
PostgreSQL transition guide:
supporting the decision

Socle Interministériel du Logiciel Libre, PGGTIE

PostgreSQL.fr

09/11/2021

PostgreSQL transition guide: supporting the decision 09/11/2021

Contents

1 Versions 5

2 Contributors 6

3 Introduction 7

4 Satisfying requirements 8
4.1 Use cases . 8
4.2 Data access . 8
4.3 Security requirements . 8
4.4 Migration cases . 9

5 Integration of PostgreSQL on technical platforms 10
5.1 Technical platforms . 10

5.1.1 Processor architectures . 10
5.1.2 Operating systems . 10
5.1.3 Compatibility with virtualization/containerization 10

5.2 Running PostgreSQL in the cloud . 10
5.2.1 Compatibility with storage technologies . 11
5.2.2 Compatibility with backup technologies . 11

5.3 Security . 11
5.3.1 User identification management . 11
5.3.2 Confidentiality guarantees and use of encryption 11
5.3.3 Ensure traceability and logging . 12
5.3.4 Audit . 12

6 Scalability and resilience 13
6.1 Clustering and replication mechanisms . 13
6.2 Resilience driven by the PostgreSQL engine . 14
6.3 Resilience driven by the storage infrastructure . 14
6.4 Business continuity and disaster recovery plans . 14

7 Development with PostgreSQL 15
7.1 Data types . 15
7.2 Database schemas and structures . 15
7.3 Development specifics . 16
7.4 API and access modes . 16

7.4.1 Client interfaces . 16

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 2

PostgreSQL transition guide: supporting the decision 09/11/2021

7.4.2 Abstraction layer . 17
7.4.3 Connection pooling . 17

7.5 Stored procedures, functions, and triggers . 17
7.6 Foreign Data Wrappers . 18

8 Administration 19
8.1 Monitoring and exploitation tools for PostgreSQL . 19

8.1.1 PgAdmin . 19
8.1.2 psql . 19

8.2 Monitoring tools and logs analysis . 19
8.3 Backup . 20
8.4 High-Availability . 20
8.5 Data migration tools to PostgreSQL . 20

9 Decision’s Help 22

10 Limits or unsupported features 23

11 Changemanagement 25
11.1 Training . 25
11.2 Support . 25
11.3 Migration plan . 25

12 Return on investment 26
12.1 Database migration cost . 26
12.2 Possession cost . 26
12.3 Control of trajectories . 26

13 Appendices 27
13.1 Migration from Oracle . 28

13.1.1 Technical environment . 28
13.1.2 So�ware stack . 28
13.1.3 Database migration . 28
13.1.4 Criticality and backups . 30
13.1.5 Monitoring, performance improvement and supervision 30

13.2 Migration from Db2 . 31
13.2.1 Some DDL di�erences between PostgreSQL and Db2 31
13.2.2 DCL . 34
13.2.3 Other considerations . 35

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 3

PostgreSQL transition guide: supporting the decision 09/11/2021

13.3 Migration from Informix . 37
13.3.1 Structure . 37
13.3.2 Plan to follow whenmigrating databases . 37
13.3.3 Integrating the Hibernate framework . 38
13.3.4 Risks . 38

13.4 Migration fromMSSQL . 39
13.5 Some references . 40
13.6 Extensions and plugins for PostgreSQL . 41
13.7 Third-party tools for PostgreSQL . 42

14 References 43

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 4

PostgreSQL transition guide: supporting the decision 09/11/2021

1 Versions

History of this document versions:

Version Date Comments

0.1 18/12/2013 First dra�

1.0 19/03/2015 Publication of the first version in French

1.0.1 30/09/2015 Russian translation by I. Panchenko and O. Bartunov

2.0 10/12/2019 Update by the PGGTIE

2.0.1 08/06/2020 Removed DINSIC mention

3.0.0 09/11/2021 English version and license change

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 5

PostgreSQL transition guide: supporting the decision 09/11/2021

2 Contributors

Initial authors:

• Bruce BARDOU - DGFiP
• Barek BOUTGAYOUT - MASS
• Amina CHITOUR - MENMESR
• Alain DELIGNY - MEDDE
• Yohann MARTIN - Maif
• Alain MERLE - MEDDE
• Anthony NOWOCIEN – Société Générale
• Loïc PESSONNIER - MINDEF
• Marie-Claude QUIDOZ - CNRS
• Laurent RAYMONDEAU - MENESR

This document is released under the (PostgreSQL license).

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 6

https://opensource.org/licenses/PostgreSQL

PostgreSQL transition guide: supporting the decision 09/11/2021

3 Introduction

This guidewasproducedwithin the frameworkof the “Ayrault” circular of September 19, 2012 on theuse
of free so�ware in the French administration, which led to the creation of the inter-ministerial “Socle
Interministériel du Logiciel Libre” (SILL). This guide presents the implementation of PostgreSQL com-
pared to commercial solutions. Its objective is to answer the questions of project owners and project
managers for the implementation of PostgreSQL as a replacement for a commercial solution. This
guide aims, without going too deep into the details of the technical implementation, to demonstrate
the benefits of PostgreSQL by describing the integration, security and robustness mechanisms.

The initial document was authored collaboratively by Mimprod1 and PGGTIE2.

1Mimprod: https://www.mim-libre.fr/mimprod-outils-de-production/
2PGGTIE: https://www.postgresql.fr/entreprises/english

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 7

https://www.mim-libre.fr/mimprod-outils-de-production/
https://www.postgresql.fr/entreprises/english

PostgreSQL transition guide: supporting the decision 09/11/2021

4 Satisfying requirements

4.1 Use cases

PostgreSQL is an SQL compliant database management system, typically used in transactional appli-
cations to ensure data persistence, much like similar commercial products (Oracle, DB2, Informix, MS
SQL, Sybase, etc).

There is a PostgreSQL extension for geographic objects (PostGIS3) that conforms to theOpenGeospatial
Consortium (OGC) Standards. It supports JSON format data, consisting of key-value pairs, allowing it to
also satisfy the use cases of NoSQL-like solutions. PostgreSQL can also be used in the field of Business
Intelligence as a data warehouse, in conjunction with reporting tools (BusinessObjects, Pentaho, etc).
It comes with a built-in and feature rich full-text search engine4.

Many free so�ware packages are natively based on PostgreSQL (document management systems
(DMS), rules engines, collaboration so�ware, supervision so�ware, etc). More and more so�ware
vendors are supporting PostgreSQL. Open letters, like this one written by the PGGTIE5, could also help
in adoption.

PostgreSQL also supports background processing, such as batch or deferred processing.

4.2 Data access

PostgreSQL conforms6 to the SQL:2016 standard, the common query language of many RDBMSs.
Migration is therefore facilitated between RDBMSs respecting the standard.

4.3 Security requirements

PostgreSQL meets security needs in terms of availability, integrity, confidentiality and traceability
(information security7).

Encryption is standard and several strong authentication methods (like SCRAM and Kerberos) are
possible. Cryptographic requirements are covered by additional modules, in particular pgcrypto8. At
present, it is not possible to encrypt an entire instance, but work is ongoing (see wiki on Transparent
Data Encryption9).
3PostGIS: https://postgis.net/
4Full-text search: https://www.postgresql.org/docs/current/textsearch.html
5Open letter: https://www.postgresql.fr/entreprises/20171206_open_letter_to_software_vendors
6SQL standard compliance: https://www.postgresql.org/docs/current/features.html
7Information security: https://en.wikipedia.org/wiki/Information_security
8pgcrypto: https://www.postgresql.org/docs/current/pgcrypto.html
9Transparent Data Encryption: https://wiki.postgresql.org/wiki/Transparent_Data_Encryption

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 8

https://postgis.net/
https://www.postgresql.org/docs/current/textsearch.html
https://www.postgresql.fr/entreprises/20171206_open_letter_to_software_vendors
https://www.postgresql.org/docs/current/features.html
https://en.wikipedia.org/wiki/Information_security
https://www.postgresql.org/docs/current/pgcrypto.html
https://wiki.postgresql.org/wiki/Transparent_Data_Encryption

PostgreSQL transition guide: supporting the decision 09/11/2021

PostgreSQL has a very responsive community that provides security patches andmanages component
obsolescence. It is recommended that you apply minor patches as soon as possible. A major version is
released every year and supported10 for 5 years.

PostgreSQL guarantees the integrity of the data handled even in the event of an incident by respecting
the properties of atomicity, consistency, isolation and durability (ACID11).

PostgreSQL natively o�ers the mechanisms to meet confidentiality and rights management needs
through roles12. Very fine granularity can be achieved, even at the row level (Row Security Policies13).

4.4 Migration cases

Themigration of a system represents a significant cost, consisting mainly of:

• data migration, even if there are a number of tools to perform this migration, depending on the
source RDBMS;

• changes needed in the source code of the application. The need for changes depends on the use
of any functionalities that are specific to the existing product (like stored procedures, triggers,
and non-standard functions) and the use of an abstraction layer (like Hibernate);

• steps to guarantee equivalent functionalities and that no errors were introduced during the
migration (regression tests).

As such, migrations to PostgreSQL are o�en carried out during a functional evolution of the application.
The cost of migration is integrated into the project as a whole, particularly in terms of technical and
functional acceptance.

However, an ambitious global migration plan can be arranged. PostgreSQL can become the preferred
RDBMS for any new application, with projects having to justify specific needs for another RDBMS
(exemption request).

10Support and EOL: https://www.postgresql.org/support/versioning/
11ACID properties: https://en.wikipedia.org/wiki/ACID
12Roles: https://www.postgresql.org/docs/current/user-manag.html
13Row Security Policies: https://www.postgresql.org/docs/current/ddl-rowsecurity.html

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 9

https://www.postgresql.org/support/versioning/
https://en.wikipedia.org/wiki/ACID
https://www.postgresql.org/docs/current/user-manag.html
https://www.postgresql.org/docs/current/ddl-rowsecurity.html

PostgreSQL transition guide: supporting the decision 09/11/2021

5 Integration of PostgreSQL on technical platforms

5.1 Technical platforms

5.1.1 Processor architectures

PostgreSQL runs on the following processor architectures14: x86, x86_64, IA64, PowerPC, PowerPC 64,
S/390, S/390x, Sparc, Sparc 64, ARM, MIPS, MIPSEL and PA-RISC.

5.1.2 Operating systems

PostgreSQL works onmost operating systems. Binary versions exist for the Red Hat family (including
CentOS / Fedora / Scientific), the Debian GNU / Linux family and its derivatives, the Ubuntu Linux family
and its derivatives, SuSE, OpenSuSE, Solaris, Windows, macOS, FreeBSD, OpenBSD etc.

For distributions using .rpm files, it is possible - and recommended - to use the community repository
https://yum.postgresql.org/. For those using .deb, please refer to https://wiki.postgresql.org/wiki/Apt.
Source code is also available online15.

5.1.3 Compatibility with virtualization/containerization

PostgreSQL is compatible with VMWare and KVM in particular. Virtualization brings resiliency benefits.
It is also possible to make PostgreSQL work with containers like Docker.

5.2 Running PostgreSQL in the cloud

All major cloud vendors have a (or sometimes multiple) managed PostgreSQL o�er. Being a managed
service means that the vendor will handle the infrastructure and administrative operations and grant
you restricted privileges on the instance.

Their o�erings will vary vastly according to the SLA they can provide, the flavors of instances available,
their use of a full community version or a proprietary one, the list of available extensions, the high
availability / disaster recovery solutions provided. . .

14Supported platforms: https://www.postgresql.org/docs/current/supported-platforms.html
15Source code: https://www.postgresql.org/ftp/source/

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 10

https://yum.postgresql.org/
https://wiki.postgresql.org/wiki/Apt
https://www.postgresql.org/docs/current/supported-platforms.html
https://www.postgresql.org/ftp/source/

PostgreSQL transition guide: supporting the decision 09/11/2021

5.2.1 Compatibility with storage technologies

PostgreSQL works on storage arrays (SAN, NAS, etc) but like any DBMS, the attachment must be
permanent and at block level. Storage virtualization is completely transparent to the DBMS.

Communities provide recommendations on the types of filesystem to use (ext4, XFS, ZFS, etc). The use
of NFS is not recommended.

5.2.2 Compatibility with backup technologies

PostgreSQL supports the usual backupmethods:

• cold backup : file system level backup - the database must be o�line ;
• hot backup : basic filesystem level backup supported. No possibility to perform an incremental
backup natively. Tools like Barman16 and pgBackRest17 allow this, though ;

• continuous backup: file system level backup supported, allowing Point In Time Recovery (PITR).
It is possible to use the tools mentioned above, or pitrery ;

• SQL dump : the database can be exported in SQL format, optionally compressed, in a format
specific to PostgreSQL.

PostgreSQL is compatible with other backup tools as well (TINA, TSM, Veeam, Netbackup, Bacula,
etc).

5.3 Security

5.3.1 User identificationmanagement

PostgreSQL provides authentication mechanisms andmanages the attribution of privileges (GRANT,
etc). It also allows separation through database schemas.

5.3.2 Confidentiality guarantees and use of encryption

Encryption is possible via the pgcryptomodule, allowing column encryption by public key and private
key. Transparent Data Encryption (TDE) is not yet available in community PostgreSQL.

16Barman: https://www.pgbarman.org/
17pgBackRest: https://pgbackrest.org/

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 11

https://www.pgbarman.org/
https://pgbackrest.org/

PostgreSQL transition guide: supporting the decision 09/11/2021

5.3.3 Ensure traceability and logging

The traceability of events in PostgreSQL is ensured by transaction logs (calledWAL, or Write-Ahead
Logs):

• logging of engine operations (starting, stopping, etc);
• access logging (queries, user access, errors, etc).

5.3.4 Audit

While a significant amount of information can be recorded in the logs18, it may be necessary in some
cases to implement a more extensive audit policy. The most successful tool to do this is PGAudit19. In
particular, it will make it possible to understand the context in which an operation was performed. An
example implementation by the United States Defense Information Systems Agency (DISA) is avail-
able20.

18Log configuration: https://www.postgresql.org/docs/current/runtime-config-logging.html
19PGAudit: https://www.pgaudit.org/
20DISA Security Technical Implementation Guide: https://www.crunchydata.com/disa-postgres-security-guide/disa-postgr
es-security-guide-v1.pdf

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 12

https://www.postgresql.org/docs/current/runtime-config-logging.html
https://www.pgaudit.org/
https://www.crunchydata.com/disa-postgres-security-guide/disa-postgres-security-guide-v1.pdf
https://www.crunchydata.com/disa-postgres-security-guide/disa-postgres-security-guide-v1.pdf

PostgreSQL transition guide: supporting the decision 09/11/2021

6 Scalability and resilience

6.1 Clustering and replicationmechanisms

Definitions

Scalability and Elasticity

Scalability is the ability of PostgreSQL to adapt to an order of magnitude change in demand (up
or down).

The elasticity of a system is the ability of a system to automatically increase or decrease its
resources as needed.

Resilience and Robustness (or stability)

Resilience is the ability of a system or network architecture to continue to function in the event of
failure.

Robustness is the quality of a system that does not crash, that functions well even in a hostile
(penetration, DoS, etc) or abnormal (e.g. incorrect inputs) environment.

Cluster

A cluster is a group of servers (or “compute farm”) sharing common storage. A cluster provides
high availability and load balancing functions.

Replication

Replication is a process of sharing information to ensure data consistency between multiple
redundant data sources, to improve reliability, fault tolerance, or availability.

As with the vast majority of RDBMSs, it is easy to increase server resources (CPU, RAM, disk) to vertically
scale the Postgres service. Certain solutions also allow you to perform sharding (distribute data over
several instances, such as Citus, PostgreSQL-XL, etc).

Several clustering and replication modes are supported by PostgreSQL, with advantages and disadvan-
tages to each. These considerations are independent of the choice of DBMS though; all products are
a�ected :

• “Active-Passive” mode : a primary database is read / write, another database, the “standby”,
is synchronized in the background. Replication can be asynchronous (better performance) or
synchronous (better security).

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 13

PostgreSQL transition guide: supporting the decision 09/11/2021

• “Partial Active-Active” or “Read/Write - Read” mode: a primary database is read / write, the
“standby” databases are read-only.

Like other DBMSs, PostgreSQL does not allow transactions on several servers in “Active-Active” or
“Read/Write - Read/Write”mode. You have to go through third-party contributions, such as EDB’s BDR21

(Bidirectional Replication), that o�er this functionality. However, this is a proprietary development on
amodified version of PostgreSQL.

6.2 Resilience driven by the PostgreSQL engine

PostgreSQLprovides replicationmechanisms for setting upan “active-passive” or “partial active-active”
cluster.

There are twomain types of replication, namely physical replication (eg streaming replication 22 based
onmodification of data blocks) and logical replication (based onmodification of database objects).
For high availability requirements, we will focus on physical replication. Logical replication is intended
for other use cases, like the selective supply of another database (e.g. data warehouse), an upgrade
with the aim of minimizing downtime, etc.

6.3 Resilience driven by the storage infrastructure

PostgreSQL is compatible with clustering driven by the platform, independently of the DBMS.Writing to
a node is performed by PostgreSQL and replication to a second node is handled by the storage array.

To restart the engine on the second node, there must be an interruption of service.

6.4 Business continuity and disaster recovery plans

Business continuity and disaster recovery plans must be supported by the application. Recommenda-
tions for the choice of scenarios are made according to the recovery and continuity needs, indepen-
dently of the DBMS.

PostgreSQL provides the tools for the integration of recovery and continuity plans. Several solutions
are available for switchover andmanual/automatic failover.

21BDR: https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
22Streaming replication https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 14

https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION

PostgreSQL transition guide: supporting the decision 09/11/2021

7 Development with PostgreSQL

7.1 Data types

PostgreSQLo�ers standarddata types (alphanumeric, date, time, BLOB, etc. . .) aswell asmore complex
data types (geospatial, XML, JSON, etc. . .). We refer the reader to the documentation23.

It is recommended to use ISO 860124 for dates (YYYY-MM-DD). For data including date and time, the
timestampwith time zone data type should be used.

The Binary Large OBject (BLOB) data type allows storage of binary form content in the database (o�ice
files, PDFs, photos, audio, video, multimedia, etc).

PostgreSQL provides two ways of storing binary data :

• directly in the table using the bytea type;
• in a separate table with a special format that stores binary data and refers to it by a value of type
oid in the main table using the Large Object function.

The bytea data type, which can hold up to 1 GB, is therefore not suitable for storing very large amounts
of binary data. The Large Object function is best suited for storing very large volumes. However, it has
its own limits :

• deleting a record does not delete the associated binary data. This requires a maintenance action
on the database;

• any connected user can access binary data even if they do not have rights on the main database.

The use of BLOB columns is not recommended if there is no need to search the information.

7.2 Database schemas and structures

Table partitioning is implemented as standard25. It is worth noting a significant improvement with V10,
which allows declarative partitioning. It was previously achieved through the notion of inheritance and
the writing of triggers. Version 11 continues the improvements, in particular on the possibility of having
primary/foreign keys on the partitions, partition-pruning, the ability to define a default partition, etc.

Previously, one would rather avoid creating more than 500/1000 partitions for a single table. With the
latest versions that have brought very appreciable performance gains in this area, this is not a relevant
limit anymore.

23Data types: https://www.postgresql.org/docs/current/datatype.html
24ISO 8601: https://en.wikipedia.org/wiki/ISO_8601
25Partitioning: https://www.postgresql.org/docs/current/ddl-partitioning.html

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 15

https://www.postgresql.org/docs/current/datatype.html
https://en.wikipedia.org/wiki/ISO_8601
https://www.postgresql.org/docs/current/ddl-partitioning.html

PostgreSQL transition guide: supporting the decision 09/11/2021

7.3 Development specifics

PostgreSQL complies with the SQL 2016 standard.

The documentation26 provides links to see which functions are actually covered and which are not yet:
overall the coverage of the standard is very good, although it is surprising that the MERGE statement is
not yet supported. PostgreSQL does, however, have an INSERT ... ON CONFLICT 27 statement
that meets a similar need.

As such, PostgreSQL does not require significant query syntax training. However, developers’ habits
regarding the use of specific functions and particular syntaxes for joins in their usual DBMS will require
support. For example, the date functions are o�en specific to each DBMS (see Appendices by DBMS).

It is possible to create custom function libraries to simulate the specific functions of other DBMSs,
facilitating both migration and training.

The choice of character set is done according to the applications. UTF-8 is recommended for the
whole chain. ISO can also be used if needed.

Be careful with the default options when installing PostgreSQL: if no options are specified, initdb and
CREATE DATABASE use the server’s language configuration, either LATIN9 (ISO 8859-15) or, failing
that, ASCII (https://www.postgresql.org/docs/current/app-initdb.html). To use UTF-8, youmust specify
it when creating the database.

PostgreSQL allows the use ofmaterialized views. While they can be refreshed on demand (andwith
minimal blocking via the CONCURRENTLY clause), it is currently not natively possible to continuously
update them. This could be possible through the use of triggers but would come with a very important
performance penalty.

7.4 API and access modes

7.4.1 Client interfaces

PostgreSQL provides several client interfaces for accessing data.

Name Language Comments Address

JDBC Java Type 4 JDBC driver https://jdbc.postgresql.org/

psqlODBC ODBC ODBC driver https://odbc.postgresql.org/

psycopg Python DB API 2.0-compliant https://initd.org/psycopg/
26SQL conformance: https://www.postgresql.org/docs/current/features.html
27INSERT ON CONFLICT: https://www.postgresql.org/docs/current/sql-insert.html#SQL-ON-CONFLICT

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 16

https://jdbc.postgresql.org/
https://odbc.postgresql.org/
https://initd.org/psycopg/
https://www.postgresql.org/docs/current/features.html
https://www.postgresql.org/docs/current/sql-insert.html#SQL-ON-CONFLICT

PostgreSQL transition guide: supporting the decision 09/11/2021

Name Language Comments Address

Npgsql .NET .NET data provider https://www.npgsql.org/

DBD::Pg Perl Perl DBI driver https://metacpan.org/release/DBD-Pg

libpqxx C++ New-style C++ interface http://pqxx.org/development/libpqxx/

pgtclng Tcl Tcl interface https://sourceforge.net/projects/pgtclng/

7.4.2 Abstraction layer

The use of an “ORM” type abstraction layer (object/relation mapping) is supported.

7.4.3 Connection pooling

Aconnectionmanager is strongly recommended for several hundredormore simultaneous connections.
As PostgreSQL uses a process for each new session, establishing and closing a connection can become
slow in relation to query execution time. Overloading your database with active sessions is also a risk.
PgBouncer28 is stable and performant – we recommend it, even if it is single–threaded. Pgpool-II29 is
more complex to use and is recommended for load-balancing.

7.5 Stored procedures, functions, and triggers

A trigger is an action (stored procedure or SQL query) executed on an event. Triggers have many uses,
including implementation of traces related to the application (error management, activity, etc).

A stored procedure is a program stored in the database. This is usually a function, and version 11 allows
you to actually define a procedure, invoked via the CALL command.

Stored procedures bring adherence to the chosen RDBMS andmight render future hypothetical mi-
grations more di�icult. Using PostgreSQL to its full extend and using its specific features will trade
portability for improved performance. Deciding which one is more important is an architectural ques-
tion you will have to answer.

Functions can be used to extend the use of pre-existing data types.

PostgreSQL allows you to write functions and procedures in languages other than SQL and C. These
other languages are generically called procedural languages. There are currently four procedural
languages in the standard PostgreSQL distribution:
28PgBouncer: https://www.pgbouncer.org/
29Pgpool-II: https://www.pgpool.net/mediawiki/index.php/Main_Page

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 17

https://www.npgsql.org/
https://metacpan.org/release/DBD-Pg
http://pqxx.org/development/libpqxx/
https://sourceforge.net/projects/pgtclng/
https://www.pgbouncer.org/
https://www.pgpool.net/mediawiki/index.php/Main_Page

PostgreSQL transition guide: supporting the decision 09/11/2021

• PL/pgSQL: SQL procedural language ;
• PL/Tcl: Tcl procedural language ;
• PL/Perl: Perl procedural language ;
• PL/Python: Python procedural language.

There are other procedural languages that are not included in the main distribution (like PL/Java,
PL/PHP, PL/Py, PL/R, PL/Ruby, PL/Scheme, PL/sh, . . .). Other languages can be defined by users, but
the process can be a bit complex.

7.6 Foreign Data Wrappers

These are extensions that allow PostgreSQL to communicate with other data sources. The data sources
can be relational databases (PostgreSQL, MySQL, Oracle, etc), NoSQL databases (CouchDB, MongoDB,
etc), CSV files, or LDAP directories. The fact that the data comes from other sources is transparent to
the end user.

Some FDWs, like Oracle and MySQL, have read/write capabilities; others only read.

For a complete list, see the wiki30.

30FDW: https://wiki.postgresql.org/wiki/Foreign_data_wrappers

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 18

https://wiki.postgresql.org/wiki/Foreign_data_wrappers

PostgreSQL transition guide: supporting the decision 09/11/2021

8 Administration

8.1 Monitoring and exploitation tools for PostgreSQL

8.1.1 PgAdmin

PgAdmin is an client-server administration tool, open source and released under the PostgreSQL
license. It is available on all platforms and is included by default during a Windows installation. You
can download it here: https://www.pgadmin.org/download/.

As a GUI tool, it has a low barrier to entry. Here are some of its most important features: graphical
query tool, display customization, addons (for example PostGIS, Shapefile and DBF loader) and a script
language. It can also display the query plan result (EXPLAIN command) in a graphical way.

It can be installed in server mode to avoid installation on the client’s end. This so�ware is updated
frequently.

8.1.2 psql

psql tool is a command line utility, with which we can write SQL queries, display database schemas,
import/export data. . . It is included in all PostgreSQL distributions and we recommend it as the default
client.

To have help for SQL commands, we can use \help. Starting from version 12, this command will also
give the documentation link of the instruction. For meta-command’s help, we have to use \?.

8.2 Monitoring tools and logs analysis

Monitoring tools (Nagios, Munin, . . .) have plugins for PostgreSQL and o�er monitoring of log and
system tables . The Bucardo’s Perl script check_postgres is the most important plugin for this tools.
Many dedicated tools are available, like for example temBoard and pgwatch2.

Othermodules canstoredatabase statistics evolution (like thehighly recommendedpg_stat_statements31,
pgtop, . . .) or analyze logs (pgBadger32).

It is important to check the health andupdate activity of themodules used. For example, somemodules
that used to be popular like pgFouine, pgstatpack, etc. are not maintained anymore.

31pg_stat_statements: https://www.postgresql.org/docs/current/static/pgstatstatements.html
32pgBadger: https://pgbadger.darold.net/

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 19

https://www.pgadmin.org/download/
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://pgbadger.darold.net/

PostgreSQL transition guide: supporting the decision 09/11/2021

8.3 Backup

Even if PostgreSQL can natively handle hot backup, Point In Time Recovery, etc. it might be necessary
to industrialize the backup process, either with an in-house development (very di�icult) or through
the use of a dedicated backup tool.

Among the most advanced tools, we will highlight Barman and pgBackRest. They provide:

• easier PITR;
• incremental backup;
• a centralized backup catalog, which can come from di�erent servers;
• backup retention management;
• etc.

8.4 High-Availability

Several tools exist to improve resiliency and to make administration of an group of instances easier We
will note for example:

• repmgr: facilitate the setting up of a complex architecture and ease some administrative actions
like failover/switchover/adding an instance/etc.

• Patroni: A template to set up a high availability solution. It is usually used with containers and
with a distributed configuration tool like etcd or Consul.

• PAF: PostgreSQL Automatic Failover is based on Pacemaker/Corosync to manage high availiblity
and the possibility to switch roles in an automated way.

8.5 Datamigration tools to PostgreSQL

The tool ora2pg33 can analyze an Oracle database. Evaluatingmigration costs was an additional feature
required by France’s DGFIP. The tool can also realize the migration.

For data transfer, we can use an ETL (Talend Open Studio, pgloader34, etc.) that can apply transforma-
tions to the data during transfer (data type adaptation, etc.). For an initial load and in case of important
volume, it is possible to use a tool like pg_bulkload that will showcase better performance than the
COPY command.

The application code must be adapted and needs to be translated in SQL instructions compatible
with PostgreSQL. The tool code2pg35 can help by giving an estimation and ways to transform the
33ora2pg: https://ora2pg.darold.net/
34pgLoader: https://pgloader.io/
35code2pg: https://github.com/societe-generale/code2pg

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 20

https://ora2pg.darold.net/
https://ora2pg.darold.net/
https://pgloader.io/
https://github.com/societe-generale/code2pg

PostgreSQL transition guide: supporting the decision 09/11/2021

instructions.

It is highly recommended to test themigration in the same conditions as the production’s environment
(production database, application session logs, etc).

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 21

PostgreSQL transition guide: supporting the decision 09/11/2021

9 Decision’s Help

Even if PostgreSQL can answer a lot of di�erent use cases, some projects might be better served by
other technologies. This chapter will attempt to describe a decision process as it being used in several
companies.

PostgreSQL has a very liberal license in its community version and there is no extra so�ware cost when
deploying it. If a warranty is needed, it is possible to subscribe to support on either the community
version or a proprietary one that will include some extra features. An o�en used strategy within
enterprises is to have a “PostgreSQL first” policy for all new projects, baring any lack of functionality or
vendor’s requirements.

Concerningmigrations, their ROI might be di�icult to justify and can at times be nonexistent. It will
depend on the project complexity, potential license cost savings, etc. It may be simpler to have an
application upgrade and a database migration at the same time. Even if PostgreSQL is recognized as a
very capable RDBMS on small to medium sized databases, it can also handle databases of dozens or
hundreds of terabytes.

The table below will list:

• features;
• native support (starting fromwhich version) or with which extension (and its version);
• optional comments and limitations to be aware of.

Features Availability Comments - Limits

Connection pooler with Pgpool-
II/PgBouncer
. . .

see § 7.4.3

Master-standby
replication without
load-balancer

9.0 + see § 6.1

High availability with
automatic failover and
connection routing

with
Patroni/repmgr
modules. . .

see § 8.4

Encrypting data with pgcrypto
extension (8.3 +)

see § 4.3

Actvity audit with plugin
pgaudit (9.5 +)

see § 5.2.4

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 22

PostgreSQL transition guide: supporting the decision 09/11/2021

Features Availability Comments - Limits

NoSQL JSON (9.2+) see § 4.1

Materialized views 9.3 + see § 7.3

Declarative table
partioning

10 + see § 7.2/12.1.4

LOBs management 7.2+

Spatial data with PostGIS see § 4.1/7.1/12.5

Monitoring and
supervision

with tem-
Board/pgwatch2/. . .

UPSERT 9.5 +

Autonomous
transactions

with plugin
pg_background

Indexes

Maintenance and data
loading tools. . .

7.2+ (Vacuum) 7.1+
(Copy)

auto-explain with auto_explain
extension

Full-text search 8.3 +

Storage, backup
externalization

pg_basebackup
or with Bar-
man/pgBackRest/. . .

see § 5.1.5/6.3/8.3

10 Limits or unsupported features

This paragraph lists some unsupported features in the community version. This is of course not a
comprehensive list.

• Instance level encryption;
• Master-master clusters ;
• Advanced compression ;
• History snapshot of statistics;

RegardingSQLcompliance, a list is availableonhttps://www.postgresql.org/docs/current/unsupported-

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 23

PostgreSQL transition guide: supporting the decision 09/11/2021

features-sql-standard.html.

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 24

PostgreSQL transition guide: supporting the decision 09/11/2021

11 Changemanagement

Switching to another DBMS is a project on its own and, depending on the scope, can become an
enterprise level project. It might therefore require management’s involvement to be successful.

11.1 Training

Training sessions can focus on these audiences:

• developers: getting started and PostgreSQLmigrations;
• architect and operators : installation, maintenance, backup, monitoring . . . ;
• advanced administrators (DBA) : ops training.

11.2 Support

There are many ways to get support within the PostgreSQL community:

• documentation;
• mailing lists / forums / IRC / Slack;
• by contracting commercial support with a vendor;
• within user/company groups (like PGGTIE).

Professional support is also possible, we will refer the reader to the support page36.

11.3 Migration plan

Amigrationwill be amore or less important adaptation of the application. Regression and performance
testing will have to be conducted, and the migration cost might be significant.

Whenever the migration can be conducted at the same time as a major functional evolution, this cost
can be lowered. Functional testing and technical tests would have had to be conducted, no matter the
underlying RDBMS. This has to be balanced by the fact that there are risks in managing twomigrations
simultaneously.

Project management (both on the business and technical part) and ops support for skill improvement
will have to be planned.

36Support: https://www.postgresql.org/support/professional_support/europe/

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 25

https://www.postgresql.org/support/professional_support/europe/

PostgreSQL transition guide: supporting the decision 09/11/2021

12 Return on investment

12.1 Databasemigration cost

Amigration to a new DBMS will have to address the following points:

• entry cost (training, raising the level of competencies, etc);
• application adjustement including test costs (technical, functional and non regression test);
• any renewal of the support market;
• the upgrade of the operating procedures.

12.2 Possession cost

PostgreSQL is under an open-source license37 similar to the BSD or MIT ones. So there is no pricing
policy from an editor that the project must undergo.

12.3 Control of trajectories

PostgreSQL’s roadmap is known and controlled.

The PostgreSQL’s ecosystem keeps on growing with new plugins and new tools. Commercial so�ware
o�ers more andmore interfaces and API to use PostgreSQL.

Its community is both important and active. To take a French example, the reader can have a look at
the mailing list38 and the forum39. The inter enterprise work group (PGGTIE) was created in 2016 to
answer this exchange need.

37License: https://www.postgresql.org/about/licence/
38Mailing lists: https://www.postgresql.org/list/
39Forum: https://forum.postgresql.fr/

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 26

https://www.postgresql.org/about/licence/
https://www.postgresql.org/list/
https://forum.postgresql.fr/

PostgreSQL transition guide: supporting the decision 09/11/2021

13 Appendices

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 27

PostgreSQL transition guide: supporting the decision 09/11/2021

13.1 Migration fromOracle

Youmust be aware of the elements of the source servers to be able to define the appropriate target
servers in terms of technical environment, so�ware stack, storage system, data, criticality of the
application and performance monitoring.

13.1.1 Technical environment

Characteristics of the Oracle servers:

Check the type of servers: dedicated, shared or virtualized?

Check the following technical elements:

• Types of processors;
• Number of processors;
• Processor clock speeds;
• Register size;
• RAM size.

13.1.2 So�ware stack

Identify the di�erent so�ware that make up the application stack.

The current OS, including which distribution of Linux, and which version?

The Oracle version, to which PostgreSQL version?

What are the source application servers?

The JVM implementation.

The virtualization system.

13.1.3 Databasemigration

Migration tools.

There are various options: Ora2Pg, ora_migrator, orafce, code2pg, ETL or ELT, the development of
custom programs, etc.

Process the metadata first before loading the data.

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 28

PostgreSQL transition guide: supporting the decision 09/11/2021

MIGRATION OF ORACLE STRUCTURES to POSTGRESQL: including the structures of tables and views
with their appendices, the various procedures, functions, and triggers.

Check for the presence of partitioning andmaterialized views.

Partitioning is possible via triggers from PostgreSQL 9.1 onwards, and declaratively since version 10.
Many performance and feature improvements have beenmade to declarative partitioning since its
initial release and except for very special cases, trigger based partitioning should no longer be used.

Materialized views

Since PostgreSQL 9.3, materialized views are a built-in feature.

The language of SQL procedures

Oracle uses PL/SQL and PostgreSQL uses PL/pgSQL; they are quite similar, but some adaptation is
required.

Model for data typemapping

Strings can be replaced by VARCHAR or TEXT.

Oracle 7-byte dates by 8-byte TIMESTAMPTZ (don’t use TIMESTAMP40).

CLOB strings are replaced by TEXT.

Integer values are replaced in ascending precision by SMALLINT, INTEGER, BIGINT, NUMERIC.

Decimal numeric values by NUMERIC.

BLOB data by BYTEA (be careful with the escape character when using Ora2Pg).

Migration of normal and stored procedures

List all PL/SQL procedures and functions and transform them into PL/pgSQL.

Generation of databasemigration scripts

It is usually a good idea to separate DDL instructions and the data loading instructions. This is also the
approach taken by tools like ora2pg. First the database will be initialized with the structure script, then
data will be loaded at a later time. This first script (or set of scripts) will include the data structures as
well as the procedures and functions that have been re-adapted for PostgreSQL.

Please keep in mind that to speed up the loading part, it might be preferable to create (some) indexes /
constraints a�er the initial load.

Datamigration

It can be achieved via a SQL script to be inserted into the new PostgreSQL database.

40TIMESTAMP: https://wiki.postgresql.org/wiki/Don’t_Do_This#Date.2FTime_storage

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 29

https://wiki.postgresql.org/wiki/Don't_Do_This#Date.2FTime_storage

PostgreSQL transition guide: supporting the decision 09/11/2021

It is also possible to load the data directly from theOracle database to PostgreSQL. Tools like oracle_fdw
might be useful there.

Application code

Code modification is necessary to integrate the PostgreSQL driver for managing transactions, opening
and closing connections, replacing Oracle keywords with PostgreSQL keywords, external joins, pagina-
tion, etc. Depending on where the application logic is, this step can represent a significant part of the
migration.

13.1.4 Criticality and backups

Consider the concepts of Disaster Recovery, Business Continuity, RTO, RPO, and replication.

Which technical solution is used to ensure high availability: Oracle RAC, Oracle DATAGUARD, or some-
thing else?

There is no Oracle RAC equivalent in PostgreSQL; however, the DATAGUARD function is provided in
PostgreSQL by replication.

The DRP (Disaster Recovery Plan) imposes on us a time limit for the recovery of the application. It
takes into account the RTO (Recovery Time Objective) and the RPO (Recovery Point Objective). This
will also inform, depending on the volume, the technology, the frequency and the type of backup to be
implemented.

OnOracle, RMANmanages backups and restorations; there is nodatabase equivalent under PostgreSQL.
Several third-party tools exist, however, including pgBackRest and Barman. Archive logging is well
implemented, almost identically, in the two DBMSs.

Physical restores do not have a partial granularity in PostgreSQL (the whole instance is restored).

13.1.5 Monitoring, performance improvement and supervision

There is no global monitoring like Grid Control in Oracle. It is however possible to use Nagios with
the plugin check_postgres41. Other tools are also available (PGObserver, pgwatch2, temBoard, PoWa,
etc).

41check_postgres: https://bucardo.org/check_postgres/

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 30

https://bucardo.org/check_postgres/

PostgreSQL transition guide: supporting the decision 09/11/2021

13.2 Migration from Db2

Amigration leads to a review of the DDL from Db2: it is recommended to provide a tool for transform-
ing (scripting) the DDL, taking into account the elements described below. Regarding the DCL, it is
preferable not to try to transpose the Db2 grants to PostgreSQL, as the authorization levels are very
di�erent.

Themaintenance procedures (backups, history, defragmentation, statistics collection, obsolete files
cleaning, etc.) are naturally di�erent and will have to be adapted.

13.2.1 Some DDL di�erences between PostgreSQL and Db2

• Character strings:
PostgreSQL: a character string is defined by its number of characters, with the TEXT type being
an exception and a convenient way to store most varchar. Db2: the fixed or variable character
strings are expressed in bytes with the consequence of a di�erent number of possible characters
depending on the encoding of the database: in UTF-8 some characters are coded on several
bytes, in iso8859-15 each character is worth one byte. A varchar(5) string can therefore contain
fewer than 5 characters in Db2 if the database is in UTF-8 and includes accented characters.

Take this into account if you have to migrate a Db2 UTF-8 database to a PostgreSQL
database.

• Creating a table in a tablespace:

PostgreSQL Db2

CREATE TABLE. . . TABLESPACE <name_ts> CREATE TABLE. . . IN <name_ts>

Kindly note that the use of tablespaces in PostgreSQL is not as common/relevant as in Db2.

• Creating a table via the LIKE keyword: in PostgreSQL, the use of () is mandatory around the LIKE
clause, in Db2 it is not necessary.

PostgreSQL Db2

CREATE TABLE eqos.statssov (LIKE eqos.stats
INCLUDING ALL)

CREATE TABLE eqos.statssov LIKE
eqos.stats

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 31

PostgreSQL transition guide: supporting the decision 09/11/2021

• Default value of a table column:

PostgreSQL Db2

CREATE TABLE. . .DEFAULT <value> CREATE TABLE . . .WITH DEFAULT <value>

• Creating a table: Some keywords are not recognized by PostgreSQL, so remove them from the
Db2 DDL before migration. Example: APPEND,WITH RESTRICT ON DROP, and LONG IN, all to do
with table partitioning, are defined di�erently in PostgreSQL.

• Automatic increment of a column counter on table creation: Db2 autoincrement ([GENERATED
ALWAYS | GENERATED BY DEFAULT] AS IDENTITY) is now supported as of PostgreSQL v12. In earlier
versions, you have to use sequences.

• The serial type in PostgreSQLmakes it possible to create a sequence easily, but youmust not put
the integer type (already carried by serial) nor NOT NULL as these will lead to syntax errors.

• In Db2, the creation of a sequence requires an obligatory CREATE SEQUENCE.

Therefore, if thePostgreSQLversion is lower than 12, all Db2 autoincrementsmust be converted.
If the version is at least equal to 12, the keywords used must be checked because Db2 allows more
options.

• Unlogged table: A Db2 table declared as_NOT LOGGED INITIALLY_must be_UNLOGGED_
in PostgreSQL.

• Temporary tables: The syntax and functionality of temporary tables di�er.

Example:

• Db2 : DECLARE GLOBAL TEMPORARY TABLE tabtemp LIKE eqos.stats NOT
LOGGED

• PostgreSQL : CREATE GLOBAL TEMPORARY TABLE tabtemp (LIKE eqos.stats)

Db2 temporary tables with inter-session data sharing are done via a CREATE GLOBAL TEMPORARY
TABLE, they have no equivalence in PostgreSQL because although syntactically the keywords LOCAL
and GLOBAL are accepted, the behavior of the temporary table remains local in both cases (no sharing
of temporary data).

• Timestamp column on row updates:

These columns, frequently used in Db2, do not exist in PostgreSQL.

Example in Db2: a column with name TS_UPDATE is updated automatically as soon as the row is
modified by UPDATE/INSERT sql:

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 32

PostgreSQL transition guide: supporting the decision 09/11/2021

CREATE TABLE...
TS_UPDATE TIMESTAMP NOT NULL GENERATED ALWAYS FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP

When inserting or updating a row, Db2 automatically fills in the TS_UPDATE column. These columns
are systematically deployed in certain Db2 databases,when using PostgreSQL, this actionmust be
carried out by the application, somodify your programs accordingly.. . or do it with triggers..

• ISO timestamp formats:

Not only is the precision of timestamp formats di�erent, but the separator between date and time is
di�erent too. Be careful whenmigrating timestamps from Db2 to PostgreSQL!

PostgreSQL Db2

2014-01-31 00:00:00 2014-01-31__-__00.00.00.000000

Note that the NOT NULL DEFAULT CURRENT TIMESTAMP format tolerated in Db2 is not allowed
in PostgreSQL. Youmust use CURRENT_TIMESTAMP (also recognized by Db2).

• Materialized views:
PostgreSQL: creation via CREATE MATERIALIZED VIEW.
Db2: creation via CREATE TABLE followed by options specific to a materialized view (called
MQT in Db2). Therefore, the DDL from Db2 needs to be corrected.

• Drop table and integrity constraints: PostgreSQL : a DROP TABLE... CASCADE removes the
integrity constraints.
Db2 : a DROP TABLE is su�icient to remove the integrity constraints.

• Creating an index, schema: PostgreSQL : an index name must not be preceded by a schema
name, otherwise there is a syntax error. Db2 : it is recommended to include the schema name,
and the Db2 tool for generating DDL generates this in front of the index name. If it is omitted in
Db2, a schema with the same name as the current schema or connection authority will be used.

• Creating an index, options: Some keywords are not recognized by PostgreSQL, and should
therefore be removed from the Db2 DDL before migration. For example: cluster, allow reverse
scan, pctfree, etc.

• Assigning indexes to a dedicated tablespace:
PostgreSQL : the assignment is made during table creation for the primary key and unique
constraints. You can put an index in a dedicated tablespace when creating the index. Db2 : You
can direct all indexes related to a table into a tablespace with the INDEX IN clause, for example:

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 33

PostgreSQL transition guide: supporting the decision 09/11/2021

CREATE TABLE.. IN <name_ts_table> INDEX IN <name_ts_index>.

Or when creating the index, like in PostgreSQL.

• Page size:
PostgreSQL: only 8kB pages are allowed once compiled with the default options.
Db2: works with page sizes of 4, 8, 16 or 32kB. Modify any Db2 DDL which explicitly specifies page
sizes.

• Bu�erpool:

The Db2 notion of bu�erpool does not exist in PostgreSQL, we do not create these resources so
the Db2 DDLmust be adapted accordingly by removing all creation instructions and references
to bu�erpools in tablespaces.

• Tablespaces

Tablespace creation options di�er between Db2 and PostgreSQL, so need to be fixed.

13.2.2 DCL

• Roles vs Unix groups:
PostgreSQL : it is mandatory to use grants given to roles.
Db2 : grants are given either to roles or directly to Unix groups.

• PUBLIC rights:

The basic concept of RESTRICTIVE Db2, which eliminates so-called PUBLIC grants, does not exist
in PostgreSQL.

• GRANT ALTER TABLE:

Used in Db2, but it does not exist as such in PostgreSQL. In PostgreSQL, it is necessary to make
the account wishing to modify the table belong to a role which is the OWNER of the table.

• TRUNCATE TABLE:
PostgreSQL : a GRANT TRUNCATEmust be done to be allowed to truncate.
Db2 : a GRANT DELETE (or control) gives this privilege.

• GRANT CONNECT:

To be authorized to connect to a database, youmust:
PostgreSQL: GRANT CONNECT ON DATABASE \<name_database\>... Db2: GRANT
CONNECT ON DATABASE – do not specify the name of the database, the current database is
used by default. If we specify the name of the database, we get a syntax error.

Other syntax di�erences may also emerge.

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 34

PostgreSQL transition guide: supporting the decision 09/11/2021

• GRANTS without Db2/PostgreSQL equivalence:

Some Db2 grants, those linked to functions not present or di�erent in PostgreSQL, do not exist in
PostgreSQL. This is the case with grant load, grant use of tablespace, grant usage on workflow,
etc.

• System catalog

This information is stored in upper case in Db2, but lower case in PostgreSQL. Take this into
account when searching for information, especially in scripts that use the catalog to collect
information.

Example: search for information in tables belonging to a schema with the name IDENTITY

PostgreSQL: SELECT * FROM pg_tables WHERE schemaname = 'identity'
Db2: SELECT * FROM syscat.tables WHERE tabschema = 'IDENTITY'

13.2.3 Other considerations

• Loading utility:
A Db2 table can be loaded by import, load, ingest ou db2move.
PostgreSQL exclusively uses the copy utility, which is much less feature rich than the Db2 utilities.
Partial loading of a table is only possible since V12, with the introduction of a WHERE clause.

• Other Db2/PostgreSQL utilities:
reorg becomes vacuum
runstats becomes analyze
backup becomes pg_dump, pg_dumpall or pg_basebackup

• Double quote character:

During the migration, beware of the double quote character “: it is the default string delimiter in Db2
when exporting data, so it is found in the unloaded (export) file, surrounding each string. By default,
when loading to PostgreSQL these double quote characters will be loaded into the table if they are
present in the data file. To avoid this, files exported from Db2 should be in DEL (ASCII) mode and
imported into PostgreSQL as CSV via the WITH CSV delimiter ‘,’ QUOTE ’”’ parameters of copy.

• Transaction logs:
Db2: each database has its own logs.
PostgreSQL: this is not the case, the logs are common to databases within the same instance,
meaning that log issues will have an instance wide impact and will not be limited to a single
database.

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 35

PostgreSQL transition guide: supporting the decision 09/11/2021

• LOBs:
Db2 BLOBs can be replaced by columns in BYTEA format.
Db2 CLOBs can be replaced by columns in TEXT format. Unlike Db2, which allows embedding
LOBs in backups, PostgreSQL does not backup LOBs via pg_dumpall (pg backs up LOBs via
pg_dump). Db2 options linked to LOBs no longer apply in PostgreSQL (logged/not logged,
compact/not compact, inline length, etc.).

• Stored procedures: Written in Db2 in SQL/PL, they must be adapted to PostgreSQL (PL/pgSQL).

• Source code (programs): Modify the call methods of the driver and the use of its properties.
Change the SQL code which is specific to Db2/PostgreSQL.

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 36

PostgreSQL transition guide: supporting the decision 09/11/2021

13.3 Migration from Informix

13.3.1 Structure

Database schema (tables, indexes, constraints, etc.).

Scripts should allow the creation of di�erent databases in PostgreSQL.

It will be necessary to ensure that all objects are created respecting the PostgreSQL syntax, as well as
the recommended standards:

• Tables;
• Views;
• Triggers;
• Constraints;
• Indexes.

The following table describes some di�erences for the above objects between the Informix and Post-
greSQL DBMSs:

Objects / DBMS Informix PostgreSQL

Data type BLOB BYTEA

Data type DATETIME TIMESTAMP

Constraints
(foreign keys)

ALTER TABLE table_name ADD
CONSTRAINT (FOREIGN KEY
(column_name) REFERENCES
ref_table CONSTRAINT
constraint_name);

ALTER TABLE table_name ADD
CONSTRAINT constraint_name FOREIGN
KEY REFERENCES ref_table
(column_name);

Indexes CREATE INDEX index_name ON
table_name (column_name)
USING btree;

CREATE INDEX index_name ON
table_name USING btree(column_name);

13.3.2 Plan to followwhenmigrating databases

The following steps can be followed for a migration:

• In the source (Informix) databases, first remove all stored procedures that are not used by
applications, in order to avoid migrating processes to PostgreSQL that will never be executed;

• Create the databases;

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 37

PostgreSQL transition guide: supporting the decision 09/11/2021

• Load the data;
• Create the indexes and constraints. Adding the indexes and constraints a�er loading the data
will result in a faster execution time of the process.

13.3.3 Integrating the Hibernate framework

If an application framework tomanage the persistence of relational database objects in not being used,
use the Hibernate framework. Applications that use the Hibernate framework manage the persistence
of objects in relational databases. SQL queries are therefore not written in the code, but generated by
Hibernate.

The applications are then less dependent on a specific DBMS (with any stored procedures as an
exception). A migration from Informix to PostgreSQL will then require minimal changes to the source
code of these applications.

However, testing is required to ensure there are no regressions..

13.3.4 Risks

Some risks that can be identified:

• Interruption of the use of applications during migration, during the data loading phase from
Informix to PostgreSQL;

• A solution to reduce the execution time is to load the static data (such as reference tables) first,
in order to load only the data likely to evolve (requests, files, etc.) on the day of migration to
production. This solution should be considered if the loading time is too long and if time is saved
(this depends on the proportion of data that can be qualified as static data);

• Certain processes, which had been optimized for the Informix IDS DBMS, may become slower.

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 38

PostgreSQL transition guide: supporting the decision 09/11/2021

13.4 Migration fromMSSQL

Some open-source tools that can help facilitate the data migration are:

• https://github.com/dalibo/sqlserver2pgsql;
• http://pgloader.io/.

The PostgreSQL wiki also gives a list of such tools on https://wiki.postgresql.org/wiki/Converting_f
rom_other_Databases_to_PostgreSQL#Microso�_SQL_Server. For the migration of procedures, the
code is very di�erent andmust be rewritten.

A very di�erent approach was taken by https://babelfishpg.org/. This PostgreSQL fork by AWS speaks
the SQL Server wire protocol and TSQL, which means that applications running on SQL Server should
be able to use it with little change.

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 39

https://github.com/dalibo/sqlserver2pgsql
http://pgloader.io/
https://wiki.postgresql.org/wiki/Converting_from_other_Databases_to_PostgreSQL#Microsoft_SQL_Server
https://wiki.postgresql.org/wiki/Converting_from_other_Databases_to_PostgreSQL#Microsoft_SQL_Server
https://babelfishpg.org/

PostgreSQL transition guide: supporting the decision 09/11/2021

13.5 Some references

Some published examples of organizations deploying andmanaging PostgreSQL instances at scale:

GitLab https://about.gitlab.com/blog/2020/09/11/gitlab-pg-upgrade Data volume: > 6 TB;

OneSignal https://onesignal.com/blog/lessons-learned-from-5-years-of-scaling-postgresql 75 TB
across 40 servers;

Discourse https://blog.discourse.org/2021/04/standing-on-the-shoulders-of-a-giant-elephant Up-
grading to v13;

Meteo France http://www.postgresql.fr/temoignages:meteo_france (in French) France weather fore-
cast. Data volume: 3.5 TB;

Le Bon Coin https://medium.com/leboncoin-engineering-blog/managing-postgresql-backup-and-
replication-for-very-large-databases-61fb36e815a0 One of France most visited websites

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 40

https://about.gitlab.com/blog/2020/09/11/gitlab-pg-upgrade
https://onesignal.com/blog/lessons-learned-from-5-years-of-scaling-postgresql
https://blog.discourse.org/2021/04/standing-on-the-shoulders-of-a-giant-elephant
http://www.postgresql.fr/temoignages:meteo_france
https://medium.com/leboncoin-engineering-blog/managing-postgresql-backup-and-replication-for-very-large-databases-61fb36e815a0
https://medium.com/leboncoin-engineering-blog/managing-postgresql-backup-and-replication-for-very-large-databases-61fb36e815a0

PostgreSQL transition guide: supporting the decision 09/11/2021

13.6 Extensions and plugins for PostgreSQL

The table below shows some plugins mentioned in this document:

name function

auto_explain Explain plans in the logs

PostGIS Spatial and geographic

PGAudit Audit

pg_repack Table reorganization (bloat removal)

pg_stat_statements Statistics

pgcrypto Cryptography

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 41

PostgreSQL transition guide: supporting the decision 09/11/2021

13.7 Third-party tools for PostgreSQL

The table below shows some third-party tools mentioned in the document:

name function

Barman Backup / restore

check_postgres Monitoring

code2pg Migration tool

ora2pg Migration tool

PAF High availability

Patroni High availability

PgAdmin GUI

pgBackRest Backup / restore

pgBadger Log analysis

PgBouncer Connection pool management

pgloader Data loading

Pgpool-II Connection pool management

pgtop Statistics

pgwatch2 Monitoring

pitrery Backup / restore

repmgr High availability

temBoard Monitoring

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 42

PostgreSQL transition guide: supporting the decision 09/11/2021

14 References

PostgreSQL documentation and help:

• Manual: https://www.postgresql.org/docs/current/index.html
• Wiki: https://wiki.postgresql.org
• Mailing lists: https://www.postgresql.org/list/
• IRC general technical channel: irc://irc.libera.chat/postgresql
• Slack: https://postgres-slack.herokuapp.com/

Documentation in French:

• Manual: https://docs.postgresql.fr/current/
• Forums: https://forums.postgresql.fr/

Socle Interministériel du Logiciel Libre, PGGTIE PostgreSQL.fr 43

https://www.postgresql.org/docs/current/index.html
https://wiki.postgresql.org
https://www.postgresql.org/list/
irc://irc.libera.chat/postgresql
https://postgres-slack.herokuapp.com/
https://docs.postgresql.fr/current/
https://forums.postgresql.fr/

	Versions
	Contributors
	Introduction
	Satisfying requirements
	Use cases
	Data access
	Security requirements
	Migration cases

	Integration of PostgreSQL on technical platforms
	Technical platforms
	Processor architectures
	Operating systems
	Compatibility with virtualization/containerization

	Running PostgreSQL in the cloud
	Compatibility with storage technologies
	Compatibility with backup technologies

	Security
	User identification management
	Confidentiality guarantees and use of encryption
	Ensure traceability and logging
	Audit

	Scalability and resilience
	Clustering and replication mechanisms
	Resilience driven by the PostgreSQL engine
	Resilience driven by the storage infrastructure
	Business continuity and disaster recovery plans

	Development with PostgreSQL
	Data types
	Database schemas and structures
	Development specifics
	API and access modes
	Client interfaces
	Abstraction layer
	Connection pooling

	Stored procedures, functions, and triggers
	Foreign Data Wrappers

	Administration
	Monitoring and exploitation tools for PostgreSQL
	PgAdmin
	psql

	Monitoring tools and logs analysis
	Backup
	High-Availability
	Data migration tools to PostgreSQL

	Decision's Help
	Limits or unsupported features
	Change management
	Training
	Support
	Migration plan

	Return on investment
	Database migration cost
	Possession cost
	Control of trajectories

	Appendices
	Migration from Oracle
	Technical environment
	Software stack
	Database migration
	Criticality and backups
	Monitoring, performance improvement and supervision

	Migration from Db2
	Some DDL differences between PostgreSQL and Db2
	DCL
	Other considerations

	Migration from Informix
	Structure
	Plan to follow when migrating databases
	Integrating the Hibernate framework
	Risks

	Migration from MSSQL
	Some references
	Extensions and plugins for PostgreSQL
	Third-party tools for PostgreSQL

	References

