/*------------------------------------------------------------------------ * * regress.c * Code for various C-language functions defined as part of the * regression tests. * * This code is released under the terms of the PostgreSQL License. * * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/test/regress/regress.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include #include "access/htup_details.h" #include "access/transam.h" #include "access/tuptoaster.h" #include "access/xact.h" #include "catalog/pg_type.h" #include "commands/sequence.h" #include "commands/trigger.h" #include "executor/executor.h" #include "executor/spi.h" #include "miscadmin.h" #include "port/atomics.h" #include "utils/builtins.h" #include "utils/geo_decls.h" #include "utils/rel.h" #include "utils/typcache.h" #include "utils/memutils.h" #define P_MAXDIG 12 #define LDELIM '(' #define RDELIM ')' #define DELIM ',' extern PATH *poly2path(POLYGON *poly); extern void regress_lseg_construct(LSEG *lseg, Point *pt1, Point *pt2); extern char *reverse_name(char *string); extern int oldstyle_length(int n, text *t); #ifdef PG_MODULE_MAGIC PG_MODULE_MAGIC; #endif /* * Distance from a point to a path */ PG_FUNCTION_INFO_V1(regress_dist_ptpath); Datum regress_dist_ptpath(PG_FUNCTION_ARGS) { Point *pt = PG_GETARG_POINT_P(0); PATH *path = PG_GETARG_PATH_P(1); float8 result = 0.0; /* keep compiler quiet */ float8 tmp; int i; LSEG lseg; switch (path->npts) { case 0: PG_RETURN_NULL(); case 1: result = point_dt(pt, &path->p[0]); break; default: /* * the distance from a point to a path is the smallest distance * from the point to any of its constituent segments. */ Assert(path->npts > 1); for (i = 0; i < path->npts - 1; ++i) { regress_lseg_construct(&lseg, &path->p[i], &path->p[i + 1]); tmp = DatumGetFloat8(DirectFunctionCall2(dist_ps, PointPGetDatum(pt), LsegPGetDatum(&lseg))); if (i == 0 || tmp < result) result = tmp; } break; } PG_RETURN_FLOAT8(result); } /* * this essentially does a cartesian product of the lsegs in the * two paths, and finds the min distance between any two lsegs */ PG_FUNCTION_INFO_V1(regress_path_dist); Datum regress_path_dist(PG_FUNCTION_ARGS) { PATH *p1 = PG_GETARG_PATH_P(0); PATH *p2 = PG_GETARG_PATH_P(1); bool have_min = false; float8 min = 0.0; /* initialize to keep compiler quiet */ float8 tmp; int i, j; LSEG seg1, seg2; for (i = 0; i < p1->npts - 1; i++) { for (j = 0; j < p2->npts - 1; j++) { regress_lseg_construct(&seg1, &p1->p[i], &p1->p[i + 1]); regress_lseg_construct(&seg2, &p2->p[j], &p2->p[j + 1]); tmp = DatumGetFloat8(DirectFunctionCall2(lseg_distance, LsegPGetDatum(&seg1), LsegPGetDatum(&seg2))); if (!have_min || tmp < min) { min = tmp; have_min = true; } } } if (!have_min) PG_RETURN_NULL(); PG_RETURN_FLOAT8(min); } PATH * poly2path(POLYGON *poly) { int i; char *output = (char *) palloc(2 * (P_MAXDIG + 1) * poly->npts + 64); char buf[2 * (P_MAXDIG) + 20]; sprintf(output, "(1, %*d", P_MAXDIG, poly->npts); for (i = 0; i < poly->npts; i++) { snprintf(buf, sizeof(buf), ",%*g,%*g", P_MAXDIG, poly->p[i].x, P_MAXDIG, poly->p[i].y); strcat(output, buf); } snprintf(buf, sizeof(buf), "%c", RDELIM); strcat(output, buf); return DatumGetPathP(DirectFunctionCall1(path_in, CStringGetDatum(output))); } /* return the point where two paths intersect, or NULL if no intersection. */ PG_FUNCTION_INFO_V1(interpt_pp); Datum interpt_pp(PG_FUNCTION_ARGS) { PATH *p1 = PG_GETARG_PATH_P(0); PATH *p2 = PG_GETARG_PATH_P(1); int i, j; LSEG seg1, seg2; bool found; /* We've found the intersection */ found = false; /* Haven't found it yet */ for (i = 0; i < p1->npts - 1 && !found; i++) { regress_lseg_construct(&seg1, &p1->p[i], &p1->p[i + 1]); for (j = 0; j < p2->npts - 1 && !found; j++) { regress_lseg_construct(&seg2, &p2->p[j], &p2->p[j + 1]); if (DatumGetBool(DirectFunctionCall2(lseg_intersect, LsegPGetDatum(&seg1), LsegPGetDatum(&seg2)))) found = true; } } if (!found) PG_RETURN_NULL(); /* * Note: DirectFunctionCall2 will kick out an error if lseg_interpt() * returns NULL, but that should be impossible since we know the two * segments intersect. */ PG_RETURN_DATUM(DirectFunctionCall2(lseg_interpt, LsegPGetDatum(&seg1), LsegPGetDatum(&seg2))); } /* like lseg_construct, but assume space already allocated */ void regress_lseg_construct(LSEG *lseg, Point *pt1, Point *pt2) { lseg->p[0].x = pt1->x; lseg->p[0].y = pt1->y; lseg->p[1].x = pt2->x; lseg->p[1].y = pt2->y; } PG_FUNCTION_INFO_V1(overpaid); Datum overpaid(PG_FUNCTION_ARGS) { HeapTupleHeader tuple = PG_GETARG_HEAPTUPLEHEADER(0); bool isnull; int32 salary; salary = DatumGetInt32(GetAttributeByName(tuple, "salary", &isnull)); if (isnull) PG_RETURN_NULL(); PG_RETURN_BOOL(salary > 699); } /* New type "widget" * This used to be "circle", but I added circle to builtins, * so needed to make sure the names do not collide. - tgl 97/04/21 */ typedef struct { Point center; double radius; } WIDGET; WIDGET *widget_in(char *str); char *widget_out(WIDGET *widget); #define NARGS 3 WIDGET * widget_in(char *str) { char *p, *coord[NARGS]; int i; WIDGET *result; for (i = 0, p = str; *p && i < NARGS && *p != RDELIM; p++) { if (*p == DELIM || (*p == LDELIM && i == 0)) coord[i++] = p + 1; } if (i < NARGS) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("invalid input syntax for type widget: \"%s\"", str))); result = (WIDGET *) palloc(sizeof(WIDGET)); result->center.x = atof(coord[0]); result->center.y = atof(coord[1]); result->radius = atof(coord[2]); return result; } char * widget_out(WIDGET *widget) { return psprintf("(%g,%g,%g)", widget->center.x, widget->center.y, widget->radius); } PG_FUNCTION_INFO_V1(pt_in_widget); Datum pt_in_widget(PG_FUNCTION_ARGS) { Point *point = PG_GETARG_POINT_P(0); WIDGET *widget = (WIDGET *) PG_GETARG_POINTER(1); PG_RETURN_BOOL(point_dt(point, &widget->center) < widget->radius); } PG_FUNCTION_INFO_V1(boxarea); Datum boxarea(PG_FUNCTION_ARGS) { BOX *box = PG_GETARG_BOX_P(0); double width, height; width = Abs(box->high.x - box->low.x); height = Abs(box->high.y - box->low.y); PG_RETURN_FLOAT8(width * height); } char * reverse_name(char *string) { int i; int len; char *new_string; new_string = palloc0(NAMEDATALEN); for (i = 0; i < NAMEDATALEN && string[i]; ++i) ; if (i == NAMEDATALEN || !string[i]) --i; len = i; for (; i >= 0; --i) new_string[len - i] = string[i]; return new_string; } /* * This rather silly function is just to test that oldstyle functions * work correctly on toast-able inputs. */ int oldstyle_length(int n, text *t) { int len = 0; if (t) len = VARSIZE(t) - VARHDRSZ; return n + len; } static TransactionId fd17b_xid = InvalidTransactionId; static TransactionId fd17a_xid = InvalidTransactionId; static int fd17b_level = 0; static int fd17a_level = 0; static bool fd17b_recursion = true; static bool fd17a_recursion = true; PG_FUNCTION_INFO_V1(funny_dup17); Datum funny_dup17(PG_FUNCTION_ARGS) { TriggerData *trigdata = (TriggerData *) fcinfo->context; TransactionId *xid; int *level; bool *recursion; Relation rel; TupleDesc tupdesc; HeapTuple tuple; char *query, *fieldval, *fieldtype; char *when; uint64 inserted; int selected = 0; int ret; if (!CALLED_AS_TRIGGER(fcinfo)) elog(ERROR, "funny_dup17: not fired by trigger manager"); tuple = trigdata->tg_trigtuple; rel = trigdata->tg_relation; tupdesc = rel->rd_att; if (TRIGGER_FIRED_BEFORE(trigdata->tg_event)) { xid = &fd17b_xid; level = &fd17b_level; recursion = &fd17b_recursion; when = "BEFORE"; } else { xid = &fd17a_xid; level = &fd17a_level; recursion = &fd17a_recursion; when = "AFTER "; } if (!TransactionIdIsCurrentTransactionId(*xid)) { *xid = GetCurrentTransactionId(); *level = 0; *recursion = true; } if (*level == 17) { *recursion = false; return PointerGetDatum(tuple); } if (!(*recursion)) return PointerGetDatum(tuple); (*level)++; SPI_connect(); fieldval = SPI_getvalue(tuple, tupdesc, 1); fieldtype = SPI_gettype(tupdesc, 1); query = (char *) palloc(100 + NAMEDATALEN * 3 + strlen(fieldval) + strlen(fieldtype)); sprintf(query, "insert into %s select * from %s where %s = '%s'::%s", SPI_getrelname(rel), SPI_getrelname(rel), SPI_fname(tupdesc, 1), fieldval, fieldtype); if ((ret = SPI_exec(query, 0)) < 0) elog(ERROR, "funny_dup17 (fired %s) on level %3d: SPI_exec (insert ...) returned %d", when, *level, ret); inserted = SPI_processed; sprintf(query, "select count (*) from %s where %s = '%s'::%s", SPI_getrelname(rel), SPI_fname(tupdesc, 1), fieldval, fieldtype); if ((ret = SPI_exec(query, 0)) < 0) elog(ERROR, "funny_dup17 (fired %s) on level %3d: SPI_exec (select ...) returned %d", when, *level, ret); if (SPI_processed > 0) { selected = DatumGetInt32(DirectFunctionCall1(int4in, CStringGetDatum(SPI_getvalue( SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 1 )))); } elog(DEBUG4, "funny_dup17 (fired %s) on level %3d: " UINT64_FORMAT "/%d tuples inserted/selected", when, *level, inserted, selected); SPI_finish(); (*level)--; if (*level == 0) *xid = InvalidTransactionId; return PointerGetDatum(tuple); } #define TTDUMMY_INFINITY 999999 static SPIPlanPtr splan = NULL; static bool ttoff = false; PG_FUNCTION_INFO_V1(ttdummy); Datum ttdummy(PG_FUNCTION_ARGS) { TriggerData *trigdata = (TriggerData *) fcinfo->context; Trigger *trigger; /* to get trigger name */ char **args; /* arguments */ int attnum[2]; /* fnumbers of start/stop columns */ Datum oldon, oldoff; Datum newon, newoff; Datum *cvals; /* column values */ char *cnulls; /* column nulls */ char *relname; /* triggered relation name */ Relation rel; /* triggered relation */ HeapTuple trigtuple; HeapTuple newtuple = NULL; HeapTuple rettuple; TupleDesc tupdesc; /* tuple description */ int natts; /* # of attributes */ bool isnull; /* to know is some column NULL or not */ int ret; int i; if (!CALLED_AS_TRIGGER(fcinfo)) elog(ERROR, "ttdummy: not fired by trigger manager"); if (!TRIGGER_FIRED_FOR_ROW(trigdata->tg_event)) elog(ERROR, "ttdummy: must be fired for row"); if (!TRIGGER_FIRED_BEFORE(trigdata->tg_event)) elog(ERROR, "ttdummy: must be fired before event"); if (TRIGGER_FIRED_BY_INSERT(trigdata->tg_event)) elog(ERROR, "ttdummy: cannot process INSERT event"); if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event)) newtuple = trigdata->tg_newtuple; trigtuple = trigdata->tg_trigtuple; rel = trigdata->tg_relation; relname = SPI_getrelname(rel); /* check if TT is OFF for this relation */ if (ttoff) /* OFF - nothing to do */ { pfree(relname); return PointerGetDatum((newtuple != NULL) ? newtuple : trigtuple); } trigger = trigdata->tg_trigger; if (trigger->tgnargs != 2) elog(ERROR, "ttdummy (%s): invalid (!= 2) number of arguments %d", relname, trigger->tgnargs); args = trigger->tgargs; tupdesc = rel->rd_att; natts = tupdesc->natts; for (i = 0; i < 2; i++) { attnum[i] = SPI_fnumber(tupdesc, args[i]); if (attnum[i] < 0) elog(ERROR, "ttdummy (%s): there is no attribute %s", relname, args[i]); if (SPI_gettypeid(tupdesc, attnum[i]) != INT4OID) elog(ERROR, "ttdummy (%s): attributes %s and %s must be of abstime type", relname, args[0], args[1]); } oldon = SPI_getbinval(trigtuple, tupdesc, attnum[0], &isnull); if (isnull) elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[0]); oldoff = SPI_getbinval(trigtuple, tupdesc, attnum[1], &isnull); if (isnull) elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[1]); if (newtuple != NULL) /* UPDATE */ { newon = SPI_getbinval(newtuple, tupdesc, attnum[0], &isnull); if (isnull) elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[0]); newoff = SPI_getbinval(newtuple, tupdesc, attnum[1], &isnull); if (isnull) elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[1]); if (oldon != newon || oldoff != newoff) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("ttdummy (%s): you cannot change %s and/or %s columns (use set_ttdummy)", relname, args[0], args[1]))); if (newoff != TTDUMMY_INFINITY) { pfree(relname); /* allocated in upper executor context */ return PointerGetDatum(NULL); } } else if (oldoff != TTDUMMY_INFINITY) /* DELETE */ { pfree(relname); return PointerGetDatum(NULL); } newoff = DirectFunctionCall1(nextval, CStringGetTextDatum("ttdummy_seq")); /* nextval now returns int64; coerce down to int32 */ newoff = Int32GetDatum((int32) DatumGetInt64(newoff)); /* Connect to SPI manager */ if ((ret = SPI_connect()) < 0) elog(ERROR, "ttdummy (%s): SPI_connect returned %d", relname, ret); /* Fetch tuple values and nulls */ cvals = (Datum *) palloc(natts * sizeof(Datum)); cnulls = (char *) palloc(natts * sizeof(char)); for (i = 0; i < natts; i++) { cvals[i] = SPI_getbinval((newtuple != NULL) ? newtuple : trigtuple, tupdesc, i + 1, &isnull); cnulls[i] = (isnull) ? 'n' : ' '; } /* change date column(s) */ if (newtuple) /* UPDATE */ { cvals[attnum[0] - 1] = newoff; /* start_date eq current date */ cnulls[attnum[0] - 1] = ' '; cvals[attnum[1] - 1] = TTDUMMY_INFINITY; /* stop_date eq INFINITY */ cnulls[attnum[1] - 1] = ' '; } else /* DELETE */ { cvals[attnum[1] - 1] = newoff; /* stop_date eq current date */ cnulls[attnum[1] - 1] = ' '; } /* if there is no plan ... */ if (splan == NULL) { SPIPlanPtr pplan; Oid *ctypes; char *query; /* allocate space in preparation */ ctypes = (Oid *) palloc(natts * sizeof(Oid)); query = (char *) palloc(100 + 16 * natts); /* * Construct query: INSERT INTO _relation_ VALUES ($1, ...) */ sprintf(query, "INSERT INTO %s VALUES (", relname); for (i = 1; i <= natts; i++) { sprintf(query + strlen(query), "$%d%s", i, (i < natts) ? ", " : ")"); ctypes[i - 1] = SPI_gettypeid(tupdesc, i); } /* Prepare plan for query */ pplan = SPI_prepare(query, natts, ctypes); if (pplan == NULL) elog(ERROR, "ttdummy (%s): SPI_prepare returned %d", relname, SPI_result); if (SPI_keepplan(pplan)) elog(ERROR, "ttdummy (%s): SPI_keepplan failed", relname); splan = pplan; } ret = SPI_execp(splan, cvals, cnulls, 0); if (ret < 0) elog(ERROR, "ttdummy (%s): SPI_execp returned %d", relname, ret); /* Tuple to return to upper Executor ... */ if (newtuple) /* UPDATE */ { HeapTuple tmptuple; tmptuple = SPI_copytuple(trigtuple); rettuple = SPI_modifytuple(rel, tmptuple, 1, &(attnum[1]), &newoff, NULL); SPI_freetuple(tmptuple); } else /* DELETE */ rettuple = trigtuple; SPI_finish(); /* don't forget say Bye to SPI mgr */ pfree(relname); return PointerGetDatum(rettuple); } PG_FUNCTION_INFO_V1(set_ttdummy); Datum set_ttdummy(PG_FUNCTION_ARGS) { int32 on = PG_GETARG_INT32(0); if (ttoff) /* OFF currently */ { if (on == 0) PG_RETURN_INT32(0); /* turn ON */ ttoff = false; PG_RETURN_INT32(0); } /* ON currently */ if (on != 0) PG_RETURN_INT32(1); /* turn OFF */ ttoff = true; PG_RETURN_INT32(1); } /* * Type int44 has no real-world use, but the regression tests use it. * It's a four-element vector of int4's. */ /* * int44in - converts "num num ..." to internal form * * Note: Fills any missing positions with zeroes. */ PG_FUNCTION_INFO_V1(int44in); Datum int44in(PG_FUNCTION_ARGS) { char *input_string = PG_GETARG_CSTRING(0); int32 *result = (int32 *) palloc(4 * sizeof(int32)); int i; i = sscanf(input_string, "%d, %d, %d, %d", &result[0], &result[1], &result[2], &result[3]); while (i < 4) result[i++] = 0; PG_RETURN_POINTER(result); } /* * int44out - converts internal form to "num num ..." */ PG_FUNCTION_INFO_V1(int44out); Datum int44out(PG_FUNCTION_ARGS) { int32 *an_array = (int32 *) PG_GETARG_POINTER(0); char *result = (char *) palloc(16 * 4); /* Allow 14 digits + * sign */ int i; char *walk; walk = result; for (i = 0; i < 4; i++) { pg_ltoa(an_array[i], walk); while (*++walk != '\0') ; *walk++ = ' '; } *--walk = '\0'; PG_RETURN_CSTRING(result); } PG_FUNCTION_INFO_V1(make_tuple_indirect); Datum make_tuple_indirect(PG_FUNCTION_ARGS) { HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0); HeapTupleData tuple; int ncolumns; Datum *values; bool *nulls; Oid tupType; int32 tupTypmod; TupleDesc tupdesc; HeapTuple newtup; int i; MemoryContext old_context; /* Extract type info from the tuple itself */ tupType = HeapTupleHeaderGetTypeId(rec); tupTypmod = HeapTupleHeaderGetTypMod(rec); tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod); ncolumns = tupdesc->natts; /* Build a temporary HeapTuple control structure */ tuple.t_len = HeapTupleHeaderGetDatumLength(rec); ItemPointerSetInvalid(&(tuple.t_self)); tuple.t_tableOid = InvalidOid; tuple.t_data = rec; values = (Datum *) palloc(ncolumns * sizeof(Datum)); nulls = (bool *) palloc(ncolumns * sizeof(bool)); heap_deform_tuple(&tuple, tupdesc, values, nulls); old_context = MemoryContextSwitchTo(TopTransactionContext); for (i = 0; i < ncolumns; i++) { struct varlena *attr; struct varlena *new_attr; struct varatt_indirect redirect_pointer; /* only work on existing, not-null varlenas */ if (tupdesc->attrs[i]->attisdropped || nulls[i] || tupdesc->attrs[i]->attlen != -1) continue; attr = (struct varlena *) DatumGetPointer(values[i]); /* don't recursively indirect */ if (VARATT_IS_EXTERNAL_INDIRECT(attr)) continue; /* copy datum, so it still lives later */ if (VARATT_IS_EXTERNAL_ONDISK(attr)) attr = heap_tuple_fetch_attr(attr); else { struct varlena *oldattr = attr; attr = palloc0(VARSIZE_ANY(oldattr)); memcpy(attr, oldattr, VARSIZE_ANY(oldattr)); } /* build indirection Datum */ new_attr = (struct varlena *) palloc0(INDIRECT_POINTER_SIZE); redirect_pointer.pointer = attr; SET_VARTAG_EXTERNAL(new_attr, VARTAG_INDIRECT); memcpy(VARDATA_EXTERNAL(new_attr), &redirect_pointer, sizeof(redirect_pointer)); values[i] = PointerGetDatum(new_attr); } newtup = heap_form_tuple(tupdesc, values, nulls); pfree(values); pfree(nulls); ReleaseTupleDesc(tupdesc); MemoryContextSwitchTo(old_context); /* * We intentionally don't use PG_RETURN_HEAPTUPLEHEADER here, because that * would cause the indirect toast pointers to be flattened out of the * tuple immediately, rendering subsequent testing irrelevant. So just * return the HeapTupleHeader pointer as-is. This violates the general * rule that composite Datums shouldn't contain toast pointers, but so * long as the regression test scripts don't insert the result of this * function into a container type (record, array, etc) it should be OK. */ PG_RETURN_POINTER(newtup->t_data); } PG_FUNCTION_INFO_V1(regress_putenv); Datum regress_putenv(PG_FUNCTION_ARGS) { MemoryContext oldcontext; char *envbuf; if (!superuser()) elog(ERROR, "must be superuser to change environment variables"); oldcontext = MemoryContextSwitchTo(TopMemoryContext); envbuf = text_to_cstring((text *) PG_GETARG_POINTER(0)); MemoryContextSwitchTo(oldcontext); if (putenv(envbuf) != 0) elog(ERROR, "could not set environment variable: %m"); PG_RETURN_VOID(); } /* Sleep until no process has a given PID. */ PG_FUNCTION_INFO_V1(wait_pid); Datum wait_pid(PG_FUNCTION_ARGS) { int pid = PG_GETARG_INT32(0); if (!superuser()) elog(ERROR, "must be superuser to check PID liveness"); while (kill(pid, 0) == 0) { CHECK_FOR_INTERRUPTS(); pg_usleep(50000); } if (errno != ESRCH) elog(ERROR, "could not check PID %d liveness: %m", pid); PG_RETURN_VOID(); } #ifndef PG_HAVE_ATOMIC_FLAG_SIMULATION static void test_atomic_flag(void) { pg_atomic_flag flag; pg_atomic_init_flag(&flag); if (!pg_atomic_unlocked_test_flag(&flag)) elog(ERROR, "flag: unexpectedly set"); if (!pg_atomic_test_set_flag(&flag)) elog(ERROR, "flag: couldn't set"); if (pg_atomic_unlocked_test_flag(&flag)) elog(ERROR, "flag: unexpectedly unset"); if (pg_atomic_test_set_flag(&flag)) elog(ERROR, "flag: set spuriously #2"); pg_atomic_clear_flag(&flag); if (!pg_atomic_unlocked_test_flag(&flag)) elog(ERROR, "flag: unexpectedly set #2"); if (!pg_atomic_test_set_flag(&flag)) elog(ERROR, "flag: couldn't set"); pg_atomic_clear_flag(&flag); } #endif /* PG_HAVE_ATOMIC_FLAG_SIMULATION */ static void test_atomic_uint32(void) { pg_atomic_uint32 var; uint32 expected; int i; pg_atomic_init_u32(&var, 0); if (pg_atomic_read_u32(&var) != 0) elog(ERROR, "atomic_read_u32() #1 wrong"); pg_atomic_write_u32(&var, 3); if (pg_atomic_read_u32(&var) != 3) elog(ERROR, "atomic_read_u32() #2 wrong"); if (pg_atomic_fetch_add_u32(&var, 1) != 3) elog(ERROR, "atomic_fetch_add_u32() #1 wrong"); if (pg_atomic_fetch_sub_u32(&var, 1) != 4) elog(ERROR, "atomic_fetch_sub_u32() #1 wrong"); if (pg_atomic_sub_fetch_u32(&var, 3) != 0) elog(ERROR, "atomic_sub_fetch_u32() #1 wrong"); if (pg_atomic_add_fetch_u32(&var, 10) != 10) elog(ERROR, "atomic_add_fetch_u32() #1 wrong"); if (pg_atomic_exchange_u32(&var, 5) != 10) elog(ERROR, "pg_atomic_exchange_u32() #1 wrong"); if (pg_atomic_exchange_u32(&var, 0) != 5) elog(ERROR, "pg_atomic_exchange_u32() #0 wrong"); /* test around numerical limits */ if (pg_atomic_fetch_add_u32(&var, INT_MAX) != 0) elog(ERROR, "pg_atomic_fetch_add_u32() #2 wrong"); if (pg_atomic_fetch_add_u32(&var, INT_MAX) != INT_MAX) elog(ERROR, "pg_atomic_add_fetch_u32() #3 wrong"); pg_atomic_fetch_add_u32(&var, 1); /* top up to UINT_MAX */ if (pg_atomic_read_u32(&var) != UINT_MAX) elog(ERROR, "atomic_read_u32() #2 wrong"); if (pg_atomic_fetch_sub_u32(&var, INT_MAX) != UINT_MAX) elog(ERROR, "pg_atomic_fetch_sub_u32() #2 wrong"); if (pg_atomic_read_u32(&var) != (uint32) INT_MAX + 1) elog(ERROR, "atomic_read_u32() #3 wrong: %u", pg_atomic_read_u32(&var)); expected = pg_atomic_sub_fetch_u32(&var, INT_MAX); if (expected != 1) elog(ERROR, "pg_atomic_sub_fetch_u32() #3 wrong: %u", expected); pg_atomic_sub_fetch_u32(&var, 1); /* fail exchange because of old expected */ expected = 10; if (pg_atomic_compare_exchange_u32(&var, &expected, 1)) elog(ERROR, "atomic_compare_exchange_u32() changed value spuriously"); /* CAS is allowed to fail due to interrupts, try a couple of times */ for (i = 0; i < 1000; i++) { expected = 0; if (!pg_atomic_compare_exchange_u32(&var, &expected, 1)) break; } if (i == 1000) elog(ERROR, "atomic_compare_exchange_u32() never succeeded"); if (pg_atomic_read_u32(&var) != 1) elog(ERROR, "atomic_compare_exchange_u32() didn't set value properly"); pg_atomic_write_u32(&var, 0); /* try setting flagbits */ if (pg_atomic_fetch_or_u32(&var, 1) & 1) elog(ERROR, "pg_atomic_fetch_or_u32() #1 wrong"); if (!(pg_atomic_fetch_or_u32(&var, 2) & 1)) elog(ERROR, "pg_atomic_fetch_or_u32() #2 wrong"); if (pg_atomic_read_u32(&var) != 3) elog(ERROR, "invalid result after pg_atomic_fetch_or_u32()"); /* try clearing flagbits */ if ((pg_atomic_fetch_and_u32(&var, ~2) & 3) != 3) elog(ERROR, "pg_atomic_fetch_and_u32() #1 wrong"); if (pg_atomic_fetch_and_u32(&var, ~1) != 1) elog(ERROR, "pg_atomic_fetch_and_u32() #2 wrong: is %u", pg_atomic_read_u32(&var)); /* no bits set anymore */ if (pg_atomic_fetch_and_u32(&var, ~0) != 0) elog(ERROR, "pg_atomic_fetch_and_u32() #3 wrong"); } #ifdef PG_HAVE_ATOMIC_U64_SUPPORT static void test_atomic_uint64(void) { pg_atomic_uint64 var; uint64 expected; int i; pg_atomic_init_u64(&var, 0); if (pg_atomic_read_u64(&var) != 0) elog(ERROR, "atomic_read_u64() #1 wrong"); pg_atomic_write_u64(&var, 3); if (pg_atomic_read_u64(&var) != 3) elog(ERROR, "atomic_read_u64() #2 wrong"); if (pg_atomic_fetch_add_u64(&var, 1) != 3) elog(ERROR, "atomic_fetch_add_u64() #1 wrong"); if (pg_atomic_fetch_sub_u64(&var, 1) != 4) elog(ERROR, "atomic_fetch_sub_u64() #1 wrong"); if (pg_atomic_sub_fetch_u64(&var, 3) != 0) elog(ERROR, "atomic_sub_fetch_u64() #1 wrong"); if (pg_atomic_add_fetch_u64(&var, 10) != 10) elog(ERROR, "atomic_add_fetch_u64() #1 wrong"); if (pg_atomic_exchange_u64(&var, 5) != 10) elog(ERROR, "pg_atomic_exchange_u64() #1 wrong"); if (pg_atomic_exchange_u64(&var, 0) != 5) elog(ERROR, "pg_atomic_exchange_u64() #0 wrong"); /* fail exchange because of old expected */ expected = 10; if (pg_atomic_compare_exchange_u64(&var, &expected, 1)) elog(ERROR, "atomic_compare_exchange_u64() changed value spuriously"); /* CAS is allowed to fail due to interrupts, try a couple of times */ for (i = 0; i < 100; i++) { expected = 0; if (!pg_atomic_compare_exchange_u64(&var, &expected, 1)) break; } if (i == 100) elog(ERROR, "atomic_compare_exchange_u64() never succeeded"); if (pg_atomic_read_u64(&var) != 1) elog(ERROR, "atomic_compare_exchange_u64() didn't set value properly"); pg_atomic_write_u64(&var, 0); /* try setting flagbits */ if (pg_atomic_fetch_or_u64(&var, 1) & 1) elog(ERROR, "pg_atomic_fetch_or_u64() #1 wrong"); if (!(pg_atomic_fetch_or_u64(&var, 2) & 1)) elog(ERROR, "pg_atomic_fetch_or_u64() #2 wrong"); if (pg_atomic_read_u64(&var) != 3) elog(ERROR, "invalid result after pg_atomic_fetch_or_u64()"); /* try clearing flagbits */ if ((pg_atomic_fetch_and_u64(&var, ~2) & 3) != 3) elog(ERROR, "pg_atomic_fetch_and_u64() #1 wrong"); if (pg_atomic_fetch_and_u64(&var, ~1) != 1) elog(ERROR, "pg_atomic_fetch_and_u64() #2 wrong: is " UINT64_FORMAT, pg_atomic_read_u64(&var)); /* no bits set anymore */ if (pg_atomic_fetch_and_u64(&var, ~0) != 0) elog(ERROR, "pg_atomic_fetch_and_u64() #3 wrong"); } #endif /* PG_HAVE_ATOMIC_U64_SUPPORT */ PG_FUNCTION_INFO_V1(test_atomic_ops); Datum test_atomic_ops(PG_FUNCTION_ARGS) { /* --- * Can't run the test under the semaphore emulation, it doesn't handle * checking two edge cases well: * - pg_atomic_unlocked_test_flag() always returns true * - locking a already locked flag blocks * it seems better to not test the semaphore fallback here, than weaken * the checks for the other cases. The semaphore code will be the same * everywhere, whereas the efficient implementations wont. * --- */ #ifndef PG_HAVE_ATOMIC_FLAG_SIMULATION test_atomic_flag(); #endif test_atomic_uint32(); #ifdef PG_HAVE_ATOMIC_U64_SUPPORT test_atomic_uint64(); #endif PG_RETURN_BOOL(true); }