

Algorithm to derive shortest edit script using
Levenshtein distance algorithm

P. Prakash Maria Liju
ppml38@gmail.com

Abstract— String similarity, longest common subsequence
and shortest edit scripts are the triplets of problem that related
to each other. There are different algorithms exist to generate
edit script by solving longest common subsequence problem.
This paper proposes an algorithm that uses string similarity
problem to generate shortest edit script. For this we use the
famous Levenshtein distance algorithm, which computes a
numerical value that represents similarity between the strings
from 0 to n, where n is the length of longest input string, and
produce the shortest edit script which contains instructions of
Insert, Delete and Substitute.

Keywords—Levenshtein distance, Edit distance, String
similarity, Longest common subsequence.

I. INTRODUCTION

There are many situations where we need to find the
shortest edit distance [3] and edit script between different
strings or text content. The very common use case is during
software development to find the difference between old and
new versions of code. Here the edit script contains instructions
to insert, delete or substitute characters in source string to
convert that into the destination string.

There are different algorithms to derive this edit scripts
and one of the famous among them is Myer’s algorithm [1].
His algorithms finds the ‘difference’ between the strings by
finding their ‘Longest common subsequence’ and derive edit
script out of it.

One of the widely used application of this algorithm is
‘diff’ program used in git version control systems, which
generates edit script between source codes of different
versions.

There is another set of algorithms, that find ‘similarity’
between the strings or shortest edit distance in other words.
One of the famous among these is Levenshtein distance [2]
algorithm. This algorithm generates a numeric value that
represents the similarity between two strings, where 0
representing same string and higher positive numbers
representing non-similar strings in increasing order.

Though this algorithm is widely used in applications like
search engine query completion and recommendation engines,
Can this be used for shortest edit script generation?

In this paper, we answer this very question, and using
Levenshtein distance, we propose an algorithm, that derives
shortest edit script between two strings.

II. ALGORITHM PROPOSED

A. Explanation
Given two strings A and B, with length m and n

respectively, containing characters from a finite space S, our
algorithm will derive an edit script E of shortest possible
length, which will contain instruction to convert string A to B.

These instructions include operations of insertion, deletion
and substitution.

The unit of atomicity in this case is a character for
simplicity. This can be scaled to word, sentence, paragraph or
file content as per application requirement.

Dynamic programming approach of Levenshtein distance
algorithm uses an edit matrix, each cell of which contains
minimum edit distance of both the strings till that point. This
distance depends on their previous iteration, and the equalness
of characters in current iteration. To generate shortest edit
script of the strings we need to keep track of all possible edit
scripts and select the shortest one. In other words, the script
the was generated along the nodes of shortest path in the edit
graph from (0,0) to (m,n). As part of Levenshtein distance,
since we already maintain edit matrix, along with edit
distance, we also maintain shortest edit script till that point, in
each cell of the matrix. Then the edit script at cell (m,n) will
be the shortest edit script possible.

Suppose, we are given with 2 strings of length m and n,
we create an edit matrix of size m+1 * n+1. Variables i and j
represent its row and column, starting from 0 to m,n
respectively.

At every iteration (i,j), if the characters of strings in current
iteration matches, we simply copy the previous iteration (i-1,j-
1), else we copy the edit script of the iteration that has
minimum distance, (i-1,j) or (i,j-1), and append current edit
instruction. If the minimum distance of (i-1,j) and (i,j-1) is
equal, we copy (i-1,j-1) instead and append current edit
instruction which is ‘substitution’ here.

Example:

Let’s consider “abac” and “aabc” as the two input strings.

 a b c a
 0 1 2 3 4
a 1 0 1 2 3
a 2 1 1 2 2
a 3 2 2 2 2

Above is the Levenshtein edit matrix of the strings. Here at
cell (1,1) both the strings have same character ‘a’ at this
position, so no edit instruction is required. Whereas (2,2) is a
‘substitution’ case and (2,3) is a deletion case, as per above
explanation.

As we calculate minimum distance, we also identify the edit
instruction and we add it along with edit distance in the matrix
cell.

B. Pseudo code
function editScript(char A[1..m], char
B[1..n]):

{

// For 0<=i<=m and 0<=j<=n, D[i,j] will hold
the Levenshtein distance

// and shortest edit script between

// the first i and j characters of A, B
respectively

declare {edit_distance: integer, edit_script:
Array} D[0..m, 0..n]

set each element in D to { edit_distance: 0,
edit_script: [] }

// Source string can be transformed into
empty string

// by dropping all the characters

for j from 1 to m:

{

 D[0, m] := {

 edit_distance: j,

 edit_script: ["At position j, Delete: A[k]"
for every k in [1..j]]

 }

}
// Target string can be obtained from empty
string by adding

// every character

for i from 1 to n:

{

 D[i, 0] := {

edit_distance: i,

edit_script: ["At position i, Insert:
A[k]" for every k in [1..i]]

 }

}

// Calculate shortest edit distance of each
cell in the matrix D

// and derive edit script in parallel.

for i from 0 to n-1:

{

 for j from 0 to m-1:

 {

 if A[j] = B[i]:

 {

 // No edit required

 copy D[i][j] into D[i+1][j+1]

 }

 else:

 {

 distance_score := minimum(

 D[i, j+1] + 1, // deletion

 D[i+1, j] + 1, // insertion

 D[i, j] + 1 // substitution

)

 if edit_distance of D[i][j+1] =
edit_distance of D[i+1][j]:

 {

 // Substitution

 D[i+1][j+1] := {

 edit_distance:= distance_score,

 edit_script:= Copy edit_script of
D[i][j] and append "At position i, Substitute
A[j] with B[i]"

 }

 }

 else if edit_distance of D[i][j+1] <
edit_distance of D[i+1][j]:

 {

 // Insertion

 D[i+1][j+1] := {

 edit_distance:= distance_score,

 edit_script:= Copy edit_script of
D[i][j+1] and append "At position i, Insert
B[i]"

 }

}

 else if edit_distance of D[i][j+1] >
edit_distance of D[i+1][j]:

{

 // Deletion

 D[i+1][j+1] := {

 edit_distance:= distance_score,

 edit_script:= Copy edit_script of
D[i+1][j] and append "At position j, Delete
A[j]"

 }

 }

}

 }

}

return edit_script of D[m, n]

}

	

C. Edit script matrix
Below is how the edit script will be internally represented in
the matrix, while input strings are “aabac” and “aabc”.

Here it can be noticed that edit script is parallelly generated
while calculating the minimum edit distance. Hence making
the time complexity of this algorithm O(mn)

D. Time complexity
This algorithm aligns with the time complexity of

Levenshtein distance algorithm. With implementation using
dynamic programming approach with a single matrix of m*n
size, algorithm will read each and every cell of the matrix
calculating its minimum distance and edit script.

Calculation of minimum distance and edit script can be
executed in constant time. Hence the time complexity
becomes O(1) + O(mn) = O(mn).

E. Space complexity
Space requirement of this algorithm is equal to the size of

edit script matrix. Assuming we use minimal notation for edit
instructions (like + for addition – for deletion and ~ for
substitution), size of a single instruction becomes constant
and the total space complexity is equal to total number edit
instructions in the matrix.

In worst case, a cell will contain k number of edit
instruction, where k = max (i, j), where i, j are the row and
column of the cell in edit script matrix.
 Considering below worst case, where the minimum
edit sequence is max (m, n).

 a b c d
 0 1 2 3 4
e 1 1 2 3 4
f 2 2 2 3 4
g 3 3 3 3 4
h 4 4 4 4 4

Each cell in above matrix will contain specified number of
instructions.
Then total space complexity is,
~= [n*(2n+1)] + [n-1*(2n-2+1)]…+[1*3]+[0]
~= O(n2)
Space complexity of this algorithm is O(n2). This may be
improved.

F. Implementation
Python implementation of this algorithm can be found at

https://github.com/ppml38/shortest_edit_script

III. CONCLUSION

In this paper, we presented an algorithm, to derive the
shortest edit script from Levenshtein distance algorithm which
is a string similarity algorithm.

REFERENCES
[1] Eugene W. Myers, “An O(ND) Difference Algorithm and Its

Variations “, http://www.xmailserver.org/diff2.pdf
[2] Levenshtein, Vladimir I. (February 1966). "Binary codes capable of

correcting deletions, insertions, and reversals". Soviet Physics
Doklady. http://mi.mathnet.ru/dan31411

[3] Wagner, Robert A.; Fischer, Michael J. (1974), "The String-to-String
Correction Problem", Journal of the ACM.
https://dl.acm.org/doi/pdf/10.1145/321796.321811

[4] Hirschberg, D. S. (1975). "A linear space algorithm for computing
maximal common subsequences" (PDF). Communications of the ACM
(Submitted manuscript). http://www.ics.uci.edu/~dan/pubs/p341-
hirschberg.pdf

