{ "metadata": { "name": "interpolation-padding" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Interpolation, padding - does the padding x value matter?" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.kernel.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'.\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "import matplotlib.pylab as plt" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "import scipy.interpolate as spi" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "x = np.arange(5)\n", "# Some random numbers for the ys\n", "y = np.array([-0.16001414, 0.88690672, 0.32057716, 0.09396015, 0.54394511])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "plt.plot(x, y)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 6, "text": [ "[]" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD9CAYAAAC7iRw+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVNXeB/AvBpm3463EnKEwB7loXAxF8xLqIZSUSk3R\nMiRTs9Ls9PaWnt4TdDG1Ux0VUzTvlqJl6pOCxxuaegBvqUc9ihdkQKVIyeuR237/WEGiIMPsmVl7\nZn8/z+PzOMxm718r+bJm7bXXclMURQEREelGHdkFEBGRYzH4iYh0hsFPRKQzDH4iIp1h8BMR6QyD\nn4hIZ1QF/0svvQRPT088+uij1R4zfvx4+Pj4ICgoCAcOHFBzOSIisgFVwR8XF4fU1NRq39+wYQNO\nnjyJrKwszJ07F2PHjlVzOSIisgFVwd+9e3c0bdq02vfXrVuH2NhYAEBYWBgKCwuRn5+v5pJERKSS\nuz1PnpeXBy8vr4rXRqMRubm58PT0rPiam5ubPUsgInJZ1i68YPebu7cXVlXQK4qi+T/vv/++9BpY\nJ+tknayx/I8adg1+g8EAs9lc8To3NxcGg8GelyQiohrYNfijo6OxZMkSAEB6ejqaNGlSaZiHiIgc\nT9UY/9ChQ7F9+3YUFBTAy8sLCQkJKC4uBgCMGTMGUVFR2LBhA0wmExo0aICFCxfapGgZwsPDZZdg\nEdZpW6zTtpyhTmeoUS03Re1gkdoC3NxUj1cREemNmuzkk7tERDrD4Cci0hkGPxGRzjD4iYh0hsFP\nRKQzDH4iIp1h8BMR6QyDn4hIZxj8REQ6w+AnItIZBj8Rkc4w+ImIdIbBT0SkMwx+IiKdYfATEekM\ng9/FpKYCo0cDZWWyKyEirVK1Axdpz0cfASdPAt7ewKRJsqshIi1i8LuQffsAsxnIzAQ6dwY6dAD6\n9JFdFRFpDYd6XMiMGcBrrwEPPQQkJwOxscCpU7KrIiKt4Z67LiI/H/DzE0HfrJn4WmIiMHcu8K9/\nAQ0ayK2PiGxLTXYy+F3Ehx+KYZ65c//4mqIAI0YAN28Cy5cDbm7SyiMiG2Pw61xRkbiZu3Ej8Oij\nld+7cQPo1g0YNgx46y0p5RGRHajJTt7cdQHffQf4+98Z+gBQrx6wejUQFgaEhAC9ejm+PiLSFt7c\ndQEzZgDjx1f//sMPA998I3r9Z886ri4i0iYGv5PLzAQuXAD69bv7cb16AW+/DQwYIIZ/iEi/OMbv\n5IYPB4KDLRu/VxTR67/3XmDRIt7sJXJmvLmrUxcuiLH906eBpk0t+55r14AuXcSyDq+/bt/6iMh+\neHNXp5KSgJgYy0MfEPP5v/8eePxxICgI6N7dfvURkTapGuNPTU2Fn58ffHx8MHXq1DveLygoQJ8+\nfRAcHIz27dtj0aJFai5HtygqAubMAcaNq/33tmkDLF4MDBkC5OXZvjYi0jarh3pKS0vh6+uLzZs3\nw2AwoGPHjli+fDn8/f0rjomPj8fNmzfxySefoKCgAL6+vsjPz4e7+x8fNDjUY52vvxbj9Js2WX+O\nyZOBdeuA7duBunVtVhoROYCa7LS6x5+ZmQmTyQRvb294eHggJiYGa9eurXTMgw8+iMuXLwMALl++\njObNm1cKfbJeTVM4LTFxItCqlXWfGojIeVmdwnl5efDy8qp4bTQakZGRUemYUaNGoVevXmjVqhWu\nXLmClStXVnmu+Pj4ir+Hh4cjPDzc2rJ0ISMDKCgAoqLUncfNTQz5hIWJpR5Gj7ZNfURke2lpaUhL\nS7PJuawOfjcL5gJOnjwZwcHBSEtLw6lTpxAREYGDBw+iUaNGlY67NfipZjNmiBk599yj/lyNGomb\nvd26AYGBYjlnItKe2zvFCQkJVp/L6qEeg8EAs9lc8dpsNsNoNFY6Zvfu3XjuuecAAG3atEHr1q1x\n/Phxay9JAM6dA1JSgLg4253T1xeYPx947jkxRZSIXJvVwR8aGoqsrCxkZ2ejqKgIycnJiI6OrnSM\nn58fNm/eDADIz8/H8ePH8cgjj6irWOeSkoChQ4EmTWx73uho4KWXRPgXFdn23ESkLaoe4EpJScGE\nCRNQWlqKkSNHYuLEiUhKSgIAjBkzBgUFBYiLi0NOTg7KysowceJEDBs2rHIBnNVjsZs3xbo727aJ\nB7dsraxM/AJo3RqYOdP25yci2+GTuzqxdCmwbJlYftleCguBjh2B994TO3gRkTZJmc5JjqUowPTp\n6qdw1qRJE2DNGuB//kfs4UtErofB7yTS00VvvG9f+1+rXTtg9mxg4EDgl1/sfz0iciwGv5OYMUM8\naFXHQf/HBg0S6wDFxAAlJY65JhE5Bsf4nUBenthd68wZoHFjx123tFR8wggMBP7+d8ddl4hqxjF+\nFzdnDvD8844NfUA8ILZ8udi6ccUKx16biOyHPX6N++9/xRTOHTvEg1Yy/PQTEBEBbNkiev9EJB97\n/C4sORno0EFe6ANih6/p04FnnwUuXpRXBxHZBoNfwxw1hdMSw4aJh7uef16M/ROR82Lwa9iuXcDV\nq0BkpOxKhGnTxNDT3/4muxIiUoPBr2GOnsJZEw8PMfS0bJm44UtEzok3dzXKbBZ74mZnA3/6k+xq\nKtuzR+wFsH07EBAguxoifeLNXRc0ezYwfLj2Qh8Qa/lMmyZu9v72m+xqiKi22OPXoBs3xBTOXbsA\nHx/Z1VTv1VeB3Fyxto9WhqOI9II9fhezfDnQqZO2Qx8A/vEP4NdfgY8+kl0JEdUGg19jFMU2G6k7\nwr33At9+K/br/eEH2dUQkaUY/Brz449iw5WICNmVWObBB4GVK8XuXVlZsqshIksw+DWmfAqnBXvZ\na8bjjwMffAA88wxw5YrsaoioJry5qyE5OUBICHD2LNCwoexqakdRgJdfBi5fFp8AnOkXF5Ez4s1d\nF/Hll2K7Q2cLfUAE/axZ4pfWtGmyqyGiu2GPXyOuXxdTONPTgTZtZFdjPbMZCAsDFi0CnnxSdjVE\nros9fhfwzTdAly7OHfoA4OUlpqMOHy42jiEi7WHwa4AzTeG0xBNPAJMmiSd7r1+XXQ0R3Y7BrwHb\nt4t9bXv3ll2J7YwfD7RvD4waJX6xEZF2MPg1oLy370ozYdzcxINdR4+KPQWISDt4c1ey7GwgNFTM\nhmnQQHY1tpedDXTuLPbsDQ+XXQ2R6+DNXSf25ZfAiBGuGfoA4O0NLF0KDB0qZvwQkXzs8Ut07ZqY\nwrlnD9C6texq7GvaNGDVKrEkxX33ya6GyPmxx++kvv4a6NbN9UMfAN5+W/x3vvoqb/YSyaYq+FNT\nU+Hn5wcfHx9MnTq1ymPS0tIQEhKC9u3bI5yDvBVcbQpnTdzcgAULgMxMYM4c2dUQ6ZvVQz2lpaXw\n9fXF5s2bYTAY0LFjRyxfvhz+/v4VxxQWFqJr167YuHEjjEYjCgoKcP/991cuQKdDPVu3itA/fNi1\nZvPU5ORJsajb998DXbvKrobIeUkZ6snMzITJZIK3tzc8PDwQExODtWvXVjrmm2++wcCBA2E0GgHg\njtDXM1ecwmkJkwlYuBAYPBg4d052NUT65G7tN+bl5cHLy6vitdFoREZGRqVjsrKyUFxcjJ49e+LK\nlSt44403MHz48DvOFR8fX/H38PBwlx8SOnMG2LlTjPHr0VNPAa+8AgwaBKSliQ1diOju0tLSkJaW\nZpNzWR38bhZ0VYuLi7F//35s2bIF169fR5cuXdC5c2f43Lan4K3BrwezZomNS1x1Cqcl/vpXYO9e\n4I03xMbyRHR3t3eKExISrD6X1UM9BoMB5lsmZpvN5oohnXJeXl548sknUa9ePTRv3hw9evTAwYMH\nrS7WFVy9KlaufPVV2ZXIVacOsGQJsG0bMH++7GqI9MXq4A8NDUVWVhays7NRVFSE5ORkREdHVzrm\n6aefxs6dO1FaWorr168jIyMDAQEBqot2ZkuXAj16iAeb9K5xY3GT9913xWwfInIMq4d63N3dkZiY\niMjISJSWlmLkyJHw9/dHUlISAGDMmDHw8/NDnz59EBgYiDp16mDUqFG6Dv7yKZwc2viDv79Y02fQ\nIDH006KF7IqIXB+f3HWgTZuAt94CDh7U32yemrz3nrjhvWkT4OEhuxoi7eOTu05Cr1M4LZGQANSr\nJ57wJSL7Yo/fQU6eFDtsnT0L1K8vuxptunQJ6NgRiI8HXnhBdjVE2qYmO60e46famTULGDmSoX83\nTZuKm729egHt2gEhIbIrInJN7PE7wJUrYhbPgQPAQw/Jrkb7kpPFTJ+9e4HmzWVXQ6RNHOPXuCVL\nRC+WoW+ZIUPELJ+YGLElJRHZFnv8dlZWBgQEAPPmAd27y67GeZSUAH36AI89BlSz8CuRbikKUKcO\ne/yatWmTmK3SrZvsSpyLu7vYrjE5GVi5UnY1RNqhKMDEierOweC3M07htN799wOrVwOvvQb8+9+y\nqyGSrzz0N25Udx4Gvx1lZYltFYcOlV2J8+rQAfj8c+DZZ4HCQtnVEMlza+hv3qzuXAx+O0pMBEaN\n4h6zag0fDvTtCzz/vLhnQqQ3t4e+2tluvLlrJ5cviymchw4Bty1aSlYoLgZ69wbCw4EPPpBdDZHj\nVBf6nM6pQYsXAxERDH1b8fAAVq0Su3fdttEbkcuydU+/HHv8dlBWBvj5iZDivrK2lZEB9OsH/Pij\naGMiV1VT6LPHrzEbNwKNGolNxcm2wsKATz4RN3svX5ZdDZF92KunX449fjvo21c8dRobK7sS1zVm\nDPDzz8B334ndvIhchaWhryY7Gfw2dvy42GHr7FnO5rGnmzfFjd5+/cT+vUSuoDY9fa7OqSGJicDo\n0Qx9e6tbV/T2O3YUc/379pVdEZE69h7euRV7/Db0229A69bA4cOAwSC7Gn3YuRMYMADYvRswmWRX\nQ2Qda0KfN3c1YtEiIDKSoe9I3boB778vbvZevSq7GqLac2RPvxx7/DZSVga0bQssXSp22iLHURQg\nLg64cUMs7MZ1kchZqAl99vg1ICVF7CDVubPsSvTHzQ2YPRs4dQr47DPZ1RBZRkZPvxxv7toIV+GU\nq149sZJnWBgQHAz8+c+yKyKqnszQBzjUYxPHjgE9e4opnHXryq5G37ZtE6uhpqeLtZKItMZWoc+h\nHskSE8UDRQx9+Xr2BP73f8VMnxs3ZFdDVJnsnn459vhVKiwUUziPHgUefFB2NQSIH65hw8TCbosX\nc/iNtMHmSyuzxy/PggVAVBRDX0vc3ICvvgIOHhSfxohk00pPvxx7/CqUlgI+PsDy5eKmImnL6dNi\nau2qVWIZDSIZ7La0Mnv8cqxfDzzwAENfqx55BFiyRCyYl5sruxrSI6319MupCv7U1FT4+fnBx8cH\nU6dOrfa4PXv2wN3dHatXr1ZzOc0pn8JJ2hUZCYwbBwwcKBZ2I3IUrYY+oGKop7S0FL6+vti8eTMM\nBgM6duyI5cuXw9/f/47jIiIiUL9+fcTFxWHgwIGVC3DSoZ4jR8Rc8bNngXvvlV0N3Y2iAIMGAc2a\nAfPmya6G9MARoS9lqCczMxMmkwne3t7w8PBATEwM1laxJ97MmTMxaNAgPPDAA9ZeSpNmzgReeYWh\n7wzc3MQ6Srt2AXPnyq6GXJ2We/rlrH5yNy8vD15eXhWvjUYjMjIy7jhm7dq12Lp1K/bs2QO3aubV\nxcfHV/w9PDwc4eHh1pblEJcuAcnJwH/+I7sSslSjRsCaNWJRt0cf5XpKZB/2DP20tDSkpaXZ5FxW\nB391IX6rCRMmYMqUKRUfSar7WHJr8DuD+fOB/v0BT0/ZlVBttG0r/t899xywdy/QsqXsisiV2Lun\nf3unOCEhwepzWR38BoMBZrO54rXZbIbRaKx0zL59+xATEwMAKCgoQEpKCjw8PBAdHW3tZaUrLRVz\nw1etkl0JWaN/f2DfPhH+W7ZwqI5swxmGd25l9c3dkpIS+Pr6YsuWLWjVqhU6depU5c3dcnFxcejf\nvz8GDBhQuQAnu7m7Zg0wbZrY+IOcU1kZ8PTTwMMP8wEvUk9W6Eu5uevu7o7ExERERkYiICAAQ4YM\ngb+/P5KSkpCUlGTtaTWPUzidX506wLJlwD//KW76ElnL2Xr65fjkbi0cPgz06QNkZ4t1YMi5HTki\nNmxPSQFCQ2VXQ85GdujzyV0HmTkTGDuWoe8q2rUD5swRD3f98ovsasiZyA59tdjjt9Cvv4rNvI8f\nB1q0kF0N2dLEiUBGhhj6cefWRFQDrYQ+e/wOMH++uCHI0Hc9H30kPsW9847sSkjrtBL6arHHb4GS\nEqBNG7G132OPya6G7OHiRTHO//HHYgcvottpLfTZ47ezdesALy+Gvitr1gz4/nsxY+vgQdnVkNZo\nLfTVYvBbgFM49SEoCJg+XWzbePGi7GpIK1wt9AEO9dTo4EHgqaeAM2c4m0cv/vIXsZXm+vXAPffI\nroZk0nLoc6jHjmbOBF59laGvJ9OmibX7/+//ZFdCMmk59NVij/8uCgrE1oonToidtkg/fvlF3Oz9\n/HMxz5/0xRlCX012ctbyXXz1FfDsswx9PXrgAeC774C+fcWSzhERYl1/cn3OEPpqscdfjZISoHVr\nMaMnJER2NSRLSgowYYJYgjshAejZU3ZFZE/OFPoc47eDNWtE8DP09a1vX7Gmz6hRwOjRYm0fG+2F\nQRrjTKGvFoO/GpzCSeXc3YHhw4Fjx4C4OODll0XPf8cO2ZWRregp9AEO9VTpwAGxPMPp01y7he5U\nUgIsXQp8+KH4VJiQILZ0JOfkrKHPoR4bmzFDTOFk6FNV3N1Fz//4ceD554EXXxQ3f7k5j/Nx1tBX\niz3+2/z8M+DrC2RlAfffL7sacgbFxcDixWKxN19f8Qmgc2fZVVFNnD302eO3oXnzxLxthj5ZysND\njPufOCH+7QwZIm4KZ2bKroyq4+yhrxZ7/LcoLga8vYENG8S6LUTWuHkTWLgQmDwZePRRID4e6NhR\ndlVUzlVCnz1+G1m9Wjypy9AnNerWBV55RQwXPvWUWPStXz9g3z7ZlZGrhL5aDP5bcAon2VLdumKS\nQFaW2Kv56aeB6Ghg/37ZlekTQ/8PDP7f7d0L5OaKH0wiW7rvPuD114GTJ4E//xno3x945hngp59k\nV6YfDP3KGPy/mzkTeO01TuEk+7nvPvGJ8uRJ8QBYVJQYBjp0SHZlro2hfyfe3AWQnw/4+QGnTomd\nmIgc4fp1IClJLAPdtSvw/vviZjDZjiuHPm/uqjR3LjB4MEOfHKt+feDNN0WHo0sX8RDY4MHAv/8t\nuzLX4Mqhr5bue/xFRWIK5z//CbRvL60MIly7Bnz5JfD3v4vF4N5/HwgIkF2Vc9JD6LPHr8J33wH+\n/gx9kq9BA+Dtt8UngA4dxH2AoUPF4nBkOT2Evlq6D35O4SStadgQeOcdcRM4MBB44gmxJtDx47Ir\n0z6GvmV0HfyZmcCFC+LhGiKtadRIhNipU0C7dkD37mJ56BMnZFemTQx9y6kO/tTUVPj5+cHHxwdT\np0694/2vv/4aQUFBCAwMRNeuXXFIQ3PXZs4U86vvuUd2JUTVa9QImDRJfALw9RUzgGJjxWsSGPq1\npKhQUlKitGnTRjlz5oxSVFSkBAUFKUePHq10zO7du5XCwkJFURQlJSVFCQsLq/S+yhKsdv68ojRp\noigXL0q5PJHVCgsVJSFBUZo3V5QRIxTl5EnZFclVVqYo77yjKMHBilJQILsax1GTnap6/JmZmTCZ\nTPD29oaHhwdiYmKwdu3aSsd06dIFjRs3BgCEhYUhNzdXzSVtJikJiIkBmjaVXQlR7TRuDPztb6LH\n//DDQFgY8NJLYuMgvWFP3zqqnlPNy8uDl5dXxWuj0YiMjIxqj58/fz6ioqLu+Hp8fHzF38PDwxEe\nHq6mrBoVFQFz5gBbttj1MkR21aSJWPnzjTeAL74QK4A++yzw3ntiirKr01vop6WlIc1GGz6rCn43\nNzeLj922bRsWLFiAXbt23fHercHvCKtWiembnCNNrqBpU+CDD4AJE4DPPwcee0zsC/DXv4pPBK5I\nb6EP3NkpTkhIsPpcqoZ6DAYDzGZzxWuz2Qyj0XjHcYcOHcKoUaOwbt06NNXA2AqncJIratZM7AJ2\n4oTYSKhDB7E8dE6O7MpsS4+hb2uqgj80NBRZWVnIzs5GUVERkpOTEX3b8pY5OTkYMGAAli1bBpPJ\npKpYW8jIAAoKxAJZRK6oeXOxCczx42I4KCRELA+tkdtrqjD0bUNV8Lu7uyMxMRGRkZEICAjAkCFD\n4O/vj6SkJCQlJQEAPvjgA1y6dAljx45FSEgIOnXqZJPCrTVjBqdwkj7cfz8wZQrwn/+Ih8ICA8W/\n/bw82ZVZh6FvO7paq+fcOTG2f/q06AkR6cnPPwOffgosWCCeBH73XaBVK9lVWYahfyeu1WOhpCSx\n9glDn/SoRQsR/EePig3i27cXM4LOn5dd2d0x9G1PN8F/86YI/tdfl10JkVyensBnn4lfAHXqiOUg\n3nxTLF+iNQx9+9BN8K9cKTZR9/eXXQmRNrRsKeb/HzkClJWJ6c1vvSU2JtIChr796CL4FQWYPp1T\nOImq8uCD4ufj8GHxcKO/v1ge+uef5dXE0LcvXQT/v/4FFBYCffvKroRIuwwGsXDhoUNiW0g/P7E8\ndEGBY+tg6NufLoJ/xgxg3DgxnklEd2c0ArNmAQcPAleuiBVBJ050zC8Ahr5juHwU5uaKbRVHjJBd\nCZFz8fISW0EeOABcuiR+AUyaBPz6q32ux9B3HJcP/jlzxJzl3xcIJaJaeugh8XO0f7/o9bdtKxaC\nu3jRdtdg6DuWSwf/f/8LzJvHKZxEtvDww8DcucDevWLqZ9u2YnnoS5fUnZeh73guHfwrVoiFqnx9\nZVdC5Dpatwa++kpsXZqbC/j4iOWhCwtrfy6GvhwuG/yKwlU4iezpkUfE8g/p6UB2NmAyieWhf/vN\nsu9n6MvjssG/axdw7RoQGSm7EiLXZjIBixaJadOnTonXH30EXL5c/fcw9OVy2eDnFE4ix/LxARYv\nFp2u48fFL4DJk8WU0Fsx9OVzyVg0m8W2irGxsish0p+2bYGlS4EdO8RyEG3aiOWhr15l6GuFSy7L\nPGmSePLwH/+w6WmJyArHjomx/61bgS5dgLNnGfq2oCY7XS74b9wQ08527xYfNYlIG44cEYsljh/P\n0LcFBv8tFiwAVq8GfvjBZqckItIcbsTyO07hJCKqmUsF/48/ig1XIiJkV0JEpF0uFfzlUzjd3GRX\nQkSkXS4zxp+TA4SEiBkDDRvaoDAiIg3jGD/E8rGxsQx9IqKauESP//p1MYUzPV08LEJE5Op03+P/\n5hvxYAhDn4ioZk4f/JzCSURUO04f/Nu3AyUlQO/esishInIOTh/85b19TuEkIrKMU9/czc4GQkPF\nFM4GDWxbFxGRlun25u6XXwIjRjD0iYhqQ1Xwp6amws/PDz4+Ppg6dWqVx4wfPx4+Pj4ICgrCgQMH\n1FyukmvXxIJsr71ms1MSEemC1cFfWlqK119/HampqTh69CiWL1+OY8eOVTpmw4YNOHnyJLKysjB3\n7lyMHTtWdcHlli0DunUTGz8TEZHlrA7+zMxMmEwmeHt7w8PDAzExMVi7dm2lY9atW4fY37fBCgsL\nQ2FhIfLz89VVDE7hJCJSw93ab8zLy4OXl1fFa6PRiIyMjBqPyc3NhaenZ6Xj4uPjK/4eHh6O8PDw\nu15761Yxi6dnT2urJyJyLmlpaUhLS7PJuawOfjcL50/efte5qu+7NfgtwSmcRKQ3t3eKExISrD6X\n1cFvMBhgNpsrXpvNZhiNxrsek5ubC4PBYO0lAQCnTwO7dollGoiIqPasHuMPDQ1FVlYWsrOzUVRU\nhOTkZERHR1c6Jjo6GkuWLAEApKeno0mTJncM89TWrFnASy9xCicRkbWs7vG7u7sjMTERkZGRKC0t\nxciRI+Hv74+kpCQAwJgxYxAVFYUNGzbAZDKhQYMGWLhwoapir14FFi0C9u1TdRoiIl1zqid3Z88G\nNm0Sm6kTEemZmid3re7xO1r5FM7Zs2VXQkTk3JxmyYbNm4F77wWeeEJ2JUREzs1pgp9TOImIbMMp\nxvhPngQef1yswlmvnoMKIyLSMJdfnXPWLGDkSIY+EZEtaL7Hf+UK4O0NHDgAPPSQ4+oiItIyl+7x\nL1kC9OrF0CcishVNT+csKwNmzgTmzZNdCRGR69B0j3/TJjGu362b7EqIiFyHpoOfUziJiGxPszd3\ns7KArl2BnBzgvvskFEZEpGEueXM3MREYNYqhT0Rka5rs8V++LKZwHjoE3LbEPxERwQV7/IsXAxER\nDH0iInvQXI+/rAzw8wMWLhRj/EREdCeX6vFv3Ag0aiTW5iEiItvTXPBzCicRkX1paqjn+HGgRw+x\nCidn8xARVc9lhnpmzgRGj2boExHZk2Z6/L/9BrRuDRw+DBgMMisiItI+l+jxL1wIREYy9ImI7E0T\nPf6SEgVt2wLLlgFdusishojIOTh9jz8lBWjWDOjcWXYlRESuTxPBzymcRESOo4ng/+UXYPBg2VUQ\nEemDJsb4y8oU9vaJiGrB6cf4GfpERI6jieB3BmlpabJLsAjrtC3WaVvOUKcz1KiW1cF/8eJFRERE\noG3btnjyySdRWFh4xzFmsxk9e/ZEu3bt0L59e8yYMUNVsTI5yz8G1mlbrNO2nKFOZ6hRLauDf8qU\nKYiIiMCJEyfQu3dvTJky5Y5jPDw88MUXX+DIkSNIT0/HrFmzcOzYMVUFExGROlYH/7p16xAbGwsA\niI2NxZo1a+44pmXLlggODgYANGzYEP7+/jh37py1lyQiIhuwelZP06ZNcenSJQCAoiho1qxZxeuq\nZGdn44knnsCRI0fQsGHDPwrgnV0iIqtYO6vH/W5vRkRE4MKFC3d8/eOPP6702s3N7a4BfvXqVQwa\nNAjTp0+vFPqA9YUTEZF17hr8mzZtqvY9T09PXLhwAS1btsT58+fRokWLKo8rLi7GwIED8cILL+CZ\nZ55RVy0REalm9Rh/dHQ0Fi9eDABYvHhxlaGuKApGjhyJgIAATJgwwfoqiYjIZqwe47948SIGDx6M\nnJwceHslH8A1AAAEpklEQVR7Y+XKlWjSpAnOnTuHUaNGYf369di5cyd69OiBwMDAiqGgTz75BH36\n9LHpfwQREdWC4kApKSmKr6+vYjKZlClTplR5zLhx4xSTyaQEBgYq+/fvd2R5FWqqc9u2bcqf/vQn\nJTg4WAkODlY+/PBDh9cYFxentGjRQmnfvn21x2ihLWuqUwttmZOTo4SHhysBAQFKu3btlOnTp1d5\nnOz2tKROLbTnjRs3lE6dOilBQUGKv7+/8u6771Z5nOz2tKROLbSnoihKSUmJEhwcrPTr16/K92vb\nlg4L/pKSEqVNmzbKmTNnlKKiIiUoKEg5evRopWPWr1+v9O3bV1EURUlPT1fCwsIcVV6t6ty2bZvS\nv39/h9d2qx07dij79++vNlC10JaKUnOdWmjL8+fPKwcOHFAURVGuXLmitG3bVpP/Ni2pUwvtqSiK\ncu3aNUVRFKW4uFgJCwtTfvzxx0rva6E9FaXmOrXSnp999pkybNiwKmuxpi0dtmRDZmYmTCYTvL29\n4eHhgZiYGKxdu7bSMbc+GxAWFobCwkLk5+c7qkSL6wTkz0bq3r07mjZtWu37WmhLoOY6Afltacnz\nJlpoT0ufi5HdngBQv359AEBRURFKS0vRrFmzSu9roT0tqROQ3565ubnYsGEDXn755SprsaYtHRb8\neXl58PLyqnhtNBqRl5dX4zG5ubmOKrHaGm6v083NDbt370ZQUBCioqJw9OhRh9ZoCS20pSW01pbZ\n2dk4cOAAwsLCKn1da+1ZXZ1aac+ysjIEBwfD09MTPXv2REBAQKX3tdKeNdWphfZ888038emnn6JO\nnarj2pq2dFjwW/qg1u2/0Rz9gJcl1+vQoQPMZjMOHjyIcePGaXaaquy2tISW2vJuz5sA2mnPu9Wp\nlfasU6cOfvrpJ+Tm5mLHjh1Vrn+jhfasqU7Z7fnDDz+gRYsWCAkJuesnj9q2pcOC32AwwGw2V7w2\nm80wGo13PSY3NxcGB+++bkmdjRo1qviI2LdvXxQXF+PixYsOrbMmWmhLS2ilLWt63kQr7VlTnVpp\nz3KNGzfGU089hb1791b6ulbas1x1dcpuz927d2PdunVo3bo1hg4diq1bt+LFF1+sdIw1bemw4A8N\nDUVWVhays7NRVFSE5ORkREdHVzomOjoaS5YsAQCkp6ejSZMm8PT0dFSJFteZn59f8Rs2MzOzYskK\nLdFCW1pCC22pWPC8iRba05I6tdCeBQUFFav13rhxA5s2bUJISEilY7TQnpbUKbs9J0+eDLPZjDNn\nzmDFihXo1atXRbuVs6Yt7/rkri25u7sjMTERkZGRKC0txciRI+Hv74+kpCQAwJgxYxAVFYUNGzbA\nZDKhQYMGWLhwoaPKq1Wd3377LWbPng13d3fUr18fK1ascHidQ4cOxfbt21FQUAAvLy8kJCSguLi4\nokYttKUldWqhLXft2oVly5YhMDCw4gd/8uTJyMnJqahTC+1pSZ1aaM/z588jNjYWZWVlKCsrw/Dh\nw9G7d2/N/axbUqcW2vNW5UM4attS+taLRETkWNyBi4hIZxj8REQ6w+AnItIZBj8Rkc4w+ImIdIbB\nT0SkM/8PX/rNTdr8pcgAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we try a padding x value at -1, so 1 unit away from the first real value of x == 0" ] }, { "cell_type": "code", "collapsed": false, "input": [ "padded_x = np.r_[-1, x]\n", "padded_y = np.r_[y[0], y]\n", "interp = spi.interp1d(padded_x, padded_y, 'cubic')\n", "interped = interp([-0.1, 0.5])\n", "interped" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 7, "text": [ "array([-0.28503175, 0.4983204 ])" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we try and padding x value of -0.1, much closer to the first real value of 0. We use the same padding value of y. The interpolated value for 0.5 is different in this case:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "padded_x_close = np.r_[-0.1, x]\n", "interp_closer = spi.interp1d(padded_x_close, padded_y, 'cubic')\n", "interped_closer = interp_closer([-0.1, 0.5])\n", "interped_closer" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 8, "text": [ "array([-0.16001414, 0.32943714])" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see why by plotting the full interpolated time courses:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "fine_time_short = np.linspace(-0.1, 4)\n", "fine_time_long = np.linspace(-1, 4)\n", "plt.plot(fine_time_long, interp(fine_time_long), 'r:', label='Distant padding')\n", "plt.plot(padded_x, padded_y, 'go', fillstyle='none') # so we can see the +'s below\n", "plt.plot(fine_time_short, interp_closer(fine_time_short), 'b:', label='Close padding')\n", "plt.plot(padded_x_close, padded_y, 'k+')\n", "plt.xlim([-1.2, 4.2])\n", "plt.legend()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 9, "text": [ "" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD9CAYAAABHnDf0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX++PHXsLilKLiAAoqKCrhyr2VqGuoFzZRscyvD\nrbKrpf1umVrmaJp689tNr9W1mxldzdQWd1FTkbTcyjS3RAkBEVIBN1RgOL8/Do5sg8AMc2Z5Px+P\neThnzodz3iPDm8PnfD7vj05RFAUhhBAOxUXrAIQQQlieJHchhHBAktyFEMIBSXIXQggHJMldCCEc\nkCR3IYRwQGYl99GjR+Pt7U379u1NtnnllVdo1aoVHTt25PDhw+acTgghRDmZldxHjRpFTEyMyf2b\nN2/mzJkzxMfH88knn/DSSy+ZczohhBDlZFZy79GjB56enib3r1+/nqioKAC6dOlCVlYW6enp5pxS\nCCFEObhV5cHPnz+Pv7+/cdvPz4+UlBS8vb2LtNPpdFUZhhBCOCxTRQaq/IZq8RObSuSKopT7MWPG\njAq1d5SHvG/nesj7dq5HZd53Wao0ufv6+pKcnGzcTklJwdfXtypPKYQQgipO7pGRkXzxxRcA7Nu3\nj3r16pXokhFCCGF5ZvW5Dxs2jN27d3Pp0iX8/f2ZOXMmubm5ALz44ov079+fzZs3ExgYyH333cey\nZcssEnRYWJhFjmNv5H07F3nfzsXS71un3Kvjxgp0Ot09+4+EEEIUVVburNLRMkII07y8vMjMzNQ6\nDGEHPD09ycjIqNDXyJW7EBqRz70oL1OflbI+Q1JbRgghHJAkd+EQ5AJYiKIkuQu7dOPG3eebN0NB\nlQsANm2CVausH5MQtkSSu7BZcefieGvnW4z8YCRv7XyLuHNxAJw9C5GRd9uFhcFHH93dbtYMWrS4\nu33sGBSM0BUW9tJLLzF79mytw6hyLi4uJCQklLrv888/p0ePHsbtOnXqkJiYaKXITJPkLmxS3Lk4\ntp7dyuzeswnICmB279lsPbuVuHNxtGwJX355t22tWlC79t3tdu3g/vvvbi9YoCZ4UTEBAQHUqlUL\nDw8PPD096d69O0uWLClyA+/jjz/mrbfeKtexdu7cabHYykq2Wrt27RoBAQFahyHJXdimbWe3Maf3\nHON2Sgp0uT6H7Z9OhcREjBOdly2DixfLPNbnn0NoqPpc+ubLT6fTsXHjRq5evUpSUhJTpkxh/vz5\njBkzplLHsvTIIBlpVDZJ7sImpRxNQa/Xo9frmTlzJvPm6fn4Yz3J2TXAy+tuw8uXwWBQn+flwauv\nws2bJo/77rvwySdVHLwDqlOnDgMHDmTVqlVER0dz4sQJAEaOHMn06dMBuHTpEgMGDMDT05P69evT\ns2dPFEVhxIgRJCUlMXDgQOrUqcOCBQsAePrpp2ncuDH16tXj4YcfNh7zznHHjx/PgAED8PDw4MEH\nHzReqffs2ROAjh07UqdOHdasWVMi3s8//5zu3bvz8ssvU69ePYKDg4v85bBs2TJCQkLw8PCgZcuW\nfFLsQ/Hee+/RpEkT/Pz8+Oyzz4rsu3z5MpGRkdStW5cuXbpw9uzZIvsL/1VR1vsA2LZtG23atKFe\nvXqMHz+ehx9+mKVLl1bgO1MGxQbYSBjChry54031yZdfKjO6djW+/tbOt0x/0a1bihIdrSj5+Sab\nXLmiKBkZlorSPLb+uQ8ICFB27NhR4vWmTZsq//nPfxRFUZSRI0cq06dPVxRFUaZMmaKMGzdOycvL\nU/Ly8pQ9e/aUeaxly5Yp169fV3JycpRJkyYpnTp1Mu6LiopS6tevrxw8eFDJy8tTnnnmGWXo0KHG\n/TqdTjl79qzJ2JctW6a4ubkpH3zwgZKXl6esWrVKqVu3rpJR8M3ftGmTkpCQoCiKouzevVupVauW\n8ssvvyiKoihbtmxRvL29lePHjys3btxQhg0bVuR8Q4YMUYYMGaJkZ2crx44dU3x9fZUePXqUGltZ\n7+PixYuKh4eH8t133ykGg0FZuHCh4u7urixdurTE+zH1WSnrMyRX7sL2KAoRLSN4bcMsJsY9QX7P\nMACm7ZhGeItw019XvTo89xzcKSsdHV3iMt3DA+6sL5OeDrdvV0H8lqLXqw9LbVtIkyZNSp0tWa1a\nNS5cuEBiYiKurq507969zOOMHDmS++67D3d3d2bMmMGRI0e4du0aoHbjPPHEE3Tu3BlXV1eeeeYZ\nfv311wrF2ahRIyZOnIirqyuDBw+mTZs2bNq0CYD+/fvTvHlzQP1LICIigh9++AGA1atXM3r0aEJC\nQqhVqxYzZ840HtNgMPDtt98ya9YsatasSdu2bYmKijLZRVTW+9i8eTPt2rVj0KBBuLi48Morr+Dj\n41Oh91gWKT8gbIuiwMCB9Jw/n9ttevHxgXVcqZ/K9F3T6RfYj57Nepb/WH37QkGyKM3s2dCnDwwa\nZIG4q0LxxGzutoWkpKTgVahr7E5ie/3119Hr9URERADwwgsv8MYbb5R6jPz8fKZNm8bXX3/NxYsX\ncXFRrzMvXbpEnTp1AIpUkK1ZsybXr1+vUJzFy4s3a9aMCxcuALBlyxZmzpxJfHw8+fn5ZGdn06FD\nBwAuXLjA/YXuyDdt2tT4/OLFi+Tl5RVZhKjw/tKYeh+pqan4+fkVaVt82xyS3IVt0eng3/+GgADC\ndTrC3wEYXLlj+fioD4DMTDh4EAoSD8DCheAif7tWyMGDB0lNTeWhhx4qsa927dosWLCABQsWcPz4\ncXr37s0DDzxAr169SizSs2LFCtavX8+OHTto1qwZWVlZeHl5WfQm6fnz54tsnzt3jscee4zbt2/z\n5JNPsnz5ch577DFcXV15/PHHjedu3LgxSUlJxq8r/Lxhw4a4ubmRlJREmzZtSuyviCZNmrBhwwbj\ntqIopKSkVOpYpZGPtrAN2dmQnw/AHzTn0M8WXnoxJQX27y/yUuHEHh9v2dM5ijsJ7+rVq2zcuJFh\nw4YxYsQI2rZtW2Q/wMaNGzlz5gyKouDh4YGrq6vxitzb27vIjcfr169TvXp1vLy8uHHjBtOmTSv1\nvKYUP15p/vzzTxYtWkRubi5r1qzh1KlT9O/fn5ycHHJycmjQoAEuLi5s2bKFbdu2Gb9u8ODBfP75\n55w8eZLs7Owi3TKurq488cQT6PV6bt68yYkTJ4iOjr7n/19p+vfvz2+//ca6devIy8vjww8/JC0t\nrcz3VBGS3IVtePNNWLkSgDNn1Itsi2rfHgpGdRSXkwOjRqkDb0RRAwcOxMPDg6ZNmzJ37lz+8Y9/\nFFmXQafTGa/Kz5w5Q3h4OHXq1KFbt27G0R8AU6dOZfbs2Xh6evL+++/z3HPP0axZM3x9fWnXrh1d\nu3YtcnVf+LiFX7tDr9cTFRWFp6cnX3/9damxd+nShfj4eBo2bMj06dP55ptv8PT0pE6dOixatIjB\ngwfj5eXFypUreeyxx4xf169fPyZNmkTv3r1p3bo1ffr0KXLuxYsXc/36dXx8fBg9ejSjR48uEXt5\n3keDBg1Ys2YNkydPpkGDBpw8eZLOnTtTvXr1e3xXysfsqpAxMTFMmjQJg8HA2LFjS/SxXbp0iWef\nfZa0tDTy8vJ47bXXGDlyZNEgpDqeyM6GGjWs00/y008QEwOFrsgU5e59WGuRz33V+fzzz1m6dKnx\nJqk9yM/Px9/fny+//NL4S/EOq1eFNBgMTJgwgZiYGE6cOMHKlSs5efJkkTaLFy8mNDSUX3/9ldjY\nWP7xj3+Ql5dnzmmFo7h5Ux2yAlCrFleuuVhnklFwMDzySJGX7iR2g0H9PSOENWzbto2srCxu377N\nu+++C8CDDz5okWObldwPHDhAYGAgAQEBuLu7M3ToUNatW1ekTePGjbl69Sqg9tvVr18fNze5jyuA\njRvhvfeMm5MnwzffWOG89eqBiR+g999X7+cK+1Zad4gt+umnnwgMDKRhw4Zs2rSJtWvX2ka3zNdf\nf83WrVv573//C8Dy5cvZv38//y7005Gfn0/v3r05ffo0165dY/Xq1TxS4qpJx4wZM4zbYWFhTruO\notMp1B9iMKibVv3dP28eNGmijo8Hbt2CatWs0zsk3TKivO58VmJjY4mNjTW+PnPmzKpZZq88vxnf\nffddOnXqRGxsLGfPniU8PJwjR44Yx7Leoa+iMbnCBhXu4C70GXJ11SCW4cPVK/kCNWpoEIMQ5VT8\nwrfwSJ7izLo+8fX1JTk52bidnJxcYhD+jz/+yNNPPw1Ay5Ytad68Ob///rs5pxX2btIktQh7gZ07\nYdcujWJp2lSdtlrM2bMweLAUGhP2y6zk3rlzZ+Lj40lMTCQnJ4dVq1YRWbjQNhAUFMT3338PQHp6\nOr///jstChfbFs5n8mToeXemqU5nA5OJrl5Vs3lB0bHmzeGNN6w/gkYISzF7KOSWLVuMQyHHjBnD\n1KlTWbJkCQAvvvgily5dYtSoUSQlJZGfn8/UqVMZPnx40SCk71FoTVEgNlZd+cNKGV0+96K8KjMU\n0uzkbgnyIXcSH3wAI0ZA/fqAujqSi4tGfe3llJcHn34Kzz9v+Tjlcy/Ky+rj3IUot/x8NVPWrGl8\n6Ztv4JVXNIzJlLVroaBGuIsLnD8PFaxZ5RT0ej0jRozQOoxKCwgIYMeOHaXui42NLVIcrF27dsTF\nxVkrNIuQ5C6sw8UFXntNXROvwJAhMHeuhjGZ0qIFtG4NqGG/8w7UratxTBr58ssv6dy5M3Xq1KFJ\nkyb079+fvXv3AuUbLWfLKjIW/tixY8ZFQuyFJHdR9UysdanTlTpQRXsdOkDHjiVeLpiL5zTef/99\nXn31Vd566y3+/PNPkpOTGT9+vLGSoXQp2TZJ7qJqZWbC0KFqB3uBvDy1RpjN54YbN4xjNBUF/vY3\nk7+nHM6VK1eYMWMGH330EYMGDaJmzZq4urry6KOPMm/evFK/Zv369bRt2xZPT0969erFqVOnjPvm\nz5+Pn58fHh4eBAUFGZe8UxSFefPmERgYSIMGDRgyZAiZmZmlHj82NhY/Pz/mzp1Lw4YNad68OV8W\nWil906ZNhIaGUrduXZo2bVpiDPj//vc/mjVrRoMGDYxT/e+4efMmI0eOxMvLi7Zt23KwWOW6wgt8\n6/V6Bg8eTFRUFB4eHrRr146ff/7Z2PaXX34hNDQUDw8PBg8ezJAhQ4xLEVqTJHdRtTw91VK77u7G\nly5dgp9/toNhhmlpxnoIOh3Exak9Ns7gp59+4tatWzz++OPlan/69GmGDx/OokWLuHTpEv3792fg\nwIHk5uby+++/8+GHH3Lo0CGuXr3Ktm3bCAgIAGDRokWsX7+euLg4Lly4gKenJ+PHjzd5nvT0dC5f\nvkxqairR0dG88MILnD59GlDryS9fvpwrV66wadMmPv74Y2M5lBMnTvD3v/+dFStWkJqayuXLl4vU\nTp85cyZ//PEHCQkJbN26lejoaJOVHgE2bNjAsGHDuHLlCpGRkUyYMAGAnJwcHn/8cUaPHk1mZibD\nhg1j7dq12nRhmVyAz4psJAwhrOpen/sZM9SHpbYrYvny5YqPj8894puhPPvss4qiKMqsWbOUIUOG\nGPfl5+crvr6+yu7du5X4+HilUaNGyvfff6/k5OQUOUZwcHCRtVVTU1MVd3d3xWAwlDjfrl27FDc3\nNyU7O9v42uDBg5V33nmn1PgmTpyovPrqq4qiKMrMmTOVYcOGGffduHFDqVatmvHcLVq0ULZu3Wrc\n/8knnyh+fn7G7cJrwM6YMUMJDw837jt+/LhSs2ZNRVHU9Vh9fX2LxPHQQw8Z15mtLFOflbI+Q1LB\nS1SN/Hx1KMw779xdtNSeXblivKv69ttqKZrAwKo9pZar7NWvX59Lly6Rn59vXHCjLKmpqUWWm9Pp\ndPj7+3P+/Hl69uzJBx98gF6v5/jx4/Tt25f333+fxo0bk5iYyOOPP17kHG5ubqSnp9O4ceMS5/H0\n9KRmoRFXzZo1IzU1FYD9+/czZcoUjh8/Tk5ODrdv32bw4MHG+ArPnq9Vqxb1C4bk3tlf2aXzatWq\nxa1bt8jPzyc1NbXE8n7+/v6a3J+QbhlRNRQFHnqoSN0WgClT1C4Zu5KbC927G1fz6N7d8UfPdO3a\nlerVq/Pdd9+Vq72vry/nzp0zbiuKQnJysjHRDRs2jB9++IFz586h0+mM6z40bdqUmJgYMjMzjY/s\n7OxSEztg3H/HuXPnjOcYPnw4gwYNIiUlhaysLMaNG2dMqk2aNClSKiU7O5vLhVZnKWtpvYpo3Lhx\nieX9kpKSNOmWkeQuqoarq3ojtdiHetAgaNlSo5gqy90dDh0yTr7q2xcaNtQ4pipWt25dZs2axfjx\n41m3bh3Z2dnk5uayZcuWUhe9fvrpp9m0aRM7d+4kNzeX//u//6NGjRp069aN06dPs3PnTm7fvk31\n6tWpUaMGrgUzwsaNG8e0adOMyfTixYusX7++zNhmzJhBbm4uP/zwA5s2bTLWrrp+/Tqenp5Uq1aN\nAwcOFLnZ+uSTT7Jx40b27t1LTk4Ob7/9NvkFyzqCurTe3LlzycrKIiUlpUhl24ro2rUrrq6uLF68\nmLy8PNatW1fi5qy1SHIXllfGOpAPPljiYt4+lFIuMinJuOyrQ/p//+//8f777zN79mwaNWpE06ZN\n+eijj4w3WQuPE2/Tpg3Lly/n5ZdfNtYm37BhA25ubty+fZupU6fSsGFDGjduzKVLl5hbMMFh4sSJ\nREZGEhERgYeHB127duXAgQMmY/Lx8cHT05MmTZowYsQIlixZQuuCOQkfffQRb7/9Nh4eHrzzzjsM\nGTLE+HVt27blww8/ZPjw4TRp0gQvL68i3TAzZsygWbNmNG/enH79+vHcc8+ZvNoua+m8atWq8e23\n37J06VI8PT1ZsWIFAwYMoFq1ahX97zeblB8QlqUo8PDD6pz9gh86gNu31V12X1L3jTcgMhK6d2fA\nAHUSVvv2lTuUfO4rJjY2lhEjRhTpXrEHXbp04e9//ztRUVGVPoaUHxDa0+nUAlyFEjvAjh0wZow2\nIVnU0KHqJCdgw4bKJ3bhuOLi4oxrRkdHR3Ps2DH69etn9ThktIywvFJGV/TvD+HhGsRiaaGhxqc2\nP07fAdlDyYPff/+dwYMHc+PGDVq2bMnXX39dZHSNtUi3jLCcDz9US+a2bat1JFXvt9/gvvtQmrfg\n5Zdh2jR1tb6KkM+9KC/plhHa8vExjigpbO1aB6yquGcPnDqFTgcDB0KxVSOF0JxcuYsqpSgwbhws\nWCAJsDj53Ivy0uTKPSYmhqCgIFq1asX8+fNLbRMbG0toaCjt2rUrsrircBC5uSargOl0sGSJgyf2\nnBwA/vhD4ziEKMycegd5eXlKy5YtlT/++EPJyclROnbsqJw4caJIm8zMTCUkJERJTk5WFEVRLl68\nWOI4ZoYhtPbf/yrK5MlaR6GNTz5RlGnTFINBUbp1U5TU1PJ/qaenpwLIQx73fHh6epb6GYIqqi1z\n4MABAgMDjRXehg4dyrp16wgODja2+fLLL3nyySeNdR0aNGhgzimFLRozBq5dK/HyTz/BwYM2utqS\npQwfDm5uuLio3fAVGcyRkZFRdXEJp2dWcj9//nyRWV5+fn7s37+/SJv4+Hhyc3Pp1asX165dY+LE\niaUuzaUvVOUoLCxMum/siYlVN3x91drtDu2++4xP7WCUnrBzsbGxxMbGlqutWcm9PGNOc3Nz+eWX\nX9ixYwfZ2dl07dqVBx98kFatWhVppzenhJ3QhqLApk3qIPZSxrY3bao+nMKRI3D4MDeeHsnrr8Oi\nReAms0iEhRW/8C2+IElhZt1Q9fX1LTIVODk5uUhZTVDLXUZERFCzZk3q169Pz549OXLkiDmnFbbi\n8mV1MYtSfsk7cs2VUnl4gIcHtWqp1Rec7v0Lm2NWcu/cuTPx8fEkJiaSk5PDqlWriIyMLNLmscce\nY8+ePRgMBrKzs9m/fz8hISFmBS1sRIMGsGxZqcm9Tx84dkyDmLTSvDk88QQ6nbrwtwZ1ooQowqw/\nHN3c3Fi8eDF9+/bFYDAwZswYgoODWbJkCQAvvvgiQUFB9OvXjw4dOuDi4sLzzz8vyd0JrFkDXl5a\nR6GB/Hy1KmaTJqSlqfO6hChL3Lk4tp3dRsrRFPw6+BHRMoKezXqafVyZxCQqZ+pUdaSIVM4qKi4O\nPv6Y8wtWMmiQunxsORYyEk4q7lwcW89uZU7vOej1evR6PW/ufJO+LfuWK8FL+QFheX37QrNmJV6+\neRMSEjSIx1b07AkrVuDrK4ld3Nu2s9uY03tOkdfm9J7D9oTtZh9b7ueLyjExVPXYMVi4EJYvt244\nNqUgo0tiF/eScjQFfZweUEe+5OWpo6yS6yVDL/OOLcldVEx2tvrpM3HH8P77nTyx33HyJPznP5x5\neSEbN8KkSVoHJGyRXwc/9L31APzwAzzyiJ7u3WH6rulmH1uuLUTFfP01TJ6sdRS2r3lzGDQILy91\nUJEQxR07Buc3PM+ba8bB6NH06KEuvj5txzTCW5i/+IHcUBUVl5urLhpdzObNEBhYYhEmIUQpsrLU\n8hzVW+xk+4//I/mygn9Hf8JbhJd7tExZuVOSu7CYzz6Dv/wFOnXSOhIbkpcHv/yCcv8DXLtWapUG\n4UQmToRRo6BTh3xITi51UEJFyGgZYRkbNqjDYUwYPVoSewnnz8P77/P1GkV6swTPPAOtWqEOpZoy\npUrPJVfuonwMBhg7Fj76CGrW1Doau5OXp07kdXXVOhJhTVlZ6o/M1KmlTORWFLOrzcmVuzCfq6ta\naqCUxH77NgwdqnbFi9K5uYGri1zAOJuaNdWuuPx8IDVV/Rm6o4rLiEpyFxYRFVXqPVZxR3o69OzJ\n7p0Gdu7UOhhR1bKy1H+rV4cJEwr+YsvPV4cSW4l0y4h7W7dOXeH6mWe0jsS+nTnD7vOBGAzQu7fW\nwYiq8uuv8PrrsN38Sab3JKNlhHl+/x1u3FCHwhSTny8zMYUo7vZt9aqdhAS1w/2rr6qkG0b63IV5\n2rQpNbGDOvyxim/6O5Zbt+CLLzDkKXfW1RYOID1dzd93VK9e8CQgAF57TZNluqT8gCjbnWIXJowe\nDVeuWDEee+fiAr/+ypTDwwlq58aYMVoHJCwhO1sd9Wp086Z6N9XFRa3JoQHplhGm3b4NbduqS8gV\nWitUmO/6dfW/VNZddUCZmWp10EOHCl3CVw3plhGVU726+gE1kdjPnHGCBbCrSO3aoLtlekKYsH3x\n8eoosRK51dMT9uyp8sR+L2Yn95iYGIKCgmjVqhXz58832e7gwYO4ubnx7bffmntKYU316pncNXUq\nHD9uxVgcSU4O/PWvrF52nTNntA5GVEbz5jBuXKG/vs6du7uzbl1NYirMrORuMBiYMGECMTExnDhx\ngpUrV3Ly5MlS273xxhv069dPul/sRUKCOumiDGvWQMeOVorH0VSrBgcOkFutdlkVHYQNuvPXqpsb\ndO1a8GJ+PowYAUlJmsVVnFnJ/cCBAwQGBhIQEIC7uztDhw5l3bp1Jdr9+9//5qmnnqJhw4bmnE5Y\n0+7dsGmT1lE4ttq1eeYZWanQnly9qt4fLfEL2cUFYmOhaVMtwiqVWaNlzp8/j7+/v3Hbz8+P/fv3\nl2izbt06du7cycGDB9GZuIOk1+uNz8PCwggzsdKPsJJRo0zuunVLHfY1cqT1wnFob7xBzosv497c\nT26w2jgPD9iypVAVjkOH1BrXHh5WmfARGxtLbGxsudqaldxNJerCJk2axLx584x3dU11yxRO7sK2\nZWRAYqLWUTiQHj14anwjpkyHbt20DkaUJivr7u0nH59CO779FgYMsNo3rviF78yZM022NSu5+/r6\nkpycbNxOTk7Gz8+vSJuff/6ZoUOHAnDp0iW2bNmCu7s7kZGR5pxaVKV334WXX4Y6dUrd3aQJyO9i\nCxowgOU9pda7rVIUiIyETz6BoKBiO999V5OYysOs5N65c2fi4+NJTEykSZMmrFq1ipUrVxZpk5CQ\nYHw+atQoBg4cKIndluXlqRXAZFy7VXl4AKdPQ8OG6lA6YTN0Oti2DWrUKHjh+HG18914N9U2mdVJ\n5ObmxuLFi+nbty8hISEMGTKE4OBglixZwpIlSywVo7AmNze16pGJ/sPVq+Gbb6wck7NYtowlM9Ns\nacCFU8vKunvj1JjYQZ2KWnjYo42SGaqiQo4dU0d9deigdSSO6csv4cEHoUULrSMR776rDlcfP17r\nSEyTqpCifNasUbsG3nxT60iEwSDLNmksP1/918UFSEmBr7+GSZM0jam4snKnFA4Td/Xta7L6I1hk\nVTBRDnGL/sH6Cyf5s6E3TTv5EtEygp7NemodllPIz1d7XJo3L9YzWa2a3d0Lkdoy4i4PD2jZ0uTu\n7t1lCGRVizsXx9ZAHcmn16M70ozZvWez9exW4s7FaR2aU7iz0EYJjRqphWTsiCR3obqzLlgZ1qyB\nZs2sEIsT23Z2G3P6L2D5V240b66+Nqf3HLYnWGFZH8Ff/qJ+zgF1gZqxY9V/7ZB0ywhVv37wxRfq\nbDsTfH2tGI+TSjmagj5ODxRMUImJgX79SK6XDL20jc2R/f67uiYNFOp6rFULBg5U/7VDktyFas8e\nk4ty5OXB5cvg7W3lmJyQXwc/9L316kZ+Pt5/PkHTzh0x3Pe2pnE5srw8tbrjV18V+4zrdPDYY5rF\nZS7plhGqMlZbOnHC7rob7VZEywje3FkwWsnFhS4vdCLmxnzCW4RrG5gDc3ODnTsLJfZnn4XfftM0\nJkuQoZDOLiND/SA//HCZzWSkjPXEnYtje8J2ko8k49/Rn/Dmf6Pnz5egf/9CFauEuZKS1HoxJco+\nHD0KISFlXvDYChnnLkw7ckSdcjprltaRCFMUhQsT55EaMZK/DmisdTQOY9Ys9RbT0KGofTOurnZ3\nBSPJXVTavn3QoAEEBmodiXOLiYFTp2xuDo1dK/LX6JQpEBxsd/2PktxFpS1dCgEB0KeP1pEIQB2W\n9+efGMdJigrJyVFHxpRYICUrSx0VU62aJnFVliyQLUr3n/+oszbKMGaMJHabsnUr1/+zXOso7NZv\nv8EHHxTr7Ww5AAAZWElEQVRs5OZCZqb6vF49u0vs9yJX7s5s0yb1EsaGlgYTZTtzRh3M8dNPdtc9\nbHu+/BIOHoR//UvrSCpNumVEheXnwyuvwPz5Utrd1ty4UfA9SUoCf3/J8uXw009qtc0i/1WKcnf9\nAjsl3TKiwgwG6NLFbifnObT77gMUBWXkKDh7VutwbF5OjnqRkpEB3L6trnsKaqa348R+L5LcndHl\ny+oqMndqmpbC3R1GjJCLQpul0/GM9/f8fEWGMd1LtWqwdi3Ur4865GjpUq1Dsgqzk3tMTAxBQUG0\natWK+fPnl9i/YsUKOnbsSIcOHejevTtHjx4195TCXF5eah0ZK6zWLqrODL2OTp1QuxcyMrQOx+bs\n3atexxTRsSN8/LEm8VibWT/dBoOBCRMmEBMTw4kTJ1i5ciUnT54s0qZFixbExcVx9OhRpk+fzgsv\nvGBWwMICdDpo1crk7tWr4bXXrBiPqJQ2bQrW89i7V61eKIrYtUu9Ac3Fi/DPf6q/BJ2IWfNrDxw4\nQGBgIAEBAQAMHTqUdevWERwcbGzTtdAisl26dCElJcWcUwpzXbmiTmEvY9jXoEFq7XZhH/a7P8SP\nXR/kVa0DsTFvvVXw5Eq1UmoMOD6zkvv58+fx9/c3bvv5+bF//36T7ZcuXUr//v1L3afX643Pw8LC\nCAsLMyc0YcqKFZCeDjNnmmxSrZqU97UnzZrBjb8W/Chfvqyu6uznp21QGjlxAtLSoHdv7k5BrVtX\nLfvoAGJjY4mNjS1XW7OSu64Cd9t27drFZ599xt69e0vdXzi5iyr097+XeSM1NRUaN5YbqfbEx0d9\nALBxo9oN4aT9ahkZanInLQ2GD4ft2x1qLdriF74zy7hIMyu5+/r6kpycbNxOTk7Gr5QrhqNHj/L8\n888TExODp52tQ+iQyriROm4cTJ8O999vxXiExcxNjeKRR6CT1oFo5KGH7jzzgY8+cqjEXlFm3VDt\n3Lkz8fHxJCYmkpOTw6pVq4iMjCzSJikpiSeeeILly5cTKNWntBUTA9euldlk3Tro3NlK8QiL69y5\nUJdabCw4wT2ukydBr0f9i/Tw4bs7goK0CskmmJXc3dzcWLx4MX379iUkJIQhQ4YQHBzMkiVLWLJk\nCQCzZs0iMzOTl156idDQUB544AGLBC4qSFHU0r65uWU20+mkS8aehYdDw4YFG7/9ps5idXCNG6uz\nTzl3Dt55x+lGxZgi5QcEoPZVxsbCE09oHYmwhCtX1Cq2//oX1KihdTRVIz9fpmpI+QFxTxcvQny8\n1lEIS6lTByIioHr1ghemT4fvvtM0Jks6exb+9jdQjp+AV2UQaGnkyt0ZnD2r/mA76QgKAXkJSbh5\neailbR2AokByMjRteBP27wcnHTotV+7Ornp1dT0x4ZRSU6Hb0KYY6hQk9nPnIDFR05gqIz9fXd6U\nU6fQHftNrVRds6bTJvZ7keTuDPz8oNgopsJmzYKff7ZiPMKqmjSB9esLjQrcuxe2bNE0pspITIQZ\nM0A5clSdrSTKJN0ygj171FFjDRpoHYmoaooCP/5YrLzEpUs28c2POxfHtrPbSDmagl8HPyJaRtCz\nWU91Z1oaeHvLUK5ipFvGmU2cCJs3l9nkoYds4mdbWEFamrrMnMFQ8EJCAgwcqPnwwbhzcWw9u5XZ\nvWcTkBXA7N6z2Xp2Kx9/d5iJE1EXrv7tN01jtDdmzVAVdmDatEJDJkrKywM3+RQ4jcaNYc2au9v5\nAS1w+eGHu1fExmWerGvb2W3M6T3n7gu5ucxpNpopp1cwdmwotN0i4x4rSH6sHZ23t8ldp07B6NHq\nn+nC+RgM0K0brF3rRuPGBS8OHw6vv154Hr9VpBxNQR+nB9R6KX/+mkqj5J9JG9Ge9o+AdDJUnCR3\nR3aPvtSgILu8ryYsxNUVvv2Wu4kdYOVKdQQKqMNTvvhCXZKrimu0+HXwQ3/MC8aN4/hxeOQ5PQMH\nKEyPfbtKz+vI5Neho7p+XV1KLyenzGZ161opHmGTCpd2XrQI/vNFrbtdNFlZcOzY3e4QRbFs3/z1\n63DjBrduQe6hEUzL+hauXqVtW/U2wLSdbxLeItxy53MyMlrGkZUxP3vfPmjbVp3JKARAZiZkZ99N\n+Dk5xdZ0+eortYTunTVIMzPVGzbl/RBduKD+e+dPhdGj4fHHyXtkINOmQfiYPcSlbiX5SDL+Hf0J\nbxF+d7SMKFVZuVOSu5MaPx5eftnpC+cJEwwGdSXGX34pNKlVUdTsf+eG6+efq+vYzZ6tbt8pTDd0\nqLodE6P+26+f+u/776urVEdFMWcOhHbMp/8A6TwwhyR3Z5OQAFevoq6eLETlXL8OtWurz+8MoZw3\nr4wvOHFC/a3Qvr26ffAg3LoFPXpw/Dj8+Sf06nW3qbe3mutF5ck4d2cTHy9DYITZ7iR2AHf3grK6\nBX76CV555e52fDx8czLEmNgPHID3f7gfevQA1B6c1NS77UNCJLFXNblydzI7dsAff8DYsVpHIuzZ\n1atqsr7TrXf8uHqhPnKkup2crH7OekqXeZWSbhlhdPas+udx165aRyKEMFeVdsvExMQQFBREq1at\nmD9/fqltXnnlFVq1akXHjh05XHgZLGF5772nXjKZ0LKlJHYhnIFZyd1gMDBhwgRiYmI4ceIEK1eu\n5OTJk0XabN68mTNnzhAfH88nn3zCSy+9ZFbA4h58fMDEIuS3b1s5FiGEZsxK7gcOHCAwMJCAgADc\n3d0ZOnQo69atK9Jm/fr1REVFAdClSxeysrJIT08357SiLCNGlLogw7Vr6rj2e8xpEkI4CLPKD5w/\nfx5/f3/jtp+fH/v3779nm5SUFLyL1TzR6/XG52FhYYRJAX6LqlMHfv212KQUIYRdiY2NJTY2tlxt\nzUruunLWVi7e4V/a1xVO7qISTp2CN96AYn85FVZ4aJsQwv4Uv/CdOXOmybZmdcv4+vqSnJxs3E5O\nTsbPz6/MNikpKfgWLmghLKNVK1iwoNRda9ZARoaV4xFCaMqs5N65c2fi4+NJTEwkJyeHVatWEVls\nObfIyEi++OILAPbt20e9evVKdMkIC3B1VRN8MYqiTiHPz9cgJiGEZszqlnFzc2Px4sX07dsXg8HA\nmDFjCA4OZsmSJQC8+OKL9O/fn82bNxMYGMh9993HsmXLLBK4KCQjQy3vWEpZVp0O5s7VICYhhKZk\nEpMjmDIFAgNLTDstoyikEMIByAxVZ1BKJn/sMXWVvS5dNIpJCFGlJLk7qYsXwcuryhfREUJoRKpC\nOrL1603OTGrYUBK7EM5Kkrs9u3VLHedYrDtm505IStIoJiGETZDkbs9q1ID//U9d6qyQOwsjCCGc\nl/S5CyGEnZI+d0f0ww+wfHmRl86c0SgWIYTNkeRurxo0gEIF2a5eheeeg5s3NYxJCGEzpFvGgSiK\nOiNVCOEcpFvGgeXkQF6e+lwSuxDiDrNqy1hb3Lk4tp3dhpuLG3n5eUS0jKBnM8dbgTc2NrZIWc87\n7zvlaAp+HfyI+GQHPWd8BsHBfPoppKdDGZU/hRBOyG6Se9y5OLae3cqc3nOMr725800Ah0vwhZN7\n4fetj9Oj763nzaxMqJ5GT4IZN04d7i6EEIXZTbfMtrPbiiR2gDm957A9YbtGEVlHae+7530f8tkm\ndWiMiwvUqqVFZEIIW2Y3V+5uLqWH6qpzjPn1hZfPmjlzJgaDWjrg0KVD6OP0xtfJziYhrRaXPLO1\nC1YIYfPsJrnn5efd3UhPhyVL4O23MSgG7YKyoOLLZ/3rX3ouXIB3972FvreeyEh4KyoFfUICfP01\n03dN1y5YIYTNq3S3TEZGBuHh4bRu3ZqIiAiysrJKtElOTqZXr160bduWdu3asWjRokoHGtEywtjH\njocHNG7MtB3TCG8RXulj2rKsLLW7JaJlBNN2vMlLL4FrgB+sWePQ71sIYRmVHuc+efJkGjRowOTJ\nk5k/fz6ZmZnMmzevSJu0tDTS0tLo1KkT169f569//Str164lODi4aBDlHOcedy6O7QnbcdW5YlAM\nhLcId7ibqVD6aJntCdtJPpKMf0d/h33fQoiKqZJ67kFBQezevRtvb2/S0tIICwvj1KlTZX7NoEGD\nePnll+nTp0+5AxQFNm2CTp1AFhcXQhQoK3dWus89PT3duNC1t7c36enpZbZPTEzk8OHDdDGxLJBe\nrzc+L97/XKrz52HGDPj004qEbb+OHSt1AWwhhPMoPPDiXsq8cg8PDyctLa3E63PmzCEqKorMzEzj\na15eXmRkZJR6nOvXrxMWFsZbb73FoEGDSgZRmSv33FzYtQsiIir2dUII4SAqfeW+fbvpMeR3umN8\nfHy4cOECjRo1KrVdbm4uTz75JM8++2ypib3S3N0lsQshhAmVHi0TGRlJdHQ0ANHR0aUmbkVRGDNm\nDCEhIUyaNKnyUTqzxER45RWtoxBC2JlKJ/cpU6awfft2Wrduzc6dO5kyZQoAqampPProowDs3buX\n5cuXs2vXLkJDQwkNDSUmJsYykQMkJ0O4gw8JrFcPHn9c6yiEEHbGvkv+5ufD6dMQFGT5oIQQwsZV\nyVBIS5KhkCbk5qr3FoQQohSOX8/d4BglCEoYOVId3y6EEBVk/1fuSUnwyCNw/Lhlg7IFt26pK3BU\nr651JEIIG+TY3TKKAjduQO3alg1KCCFsnGN3y+h0jpfYb9+Gffu0jkIIYcfsP7mDevV+8aLWUVhO\nQgJ89pnWUQgh7Jj9d8uA2u/+2GNw+LDlghJCCBvn2H3udyiK2kUjhBBOwrH73O9wlMQ+Zw788YfW\nUQgh7JzjJPecHDhyROsozNe8OTRsqHUUQgg75zjdMunpMGoUbN5smaCEEMLGOUefu70zGMDFxXG6\nl4QQVc45+tzt3f/+B6+/rnUUQggH4VhX7teuwQ8/QP/+5h/L2vLz4coV8PTUOhIhhJ1wnit3gwG+\n+07rKCrHxUUSuxDCYhzryt1e7d0LDz4Irq5aRyKEsCNVcuWekZFBeHg4rVu3JiIigqysLJNtDQYD\noaGhDBw4sLKnc1y3bsHcuWrtdiGEsJBKJ/d58+YRHh7O6dOn6dOnD/PmzTPZduHChYSEhKCz1kiQ\n2bPhwgXrnMtcNWrAxo3qv0IIYSGVTu7r168nKioKgKioKNauXVtqu5SUFDZv3szYsWOt1/XSurUM\nKRRCODW3yn5heno63t7eAHh7e5Oenl5qu1dffZX33nuPq1evlnk8vV5vfB4WFkZYWFhlQ4PBgyv/\ntdY0axZERkKnTlpHIoSwA7GxscTGxparbZnJPTw8nLS0tBKvz5kzp8i2Tqcrtctl48aNNGrUiNDQ\n0HsGVDi5O43u3aFpU62jEELYieIXvjNnzjTZtszkvn37dpP7vL29SUtLw8fHhwsXLtCoUaMSbX78\n8UfWr1/P5s2buXXrFlevXuW5557jiy++KMfbMNPateqCF2XcC9Bcnz5aRyCEcFCVHgo5efJk6tev\nzxtvvMG8efPIysoq86bq7t27WbBgARs2bCgZRFUMhbx8WR33XsovHc1dvgweHuDurnUkQgg7ViVD\nIadMmcL27dtp3bo1O3fuZMqUKQCkpqby6KOPmgzEaurXt83EDvDxx7BkidZRCCEcmONPYrp8WU30\ntiY/X52VKoQQleQ85QeKu30bunSBmze1jqQkSexCiCrk+FfutnSF/MsvcPIkPPOM1pEIIRyA8165\ng+0kdoDq1aFePa2jEEI4Ace/cgc4fBjq1oUWLaruHEIIYWXOfeUO6nj3M2e0O7+iqAXChBDCSpzj\nyl1r+/fD22/D1q1aRyKEcCCyhqotyM6GWrW0jkII4UCkWwbU4ZDDhsGNG9qcXxK7EMKKnCe516wJ\no0ZZt27655+rC18LIYSVSbdMVTp3Tp1I1bq11pEIIRyQdMsUt2uXOrmpqjVrJoldCKEJ50vuiqJ2\nl5w/X3Xn2LIFLl6suuMLIcQ9OF9y1+kgOhr8/avuHAcOQBkLhgshRFVz7j53gwFcXa1/XiGEsADp\nczflySfVCUaWkJNjuWMJIYSZnDu5f/wxPPCAZY6VkACffGKZYwkhhJkqndwzMjIIDw+ndevWRERE\nkGWijzkrK4unnnqK4OBgQkJC2LdvX6WDtbjGjdU+eFBvtJojKAiWLjU/JiGEsIBKJ/d58+YRHh7O\n6dOn6dOnj8n1UydOnEj//v05efIkR48eJTg4uNLBVpmffoIhQyr+dQkJMHWq5eMRQggzVfqGalBQ\nELt378bb25u0tDTCwsI4depUkTZXrlwhNDSUhISEsoPQehJTfr46NLKiI2hu3IAdOyAysmriEkKI\nMpSVO90qe9D09HS8vb0B8Pb2Jj09vUSbP/74g4YNGzJq1CiOHDnCX//6VxYuXEitUuqs6PV64/Ow\nsDDCwsIqG1rFubjcTewGAzz/PMyfDw0blmybkAB//gkPPgj33SeJXQhhNbGxscTGxparbZlX7uHh\n4aSlpZV4fc6cOURFRZGZmWl8zcvLi4yMjCLtDh06RNeuXfnxxx+5//77mTRpEh4eHsyaNatoEFpf\nuRemKOokpEceUfvj9+2DPXvgtdfU/bGx8Pvv8OKLmoYphBCVvnLfvn27yX13umN8fHy4cOECjRo1\nKtHGz88PPz8/7r//fgCeeuopk33zNkOng/797277+0O3bne3w8LUhxBC2LBK31CNjIwkOjoagOjo\naAYNGlSijY+PD/7+/pw+fRqA77//nrZt21b2lNrw9S2a3IUQwg5U+oZqRkYGgwcPJikpiYCAAFav\nXk29evVITU3l+eefZ9OmTQAcOXKEsWPHkpOTQ8uWLVm2bBl169YtGoQtdcsIIYSdkJWYhBDCAUn5\nASGEcDKS3IUQwgFJchdCCAckyV0IIRyQJHchhHBAktyFEMIBSXIXQggHJMldCCEckCR3IYRwQJLc\nhRDCAUlyF0IIByTJXQghHJAkdyGEcECS3IUQwgFJchdCCAdkl8m9vAvEOhp5385F3rdzsfT7rnRy\nz8jIIDw8nNatWxMREUFWVlap7ebOnUvbtm1p3749w4cP5/bt25UO9g755jsXed/ORd63ZVQ6uc+b\nN4/w8HBOnz5Nnz59Sl34OjExkf/+97/88ssv/PbbbxgMBr766iuzAhZCCHFvlU7u69evJyoqCoCo\nqCjWrl1boo2Hhwfu7u5kZ2eTl5dHdnY2vr6+lY9WCCFE+SiVVK9ePePz/Pz8ItuFLVmyRKldu7bS\nsGFD5dlnny21DSAPechDHvKoxMMUN8oQHh5OWlpaidfnzJlTZFun06HT6Uq0O3v2LB988AGJiYnU\nrVuXp59+mhUrVvDMM88UaSeLYwshhGWVmdy3b99ucp+3tzdpaWn4+Phw4cIFGjVqVKLNoUOH6Nat\nG/Xr1wfgiSee4McffyyR3IUQQlhWpfvcIyMjiY6OBiA6OppBgwaVaBMUFMS+ffu4efMmiqLw/fff\nExISUvlohRBClItOqWSfSEZGBoMHDyYpKYmAgABWr15NvXr1SE1N5fnnn2fTpk0A/POf/yQ6OhoX\nFxf+8pe/8Omnn+Lu7m7RNyGEEKKYyt5Q1drq1auVkJAQxcXFRfn555+1DqfKbdmyRWnTpo0SGBio\nzJs3T+twrGbUqFFKo0aNlHbt2mkditUkJSUpYWFhSkhIiNK2bVtl4cKFWodkFTdv3lQeeOABpWPH\njkpwcLAyZcoUrUOyqry8PKVTp07KgAEDLHI8u5yhCtC+fXu+++47evbsqXUoVc5gMDBhwgRiYmI4\nceIEK1eu5OTJk1qHZRWjRo0iJiZG6zCsyt3dnX/9618cP36cffv28eGHHzrF97tGjRrs2rWLX3/9\nlaNHj7Jr1y727NmjdVhWs3DhQkJCQkodnFIZdpvcg4KCaN26tdZhWMWBAwcIDAwkICAAd3d3hg4d\nyrp167QOyyp69OiBp6en1mFYlY+PD506dQKgdu3aBAcHk5qaqnFU1lGrVi0AcnJyMBgMeHl5aRyR\ndaSkpLB582bGjh1rsdGDdpvcncn58+fx9/c3bvv5+XH+/HkNIxLWkpiYyOHDh+nSpYvWoVhFfn4+\nnTp1wtvbm169ejnNAIxXX32V9957DxcXy6Vkm07u4eHhtG/fvsRjw4YNWodmVZb6M03Yl+vXr/PU\nU0+xcOFCateurXU4VuHi4sKvv/5KSkoKcXFxTlFnZuPGjTRq1IjQ0FCLzvkpc5y71soaZ+9MfH19\nSU5ONm4nJyfj5+enYUSiquXm5vLkk0/y7LPPljrM2NHVrVuXRx99lEOHDhEWFqZ1OFXqxx9/ZP36\n9WzevJlbt25x9epVnnvuOb744guzjmvTV+7lZcnfdraoc+fOxMfHk5iYSE5ODqtWrSIyMlLrsEQV\nURSFMWPGEBISwqRJk7QOx2ouXbpkrC578+ZNtm/fTmhoqMZRVb13332X5ORk/vjjD7766it69+5t\ndmIHO07u3333Hf7+/uzbt49HH32URx55ROuQqoybmxuLFy+mb9++hISEMGTIEIKDg7UOyyqGDRtG\nt27dOH36NP7+/ixbtkzrkKrc3r17Wb58Obt27SI0NJTQ0FCnGDF04cIFevfuTadOnejSpQsDBw6k\nT58+WodldZbqhq30JCYhhBC2y26v3IUQQpgmyV0IIRyQJHchhHBAktyFEMIBSXIXQggHJMldCCEc\n0P8H3i0ZnbPYHIQAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The nearness of the padding value dictates the sharpness of the curve *after* the next point, because the slope of the curve from the previous segment influences the slope of the next segments. This is in the nature of the spline interpolation we have used - the slope of the curve has to be the same just before and just after each data point." ] } ], "metadata": {} } ] }