))\n", " \n", " all_models.append(clf.best_estimator_)\n", " best_params.append(clf.best_params_)\n", " \n", " predicted[test] = clf.predict(X_test_combat)\n", " predicted_prob[test] = clf.predict_proba(X_test_combat)[:,0]\n", " \n", " nested_scores_train[i] = clf.best_score_\n", " nested_scores_test[i] = clf.score(X_test_combat, y[test])\n", " i = i+1" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:23:08.752532Z", "start_time": "2021-08-01T19:23:08.546076Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "** Mean score in the inner crossvaludation (inner_cv):\t0.740854569726521\n", "** Mean Nested Crossvalidation Score (outer_cv):\t0.7451695866519257\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAACaCAYAAAD/7BC/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAe10lEQVR4nO3deVBUV/YH8G8LsjkIYqQhCTpoJKJioaNofiCMrURlEUHaJUbNlEtEcdwScMUdt6jRGAFLB0uUOHFBVHCJIOAKcRtUzCQuCC604wo20kBzf38wvKGB5jUNvdCcT1Wq+u3nkNTJffe9d6+AMcZACCGkwVrpOgBCCGmuqIASQoiaqIASQoiaqIASQoiaqIASQoiaqIASQoiajHUdQFO5efMmTE1NG3SMTCZr8DH6inLRP4aSB9Cyc5HJZHB1da1zm8YK6MKFC5GWlob27dvjxIkTtbYzxrBmzRqkp6fDzMwM69atQ48ePQAACQkJiIqKAgCEhIQgMDCQ93qmpqZwdnZuUIx3795t8DH6inLRP4aSB9Cyc7l7967SbRq7hQ8KCsKuXbuUbs/IyEBubi7OnDmDVatWYfny5QCAN2/eYPv27fj5559x8OBBbN++HW/fvtVUmIQQojaNFdB+/frByspK6faUlBSMHDkSAoEArq6uKCwsxPPnz3HhwgW4u7vD2toaVlZWcHd3x/nz5zUVJiGEqE1nfaASiQR2dnbcsp2dHSQSSa31QqEQEolEFyESQpqp+Mw8JN58Uuc2j4+M0FS9EQbzEEkmk9XbV1GXkpKSBh+jrygX/WMoeQCazyX590KkPXjXZOe7JSkBALgIzWptKys1a7JcdFZAhUIhCgoKuOWCggIIhUIIhUJkZWVx6yUSCdzc3HjPRw+RKBd9Ywh5VLXkiouLYWFhobHrZD58BQDo72jTJOfr72iBANeP8EX/jrW2NeVDJJ0VUJFIhH379sHX1xf/+te/YGlpCVtbW3h4eGDz5s3cg6MLFy5g3rx5ugqTkBan+u1vVWGrqyXXlPo72igtePpMYwV03rx5yMrKwuvXr+Hp6YlZs2ahvLwcADBu3Dh4eXkhPT0d3t7eMDc3R2RkJADA2toaM2bMQHBwMABg5syZsLa21lSYhBis+voB61O9NVhV2Hq3lTb71rQmaKyAbt68ud7tAoEAy5Ytq3NbcHAwV0AJIcrVVyTVvS2uqzVoKH25Tc1gHiIR0pJUFc76imRzvS1uTlQuoO/fv4e5ubkmYyGEqCA+Mw+LEm4BoCKpa7wF9Pr161iyZAmKi4uRlpaG3377DQcOHOC+HCKENB1V+i2rWp2RgS5UOHWMt4CuXbsWu3fvRkhICACgW7duuHr1qsYDI8SQKSuUqvRbUqtTf6h0C29vb6+w3KoVjYJHSEPULJjKCiUVx+aFt4Da29vj+vXrEAgEKCsrw969e9GlSxdtxEZIs5b8eyGWZ1wGULtgUqE0DLwFdPny5VizZg0kEgk8PT3h7u6u9PUjQlqy+lqZVDANE28BffjwITZt2qSw7tq1a/jLX/6isaAI0Xd19WHWbGW6CM0w7v+6UtE0YLwFdPXq1UhISOBdR0hLUfM1oio1W5mV31xT8TRkSgvojRs3cOPGDbx69QqxsbHc+nfv3kEul2slOEL0TfXiSa8REaUFtKysDMXFxZDL5ZBKpdz6P/3pT9i2bZtWgiNEX9T88oeKJwHqKaBubm5wc3NDYGAgPvroI23GRIjWqDrgRvX+TXoYRKrw9oGam5tj/fr1uHfvHmQyGbd+7969Gg2MEE1Q9X3MmqhwkrrwFtBvvvkGw4cPR1paGlasWIGEhATY2DTNoKeEaEJDRiiiwkgag7eAvnnzBmKxGHv37uVu60eNGqWN2AjhpcrrRNVRwSRNibeAGhtX7mJra4u0tDTY2trSNMNE5+obzo2KJNEW3gIaEhKCoqIihIeHY9WqVZBKpVi0aJFKJ8/IyMCaNWtQUVEBsViMadOmKWyPjIxEZmYmgMpJq16+fMkNVOLs7AwnJycAlZ+TRkdHNygxYljq67ukYkl0hbeADho0CABgaWmJuLg4AJVfIvGRy+VYuXIlYmNjIRQKERwcDJFIhE8++YTbp3ohjouLQ05ODrdsZmaGxMRE1TMhBiE+Mw8/XXoKi4w3Cuup75LoI6UFVC6X4+TJk5BIJBg4cCCcnJxw7tw5xMTEoKSkBEePHq33xNnZ2ejUqRMcHBwAAL6+vkhJSVEooNUlJSVh1qxZ6mdCmp36+y8VZ4Ckgkn0kdICunjxYjx79gy9evXC6tWrYWtri9u3b+Obb77BkCFDeE8skUhgZ2fHLQuFQmRnZ9e575MnT/D48WMMGDCAWyeTyRAUFARjY2NMmzZNpWuS5oGv/9LNrhXmB/TXVXiEqExpAb19+zaOHTuGVq1aQSaTwd3dHb/88gvatWvX5EEkJSVh6NChMDIy4tadO3cOQqEQ+fn5mDRpEpycnNCxo/LWh0wma/DEVyUlJQYzWZY+55L8eyHSHrzjlm9JSgBUDrbx185/go9TW4X99TmXhjCUPADKRRmlBbR169bcwMmmpqZwcHBoUPEUCoUoKCjgliUSCYRCYZ37JicnIyIiotbxAODg4AA3Nzfk5OTUW0BNTU0bPO1q5WAPhjFVqz7moqyl2d/Rot7bcX3MRR2GkgfQsnOpr9gqLaAPHjyAv78/t5yXl6ewfPz48Xov6uLigtzcXOTn50MoFCIpKanWsHgAcP/+fRQWFqJ3797curdv38Lc3BwmJiZ49eoVrl+/jilTptR7PaJfaOIz0hIoLaDJycmNO7GxMSIiIjBlyhTI5XKMGjUKXbt2xdatW9GzZ08MHjyYu46Pjw8EAgF37P3797Fs2TIIBAIwxjB16lSlD5+I/qj+UIgG3SAtgdIC2hQDiHh5ecHLy0th3ezZsxWW63ry3qdPH94WLtEvNVuc1OokLYHK88ITUhO1OElLRwWUqIVanISoWEBLSkrw9OlTdO7cWdPxED1GLU5CFPFO8J6amoqAgADuKfjdu3cxffp0jQdG9Ed8Zh7GxFzGooRbCq8kUfEkLR1vC3T79u04dOgQJkyYAKBykI8nT/hH8CbNW12tTbpNJ0SRSsPZWVpaaiMWokM0pzkhDcdbQD/55BMcP34ccrkcubm5iIuLU3jpnTR/dU3TS0WTEH68BXTp0qWIjo6GiYkJ5s+fDw8PD8yYMUMbsRENo5kmCWkc3gL64MEDzJ07F3PnztVGPETDqG+TkKbDW0DXrVuHFy9eYOjQofDx8eFGiSfNh7KiSYWTkMbhLaBxcXH4z3/+g5MnTyIiIgJSqRTDhw+n2/hmoK7RkKhoEtJ0VHqRvkOHDpg4cSL69++PXbt2YceOHVRA9RyNhkSI5vEW0Pv37yM5ORlnzpyBtbU1hg8fjgULFmgjNqKm6sWTHgwRojm8BXTRokUYPnw4du3apXRAZKJfqvo7qXgSolm8BfSf//ynNuIgTay/ow0VT0I0TGkBnT17NrZu3aowCn11NF6n/ql6aJTzrBDd7dvyH0AIaZR6Z+UEgOjoaLVPnpGRgTVr1qCiogJisRjTpk1T2H7kyBFs2LCB6xr48ssvIRaLAQAJCQmIiooCAISEhCAwMFDtOFqC5N8L8cPlBwD+99CIEKJZSguora0tACA+Ph7ffvutwraNGzfWWleTXC7HypUrERsbC6FQiODgYIhEolpTc/j4+NSaUO7NmzfYvn07Dh8+DIFAgKCgIIhEIlhZWTUouZaAviYiRHd4h7O7dOlSrXUZGRm8J87OzkanTp3g4OAAExMT+Pr6IiUlRaWgLly4AHd3d1hbW8PKygru7u44f/68Sse2JFVP2zMfvoKL0IyKJyFaprQFGh8fj59++gn5+fkK/aBSqRR9+vThPbFEIoGdnR23LBQKkZ2dXWu/M2fO4Ndff4WjoyMWLlwIe3v7Oo+VSCT1Xq8lzQtfNc961fzqsz77AKKOJjAzkzbLfGpqrv9eajKUPADKRRmlBdTf3x+enp7YvHkz5s+fz61v06YNrK2tm+TigwYNgp+fH0xMTHDgwAGEh4dj7969ap2rJcwLX9eXRVUvyDe3XOpjKLkYSh5Ay85FrXnhBQIBPv7441r9k0BlHyVfERUKhSgoKOCWJRJJrfdI27Vrx/0Wi8XYuHEjd2xWVpbCsW5ubvVeryWoesJOXxYRoh+UFtD58+cjJiYGQUFB3PzsVQQCAW9/pouLC3Jzc5Gfnw+hUIikpCRs2rRJYZ/nz59zD6tSU1PRpUsXAICHhwc2b96Mt2/fAqjsE503b556GRqI+Mw8ZD58hf6ONvjn15/pOhxCCOopoDExMQAqC5taJzY2RkREBKZMmQK5XI5Ro0aha9eu2Lp1K3r27InBgwcjLi4OqampMDIygpWVFdauXQsAsLa2xowZMxAcHAwAmDlzZpN1GzRXVV8X0etJhOgP3i+Rrl27BmdnZ1hYWCAxMRE5OTmYNGkSPvzwQ96Te3l5wcvLS2Hd7Nmzud/z589X6F+tLjg4mCugLV311ifdthOiP3hfY1q+fDnMzc3x22+/ITY2Fh07dkRYWJg2YiP/Ra1PQvSTSpPKCQQCnD17FuPHj4dYLMahQ4e0EVuLVHNyNwDcgyNqfRKiX3gLaJs2bRATE4Njx45h//79qKioQHl5uTZia1HqekWpSnf7ttT6JEQP8RbQLVu24MSJE4iMjESHDh3w9OlTTJ48WRuxtSj0ihIhzQ9vAe3QoQP8/f1x69YtnDt3Dr169cLIkSO1EJrhq367XjWCEr2iREjzwfsQKTk5GWKxGKdOncLJkye536TxqlqdAN2mE9Ic8bZAo6OjcejQIbRv3x4A8OrVK3z11VcYNmyYxoMzRNTqJMRw8LZAGWNc8QQqX3Kv/lUSUV310ZMAanUS0tzxtkA9PDwwefJk+Pr6Aqi8pff09NR4YIaExuwkxDDxFtDw8HCcOXMG165dAwCMGTMG3t7eGg/MUND0woQYLqUFNDc3F+vXr0d+fj6cnJwQHh5Os3KqgWbIJMRwKe0DXbRoEQYNGoRt27ahR48eWLVqlTbjMgj0DTshhk1pC1QqlWL06NEAgM6dO9Okbg1U/dadHhQRYpiUFlCZTIacnBzuiXtJSYnCco8ePbQTYTNUvXjSrTshhktpAe3QoQM3PicAfPDBB9yyQCBQe+oNQ0ZP2wlpWZQW0Li4uEafnG9e+NjYWBw8eBBGRkawsbFBZGQkPvqo8nbX2dkZTk5OAAB7e/tGzU+vSdVfjK9rriJCiOHifY1JXarMC+/s7IzDhw/D3Nwc8fHx2LhxI77//nsAgJmZGRITEzUVXpOp+hyzu31bKpyEtDAaK6DV54UHwM0LX72ADhgwgPvt6uqKY8eOaSqcJkWfYxJCABU+5VRXQ+d2P3TokMIXTjKZDEFBQRg9ejTOnj2rqTDVQoOAEEIAFVqgjDEcO3YM+fn5CA0NxdOnT/HixQv06tWryYJITEzE7du3sW/fPm7duXPnIBQKkZ+fj0mTJsHJyQkdOyq/NZbJZPXO31yXkpKSBh8DAMXFxfizlTGWe1r/d41UrfM0JXVz0UeGkouh5AFQLsrwFtDly5ejVatWuHLlCkJDQ9GmTRvMmjULhw8frvc4VeaFB4BLly4hOjoa+/btg4mJicLxAODg4AA3Nzfk5OTUW0BNTU3h7OzMl46Cu3fvNviY+Mw83JKUoL+jTYOP1SR1ctFXhpKLoeQBtOxc6iu2vLfw2dnZWLZsGUxNTQEAVlZWKCsr471o9XnhS0tLkZSUBJFIpLBPTk4OIiIiEBUVpTDi09u3b1FaWgqgcvi869evK/Sd6gq9HE8IqU6lSeXkcjkEAgGAyoLWqhV/16kq88Jv2LABxcXF3FTHVa8r3b9/H8uWLYNAIABjDFOnTtV5AaWX4wkhNfEW0AkTJmDmzJl4+fIltmzZglOnTmHOnDkqnZxvXvg9e/bUeVyfPn1w/Phxla6hLTQoCCGkJt4COmLECPTo0QNXrlwBYww7duxAly5dtBGb3qBBQQghdeEtoE+fPoW5uTkGDRqksO7DDz/UaGD6pKr1Sf2ehJDqeAvo119/zf2WyWR4/PgxHB0dkZSUpNHA9AW1PgkhyvAW0Jp9kXfu3EF8fLzGAtI31PokhCjT4E85e/TogezsbE3EojdqfqpJrU9CSF14C2hsbCz3u6KiAjk5ObC1tdVoULpWfYAQ+lSTEKIMbwGVSqXcbyMjI3h5eWHo0KEaDUof0AAhhBA+9RZQuVwOqVSK8PBwbcVDCCHNhtJPisrLy2FkZITr169rMx6dq3rqTgghfJS2QMViMRISEtCtWzdMnz4dw4YNg4WFBbf9888/10qA2lJzOg7q9ySE8OHtAy0tLUW7du2QmZmpsN6QCmj179xpVHlCiKqUFtCXL18iNjYWXbt25Qb1qFI1sIghoEFCCCHqUlpAKyoqFJ7AGyoaJIQQoq56pzUODQ3VZiw6Qy/KE0LUofQpfPVbdkIIIbUpLaDKxuo0JMm/F9IrS4QQtSktoNbW1o0+eUZGBoYOHQpvb2/s3Lmz1vbS0lLMmTMH3t7eEIvFePz4MbctJiYG3t7eGDp0KM6fP9/oWGqKz8zDD5dfAKBXlggh6tHYtMZyuRwrV67Erl27kJSUhBMnTuDevXsK+xw8eBBt27bFL7/8gq+++grfffcdAODevXtISkpCUlISdu3ahRUrVkAulzdpfPTwiBDSWBoroNnZ2ejUqRMcHBxgYmICX19fpKSkKOyTmpqKwMBAAMDQoUNx+fJlMMaQkpICX19fmJiYwMHBAZ06ddLICFAuQjMqnoQQtWmsgEokEtjZ2XHLQqEQEomk1j729vYAKiehs7S0xOvXr1U6lhBCdK3B44HqK5lMVu/8zTV5fGSEslKzBh2jz0pKSigXPWMoeQCUizIaK6BCoRAFBQXcskQigVAorLXPs2fPYGdnh/LychQVFaFdu3YqHVuTqakpnJ2dVY7P2Rm4e/dug47RZ5SL/jGUPICWnUt9xVZjt/AuLi7Izc1Ffn4+SktLkZSUBJFIpLCPSCRCQkICAOD06dMYMGAABAIBRCIRkpKSUFpaivz8fOTm5qJXr16aCpUQQtSisRaosbExIiIiMGXKFMjlcowaNQpdu3bF1q1b0bNnTwwePBjBwcH49ttv4e3tDSsrK2zZsgUA0LVrVwwfPhw+Pj4wMjJCREQEjIyMNBUqIYSoRaN9oF5eXvDy8lJYN3v2bO63qakptm3bVuexISEhCAkJ0WR4hBDSKAJmIN9s3rx5E6amproOgxBiYGQyGVxdXevcZjAFlBBCtE1jD5EIIcTQUQElhBA1UQElhBA1UQElhBA1UQElhBA1tYgC2phxSfUNXy6xsbHw8fGBv78/Jk2ahCdPnuggSn58eVQ5ffo0Pv30U9y6dUuL0TWMKrkkJyfDx8cHvr6+mD9/vpYjVB1fLk+fPsWECRMwcuRI+Pv7Iz09XQdR8lu4cCE+++wz+Pn51bmdMYbVq1fD29sb/v7+uHPnjnoXYgauvLycDR48mOXl5TGZTMb8/f3ZH3/8obDPvn372NKlSxljjJ04cYLNnj1bB5HyUyWXy5cvs+LiYsYYY/v379fLXFTJgzHGioqK2BdffMHEYjHLzs7WQaT8VMnl4cOHLCAggL1584YxxtiLFy90ESovVXJZsmQJ279/P2OMsT/++IMNGjRIF6HyysrKYrdv32a+vr51bk9LS2OTJ09mFRUV7MaNGyw4OFit6xh8C7Qx45LqG1VyGTBgAMzNzQEArq6uCoOy6AtV8gCArVu3YurUqXr9gYQqufz8888YP348rKysAADt27fXRai8VMlFIBDg3bt3AICioiLY2trqIlRe/fr14/7edUlJScHIkSMhEAjg6uqKwsJCPH/+vMHXMfgC2phxSfVNQ8dJPXToEDw9PbURWoOoksedO3dQUFCAv/71r1qOrmFUySU3NxcPHz7E2LFjMXr0aGRkZGg7TJWokktoaCiOHz8OT09PTJs2DUuWLNF2mE2iZq52dnZqjTls8AW0pUpMTMTt27cxZcoUXYfSYBUVFVi3bh3Cw8N1HUqTkMvlePToEeLi4rBp0yYsXboUhYWFug5LLUlJSQgMDERGRgZ27tyJsLAwVFRU6DosnTH4AtqQcUkBKIxLqm9UHSf10qVLiI6ORlRUFExMTLQZokr48pBKpfj9998xceJEiEQi3Lx5EyEhIXr5IEnV/75EIhFat24NBwcH/PnPf0Zubq6WI+WnSi6HDh3C8OHDAQC9e/eGTCbTy7s1PjVzLSgo4B1zuC4GX0AbMy6pvlEll5ycHERERCAqKkpv+9r48rC0tERmZiZSU1ORmpoKV1dXREVFwcXFRYdR102VfydDhgxBVlYWAODVq1fIzc2Fg4ODLsKtlyq52Nvb4/LlywCA+/fvQyaTwcbGRhfhNopIJMLRo0fBGMPNmzdhaWmpVn+uwUzpoUxjxiXVN6rksmHDBhQXF3PDBtrb2yM6OlrHkStSJY/mQpVcBg4ciIsXL3Lj24aFhenlHY4quSxYsABLlizBnj17IBAIsG7dOr1sbMybNw9ZWVl4/fo1PD09MWvWLJSXlwMAxo0bBy8vL6Snp8Pb2xvm5uaIjIxU6zo0GhMhhKjJ4G/hCSFEU6iAEkKImqiAEkKImqiAEkKImqiAEkKImqiAkkZzdnZGQEAA9099o1n17t270ddbsGABRCIRAgICEBgYiBs3bjT4HIsXL8a9e/cAoNZrXmPHjm10jMD//i5+fn6YPn0679dHd+/e1dvRjYgS6o52QkgVV1dXjeyrTHh4ODt58iRjjLHz588zPz+/Rp2vKWLiO29YWBjbsWNHvfsfPnyYrVixQiOxEM2gFihpclKpFJMmTUJgYCD8/f1x9uzZWvs8f/4c48eP51poV69eBQBcuHABY8aMQWBgIP7+979DKpXWe61+/fohLy8PQOVYqH5+fvDz88OePXsAAMXFxZg2bRpGjBgBPz8/JCcnAwAmTJiAW7du4bvvvkNJSQkCAgK4cTqrWslz585FWload60FCxbg1KlTkMvlWL9+PUaNGgV/f38cOHCA92/i6urKDVaRnZ2NMWPGYOTIkRg7diwePHiA0tJSbNu2DcnJyQgICEBycjKKi4uxcOFCBAcHY+TIkXX+HYmO6bqCk+avW7dubMSIEWzEiBFsxowZrKysjBUVFTHGGHv58iUbMmQIq6ioYIz9r1W2e/durkVWXl7OioqK2MuXL9kXX3zBpFIpY4yxmJgY9sMPP9S6XvUWaHJyMgsODma3bt1ifn5+TCqVsnfv3jEfHx92584ddurUKbZ48WLu2MLCQsYYY19++SU3xmjNFmjV8pkzZ1hYWBhjjDGZTMY8PT3Z+/fv2YEDB9iPP/7IrQ8MDGR5eXm14qw6T3l5OZs1axZLT09njFWOc1pWVsYYY+zixYssNDSUMVa7Bbpp0yZ29OhRxhhjb9++ZZ9//jn3tyH6weA/5SSaZ2ZmhsTERG65rKwMmzdvxq+//opWrVpBIpHgxYsX6NChA7ePi4sLFi1ahPLycgwZMgTOzs44d+4c7t27h3HjxnHncXV1rfOaGzZsQFRUFGxsbLBmzRpcvnwZQ4YMgYWFBQDA29sbV69excCBA7F+/Xps3LgRgwYNQt++fVXOy9PTE2vWrEFpaSkyMjLQt29fmJmZ4eLFi/j3v/+N06dPA6gcF/PRo0e1vm+vatlKJBJ06dIF7u7u3P7h4eF49OgRBAIBysrK6rz+hQsXkJqain/84x8AAJlMhmfPnqFLly4q50A0iwooaXLHjx/Hq1evcOTIEbRu3RoikQgymUxhn379+mHfvn1IT0/HggUL8Le//Q1t27aFu7s7Nm/ezHuNsLAwDBs2jFuuGuCiJkdHRxw5cgTp6en4/vvvMWDAAISGhqqUh6mpKdzc3HD+/HmcPHkSPj4+ACqng1iyZAkGDhxY7/FV/2N5//49Jk+ejP3792PixInYunUr+vfvjx9//BGPHz/GxIkTlZ5j27Zt6Ny5s0rxEu2jPlDS5IqKitC+fXu0bt0aV65cqXNepidPnuCDDz7A6NGjIRaLcefOHbi6uuL69et49OgRgMr+y4cPH6p0zb59++Ls2bN4//49iouLcfbsWfTt2xcSiQTm5uYICAjA5MmTkZOTU+tYY2Njpa1AHx8fHDlyhGvNAoCHhwd++ukn7piHDx+iuLhYaWzm5uZYsmQJYmNjueESq4ZOqxoFDADatGmj0Ofr4eGBffv2cbMj1BU70S1qgZIm5+/vj5CQEPj7+6Nnz551tqCysrKwe/duGBsbw8LCAuvXr4eNjQ3Wrl2LefPmobS0FAAwZ84cODo68l6zR48eCAoKglgsBgAEBweje/fuOH/+PDZs2IBWrVrB2NgYy5cvr3Xs6NGjMWLECHTv3h2bNm1S2Obu7o6wsDAMHjyYG1tVLBbjyZMnCAoKAmMM7dq1w44dO+qNr3v37vj0009x4sQJTJkyBQsWLEBUVBS8vLy4ffr374+dO3ciICAAX3/9NWbMmIHIyEiMGDECFRUV+PjjjxETE8P7tyDaQ6MxEUKImugWnhBC1EQFlBBC1EQFlBBC1EQFlBBC1EQFlBBC1EQFlBBC1EQFlBBC1EQFlBBC1PT/AmZeYUMr5BQAAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print(\"** Mean score in the inner crossvaludation (inner_cv):\\t\" + str(nested_scores_train.mean()))\n", "print(\"** Mean Nested Crossvalidation Score (outer_cv):\\t\" + str(nested_scores_test.mean()))\n", "\n", "fpr, tpr, _ = roc_curve(y, predicted_prob, pos_label=0)\n", "fig, ax = plt.subplots(figsize=(5,2))\n", "RocCurveDisplay(fpr=fpr, tpr=tpr).plot(ax=ax) \n", "plt.savefig('../data_out/fig/abide_site_comb_rocplot.pdf') " ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:23:12.633347Z", "start_time": "2021-08-01T19:23:08.754815Z" } }, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAATwAAACfCAYAAABk+mXyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACZPElEQVR4nOz9d5hkV3Xuj3/23idU6qrOYfKMRoAIBowxGgQIgYQAEUVwwva1r++9+F7LmGRfvr4/cABjQGBj7HudAwKcMUEEEUQcRDBJIATSaGLPdO6uXHXC3vv3xz5d3TXT091KDNh6n0d6pqrr1Dl1zt5rr73Wu94lrLWWB/AAHsAD+E8AeaEv4AE8gAfwAL5feMDgPYAH8AD+0+ABg/cAHsAD+E+DBwzeA3gAD+A/DR4weA/gATyA/zR4wOA9gAfwAP7TYEuD95rXvIZDhw7xrGc9a8O/W2t5/etfz1VXXcWzn/1sbrvttvv8Ih/AA3gAD+C+wJYG79prr+Uv//Ivz/v3z372sxw/fpyPfexj/O7v/i6/9Vu/dV9e3wN4AA/gAdxn8Lb6wGMf+1imp6fP+/dPfvKTPO95z0MIwaMe9Sjq9Trz8/OMj49v+r3f+MY3CMPwbl9wmqZ43paX/cBxDxx3j4/7YbjGB447P6Io4lGPetSGf7v733YW5ubmmJyc7L2enJxkbm5uS4MXhiGXXHLJ3T7f8ePH2bdv33/o4/bu3o1uNrBaowYGkH7wA3md/1GP+2G4xgeOOz9uv/328/7tXhu8e4ooija9sPNhfn6eTqfzH/e4uTnax49Ckrg3hIDxSYTv32/X2V5ZhkYdjIbiAKI0sK3jfiju5z047ofhGtcfZ9MUaituzOTyUK4g5PmjVT9sv+++xL02eBMTE8zOzvZez87OMjExseVx99TDy+fz98jq/7Acl8My6XvccsstfOSjHwHg6ue/gCtf+KL753yBz6SwMFDqvRdMTqG2MHo/LPfznhx3b861d/du0pVlTLeDzOfxhkY2NT739nz79u0jOnUCk18LD6lKhWDs/HPwh+EZ3Jvj7lcP7ylPeQrvete7uOaaa/jmN7/JwMDAltvZVVhr0Y06NoqQhQKqWNr6oP/oEKL3z1q1lr13P56v24UwOMvAXsuVL3zx/XjS/7hIFubQzSYAptvFpppgYnKLo+45bJpy+NOf5vDhw9QbdQCefs2zeOpPv+R+O+cPM7Y0eK94xSv48pe/zMrKCk960pO47rrrSNMUgJ/6qZ/i8ssv5zOf+QxXXXUV+Xye3/u939v2yZOFOXTdPSRqVfyxcbzK4D36If9hEOaQvuLQoUMcPnwYI+Apz3nu/Xe+dfHBVQNr1T1fB5MkYXp6mm63u+Hf0zS9R6GM+/q4XC7Hrl278LcIFdxd6FbzrNcN4P4zeCgFmQfZe373IND/nwVb3pm3ve1tm/5dCMHrXve6u31iawy6Ue/zLIrlCoeedy1XX3313f6+/ygQQhDs2EV0ZhrPaBKpMK0mcnD4/jlfEOBVyhy67PEcPnyYSCqufO7z7vH3TU9PMzAwwL59+xDiXNc0iqJ7lJ2/L4+z1rK0tMT09DT79++/29+5GYTnY1fjr9nr+xNCCC5//rU8/rLH85bffxOpEDzl+dfer+f8YcaFrbTIJkStWqNWrXF3hPmsMaT1GsnKMiaJ75/ru0AwUYTtdkmlQlpLdHqatN26387nDw2T23cRS0GOhh9sGXPaDN1ul5GRkQ2N3YWG1RoTx9g0ZXho6Lxe6L2BPzbe87iEUvibxNLuK6hCkXDvAeqeTyokul7Han2/n/eHERfM9xVS4g0O97ZuFvjNt7wVVdpeHC8+M43JBmy6skS4czcyzN2PV3zPserN2iRBlUrIXH7Tz5tuBxN1KaQRvjEk83PYNKHwkIfdb79RSIm9j4zUD6qxW+95YTTcD9q3qlAkt+8ANokR93LxuDsw7Rbl1P2+dGUZ3WqS27Pv+3LuHyZc0M2+PzyCKhRoej6xlNs2drrT4fCnPtXbCpcHyhy68sof2EB7PHMak6XX0+oKwY6dqELxvJ9Pq1Xi+VmGkwiLC0wL5ZEsLRLu2PV9uuofbnz2s5/lDW94A1prnvOc5/CC5z4Xo13suVKpUCqWuL/EvoWUiO/z4qvrtb7XNo5dpniLxfU/Gy54dFPm8nTvYZB8NUhbHijfl5d0n+KmD93IJ97zLgCe8fRncOjQIdJa9bwGz8YRSIFXKgPCJWg9D5nLY9Nkw2N+UGGM5Vdf+evMLy333rO2LxG9baweNz46zB+/7S2bflZrze/8zu/wN3/zNwwNDfETP/ET/OijHsWuqbOSBz+Anug9hlLnvic3eO8/OS64wbsnUPk8l11xBYcPHwbgVb/+asKdey7wVZ0HQqzRS3pvbTLRjAGp8IaGqXs+vjHIfAEAVbrnht0Yi5TfnwlurSVJLdbC3OIyRycvv+++fO4zW37k1ltvZe/evezevZsoinjOc57Dt7/zHfbv3YvAUiqWwFP3+9bbxDG6UQMh8coVxP2YPfUGhzECZOa0qnIZGWxdofOfDT+UBg8g2LGLhucjsYS79yHvY3rBfYWrn3kNn7vxRkKjOXTokPPehjbJuIY5hIJkfh7fGEKjMXEXVa7gD4/c7fO3O4aFlRRtLPlQMj7sodT2JroxlnbXIISgkBPbNhDG3C/hsW3j7HLHiYkJbr31VrQQCAQiuHuxNd1sktZWQAi8wWFUobDlMSaOiaZPgHE3QtdrhLv3IjbyxO4DWK3RCHyjkYXC9yVZcjaS1NJoaYyFclER+D94HvQFN3i602Ew7iKxxAtz+KPj25pYQkqibCv8g2rsVtHwA7pG449PoArFTVd6IQT++CSdI3fgWUNXKaQQmDi62+c1xjK/nHL4C1/g8OcPU280EKbFS37qWX3Un7RRx3Q7FJIYIyW63caGec7MJ6TaTdgwkOwY87b1bH6Q2+BZ2Jaxs2lKPD9LWl0hXVnGGx5B+gFxp024Z/95x5y1lk+8/318+SM3ktTqtKTkGc94JocOHUK3W3j3Q/jFGkM8cxrfWrSUmHYbXVvB24LKpJsN0loVpMQfGr5X8T6tLafnE0xm4Bstw64JH9/7wTJ6F9TgrT4oL3MHdK2GUN498mR+0JFIhVeubOuzNokRQpJKibIWE8ek1WXY5bbtxli6kcXzIPDPP3lTbTHrXK1arYo1/RQeU1shSWNMp81U1CKWHvGZaZr+IKlau94oNrS7lmJ+6wEsJVxIVsRG5Y7jY2PuXm7TS00W5zn8yU/y1c9+Bt2ooREcuubZHDp0CNNuIc9DkE8W5/HnzjDRbtBuLKOQLiMMCLG5oTVRl+6JYySLC4ggILdnP/7Y1g5A2qiTLMxRSiKSzIPU7famBk+328SzM73XUadNbs/+u7XttsaAcJ5/q2s4fPgLfOQjHwXgGc94Os+8+gkMlde+z1pLurSIbtYRysMbGduWt3xf4sIavDhy+591MJ02sE2DZy2h0SRLC8h88ft+81aRpBYludsxsmpdU29plBIMlRWFXMbf8nx0p0UhyyomSwsEO3b2znVmPkFnK2m5qBgd2vgx+p5AScGhQ4c4dOgQ17/leiTtPu/ONhtQLJLWa/jGEOgIE3dJ2lVsZQCh1ibpdrOaUgh8j9413t8wxmIBKZyH/IhHPILjx49z6tQphoaG+PCHPsRb3vhGBBZlLVa7rPem39l1WXUjBM1GVj1h3VjdTMghnp/nYpuw/8EXc+c3mqRC8oiRIVAKWTx/Zh4gmj5FfGYaLNgoIjpxDBmGm1YfWWuJZ8+Q1mp41uLpFN2obx42AUyr2Uf6Lw+UufQZz+SqbZDOrTEk87PoZhOhFN7IKNJzDItardr7nDzLUCcry8SnT2HTFJkvYJKE3L4D3zfqDlzoLa3no6MOgdEk2eonc9tP5w+kCaHRpCsrsLKCPzGJyQ3Q7ho8BcW8vFuB6SR1wfZcILZlvLS2zC6lRLGLcw2XFZWB7cVoGi3Nct0ZtFRb5pYseyaziaQkqlQmEgqJxSsPInN5brrpJj744c9RbbjjnvGMp3Po0KHznlMIweSox1JVk6QWSQdJ86zPuPue1lbImxQLJHNz5AdHieTa9tRTomeQtwMp3T28P/MC65Mj4JKuvgee5/Ha176WX/qlXyJNU17wvOdx8cGDzM45r89qvaXBk7k8hw4d4tJLL+VP3/T7SGs49PjLUOXyppSieO4MycI8utVCAwJXLy58f9OxaJKYL37mU3z78OdptRzJ/NATn8ShPXthE4MXz5wmPjONrlcZiTt0lMKk8ZYGb9Vor2c62G3GFz/xvn/jY//6z73jLnvCZVz+4p/iyZdfxuHPu0Tik574eAaK/ePlC+/9Z774iY8DUCwWefhlT+RJP7UTlf/+UWcuqMFL5mYQxhLqlDxZmdM2S6is1oSmf9/UnF9heV0ZUTEvmRjZXnxvuZZSbbjvU1IwNeZvGXR9340388mbv0i90QCcAfqJay/Hy5ICutUknpthstOg5q1d10033cQHPvx5ao2kd9yhQ4foxm7mCgvBxBR1P0RYS7hrby++YpF9qyg4w3s+hIFkx7gbeIrGOX8XlUGs0ZAZviijMvjSsGsqR6OlEQIGiuoeZXnHR4f7Mqv3BS1lFcb2J0esBW3AU3D55Zdz+eWXE0UR/jme6dYX4I+OY63FtFtU/YC28pw3ssWWz6apq+aIIzwgkhIVhth482og4flYP8RCz6O0ytuUaG7TFB11MO22ywgL4e7TNmheqlzhsqc+tcd0+I3f/V2CsQm0ttRbGm2glJfkwnMXOZEm/ZQwCyQxO8aKKKqAYNdEv4H/47f/IfO3HKa7vALZb1z52Ee5rdHmV172MsAt/Erev8T1C2bwbNTFdBQyX6Dhh2CtC+jfjSyWpX/o3vy5r/KJr9/eZ4Be/PzLtwycfvgjN3HjR/+977irnvoExof74w82SRCe13PBtc5K49YZoDS1eEpgo4jWd24lOn6MqajNRNSmc+I4+b37ABCk5xiuVQMrwxBVKhFLSWgMJuqgCgWuvvpqnvCkq3j1/34jAIcOHcL3xIaDcrsQxRLh5AS602bezyOEwBsZxRsaxvcEw5XzD5G0XsN0nAySGihvOFDP5szdp7W0G9n5jd7zFKRri+N24lTC8winXBihFuS2dZy1lnBsgnBignhBEktFIgTB7r1bhluEEFz+ghfxuMf8KH/51regheTQ856P2kxMQ2s3X4Qgra0QGo0U1pXQRdGmnpOQknDHLpaDEIsgGJvAWsuZhYQkdTex3tRMjfrkz/Lsn3z107nl5psBeNWrXgVSIHNu7Eji3u9Zj7vuuot2o8HU8DChNRRKJW6bnWfp6FHixDC3lJJkc2d82LtXY3ozXDgP7+xVVwisNRt/dgMIpegqj3wW50KAyfhqZxuSrS9lveHKvLN1XpOJusQzZ7KKB+WyrcUST3/a5fzYj1/G9W+5HoAnXPZ4wsAdbztt4tPTvZpGCXTuuI3cnr1cffXVXHXV07ju5a/DEnLZ4x/PUFn1GWZvdIzAGEKdoltNolOnUKUyxbxCUsMSMjigKJf6FwgTuXK7u1WClmqENuStRluJDHP4Q5vHUU3VJTuAnsSXP7Y9WbD7ClICeoP3zv6c52OlwgiBQdyjmJG0JtsKb74gq0qF0mMupXPkDqp3HqHuh+T37MMf3freqEKB4kMfwdHiIAhBOLlj08+LMERI54Vaa/G0IfUE3ZPHyF/0oG1vFXM6JVlZJglKJKl1sb0s+fC85zyNFz7vKX2f9yqDdKUkrzUiDPFHxoi1oFZNSKkgaZ9zDiMkY3v38+sv/zWnIKM1r//rv6ULvO+Dn+EDN94EOGfjSU98PLsn7x8O4YUzeGEOEfjoVhtlDKmU285irqKVlaT5Y+PIQoFn7jzIj152Rc8APfWKy7aVFr/mmU/jYY+8nDe++c+xeOy/+MdYv5gnC/N84XOf6wV4V/XGyiXltlUoLAFGW5ptw0BRITwPu2qMV7HOnksp8KhhEezdcW58RzcaBEY7+6sNycIctdIw9XCclBEEmlJB9rbP1lqiM9OYthtsslAgmNq55fbAGkM8P4sqV2h6PspaZKG4ZZmfbTa45Vu39nTYLHDVz/0Ce/Z8/wjgQgh8fy0jvFniSEiJuQfCglZrKnEX31q6J47ij4ydN4kghEANDMLcDGpggMjz6Sof4fkIpUhTy0pdk2hLKS/PWazWfdG2r0+VyohcHikVRoKyFhXkSRYXtiQ72zRlMIlQxhKdOk7i5bHFfcCa0yA2cJnjhTlyxrjaa2Mw0ufMQup2QYRoQuLEnMMgaPgBQkmEdTuLktZYkZIa0eekuLisO6/pdhx1xlpUZehex/sunHiAEAg/wHYX8a0hQd5tKR1hLb4x6ExJpFAZZNeEj6SFQDMxsv2f5x5OisBQLinaHYsdzG56HCFbDYLqChqQ3Q7WGISU5AKBQCPoYAUsrKTOyBZLBDt3Ex0/BkAiJLnde84xQALb99573/teTpw4wUDShYxaccO7bnA1tXseyxNe+F8xOC7Xt+/s8vCLc+7a2y2M7hfyvOrFP8nTtsq6aQ3CYo1GWIsxtldzuhnWe0m1au1sR+v7BikE8n4cxeny0loM0FiSxXlUsXReQyJ9HxNH7jijGUwiuieOIwtFTlclzZZBSuhGEms5J+Fkoi7SGswWFJZV2CQht2sPptkgRSKsBZEZ+KiL8s6/cKX1FYppTClNSObmEJ6HNxQ6QY/PHwYMz3lWv3dnoghdW6scsklCbW4FqyrOUKEQaJptw3Bl7TcsLy9TW17i+jevhThOnTpFvlLhyisu4/Ofc7HEQ4cOkQtdstGmCdGZ6TXydqvpigzuRQXJhY3htRRqoEJXeUggrVW3zcGzWjPZbZHXKdGJY3iDQ1itCYZHUDgDuJ3gpzGWakNzZsElECQtCjmJNhadeWQ2SXjUgx/Mt77yZQAe87CH9o7vRueugJ3IZW3Lj3080fgOZj/5aTqeR/7B7jhrLVFssXgI+o3L6dOnmT5yJw/ds4tysUCa/YbpuSXS3Ao/2l1zE6PEUG0YxodlnxzQakBZmK3NkPB9bNyh8bWvcEltEc9C9eMfRjztGvJ7z68VJyqDHHp8Rne5/noans/VV199j0Q67y6sMRlFRGw75muN8+/uLlHmHOkxCyZJUOcxeKbbJVmYJ11eoqhTUmHoHr0TM7WPD33sexz+/C0AlAoeT738kbz42ivc12pNPHOatFFnotumuc3FX+ZyLn4W5tCZ4o0Ic+h2a1MisbWWeGaGsahDqDWd43cR7tjNyHAVObwbRQ1BfM4O6ZxdCyBtwlI1pRtZNBUEyYahBZv9J63FtwYfi0UwOuQh6WAIKOYlI4PZvW23oZDvW8TV4DBXPOe591gz88JtafW58bqNbub5EM/NUNTOSJlOh0QbRL6ALg71VpntYKmqabRdJtKSw2QSgb4nettFWSiiBspohNt6Dw07cnCYw1OgKWLxWVhOGSwrQn+dHtr4BLUgRyIlQimMcTy6OLWkDCPor6AIdcqjdu/iVa98FUl1Bd2sE4yO85Y//hPmvf7JHQayx2wXhQIWw4895GK+NTmGFpIrrnratu9l9+gRijrFCohnz9D86i0EI2Pn3dq6ZMckyeIckfj+VVdYY7BJ3DuhNWbLShuTJKA1yhosAmvttjOBZ1NQhKc2pU5ZKUmXVzBJ3JvYNk1odi3WChqZ/HuxMMF6mqJu1Ijn59C1KkWdUNAp8fISwRYOwP/7u3ey9J1vMdVp0VqpEiF45z/8A+WLDvKLP/Lo8x/3h39A4zvfpry0TAx8/tOfIpIe+kEP4edf8yNINq7skfnCOd6tLJawfWync+/t8PAww8PD/MarXknnrjvAWt75rhtYCvJIKVA0UNDPqlh3ntVFfHCL2PJWuHAGL5dDKNXnmaji1t2yVmG63b4sbdqNWFiRSJWQMoJke92OWh1neCsliSDC4pMLBKNDazdeFQrYwSGXTcZRCEQmjd5NeusWceI8t3zOXVWytEi6suwIxBqS5SVa3iBxujbSLSGdrullwnKZ0bfWuomcy+OPjrES5vFYolRU2bqYMlCUlIuqd03KV6RLS9jsexpfOkzhkY8hHB077++3OsU0m1ijSbNl2SYJutEibTXPa/CsMcSzZ4gX5piIuwjbpX3H7fdrEW2tVqNVXXHadkB5VebJO7fk7TWveQ2f/vSnGRoa4sb3vrf3viAjHm/Tg/IGh2gpj9BoVLGINzxKkroa49AX52QwpecRjI1jk5gUgZYSb3gY7QU84dCj+ebXvwnAf/mFn+NhB9cM51//+Z/T/d7tCCxzs3MAvPk1v0Hl4Y/kuuuuO+/1HbnrLuqnTjEyOU6UNV46MTuHn988Bnv06FE4cxqvUGTAaiKpOLm8jD59ZsvSx2DnbjpKIS0EUzuITZ7RwTTjetax+Mwvp3hKUCqsLdK33347/+2l/4MyFgm005S9+w+4rmsbIV9A5oKeZmYiJb/9R++4V0TlCyoAGuzcTTw3i29StJBOyjyf33T1XY1xlZOI2uw8ZSw3vOsG2rKMvfgxvPinfxoAQ54oNoTB5jfH8wRxYrNVpgVodoz3xwi8oRFs6iaZEYJgckfvpne7BkUbS5upMR8p1xgQydICulajkCbEUqFrVdKhiuOL6VUnRZJqw6r49KoR19UVdLMBwtE/8mlCx4P9O30UHSwSY/oWQTAGr1JhIE1RGJKFedrf/Bry0T923lDBv73v/Yjv3MrBxjK5lkt43HH7dzh1/BTRcpP/9fKXb3zjOm20tOhGg3yaEFhN+3u3Y/Ze1OdB/X+v/BVqi3PrDjybTLRdWKyxFMtD/Nqv/br7hlXjugG579prr+UlL3kJr371qzf4qrtnlDueTwefYGonzbZmfmFNpmtwQPVTd4RADgz0PLwYwPMpD+fpCItiBZDsmvAoryPm3nHyFLnZWSYmJyiWiljgrulpSrnNqzOEtRzYvYdf+OWXoutVrDH8+bvfw+ktpKESIZnYuYv/+lM/iYm6mDTmb95/I9N+ifmlhJQyaoNsK7g4Zctzc0QVSxRTy3LdVddYClg8rBXML6e9QqqDBw+yvLyMXF4kzp7/4MgIu3fvwlrTmwt9v00IwqmdmChixQ/RUt7rqowLSjwWvg86JREKz1rixXmQAn/k/B7J6dOnOXLkCA86sJ/ywABlk6KBLy0sM1k40/fZ7dRzjg4qZpdstjW0G5NzpSSYmGQpdDGR9ZyqIDOoAkeJkFLgKXjvv/4r8vZbUdaykq3Y1//+G5nLjTA09ViueMrVxOxC0GVxReMpST4naXs+xThGt5rOkxOStLZCOYlpez7LNQ0YJC45slzTTI5K3vve97J0150MRR3E4iIAN37kw7RUQPkLt/Dz/7/f2vh+njlDdXaW3QN5pOfhAV2huHVpGXH8+OY3L9Wky0sMpG4IpytLsHu/KxfMYmu1xTl+46Lvbv0gtok3HXkwXraFLeRycJ5J8NjHPpbp6Wn3IgveCZyBwFgXB9wE73jHOzhy5AjCWs7cdQQNvOxlL2Nqz6N58U/8VO9ztaZhqLxm4JPZGdLqCiaKyJsUaS3J4iKF+WmGR/ZgUYClXOqXp0qUR2XXHn7qOddAmuINDfKmf/zX85icNVjAYBFhSDDlxGGbyt860ysEC0EOUSiATsnt2c98+FkSOUqzY7DkSAlJte2Fds49ucWmKZ7nsWPMY3ElxSIQNPEzy9Jsu/u86qWmjTrJ3FqdsywUiLRHyiggOTkTMznq9WV4ZeiM3X2BC1tLmySkjRqjsdt+xrNnsHG8qcEDt1q88ZUvp3vsLseNk5Lm37+XfnNnyIVbexK5ULJ3yidOLB4LgIfWdtsSSiMVhSDGEuApF4AVQrBw6iTtmTkOTo5TLLlVOhGSYycXSLmLVFsEBtBoa1lYSdk96ZNKxXKYxxsZRVeXsanGNFsUdUKoYWYhweC2K0vVlGDUTf7Tp09zx/ETXLpziuG82yp1lcfc3BwrQY5216ApIjiX8b97z16e8sJr0e0WQkhULsc3/uXfWD7nk+uQLyAx6HYTgWPcCD9wdaDW3q+dJU0mjCqU2rJBuTGGM7NzTjggidHA7OwMQRBsWht85MgRjh+5k8fs3oVfLqGwnD7yPZKz6ryttT0H06YJycoS0g8wcYS24GFIlxY59rU7WLloHM0gYDk6HbN/J33F9YmU5HbsxKQJKpffoELkXPjWOJbD7EwvZtzaxnZdWsNU1MG22wgpSZcXSTg7Nilod00vbLIentEMpAnd40exXsCcGOU7xzURu5DEnJyJ2TXhn6NL6g2UEcrDtJoI3yfNDfCdo11ShpDEpNqyWNXsGFtXw20Mwtr7pAXBBTV4ptule/wYBR1jEeh6DVUsYaIIuRkb3xi6J4+5FH4WSyvrNotmmWJeZjWj7W2XQgkh3FZ0dZWZTRipnEvq3QhKCTyqWGDP1NpW2AjB6O49/OKv/C/S6gpISW7vAV7+5r8FUgo5gYsoVZiZTxkoSXaOu4FqhSDcsYv6yeOYbhehFJGU+MbHWEgZACyLKyk7J9Ye4YGDF/Prr/s/NL7yRdKVFYTyeNdNN3HcG2J2McFQBIpUG5rBdXSIjvSQUiHXCYx2tihPcl7vFOGuvRgyI+R5PUrE/QmbJUlkEG7NM7SWNI5QfoCUEhDEq2VeW3h5D9+7l1f+z5eSLC5kQfZ3cTLtF3Mtl9aV3EnFR268kfTEXUx12gTdLjHwmcNfpjne4qLJx5EyiCXgzhMx9abmiT+6FmvzrUUNVFh9Mt6660tSS6ttkMqVfK2es5QmGCRqoIyJI0QuT7oNpeNocZFabZkb3nVD773WQof2yIG+z3kbzCETdRmLOs5xtpbF5ZjvzS1R1QOAhybPyTMxYSDZMxXQOWvTpAoFVKGAMZaZMzHtjgEUhjzNtu6bt2l1mWR5iZG4SyTV3Uo4bYQLavD+7o//CPvd2zBLKwjgI//yz5wolBl+yBf577/6cjpdQ+CLvjicsJahNHbbhmYTGebwBocwCBQREyM+isa2s4bveMc7uPPIMWJ2cmZeg4l485vfxp49U/zGy39u27/l7EeQSkUkFWnWvEf4PrrZIDQdIlnAWIHFh4yW0o1sT3vOfaFABD7ErhlMaAwpIcs1jSEHCKIYdLp2ZpFtn/zxKVS5gvBCFv0ciepPBtXOMnhdzyd30cV0jx/FdDr4Uzu2JbsvPIXVKV2pyBmDabdAqvvX4AlnXK3YLiXFEgQBY8PDLlkhJPPVavZdm08czxi6J4+D1shC0S1PaZ2pUZ9O5Mbm+qC8kJJj8wsMraxgcmFG6ZB0GhFLuTqTjTh7dpI41bQ7gvnltXhgctZ9W00ixYnh9Hza80gbLbc4WmPwjKGSdOkeO4JNU5K5GXytiVXISn01cXCuiIbg3DErdRNhYyfgikLS7iXgVqFbTaIz0xTThFCndL77bT50y1G+Vxug6k1Qa7QAy6dv/hif5zRfuSjkOc959ob394/e8f+44+gKmjKz80sA/Mmf/CUeCzzk4DjPuvpqkiw8AxAaja7X7lXv6gtq8OaOHydZWmIsn3eBeimZnj7FXDjIyZm1rddQWfVc/5xOUdYSTO5w/Kaoi0kS16JOKuotTZJ5aosrKSOD/bESkySki/OYOEYWChy5806Onqyzc+9+J/0NnJ6tIpgm1WtJEnDbHHCxHHBb680yaC3Pw6sMwYBxZUBCUNLLJFJQLkoETSQpuVAwWPKIkjWDl64sY6IYG3XRUZeCTohkSK2eorMtbSdK+ySYfK2JZ86seS45UNtcDcMdu0DrXtZ8KOmy4p+ffvHe976XubuOsK9ZJVheIgY++bGPcdFFlzA3N8fExP2luCu2rWm3CmUzlQFLRrB2HrixgpmFhIGi7DNcAMoYcjYlmZvFRM7LJttW5XPynOzsKowQTJRK7B4dxDbbyHyehWoXsFhhMBSxKJarmsGSR7KaoLQWjYuDWmsJJqZoZFvTD37oU/zbB5zKSHlggMuecBnXPvtJrlkQlnxWO2vaLUynw2Qn4lhpkpW6phu5+PTUmE9lQPXiccHoKIPFkJ/96Z9xd9X3+b2//yd8L1w3plRPjGEVaa2KEBLPaEKrSZtNmvMnabbGMON7CfM+bkmqMjN9jNwmJuauo3cwPeMzMTVEqTSENTGSFsePfB2Pi+ApV0DYn0BcLZ28p7iwailSMjw5yU++6EWYbhdZKvGd993Imbrm+rdc3yvmf+Yzns5PvuBypBTUVpaJlpb4o7/4SwppTN5oFv0cXz49w+DwOIsrKavZnnpLE/iib2uazJ4hWV5C12tYaxmNOyR7L+KX/sd/dfExC+//t38GzhD4opckOXjwICNDQwRYlDF87+jR3ncaPAxFZhcTyqU1XTuL2IAVbpE0Ga54KCIECcMVhRCQDx1TvhJ36Ry9k2R+Bpkv4Q0O0pUeqQhZqGosPgLLzEJKkqxte3yrXbvFzODZbuQqQ+jvaTt4tpyUdWrTut3q1eBKyzlqNOtx+vRpZo8f5ccqBVQYuKSNThyBNrr76sz3NV7xilfw5S9/meXlZV7wMy/hupe+lBc897kIJTGiQSp8rHUk8U5kkEJQyK8Zse7yIjPVFW781KfJG5ehX1mpslDZXM1nOGozlESYeh2bpGA0RZMQ2pWszloj6VLISVbqKaW8oB5BUSfkjMHLeGZCqb5qi9XSq/JAv7fe9AJGRRvT7Thhi1weRY5cmvLZz3+Jj3/SkeWvvvKxPPlJh9idSZAZIZnODZC76GJsmuCPTdD55/djGMg8U0HKEN892mXPVNCbQzfccAMLR4/gLcxjgU/d+EGWqw3kYJmrr/xxVhqGyoBk10TAv777dsQmaRdLnh1TI7zk538eay25nOTRD87xyldmzIAwB8L0kTw3k+baDi6owWv4AZ41+KPjmE4HEfoui0a/ColljUnQERKJpZQmKCCWHgjpwq3i3JKTKF7HedOaw5/8JF/+6IcAp8klmy3C8TFaXUOaWtLMfqwvgD548CB/8Kbf7ytz+Z0/+EPaOEkbzRCrAd5217BjzA0qaZ1yhW41XTmS79FWPilDLK6kaHwgRxTDvh1ODjunU/I6ITpzimRxEatnCXfupq08NAUKoURm2+AgEHTW2RYhBP7YBGm9htUpKl8gUh6KNlOjPpImgqSvnElYy1ASEZ08TjR9Ejyf3M7d26JuXLR7D5ce3ENSq4FJEF7Awlnxo8roBG+6a/0795yWAoLK6PY8x7e97W0ATJ86iTSGibHxnjqvY4EJoijiTa99nbvOAZ/nPPMJPQa/RRBg6Xge2kqUNTQRdLYo+RpKMtKFVAgPrHSpKSMCotQD2lhCPF8yOiTxsmxkkC1SJkmwSYRJ016g/tnXXMEnP3ULIHjVq19FLljzMDvKo+GFqGx3IpRHVyoEISuNgGZXYXXWIlTbvsogK2Vf79ozZ+aITIe3vOWtnJ6PgA7v+OO/QNHg4gPDPP+5z+C706dR09PsLBTwraGtPOIkIe4scOjRJVLtuKiBL85La+mdnwBJxFBZ0mi5xMQqLxacOk0wNkqyOE9OpxjczkdkXfzuCS6wh6eo+jk3/j2FKg9S0ilTRcEvv/pVPRGAK59yWS9rWhkdwyuV+MWf/9msWHsA4fn83tveRs0/9yb0ZWqlRBjd0xsrFoukQuCZhHrTNR8JfIGkhaXfeCYry6ynxud1Skd5tLsGi8Ti9wqm212DZzSluEtar5IszoNSlH7kMSRCkTDBydkESwFBF4vteRf15WXk8jwf/2STnNYILJ3bvsvxaovaeBun7Zsg6DIx7FEurU3AjvQQgd/j3MkwJMkMUD4nNxyAOZ3iaU00O+O2K0qR5HJ41tCR+V7J3WBJ9XlA4IyCqgw7tRQre1us9aby9976x33H3Ft5KGsMZ06dcotgVs+8GayrVl77nOjfEq8uqoMD/Z5bODLKSDHPS178QpAKmc/zR393A0lw/mu3WhMrzwl/CrDWIIygIwIW/V3k5hI0E4BkZi5iIJ/rFecv1evI6gp/ff2bALcpPDU7T2F4lMCXeCxhyDE+7PUJsVohOJ0vEezYhem0XKmm/BKJKPLgh1zCt799F5Bw6eMeB5zbzdFEXXS7jQxzdNo1Yuth8SkV3fgXxJyaPtUj8idSMbJzFz/97Gc646MUM+/5B46ZNlFsUEpQzEuK+a3juIIUQz6jWjn+6mJVY5EZg8Hx/Ey73Yspmyginj1DuPfAPUpeXFjFY2sp6NjJWns+GIOwhoJpMjHiI+kgSPt06QBipc4h0rqOVCb7rNOaHRxQDJyVUj/0jGdw2+c/hxXwc7/wi/zen/xfjp9Z4v3/+p7eZ2bnVxgIqv3XmsW2TNzFRjHKGgSWODGkjACWhWVNqWAZHfQItWYk7tD+9jcxaYoqFIhPnaQ+s8RKPuID77uRxZU6WMvb/+hPecRBj+uuu45ISCRuy9FVAmUNHeVR9UfAVhmqqKz+1mOo4vW2KOCyl2qggul28cplVGlt+5NqS0oZi0e7oynkswoNLINJRDI/i+12VyVHaKocqRiiG7mBNxu5piyr/KilpSWOLszxkXadinaKG6kQ7Hzy0zHnY87fS1hjsHGcmTBHayIINh34aZqSpimn5+d778VRhPRCwjBk967dCFLe/rbX9lGRBJZISEQQYKIIb6BCw/M3LeoXSjEf5Jhq13uLoywU6VpNzdvFUFcAHha3KAIsrGgk0EAygUVY8I0hlpIdWKqZpy1wBPezY40ARkoGHnuI7oljkCYkyiNVTaZGfQRNBIZubJkq9/PbQp0SnTrZe13GUpc1fvM1L+P0fEIhlJSKMnM81mrHLGBabdfs2xisUFhZoBtZosQwNuwxdp62A+shaWWMA8dhHRxQWYlniFhXKbUqt987f6pdIvAeiAhcUINXTGNGux3i2VmMTvFHx8hrTVd5FPOyRwI+e0AbIZ38zpnTCEANDvVoFKWCwsdlfNYz4K1OiU4exyYJLeXhWUOwYycN6dHBMkwXu8pDMimYfil0Va6QLMyTLC5g04Tu/CynE8lvvu5PmF9KQQb83Tv/gV1TFX7zlS8gXlqgU13is5mktQHmPvlpklZEItpoQgqFQbBdzkx/g3z2KEpjY9hijmue9lTnwRZLqMogt777ZiyCRz44z8c+ugx47BwPaLQsg2XHiyrGEbpWxRpN3GriDQ4S6pS2KvHFb7aI2YMg5evf7fCIi3OUSx6pFZTSmGRxHt3tgDbIQolE5KjV67w22/KVBwa46qmP4/nPubJ3TzSCqufjWUPiCbrKZwp6dIVV+XUpXEXLvVWytWczya3tIzmvcuI2oiNZXPJCuDoApE1RCjyWEaTn8C6LaYoSgnDHbkeFkLKnBp2mlsVq6tROzvJ8G15AW/rIYsFxRItFvEaVrigQJatX4hRTwkDS7lpKHlRGRigOFHnJS37aGXUh+Lt3vYu53Db6tFhLurSA9DyslEjryOmVAYXPIhaffTt8yqX+6V44q3a9hKVuE3ZPuiL+VQVwQdwL8UhrKKQx8cIMWFADJaQ3SFH0K79sFBEx3Y4TXsiEfh1PocrUmIcQ6+d5P11I5HJIa8hpTbww6ySx7mGnwgtq8Ao6ZSjpopsNdLeDbtQJsgm6GaQ1mHbbNajWqdumbBEXss0Gtlh0GTccKTeY2oU/OsZ+Ql7+6v9JmrrGM+94+xvx6Q8Oe+UKJk4cOVcpTBxTtIOAophLgYT5+Rl85hHCCUZZXIxMWouREishxUdIzbOe+VQaHYMScMvNC5h1NN9qkKf4sEfSPXEMWSqRf/DDgJuAgFpdIwkAw+JKSrtrePRD8kSLC6wsL3P99ddTSmM8a6h7IcuzLfTQGMdORyQMoWhiDJxZSCmX3EDTUjq58HoNjCU6eYxi0gEG+oLlSq6N4tHhYQ7kAl76sl91noUxhHv28a1qA+H5dCOLxboWkzgj4a+TzLerxkrejb4jG30sOzZNbS+7KITFzwys53kopdi9c6fzCKHX2wJrz1GrWYVaJ0Yr3P4UiSVB8qVvtWh1DGEgqJQUD9qb6xk9I4RTAA7zGNPGttsUdRffNrPSKxf+aLYtC0sJB3b5vd8RSQlJ0rsfsVSbJo5WERqN6XbR3Q6m1SKvm3R0PrtlFkX1HGMnrKVx8jh/+Jv/m1QIZGWIKIpcogDnLAwOOL1Hj2rvuHISI62r3cZahBXEwsNDUmtqrHWtFc5u4BQvzPVkpRIpCXfuyq6vQyGvejuJQk72CWq84x3v4K477qA4fRIP+Ic/+1NW/ByVSx7GL7/ilVvem7OxLYP32c9+lje84Q0YY3jRi17Ef//v/73v7+9973t585vf3KMivOQlL+FFL3rRlt+bVlewzRpf+9ItaCGIheRErclC6npMOHqJa3izfmuay+gT0vNcMWmaEhrd61NrkRhC6k3NQDGbUNqQ1mvoWpVSEuNbQ+fIHShjQEbsGPNpdYxTSVn3gJeWllhYWOBlv/qrHGjVkFnMJUlSSrmA//4rv0S17gblDe+8AcE8nifIjYxQ9CRPeOJl6E4L6fsMPP7JfOZ1f4SyLUoFSWrI6ikFmsGe8slot03rW9/AJjEm6pDMnUHZGlpUWKlrDF4v89ruuCzjKoQ1eL3JajGqjKcG6EbucWvKro53VWBRSiIhXdY6jrEmJa2usDNaZrkyRKW8G4Dfeu2vM7YutBDqFGU00fRJTKeFUD4iCDGiRaoFM7NuC6mkoFQqUCqtZdes1tg0WctfZAKZW0Eg0GniOo8BSIlFsLJSp1prAQYlJaVSiUq51F9nvGESxmb/dyo26z3DWCq8dR6QCAK0UCTs4XNfvJ1bv/FNwFLMaZ76pAfzky9wMk8rtRqNZoOl461MnUUSpAYvf5JdEz7f+naCRVDKSwyWesNQHHLnaHoB/tgYut1B5nJ0lYfeRoJH4IQqopPHsTplR9QEDPt2BHgsbPgND985xVK3SeP0aQBGiyXSMEc+v+ZRSin6qlutTmnVqqzUqnzili+ijMUIWOnGtEu7qDY0UkCcWPbvXLe4pWmfhh7GkK4ss7zs/nvT61+FxcNFXDV3HTnC8LCLqR6/4w7E0TvYWciRCkEiPepnTtP07pkm3pYGT2vN7/zO7/A3f/M3TExM8MIXvpCnPOUpHDx4sO9zz3zmM3nta1+77RPbNEUCEW6LKqyl63m0EFiR48xC0ivDmZ6LuWh3rtfzYeOhm62KiSVmF4Y83/xeh8EBxcMvzvHBT3wCefu3GExj8svLdIG/+oO30phboJYrkAvXGpZsNEDyaUKgU0JriLOtTZy2CHxBqi2tjga6eJmnlkpF1/cJ9+7D6hRveJRwcorEpoi0SqmgyOckUmWFngi6saO8jEctJ4EEmGaT6MQxFk+fop7M8W//+m6WV5yB/dt3/jO7pko85qEvIDc6xnCxyCte8XLimdPIIMQfm+DXXvsXNNt1vvC5T1JtJggrueHd/8JD9kZc8or/wexKFbWwwJ2tKoU0QWJJxQJhlCATgTe+A4vH8GC/IokFRuIO6dJi9jrGNGu9u6e1doX00nO/bt1NbVSrNJsN9xmgUhmkPLKF7E9Wtyk8fy3pICRJajFGZB6FYLWrpD07GyzlBvlhScoQFp8TM0lf17n2apP3MHTNpYZHseSweGgjaEUGTEohF/QNyERIfNwuxJXcOcGxsXiWsREPRR0Py87JPQyVfepty1Rm8BCC3L6DxPMzkBmT1jYmdiwk8fxsn7xaUaeg0/Oay5e8+MVYrfmDt7wJ31j+26/+Ksf/4q83L9+SCmUtBXD9Vqyh4XksmIi28Gm2XLfAcknRbK/zTI05Wxegr5bZ3b6Nr3UgjRmcnOSFVz3VXUKY4+9vvJH5DT67HWxp8G699Vb27t3L7t1upb/mmmv45Cc/eY7Bu9uIY8TgMDofcukVT8bGCTIXcvzwl5DBTlZqOrP6TrNuYlQznFUkd5XnWP6ZLIkIAo7PzNDudnn5q36LM/MCaHDDO13ZzMV7fWZnZhmfn2disISfC1EIPJ1mnLHzP+SRkRHGSiVe92u/msk9LWGThN/90z+jSszickqzbVBSYMmjcSukFYKmF5Dbsw+TptgownQ6WKuRwQ6m5yO6XXjwvrCXqQt8gTLnrum626HR7RBRxKNBIVfBigKLK0085sjnRJbxDvFHRpG5PKbrCJpxZ4Ga3MEEDUIvD7bL/Mz3yLEWA5lHsOIFBNoAFislEQkVa1mggsXn5EzcpwySCtckfBXC810MkBClVBZWUwyPjBD4Am8DqX3di8nZLUuGqtUVdMbvS7LSsDNnZlBhnqHhYZotF9geGxtBKcHhw5/njb/3BuI45plPfzqvfNnLMlUVtzgaIUgNmVx+hLWWpVpKsbCWzW17PuHuvb1rWFX02LN7P3fe4YQJnv+CK3jqpWvhjz3FPGNtj6Ivs4nu0RWWQq6ANWSVFj7ttiUuGSql/liUKpXI5Q9g04RlP7e1CEAGGYakS4uYNM1Mh3DhHhxPtNnWFHJrJWkyl3OtJIVCK1CVwa1rVa2lUi5TKOR50UteAp5HuPcAH3nZ7yKVZKAgMdYJBqxvTyOCAOnJ3pgE8MqDDA8PUxnew6+92jlKlZJiZNDrEfut1ihrXUP6YgndbmLShARJ1Rvl6HSEpwTDFdX32zbDlgZvbm6OycnJ3uuJiQluvfXWcz73sY99jK985Svs37+f17zmNUxNTW36vbG1dKKIaatYMhaSBIaGibsRMu1w+sxppwosc3z7u2do1w27xi1RFBFFEUebHei03YDIF2i220RRRLubkg/dAIziiOXlFdJODI0ZhqyllVpCpVBCoLOJ04njPqXedtYX4vbbbyeKIhbvOsLrX/964kadEasZyOVodRPquTKnsi0BQBx3SW2e22+/nWacYKKIY3fcCfWqizNW5impCm0LS4tLdGPBl6rQ7qYou8Sdd3yXZqpZTg0LK1Xodl0CZe9FpMYShDme9NTnMbsssFbw9a98jrg7y23f+W7vvhyZzzyuNIE0Za47hwh9rnjyzyMkhD586P1H6XThtttup1QqgdrJjzzuMXDb1x03oFjkyMkz6NwQna4GNMeOHQNgbNDie9BJEpa0ZaEbOUvgG1hYxo6Mr2vGZBDEGA1RZtvSNMUPQ4Z8j5WlJZeV9Dy63c0Z9FEUY+KYnFL42cSM4ogUSRxFWJsCgjSNSVPN7/7Ob/Onf/qnKCH4X7/yKzzj6qdx0QFXJ5pYC3gkSUo31oDH7d87Ri6A+rKltjJPu93Gs4bb/v0rAIggpNNeIfXGiTqLJGlWPdGd4dhdTrZifn6eUrOGsMYRBYwBE9OWFdLEcNt3Z0iNAAHTsw2iyHDxhObEifm+Mdcbhx1nxL/+jdtpdHwEKbfddntPTXh+fp602aCiU2Zuvw3mZiEIyXfbVD3Ld48eo9HxsaLC4S/die/DaMWysjxPe2QEVpbodLukQnC0Wt/wGtbPh5N33UUrimkBp+MEkRo4fgxrEncPj8wA4EnIWd077sSJE7RHRyFr3kO+gDh1ilZbY6TsjS2A4bJdO9/0NM0oIjKG2U4X4hRyHkdEhW4seP/7P8gXv3wbCJ9Dj72Yyw49nNIW9Lz7JGlxxRVX8KxnPYsgCPiHf/gHfuM3foN3vvOdmx4TFoukpQECnbLjooN4hRLe4BC5T3wKJWJGR6cQwSQSw97dE+zZFTA1GhCGzoO45JJLsGmCyArIpZTk83n+5A9/h6/d3umFbG54598ScJI4CkiFIOdJCtqghaQWhnQsRFJwySWX9K6tkMk/XXLJJRw4cIAClnhpARp1lgHr+3i5gNF8wM4dO9d+UxAiCbjkkksIczkipdh38CJst4PIF0msRyhyNAn5WjaRQLO0tMhgvsoll1xCkMuxJEaYuvhiOseO4lfK5PfvpywlbS9PKsYoldwK6vuSwC+zb/+D+u5LWqv2mj/7UpAmZ7j0MfuIExdov/mmHGC55JKHOE6cEExddBHNVg3TauOVBkjmV+gWh8h5Loi9f/9+ACZHfAp5SZDLUWeInRcdhDRFFvIUHvJwvvTt25DC1XeApVTsH4FRFDmlkjhCWEv8tS9z+vCnSJcW8UfHGXnOC6k86Snn8OuElARBwOiwowAJKZlbXCQVEIZh1uXeMlDK8Y1vfIN9+/Zx8cUXc/rkSZ7y5Cfz+cNf4KEPcc9YSYVB4nkeYcarG5/Yzfiwz+5Jn5Mn84wFHqUkYWer7pIfxTyjgeKu6iy3fOELNGt1rGnz/g8tkucoFx88wLOf/WyOKIWUynUE1ykISU2UaBb20qjlEbIMGAZKBcbHfB7+sBFmZ/J9Y24V+UKBlGGaejcy/2AElkTu5SEHcuRCN97z7Sa2XuW2LzWRrnqOM80WnZLP3v0PxssfAASF8i6KBcnkuE95IM++ffsAaP2LE0d96I/8yIbXsH4+7LnoIsJcDgEcuOgg1mjUsGsohVQMDo7RaBvyOUFYypErDCKJ2bt3b+9865ErlDHkemMLYLjs9c63d+9eklKZUCdc9NjHufE8MYX4/B3k8CkPTtCJvw3EDI+MMzJ+gN2TAUfuPL8c2ZYGb2JigtnZNf2qjeokh4aGev9+0YtexFve0t+L9HxIhYurSOX1amIBYuGTGjJGvMUY12Qnip3nEGhN98RRMBbhKYKpNaNTyCt2TwYcOx2jpMVjDkVEeXiEKVIuf8IhSDVWSUqP/DE+9DtvYLME97XXXsu+ffv4xN+/m6+8/71Y4NIrn0b6718lkpLhiuoRJ0H3YngAZLQS43nYKMJTIEwXhIfGTTRHvTmrQFu45s3Fgw9yr+s1hmRAG8tAQdFsG4SwWIoYWn0Nw9N6jWQhi3B0u4ximQWmxnzmltYK1XtqMtYy1m2RLswTTu7AJinC92n636Xr9dMDpBR9RO6WF1B6zONIV5ZQuTyyr+zn/EokQgiMsTT++v+SfO87ELutqq5VOfN/30b9ls+w+zd++xyjZxHnyLkLtMvIkrpPCNG3K7HA2NgoJ06cXD2gF3KTwt0HQ0C5qJga85BSYNOUfJrSPX2Kf/nrv6LRaVMXipVmmzh/CUt1QW5gEhcprHPXsTM9oqyRCiMlKl9Ad7vIXEi9aZmPirRPrRAbt928446THL1jluqJGa593jPW7locY+MYmc9jyaGpECUGSwGDYL6akj8Tc9GeEGstQ0YTYgl0SmANkVTECFIsJ85EaIqAwVhotU1PbdumKWlthVIa092Gugq4RafuBwzEXVq334Zu1vGGRxhNWswnKTfddHPGoUv51McXmD9VZbB4fs9dEGMYZnbRjcuBomLn+FlzQUpqMiS3/6J1xyVYfB75qB/lS1/+NmB4/OMvBVwMfzNsafAe8YhHcPz4cU6dOsXExAQf+tCHeOtb39r3mfn5ecbHXd/Nm2++mYsuumijrzoHjj5hkbk88dwMNo7RAqr+FM22wbjKVabnEsaGFKMH8mAtJR33iJ021U6+J0O9qUlSy87xVS0u12hYApHyCHfuAWNcXwKzfYLsU1/8k1z244/tzZbP//tXSaXkoRflWK6lxAmEHOuVfa1CFUtEx4/2OGQqOY1XehCXX3EFvufS/zf+ywn8dUbPty6jHJ857UqcJqYIrAbrvqMQCuJ0NdnR3w5Pt87iDwIBjiqwezKg0zUoVpC4QZbXaS+rKzKirTcySkf5WV+DOoYcxbxkqLxOCslaBpKY1jf+HRtFyGIRfxMp+VWsrKwQxzH6y18g+d5tEPfr89moS/PrX6X2uU8xePlT+/92VojGZtFPd00bD3QrMpqywJWWeWvZQABJ15VO7Q3XfpsxHJgcp9ttojCYVhsF7N69j1qzQqFc4rGXXo5UgoGi5AsfOwp0XAevIODYkjPgfhoTdTpUKdIVJQwCX/qARWNpLp/gGKd611pIE6KTx90LKVmYmacN/P3f/ytLNYtQBd7zDx8n5AwP2udz7TVPoVLIM+pZHjY26jTmCnlSucK3S3toti1OdinHSi1lZNDxW6stQzR9Epum5LQm1Brd6Sf3rpaIhX7/TZdZ/Xl8+iSrGaIdwtIyXUBlzyQPjCCCKQwn2QoiG/sbhRBXM7mrcT2AY0fuYmh0P7nQ9a4RtJDSLaS5YPM43pYGz/M8Xvva1/JLv/RLaK15wQtewMUXX8zb3/52Hv7wh/PUpz6VG264gZtvvhmlFJVKhTe+8Y1b/kgAz1pKaUQ8P4sIQ6xOuWu+Qc2vcuONN9FshwhV4nOHv80th0/zyP01V6R+1the5VcBzC6mzC2nYC1hIDLek4cWhlNzc7znX/+VZtZIhcoQnU6H/DZ6XQqlCCZ2kCwtYHVKRylaMs/cUorJCKhnGzthLcncDFZIROihBspI6WPb3+XhB3PEqaUQSgRJ33Ge1nTu/G5WzgbJ3BliG2F1wyUotGRAgsf8OQrN0vMxZKogq0TZ7G++J/BLqmfswPHNOtJDFUuk1So2iWBoqCciKekiiKmUVJ/ybWA0KyeO8c6/+sve/RSVIS77mc0ltZIkIYoi0k9/7BxjtwobdVl6/z+fY/BWNfesMSAEeh0Hz3WAc8mPs3cl84uLTKx6fFnm0mIyLcMlBP0abCIIePYzn0myuIhu1PjwRz5MR3r8wm/+Jtdd/34SXBImSckW5gJklQGjew+QJjHLUYekG5FimfMtNshTGRqkGznDPVAYoM0IEidCIaztNZV35V4thtrLVFFYfMLiIM6jjJld7OIzC55HYA2FJMHEXWfUU0MiBCGey2zjqDvVhmb/zoChskf1dBfrr019gWsitIpWx/TtBgw5JF2sMZSTiGh+ns98/CY0ApEvkEs7FGWXq5/2JOZXHDWlMiD53CcXCTdpprVaSzsxunYtnQ26AG50JLbD6KBCUkdgyQVuQd5KuHdbMbzLL7+cyy+/vO+99Rb3la98Ja985d0nAYZZI2Bdq6KjLn55kGLcZS6eAx5JEJZwG9s2K9U2dx5bJO8J4rO2OquF0wiPdlf3OFdRbDHkEGh27trNXNwl7naoNlt0EfhjUy4Oss3mvqpU6jW1aXo5NMO0M9EB1wdgALWuBKd215382Vuvp9vMKkYqQ8RRF+GT9d402arW/5AbJ4/xpdo8dDuuzD0I8KMEyzITwx5xbDKKhT6nu5QslkiO3olptxG+j2OnnX8QxFIRZsfZ5SXEQJlgaic54+pCUwbRDDA9H+MrydSYK0/aOTFBudOENKHVdJzAcnkQz1OEYehIrGzcISwMQ0dy3gTrvfb1EJ531q9RmY6ga7TdiSwPfejDe7uSJEn49Kc/zR++5S2sSkQpa0h7JWIbT8hgxy6nYVgqUfUCIukRTO10oQAitLYYbckXFYYKhhbC9/np//bfaN3+bTpHvsdXP/FxIqW4yCvT8A1Gg3FsHSQWSznbcjqC8PSpk/y/338DudoKAMNxkzj0+NmffjbfOxFjjCCXE3z+Uy0sVadUjKDbajGjE3SqSRDUU4PMa6JOjCBC4BN4gnZk3JZvg/pjsW5bu1TtX7g1JSRdSBP2T4xh23XM8jIS8HIhyrMI6oyNKKoZ+RjrFhWziYnZiPR9toe22u3s7W9/e++96172KjRDtLsm8/EtEyPetlTKL1xf2iQmkZK5xWU+8s//RIjB5orsjOs0i8M8/3lP5Y7jHawVVEqSLx2u9mgqDS/AqwySNhvIIECNOIIywqdUkMSpJYpsNrDaCEwvFmeShNe+7DoU8Pq3vpWX//pv3KPrX15pU2ud4i1veRuaCiCYnekyUHAk1j2TEwy2GsQm7RmE4YEKwtP4uVKPrKyUW+nIiMQ7d+4kri1j2jVqkVOCruQLhKFHvjROJzJo4wyJpozHmkDikSNH+O1XvYJ2dQVlLQPlCjaKIMyjtWWloYkTi6bQKxXSQuJbTTR9HBPHKN/HaotvBDF76LAfCPjsV1o88iE5wkAwOSq55gUvYFIK4plp/vGv/hJh4Sdf+lJO5UuMjo4zfXoGcA2SfO/cci9/dBSdTeyNcL7tca/DVUZUTlLN7NwiqUvSMj+/jCDhuutexi/90i8RRRHPuPpqLj6HRiXR2pIy3qeMs4pgfML1ligPUvdzND0f6Xk0lr9H0yi+eMuXEKQI2izOTFMpuOvyJ6YIajXXfgBHks/JGKxHojMp/Oz8Bo80M3gHLn4QtahDMerQbLu4V+h7VPyUsWLC0rCP1rZ3LJmXXt67lzSNaEUdbBoTAcoLOLN8khve8x4WVwRCaj7x8Q+jaPG5vT4vvvYpqNBHt9yY04BcV3d9rhB0Jnfm+TzraU8jWV7mY//49+SM5tInPInbv3EbA2GeiWGfhSWDUk6sYrXm+XyQRFjadLqGVtcyOCA37GcbaE106gTWGrzKEK6dao4z8zExo0iadCKzYZ3x2bhwpWXWsmvvHpZNSmfmNDFQzIH1FDtZ4qF7fWaXEnRKtpVKkZn3dOddd/G633od8YpLEJQqgySdDn5e4CnJ6KALigsB3rotn7WW+Mw0YfZEo+mTeMb0lGXvHhydYVV92H2/BhHQiSzPef7zmcw8t7e/+ffxjeGlr341r/mTPyMnJsCCHwhGKgrwswQNPP+5z2HsGVdR/diH+MYtXyBC8YRnXsPXP/8lRoMHcWI2Ym7RbaM1QSZN5QxlmqZ4UYd6rd67L6UwJMnlmF1Ke0kf1xPDXXNoUqR1ogMyyHhus2eYXY6YDQQiZ0DEfPoz/87nPtPg4t1t/r9X/RwiCJ10z8oSkVQkQiGLRdCrys1rJPFUW4KzDN7wM57HzF+8A7uBoKMIc4w899xKHS8jH7vbn23/LE6cQa0mMwRxnPDoH/0xbrrpJufldbvMzs32eH9aW8Q6YUlDgVbH9Cl8yDBHuHc/JopYDnI9jpoUChsvINmPa1iz2mFjtaxNEO7cjW7WUTgCstQJRuRZF/4kig0WhcoM13XXXUe8MEf79m/zz3/9V6RCErfb6GabP//TP6Kp9mOz3crC7Hcph85D/olX/W+WPvhekrlZvnHLF0BKqqUhzszMMcoSufyBrPQyx+LSPF5m3IOpnehOh0hIAquJp0+iF+c5Xq1x/Zt/G00ZQwGLZObUNIPFZk9+zCJY8UKsEJR+/PE0vnMELYZotC0Iy0rD4GeqQ2eHa87GsaPf44/f8TZq9ToCqJRLnDhyFwcPujyAtIaBNMascjAX5lEGunKAIycTUiaACabnYh6yf+ud2oVr0xiE/NTP/Txprco/vfmN+MZw9U/9JEvvfR8FqRgsK37k4jwLyylCgKKOpMvOnbswSUw+jljMJnalXGEsHxLlc0yOeqzUNdrAQEE6VzyDabf4wmc/y6lTLlB8/Vuup9NoIEf3Mz2XEHj9ggObYWSoyODQAP/1l/8HzZZrGPTXf/GHq5RP1ye2mEfXaiTSI1KQO3CQVFSAAAQkiaXa0Nk6mCVh6nWsSQkvejDVr3zFlSFdehnNL91OiuS2IxGNlsFaSNiDpI4xtufBxrNneNNv/RYAr3rVq3jj295Gzs9Tq2uqTY3WNlNMXiWlCpe0MJq0UUf6PrYyRC1R6HCQQm4IUGgs9Xqbk6em156h5+MPjVAN3ECTng9JlO0c1wrtz+56JYDyZZdT/+LnXAndOqMnwhylRz+GyhOv6D9mdZ+0CusC6FiL73tUBp3hV1KwshyzmiX2fT8TFbA9g6fCPF4QYAGdZT8XllPyU35/LE9KVD7fR8gdHBqmMLSf573gKlptAwI+/uEqIcd7n9GtJliBbzK3U4auJNEDkToPKk5Bo1gvpqVKZYLJHbSUj8rebwK+DLLf7q7YpnUI3fOTUhJMTmJaTZpeQNXzWQ5z7Dj4YH7pf/06X7+9Tb1pCALBlz5/E2Zdq6tPfOpTzJ88AcD1118P7RZFwJKQMojBd5JiwmJFwdG/CgVIUwIsntWgUwYSQ+yHdCNNJ3L10/WGxlBGsBZLPRsHDx7MFHygkYU4KuUyBw5ewsGDe9zzM+cGZKpzp6nmJvj0pz5LtVEHE/PWP7yBPN/l4oP7ufLKKzkfLqh4QLBjF6JYYiUICY1BFQawQN0L0EgmRpzMjLXwEWqA5Nprr2X3xATx6VPuIeEm9hve9jYafkgulEyNncdjy+IUlcFK7y0jy0CRODHECcTJ5ivSeigaXLI/x/Rc4rJEuJT5ah+AYGyCxPPxTEosJEm9jiV02mLCMrekabZ0xvZ3AXwbu4C1XyyxEjg+kgpyWOGTMEWjqbNmLgJNHs1I1gTFwR+bIJIK37rG0Q3Px+IM62pBtyVgVRkmUh4LszN86AMfoNtqo7DUy0MsJj5Fz+OhD3soSWKREk7dueYhAL2mPe5Ls4krBFq77CA4g+dq79dieRYQSrLrlf+H+hc+w/KH3ke0MIcYHGbqRT9D5YlXbK8vhgCsRmDwVJaxzWKiqzSRoaEhAs/DJDHzs7NYBBM7djC7UKNW7zDfnMLalNe/+Z34LPCQi8o89znXbHpaTYHTcwnNjib0JWYdBcckCdGZadJGHc+4nKXq1tBRlWZ1BXCLQzdOiNttlvXa71T5PMHkDlaCEM9Y2qNFihN5fuF/vpwzcynd2FWKfPSDTQrcAUC8uEA6P4/KF5DCMqIj4naTE8UKtYZjLPi+k2l3mem1mKVIk765kMvnOTg1yk9f99vrqFbw7nf+P9cnxlpIDf7ICFoKIuE7VWcsK7NLvPs9H6AZ+YCgEBqWZo+yZ/L8pXHXXXcdiysJJ84k/Nmf/zUCzctf/lL27gwIfMHx48fRG8hxtTsNEhpIOuT8pLeXuOvoCQT6B9fgWa2x3Q5NL6RrUoIduzidK9PwxjhxJqbd0UyOBT1p7FX3WOZyrsHNOszWG8ysnOpLpoCLa60WIqt8nsuuvJJDhw4BIDzFq952Qx9jLE4tFtWjLWyFXCjZvzOg1TUoai5IvFoJMD9L/fOfZipqu4qAE0cJTUIkXXA2TbP+pBhSxqm3NCIIod3CZoIIGseVW65p2koSzSxksUxDkrSwxpKsa/4jlKKRdXILpnZm+m2KgVIm92PB+XVui7Bzxw6arQb1qIvqtEmBcrHEeJina2YYKErqLUMpJ7MESdR3LlWu9NRZ4vlZmjJkYXEpa0YuWKnW3SIQCiYmxtf06ebmXWnaxZcQ/tpDXfxQeRR27yVOQQjTUzwBRy/p46WsKuQI1+d1dcEJAtkfDNcao1NMHOFbg0GgOx2SRGOsIcgVwCZYDKdna1kz9vPDZPW0UrrmUk4O3UPjGqybdot0eRGMxgi32Q1NE787DYVVupajE2ENQq4pA+m2q6Fuq4A4WI1HCbqRq08tZu0vJWnPg7ZJjFCKtFYl1AaBoaxjCklImmq3EFiB7wkkDdS6Np1XXfMsnvjwh/YoXtdffz1VmetTtXFX67u5Z63L/oc5YqlQ1mDiDnt3T1H1clTxiTJOZSmEHZPD7Ns3uOn9TDTZ+FVYFIm2/bxSKWlL5c6rFKpUpm3aKLvIs579PwEo5ARjQz5/9+ff2fRccIEN3mofWgFo6eENDdHwxkkZdSIAKdx1MuKSgyGKlZ4zITKdso7y8IyTiI+2kN5eRTi10w0srVGFIlY4c9eNDPXWasG3j9qmwQPXqrFcVOdkTNvfvQ2bUS88DPH0SfJ6hUiO0e5aAl9S6SkWCxpNjRgcxlOSzlHXMEhLSVyvI2QJE89huRgyZQlQoOf6eHgbQZAyUFDkQud9Kaq9rf7zrr2WCatp/PsXOfy+9yKwPO7yy1m85Q6O5fOMDXmUCpbAEwja2LNp2lrTUp4TPRqbQM8tkqYpMoupCSxpaog2iOUYWDNcAMLrOYrWnisplQoBKhv8UrJazQFs2CzaZhL77U6bqNUkzWqv2602Etfg6MorLgOcas3NH13BrksCgfPYCmmS/TvG4rO0eIqPf+ImQJELFMtzs+yaCF23L2t7vZWbysfDYgKPwWKXyQeNMzOfkGpQKk+DwWxD5xS1V4UYymlM23q0PVdOVsw56aXVhkxOHNP9Fm9wGDU0TLy4gBGZaIX0UIQsrSR4nkAbKOadCtB6gy6UIpjcSbq8iM2eY6JcCKIyoKhnGVdJyyX/pETli5n3aiiYFNNs8bynPpVLhx7KiUXJe/7p0wg0L3zhlVxyUY5d4z7T0yfOHZQZotgyPuyhqLHaS3q9ck0+TchnqW0RhFkyS2Dad/CYh+ZYqZust3SwaYJkFRcuS6t1zxiswnQ6VBuWZmeed77z3VkfVcGNzDB9ss5gad3nlUJa65oQL86zp1xiaHiY333D24gTSz7nZKbP9vigvxGIoklCwFJNIxAMlmUWe9i+wTvf7xMZX6z3+6IYiPFYZN8On1Yn7gWvBZpySbHUEfgTU5jI9eE0AnQ3Zrjg4akRJnaPstJwzPlOrUHez2c9btcgrMWzpkd2FsDokOLIyTTjjeVQuAypkBLheUSnThAYTSoEttVgKJnnZG43aSoIfdfgRmR3bBVpo07n+F2U0oRYrXaHs3ieolwZctk+Ac36MqsxQ8/z8JRi58T4WkhOCKbn5ki14PQZF2NSUlEqlRgZXsseuh1sCmmKsTG+0WctMZtDZttkIVZPbFHKlXcWsnjv+piv1S6YvyqUGZ06yUV7xtGkzC2eQXgVcsEQExNj7N1TQilQxSJqcBgZBFgpaEmPuhfSVQ0mSoK5ZWfM3a0JEbjYla6tcMstt3D48GFOZRL23eFRhoeHedC+kGPTMd3EUMhJ/HWLfzA6Rv7AQdLFeRKpaCmfrioQywCJod1x2nSFnJf1a+5PErkesS5e1vF8BJrhiocQmmLeybX7zPfO509M8bmbb+bY/CIay9wHP8SPPf4yBh95CYWcImAGg0epINk14W+4EK1H4Au60RoR3FOiZ+xskjjVFxwp3kYRaabPCJY9UyF7d2zHzK3hwnl42UTrZd3IpHhsDPgYAjJKJK520od1Xpzr8bpmlHJa05IlFjMOUb2lGTlPAiKt10gbdVQuj7ApnmgyPuzT6WqabYOmhLhbU+lcCKXwRkbR7TarOUt/fCJbtS1SOHUJp28X4jPNQFGxtIDrAqY8EK5CRDRWKOk6DRXg+ZJ8Dnxf0K1FGPJ9/Wx1s8Fw3EVYS+foEXyjSaSi03Xb53JJoehiqDhvJE3o3nUUmyQERuMh0N0OgUkRssnFewOi2PTaeazFGmOSuVmE9FA40qzptLPPmEyqm+x//XQBkfHherCr9AWLzrooqUCtM0xOdMCmCYvrCMUmSVBnDWG1ztkVWe/awkCZXBC4FgJKIfyA5fYCWid8/tP/hkTjM8vJo99keHBtMfzEBz/AFz/6kV6S65bDh7nuF17ITKfE77z5nzEUeMFzn8r4qGLfzpBO4zTSD/CKBcJ9B1gK8kgs07kBYs+j3jJECVgDQSjo0Mmav8P68sLKYMUZvOx1LpQ85EBIkiWAzjZa+QMX44+Oc+bjN5M3Kc12zEy7ygc+8mlcnY3lqywwN71IpbC5SIMhIE4s5ZJgIO+jlOzznISUmFweBgezJloKoRQ537DcMBlJOenTTtwMo4PeOpKz6W/nkLptdN6kxDOnEX6AyLm+viKY5Bvf65APJXunfPK57ZXHXbgsrXCeTDLvBnAiJd7IGMPliGJ5nCuf+TxWaprhQcUl+0L+75/8Qeb2OpztHTqKQIDW0I0NnhQ0Wud6afHSAt0jd2AyRYbxqM1sLiBODNW6ziZqgKbUE+S8pyg85GHIMMeinydSivJll2Pf+wGOHFvk9b//f6k3akBKs7bMnl1renBqoNLXf1OEIZ6NUTSQUriUf89zdMZsFcniPIHR5HVCPH2SiW6L0/kBurHrqJbrNTWXpBrM0pKLn5VKGCmQxmK1Yb7T5XT9CDf83V9kQqyGxYVFBrxqdiO7kHNN0GOhXKZXykyrzmTq66v5Z3HuVngDeIqMXiKYmprI4mMboxfesAlxZJmbPcNqZjaKIt7+9rfz1a9+laGhIT50440IT7lYVWYEbVaql2Nu9exw9qYou8frA/vauC2iozs1GB7yGBn0et3xTBIj/BAbdQmMJpIeJZ0wyxhJ6gy9FKthM4XNaqq9oWEOHTrUiy/7o6O88nW/ve5SRF9saz3Seo14YQ6wdKRHTALIjF+Y1RivRqrF+ae8Icfx6Rqv++03U21qJIpKyXLyxDIH9q41OXrqs57FEx71I+uKkiV3pSFRrLEoDJooNlt6d+A8vN2TQcYnNT1NSgDCHDnjYtk2TZ2QaLOBCKeQ4Q6aLUOzZWh1DD96yfaKBy5oDE/l86i9+2krz9WPriyhbIwnFhkoyKwfguDETIJ7aGte12rFwyosllj4zC2tdWhP9LlWP56d6Rk7cPGSrx25nT/647+h2XXB/lZ9jp3jfl+Lx3sC6QcUHnQJ08Wye+157Nn3MGKWSSjRThWYiKldU+zes/bAXBnbFAkShUEOVNDCR9JCSYgiS+iDIMIi+yaCiRMKOulN3dAYAu3znaPdTKBRoMmhaLsGy0mEygxXV/ggLeGefax88zvkUkXKEM7PNNh4EcKyu7++m6hCStpZGVq4Zx9m+ZvEcUyttsZ/1MZgs7IvyBIQWeYWaxFylYSxJrl+dlzS8zxQipHBSrYrsKzU6kSJUyRxQfy1bldXXXUVv/zLv8yrX/1qt22XwVnf56M8n1e9+lW99976lt/rU7u+8tnP4YmPflRvcRWBT0uVcIbV+e3GWDqRoZDziHEVC/H8LLrZxEiJjyGnQdgBAl8SBtZlsbOhpbLzeZVBZC6H6bQRYR61zeqftLpMsrhIujiPh4tzBpUSE9Ljqhc+m2biUcw7Kfq//cuFPqL62di998HE1Egp0U46oLuUS4Y9ex/Cvv1rC7IMcwQ7dqMz2TOvMkTj9hRjTTZWApItivjPRs8gr39PShePtBYRhqhC0VGfKJOakL995/tw/NwuOe7k6LoE5flwYbuWAd1TJ5xyrpDoep1KEjEXlMnnJFZAmlic+Gy7b/2VYY66F5A3KSKXo+EHaCGdxhaWXKDwFOdmXM9qBDM+Ocn+/BQNIlp1pzIyOT7Brl2lTT0McN/dbGtyoWQb2oMAvOgn/wuptnz3WMS//ssHAfjZn3suuybWJqS1FtPtUE5jPAyd79yKpohhiEpZkWoDVqKoomj2dYaXmXzPKpZaLU43J/iXf3w3ljwWn8XFhJI85rZ8lSFEdQl/aJia72MRFB/6CPKf/XcmR8f5iV94EXHssqDvuWEJiZPeEmGIVymTriy77ZdSeAPl1R+AMwpq7bVYy7h2o4jTc3OQpHz9TsFnvilZacLQgOCJj4JHPdgpGEvBuaKgvddZAF8qgiDH5OSags/c7Gke/ehH92J2Gz87l/SYW0wZKMms9WH/JBVSEu7ei8kEGWShSLdlMcZluU1G7VEShiuK2barYQZLvDDLaKfthEZDwKaOooNrLF0oSDpME6zbtcgw12uEvl2kdcdFFZlCs2ddf9ecmWd8zCdZgG5kGa4IFM1NA/svevHPMD2X8O9f/zbzn/0KqDw//rhHcvmTHsfggKK+ssbBVPk1o5xqi7EpQwOrta19HU23hM1qfjcyepFSnJqe5nf/+E8AGKhUSBlByZAsUITFbHjsRriwfWkX5olOHic0mhBNWq859RRrWK5poth1virkxHkZ28oat33QGiOKdGKX88sFq5me/kcc7tpNurzU441d8+Kf5InjD6EVK65/259j8fjZn/85Lt4T9Kn06maDtLoCUuINDmeE1RJn5lOW6ynloiRhpG/bveH1KkGSGtdrgxYgmBz11ocnMa0WJurSVR7KGvyRUTxOsrK0wNf//RvEWoJN6TYWmBzq9NUQBrv20FIegbF4g0M0hSIlxOJhcA1SrGkjZEZcHSgj4g7JiWOERtNQAbJYJJYeiZTkc6u8utWwQdQLKvtDw3iDQywFa8q8UkrC0Kc8WKEbO2mvbrfd62u6SgQWxvJXHxEcmZaZ8gu0OvAvN1u+cQf8/LNnkEIQhh6TE67MzLOGvjSuEDhSyt3zJhwf0Rm4VFtWaprAl70+IeshhOhrd2lNysKKzniMlrFhj4v3BKgseGgRTqJraRkpnMB7JY3JmQZRZOkmbktrAY/mhmVtG6HR0rS7jqrjnkNW2eF52DhGlcvozL+yQNMbotERRLHB9yEMyGLT54/hFXKu/4snDcV8HmyEyahAhZykfp7jpIDBAZlx91zJ3Hb60oITKlhYSUkZReAWhfXzbvLBl7hxeeokBugODePLNmFOcs2zr8FTgokRj8f9yC9umKA8GxcuS2stab2ayfU46GYje4wR1lia7bVORlCCdVpzJoooJxGr0XFhy3jWJ0ktSeIM5cigx9kFyv7wKKVHPYZ4fhYZ5vDHxmm0PGpLCZAgabFrwusLnupOh3h2pve6225DVnZzZj5e16FJZXW158dQWTG3ZLMiacdtS1MYrqwbIFJg08R5uEIilMf48ACLfpkuDaJOChZGhgIO7M33eUFSShbCIkWd4A0NEw6PUFaTPPrQ8zIWPHzrqx+llBlmU69h6nVyO3ezkCu6UijPo+kDWColR09YXElxW8Z++Snh+uud8zstrkbd8eOct2etdUTgIOBzX6pyZLrWM3arSFLBkWn45h2Gh+133pLNOr/Fcczy0pKrwAdS46g5AudlrLVo3NwArtWKWkYGFakmU97YXC7MGEu16QLrrszRUinJnrEDSM5MY7sdZBiAlVghaCmflEFQglJekaaafCCoobDbmIL1pu4l4wA0g3hZlt0fHiHqdhF4NPyQjlS0vDyRqLBYNWhj0RFMzySZV3v+81UGFJOjHlc86dE88fGPoptRRsaHvf7Y2lmQUrBnKkCbONtRxXieYLGaMjq4SczQWBaWUw5/4QucmnaJoffd+Cle+Lyn9D7zP1/6UqLpE7z1zW/BAq96xcv59be/m1R0uWhXQJJCIe96m2wHFzRpIaRCFkpI47J6Qgqano8QCZOjAflcAkJQzMks7uSK5uO5GZKFeQbTiEi4bZMWeVYWZ/jIhz5Mu+u2VOXcAqePHOXgwQN95/YGh/CyUqRGS9OJUoLAucfgtPTWlxiZszTmMCCNIpaDzCwlNFuGcklmD5u+ZIfVmmIaExhDPDdDfmSMPZOu+sFJO0kSbVin1oPMF/CG1jW1UYprr30aozOjzC5qvvb125F0eM5zr+bSR5zb0jJdFU3cd4CGF5JQZn4lxWrL4IDKQtjZcZ1+D8MI6ZocY/FYod1xgeHBAQ9LQMquXixOdzqkSwsMRx26UvXej+KEdHkFKyRSCLRO8JRay/QKwYe/0D7H2K0iSeGWb0se/eC1vbrn+whrMNZis2SI8n3S1AXKk9SVNDnbozifCgrQF35Yncjb8UhWeXbOiLt7pM3al1ljMDrmu6dOM/vtb1NvtTEIGqWQVARIkUVUhKTVsc4Int3d5iwcOXKE1/zm71Ktd0D4DAxUOD09x/5dWTlfLk9u735M1GU5CDHCqcZYAoRwbIVUu4XEGdfzG/VcKJkc9XrCFoNlta2CfHDinYMDCo9FVkVZ603NcPn8x2sDJhszlcogAKnuHxO63QLr4r6eMaS1GgPJItVggk62gyhJmJ5LcBJhmy9aF3RLKwsF0pPHMEI64urEDiLl+EJxauhEAJYkXWs7SLuF1glf+trXmJ2dQwB/+OY3EYY7GB6bpAt0OitgNYO5hP0HH8HBg+fvr9HIvMhSQaF6TvtZvLazOpxLCUYoND6LSylxutotbYyQ6T5jmSwukF8tWm80sEmCN7XbZevoAJZSQVFvWcqrKldCkL/oQcyGBfJak7/oYhpmiIsDWKq2cJPZZ6VuWKimm1IAYkapNUPu/O6dpDrOtsJN8kNZ1rQ8CN1WX9DFHx7FAIYyx0/HGGt7WyhDnk7XYI0hmj5BMj/PcNLFIojPTON5PkGQJ0l15t4JPOXh+6LPEVyubx5zWVxOiGMXAhBCMDg8jC8E1hgWM297dHKSmbklNAKV3XNjbbblOz+UEr2YjxSCwbIiDLY2eJ4n8JRgZiEhZRiwfTQYhEB6PnpomLofEuRzxEKyLCSzi3dSUwdx4piObhU1NeXS+T2T1UZZKYZGG5AexYESU7sezoEDa79QKIUqFLOqGleJIeiiXakrcWKwecX5OoOtR6mwfSN3Nlxbx/6FZsPumBl8z1WArM9ODw70n1tmVUOhTsmbFF2rUtZdkrTa+0y765Jxhvw5+pBn48ImLYzha8dOcOfcPAnw1re+lVqzTXlkhLEhj0bLkKQma+bsmNQ2TVxAQkhspULBGKS1PO6yR7HnMc9gZlHzj//wjyhq/PqrX97rtHX8+PENL0FtMM7PjnWrgTKm1ezJ6XiVQYxos7go+epXPks3dqtKp1Fj10g/f+/zn/j4Go/rlls4dOgQ1mhWammmdGKpNzVjw2f1cBCCph/S9CHcuRtmY6IkQluBXLdlqzfTvqbHut123DshSbVlbPwhtCmh8UmsApMwOLSDfXsygc98nsJDH0F08rgTO1IewvdJ7E60KHP8TJda0zI66KEpImm6GEsc8eVP38y3vvIl5mYdteOWD76fkSc8xQlwzi1hUeQLRXKBoFRU66g0MDLoUWtuLAAKMDggwCZ95WQyCLBmrU2m8F2vWIv7rat1CGB5wxvewG233cbKygpPetKTuO66687qlawRaPbu8LffCBzXqiLVazqLp2ZjRgcVvp/Fv0bGuPRJl3PpEy/HGoM/Osafvvs9LByBBm1imwMh8REUSjsZ23F+j+S6664DoNlOecVr/gyQ/OzP/SzlkmTHWECrPn3eYz1mEBhSYygVRGZI7lkv1+1icKB/DA8UthbknBz1WaqmWazeiXiuhywWUQNlclkYQxaLJEKyMNPir//qnTSzOTlQVJw+fpyL9m3e7vPC1tICKI9wcDBjIzncdeQYf/THf0mtmwc8SjnDwtwyeycCRM4V1PdWBQHh7n3IICBJDL4X47OAwBnKcnHz1WqorOhEtrcNlbTOVfcQwtWlJomjOCjFxQcmiZFYIjqtZTAREyNFDuzf0/8bPa+PxyV8n068Klvo1JhXapo9U5sPxkpJoTVZiZcrAjcGfCUIfJl5XCcx3S6VJCYVAmENT37K0zh6OmJhJea2bx8DBD/3U1dwYHeu95uDsQm8coWGHyKA+ul5csbneFPxucNfA1nEk4JmtcnUYNtRRvwAkUnklwYy11RKsLaXFBBo13pSiXPCas980gB//k9LxBvM99AXPOvJQ4RhlY0yp3bdv0GSpAkrKy6mJQUkUYff/M3fZM+ePURR5BoVbQjJv9/m9NjGhz00A8gtPIQ4sXzzm7eyMH8cgL/8y3dy5eUP5sXXuriTN1B23lYUOSK9UvzyL/8K37qjzT99fIWjRxuAoTJUYaA4xBOf+EiMXdr0nJ5yGXmLz8SIh+eJ3lbw/AipNg3GQKdrabTNtriQ9wZul7SMJWR82NuWp+h7gsnR81+XEIJgYpKqHyCt233s2LWXuuexTI5WrMGm5Isl9u+b5ODBvZue74IaPK9c6XNnZT7Pn7/3fdx+ZIkuQ0Q6j7DOEZ+aGGLP3goiDAlGR1zGVAi8wSFktuX0fcnBPWGWKRWutGULakngS/ZM+nQj25P7Ph/WN5B5+ct+mdmlmG/fGfEPf/+PCDx+5X/9F37kQf38qSuedy2XHboUGycIT6Er4xw7HbNU1VnWLAYh6ESbb/HKJcWeqYBGU/MVGoBmfFixb1c2mTttjAm45ZZbeh7lzTd+gMmHPp2lWkIU+3jUkDTZNRlkkklr33/zBz/AdHbcl7/8ZYaHxqmpAartDhARFPKMDvoc2Otin0IpfvyZz+ZRD3+EK6PL5wnGJznWjWm1OqRZSVC9tkKhkCfwC6zXKr7sUUU+9cUl7jxJn9ELfcHDLw659EcKLMxXz7kPNvPo3QuLH3hYNEmagAXlC8Iw2MTIZYdmxerTswnGQr1lMtmszQ2J7zmDO9Djga7Ke63BbTELfWc7PZ9mLUlcAkfrTDZLbC6SCatxRoUlR71lKBcVA0VFZxPbfOJ0TPPmz9BJXMVOztMsTx/hwK57tl3dLlziJ73H2+Lzoe35FLOqrKc/+8UcbFZo25B//pebsFj+2y8+i10TAbsmg3PaTK7HhSUeF0uEu3ajm02E76MGyvyPl/4vbvlmm9uOtDl8y/cAwcMedZBLH3EVDzuYp1GdRpUG+qgCfd+pBCqjQGxl7FYhpaCQF5sau40wORJQzCn+9e8XMLhsVpLaPv6eDENye/Y779DzODWb8LWv3sLnvniKpZUVMAnf+c6t7N3xmC3PVykpygNeL9mxezJgfDgzwutkansepTVMjbt6xjMLCd/40jweDXxPUMjJs7YbondcoDRXPfnxfGthgM/dcisgueLyR3Ng9+N5zEPXJnJu737XILlRR+bz+CNjiLvuwvdMT6Zp1YCsP5e1FnTCLz4TvnYH3PIdn/mlhMEBeNaTh7j0Rwr43rm8OGstNol7W3qbxIwOD2IQzM3OYxGMjY8RBmsxvfNDoY3mn/75XwAo5PLMzyywZ2rjcbWKyVGPJ1z6aB71yEfieTA44DGxRRlVu2sx1vT9GqWctz415m3Za7vZ1jiFm7R3XzdrVnPw4EE6KGI0Udcl3PIDZXbuGubgwa0bLf0goqN8UiHxhkfQvs9YKeCu6QinOm0oFz3i1N77rmX3N2Quj8yteUWNekqaGroRSLI0txVUm4bKgKJRvX+uY6WekjAGOO24s4On54MrGjAoYtpdQ7yQsHvyXBdd+j7GON6X71kEXYr5EPAphumWE9QYy/xymh3bQdGhXFJryhKFAoh1W30pCHfvRXiu+c5QRWUilYahsqJS6v99T3nOc7nsRx/dM5ypH9AsFPjCLU2XBJCCobLzLNZ+uyAYG4ex8b7vGhosUyyWelQB3xN9sVKbJK5znLD82IPhWU8eZXp2liiKUGqJmTOLeJ46dztqdL8NtOBJQ4piVTHaWksUQy44V1Z+PYLAR0lFu9MCJIVcyM6pSfbtG9r0OUgpeOhB16kuSZ0KSWVg84SHtY5+4a7dhSNyQYFLDgRUBnzizRWpaHVc3lXQYTCLcW1WBXTdddfxze+1ufWOLp/4xGcBeMHzn8yVlz6bfE6dN579g45EKvzhEXI2Ie0YJkc9JA0EhiB049HbYtpecIN3NqR0cbUwWCUbJ4wPe0yOeNuqzbsn+OCNH+cjH/8yp6ZdEPhDH/0cL3jOkzblHq1ilSu4ilRbuufpvCSlIBdIDh06xEMf8eM0W4Z8KBge9M4xQGdjYSVlcTllsaqxVNDkspXfQSiPcMcOdK2KxeKVB3sZrsEBRZqXmQerssbl/fdSBgG5PfvQraYrBi+WOOjFBJzBInnsw3IU8q5hzlbPwVonfeV7GTn2LBem2ajTbDaJs5KtZqPeM2xRJuW92gyof2t67nmFECjhsq4WmdlrS5RAPjz/dY6NDjE7W2RkaNyRzX/m6Tx4f8j4sM+pUyc2/X2+J5gY2X48zDWTIisBdFvafCjxfNmj8myGje73VruXXCgZHfJQtBGk7Bz3t5WJvqfoRoZmx2T9UjpbH3AvMFzxiNOUSslDkLhWm1IyUlGbLnLwA2jwBoouq7p3R8BX6CDQTI157N959zJMFnkOa/t8SDPV2VUuEEA3tuQ2DwMBGw+8zc45PuyxWE2d1zVAJsGjKGzCAzPG0uo4DtpqQtYScLY4swwC5Fne1ipmFhNWVY6Xay4WcrYXKzwPb909CAOJlxGUC/nVMrHzXiYAuVyOpaUlRkZGzp/9zN5Xak3kcrW5+8mTro/pnj17zj1Oyn4SXaaPJyw9D28Vrkx344u11rK0tEQQ5Ag4BRj27w6YGrt/spjGuhhsEMisRWbqdOpSsNuowSrmXXLLZjzUobK3admjMS6sUilJREZ9yoVyS2NwT9HpGmayZtqGEpbcht3q7it4novPp9oScgSBx55J/we7a9n54CnH2q4MKD703tsAweMe+fwtPaD10AxgyHNyNqaQc1Lxm+Hqq6/gkY95Qt97WzX0XYUzGs5zAhdn22wweltkpcCRLZOFeUaijqNgWJOVWUkKeYvJOh5YazdskHM2PvThj/Ghm77SY7PfcsstXHH5ZVtu2wfPuuelvNxyAdm1axfT09MsLGzcZjFNU2fotO6VhzW6EWLe1TEvL7tqmlarde5xGV+oWl0BBLX2miextFwHBCsrCwicN+0pgdapEx44C5aAsDTZ69GrNdvyXu8Jhiseg0W3a3Hn0+yaCCgPKFKz+fm6kWFmMc0ItYp8oLbsu+IIx4ZuZABXczqzmDI+snnlwz3FqirRLbfc0htjH/rwx3nWNU+7z8+1Hk4qCyDdlrGDH0CDB26wDpU9POoY8kSxC0aeTx5nPWqNlIQJLIqlaooe8CjkN8+AFnKS4bJHtakROCO2ne0suJvusYTFY/dksKXgwFawxhDPznDL4cO9rOkn3/dvPO7q51NtpNQaro5T0uXMghvEW1FapHTJg/Ue7HY830Je4rGMyWgG26lG8H2f/fv3n/fvx48fZ9++fe63aifbvR6r9ZDr+5ACHP3G15jKu8zo9Te8k7oX8JY//uPe36972atJGeZlv/ZyAt/FG4fKXt/51mNuKaG1rheIkmJDTuZ9gcAX7Bj3mVtOuJUmAsPAgKJUkAxXFMsbrw0A1JqaL6wrvXr9772Za65+LNc8c3Nj4iuoN11fWEmKkq5Ebbux6buD9Z7j6hi7n5y7e40fSIMHjj29WpfabLvC6T0bJAPOxpmFpFef2I0sNVJGBrd+yINl1QsI33143Ge3MkkgW61Ws6YyTSiXFPt2BMwuJyjqCDSVkmSxmrJjbPP78oynX81lT7iyV4/pe+Icguf5IEhR9wPNADjH2J0P1hhsowGlEjZLqhR0/35eEuMxz9Soq/vcKl41Muih9SofRjM+7N1vW7A4MRQLioddlOczn5zBEjA+qHjI/hzl4uYGb3VXvn6x2grWQrtjs4SaK7NcXYjP7Tl771EuKZod00uYFfPybsU47ymcjSghSLe9hf6BNHg33XQTH/jw5zk17UbCaoVC5zzJgFV85CM38YGPfo3Z+S4guPVbt/LoRz1yU6WHe4taQ2dlRnBqNt424fK88H3A9PETvSH3/WEgGR7wen0JpHQB+y2JXGRNYPJO7nurHhirMObuNTS635D1pogX5rDdLuUkou71e7VOvabIUk1TKsDYkNh0AnjKeV1eJl+ez91/Af3153Q1uAmDZY+BbYyTSkn1jYV8KJnaYIEz3Q45nZIISatjCEM4dvS7LK04/btvf+sb7H/G47a1S7q7CHzBnkmfdtegpPi+3MtGS7OwkmJwNKmF5ZTxbRjZ+//K7iEEmkplsH8btsX4WC3qHsgbBoohnrS9Ff/+wlItxRBg8LEWVur3zjgIKQkmd7j6XSlQA+WewcufFY/0lGBybPvZa5VVZWwH9ZbmxExCyggpw30y8vcX6k1NwigJY73ECmSeoNF88ytf4YZ33cDC7Cxz06e46aMfBVyM8sT0Cqemp7n+Ldfz8U9+vlcjvRW+HzuvwHditsdOx6QMkjLCcj1lZmHrlqD5nOsNMTigGB3yNoxHp9VloulTlNKEoSQirtUpFRTDAxFFv0YxaFAuJExuEcu+N5BSUCqo74uxA6g1TS9meGr6FB+/+XBPxmwz/EB6eFdffTVXXvk0ZhYS4ozLVS5uXeB99dVX8+QrrmJhRRMnhnwot62tf0+QpIbZxbSnPLJYTZm8D1x5VSig9uzb8G97d4SEHMMQ8sgH5zfN7t5TaG1ZqupMmFGhKXH70S67J4J7se3fHFFs+OBHPsep6dMA/J/XvomnX/XjPOdZVwFOQUYXS3Slh65UyAu5xhnU4pwtXxxbKLIt3P+m3NXgyoyzKYhpty3///bOPC6K+v/jr4FdTpXDW0n9hiQmlleJoGAIIYeRYpHfn1RCeCKpBabmgYiJmuSBiIok6TeTEBAWNI/UUiw1jUzAMi8UQYz7WBZ2fn9sO+2yM7O7s7CAzvPx8PHAnX3PfGZn9/35fN7noyeNeP459Z5hI6GBcvkwBUiSxDlRFs7/8COVYXPldDbsXnsL450dMd7ZEQQh82q2lZe2rZGKG2DZ2AABSUL84D6MevelnPWKz10Ti0SHVHiAbDVi08cIDWIpDA0JjZ0BxkYGsOmtn1kmS/Q9jp3Ow6NSWejG5Su/YqrPK21+XQOIYQBxmyg7QF5bTpZ6Jku3MkRdvRR/VzUBhGo4i5JsE4nH5U2oF8v6Z/S0Zg+hkCMPpFX8AjcpNKmGsQkcXSfC0XUiAFlOsslAmXPEx8sdw0e6KJ1Pk5WGVCor0UTCCPeKG9HDSvBP7cXWhyAImBgbgAQJEmYor25Gd0tDjeu4sSK38/1j8zU0ING/lwCV1bIJoVsXA52dae3J90e+RfE/4Uobo6Iwzs0NTlPeVqmyoolC10jhnTt3DtHR0ZBKpXjrrbcwe/ZspeONjY2IiIjA77//DktLS8TGxsLGxkbb+6KlLbejuiILIa1DVzMSIIQwM5ZVPm5rZD5XY9TWS2XVoFvZ2G4klIV0nDmbi0elMhtQUuIuTBg/Wm04S1lFE5UX3NAoRenfsqBXdZgYK5cJAqBk+CYsrWBobgZpXS0IoRDCnv+WdBf8EwhcXtUMqZSk7JVsNDWR/2wxrWRFWJtJlD5pwoC+bWNst+hqCHMzA8hq3TTDoqsBCEPZOHSBIAhMmOyFcY6O1GvCHj0gEBqoVODpjJDNzSCampUKcBhIJDAzlaVW1jdIYSQkNI+qUPeG5uZmrF27FklJSejduzemT58ONzc3qlYXAKSkpKBbt244ceIERCIRNm/ejC+++EL7u+tkTPF+DaPGTKACXAWGRJutEOQ0N5NoQncAhih5IoGR0AD9erbuQp0gZLGCxsJmdDU3AchGqjWgupVCS8eSuFGqkQfNSCjLDCivbAYJWWNsRaVFGBjAqHcfRnlzUwONy4pLpSQePpbgSWUTSBijGcYQN0phbGTQZrbKbuaGuH/7JzwpLQQIA3yX9QhOjsPx0mBnnc8t7NFT1gCooQEGpqYwNFctCttZIQwN4eTqqjQRyht4CQUEhFrE5wIaKLy8vDwMHDgQzz33HADAx8cHp06dUlJ4p0+fRmhoKACZHW3t2rVtGmndUTASGqB/L1ndPgMDWZZIW9pJjh8/jszsM7hfJCuFJPde1zW0fqyBkZBAgL8bvCa7UvY8Iw3CWUyMCCWlZ/RPnThN6GZuqLacV2vQIJYFbF/Pu4pHpbJafl9sTcDECSPwH3/XNruuubEU3UxlucmGICEUSGGsYYC7OtgKanR2jPr0g6T0EaSNYhiamimt7rVFrcIrKSlBnz7/zqy9e/dGXl6eynv69pVVFRYIBOjatSvKy8vVtkx7GjASGqC7pT63DqoGeh3b57LSzdwQXUxlPWw1CWnoaSVAaXkTGsSyFVNPq45nJpYXeDUxakJXMwFgYAwCjehq1timk/QUHw+Mn/AaZVuz7Ko/r2ZnxsDICMY2NKmGHGi3b6NYLGatW8VEaWkp6uu1T05+GuQGDBiAOSGBeFxBUAGpd+/eRl0liSdlHWeccsQAqlrUtuwon2d5NYG+ffsg6P3pMDQAeljKyrXn5+frbYz1VUDxg47zmTwtcmyoVXi9e/fGo0ePqP+XlJRQid6K7ykuLkafPn3Q1NSE6upqWFmxl9kxNjbG0KFDtR6wqakpbarQsyQnaSKp/MVu5oYQCAjcudPxxtnR5cSNUjRLZVVVFFd2HWmMvJz2cmwLKbXr6eHDh+POnTu4f/8+GhsbIRKJ4ObmpvQeNzc3pKWlAZDZmRwdHZ96+117IhQQsLYQwNpCoHGRUx5VjI0MqF6sPM8GBKlBQa6zZ89i/fr1aG5uhr+/P+bNm4etW7fCwcEBkyZNglgsRnh4OPLz82FhYYHY2FjKycHEtWvX1Jbh5uHh4dEWsViMESNG0B7TSOHx8PDwPA3wLiIeHp5nBl7h8fDwPDPwCo+Hh+eZgVd4PDw8zwy8wuPh4Xlm4BVeG9Lc3M6Vgnl4eJTgFV4bMm3aNFy9erW9h9Fm3Lp1i/pb3mNWzrVr1/Q8Gh4e9bS7wvvkk0/aewhtxtq1axEdHY1PP/0UlZWVrXbe1NRU1uO3bt1Cbm6uSqvDc+fOMcp89913rP/o+Pjjj6m/AwIClI5FRkaqu41WR1EBMyFp2cwX/7aG7CgUFhYiJycHOTk5uHnzps7nO3/+POvxmpoaqh+wIgUFBTpfu62JiYnR6v3tXsqisLCQk9yyZcsYjxEEgfXr16u8PnLkSKU0IoIgYGVlhbFjx+Ljjz9mzf+dO3euyjXksn5+frQyL7/8MlJSUvD111/D398fLi4uMDD4d4759NNPGa/Hxvbt2+Hv7097LDk5GQcPHoStrS0KCgqwfPlyuLu7AwBiY2Ph4uJCKxcWFoahQ4fC3t6e9vjrr6u2BVSMWW8Zv84Wz67Lc2AjODgYZ86coT128eJFREREQCwWY9iwYVi7di1VpDY4OJhKjWQbpxx56bNffvmF9lpc76+6uhrz589HcXExhgwZApIkcfPmTfTt2xfx8fHo0oVbnbsVK1Ywfi7Z2dlYv349unfvjqamJnz22Wd46aWXAMh+Y3SfCyBLJ1W8R8VycARB4OTJkyoyUVFRrGl8XH4POTk5WLp0qcbvb3eFV19fjxs3bjD+QIYNG0b7+sSJE1VeKy4uxv79+xltZ3Tby8rKSqSlpWH16tXYtm0b4ziDgoJoZY8ePYo//vhDabWjSEVFBX777TdYW1tj2LBhSgqPjSlTpjAeKysrYzyWkpKCI0eOwNzcHEVFRQgLC8ODBw/w3nvvsSqhHTt2QCQSobCwEJMmTYKvry8GDhzIOsaWP2qmYy3R5TmsW7eO9nWSJFFVxdybbtOmTUhMTISdnR2OHTuGoKAgbNy4ESNGjGD8XNjMES238OrkNLk/ebrm/v37qe+JVCrF5s2bERsbi5UrVzJes+WErEhFRQXjsYSEBBw5cgS9evVCXl4eIiIi8NFHH8HDw4P1+9Jyl0GSJHJycpCYmIgXX3yRVsbBwYH6e/v27Vi4cCHj+TVF20Sxdld4JSUl2LBhA+3ACYJAcnIyrZynpyf19/3797Fr1y5cvnwZISEhmD59usbXt7CwwPvvv4+MjAzW97366qu0r7u5uWHatGm0Cu/rr79GYmIigoODsX79eq2S1J88eYLExER069ZN6XWSJPHOO+8wykmlUpiby7rX2NjY4KuvvkJYWBgePnzI+uVwd3eHu7s76urqcOrUKWzYsAEVFRVYvHgx470/evQI69atA0mS1N/yMZaUlGh8r4DmzyE1NRWffPIJjIxUm99kZWUxykkkEtjZ2QEAJk+eDFtbW4SGhiI8PJzxuezYsYMqbKtITU0N5s2bh6+++op1rIpocn8XLlzA0aNHlSZFAwMDLFmyhHUCBIArV65g06ZNMDMzU3qdJEmV+pWKSKVS9OrVCwDw0ksvITk5GXPnzkVxcTHr91W+SpVKpcjIyEBiYiLs7e2xe/dupeLAikydOpX6e//+/Ur/Z4NJYcv6rnQyhTdw4EBGpaaOW7duIT4+Hvn5+QgODkZkZCQEAu1vSSKRoKmpSf0baTBkaSb9yy+/4JtvvkH37t21Pu/EiRNRW1tLW0Jr7NixjHLdu3dHfn4+JWdubo6EhAQsX75cI3uQsbExunbtii5duuDhw4cQi8WM742IiKD+Vpy96f6vCZo8h+HDh8POzg6jRo1SObZ9+3ZGOYFAgMePH6Nnz54AADs7O+zfvx9z5syhtV8BsucXGxuLxYsXU6+VlZUhODgYHh4emtySEuruTygU0n5/BQIBrYJX5OWXX4aJiQnt5PSf//yHUc7c3Bz37t3DgAGyApu9evVCcnIyFixYgD/++INRTiKRIDU1FV9++SVGjx6NuLg4tTsCRbSZ/KdNmwaCIGiVm1CoXQ+Sdi8eMHXqVEY7ARthYWH4/fffERQUBC8vL5WtoqWlpYoMnfG9srISOTk5GDVqFO1sLodulqmqqkJ6ejru3r2Lzz//XOU413vThsrKSlhY/Nvg5NGjRzA0NKR+2IpcuXIFo0ePppXLzc1FdnY28vLy4OTkBG9vbwwfPpzzuGJiYhhtK7o+B2NjY5iammo1ngsXLsDa2lrFRlldXY0DBw5g3rx5KjJisRhhYWEYNGgQli1bhjt37iAkJARBQUGYMWMG47W43t/kyZOxZcsWWntoeHg4cnJyNLlVrSgoKICpqamKspJIJMjJycEbb7xBK+fi4gKBQIB3330X/fr1UzlOZ/NVRB+/DTraXeENHTqUU+VjxZp8LbU/QRA4deqUigydo8PS0hJjx46ltQm2vJ7idQiCgKWlJV599VUsWLCA1qCsj4fK9Rot5ezt7TFkyBCMHj0aBKHaCU1bg/LEiRMZDeW6PAdNWbhwIeuKT1M5iUSCxYsXw8jICFevXsXy5cvVru643l9gYCDrebXZQjMREBCAb775Rme5Tz75hHWV9tlnn6m8pujMaWhogImJCQD1TiAAaGpqgqGhIQiCQHFxMX799VcMHDhQ6yLC7b6lHTJkCCe506dPay1D9xDa8nqKdi06uHppFeE6X7WU09bGqO35FdHlOWiKvCm1LnJJSUkAZLatxMREjB49GkVFRdTrs2bNoj1HQEAAYz02NlpDoamDzUShjdyGDRu0PgfXmNTDhw9j8+bNMDMzw/z58ynHyI0bN+Dv76/SNpaNdld41dXVjHFeAPPS+Pfff2c9L5139/Dhw3j11VcxaNAgkCSJ5cuX47vvvkO/fv2wYcMGRo8wIOve1rdvX2qrmJ6ejuPHj6N///4IDQ2l3UKbmJiwnrM14KqkWspNmzZN5T2VlZXo1q0b4zW4GpPZJgGgdSaC1vhcFOMY5auvlrGNdERGRmL48OEIDw9H1666dxI7f/489u7dSylaXWit70vLsch3PKNHj2Ys/puXl4fy8nK4uip3hjt79iy6d+/OaPfdv38/Tpw4gdraWnh7e+P06dOwtrZGfX09pk+f3rkUXk1NDb7//nvG40wKj22GYfLuJicnU56hrKwsFBYW4uTJk8jPz0d0dDT+97//MZ5z9erV1EO+dOkSNm/ejJUrVyI/Px+rVq2iDTWwtLTU2BPV3uzYsQNeXl6wtbVFY2MjPvjgAxQUFMDQ0BCff/45nJycVGTYjMlszqNDhw7Bzs4OXl5e6NWrF+dValvj7+9PdeNrCdt3NjU1FcnJyZg+fTrmzZuHN998U6Pr5ebmYs2aNSgtLcWkSZMQEhJCbY/Zwk7aAzrFX1RUhF27dmHhwoXw8fFROb5582ba1f3gwYOxbNkyRuelUCiEhYUFLCwsMGDAAKoboqmpqdZOi3ZXeP369eO0xWFb/jOlNRkaGlIf0JkzZ+Dn5wcrKys4OTlh06ZNrNdrbm6mVnHZ2dkICAiAp6cnPD09GQOPtX0YXGitLW1OTg4WLFgAAEhLSwNJksjNzcWdO3ewdOlSWoXHZZsPAD/88AOOHTuG7OxsCAQCeHt7w9PTUyUERxda43OZNWsW9u7dSwUoy0lNTUV8fDxee+012nMYGBjg/fffx/jx4xEQEIDIyEhqYmCzVcXExGDt2rUYOXIkzp07h3feeQcfffQRZs6cyele1N2fLnJMjpeKigrMmjWLVuHV1taif//+Kq/3798f5eXljNduaGjAjRs3IJVKIZFIqN0dSZJab9HbXeG1xey+aNEiWoO5gYEBSktLYWFhgdzcXKVZs6GhgfWcUqkUTU1NEAgEyM3NRVRUFHWMKdB51apVrFtvtu0uW7Ao8K8X+ssvv2wVOaFQSG1bfvzxR/j4+MDQ0BC2trZaFUG4d+8eMjMzkZ2dDZFIRPseKysrzJgxAzNmzMCjR48gEong7e2Njz/+WOPVkDqYAsG1kVu2bBmCg4ORkJBAdc9KSEhAVlYWDhw4wHqelJQU7NmzB4sXL8b//d//abSVJAiCCjlyd3dHr169dFZ2ly9fhkgkwurVqwEAGzdubFM5S0tLxt80W2A42++vZ8+eVKxujx49lNLJevToodG45LS7wlO3suIC0wceFhYGf39/SKVSuLm5UYGoP//8s9qmQz4+Ppg5cyasrKxgYmKCMWPGAADu3r3LmPLDlufHFlQNAI6OjujTpw8V58fkhW5pO+QqZ2RkhJs3b6JHjx746aeflGLs1PUGLSkpQU5ODjIzM3Hz5k3MmTMHW7ZsYZUBZHbYrKwsXLhwAS4uLhrF7gUGBjIqD4IgsH//fgDA+PHjdZZzdXWFkZERQkJCEBcXh5SUFPz22284cOCAUkhPS9555x30798fBw8epA0PYqKqqkrJnt3c3Kz0f3WhHnJu3LiBzMxMysasKPfCCy+0upwiFy9eZFypjxs3DrGxsVi0aBH1LEiSxLZt2+Do6Mh4zvDwcPTp04cKkE5LS8Px48dhY2PDGsJER7uHpchd1YrhHoBmrmom2EIimpqaUFtbq/SFraurA0mSVIYCE9euXcPjx4/h7OxMRbTfvn0bdXV1re6ciI6Oxk8//YRRo0bB19eXChdpK7lff/0VS5cuRXl5Od577z3Mnz8fgMygnJGRQavAvvnmG2RlZaG0tBSTJ0+Gl5cX5s+fr3aru3XrVpw9exbPP/88fHx8MGHCBI0Dxq9fv0479r1798La2pqxsAJXOUC22lmwYAFGjhyJrVu3qu22d+HCBVoTgDrY8sMBdu/27du3IRKJkJWVBSsrK3h7e2Pfvn2stkZd5OgyPyorK9GrVy/ExMTA1tZW5XhdXR0+/fRT5OXlUeEkBQUFcHBwQFRUFOPCYerUqUhKSoKlpSUuXbqExYsXU/bzv/76izUVsSXtrvC4wmbEvXjxIq0dj80bDGg2gxYWFuKvv/4CANja2rLOfJcuXWI8RhAEtUpkgiRJ/PTTTxCJRMjLy4OzszNmzJihdjXKRS4pKUlp0tHE6+bg4IARI0Zg6dKlVJDypEmTaGMgFbG3t4eNjQ1j8HBmZiarvJyff/4ZO3fuhFgsxty5c1W8f7rKKU7GEokEAoEABgYGaifjHTt2MF6bIAjKVtqa2NvbY8yYMYiOjqaCiDV9FlzkHjx4oPR/+felZWobHffv36eyOOzs7NR+n9944w0cPXoUgMwDbm1tTeXh+vn5qU1HVKTdt7RisRhff/017t27hyFDhsDf31+j2V6ezN/Q0IC7d++CIAgMGDAAJiYmtIn+gLJn7fTp0yoNxdkUHpdKFomJibTnunnzJoqLi9UGXBMEAUdHR7z44osQiUTYunUrBg0apPYLwkWOi9dN7nyIiYnB48eP4eXlpVGK3rFjx1BWVqbiAS0uLtZoC/jDDz8gPj4eRkZGmDt3Lut2SBc5rnFjdD/6+vp6fPvtt6ioqGBVeDdv3kRiYqKSQggKClIbryov/vDuu+9iwoQJ8PHx0cg+zlWObjfU2NhIFVWgC9PKyMiAn58fnnvuOZSWllJZPwBw4MABRnslF/s5E+2+wlu0aBEEAgHGjBmDc+fOoV+/fhrFYUkkEsTGxiI1NZVKbSkuLsbUqVOxZMkStR7SN998E+np6RqPc926dRAKhQgPD1epZCEWi1krWci5cuUK4uPjUVVVhblz56ooXEXkSfzZ2dkoLy+Hh4cHvLy8aNN4WkOOCbnXjS6bIyQkBKtWrcJzzz2H4uJi5OTkICsrC/X19fDw8MCSJUtozzlnzhwsWbJE5UdcWFiI2NhY7Nq1i3E8/v7+KC8vR3BwMG1wL5NpgaucrtTU1CA5ORnffvstvLy8EBQUxJhbffLkSWzcuBGzZ8+m7JnXr1/H7t27ERERQZX5YkP+/EUiES5evAg/Pz94eHio2DR1lbO3t9fIVqyIYnZPy0wftoyh+Ph4nD17FlZWViguLkZaWhoIgsDdu3exdOlSHDp0iP1DUaDdV3i3bt2itjDTp0/HW2+9pZHcpk2bqIckX13V1NQgJiYGMTExapWmtgGYulSyyM3Nxc6dOwHItuLOzs5qr+fk5ISBAwfCx8cHAwcOBEEQuH79OmWLYlqNcpVjgs3rNm3aNHzwwQeYOnUqgoODERQUhKCgINy5c4e1cklZWRntimXIkCEqW6WWmJmZwczMDMeOHcOxY8eUjrE5grjKcaWiogJJSUnIzMykfsxsjg4A2LZtG/bt26cUBmNvbw9HR0fMnz9fI4VnZmaGKVOmYMqUKaisrMSxY8ewZ88etQpPW7nAwECtbcVc6yfOmzcP48aNo+zn8utIpVKNFhqKtLvCU9y+alPp5MyZMzh+/LjSh9ylSxesWbMGXl5erTpGgFslizNnzmDXrl3o0qULPvzwQ7U2O0Xk93D79m3cvn1b5TiT4uIqxwSb183LywsuLi7YuXMn/P394efnR00IbA6g6upqxmPqwoO4pl/pI21LTkxMDE6cOIG3334bmZmZap1hcpqbm1Vi/gBZmS8u1XwsLCwQEBCA3NzcVpdbsWIFZSvOyMhAVFSUWlsx1/qJAGhX5WxVYJhod4VXUFBAlfqRBxKOGjVKrWGYLsEdAJVgTIeio+P+/fsqjg+2rZRYLKYtVEqSJGMxyLlz56JPnz6wt7fH3r17sXfvXo2vZ2dnp+K9trKyYnUi6CKnzuvGhFAohKmpKRobG1FbW6tRgVMHBwccPnwYb7/9ttLrKSkpareWe/bsQUhICABZsLTi5LZlyxbGbTRXOS4kJSXByMgI8fHxSs9Y3Xfa0NAQDx8+VDE/PHjwgLUMmTq49hdRJ6etrfivv/6ivmf37t1T+s5xzX3WlnZXeFwqpQAyD2l6erpKoGpGRgaj5ld0dMiXxnJHhzoUgx8B5RmJKfhRl21SXV2dymsPHjxgdSLoItdS+WridTt37hw2bNgANzc3pKWlaVyyafny5QgNDUVmZial4K5fvw6JRMLq4QRkWS5yxbV7924lxfXDDz8wKi6uclzg2gsiLCwMs2bNwpw5c5Q+l927dyM8PLzVxtca0NmKjxw5wmorzs7O1uMI6Wl3hceV1atXIzQ0FKmpqUpfjoaGBsTFxdHKjBw5ktXRwQaX4EemSsGawCV1Rxc5upQfdezatQtbt26lArg1pUePHjh06BAuXrxIeSNdXV0xbtw4tbJc7UBc5fSJu7s7bGxssG/fPiqTY/Dgwdi6dStjrxE5TBk9JEmyboe5ynGxFa9cuRL79u1ju402p9MqvN69eyMlJQW5ubn4888/Aaj/0bA5OjZu3IgVK1YwyrYsHvD555+rLR6gzpmhabyZImxOhLaQY4Ot2IImODo6ahxSIoerHUgX+5G+aGpqgr29vcZpXIqwFdNgs3VxlZs8eTIIgtDKVtwRusO1e1iKPnn99ddVHB2AzFjs5eXFGpjMJfhRnceRy6rq4sWL2Llzp9bbZa5yHY2hQ4fC1NSUsvcqFpFsbGxkXLFwldMniqEZUVFRWnsgOyJpaWlUxaBJkyaxdhjT1qHGhU67wuMCF0eHHC7Bj0wKTSqVIisri1XhcXUicJXrLHC1+XKV0yeKaw9tUyozMjJAkqSKTTs9PR2GhoaMuw2ucpqiWJKNaym41uSZUnhcHB1yuBQPqKmpwcGDB1FSUgI3Nzc4OzvjwIEDSEpKwpAhQxj7BQDcnAi6yHUWZs+eDV9fX7i7u2t1T1zl9IkuW+sDBw6oVMABZEpk5syZjIqLq5ymKCpxtlJwv/76q07X0ZRnSuFxcXTI4RL8GB4eDgsLC4wYMQIpKSlISEgASZKIi4tTW4ufy3ZXF7nOwttvv001jx47dix8fX2pqiZtIadP2MI2AHabb1NTE228n5mZGSQSSavLaUrLZt1MfPjhh4wFP1qTZ0rhcXF0KKJt8GNRURHi4+MBAG+99RbGjx+PM2fOqK22wcOMvH9ufX09vv/+e6Snp2PNmjVwcXGBr68vYxYLVzl9okvYRkNDA+rq6lRWrzU1NayKi6ucpigqOTZnjN5cCSRPm/Hmm2+y/p+ndcjPzyf9/PxIe3t7vch1RPbu3UsGBweTRUVF1Gv3798nQ0JCyD179rS6nKZERkZq9D5XV1edr6UJz5SXVt/Y29tTMyep4B0kdaj1xyOjrKwMOTk5EIlEVKUWX19ftfFqXOX0gbwVqBz59wSQbQ1PnjzJKn/o0CEkJCRQwedmZmYICQnBf//731aXi4qKwuLFi1Xs17du3UJUVBStXZBLSbfWhld4bYi2FVl41HP48GFkZWXh9u3b8PT0hLe3N5Wa2BZy+qRlXweSJJGTk4PExEQMGzaMtc+uPEaUJEnU19eDJEnY2NioTSnkKhcfH4/U1FR8+OGHmDJlCurr67F9+3acPHkS4eHhtL17f/75Z9b71yVQX1OeKRuevukoAa1PE1evXsWcOXMwbtw4jfJ2dZXTJ1ZWVgBkjrCMjAwkJibC3t4eu3fvxuDBg1ll6eoZXr9+XW1KIVe5efPmwdfXF1FRUTh06BBKS0vh5eWFjIwMxhRDJoVWXFwMkUjEK7zOzpMnT1h7iTI1cuZhRl4kUh5XJy+OwNROUVc5fSKRSJCamoovv/wSo0ePRlxcHFWFWB36TkUE/p3Qm5ub0dzcjOeff17jfOq///6bMi2UlpbSrgjbAl7htSFSqVSjxs08mkOXClVZWQmJRIItW7YwhvtwldMnkyZNgkAgwLvvvot+/fqhsLAQhYWF1HEugbltlYoYFxeH9PR0LF68GN7e3igpKUF0dDS+/fZbrFmzhnZFWlNTgxMnTlCmhddffx1FRUU4d+6c1uPjCq/w2pCePXtq3VWJhx2muna//fYb1q1bh4MHD7aqnD5xcnICQRAqik4OF4XHVs9QF7ny8nKkpaVRTovevXtj27ZtOHv2LBYuXIicnBwVGScnJ7z00ktYtGgRVTD0xIkTWo9NF3iF14bw/iD9MXz4cNrSWG0l1xawJfKXlZWxyuo7FZGporirqytjJsuSJUuQnZ2NyMhI+Pj4wNvbm/H8bQXvpW1DKioqaJuZ8LQ+ZWVlmD17No4cOaIXOX1QVVWF48ePIysrC7du3cKPP/7I+F6uXcR06T6myJ9//omsrCyIRCJ07dqV9fO8f/8+RCIRRCIR7ty5g7CwMLi7u3OqYKwtvMLj6VRERUWpeL8rKipw9epVrFixgrExElc5fdPQ0IBTp04hMzMT+fn5qK2tRVxcHF555ZUO510uKiqietoKhUI8ePAAqamptGXqAVneeVlZmVK3ssLCQkRHR+PSpUt6KfDAKzyeTkXLzlbyFcnw4cMZu4HpIqdPPvroI1y+fBnOzs7w8fGBo6MjPDw81DY2bw8CAgJQU1MDb29v+Pj4YNCgQXBzc2MdK1O3uoKCAsTGxiIhIaGth83b8Hg6Fx4eHozVaej6Qegqp0/+/PNPdOvWDba2trC1tdWobFl70b17d5SUlODJkyf4+++/MWjQILVjZepWZ29vj4cPH7bVUJXoWGtkHh41BAYGUn+/9957SsfYGlxzldMnGRkZ+OKLL1BbW4v3338fM2bMQG1trVqHRXuwc+dOqifJjh074ObmhqqqKuTl5THK6NKtrrXgV3g8nQpFC0xlZSXjsdaS0yfXrl3DiBEjEBYWhrCwMFy/fh0ikQjTp09Hnz59tGo4rQ+6du0Kf39/+Pv7UznK69evR3FxMc6ePavyfl261bUWvMLj6VQ8zT0tIiMjlWyNDg4OcHBwQEREBC5fvtyOI1NPjx49EBgYiMDAQMbWBrp0q2steIXH06mQp+uRJKmUukeSJGuTGK5yHQGCIPDKK6+09zCUYKt8AtD3XNalW11rwXtpeToV6lYCTJktXOX0yZgxY6jWAXSwNW7XN46Ojujbty98fHzw8ssvq5gF9FEIgAv8Co+nU8GmmOhqsOkqp0+sra2pZvEdnfPnz+P8+fNUHJ6rqyt8fX217lGsb/gVHs9Tw8SJEzn1ReAq19p01vqJjY2NyMrKwsaNGxEaGkpVpumI8Cs8nqcGrnN3R5nzu3XrhsePH6Nnz54AZK0Sjx8/jv79+yM0NLTDpSk2NjbizJkzyMrKwoMHDxAYGKi3Mk9c4RUez1MDV29rR/HSVldXQygUAgAuXbqEzZs3Y+XKlcjPz8eqVauwbdu2dh7hv0REROCPP/6Ai4sLQkND8cILL7T3kDSCV3g8nYqRI0fSKih5z5DWltMnUqmUWsVlZ2cjICAAnp6e8PT0hJ+fX/sOrgVHjx6Fqakp7ty5o1R6q6P3a+EVHk+n4urVq3qV0yfNzc1oamqCQCBAbm4uoqKilI51JAoKCtp7CJzgFR4PTwfBx8cHM2fOhJWVFUxMTKgQlbt37zLmAfNoB++l5eHpQFy7dg2PHz+Gs7MzVZPu9u3bqKur01v61dMMr/B4eHieGfhqKTw8PM8MvMLj4eF5ZuAVHg8PzzMDr/B4eHieGXiFx8PD88zw/8CLy5aKaVarAAAAAElFTkSuQmCC\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(5,1.5))\n", "\n", "pal=[sns.color_palette(\"coolwarm\", 10)[-1], sns.color_palette(\"coolwarm\", 10)[0]]\n", "sns.stripplot(x=site, y=predicted_prob, hue=y, palette=pal, alpha=0.2, jitter=0.2, dodge=True)\n", "ax=sns.boxplot(x=site, y=predicted_prob, hue=y, showfliers = False)\n", "for box in ax.artists:\n", " box.set_facecolor((1,1,1,0))\n", "plt.xticks(rotation=90)\n", "for i in range(len(np.unique(site))):\n", " plt.axvline(i+0.5, color=\"gray\", alpha=0.5, linewidth=0.5)\n", "plt.savefig('../data_out/fig/abide_site_comb_striplot.pdf')" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:23:18.831619Z", "start_time": "2021-08-01T19:23:12.635587Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:02<00:00, 490.00it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.019\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.05 (p=0.01*)\n\n\n\ny--yhat\n\n0.17\n\n\n\n" }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(partial_confound_test(y, predicted_prob, site_int,\n", " cat_y=True, cat_yhat=False, cat_c=True,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_site_comb_partial')" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T19:23:22.712352Z", "start_time": "2021-08-01T19:23:18.833997Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Permuting: 100%|██████████| 1000/1000 [00:01<00:00, 527.23it/s]\n" ] }, { "data": { "text/plain": "", "image/svg+xml": "\n\n\n\n\n\n%3\n\n\n\nc\n\nc\n\n\n\ny\n\ny\n\n\n\nc--y\n\n0.019\n\n\n\nyhat\n\n\n\n\n\nc--yhat\n\n0.05\n\n\n\ny--yhat\n\n0.17 (p<0.0001*)\n\n\n\n" }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_graph(full_confound_test(y, predicted_prob, site_int,\n", " cat_y=True, cat_yhat=False, cat_c=True,\n", " random_state=42),\n", " outfile_base='../data_out/fig/abide_site_comb_full')" ] }, { "cell_type": "code", "execution_count": 51, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.04978966375151461\n" ] }, { "data": { "text/plain": "0.001" }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(site_int, predicted_prob)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cat_cont(site_int, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 52, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.17032841128735843\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(y, predicted_prob)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(predicted_prob)\n", " nulldist.append(_r2_cat_cont(y, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 53, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T20:31:15.252041Z", "start_time": "2021-08-01T20:31:15.236377Z" } }, "outputs": [ { "data": { "text/plain": "", "text/html": "
coolwarm
\"coolwarm
under
bad
over
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAABACAYAAABsv8+/AAAAF3RFWHRUaXRsZQBjb29sd2FybSBjb2xvcm1hcPHW9i4AAAAddEVYdERlc2NyaXB0aW9uAGNvb2x3YXJtIGNvbG9ybWFw2KgRBwAAADB0RVh0QXV0aG9yAE1hdHBsb3RsaWIgdjMuNC4yLCBodHRwczovL21hdHBsb3RsaWIub3JnrNZj3QAAADJ0RVh0U29mdHdhcmUATWF0cGxvdGxpYiB2My40LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmeCcPz6AAACIUlEQVR4nO3WO3LbQBBF0QaW5TV40d6XTIwTCCo2MQQYOHrnJKr5NRip7vLr959RVbUsS1VVLetaVVXr+rzu50s7X2fnt+cu+/n5/nF+8Z315buz9/3310fzXvfrfP73nOn8mnzv+f7xfva9/bzPu9w/vnM+b36v3t+72J/fGxfvx739mt1v82tyXv13jPO5x7175y/fm53f3F/7fm333vf7o+2P7cP18371e+P9nOrvR/995/e+59ZkPZ17rN/fO+Zufe75vdr67znfv3o3tnv3Lt/t69HW3+fH/Zc579+/rLc2r82fzevf7/ePv+Pq3uTdf9rfHu/v/5y3e/v+1uc/tud3j8m84/0+72tf/x2frb+e/18BAEEEAAAEEgAAEEgAAEAgAQAAgQQAAAQSAAAQSAAAQCABAACBBAAABBIAABBIAABAIAEAAIEEAAAEEgAAEEgAAEAgAQAAgQQAAAQSAAAQSAAAQCABAACBBAAABBIAABBIAABAIAEAAIEEAAAEEgAAEEgAAEAgAQAAgQQAAAQSAAAQSAAAQCABAACBBAAABBIAABBIAABAIAEAAIEEAAAEEgAAEEgAAEAgAQAAgQQAAAQSAAAQSAAAQCABAACBBAAABBIAABBIAABAIAEAAIEEAAAEEgAAEEgAAEAgAQAAgQQAAAQSAAAQSAAAQCABAACBBAAABBIAABBIAABAIAEAAIEEAAAEEgAAEOgf6GZUalYlbg8AAAAASUVORK5CYII=\n" }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "sns.color_palette(\"coolwarm\", as_cmap=True)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "ExecuteTime": { "end_time": "2021-08-01T20:32:31.730981Z", "start_time": "2021-08-01T20:32:31.724659Z" } }, "outputs": [ { "data": { "text/plain": "5.19933758270342" }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.max(mean_fd)" ] }, { "cell_type": "code", "execution_count": 54, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 55, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.02798282700643162\n" ] }, { "data": { "text/plain": "0.0" }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cont(y, mean_fd)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(y)\n", " nulldist.append(_r2_cat_cont(yperm, mean_fd))\n", "(nulldist >= unpermuted).sum()/len(nulldist)\n", "\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 56, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.019007371520746053\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/tspisak/src/mlconfound/venv/lib/python3.8/site-packages/statsmodels/base/model.py:547: HessianInversionWarning: Inverting hessian failed, no bse or cov_params available\n", " warnings.warn('Inverting hessian failed, no bse or cov_params '\n" ] }, { "data": { "text/plain": "0.284" }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nulldist = []\n", "unpermuted = _r2_cat_cat(site_int, y)\n", "\n", "print(unpermuted)\n", "\n", "for i in range(1000):\n", " yperm = np.random.permutation(y)\n", " nulldist.append(_r2_cat_cat(site_int, yperm))\n", "(nulldist >= unpermuted).sum()/len(nulldist)\n", "\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 56, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }