{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Simple NBA Elo Ratings\n",
    "\n",
    "In this post, we will build a very simple example of the [Elo rating system](https://en.wikipedia.org/wiki/Elo_rating_system) and apply it to rate NBA teams. We will look at the key assumptions and math behind Elo ratings, and show you how to implement the system in Python."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd\n",
    "pd.options.display.max_rows = 999\n",
    "pd.options.display.max_columns = 999"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib as mpl\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "sns.set(context='notebook', palette='colorblind')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import math\n",
    "import operator\n",
    "from collections import OrderedDict\n",
    "from enum import Enum"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will use the [`pracnbastats`](https://pypi.org/project/pracnbastats/) package I developed for scraping [stats.nba.com](http://stats.nba.com/). You can install this package in your sports analytics Python environment by executing `pip install pracnbastats` in Terminal or at the Anaconda Prompt in Windows."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pracnbastats as nba"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pathlib import Path"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This code assumes the existence of a directory to hold scraped NBA data. You can create and name this directory however you want, and adjust the code in the cell below to suit your preferences."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "PROJECT_DIR = Path.cwd().parent\n",
    "DATA_DIR = PROJECT_DIR / 'data' / 'stats-nba-com'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "filehandler = nba.FileHandler(DATA_DIR)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Scraping NBA 2017-18 Regular Season Match Ups\n",
    "\n",
    "First, we will get a list of all the current NBA teams. We will need to use this as a lookup table to get the [stats.nba.com](http://stats.nba.com/) team ID."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>abbr</th>\n",
       "      <th>code</th>\n",
       "      <th>conference</th>\n",
       "      <th>division</th>\n",
       "      <th>city</th>\n",
       "      <th>name</th>\n",
       "      <th>since</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1610612738</td>\n",
       "      <td>BOS</td>\n",
       "      <td>celtics</td>\n",
       "      <td>East</td>\n",
       "      <td>Atlantic</td>\n",
       "      <td>Boston</td>\n",
       "      <td>Celtics</td>\n",
       "      <td>1946</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1610612752</td>\n",
       "      <td>NYK</td>\n",
       "      <td>knicks</td>\n",
       "      <td>East</td>\n",
       "      <td>Atlantic</td>\n",
       "      <td>New York</td>\n",
       "      <td>Knicks</td>\n",
       "      <td>1946</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1610612751</td>\n",
       "      <td>BKN</td>\n",
       "      <td>nets</td>\n",
       "      <td>East</td>\n",
       "      <td>Atlantic</td>\n",
       "      <td>Brooklyn</td>\n",
       "      <td>Nets</td>\n",
       "      <td>1976</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1610612761</td>\n",
       "      <td>TOR</td>\n",
       "      <td>raptors</td>\n",
       "      <td>East</td>\n",
       "      <td>Atlantic</td>\n",
       "      <td>Toronto</td>\n",
       "      <td>Raptors</td>\n",
       "      <td>1995</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1610612755</td>\n",
       "      <td>PHI</td>\n",
       "      <td>sixers</td>\n",
       "      <td>East</td>\n",
       "      <td>Atlantic</td>\n",
       "      <td>Philadelphia</td>\n",
       "      <td>76ers</td>\n",
       "      <td>1949</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>1610612749</td>\n",
       "      <td>MIL</td>\n",
       "      <td>bucks</td>\n",
       "      <td>East</td>\n",
       "      <td>Central</td>\n",
       "      <td>Milwaukee</td>\n",
       "      <td>Bucks</td>\n",
       "      <td>1968</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>1610612741</td>\n",
       "      <td>CHI</td>\n",
       "      <td>bulls</td>\n",
       "      <td>East</td>\n",
       "      <td>Central</td>\n",
       "      <td>Chicago</td>\n",
       "      <td>Bulls</td>\n",
       "      <td>1966</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>1610612739</td>\n",
       "      <td>CLE</td>\n",
       "      <td>cavaliers</td>\n",
       "      <td>East</td>\n",
       "      <td>Central</td>\n",
       "      <td>Cleveland</td>\n",
       "      <td>Cavaliers</td>\n",
       "      <td>1970</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>1610612754</td>\n",
       "      <td>IND</td>\n",
       "      <td>pacers</td>\n",
       "      <td>East</td>\n",
       "      <td>Central</td>\n",
       "      <td>Indiana</td>\n",
       "      <td>Pacers</td>\n",
       "      <td>1976</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>1610612765</td>\n",
       "      <td>DET</td>\n",
       "      <td>pistons</td>\n",
       "      <td>East</td>\n",
       "      <td>Central</td>\n",
       "      <td>Detroit</td>\n",
       "      <td>Pistons</td>\n",
       "      <td>1948</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>1610612737</td>\n",
       "      <td>ATL</td>\n",
       "      <td>hawks</td>\n",
       "      <td>East</td>\n",
       "      <td>Southeast</td>\n",
       "      <td>Atlanta</td>\n",
       "      <td>Hawks</td>\n",
       "      <td>1949</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>1610612748</td>\n",
       "      <td>MIA</td>\n",
       "      <td>heat</td>\n",
       "      <td>East</td>\n",
       "      <td>Southeast</td>\n",
       "      <td>Miami</td>\n",
       "      <td>Heat</td>\n",
       "      <td>1988</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>1610612766</td>\n",
       "      <td>CHA</td>\n",
       "      <td>hornets</td>\n",
       "      <td>East</td>\n",
       "      <td>Southeast</td>\n",
       "      <td>Charlotte</td>\n",
       "      <td>Hornets</td>\n",
       "      <td>1988</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>1610612753</td>\n",
       "      <td>ORL</td>\n",
       "      <td>magic</td>\n",
       "      <td>East</td>\n",
       "      <td>Southeast</td>\n",
       "      <td>Orlando</td>\n",
       "      <td>Magic</td>\n",
       "      <td>1989</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>1610612764</td>\n",
       "      <td>WAS</td>\n",
       "      <td>wizards</td>\n",
       "      <td>East</td>\n",
       "      <td>Southeast</td>\n",
       "      <td>Washington</td>\n",
       "      <td>Wizards</td>\n",
       "      <td>1961</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>1610612757</td>\n",
       "      <td>POR</td>\n",
       "      <td>blazers</td>\n",
       "      <td>West</td>\n",
       "      <td>Northwest</td>\n",
       "      <td>Portland</td>\n",
       "      <td>Trail Blazers</td>\n",
       "      <td>1970</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>1610612762</td>\n",
       "      <td>UTA</td>\n",
       "      <td>jazz</td>\n",
       "      <td>West</td>\n",
       "      <td>Northwest</td>\n",
       "      <td>Utah</td>\n",
       "      <td>Jazz</td>\n",
       "      <td>1974</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>1610612743</td>\n",
       "      <td>DEN</td>\n",
       "      <td>nuggets</td>\n",
       "      <td>West</td>\n",
       "      <td>Northwest</td>\n",
       "      <td>Denver</td>\n",
       "      <td>Nuggets</td>\n",
       "      <td>1976</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>1610612760</td>\n",
       "      <td>OKC</td>\n",
       "      <td>thunder</td>\n",
       "      <td>West</td>\n",
       "      <td>Northwest</td>\n",
       "      <td>Oklahoma City</td>\n",
       "      <td>Thunder</td>\n",
       "      <td>1967</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>1610612750</td>\n",
       "      <td>MIN</td>\n",
       "      <td>timberwolves</td>\n",
       "      <td>West</td>\n",
       "      <td>Northwest</td>\n",
       "      <td>Minnesota</td>\n",
       "      <td>Timberwolves</td>\n",
       "      <td>1989</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>1610612746</td>\n",
       "      <td>LAC</td>\n",
       "      <td>clippers</td>\n",
       "      <td>West</td>\n",
       "      <td>Pacific</td>\n",
       "      <td>LA</td>\n",
       "      <td>Clippers</td>\n",
       "      <td>1970</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>1610612758</td>\n",
       "      <td>SAC</td>\n",
       "      <td>kings</td>\n",
       "      <td>West</td>\n",
       "      <td>Pacific</td>\n",
       "      <td>Sacramento</td>\n",
       "      <td>Kings</td>\n",
       "      <td>1948</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>1610612747</td>\n",
       "      <td>LAL</td>\n",
       "      <td>lakers</td>\n",
       "      <td>West</td>\n",
       "      <td>Pacific</td>\n",
       "      <td>Los Angeles</td>\n",
       "      <td>Lakers</td>\n",
       "      <td>1948</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>1610612756</td>\n",
       "      <td>PHX</td>\n",
       "      <td>suns</td>\n",
       "      <td>West</td>\n",
       "      <td>Pacific</td>\n",
       "      <td>Phoenix</td>\n",
       "      <td>Suns</td>\n",
       "      <td>1968</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>1610612744</td>\n",
       "      <td>GSW</td>\n",
       "      <td>warriors</td>\n",
       "      <td>West</td>\n",
       "      <td>Pacific</td>\n",
       "      <td>Golden State</td>\n",
       "      <td>Warriors</td>\n",
       "      <td>1946</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>1610612763</td>\n",
       "      <td>MEM</td>\n",
       "      <td>grizzlies</td>\n",
       "      <td>West</td>\n",
       "      <td>Southwest</td>\n",
       "      <td>Memphis</td>\n",
       "      <td>Grizzlies</td>\n",
       "      <td>1995</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>1610612742</td>\n",
       "      <td>DAL</td>\n",
       "      <td>mavericks</td>\n",
       "      <td>West</td>\n",
       "      <td>Southwest</td>\n",
       "      <td>Dallas</td>\n",
       "      <td>Mavericks</td>\n",
       "      <td>1980</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>1610612740</td>\n",
       "      <td>NOP</td>\n",
       "      <td>pelicans</td>\n",
       "      <td>West</td>\n",
       "      <td>Southwest</td>\n",
       "      <td>New Orleans</td>\n",
       "      <td>Pelicans</td>\n",
       "      <td>2002</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>1610612745</td>\n",
       "      <td>HOU</td>\n",
       "      <td>rockets</td>\n",
       "      <td>West</td>\n",
       "      <td>Southwest</td>\n",
       "      <td>Houston</td>\n",
       "      <td>Rockets</td>\n",
       "      <td>1967</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>1610612759</td>\n",
       "      <td>SAS</td>\n",
       "      <td>spurs</td>\n",
       "      <td>West</td>\n",
       "      <td>Southwest</td>\n",
       "      <td>San Antonio</td>\n",
       "      <td>Spurs</td>\n",
       "      <td>1976</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "            id abbr          code conference   division           city  \\\n",
       "0   1610612738  BOS       celtics       East   Atlantic         Boston   \n",
       "1   1610612752  NYK        knicks       East   Atlantic       New York   \n",
       "2   1610612751  BKN          nets       East   Atlantic       Brooklyn   \n",
       "3   1610612761  TOR       raptors       East   Atlantic        Toronto   \n",
       "4   1610612755  PHI        sixers       East   Atlantic   Philadelphia   \n",
       "5   1610612749  MIL         bucks       East    Central      Milwaukee   \n",
       "6   1610612741  CHI         bulls       East    Central        Chicago   \n",
       "7   1610612739  CLE     cavaliers       East    Central      Cleveland   \n",
       "8   1610612754  IND        pacers       East    Central        Indiana   \n",
       "9   1610612765  DET       pistons       East    Central        Detroit   \n",
       "10  1610612737  ATL         hawks       East  Southeast        Atlanta   \n",
       "11  1610612748  MIA          heat       East  Southeast          Miami   \n",
       "12  1610612766  CHA       hornets       East  Southeast      Charlotte   \n",
       "13  1610612753  ORL         magic       East  Southeast        Orlando   \n",
       "14  1610612764  WAS       wizards       East  Southeast     Washington   \n",
       "15  1610612757  POR       blazers       West  Northwest       Portland   \n",
       "16  1610612762  UTA          jazz       West  Northwest           Utah   \n",
       "17  1610612743  DEN       nuggets       West  Northwest         Denver   \n",
       "18  1610612760  OKC       thunder       West  Northwest  Oklahoma City   \n",
       "19  1610612750  MIN  timberwolves       West  Northwest      Minnesota   \n",
       "20  1610612746  LAC      clippers       West    Pacific             LA   \n",
       "21  1610612758  SAC         kings       West    Pacific     Sacramento   \n",
       "22  1610612747  LAL        lakers       West    Pacific    Los Angeles   \n",
       "23  1610612756  PHX          suns       West    Pacific        Phoenix   \n",
       "24  1610612744  GSW      warriors       West    Pacific   Golden State   \n",
       "25  1610612763  MEM     grizzlies       West  Southwest        Memphis   \n",
       "26  1610612742  DAL     mavericks       West  Southwest         Dallas   \n",
       "27  1610612740  NOP      pelicans       West  Southwest    New Orleans   \n",
       "28  1610612745  HOU       rockets       West  Southwest        Houston   \n",
       "29  1610612759  SAS         spurs       West  Southwest    San Antonio   \n",
       "\n",
       "             name  since  \n",
       "0         Celtics   1946  \n",
       "1          Knicks   1946  \n",
       "2            Nets   1976  \n",
       "3         Raptors   1995  \n",
       "4           76ers   1949  \n",
       "5           Bucks   1968  \n",
       "6           Bulls   1966  \n",
       "7       Cavaliers   1970  \n",
       "8          Pacers   1976  \n",
       "9         Pistons   1948  \n",
       "10          Hawks   1949  \n",
       "11           Heat   1988  \n",
       "12        Hornets   1988  \n",
       "13          Magic   1989  \n",
       "14        Wizards   1961  \n",
       "15  Trail Blazers   1970  \n",
       "16           Jazz   1974  \n",
       "17        Nuggets   1976  \n",
       "18        Thunder   1967  \n",
       "19   Timberwolves   1989  \n",
       "20       Clippers   1970  \n",
       "21          Kings   1948  \n",
       "22         Lakers   1948  \n",
       "23           Suns   1968  \n",
       "24       Warriors   1946  \n",
       "25      Grizzlies   1995  \n",
       "26      Mavericks   1980  \n",
       "27       Pelicans   2002  \n",
       "28        Rockets   1967  \n",
       "29          Spurs   1976  "
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nba.currentteams.load(filehandler)\n",
    "teams = nba.currentteams.data()\n",
    "teams"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, let's get all of the team box scores for the 2017-18 regular season."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(2460, 30)"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nba1718 = nba.team.BoxScores(filehandler=filehandler)\n",
    "nba1718.data.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>season</th>\n",
       "      <th>season_type</th>\n",
       "      <th>team_id</th>\n",
       "      <th>team_abbr</th>\n",
       "      <th>game_id</th>\n",
       "      <th>date</th>\n",
       "      <th>opp_team_abbr</th>\n",
       "      <th>home_road</th>\n",
       "      <th>win_loss</th>\n",
       "      <th>min</th>\n",
       "      <th>fgm</th>\n",
       "      <th>fga</th>\n",
       "      <th>fg_pct</th>\n",
       "      <th>fg3m</th>\n",
       "      <th>fg3a</th>\n",
       "      <th>fg3_pct</th>\n",
       "      <th>ftm</th>\n",
       "      <th>fta</th>\n",
       "      <th>ft_pct</th>\n",
       "      <th>oreb</th>\n",
       "      <th>dreb</th>\n",
       "      <th>reb</th>\n",
       "      <th>ast</th>\n",
       "      <th>stl</th>\n",
       "      <th>blk</th>\n",
       "      <th>tov</th>\n",
       "      <th>pf</th>\n",
       "      <th>pts</th>\n",
       "      <th>mov</th>\n",
       "      <th>video</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612757</td>\n",
       "      <td>POR</td>\n",
       "      <td>21701229</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>UTA</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>240</td>\n",
       "      <td>41</td>\n",
       "      <td>89</td>\n",
       "      <td>0.461</td>\n",
       "      <td>9</td>\n",
       "      <td>24</td>\n",
       "      <td>0.375</td>\n",
       "      <td>11</td>\n",
       "      <td>16</td>\n",
       "      <td>0.688</td>\n",
       "      <td>7</td>\n",
       "      <td>39</td>\n",
       "      <td>46</td>\n",
       "      <td>19</td>\n",
       "      <td>9</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>22</td>\n",
       "      <td>102</td>\n",
       "      <td>9</td>\n",
       "      <td>Y</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612762</td>\n",
       "      <td>UTA</td>\n",
       "      <td>21701229</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>POR</td>\n",
       "      <td>R</td>\n",
       "      <td>L</td>\n",
       "      <td>240</td>\n",
       "      <td>33</td>\n",
       "      <td>89</td>\n",
       "      <td>0.371</td>\n",
       "      <td>8</td>\n",
       "      <td>23</td>\n",
       "      <td>0.348</td>\n",
       "      <td>19</td>\n",
       "      <td>24</td>\n",
       "      <td>0.792</td>\n",
       "      <td>14</td>\n",
       "      <td>39</td>\n",
       "      <td>53</td>\n",
       "      <td>18</td>\n",
       "      <td>5</td>\n",
       "      <td>7</td>\n",
       "      <td>15</td>\n",
       "      <td>19</td>\n",
       "      <td>93</td>\n",
       "      <td>-9</td>\n",
       "      <td>Y</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612746</td>\n",
       "      <td>LAC</td>\n",
       "      <td>21701228</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>LAL</td>\n",
       "      <td>H</td>\n",
       "      <td>L</td>\n",
       "      <td>240</td>\n",
       "      <td>41</td>\n",
       "      <td>83</td>\n",
       "      <td>0.494</td>\n",
       "      <td>6</td>\n",
       "      <td>18</td>\n",
       "      <td>0.333</td>\n",
       "      <td>12</td>\n",
       "      <td>28</td>\n",
       "      <td>0.429</td>\n",
       "      <td>8</td>\n",
       "      <td>33</td>\n",
       "      <td>41</td>\n",
       "      <td>27</td>\n",
       "      <td>8</td>\n",
       "      <td>1</td>\n",
       "      <td>17</td>\n",
       "      <td>17</td>\n",
       "      <td>100</td>\n",
       "      <td>-15</td>\n",
       "      <td>Y</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612747</td>\n",
       "      <td>LAL</td>\n",
       "      <td>21701228</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>LAC</td>\n",
       "      <td>R</td>\n",
       "      <td>W</td>\n",
       "      <td>240</td>\n",
       "      <td>42</td>\n",
       "      <td>88</td>\n",
       "      <td>0.477</td>\n",
       "      <td>17</td>\n",
       "      <td>39</td>\n",
       "      <td>0.436</td>\n",
       "      <td>14</td>\n",
       "      <td>16</td>\n",
       "      <td>0.875</td>\n",
       "      <td>10</td>\n",
       "      <td>39</td>\n",
       "      <td>49</td>\n",
       "      <td>25</td>\n",
       "      <td>8</td>\n",
       "      <td>6</td>\n",
       "      <td>17</td>\n",
       "      <td>23</td>\n",
       "      <td>115</td>\n",
       "      <td>15</td>\n",
       "      <td>Y</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612758</td>\n",
       "      <td>SAC</td>\n",
       "      <td>21701230</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>HOU</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>240</td>\n",
       "      <td>38</td>\n",
       "      <td>80</td>\n",
       "      <td>0.475</td>\n",
       "      <td>7</td>\n",
       "      <td>26</td>\n",
       "      <td>0.269</td>\n",
       "      <td>13</td>\n",
       "      <td>20</td>\n",
       "      <td>0.650</td>\n",
       "      <td>6</td>\n",
       "      <td>42</td>\n",
       "      <td>48</td>\n",
       "      <td>22</td>\n",
       "      <td>6</td>\n",
       "      <td>3</td>\n",
       "      <td>11</td>\n",
       "      <td>14</td>\n",
       "      <td>96</td>\n",
       "      <td>13</td>\n",
       "      <td>Y</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   season season_type     team_id team_abbr   game_id       date  \\\n",
       "0    2017         reg  1610612757       POR  21701229 2018-04-11   \n",
       "1    2017         reg  1610612762       UTA  21701229 2018-04-11   \n",
       "2    2017         reg  1610612746       LAC  21701228 2018-04-11   \n",
       "3    2017         reg  1610612747       LAL  21701228 2018-04-11   \n",
       "4    2017         reg  1610612758       SAC  21701230 2018-04-11   \n",
       "\n",
       "  opp_team_abbr home_road win_loss  min  fgm  fga  fg_pct  fg3m  fg3a  \\\n",
       "0           UTA         H        W  240   41   89   0.461     9    24   \n",
       "1           POR         R        L  240   33   89   0.371     8    23   \n",
       "2           LAL         H        L  240   41   83   0.494     6    18   \n",
       "3           LAC         R        W  240   42   88   0.477    17    39   \n",
       "4           HOU         H        W  240   38   80   0.475     7    26   \n",
       "\n",
       "   fg3_pct  ftm  fta  ft_pct  oreb  dreb  reb  ast  stl  blk  tov  pf  pts  \\\n",
       "0    0.375   11   16   0.688     7    39   46   19    9    9   10  22  102   \n",
       "1    0.348   19   24   0.792    14    39   53   18    5    7   15  19   93   \n",
       "2    0.333   12   28   0.429     8    33   41   27    8    1   17  17  100   \n",
       "3    0.436   14   16   0.875    10    39   49   25    8    6   17  23  115   \n",
       "4    0.269   13   20   0.650     6    42   48   22    6    3   11  14   96   \n",
       "\n",
       "   mov video  \n",
       "0    9     Y  \n",
       "1   -9     Y  \n",
       "2  -15     Y  \n",
       "3   15     Y  \n",
       "4   13     Y  "
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nba1718.data.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To compute Elo ratings, what we really need is the match up information. This view of the data combines the home and road team information on one row per game."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>game_id</th>\n",
       "      <th>season</th>\n",
       "      <th>season_type</th>\n",
       "      <th>date</th>\n",
       "      <th>team_id_h</th>\n",
       "      <th>team_abbr_h</th>\n",
       "      <th>pts_h</th>\n",
       "      <th>win_loss_h</th>\n",
       "      <th>team_id_r</th>\n",
       "      <th>team_abbr_r</th>\n",
       "      <th>pts_r</th>\n",
       "      <th>win_loss_r</th>\n",
       "      <th>hr_winner</th>\n",
       "      <th>winner</th>\n",
       "      <th>loser</th>\n",
       "      <th>mov</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>21701229</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>1610612757</td>\n",
       "      <td>POR</td>\n",
       "      <td>102</td>\n",
       "      <td>W</td>\n",
       "      <td>1610612762</td>\n",
       "      <td>UTA</td>\n",
       "      <td>93</td>\n",
       "      <td>L</td>\n",
       "      <td>H</td>\n",
       "      <td>POR</td>\n",
       "      <td>UTA</td>\n",
       "      <td>9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>21701228</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>1610612746</td>\n",
       "      <td>LAC</td>\n",
       "      <td>100</td>\n",
       "      <td>L</td>\n",
       "      <td>1610612747</td>\n",
       "      <td>LAL</td>\n",
       "      <td>115</td>\n",
       "      <td>W</td>\n",
       "      <td>R</td>\n",
       "      <td>LAL</td>\n",
       "      <td>LAC</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>21701230</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>1610612758</td>\n",
       "      <td>SAC</td>\n",
       "      <td>96</td>\n",
       "      <td>W</td>\n",
       "      <td>1610612745</td>\n",
       "      <td>HOU</td>\n",
       "      <td>83</td>\n",
       "      <td>L</td>\n",
       "      <td>H</td>\n",
       "      <td>SAC</td>\n",
       "      <td>HOU</td>\n",
       "      <td>13</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>21701221</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>1610612748</td>\n",
       "      <td>MIA</td>\n",
       "      <td>116</td>\n",
       "      <td>W</td>\n",
       "      <td>1610612761</td>\n",
       "      <td>TOR</td>\n",
       "      <td>109</td>\n",
       "      <td>L</td>\n",
       "      <td>H</td>\n",
       "      <td>MIA</td>\n",
       "      <td>TOR</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>21701225</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>1610612750</td>\n",
       "      <td>MIN</td>\n",
       "      <td>112</td>\n",
       "      <td>W</td>\n",
       "      <td>1610612743</td>\n",
       "      <td>DEN</td>\n",
       "      <td>106</td>\n",
       "      <td>L</td>\n",
       "      <td>H</td>\n",
       "      <td>MIN</td>\n",
       "      <td>DEN</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    game_id  season season_type       date   team_id_h team_abbr_h  pts_h  \\\n",
       "0  21701229    2017         reg 2018-04-11  1610612757         POR    102   \n",
       "1  21701228    2017         reg 2018-04-11  1610612746         LAC    100   \n",
       "2  21701230    2017         reg 2018-04-11  1610612758         SAC     96   \n",
       "3  21701221    2017         reg 2018-04-11  1610612748         MIA    116   \n",
       "4  21701225    2017         reg 2018-04-11  1610612750         MIN    112   \n",
       "\n",
       "  win_loss_h   team_id_r team_abbr_r  pts_r win_loss_r hr_winner winner loser  \\\n",
       "0          W  1610612762         UTA     93          L         H    POR   UTA   \n",
       "1          L  1610612747         LAL    115          W         R    LAL   LAC   \n",
       "2          W  1610612745         HOU     83          L         H    SAC   HOU   \n",
       "3          W  1610612761         TOR    109          L         H    MIA   TOR   \n",
       "4          W  1610612743         DEN    106          L         H    MIN   DEN   \n",
       "\n",
       "   mov  \n",
       "0    9  \n",
       "1   15  \n",
       "2   13  \n",
       "3    7  \n",
       "4    6  "
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nba1718.matchups.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1230, 16)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nba1718.matchups.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here's a summary of all 30 NBA teams' regular season records, broken out by home and road games."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>team_abbr</th>\n",
       "      <th>season</th>\n",
       "      <th>season_type</th>\n",
       "      <th>team_id</th>\n",
       "      <th>games</th>\n",
       "      <th>wins</th>\n",
       "      <th>losses</th>\n",
       "      <th>home</th>\n",
       "      <th>road</th>\n",
       "      <th>home_wins</th>\n",
       "      <th>home_losses</th>\n",
       "      <th>road_wins</th>\n",
       "      <th>road_losses</th>\n",
       "      <th>win_pct</th>\n",
       "      <th>home_win_pct</th>\n",
       "      <th>road_win_pct</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>POR</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612757</td>\n",
       "      <td>82</td>\n",
       "      <td>49</td>\n",
       "      <td>33</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>28</td>\n",
       "      <td>13</td>\n",
       "      <td>21</td>\n",
       "      <td>20</td>\n",
       "      <td>0.597561</td>\n",
       "      <td>0.682927</td>\n",
       "      <td>0.512195</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>LAC</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612746</td>\n",
       "      <td>82</td>\n",
       "      <td>42</td>\n",
       "      <td>40</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>22</td>\n",
       "      <td>19</td>\n",
       "      <td>20</td>\n",
       "      <td>21</td>\n",
       "      <td>0.512195</td>\n",
       "      <td>0.536585</td>\n",
       "      <td>0.487805</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>SAC</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612758</td>\n",
       "      <td>82</td>\n",
       "      <td>27</td>\n",
       "      <td>55</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>14</td>\n",
       "      <td>27</td>\n",
       "      <td>13</td>\n",
       "      <td>28</td>\n",
       "      <td>0.329268</td>\n",
       "      <td>0.341463</td>\n",
       "      <td>0.317073</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>MIA</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612748</td>\n",
       "      <td>82</td>\n",
       "      <td>44</td>\n",
       "      <td>38</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>26</td>\n",
       "      <td>15</td>\n",
       "      <td>18</td>\n",
       "      <td>23</td>\n",
       "      <td>0.536585</td>\n",
       "      <td>0.634146</td>\n",
       "      <td>0.439024</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>MIN</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612750</td>\n",
       "      <td>82</td>\n",
       "      <td>47</td>\n",
       "      <td>35</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>30</td>\n",
       "      <td>11</td>\n",
       "      <td>17</td>\n",
       "      <td>24</td>\n",
       "      <td>0.573171</td>\n",
       "      <td>0.731707</td>\n",
       "      <td>0.414634</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>ORL</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612753</td>\n",
       "      <td>82</td>\n",
       "      <td>25</td>\n",
       "      <td>57</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>17</td>\n",
       "      <td>24</td>\n",
       "      <td>8</td>\n",
       "      <td>33</td>\n",
       "      <td>0.304878</td>\n",
       "      <td>0.414634</td>\n",
       "      <td>0.195122</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>PHI</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612755</td>\n",
       "      <td>82</td>\n",
       "      <td>52</td>\n",
       "      <td>30</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>30</td>\n",
       "      <td>11</td>\n",
       "      <td>22</td>\n",
       "      <td>19</td>\n",
       "      <td>0.634146</td>\n",
       "      <td>0.731707</td>\n",
       "      <td>0.536585</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>OKC</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612760</td>\n",
       "      <td>82</td>\n",
       "      <td>48</td>\n",
       "      <td>34</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>27</td>\n",
       "      <td>14</td>\n",
       "      <td>21</td>\n",
       "      <td>20</td>\n",
       "      <td>0.585366</td>\n",
       "      <td>0.658537</td>\n",
       "      <td>0.512195</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>NOP</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612740</td>\n",
       "      <td>82</td>\n",
       "      <td>48</td>\n",
       "      <td>34</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>24</td>\n",
       "      <td>17</td>\n",
       "      <td>24</td>\n",
       "      <td>17</td>\n",
       "      <td>0.585366</td>\n",
       "      <td>0.585366</td>\n",
       "      <td>0.585366</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>CHI</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612741</td>\n",
       "      <td>82</td>\n",
       "      <td>27</td>\n",
       "      <td>55</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>17</td>\n",
       "      <td>24</td>\n",
       "      <td>10</td>\n",
       "      <td>31</td>\n",
       "      <td>0.329268</td>\n",
       "      <td>0.414634</td>\n",
       "      <td>0.243902</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>CLE</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612739</td>\n",
       "      <td>82</td>\n",
       "      <td>50</td>\n",
       "      <td>32</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>29</td>\n",
       "      <td>12</td>\n",
       "      <td>21</td>\n",
       "      <td>20</td>\n",
       "      <td>0.609756</td>\n",
       "      <td>0.707317</td>\n",
       "      <td>0.512195</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>BOS</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612738</td>\n",
       "      <td>82</td>\n",
       "      <td>55</td>\n",
       "      <td>27</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>27</td>\n",
       "      <td>14</td>\n",
       "      <td>28</td>\n",
       "      <td>13</td>\n",
       "      <td>0.670732</td>\n",
       "      <td>0.658537</td>\n",
       "      <td>0.682927</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>DAL</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612742</td>\n",
       "      <td>82</td>\n",
       "      <td>24</td>\n",
       "      <td>58</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>15</td>\n",
       "      <td>26</td>\n",
       "      <td>9</td>\n",
       "      <td>32</td>\n",
       "      <td>0.292683</td>\n",
       "      <td>0.365854</td>\n",
       "      <td>0.219512</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>IND</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612754</td>\n",
       "      <td>82</td>\n",
       "      <td>48</td>\n",
       "      <td>34</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>27</td>\n",
       "      <td>14</td>\n",
       "      <td>21</td>\n",
       "      <td>20</td>\n",
       "      <td>0.585366</td>\n",
       "      <td>0.658537</td>\n",
       "      <td>0.512195</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>LAL</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612747</td>\n",
       "      <td>82</td>\n",
       "      <td>35</td>\n",
       "      <td>47</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>20</td>\n",
       "      <td>21</td>\n",
       "      <td>15</td>\n",
       "      <td>26</td>\n",
       "      <td>0.426829</td>\n",
       "      <td>0.487805</td>\n",
       "      <td>0.365854</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>WAS</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612764</td>\n",
       "      <td>82</td>\n",
       "      <td>43</td>\n",
       "      <td>39</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>23</td>\n",
       "      <td>18</td>\n",
       "      <td>20</td>\n",
       "      <td>21</td>\n",
       "      <td>0.524390</td>\n",
       "      <td>0.560976</td>\n",
       "      <td>0.487805</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>UTA</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612762</td>\n",
       "      <td>82</td>\n",
       "      <td>48</td>\n",
       "      <td>34</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>28</td>\n",
       "      <td>13</td>\n",
       "      <td>20</td>\n",
       "      <td>21</td>\n",
       "      <td>0.585366</td>\n",
       "      <td>0.682927</td>\n",
       "      <td>0.487805</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>ATL</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612737</td>\n",
       "      <td>82</td>\n",
       "      <td>24</td>\n",
       "      <td>58</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>16</td>\n",
       "      <td>25</td>\n",
       "      <td>8</td>\n",
       "      <td>33</td>\n",
       "      <td>0.292683</td>\n",
       "      <td>0.390244</td>\n",
       "      <td>0.195122</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>BKN</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612751</td>\n",
       "      <td>82</td>\n",
       "      <td>28</td>\n",
       "      <td>54</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>15</td>\n",
       "      <td>26</td>\n",
       "      <td>13</td>\n",
       "      <td>28</td>\n",
       "      <td>0.341463</td>\n",
       "      <td>0.365854</td>\n",
       "      <td>0.317073</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>DET</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612765</td>\n",
       "      <td>82</td>\n",
       "      <td>39</td>\n",
       "      <td>43</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>25</td>\n",
       "      <td>16</td>\n",
       "      <td>14</td>\n",
       "      <td>27</td>\n",
       "      <td>0.475610</td>\n",
       "      <td>0.609756</td>\n",
       "      <td>0.341463</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>NYK</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612752</td>\n",
       "      <td>82</td>\n",
       "      <td>29</td>\n",
       "      <td>53</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>19</td>\n",
       "      <td>22</td>\n",
       "      <td>10</td>\n",
       "      <td>31</td>\n",
       "      <td>0.353659</td>\n",
       "      <td>0.463415</td>\n",
       "      <td>0.243902</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>DEN</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612743</td>\n",
       "      <td>82</td>\n",
       "      <td>46</td>\n",
       "      <td>36</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>31</td>\n",
       "      <td>10</td>\n",
       "      <td>15</td>\n",
       "      <td>26</td>\n",
       "      <td>0.560976</td>\n",
       "      <td>0.756098</td>\n",
       "      <td>0.365854</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>SAS</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612759</td>\n",
       "      <td>82</td>\n",
       "      <td>47</td>\n",
       "      <td>35</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>33</td>\n",
       "      <td>8</td>\n",
       "      <td>14</td>\n",
       "      <td>27</td>\n",
       "      <td>0.573171</td>\n",
       "      <td>0.804878</td>\n",
       "      <td>0.341463</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>MIL</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612749</td>\n",
       "      <td>82</td>\n",
       "      <td>44</td>\n",
       "      <td>38</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>25</td>\n",
       "      <td>16</td>\n",
       "      <td>19</td>\n",
       "      <td>22</td>\n",
       "      <td>0.536585</td>\n",
       "      <td>0.609756</td>\n",
       "      <td>0.463415</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>PHX</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612756</td>\n",
       "      <td>82</td>\n",
       "      <td>21</td>\n",
       "      <td>61</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>10</td>\n",
       "      <td>31</td>\n",
       "      <td>11</td>\n",
       "      <td>30</td>\n",
       "      <td>0.256098</td>\n",
       "      <td>0.243902</td>\n",
       "      <td>0.268293</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>TOR</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612761</td>\n",
       "      <td>82</td>\n",
       "      <td>59</td>\n",
       "      <td>23</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>34</td>\n",
       "      <td>7</td>\n",
       "      <td>25</td>\n",
       "      <td>16</td>\n",
       "      <td>0.719512</td>\n",
       "      <td>0.829268</td>\n",
       "      <td>0.609756</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>MEM</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612763</td>\n",
       "      <td>82</td>\n",
       "      <td>22</td>\n",
       "      <td>60</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>16</td>\n",
       "      <td>25</td>\n",
       "      <td>6</td>\n",
       "      <td>35</td>\n",
       "      <td>0.268293</td>\n",
       "      <td>0.390244</td>\n",
       "      <td>0.146341</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>CHA</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612766</td>\n",
       "      <td>82</td>\n",
       "      <td>36</td>\n",
       "      <td>46</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>21</td>\n",
       "      <td>20</td>\n",
       "      <td>15</td>\n",
       "      <td>26</td>\n",
       "      <td>0.439024</td>\n",
       "      <td>0.512195</td>\n",
       "      <td>0.365854</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>GSW</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612744</td>\n",
       "      <td>82</td>\n",
       "      <td>58</td>\n",
       "      <td>24</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>29</td>\n",
       "      <td>12</td>\n",
       "      <td>29</td>\n",
       "      <td>12</td>\n",
       "      <td>0.707317</td>\n",
       "      <td>0.707317</td>\n",
       "      <td>0.707317</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>HOU</td>\n",
       "      <td>2017</td>\n",
       "      <td>reg</td>\n",
       "      <td>1610612745</td>\n",
       "      <td>82</td>\n",
       "      <td>65</td>\n",
       "      <td>17</td>\n",
       "      <td>41</td>\n",
       "      <td>41</td>\n",
       "      <td>34</td>\n",
       "      <td>7</td>\n",
       "      <td>31</td>\n",
       "      <td>10</td>\n",
       "      <td>0.792683</td>\n",
       "      <td>0.829268</td>\n",
       "      <td>0.756098</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   team_abbr  season season_type     team_id  games  wins  losses  home  road  \\\n",
       "0        POR    2017         reg  1610612757     82    49      33    41    41   \n",
       "1        LAC    2017         reg  1610612746     82    42      40    41    41   \n",
       "2        SAC    2017         reg  1610612758     82    27      55    41    41   \n",
       "3        MIA    2017         reg  1610612748     82    44      38    41    41   \n",
       "4        MIN    2017         reg  1610612750     82    47      35    41    41   \n",
       "5        ORL    2017         reg  1610612753     82    25      57    41    41   \n",
       "6        PHI    2017         reg  1610612755     82    52      30    41    41   \n",
       "7        OKC    2017         reg  1610612760     82    48      34    41    41   \n",
       "8        NOP    2017         reg  1610612740     82    48      34    41    41   \n",
       "9        CHI    2017         reg  1610612741     82    27      55    41    41   \n",
       "10       CLE    2017         reg  1610612739     82    50      32    41    41   \n",
       "11       BOS    2017         reg  1610612738     82    55      27    41    41   \n",
       "12       DAL    2017         reg  1610612742     82    24      58    41    41   \n",
       "13       IND    2017         reg  1610612754     82    48      34    41    41   \n",
       "14       LAL    2017         reg  1610612747     82    35      47    41    41   \n",
       "15       WAS    2017         reg  1610612764     82    43      39    41    41   \n",
       "16       UTA    2017         reg  1610612762     82    48      34    41    41   \n",
       "17       ATL    2017         reg  1610612737     82    24      58    41    41   \n",
       "18       BKN    2017         reg  1610612751     82    28      54    41    41   \n",
       "19       DET    2017         reg  1610612765     82    39      43    41    41   \n",
       "20       NYK    2017         reg  1610612752     82    29      53    41    41   \n",
       "21       DEN    2017         reg  1610612743     82    46      36    41    41   \n",
       "22       SAS    2017         reg  1610612759     82    47      35    41    41   \n",
       "23       MIL    2017         reg  1610612749     82    44      38    41    41   \n",
       "24       PHX    2017         reg  1610612756     82    21      61    41    41   \n",
       "25       TOR    2017         reg  1610612761     82    59      23    41    41   \n",
       "26       MEM    2017         reg  1610612763     82    22      60    41    41   \n",
       "27       CHA    2017         reg  1610612766     82    36      46    41    41   \n",
       "28       GSW    2017         reg  1610612744     82    58      24    41    41   \n",
       "29       HOU    2017         reg  1610612745     82    65      17    41    41   \n",
       "\n",
       "    home_wins  home_losses  road_wins  road_losses   win_pct  home_win_pct  \\\n",
       "0          28           13         21           20  0.597561      0.682927   \n",
       "1          22           19         20           21  0.512195      0.536585   \n",
       "2          14           27         13           28  0.329268      0.341463   \n",
       "3          26           15         18           23  0.536585      0.634146   \n",
       "4          30           11         17           24  0.573171      0.731707   \n",
       "5          17           24          8           33  0.304878      0.414634   \n",
       "6          30           11         22           19  0.634146      0.731707   \n",
       "7          27           14         21           20  0.585366      0.658537   \n",
       "8          24           17         24           17  0.585366      0.585366   \n",
       "9          17           24         10           31  0.329268      0.414634   \n",
       "10         29           12         21           20  0.609756      0.707317   \n",
       "11         27           14         28           13  0.670732      0.658537   \n",
       "12         15           26          9           32  0.292683      0.365854   \n",
       "13         27           14         21           20  0.585366      0.658537   \n",
       "14         20           21         15           26  0.426829      0.487805   \n",
       "15         23           18         20           21  0.524390      0.560976   \n",
       "16         28           13         20           21  0.585366      0.682927   \n",
       "17         16           25          8           33  0.292683      0.390244   \n",
       "18         15           26         13           28  0.341463      0.365854   \n",
       "19         25           16         14           27  0.475610      0.609756   \n",
       "20         19           22         10           31  0.353659      0.463415   \n",
       "21         31           10         15           26  0.560976      0.756098   \n",
       "22         33            8         14           27  0.573171      0.804878   \n",
       "23         25           16         19           22  0.536585      0.609756   \n",
       "24         10           31         11           30  0.256098      0.243902   \n",
       "25         34            7         25           16  0.719512      0.829268   \n",
       "26         16           25          6           35  0.268293      0.390244   \n",
       "27         21           20         15           26  0.439024      0.512195   \n",
       "28         29           12         29           12  0.707317      0.707317   \n",
       "29         34            7         31           10  0.792683      0.829268   \n",
       "\n",
       "    road_win_pct  \n",
       "0       0.512195  \n",
       "1       0.487805  \n",
       "2       0.317073  \n",
       "3       0.439024  \n",
       "4       0.414634  \n",
       "5       0.195122  \n",
       "6       0.536585  \n",
       "7       0.512195  \n",
       "8       0.585366  \n",
       "9       0.243902  \n",
       "10      0.512195  \n",
       "11      0.682927  \n",
       "12      0.219512  \n",
       "13      0.512195  \n",
       "14      0.365854  \n",
       "15      0.487805  \n",
       "16      0.487805  \n",
       "17      0.195122  \n",
       "18      0.317073  \n",
       "19      0.341463  \n",
       "20      0.243902  \n",
       "21      0.365854  \n",
       "22      0.341463  \n",
       "23      0.463415  \n",
       "24      0.268293  \n",
       "25      0.609756  \n",
       "26      0.146341  \n",
       "27      0.365854  \n",
       "28      0.707317  \n",
       "29      0.756098  "
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nba1718.team_records"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Simple Elo Ratings\n",
    "\n",
    "Now we are ready to implement the simple Elo system as described in [this post](http://practicallypredictable.com/2018/04/15/elo-ratings-for-nba-teams/).\n",
    "\n",
    "The Elo home team win probability formula is:\n",
    "\n",
    "$$P(\\textrm{Home team wins}) = \\frac{1}{1 + 10^{-\\frac{(H-R+A)}{400}}}$$\n",
    "\n",
    "The win probability for the road team is just $1 - P(\\textrm{Home team wins})$.\n",
    "\n",
    "The function below computes the win probabilities for both the home and road teams. The function takes a parameter defining the value of home court, expressed in units of Elo rating points. As described in the main post, this function actually uses the more convenient Elo formula in terms of odds:\n",
    "\n",
    "$$P(\\textrm{Home team wins}) = \\frac{ah}{r + ah}$$\n",
    "and\n",
    "$$P(\\textrm{Road team wins}) = \\frac{r}{r + ah}$$\n",
    "where\n",
    "$$h = 10^{\\frac{H}{400}} \\\\ r = 10^{\\frac{R}{400}} \\\\ a = 10^{\\frac{A}{400}}$$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "def win_probs(*, home_elo, road_elo, hca_elo):\n",
    "    \"\"\"Home and road team win probabilities implied by Elo ratings and home court adjustment.\"\"\"\n",
    "    h = math.pow(10, home_elo/400)\n",
    "    r = math.pow(10, road_elo/400)\n",
    "    a = math.pow(10, hca_elo/400)\n",
    "    denom = r + a*h\n",
    "    home_prob = a*h / denom\n",
    "    road_prob = r / denom\n",
    "    return home_prob, road_prob"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will also look at Elo ratings in terms of odds. This function computes the odds on the home team. The odds on the road team are just the reciprocal of the home team odds."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "def home_odds_on(*, home_elo, road_elo, hca_elo):\n",
    "    \"\"\"Odds in favor of home team implied by Elo ratings and home court adjustment.\"\"\"\n",
    "    h = math.pow(10, home_elo/400)\n",
    "    r = math.pow(10, road_elo/400)\n",
    "    a = math.pow(10, hca_elo/400)\n",
    "    return a*h/r"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's test our our functions, and examine some basic properties of the Elo ratings system.\n",
    "\n",
    "If two teams have the same Elo ratings, and there is no home court advantage, the win probabilit should be 50%."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(0.5, 0.5)"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "win_probs(home_elo=1500, road_elo=1500, hca_elo=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This is the same as saying that the odds on a team winning are 1:1."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1.0"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "home_odds_on(home_elo=1500, road_elo=1500, hca_elo=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Using the standard Elo scaling parameters, a 400 point ratings differential in favor of the home team should multiply the odds on the home team winning by 10."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "10.0"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "home_odds_on(home_elo=1900, road_elo=1500, hca_elo=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Expressing this shift in the odds in terms of probability, we see that the home team win probabilty is now almost 91%."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(0.9090909090909091, 0.09090909090909091)"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "win_probs(home_elo=1900, road_elo=1500, hca_elo=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Only the difference in the ratings matter for the Elo system. For example, 2000 versus 1600 is the same as 1900 versus 1500."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "10.0"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "home_odds_on(home_elo=2000, road_elo=1600, hca_elo=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(0.9090909090909091, 0.09090909090909091)"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "win_probs(home_elo=2000, road_elo=1600, hca_elo=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A 400 point ratings differential in the other direction (in favor of the road team) divides the odds on the home team winning by 10."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.09999999999999999"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "home_odds_on(home_elo=1100, road_elo=1500, hca_elo=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now the road team has a probabilty of almost 91% of winning the game."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(0.0909090909090909, 0.9090909090909091)"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "win_probs(home_elo=1100, road_elo=1500, hca_elo=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Plotting the Elo Ratings Logistic Function\n",
    "\n",
    "The probability assumptions used in the Elo rating system mean that the win probabilities are computed using a version of the [logistic function](https://en.wikipedia.org/wiki/Logistic_function).\n",
    "\n",
    "Let's see what this function looks like for the specific parameters used in Elo ratings. The plot below doesn't include any adjustment for home court advantage."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(240,)"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x = np.linspace(-1200, 1200, 240)\n",
    "x.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "vec_win_probs = np.vectorize(win_probs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(240,)"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "y = vec_win_probs(home_elo=x, road_elo=0, hca_elo=0)[0]\n",
    "y.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAG3CAYAAACKQDBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4HNW9xvHvrnq3bEvuvRzcARuwTe8lQKghCS0QCAkBElo6Kdwk5FJTbkjBtAChBDDddEyxARfcwPZxly1ZtmVbvWt37h8zJrItyZKt3dmV3s/z6NHO7OzsTzra3VdnzpwJOI6DiIiIiERH0O8CRERERLoThS8RERGRKFL4EhEREYkihS8RERGRKFL4EhEREYkihS8RERGRKEr0uwCReGGMeR2YZa39k7c8GrDAHdban3nr8oFNQD7wJHCLtXZ5O/c/FFgLLGu2OgD8yVr7UAdrnQ38n7X22Q485tdAb2vtdS3c9xpwC+7P9X/W2vHGmNuBNdbafxljfgkssda+2JE6Y1Er7bDL4cA3gQustWd2YJ+/Br4PFHmrAkA2MBO42Vrb6pw/xpgcYKa19gRveTFwnLW2rL3P38a+HwFOBkq8VcnAB8CvrbVbjDH9gWettdONMdnALKAHcBswBrgGeNtae+WB1iLSnSh8ibTfLOB44E/e8lnAy8BXgZ95604A5lhry4Ez9uM5aq21B+9aMMYMAD43xiyw1i7d78oPkLX2DK+e/GbrftlskxOAdoXMOLFbOzRnjNnffT7dPNgaY3KBpcAb3ldrcnFDHwCt1XUA7rPW3u3VFAB+CrxujJlsrd0MTPe2OxjoY60d6W27DvimtfajTq5HpMtT+BJpv1nAr4wxQWttGDd8/Qx4yhgzwlq7FjgReBXAGLMBuADIBH4HrAPGA0nANdbaOft6QmttkTFmNTDaGHMo8G0gAyi31h5vjLkN+AbQBKwCrrPWbvEefq4x5idAOvCEtfZ3Xl0/ww2Mad6+brHWzvQeM8YY8wHQE1gEXGutrWz2s3zJ6zX5HKgFpgB3GWNSgP8DjrDWrvK2exv4S/NeMWPMv4GF1tp7vOXv4fbmXGSMOQv4BW4vTI1X38de79E0oD+wBPgt8CCQituTNMNae/+ePXjNl40x53n7DgMh4FZr7Qf7aofWGGMGAn8Dhno1PGqtvaudD++D2zal3r6uxO1JSsb9/f/BWvs34GEgzevxmozb1nnAmcC53s8yCvd3dbm1doUxZiTwkLefYq+2x621j7RVkNcD93tjzLeAk40xK3HbeLK3vwFeHRYYCDzo9Xq+jvtPyQTcv+93cH+3TcaYeuBFYBJwMVDtbdsLSAD+bK19yBhzHK28TowxmcBfgCO9n/8F4OfeNv8LHOvtaxFwg7W2on1NIOIPjfkSaScvTJQCE71eCwN8ArwGnO1t9mX42sMRwD3W2kNwP0x/357nNMZMA0YCn3qrxuGGlOONMVcApwOHWWsn4n5IPtLs4dnAVO/rEmPM6caYIcBJ3j4m4n6A3d7sMSOB83E/RAO4QaVN1tq/AgtwP2yfAB4FrvLqHwGMBl7Z42EPAN9qtvwt4AFjzCjc380Z3u/qO8DzxpgMb7shwCHW2kuAW4GXrbWTcXsZjzHG7Os97S7cQDkF99DZca1sl2aMWbzH119b2O4J4D1r7QTcYHCJMebrrezzIm8/q40xO3DDxDXW2nleuLi62c99EXCn97gr8HrirLWhPfZ5LHC9tXY87t/IT7z1jwFPeutvwA2tHbEE928AAGutxW3TtV4dFwGbgYuttU8D9+GG6cnAIUBv4Cbv4cm47WSAxcCzwE+8bY8FbjHGTPW2be11cjtuyB6D2wN3pPfYn+CGscnW2kleTX/o4M8qEnXq+RLpmFm4H9jbgLestWFjzCvA940xMwHHWruyhccVWGsXe7c/Y/fg0dyuHg5wX5/bcT/gNnmHu5Y2+6/+dOBha221t/wn4OfGmGRveYa1tgmoMMY8C5xsrZ1ljLkMuNjrHZmK2zO3y/PW2hIAY8zDuGHlx+34vTR3P/CBMebnuOFpRguhYTaQaoyZgttjk4fbW/I9oB/wTrPDe2HcUAjwifczgTte6l/GmMOBt3F7PML7OCz4FDDTGPMq8Bb/DTh7avWw4y5eIDwSOAXAWlvu9Qae7j3Pnp72et+ScXsHx+IetsZaW2WMORP4ihdAD2b3dmnNQmttoXf7M+A87x+Dw4FjvH2vMMa80459Nefgtkt7nQkcboz5trectsf9H3rfRwMjgIeatVMabmBbQeuvk5OAm7y/oxBu8MIYcyfuGLSTvf0l4742RWKawpdIx8zCPfRXh3voA9zQMAP3A6KlXi9wD83t4uD2KrW43T4+9Kua3U7w9rVLEPc1vWvfoT3ua/QOXb6I21PxJvA+7mEzWntMG7W0yFq7yhizFPfQ5jdxezP23MYxxjwIXAbUAw966xKAd7yeFQCMMYNwezTOpdnPb619xQsqJ+P2OP7KGDOZvX+/yc0e83NjzEPeY74F3Eyz8VQdFGTvdgziHgprlbW2wRhzHbAQN9ze4B2+/Bj4J/ARbu9Qewb0t/R3tSucNq9tz/DbKm/c12TcgNheCcCF1toV3j56sPvfZlWz7cr3GNfYByjH/UegtddJU/P9eX8TNd7+fmCtneWtz8TtIROJaTrsKNIx7+H2ShyLN0jaWluL+0F6Ha2Hr0h4Hbiy2SG5G4APrLX13vJlxpiA1xPyNW/7Y4AF1tp7cYPXObgfYLucbYzJ9ULQ1bhhsz2a2D10/BU3WMzzBm235BHcw7UX4h5iAjfInmKMOQjAGHMG7qD0PXtSdo0bu8ha+xRwLVCB26tSAkz2fvYsvBBjjEn0xq6lW2v/7j1mojdOrcOstZW4h52/7+0/BzdMvtWOxzbg9vJda4w5BHfMXAnuOLY3m9WcgPu7TfBCUXvrmoN7uBJjzDDccNrqGZW7eM/3S2B7B8fCvQHc6P3OU4CXcF8Pe5UH1BpjLvGebxD/HVPWlreBy40xQW//z/Lf1+B1xphk75DzA8AdHahbxBcKXyIdYK2tAVa7N215s7texR30PDuK5TyI+6E0zxizAjgUd0DzLuW4oXAu7oD393Cnv+jtbb8ct0eipxdS8Na9gjvNQhntHz/zEnCHMeZyb/kV3MNmf2/tAd6JAZ/hHkrd7K1bjnuo8iljzBLgf4CzrbVVLezif3APny7BHe80E3eahCdwg8xqr473vX03AT8E/m2M+Qz4D3Bls7DaXEtjvhYbY/bslbwYONEYswyYBzzP7uPuWuWdJfgEblB9CyjEDScrgMHezzASd8D8POALY0yv9uwbNwR+zfvd/BVYT+uHEW/0frZFuAPWB9PxM3VvwD15YxluWF5GC4d0vdD5VeAqr3f0TeC2dpx88hugAXcs2iLgNWvt87h/Axu8dctxe8pu7mDtIlEXcJx9/jMkItIh3okCM4Dxbc1hJZHhjbd7zlq70uuRWwqcbts555yIRJbGfIlIpzLGPIp7UsJFCl6+WQU8bYwJ477P/0HBSyR2qOdLREREJIo05ktEREQkihS+RERERKJI4UtEREQkiuJmwH1JSaUGpzWTm5tOaWlHJqCWaFMbxQe1U3xQO8U+tdHu8vKyWp2bTz1fcSoxMWHfG4mv1EbxQe0UH9ROsU9t1H4KXyIiIiJRpPAlIiIiEkUKXyIiIiJRpPAlIiIiEkUKXyIiIiJRpPAlIiIiEkUKXyIiIiJRpPAlIiIiEkUKXyIiIiJRpPAlIiIiEkUKXyIiIiJRpPAlIiIiEkURDV/GmCOMMbNbWH+WMWa+MeZjY8zVkaxBREREJJZELHwZY34EzABS91ifBNwHnAIcC3zHGNM3UnWIiIiIxJLECO57LXAe8Nge68cAa6y1pQDGmI+Ao4H/RLAWERERiXGO49AUdmgIOYTCDiHH+wrvWoamsEPYW9fkbRP21oe8+3atD4X573687wDHDM2lR2qSbz9nxMKXtfY5Y8zQFu7KBsqbLVcCOfvaX25uOomJCZ1UXdeQl5fldwmyD2qj+KB2ig9qp8gKhx2qG0LUNIaobQxR0+B932053PK6Jne5oSlMQ8ihIRT2boeb3XbXN4Za28ZdFw0/Pn4kfzhzTFSeqyWR7PlqTQXQ/BWUBZTt60GlpTURKyge5eVlUVJS6XcZ0ga1UXxQO8UHtVPbwo5DeV0TpbWN7KxtpMy7XVEfoqqhiaqGEJX1u763sK4hRHVDKGL1BYCUxCBJCQGSg973hCAZSUFyUxNJCgZISgiSnOB+TwoGSAwGCAYCJAT57+2Auz4hGCAYcNcnBNzlhOB/7w8GIKH5Pr58HCQlBDl1ZK+I/z219c+CH+FrBTDKGNMTqAKOAe72oQ4REZGYFHYcdtY2sq2qgW3Vzb6qGthe00hZXSOltY2U1rohq6yuCaeDz5GaGCQzOYGslETyMpLJSk4gIzmB9KQEUhODpCYlkJYYJC0pSGqiezs1KUhaYoK3zr2d6t3un5dFVUUtyQl7h6yEYCAiv6d4FbXwZYz5JpBprf2nMeYm4A3cAf8PWWuLolWHiIiIn8KOQ0l1A4UV9RRV1FFY7n2vqGdzZR1bqxooqW4gtI80lRQMkJuWRJ/MZEzvDHLTkshNS/S+J5Gbmkh2SiJZKQlkJCeS5QWtzOQEMpMTSEro3HPu8vKyKNEEVu0ScJyOZmV/lJRUxkehUaIu+NinNooPaqf4EG/t1BgKs6m8jrU7a1lXWsPanbWs3VnDxvI6NlfU0xhu+SMtLTFIfmYy+RneV/Pb3nLv9GRy0xLJSEogEIidHqV4a6NIy8vLarVx/DjsKCIi0iXUNoZYtaOGFduqWF5SzdqdNawrraWgrI6mFgJWXkYSE/pkMjAnlQHZKQzM3v17z7SkmApUEhkKXyIiIu2wo6aBxcWVLNlSyfKSalZ4YWvPjNUzLZGD+2UxPDeNET3TGZ6bxvCeaQzLTSMzWR+7ovAlIiKyl5rGEEu3VLK4uJJFxZV8VlxBQVndbttkpyRw+IAcxuZnMCYvkzF5GYzqlU5umn/zR0l8UPgSEZFur7ohxPyicuZuLGPupjIWba7cbVxWz7REThzek0P6ZXFwvyzG5WfSPytFhwhlvyh8iYhIt9MUDjO/sIJ31+9kzsYyFhdXfjlGKyEAk/pmcdiAHA7tn8Uh/bMZkpOqoCWdRuFLRES6he01DbyzdifvrNvBe+tKKa9vAtywdXC/LKYP7sH0QT04fGAOWSn6eJTI0V+XiIh0WQVltby4YhuzVm/ns82VX05EOig7hfPG5XPS8F5MG5RDpsKWRJH+2kREpEsprqznpZXbeGHFNhZuduedSgjA1EE5nDSiFyeP6IXpna7DiOIbhS8REYl7FXVNzFyxjZnLt/LxpnIcIBiAY4fmcu6YfE4f3VtnIUrMUPgSEZG45DgO84oqeGJJMS+t3EZNYxiAqQNzOGdsPmeaPPIzkn2uUmRvCl8iIhJXqhqaeObzrTz8WRF2ew0AQ3qkcvHEflw4vg8DslN9rlCkbQpfIiISFzaV1/HgwiKeWFJMeX0TyQkBzh2Tz8WT+nHUkB4ENYZL4oTCl4iIxLQVJVX84I3VPL24iLADvdOTuPWooVx+SH8dVpS4pPAlIiIxaXFxBffN3cis1dsBGJuXwfcOH8Q5Y/JJSQz6XJ3I/lP4EhGRmPL51ip+/8E63l67E4DJ/bP49eljOLx3mqaHkC5B4UtERGJCQVktf/hwPc9/sQ0HmDYoh5uPHMrRQ3qQn59NSUml3yWKdAqFLxER8VVZXSN3f7SBhz/bTGPYYXx+Jr84bjjHD8tVT5d0SQpfIiLii7Dj8O+lxfxu9np21DYypEcqPz1mGOeMydeZi9KlKXyJiEjUfba5gp++tZpFxZWkJwW57bjhXHPYQJITNJBeuj6FLxERiZqqhiZ+N3s9D31WhAOcNzafXx0/gn5ZKX6XJhI1Cl8iIhIVs9fv5OZZlk0V9Yzulc5dp45m2uAefpclEnUKXyIiElHldY386t21/HvpFhICcOP0wdw4fQipiQl+lybiC4UvERGJmE8Ly/neS8sprKhnfH4mfzrDMKFvlt9lifhK4UtERDpdUzjMfXM3cs+cDQDcfOQQbpo+hCQNqBdR+BIRkc61qbyOa19ewaeF5QzMTuH+s8YwdZDGdonsovAlIiKdZvb6nVzz4nJK65o4+6A87j5tND1Sk/wuSySmKHyJiMgBcxyHv3y6id+/v47EYIC7TxvNpZP6aYZ6kRYofImIyAGpqm/iB69ZXrYl9MtK5qFzxzO5f7bfZYnELIUvERHZbxvLarnk2WWs3F7DtEE5PHDOOPIzkv0uSySmKXyJiMh+WVxcwcXPLqOkupGrJg/gNyeM0NmMIu2g8CUiIh32xurtXPPScuqawvz+pJFcNWWg3yWJxA2FLxER6ZAHFxbx87dXk5IQ5JHzxnPaqN5+lyQSVxS+RESkXRzH4c6PNnDPnAJ6pyfxxIUTOKSfBtaLdJTCl4iI7JPjOPzy3bX8Y34hQ3uk8p+vT2JIjzS/yxKJSwpfIiLSplDY4UdvruKxxcWY3un856JJ9M1K8bsskbil8CUiIq1qCoe5/tWVPPfFNib0yeSZiybSK11TSYgcCIUvERFpUSjscO3LK3hhRQlTBmTz5IUTyNGlgkQOmMKXiIjsJew4/PC1lbywooQjBubw5NcmkJmsjwyRzqDZ8EREZDeO4/DjN1fz9OdbObRfFv++UMFLpDMpfImIyJd2ndX46KLNjM/P5KmLJpKVouAl0pkUvkRE5Ev/++EG/jG/kNG90nnm6xPpoTFeIp1O4UtERAB4dNFm7p1bwJAeqTz79Un01lmNIhGh8CUiIry5Zjs/fnMVvdKSePqiiZrHSySCFL5ERLq5zzZX8J0Xl5OSEOTxCycwPDfd75JEujSNohQR6cbWl9ZyybPLqGsK8+h545ncX9dqFIk0hS8RkW6qrK6RbzyzlO01jdx16mhOHdXb75JEugUddhQR6YaawmGufmE560pruX7qIC4/pL/fJYl0GwpfIiLd0O3vreP9DaWcOrIXPz92uN/liHQrCl8iIt3M08u28HdvLq/7zxpDMBDwuySRbkXhS0SkG1m4uYJbXrfkpCTyr/PHa/Z6ER/oVSci0k1srarnW89/TmPY4dGvjmV4T00pIeIH9XyJiHQDobDD915awdaqBm47bjgnDO/pd0ki3ZbCl4hIN3D3nA18tLGM00f15trDB/ldjki3pvAlItLFzV6/k3vnFDA4J5U/fcUQ0AB7EV8pfImIdGFbKuu59uUVJAYDPHDOWHqkJvldkki3pwH3IiJdVFM4zHdfWs72mkZ+d9JIDumnSweJxAL1fImIdFH3zilg7qZyzjS9uWryAL/LERGPwpeISBe0cHMF980tYGB2CvedrnFeIrFE4UtEpIupamji2pdXEHbg/84cQ47GeYnEFIUvEZEu5lfvrmV9aS3XHjGI6YN7+F2OiOxB4UtEpAt5Y/V2HltczLj8DH5y9DC/yxGRFkTsbEdjTBC4H5gE1ANXWWvXNLv/FuAbQBj4vbV2ZqRqERHpDkqqG7hxliUlIcD9Z40hJVH/X4vEoki+Ms8BUq2104CfAPfsusMY0wO4AZgGnAL8MYJ1iIh0eY7jcMvrq9he08jPjx3OmLxMv0sSkVZEMnwdBbwOYK39BJjS7L5qoADI8L7CEaxDRKTLe3FlCbNWb2f6oBy+c9hAv8sRkTZEMnxlA+XNlkPGmOaHOTcBy4HPgD9HsA4RkS5tR00DP3trNWmJQe49wxDUtBIiMS2SM9xXAFnNloPW2ibv9ulAP2DXaNA3jDFzrLXzWttZbm46iYkJkak0TuXlZe17I/GV2ig+xHs7/fDxz9he08jdZ43liNF9/C4nYuK9nboDtVH7RDJ8zQHOAp4xxkwFljW7rxSoBeqttY4xpgxo83zo0tKaiBUaj/LysigpqfS7DGmD2ig+xHs7vblmO/9eVMSh/bK4eExeXP8sbYn3duoO1Ea7ayuIRjJ8zQRONsbMBQLAFcaYm4A11tqXjDEnAZ8YY8LAR8BbEaxFRKTLqahr4tY3VpEUDHDfGYaEoA43isSDiIUva20Y+O4eq1c2u/9XwK8i9fwiIl3db2avpbiygVuPGqqzG0XiiCaBERGJQ58WlvPY4mLG5GXwg2mD/S5HRDpA4UtEJM40hcP86I1VANx16miSE/RWLhJP9IoVEYkzMxYUsaKkmosn9uXwgTl+lyMiHaTwJSISR4or6/nfjzaQm5rIL44b7nc5IrIfFL5EROLIL99ZQ3VDiNuOH06v9GS/yxGR/aDwJSISJ95bv5MXV5YwuX8235zYz+9yRGQ/KXyJiMSB+qYwP31zNcEA3HnqKF1CSCSOKXyJiMSBf8zfxLrSWr596AAm9NElXETimcKXiEiM21pVz30fb6RXWhI/Onqo3+WIyAFS+BIRiXF3fLCe6oYQPz5mKDmpSX6XIyIHSOFLRCSGLd1SyZNLtzAmL4NLJmmQvUhXoPAlIhKjHMfh52+vwQF+e+JIEoN6yxbpCvRKFhGJUS/bEj4tLOe0Ub04emiu3+WISCdR+BIRiUG1jSF+8+5akoIBfn3CCL/LEZFOpPAlIhKD/rmgkE0V9XznsIEMz033uxwR6UQKXyIiMWZHTQN//mQjPdMSuXHaEL/LEZFOpvAlIhJj/jh3I5X1IW6aPpTs1ES/yxGRTqbwJSISQwrKannosyIG56Ry+SH9/S5HRCJA4UtEJIbc8cF6GsMOPz1mGCmJeosW6Yr0yhYRiRHLtlTy/PJtTOiTyblj8/0uR0QiROFLRCRG3D57HQC3HTecYCDgczUiEikKXyIiMWD2+p28v6GUY4fmctywnn6XIyIRpPAlIuIzx3H4bbNeLxHp2hS+RER89tqq7SzdWsU5Y/KY2DfL73JEJMIUvkREfBR2HO78aAPBANx61FC/yxGRKFD4EhHx0YsrtrGipJoLxvVhVK8Mv8sRkShQ+BIR8UlTOMydH20gMRjg5iOH+l2OiESJwpeIiE+e/Xwra3fW8o2JfRmWm+Z3OSISJQpfIiI+aAiFuXtOAckJAW6arotni3QnCl8iIj54cukWNpbXcfnB/RmQnep3OSISRQpfIiJRVt8U5r65BaQlBrlh2mC/yxGRKFP4EhGJsieXFbO5sp5vHdqfPpkpfpcjIlGm8CUiEkUNoTB//ngjqYlBvn+Eer1EuiOFLxGRKHrm8y0UVtRz+cH9yc9I9rscEfGBwpeISJQ0hsL8ce5GUhICfP+IQX6XIyI+UfgSEYmS577YysbyOi6e1I++WRrrJdJdKXyJiERBUzjMHz/eSFIwwPVTNdZLpDtT+BIRiYIXVpSwrtSdzV7zeol0bwpfIiIRFgo73De3gMRggBvU6yXS7Sl8iYhE2KurSli9o4avje/D4B66hqNId6fwJSISQY7j8OePNxIA9XqJCKDwJSISUR8UlLJ0axVnmjyG90z3uxwRiQEKXyIiEfTnjzcCcP1UzeslIi6FLxGRCFlUXMGHBWUcMzSXg/tl+12OiMQIhS8RkQj5yydur5fGeolIcwpfIiIRsGZHDa/a7RzcN4ujh/TwuxwRiSEKXyIiEfDXTzfiANdPHUwgEPC7HBGJIQpfIiKdrLiynmc+38qInmmcMbq33+WISIxR+BIR6WR/n7+JxrDDdUcMJiGoXi8R2Z3Cl4hIJyqra+Rfi4vpm5nMBeP6+F2OiMQghS8RkU708GebqW4Icc1hA0lJ1FusiOxN7wwiIp2kpjHEAwsKyUlJ5LKD+/tdjojEKIUvEZFO8uTSLWyvaeTKyf3JSkn0uxwRiVEKXyIinSAUdvj7/E2kJAS4avJAv8sRkRim8CUi0gleX72dgrI6vja+L3kZyX6XIyIxTOFLRKQT/G3+JgCuOUy9XiLSNoUvEZEDtHBzBfMKKzhpRE9G987wuxwRiXEKXyIiB+gfXq/Xdw8b5HMlIhIPFL5ERA7ApvI6Xl5Zwrj8DF1AW0TaReFLROQAPLCgkJDj9nrpAtoi0h4KXyIi+6mironHlxTTJzOZc8fm+12OiMSJiM0CaIwJAvcDk4B64Cpr7Zpm958O/Mpb/Az4vrXWiVQ9IiKd7YmlxVQ1hPjBtMEkJ+h/WRFpn0i+W5wDpFprpwE/Ae7ZdYcxJgu4CzjTWjsV2AD0jmAtIiKdqikc5oEFhaQnBXUpIRHpkEiGr6OA1wGstZ8AU5rdNx1YBtxjjPkQ2GqtLYlgLSIineoVu53Cinq+PqEvuWlJfpcjInFkn+HLGPOaMeZCY0xHp2zOBsqbLYeMMbsOc/YGjgd+DJwO/NAYM7qD+xcR8YXjOPxt3iYCwHc0qaqIdFB7xnz9L3AZcJcx5lXgEWvt/HY8rgLIarYctNY2ebd3APOttVsAjDEfAAcDq1rbWW5uOomJCe142u4jLy9r3xuJr9RG8aGj7fTRuh0sKq7knPF9OWJ0nwhVJXvS6yn2qY3aZ5/hy1r7PvC+MSYNuAB4zhhTAcwA/matrW/loXOAs4BnjDFTcQ8z7rIQGG+M6Q2UAVOBB9qqo7S0Zl+ldit5eVmUlFT6XYa0QW0UH/anne54y/0/8cpJfdXGUaLXU+xTG+2urSDarrMdjTHHAZcCpwCzgKeAk4GXgFNbedhM4GRjzFwgAFxhjLkJWGOtfckY81PgDW/bZ6y1n7enFhERPxWU1TJr1XYO7pvFEQNz/C5HROLQPsOXMaYAWAc8DFxnra311s8GFrT2OGttGPjuHqtXNrv/KdwQJyISNx7+bDMOcPWUAZpUVUT2S3t6vr6yZ6+UMWaqdwbjoZEpS0Qk9lQ3hHhiSTF5GUmcfZAmVRWR/dNq+DLGHAkkADOMMd/GPXQIkAT8DdDZiSLSrTy3fCvl9U3cPGUIKYmaVFVE9k9bPV8nA8cC/YDbm61vAv4RyaJERGKN4zjMWFBIYjDA5ZpUVUQOQKvhy1r7awBjzKXW2seiVpGISAyas7GMldtrOG9sPn2zUvwuR0TiWFuHHX/tBbATjDHH73m/tfbKSBYmIhJLZiwsAuDbkwcFZ3OtAAAgAElEQVT4XImIxLu2Djsu9L7PjkIdIiIxa1N5Ha+vdqeXmNI/2+9yRCTOtRW+lhhjBgPvRasYEZFY9PBnRYQdt9dL00uIyIFqK3y9Dzj89yzH5hxgeEQqEhGJITWNIR5fUkzv9CTOGaPpJUTkwLU14H5YNAsREYlFzy/fSlldEzdN1/QSItI59jng3hjzUEv3a8C9iHR1juPwwIIid3qJQzS9hIh0jvYMuH8/GoWIiMSajzeVs6KkmnPG5NFP00uISCdp67Djy973R40x+cARQCMwz1q7M0r1iYj45oEFhQB8e/JAnysRka5knwMYjDEXAouBy4FrgMXGmNMiXZiIiJ8Ky+uYtXo7E/tkcvgATS8hIp2nPRfW/gUw2VpbDGCMGQK8BLweycJERPz08CJ3eomrNL2EiHSy9py60whs2bVgrS3Avb6jiEiXVNsY4vHFxfRKS+KcsZpeQkQ6V1tnO17m3VwPvGyMeRQ3dH0DWBKF2kREfDFz+TZK65r44bTBpCYm+F2OiHQxbR123HU9xyrv6wxvuZqWJ14VEYl7juPwwMJCEgLwLU0vISIR0NbZjle0dp8xJi0y5YiI+OvTwnK+2FbN2Qfl0T871e9yRKQL2ueAe2PMWcBvgUzcHq8EIB3Ii2xpIiLR98CCIsAdaC8iEgntGXB/H/BDYAVwMfAU8HQkixIR8UNRRR2vrSphfH4mRwzM8bscEemi2hO+yqy17wGfADnW2h8DJ0S2LBGR6Htk0WZCml5CRCKsPeGr1hgzGrfn6zhjTDKQHNmyRESiq7YxxGOLN9MzLZFzNb2EiERQe8LXL3DHfL0CnAhsBV6IZFEiItH2wopt7Kxt4pJJ/UlL0vQSIhI5+xxwb619n/9eXPswY0yutbY0smWJiESP4zjMWFhEUNNLiEgUtOdsx4HAn4HjgAbgbWPMjdbakgjXJiISFfOKKli2tYozTW8G5mh6CRGJrPYcdnwIeBsYAowGFgIPR7IoEZFomrGgEICrJg/0uRIR6Q7ac2HtPGvt/c2W7zPGXB6pgkREoqmwrJZXbAlj8zKYNkjTS4hI5LWn52ueMebruxaMMWcCCyJXkohI9Pz94wJ3eokpml5CRKKjrQtrhwEHd1b7q40xDwIh3JnuS4GrolKhiEiE1DWF+OcnBfRITeS8sX38LkdEuomA4zh+19Au9957X4uFHnzwFCZMOBiAt9+eRXFx0V7b9OnTj1NO+QoAy5cvZeHCeS0+xze/eQUJCQmUlu7klVeeb3Gb4447mUGDhgDw7LNPUFtbu9c2xozl8MOnAzBnzvusW7d6r22ysrI555yvAbB+/Ro++mh2i8937rkXkZmZRV1dHf/5z+Nfrg8GA4TD7q/kiCOOZPToMQC8+upMdu7csdd+Bg0aynHHnQTAokXz+fzzJXttk5iYxDe+4R5R3rJlM2+99VqLNZ166lnk57sfVE888RDhcHivbSZOPJRJkw4F4N1336CoaNNe2/Tunc/pp58NwMqVXzB//sctPt/Xv34ZSUnJlJeX8dJLz7a4zTHHnMiQIcMAeP75p6iurtprm5EjDdOmHQ3Axx9/yJo1dq9tMjIyOe88t6O3oGA9H3zwTovPd/bZF5CT04PGxgaeeupfLW5zwgnHM2DACABmzXqJ7du37bXNgAGDOOGEUwFYsuQzli79bK9tgsEgF198JQDbtm3ljTdebvH5Tj75DPr2dc/Ue/LJR2lqatxrm/HjJ3HIIYcBMHv222zatGGvbXr27MVXvnIuAKtWreDTT+e0+HwXXngJqampVFVVMnNmyxe9OOqo4xg2bCQAL7zwDJWVFXttM3z4KI488lgA5s2bi7XL99omLS2NCy64GIBNmwqYPfutFp/vzDPPIze3J6FQiH//u+WhqZMnH87YsRMBmPHMs2zbtoWslAR6pCZ9uU2/fgM46aTTAVi2bDGLF7fc2X/ppe7/oDt2lPDaay+2uM2JJ55G//7uWLKnn36Mhob6vbYZM2Y8U6ZMBeDDD99lw4Z1e23To0cuZ511PgBr165i7twPWny+88//BunpGdTUVPPcc0+2uM306ccwYsRoAF5++TnKyvY+gX3o0OEcfbQ7n/aCBZ+wYsXne22TnJzCRRddCsDmzYW8887rLT7fGWd8lV693CvSPfbYjBa32dd7eTAYIC+vb5d7L28u3t/L8/Ky+PDDT7rce/lhh03joIPGAR17L7/pphtb7Upvz9mO6cCvcOf4SgTeBW6z1lbv67EiIrHKcRzWldaSCWQmt2f4q4hI59hnz5cx5iGgBvgn3iFI3MsMXRr58v6rpKQyPrrooiQvL4uSkkq/y5A2qI1i27zCcs58fBHnTujLP75ykN/lyD7o9RT71Ea7y8vL2v+eL2CytXZSs+XrjDF7HxcQEYkjDy50D2tdf9QwnysRke6mPWc7Bo0xPXYteLebIleSiEhkbams52Vbwpi8DI4b0cvvckSkm2lPz9e9uNNN7BrlezZwR+RKEhGJrEcWbaYp7PDtyZpeQkSirz3h62VgPnAsbk/ZedbaZRGtSkQkQuqbwvxr8WZyUhI5X9NLiIgP2hO+PrTWjgH2Ps9YRCTOvLhyG9trGrn28EFkJCf4XY6IdEPtCV9LjDGXAvOALydCsdZujFhVIiIR4DgOMxYUEQCuOLS/3+WISDfVnvB1hPfVnAMM7/xyREQiZ+HmChZvqeS0Ub0Y0iPN73JEpJvaZ/iy1uo8bBHpEmZ400tcNXmgz5WISHfW1rUd+wN3A+OAucBPrbVl0SpMRKQzba2q56WVJZje6Rw9pMe+HyAiEiFtzfP1MLAZ+BmQCtwXlYpERCLgUU0vISIxoq3DjgOstacCGGPeBBZHpyQRkc7VEArz6OLNZKckcME4TS8hIv5qq+erYdcNa21j82URkXjy4optlFQ38o2J/XQRbRHxXXsuL7SLLmwtInHHcRwe8KaX+PbkAX6XIyLS5mHHccaYdc2WB3jLAcCx1mqqCRGJeQuaTS8xVNNLiEgMaCt8jY5aFSIiETJjgTu9xNWaXkJEYkSr4ctaWxDNQkREOltxZT0v2xLG5GVwlKaXEJEY0ZExXyIiceWRRUU0hR2u0vQSIhJDFL5EpEuqawrxr0XF5KYmcr6mlxCRGNKuc66NMeOAnriD7QGw1n4QqaJERA7UzOXb2FHbyPVTB5GelOB3OSIiX9pn+DLG/BU4C1jHf6ebcIATIliXiMh+2zW9REIArjhE00uISGxpT8/XKYCx1tZGuhgRkc7wyaZyPt9WxVkmj4E5qX6XIyKym/aM+do1t5eISFx4YGEhAFdPUa+XiMSe9vR87QSWG2PmAnW7Vlprr4xYVSIi+2lTeR2vrdrOhD6ZHDEwx+9yRET20p7w9br3JSIS8x7+rIiwA1dPGajpJUQkJrUavowxfa21W4D3oliPiMh+q2kM8fiSYnqnJ3HOmDy/yxERaVFbPV8zgDOB93HPbgzs8V3XdhSRmPLsF1spq2vipulDSE3U9BIiEpvaCl/XAlhrh0WpFhGR/eY4DjMWFJIYDPCtQ/r7XY6ISKvaCl8fG2OqgDeBt4B3rbVV0SlLRKRjPiwoY+X2Gs4bm0/frBS/yxERaVWrU01YawcAZwALgXOA+caYD4wxtxljpkarQBGR9pixYNf0EgN9rkREpG1tnu1orV0LrAUeMcb0AL4K3Az8AtC/liISE9aX1vLGmh1M7p/F5P7ZfpcjItKmts52TASOAk4DTgXSgLeBXwLv7mvHxpggcD8wCagHrrLWrmlhm1eBF621f9/Pn0FEurmHFhbhAFdNVq+XiMS+tnq+SoG5wLPAudbaDR3c9zlAqrV2mneY8h7cnrPmfot7wW4Rkf1SUdfE40uL6ZuZzFkHaXoJEYl9bV1e6B9APnAlcIUx5kivp6q9jsKbnNVa+wkwpfmdxpgLgDAwq0MVi4g089iSzVQ3hLhqykCSEzryFiUi4o9We76stbcAGGP64R52vA541BizDHijHYcJs4HyZsshY0yitbbJGDMe+CZwAe5hzH3KzU0nUfP27CYvL8vvEmQf1EaR1RgK89CizWQkJ3DTiaPITU/er/2oneKD2in2qY3aZ5+XF7LWFhtj/g2sBo4ELgOOAPYVviqA5q0QtNY2ebcvAwbgjh0bCjQYYzZYa1u9jFFpac2+Su1W8vKyKCmp9LsMaYPaKPJmLt/KprI6rpo8gKbqekqq6zu8D7VTfFA7xT610e7aCqJtDbg/GzdsHYU7m/0nuGHpImvtF+143jnAWcAz3pivZbvusNb+qNnz/BrY0lbwEhHZk+M4/G1eIQE0vYSIxJe2er6uww1bPwQWWmvDHdz3TOBkY8xc3EsSXWGMuQlYY619ab+qFRHxfFpYzuItlZwxujfDctP8LkdEpN3aGvN1yoHs2Atr391j9coWtvv1gTyPiHRP98/bBMD3Dh/kcyUiIh2jU4NEJO6s21nDG6t3cGi/LA4foElVRSS+KHyJSNz554JCHNxer0Ag4Hc5IiIdovAlInGltLaRp5ZtYVB2Cl8xvf0uR0SkwxS+RCSu/GvxZmoaw1w9ZSCJQb2FiUj80TuXiMSNhlCYGQuLyExO4OJJ/fwuR0Rkvyh8iUjcmLl8G1urGrhkUj+yUvY5R7SISExS+BKRuOBOqrqJhIAmVRWR+KbwJSJx4b31O1leUs3ZB+UzKCfV73JERPabwpeIxIU/f7wRgOumalJVEYlvCl8iEvPmF5Uzd1M5JwzvyYQ+rV+sVkQkHih8iUjM+8snbq/XDVMH+1yJiMiBU/gSkZhmt1fz+uodTO6fzbRBOX6XIyJywBS+RCSm/fVT9wLaN0wdrEsJiUiXoPAlIjGrqKKOZ7/Yyuhe6Zw6qpff5YiIdAqFLxGJWX+fV0hT2OG6qYMJqtdLRLoIhS8RiUk7axt5bMlm+melcN7YfL/LERHpNApfIhKTHlxYRE1jmO8dPpDkBL1ViUjXoXc0EYk51Q0hZiwoJDc1URfQFpEuR+FLRGLOE0uKKa1r4tuTB5CZrAtoi0jXovAlIjGlIRTmb/M3kZ4U5NuTB/hdjohIp1P4EpGY8twXWymqqOfiif3olZ7sdzkiIp1O4UtEYkZTOMx9cwtITgjw/SN0AW0R6ZoUvkQkZjy/fBsbyur4xsR+9M9O9bscEZGIUPgSkZgQCjvcN7eAxGBAF9AWkS5N4UtEYsJLK7exdmctF43vw6Ac9XqJSNel8CUivgs7DvfOLSAhADdMG+J3OSIiEaXwJSK+e9WWYLfXcMG4PgzLTfO7HBGRiFL4EhFfhR2He+YUEAzAD6er10tEuj6FLxHx1eurt7O8pJpzx+Yzome63+WIiEScwpeI+CbsONz54QYCwI0a6yUi3YTCl4j45uWVJSwvqeb8cX0Y3TvD73JERKJC4UtEfBEKO9z50QYSAnDLUer1EpHuQ+FLRHzx3PKtrN5Rwzcm9mN4rsZ6iUj3ofAlIlHXGApz10cbSAoGuFFnOIpIN6PwJSJR99SyLRSU1XHpwf00m72IdDsKXyISVfVNYe6dW0BqYpAf6gxHEemGFL5EJKoeX7KZoop6rji0P32zUvwuR0Qk6hS+RCRqqhqauHduAelJQa6fOtjvckREfKHwJSJR8/d5hZRUN3Lt4YPonZ7sdzkiIr5Q+BKRqCipbuCv8zbROz2Jaw8f5Hc5IiK+UfgSkai4Z84GqhtC3HzkUDJTEv0uR0TENwpfIhJx63bW8K/FxQzLTeOyg/v5XY6IiK8UvkQk4u74YD1NYYefHzuMpAS97YhI96Z3QRGJqEXFFby4soRD+2VxlsnzuxwREd8pfIlIxDiOw+3vrQPgtuOGEwgEfK5IRMR/Cl8iEjGvr97BnI1lnDSiJ0cOyfW7HBGRmKDwJSIRUd8U5lfvriEhAL8+foTf5YiIxAyFLxGJiBkLC9lQVseVhw5gdO8Mv8sREYkZCl8i0ulKqhu4d24BuamJ3HLUUL/LERGJKQpfItLp/vDBeirrQ/zo6GHkpiX5XY6ISExR+BKRTrVsayWPLynG9E7n8kM0oaqIyJ4UvkSk0ziOwy/fWYsD3H7iSBKDeosREdmT3hlFpNO8YkuYs7GMU0b04vhhPf0uR0QkJil8iUinqKpv4hfvrCElIcDtJ2pqCRGR1ih8iUinuGvOBoorG7h+6mCG90z3uxwRkZil8CUiB2z5tir+Ob+QoT1SuX7qYL/LERGJaQpfInJAwo7Dj95cRciBO04eRVpSgt8liYjENIUvETkgzyzbwrzCCs40vTlxRC+/yxERiXkKXyKy33bWNvKb99aRnhTkf04c6Xc5IiJxQeFLRPbb7e+tZUdtI7ceNZQB2al+lyMiEhcUvkRkv7y/YSf/XrqF8fmZfGfKQL/LERGJG4mR2rExJgjcD0wC6oGrrLVrmt1/I/B1b/E1a+1vIlWLiHSuqoYmbp61ioQA/OkMQ1KC/o8TEWmvSL5jngOkWmunAT8B7tl1hzFmOHAxMB2YBpxijJkYwVpEpBPd8f56NpbXcd3UwUzom+V3OSIicSWS4eso4HUAa+0nwJRm920CTrPWhqy1YSAJqItgLSLSST4tLGfGwiJG9kzj5iOH+F2OiEjcidhhRyAbKG+2HDLGJFprm6y1jcB2Y0wAuAtYZK1d1dbOcnPTSUzU/EHN5eWpxyHWdbU2qmsMcetDCyAAj3zzUAb16+F3SZ2iq7VTV6V2in1qo/aJZPiqAJq3QtBa27RrwRiTCjwEVALX7mtnpaU1nV5gPMvLy6KkpNLvMqQNXbGNfvf+OlZuq+KqyQMYnZnUJX6+rthOXZHaKfapjXbXVhCN5GHHOcAZAMaYqcCyXXd4PV4vAkustddYa0MRrENEOsG8wnL+8slGBuek8rNjh/ldjohI3Ipkz9dM4GRjzFwgAFxhjLkJWAMkAMcCKcaY073tf2qt/TiC9YjIfqqqb+L7r6zAceD/zjyIzORIvnWIiHRtEXsH9QbSf3eP1Sub3daMjCJx4rZ31lBQVsf1UwcxdVDXGOclIuIXTc4jIm16bVUJT3iTqf74aB1uFBE5UApfItKqrVX13DxrFSkJAe4/awzJmkxVROSA6Z1URFrkOA43zbLsqG3ktuNGcFBeht8liYh0CQpfItKiv88v5K21OzlmaC5XTRngdzkiIl2GwpeI7GVBUTn/M3sdeRlJ/PXMgwgGAn6XJCLSZSh8ichudtY2cvWLywk7Dv84eyx9MlP8LklEpEtR+BKRL4Udh+tfWUFRRT23HjWUo4bk+l2SiEiXo/AlIl/666ebeGvtTo4dmssPp+mi2SIikaDwJSIAzN1Yxu/fX0efzGTuP2sMCUGN8xIRiQSFLxFhY1kt3575BYFAgAe+Opa8jGS/SxIR6bJ0gTaRbq66IcTlz3/OjtpG7jx1lC4fJCISYer5EunGHMfhB6+t5Itt1Vx2cD++dYjm8xIRiTSFL5Fu7I8fb+SllSVMHZjD708e5Xc5IiLdgsKXSDf12qoS7vhgPQOyU3jw3HG6bqOISJTo3VakG1pQVM73XlpBelKQR88brwH2IiJRpAH3It3Mup01XPrs59SHwjx2/gQm9s3yuyQRkW5F4UukGympbuDrzyxlR20j95w2mpNH9vK7JBGRbkeHHUW6ieqGEJc8u4wNZXXcNH0Ilx7c3++SRES6JYUvkW6gIRTmqhe+YFFxJReN78OPjx7qd0kiIt2WwpdIF9cUDnPNi8t5Z91OThjek3tPNwQCunSQiIhfFL5EurBQ2OG6V1by6qrtHDW4Bw+fO44kTSkhIuIrvQuLdFFhx+GW1y3PL9/GlAHZ/OuC8aQlJfhdlohIt6fwJdIFOY7Dz95azRNLtzCpbyZPXTiRzGSd3CwiEgv0bizSxYTCDre+sYrHlxQzJi+Dpy+aRHaqXuoiIrFC78giXUhjKMz1r67k+eXbmNAnk2cumkjPtCS/yxIRkWYUvkS6iPqmMFe/+AWvr97BlAHZPHnhBHJSFbxERGKNwpdIF1DV0MSVM79g9vpSjh7Sg0fPH68xXiIiMUrvziJxbmtVPRf/ZxlLt1Zx8oiePHjuOFITdVajiEisUvgSiWMrS6r55n+WUlhRzzcn9uWuU0drHi8RkRin8CUSpz7cUMoVMz+noj7ET48Zxg+nDdbM9SIicUDhSyQOPb5kMz9+YzUA9581hgvG9fG5IhERaS+FL5E4Ut8U5mdvr+axxcX0SE3k4XPHceSQXL/LEhGRDlD4EokTxZX1XDnzCxZurmBcfgaPnDeeIT3S/C5LREQ6SOFLJA7M3VjG1S9+QUl1I+ePy+ee0wzpuk6jiEhcUvgSiWFN4TB3f1TAHz8uIAD89sSRXD1lgAbWi4jEMYUvkRhVUFbL915ewYKiCgZlp3D/2WM5YmCO32WJiMgBUvgSiTGO4/D88m386M1VVNaHOHdMPneeOkqXChIR6SIUvkRiyNaqem59YxWvr95BelKQP3/lIC4a30eHGUVEuhCFL5EY4DgOTy3bwi/fWUt5fRPTB+Vw7xmG4bnpfpcmIiKdTOFLxGfrSmv4yZurmb2+lIzkBO48dRSXHdyfoHq7RES6JIUvEZ9UN4T408cF3D9vEw0hhxOG9+TuU0czMCfV79JERCSCFL5EosxxHF5aWcKv3l3L5sp6BmSncPsJIzjT5Glsl4hIN6DwJRJFn2wq439mr2N+UQXJCQFumj6E66cOJiNZE6aKiHQXCl8iUbB8WxW/e38db63dCcAZo3vzy+OHa0C9iEg3pPAlEkErS6r548cFzFy+DQeYPiiHXxw3nCkDNFmqiEh3pfAlEgFLtlRy/6srmblsCwDj8jP4xbHDOWF4T43rEhHp5hS+RDpJ2HGYvX4n/5hfyHvrSwE4tF8WN04fwikjeyl0iYgIoPAlcsCqG0L854stPLCgiNU7agD38OJvzhjDxB4pCl0iIrIbhS+R/fT51iqeWFLMs19spby+iaRggK+N78N3pgxkYt8s8vKyKCmp9LtMERGJMQpfIh1QXtfIiytLeGJJMYuK3WCVn5HMTZOHcMWh/emTmeJzhSIiEusUvkT2obYxxNtrd/Dc8m28vXYHDSGHYABOGdGLiyf146QRPUlKCPpdpoiIxAmFL5EWVNU38e76ncxavZ031+ygsj4EwEG90zlvbB++Nr4P/bN1GSAREek4hS8Rz5bKel5fs53XV+/go4JSGkIOAAOzU/jWIf05b2wfxuZlaAC9iIgcEIUv6bZqG0N8WljOhwWlfLChlCVbqr68b1x+BqeN6s3po3ozoU+mApeIiHQahS/pNhpCYZZuqeTDgjI+3FDK/KJy6r3eraRggKOH9OC0Ub05dWQvBvdI87laERHpqhS+pMvaWlXP/KIKFhRVsGBzOUu3VFHXFP7y/vH5mRw9tAfHDMnliEE5ZCbr5SAiIpGnTxuJe47jsLWqgc+3VfH51io+31bFos0VbKqo/3KbYADG5GVw2IAcjhrSgyMH96BXerKPVYuISHel8CVxpbS2kdU7ali7s4ZVO2r4wgtc22sad9uuZ1oip4zoxZQB2UwZkM3B/bLUsyUiIjFBn0YSc2obQxRW1LGhtO7LoLV6Rw1rdtbsFbIABuekcvqoHMb3yWRCn0zG52cyIFuX9RERkdik8CVR5TgO5fVNbKlsoKiijo3ldWxq/lVRR0n13gErGHBD1iH9shjZK51RvdIZ2TOdg/Iy6JGa5MNPIiIisn8UvuSAOY5DZX2IHbWN7KxtpLS2ke3VDWytbmBLZQNbq+vZWtXgfdV/eYbhnpKCAQbmpHJQ7wwG56QyuEcaI3u6QWtYbhopiZpFXkRE4l/EwpcxJgjcD0wC6oGrrLVrmt1/NXAN0AT81lr7SqRqkX1rDIWpbAhRUd9EZX0TVfXebW9dVX0TFfUhSr2AtStk7ahtpLS2iaZwy4Fql4QA5GcmMzY/kz4ZyeRnJjMwO5VBOf/96pOZTFCHCkVEpIuLZM/XOUCqtXaaMWYqcA/wVQBjTF/gBmAKkAp89P/t3X2wXVV9xvHvect98d6E3Bh1QqW0aB/wDSRRZIaXDJLSYrHQalsVRuNbfRkYpCNTWg0Qh7GO2BY6SjCgSLEvth2U6VCKDCgkqMAICkP98SJKrbUFCkkwyX055/SPtU+yc3PuyUm8Z58bz/OZubOz1157nbWzZu/7u2uts5ekr0fE5JylDZhGs8l0vcl0vcFkvcF0vclUvcF0o8nkTIOxnXX+55nnmZxpsGO6wY6ZOtunG+yYru/a39Han2mwvU3681N1tk3NsG2yvscrGLpRAg4ZrjIxWuNXDxlh2UiNiZEaS0dqTIzWWDZS4yVjKch68dgQLxytObAyMzOjt8HXCcAtABHxbUmrcsdeD2zOgq1JSY8BrwHu7WF9Oto5U+erD/8vWyfrzDSa1JtN6tl2ptGkkW3rDfZI35Wv0WSm2aTRoO35rTz1Jsw0GkxlwdRUuwCr3mR6Hz1Jv4gSMFIr84JFFRYPVTl0fJjxoQrjQ1XGs7TxoepeaWNDVSZGqkyM1DhkuEal7GDKzMxsf/Uy+FoMbMnt1yVVI2KmzbFtwJIe1mWfNv34Oc67OXr+OSVgUaVErVJmUaXEokqZRZUyi4eq2b+zY+W0HaqUqe3Kl7a1SoklY8PUp2ZYVCkxuqjCSLXCSLXMSK3MSK2SttW0Ha21jqX9oUrZ3wQ0MzPrk14GX1uB8dx+OQu82h0bB57rVNjSpaNUq5X5rWHOWydewNJDRtkxXadSKlGtlNK2XKJSzm/LVMpk21nH8+fNcb6DnsGyfPn4vjNZ37mdDg5up4XPbdSdXgZfm4EzgK9kc74ezB27B7hM0jAwBBwFPNSpsGef3d6reu6yctmBrOfXhGYT6tluFl7Ws5+p+anaXpYvH+epp7b1qHSbD26jg4Pb6eDgdlr43I+IPj4AAAjJSURBVEZ76hSI9jL4uhFYI+lu0mjbWkkXAI9FxE2SrgTuAsrAn0fEzh7WxczMzGxB6FnwFREN4AOzkn+QO74R2NirzzczMzNbiPzWSjMzM7MCOfgyMzMzK5CDLzMzM7MCOfgyMzMzK5CDLzMzM7MCOfgyMzMzK5CDLzMzM7MCOfgyMzMzK5CDLzMzM7MCOfgyMzMzK5CDLzMzM7MCOfgyMzMzK5CDLzMzM7MClZrNZr/rYGZmZjYw3PNlZmZmViAHX2ZmZmYFcvBlZmZmViAHX2ZmZmYFcvBlZmZmViAHX2ZmZmYFqva7AjY3SWcBb42It2f7bwCuAGaAWyPiUkll4HPA0cAk8N6IeKxd3r5cxICQVAJ+AjyaJX0rIi6SdAawjtQOX4iIjZJGgBuAFwHbgHdGxFP9qPcgm+ve6W+tBpuk+4Et2e4TwNV0+czrR30HjaTjgE9FxGpJLwOuA5rAQ8CHI6Ih6WLgTaQ2Oz8i7pkrbz+uYaFwz9cCJekK4JPs2UYbgLcDJwDHSToWOBMYjojjgT8FPtMhr/XOEcB3I2J19nORpBrwV8BvAicD75f0EuCDwIMRcSJwPfCxvtV6sM1171gfSBoGyN1Da9m/Z571kKQLgWuA4SzpL4GPZc+xEvC7WfucDBwH/BHw2bnyFln3hcjB18J1N+mXNACSFgNDEfF4RDSBfwfeSHoo3QIQEd8GVnXIa72zEjhU0h2SbpYk4CjgsYh4NiKmgE3AieTaDPg34NS+1Nj2unf6W52BdzQwKulWSbdLOokun3l9q/FgeRz4vdz+SuCb2b9bz7ETSD2UzYh4EqhKWj5H3oHmYcc+k/Qe4COzktdGxD9KWp1LWwxsze1vA349S9+SS693yGvzYI42+zDwyYj4J0knkIYVP8KebbMNWMKebdZKs+Ltde9IqkbETL8qNOC2A5eTeldeTvol/Vzu+JzPPLdb70XEv0g6PJdUyoJi2PPZ9kwuTyu9Xd6B5uCrzyLiWuDaLrJuBcZz++OkB9PorPRyh7w2D9q1maRR0hwHImKTpENJD5l27ZBvH7dN/8y+T8r+Bd5Xj5B6ipvAI5K2ABO543M+89xufZGfs9Xu2ZZPb5d3oHnY8SAREVuBKUlHZJO7TwPuAjYDp8OuCfkPdshrvXMxcD6ApKOBJ4GHgZdLmpC0CDgJ+Ba5NgN+G7dNv+x17/S3OgPv3WTztyStIAVZP+/mmdef6g68+3OjM63n2GbgNEllSYeRAuOn58g70NzzdXD5APBloEIaV/+OpHuBNZLuJk1kXDtX3n5UeID8BXCDpNa3fN4VEdOSLiDNVSmTvu34X5KuAr4kaRMwRZpQbMW7kfb3jvXHtcB12X3RJAVjDbp/5lmx/gTYmP1h+R/AP0dEXdJdpD8yy6TpGG3z9qPCC0mp2WzuO5eZmZmZzQsPO5qZmZkVyMGXmZmZWYEcfJmZmZkVyMGXmZmZWYEcfJmZmZkVyK+aMLP9kr3l+hHSe8zyNkbEZyU1I6LUZVmrgX8FWgsjV4Ax0uK9GzqctwS4LiLOyt4JdU1EnD5X/gOoS4m0ht3NwMcj4nlJbwZWRcQ6SacDG0lLplwOfBX4UUSc9IvUwcwGg4MvMzsQP42IY+aprPsiYnVrR9IxwL2S/i57YXA7S4HXAkTET9n90tp5q0u2MPoXgKuAcyLiJuCmLN9bgEsj4vOS1gE3RMSfzVMdzOyXnIMvM+uJbMmljaQFkxvA5RFxfRenHg78HJjMFom/FvgVYAVwG/Be4EpghaQbSWtofiMiDpd0HWndv5XAocD6iPhi1lN2PfAy4IdZeWdFxI/mqkT2ktyPAv8p6VzgTGA1aYH0M4FTJQ0DH8qudydwdfbz0uyaL4qI2yRdArwBOAz4G+DrpKBuGWlNw3Mj4v4O9Z/I/h+OBCaBCyLidkm/BawHasATwPsiIr+2npktQJ7zZWYHYoWkB2b9vHpWnkuAZyLiVcApwCWSXtOmrFXZ+Y9Keho4G1gTEZPAm4AHIuJ40mLLJwPHAueRet/OalPeS4ETgTeThgQB1gEREa8ELgVm17WtiPgZ8CzwG7m0a0g9YOsi4kpgA7AhItYDV5BWMliZff7Vklpr3Q1HxCsi4irgS8CFEXEs8H7gH/ZR/0+Q1j08CjgHuEzSctLKCqdFxGtJKyl8qpvrMrP+cs+XmR2IboYdTwHeAxART0v6Gqnn6Puz8t0XEaslDQF/C2yNiHuz8/5e0uslnQ8cReopGgM69e7cGhFNSQ+xe2HmNcA7sjLvk7Q/6wE2gR1d5j0VOFLS+my/BhyR/fs7AJLGgNcBX5TUOm9M0rIO9T+ZbBmqiHgQOF7S75B60u7IyqkA/7cf12VmfeKeLzPrldnPlxId/uDLerreB5wh6Q8AsuG+TwNPkYbrHs7K6WRnVl5+7bR6m/rsk6QXA0uAx7s8pQKcEhHHZMHpcexe+HlHLs/OVp5cvlbg1K7+06QgsFWvI7NyNuXKeB3w+/t7jWZWPAdfZtYrt5P1fEl6IWme1Dc6nRARW4CLgcsljZB6rK6OiC+Tvn14DCnomGH/eu5vI+s5yoZHX0UumGkn64n7NOlbldu7/Jzb2T0H7BXAQ8BoPkN2jY9KOjvLtwa4cx/l3gm8Lct/JHALcA+pB6w1JPpxdg9TmtkC5mFHMzsQKyQ9MCvtzog4L7e/HvhcNsRXAS6LiO92UfY1pDldFwB/DVwl6SLSRPS7gV8jBSNPSroDWNtFmZ8gDfN9n9SL9TPaDyWuyl1XlRRMfbSL8lvOBT6ffU4JODsituWGF1veAWyQdCEwBfxhNtQ4V7kXAxslfY8UeJ4TEf8t6d3AVyRVgJ+Q5suZ2QJXajY7/vFnZnbQy3qZnoiIzZIOI72f64iIaPS5amY2gNzzZWaD4AeknqYK6RUQf+zAy8z6xT1fZmZmZgXyhHszMzOzAjn4MjMzMyuQgy8zMzOzAjn4MjMzMyuQgy8zMzOzAjn4MjMzMyvQ/wMlO08r4oPQBAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x504 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(figsize=(10, 7))\n",
    "ax.plot(x, y)\n",
    "ax.set_xlabel('Elo Rating Difference')\n",
    "ax.set_ylabel('Win Probability')\n",
    "ax.set_title('Win Probability versus Elo Rating Difference')\n",
    "ax.axhline(y=0.5, linestyle='dashed', color='grey')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Home Court Advantage\n",
    "\n",
    "Now let's estimate the parameter to use to adjust for home court advantage. As described in [this post](http://practicallypredictable.com/2018/01/09/first-look-nba-home-court-advantage/), the average NBA home team win percentage since the 1996-97 season has been roughly 59.8%. We can calibrate our adjustment parameter to this historical value."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [],
   "source": [
    "def hca_calibrate(*, home_win_prob):\n",
    "    \"\"\"Calibrate Elo home court adjustment to a given historical home team win percentage.\"\"\"\n",
    "    if home_win_prob <= 0 or home_win_prob >= 1:\n",
    "        raise ValueError('invalid home win probability', home_win_prob)\n",
    "    a = home_win_prob / (1 - home_win_prob)\n",
    "    print(f'a = {a}')\n",
    "    hca = 400 * math.log10(a)\n",
    "    return hca"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "a = 1.4875621890547261\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "68.99005236157628"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "hca_elo = hca_calibrate(home_win_prob=0.598)\n",
    "hca_elo"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will use a home court adjustment of 69 simple Elo rating points to analyze NBA teams.\n",
    "\n",
    "Here is a modifed plot of the Elo logistic function with and without home court advantage adjustment. Note how the adjustment shifts the curve so that an Elo rating differential of 69 points in favor of the road team is a 50-50 match up. Equivalently, for an Elo rating differential of zero, the home team win probabilty is 59.8%."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "hca_y = vec_win_probs(home_elo=x, road_elo=0, hca_elo=hca_elo)[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAG3CAYAAACKQDBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4FNfVx/GvdtULSAIBoop66WCDTXO3cYvtuHc7sY3jGidxnPKmx+mJ8/qN45YY3Hvc4t6wcQHTu4FLFUUIEEK9bpn3j1lsUSTtAqMCvw+PHu3szpk90mh3D3funIlzHAcRERERaRm+1k5ARERE5Eii4ktERESkBan4EhEREWlBKr5EREREWpCKLxEREZEWpOJLREREpAXFt3YCIu2FMeZd4B1r7T8iy4MAC/zJWvuzyH1dgM1AF+A54C5r7Yoot58HrAOWNbg7DviHtfbRGHOdAdxvrX0phpjfAJ2ttbfv57G3gbtwf677rbXDjTF3A2uttU8aY34FLLHW/jeWPNuiRvbDbscCVwIXW2vPiWGbvwFuAwoid8UBHYBXgR9aaxvt+WOM6Qi8aq09JbK8GDjJWlsa7fM3se3HgclAUeSuROBT4DfW2m3GmO7AS9baicaYDsA7QCbwS2AIcBPwobX2+oPNReRIouJLJHrvACcD/4gsnwu8AXwT+FnkvlOAmdbaMuDsA3iOGmvt6N0LxpgewHJjzHxr7dIDzvwgWWvPjuTTpcF9v2qwyilAVEVmO7HHfmjIGHOg23yhYWFrjMkClgLvRb4ak4Vb9AHQWF4H4V5r7T2RnOKA/wHeNcaMsdZuBSZG1hsNdLXWDoisux640lr7+SHOR+Swp+JLJHrvAL82xvistWHc4utnwPPGmP7W2nXAqcBbAMaYfOBiIB34A7AeGA4kADdZa2c294TW2gJjzBpgkDHmaOAGIA0os9aebIz5JXAFEARWA7dba7dFwi8wxvwUSAWesdb+IZLXz3ALxpTItu6y1r4aiRlijPkUyAYWAbdaaysa/CxfiYyaLAdqgLHA34wxScD9wDhr7erIeh8C/2w4KmaMeRZYYK39e2T5FtzRnMuMMecCv8AdhamO5PdFZPRoAtAdWAL8HpgGJOOOJE211j649whew2VjzIWRbYeBEPAja+2nze2HxhhjegIPAXmRHJ6w1v4tyvCuuPumJLKt63FHkhJxf/9/ttY+BDwGpERGvMbg7usc4BzggsjPMhD3d/Uta+1KY8wA4NHIdgojuT1trX28qYQiI3B/NMZ8G5hsjFmFu4/HRLbXI5KHBXoC0yKjnu/i/qdkBO7f93Tc323QGFMH/BcYBVwFVEXW7QT4gfustY8aY06ikdeJMSYd+CcwKfLzvwb8PLLOX4ATI9taBNxhrS2PbheItA7N+RKJUqSYKAFGRkYtDDAbeBs4L7LaV8XXXsYBf7fWHoX7YfrHaJ7TGDMBGADMidw1DLdIOdkYcx1wFnCMtXYk7ofk4w3COwDjI19XG2POMsb0AU6LbGMk7gfY3Q1iBgAX4X6IxuEWKk2y1j4AzMf9sH0GeAKYEsm/PzAIeHOvsEeAbzdY/jbwiDFmIO7v5uzI7+o7wCvGmLTIen2Ao6y1VwM/At6w1o7BHWU8wRjT3Hva33ALyrG4h85OamS9FGPM4r2+HtjPes8AH1trR+AWBlcbYy5vZJuXRbazxhhTjFtM3GStnRspLm5s8HNfBvw1EncdkZE4a21or22eCHzXWjsc92/kp5H7nwKei9x/B27RGosluH8DAFhrLe4+XRfJ4zJgK3CVtfYF4F7cYnoMcBTQGbgzEp6Iu58MsBh4CfhpZN0TgbuMMeMj6zb2Orkbt8gegjsCNykS+1PcYmyMtXZUJKc/x/izirQ4jXyJxOYd3A/sHcAH1tqwMeZN4DZjzKuAY61dtZ+4jdbaxZHbC9mz8Gho9wgHuK/PnbgfcJsjh7uWNvhf/VnAY9baqsjyP4CfG2MSI8tTrbVBoNwY8xIw2Vr7jjHmWuCqyOjIeNyRud1esdYWARhjHsMtVn4Sxe+loQeBT40xP8ctnqbup2iYASQbY8bijtjk4I6W3ALkAtMbHN4L4xaFALMjPxO486WeNMYcC3yIO+IRbuaw4PPAq8aYt4AP+LrA2Vujhx13ixSEk4DTAay1ZZHRwLMiz7O3FyKjb4m4o4NDcQ9bY62tNMacA3wjUoCOZs/90pgF1totkdsLgQsj/zE4Fjghsu2VxpjpUWyrIQd3v0TrHOBYY8wNkeWUvR7/LPJ9ENAfeLTBfkrBLdhW0vjr5DTgzsjfUQi38MIY81fcOWiTI9tLxH1tirRpKr5EYvMO7qG/WtxDH+AWDVNxPyD2N+oF7qG53RzcUaX9rtfMh35lg9v+yLZ28+G+pndvO7TXY4HIocv/4o5UvA98gnvYjMZimshlv6y1q40xS3EPbV6JO5qx9zqOMWYacC1QB0yL3OcHpkdGVgAwxvTCHdG4gAY/v7X2zUihMhl3xPHXxpgx7Pv7TWwQ83NjzKORmG8DP6TBfKoY+dh3P/pwD4U1ylpbb4y5HViAW9zeETl8+QXwb+Bz3NGhaCb07+/vandx2jC3vYvfRkXmfY3BLRCj5QcusdaujGwjkz3/NisbrFe217zGrkAZ7n8EGnudBBtuL/I3UR3Z3veste9E7k/HHSETadN02FEkNh/jjkqcSGSStLW2BveD9HYaL7688C5wfYNDcncAn1pr6yLL1xpj4iIjIZdG1j8BmG+t/V/cwut83A+w3c4zxmRFiqAbcYvNaATZs+h4ALewmBuZtL0/j+Merr0E9xATuIXs6caYwQDGmLNxJ6XvPZKye97YZdba54FbgXLcUZUiYEzkZ88gUsQYY+Ijc9dSrbUPR2JGRuapxcxaW4F72Pm2yPY74haTH0QRW487ynerMeYo3DlzRbjz2N5vkLMf93frjxRF0eY1E/dwJcaYvrjFaaNnVO4Web5fATtjnAv3HvCDyO88CXgd9/WwT3pAjTHm6sjz9eLrOWVN+RD4ljHGF9n+S3z9GrzdGJMYOeT8CPCnGPIWaRUqvkRiYK2tBta4N21Zg4fewp30PKMF05mG+6E01xizEjgad0LzbmW4ReEs3AnvH+O2v+gcWX8F7ohEdqRIIXLfm7htFkqJfv7M68CfjDHfiiy/iXvY7OHGAiInBizEPZS6NXLfCtxDlc8bY5YAvwPOs9ZW7mcTv8M9fLoEd77Tq7htEp7BLWTWRPL4JLLtIPB94FljzELgP8D1DYrVhvY352uxMWbvUcmrgFONMcuAucAr7DnvrlGRswSfwS1UPwC24BYnK4HekZ9hAO6E+bnAl8aYTtFsG7cIvDTyu3kA2EDjhxF/EPnZFuFOWO9N7Gfq3oF78sYy3GJ5Gfs5pBspOr8JTImMjr4P/DKKk09+C9TjzkVbBLxtrX0F928gP3LfCtyRsh/GmLtIi4tznGb/MyQiEpPIiQJTgeFN9bASb0Tm271srV0VGZFbCpxlo+w5JyLe0pwvETmkjDFP4J6UcJkKr1azGnjBGBPGfZ//swovkbZDI18iIiIiLUhzvkRERERakIovERERkRak4ktERESkBbWbCfdFRRWanNZAVlYqJSWxNKCWlqZ91D5oP7UP2k9tn/bRnnJyMhrtzaeRr3YqPt7f/ErSqrSP2gftp/ZB+6nt0z6KnoovERERkRak4ktERESkBan4EhEREWlBKr5EREREWpCKLxEREZEWpOJLREREpAWp+BIRERFpQSq+RERERFqQii8RERGRFqTiS0RERKQFqfgSERERaUEqvkRERERakKfFlzFmnDFmxn7uP9cYM88Y84Ux5kYvcxARERFpSzwrvowxPwamAsl73Z8A3AucDpwIfMcY082rPERERETakngPt70OuBB4aq/7hwBrrbUlAMaYz4Hjgf94mIuIiIi0MsdxCDkOISdMCIewE/562dlzOYyzz33BcJj6cJhAKETACRMIf/0VDIUJRNYJOg6hsBsfDIe/2n4w7BAHXDVgKF2S01rt9+BZ8WWtfdkYk7efhzoAZQ2WK4COzW0vKyuV+Hj/Icru8JCTk9HaKUgztI/aB+2n9kH7KTaO41AdrKcyWE91sJ7aUJCaYMD9HgpQG2p4e/djAWpCAaoDASoC9VQFAtQEg9QEg9SGgtSHQl99rw+HqA+FCDghAmH3yy1ywgRxb4edMCHCkX8O4LT2rwWAGTu2MOuya1vt+b0c+WpMOdDwFZQBlDYXVFJS7VlC7VFOTgZFRRWtnYY0QfuofdB+ah+OpP0UcsKUB+ooDdRQFqiNfNVQGqilNFBDZbCOqmA9VaF6qoIBdzlUT1Wk0KoMurdrwvUtU+qE48CJA8cHNLjtxIET3+B23NePEwcO+OJ8+IjDFxcX+e4u++N8xBGHLw7i8H39eMPbce56vrg4/Lvvj4vDv/v+3duN3Lf7e4LPzw+GHuX531NT/1lojeJrJTDQGJMNVAInAPe0Qh4iIiKeqw0F2Vlfxc66yFd9FUV1VRTVV7Kzrpqd9VUU11VRGimwKoJ1B/ZEIT+Ed38lQjilwbLP/XIiX2EfOO798XE+kn0JJMfHk+JLICXyPdkfT2p8AsnxflL88aQmJJDm95OWmEBqfDyp8fGkJcSTmuAnOd5H107p1FTWkuCPI9Hv+/q7b69lfxwJPh9+X9yh/UW3Iy1WfBljrgTSrbX/NsbcCbyHO+H/UWttQUvlISIicig4jkNpoJatteVsrSmLfC/f4/uOusqoiqkE4kkkEV84mfRQGsGAn/p6P+GgH0LxEEpwv4fjI0VW/FeFVXp8IllJSWSnJJCZnEB2SgJZKfFkJifQISmejCQ/6Yl+MpLiSU/0k5749X3pifEkxR+ac++OpNHJgxXnOG3j+Gtziooq2keiLUR/5G2f9lH7oP3UPrTWfgo5YQpqysmv3sWGqt1fJeRX72JjdQnVoUCjsdkJqWTGp5FMEr5QIoH6eGpq/VRW+yirjCMUSIBgIgQT3FGoiER/HF3SEslJS6RL5CsnLZEu6e7tzqlugZWZkkBWcjwJ/rbRslOvpT3l5GQ0OrTXGocdRURE2pTaUJA1lTuxFTtYVbEDW1nEuspiNlaXEHDC+6yf5k+kb1o2PVM6kulPwx9Kpq4mgYpKP7vK/RQUOxRWBNm1V1wc0DU9kdEdkunZIYkee33v3sEdwYqLO3IPyR0JVHyJiMgRZWddFUvLCllStpWlZdtYVbGDDVW7ImfjfS0zIZkRHXPJS80mLy2LPilZ+AMplJUnsLE4xKqt1SzYUcnO6oajX2EgTI8OSRzfJ51+2an0y0qhf3YK/bNT6dUxmcQ2MlIlrUfFl4iIHLaqgvUsLC1gQckWlkQKri01ZXus0zEhmWOyezE4I4fB6V0YnNGFQemdqan1s6iwgkWFFXyxspyHt5VTHdjz5PzeHZM5c0AHhnZJZ0hOGgM7pZKXlUJqglojSeNUfImIyGGjuL6aubs2MXvXJubs2sTSskKCDQ4bdk5M5dScAYzK7M6ojrmM6tid3GS3JcCa4mpmbirliaWlzNq0lR1V9V/FxQGDc9I4KjeDUd0yGBYptjKS9DEqsdNfjYiItFs1oQBfFG/k46J1fLJzHasqir56LD7Ox6iOuYzL7s0xWb0Yndmd7skdvppPlV9aw7srdzFr02ZmbSrd4/Bh1/REzjGdObp7B47O7cDIrumkq9CSQ0R/SSIi0m44jsOayp18XLSOj4rW8kXxRmrDQQBSfPGc0Lkf47N7Mz67N0dl9iAtPvGr2PpQmJmbSvlgXTEfrtvFmuKvm3fnZiRy4dAuTOqdycTemfTLStGkd/GMii8REWnTHMdhUXEBT66axxuFK1lXVfzVY0MyunByTn9OzhnAuOzeJPv3/FirrAvyzpqdvLNmJzM2lFBZHwIgNcHHmQM6cWr/Thyfl0nfTBVb0nJUfImISJvjOA6LSrfyRuEK3ty2ko3VJQCk+hM4p9sQJncdyEmd+5Ob0mGf2JpAiA/XFfPqyh18uG4XtUF3zlefzGQuH9GN0/p3YmLvjiTresHSSlR8iYhIm7GxuoQXtyzhxS1Lvyq40vyJXNHvKCZnDeSULgNI9SfsExcMh/l4fQmvrNzOu2uKqYqMcA3slMoFQ7pw3uAcBnZK1eiWtAkqvkREpFXVhAK8XriC5zcvZmZxPuCOcF3cYyTn5Q7lpJz+9OqWtd/u6RtLa3hu6TaeW1ZIYYV7dmLvjslMGdOD84d0YWhOmgouaXNUfImISKvIryrhiY3zeXbzIkoCNQBMzO7D5b1Gc07uENLjk/YbFwo7fLCumGkLCvg0vwQHyEjy8+2junPZiG4cnZuhgkvaNBVfIiLSYhzH4fPifB5a/wXTd6zBATolpnJH/0lc3XsMeWlZjcZW1AV5dmkhUxcUsLG0FoBxPTty9ahczh2co8am0m6o+BIREc+FnDBvFa7k/nWzWFy2FYCxWT25rs8xnJc7lCR/4x9H2yvr+OvszTw8K5/K+hDJ8T6uHpXLlDE9GNolvaV+BJFDRsWXiIh4JhAO8cKWJfxj7edsrC4hDjin2xBu6z+RMVk9m4zdUlbL/XM28cySQupCDl3TE7ljfG+uGZ1Lp9TEJmNF2jIVXyIicsiFnDAvFSzj76s/Ib+6hCSfn2t7j+HWfhPol96pydjCijru+Tyf55ZtIxh26N0xmf85bSDf6Jup9hByWFDxJSIih4zjOLxZuJI/r/6YNZU7SYjzcX2fY/j+wOPpFrmGYmNKawPc98Umpi4ooDYYpn92Ct+b0IeLhnahe7eO+z3bUaQ9UvElIiKHxOLSrfxyxXvM2bWJ+Dgf1/Q+mh8MPIGeKR2bjKsLhnlkwRb+MWsTZXVBcjMS+fFxfblsRFfifb4Wyl6k5aj4EhGRg7K1ppw/rJrOfwqWAnB2t8H8ashk+qVlNxs7fV0xP/9wLetLashMjudXJ/fjhqN7kKIzF+UwpuJLREQOSDAc5pH8OfzFfkx1KMCIDt24e+gZTOqc12zshpIafjV9Le+tLcYXB1PG9ODHx+eRmbxv93qRw42KLxERidmi0gJ+uPRNlpdvIzshhT8MO5PLe43GH9f0YcJAKMyDczdzz+f51IUcJvTqyB8nD2SYWkbIEUTFl4iIRK0yWM8fV01nWv5cHODynqP59dDJdEpMbTZ22fYKvv+2Zdn2SrqkJXL3qf25YEgXdaOXI46KLxERicq8ks3ctuhV8qtL6JeWzT0jzuG4zn2bjasLhrl31kbum72JYNjh8hHduPvU/jrEKEcsFV8iItKk+nCIe1bP4L61M3FwuK3fRH5iTia5ia70u60pruKm/65k+Y5KenRI4u9nDuKUfk33+RI53Kn4EhGRRq2uKOLmRa+wvHwbvVMyuX/0+Yzv1KfZOMdxeHpJIb/4cC01wTBXjezG3acOICNJHzsiehWIiMh+vbRlKXcte5PqUICrex3F3cPOID0+qdm4kpoAP3zX8qbdScekeO4/ZzDnDu7SAhmLtA8qvkREZA+1oSC/+PJdnty0gPT4RKYdfQnndh8aVezSbRVc98pyNpfXMb5nRx48dwg9OyZ7nLFI+6LiS0REvpJfVcINC15kWfk2hnXoyrQxl0bVLBXghWXb+NF7q6kNhvnhpD7cNSkPv09nMorsTcWXiIgA8PnODVy/4EVKA7Vc3eso/jD8LFL8zZ+RGAiF+dX0dUxbWECHJD9Tzx/O6QM6t0DGIu2Tii8REeHJjQv46fK3iQPuHXkuV/U+Oqq4XTUBvv3ycmZvKcN0TuWJC4fTL7v5nl8iRzIVXyIiR7BgOMxvVr7PvzfMITshhcfGXsaEKM5mBFhfUs2VLy5jfUkN55jO3PeNwaQn6mNFpDl6lYiIHKEqg/XcuOA/TC9ai0nP4aljriAvLSuq2HkFZVz70nKKawLcMb43PzuxLz51qheJioovEZEjUHF9NVfNfZaFpQWckjOAR46+mIyE5ttIALyxqojb3lxJIBTmnjMHce3o7h5nK3J4UfElInKEKagp49I5T7OmcieX9hzFvSPPJcHnjyr28UUF/OS9NaQm+nnsghGc2l/d6kVipeJLROQIsrqiiEvnPM3W2nJu6TeBXw+ZHPXhwgfmbOK3H6+nc2oCL1w6khHdMjzOVuTwpOJLROQIsayskEtmP8WuQA2/HHwa3x0wKao4x3H42+f53DNzI90zknjp8lEM6KQzGkUOlIovEZEjwLKyQi6a/SRlgdqYWkk4jsOvP1rHw/O20CczmZcvH0XvzBSPsxU5vKn4EhE5zDUsvO4bfT6X9RwVVZzjOPz8w7VMXVDAwE6pvHT5KHIzopuULyKNU/ElInIYO5jC63cz1jN1QQFDctJ4+YpRdE5N9DhbkSODr7UTEBERbywr23ZAhRfAPTM3cv+czfTPTuE/l6vwEjmUVHyJiByG1lft4rI5T1MWqOUfo74ZU+H1z9mb+Nvn+fTu6M7x6pKmwkvkUNJhRxGRw8z22gounfMUO+ur+PPws7m81+ioYx9dWMDvZqyne0YSr1wxiu4dkj3MVOTIpJEvEZHDSFmglkvnPM2m6lJ+NOhErs87JurYN1YV8T/vryEnLYGXr9BZjSJeUfElInKYqA4FuHrec6ys2MH1fY7hroEnRh07Z0sZt76xgtREP89fMpL+2erjJeIVHXYUETkMhJwwNy98mTm7NnF+92H8cfhZxEXZuX5NcRXXvrSMkANPnD9MnetFPKbiS0TkMPC7lR/y7nbL8Z36cv/oC6K+ZND2yjqueHEZJbVB7jvbcEq/bI8zFREddhQRaeee2bSQB9d/wYC0TkwbcwmJUV4kuzoQ4uqXlrGprJafHJ/H5SNzPc5UREDFl4hIuzZzZz4/WvYWWQkpPH3slWQmRjdJ3nEcvv/2KpZsq+TKkd24c2IfjzMVkd1UfImItFPrK4u5bsELxAGPjb2UfmnRHzK8b/YmXltZxLieHfnrGYOinh8mIgdPc75ERNqh8kAtV897jtJALf8YdR4TO+VFHfv+2p388ZMN9OiQxLQLhpHo1//DRVqSXnEiIu2M4zjcseS/rK0q5pZ+E7ii11FRx67eWcXNr68kKd7HExcOV/d6kVagkS8RkXbm/nWzeHvbKo7rlMcvB58WdVxZbYBrX15OZX2Ih88bwki1lBBpFRr5EhFpRz7buYE/rJpOt6QMHj76IuJ90b2NO47D9962rC+p4bvje3Hh0K4eZyoijVHxJSLSTmytKeemhS/hj4tj2thL6JKUHnXsI/MLeHv1Tib1zuRnJ/TzMEsRaY4OO4qItAP14RA3LPgPO+ur+dOwszgmq1fUsQu3lvPbj9fROTWBh88bgt+nMxtFWpNGvkRE2oE/rfqIBaVbuLD7iJgull1SE+DG174kGHZ4+LyhdE1P8jBLEYmGii8RkTZuRtE6Hlg/i35p2dwz8pyoe3I5jsP33lrF5vI6fjipDyfkZXmcqYhEQ8WXiEgbtrOuitsXv0ZCnI9/HXUR6fHRt4Z4ZH4B764t5vg+mfxwUp53SYpITFR8iYi0UY7j8L0l/2VHXSU/G3wqozK7Rx27sqiS381w53k9eK7meYm0JZpwLyLSRk3Ln8sHO9ZwYud+3NJvQtRxdcEwt76xkrqQw9SzjOZ5ibQxGvkSEWmDvizfzm9XfkCnxFTuH30+vhiuvfiXzzbw5Y4qrhmVyxkDO3uYpYgcCI18iYi0MfXhELcvfpW6cIhpo75J1+ToO9HP2lTKA3M20zcrhd+e2t/DLEXkQHlWfBljfMCDwCigDphirV3b4PG7gCuAMPBHa+2rXuUiItKe3LvmU74s387VvY7i9K6Doo4rrw1y+5sr8cXBA+cMJj1R/78WaYu8POx4PpBsrZ0A/BT4++4HjDGZwB3ABOB04P88zENEpN1YWlbI/639jB7JHfjt0DNiiv3F9LVsKa/j+xP7MLZHR48yFJGD5WXxdRzwLoC1djYwtsFjVcBGIC3yFfYwDxGRdqEuFOS7i18j5Dj836hvkpEQ/UT56euKeX7ZNkZ1S+fOiX08zFJEDpaXxVcHoKzBcsgY03AMfDOwAlgI3OdhHiIi7cL/rvmUlRU7+FafMZyYE/31Fyvrgtz13mrifXH839mDSfDrXCqRtszLCQHlQMNZoj5rbTBy+ywgF+gbWX7PGDPTWju3sY1lZaUSH+/3JtN2Kicn+km40jq0j9qHtrCf5hVt4r51M8lLz+Kfx19ARkJy1LG/eXkZBeV1/HLyQE4aluthlq2rLewnaZr2UXS8LL5mAucCLxpjxgPLGjxWAtQAddZaxxhTCmQ2tbGSkmrPEm2PcnIyKCqqaO00pAnaR+1DW9hPgXCIb332PCEnzP8OP5fa0gC1BKKK/WJTKQ/Oysd0TuU7o3Jb/WfxSlvYT9I07aM9NVWIell8vQpMNsbMAuKA64wxdwJrrbWvG2NOA2YbY8LA58AHHuYiItJmPbT+C1ZW7OCa3kdzXOe+zQdE1ARC/OAdSxzwf2cPJilehxtF2gPPii9rbRi4ea+7VzV4/NfAr716fhGR9mBD1S7uWf0JOUlp/HLwaTHF/vXzfNaX1HDTMT0Z072DRxmKyKGmJjAiIq3EcRx+vOwtasNB7hv2TTITU6KOXb69kofnbqZPZjI/PT760TIRaX0aoxYRaSWvbF3OJzvXc0rOAL6ZOyzquLDj8OP3VxNy4K9nDCItUScjibQnKr5ERFpBSX0Nv/zyXVJ88fxlxNnExXDtxueWbmN+QTnnDc7h5L7ZHmYpIl5Q8SUi0gp+t/IDdtZXc9egk+iTmhV1XHF1PXd/vI60RD+/O3WAhxmKiFdUfImItLD5JVt4evMihmZ05eZ+42OK/cMnGyipDfLj4/LIzYi+A76ItB0qvkREWlDYcfjZ8ncA+PPws0jwRT9fa15BGU8vKWRIThpTxvTwKkUR8ZiKLxGRFvTc5kUsLtvKhd1HML5T9NdgDIbD/Pi91QD85fSBuoSQSDumV6+ISAspC9Tyh1XTSfUn8OshsfX0emJRIV/uqOLyEd0Y36vJC4KISBun4ktEpIX8bfUMdtZXc+fAE8hNib4pakmutCR+AAAgAElEQVRNgL9+toH0RD+/OCn6C26LSNuk4ktEpAWsLN/BtPy59E3N5qa+sU2y//vMfEpqg9w5qQ9d0hI9ylBEWoqKLxERjzmOw8+/fIeQ4/D7YWeQ5I/+4iJriqt4dOFW8jKTuXFMTw+zFJGWouJLRMRjb29bxefF+ZzWZSCTuw6KKfZX09cRDDv89pQBunC2yGFCr2QREQ/Vh0PcvfJD/HFx3D309Jhip68rZvr6XRzfJ5MzB3byKEMRaWkqvkREPPTkxvlsqN7Ft3qPZUB656jjAqEwv/poHb44+N2pA2K6/JCItG0qvkREPFIWqOWe1Z+QEZ/EXYNOjCn2ycVbWVNczTWjuzO0S7pHGYpIa1DxJSLikX+s/YxdgRq+N+A4OielRR1XURfkns83kp7o5yfH53mXoIi0ChVfIiIe2FRdyr83zKFnSkdu7DsuptgH5mymuCbAd8f3pnOqWkuIHG5UfImIeOCPq6ZTHw7xM3MKKf6EqOO2V9bx8LzNdE1P5Dtj1VpC5HCk4ktE5BBbVFrAK1uXM7pjdy7sMSKm2L9+nk91IMyPjssjLTH6i26LSPuh4ktE5BD7/crpAPx6yGR8MZyluKa4imeXFDKwUypXjuzmVXoi0spUfImIHEKfFK3ns+INnJIzgEmd82KK/f2MDYQc+PmJfYn36e1Z5HClV7eIyCHiOA5/XOWOev1s8Ckxxc7ZUsY7a3ZyTI8OnDUw+n5gItL+qPgSETlE3t62ikVlWzkvdygjO+ZGHec4Dn+YsR6AX53cXw1VRQ5zKr5ERA6BkBPmz/Zj/HFx/NScHFPsjPwSZm8pY3L/bMb17OhRhiLSVqj4EhE5BP6zZSm2sojLe46O6TJCjuPw5083APDT4/t6lZ6ItCEqvkREDlJdKMjfVs8g0efnhzFeRui9tcUsKqzgXJPDiG4ZHmUoIm2Jii8RkYP09KaFbK4p47o+Y+mZEv1hw7Dj8JfPNhAH/FiXERI5Yqj4EhE5CDWhAPeu/YxUfwJ3DDg+ptg3bRFf7qjiwmFdMJ2jv/ajiLRvKr5ERA7CUxsXsKOukil5x5ITw8WzQ2GHv36Wjz8OfjQpz7sERaTNUfElInKAakIB7ls3kzR/Irf0nxhT7CsrtrO6uJrLR3SjX3aqRxmKSFuk4ktE5AB9NerV91g6JUZfQAXDYf72eT4Jvjju1KiXyBFHxZeIyAHYY9Sr34SYYl/+cgf5pbVcNSqXXh2TPcpQRNoqFV8iIgfgycio1419jyU7hlGvUNjh3lkbSfDFccf43h5mKCJtlYovEZEY1YQC/DMy6nVzjKNer63cwfqSGi4f2Y2eGvUSOSKp+BIRidHBjnr549Col8gRTMWXiEgMdo96pcfHPur1pi1idXE1lw7vRp/MFI8yFJG2TsWXiEgMnt28iB11ldyQF9uoV9hx+N9ZG/HFwfcmatRL5Eim4ktEJEqBcIgH1s0ixRfPTX3HxxT79uqdrCyq4qKhXemXpb5eIkcyFV8iIlF6qWApW2rKuKbPGDrH0M3ecRz+PjOfOOAHE/t4l6CItAsqvkREohBywvxj7eckxPm4tV9s3ew/WFfMlzuqOH9IFwZ00qiXyJFOxZeISBTeKFzB+qpdXN5rNN1TOsQUe9/sTQB8b4LmeomIii8RkWY5jsP/rfkcH3Hc3n9STLGzN5cyd0s5p/fvxNAu6R5lKCLtiYovEZFmvL9jNSsqtnNBj+H0TcuOKfafkVGv28f38iI1EWmHVHyJiDTBHfX6DIDvDTguptgVOyr5YN0uju3ZgfG9Mr1IT0TaIRVfIiJNmFmcz4LSAs7uNpjBGV1iir1/zmZA3exFZE8qvkREmnD/ulkAfDfGuV6bSmt4dcV2huSkcVr/Tl6kJiLtlIovEZFGfFm+nY+K1jIxuw9jsnrGFPvQ3C2EHLh9XC98cXEeZSgi7ZGKLxGRRjwYGfW6rX9sfb2Kqup5ZmkhvTokcf6Q2A5VisjhT8WXiMh+bKkp49WtyxmckcOpXQbGFDttQQG1wTC3jutFgl9vsyKyJ70riIjsx7/WzybohLm138SYDhtW1gWZtqCATikJXDEy18MMRaS9UvElIrKX0voant60kNzkDC7sMSKm2CcXF1JWF2TK2B6kJvg9ylBE2jMVXyIie3li03yqQvV8p+94En3RF1B1wTAPz9tMaoKP64/u4WGGItKeqfgSEWmgNhTk3xvmkBGfxLW9x8QU+9KX29lWWc+1o7uTlZLgUYYi0t6p+BIRaeClgqUU1VXx7T5jyUhIijou7Dg8NHcz8b44bj4mtrYUInJkUfElIhIRdhweWDeLhDgfN/YdF1Psx+t3sbq4mvOHdKF7h2SPMhSRw4GKLxGRiHe3W9ZVFXNJz5F0S86IKfbBue6lhG7RqJeINEPFl4hIxAORpqq39outqery7ZV8trGU43pnMqJbbEWbiBx5VHyJiABzdm1iXslmzug6iEEZOTHFPjwvMup1bC8vUhORw4yKLxER4MF1XwBwW4yjXtsq6nh1xQ4GZKdwav9sL1ITkcOMii8ROeJtqNrFu9tXcVTH7ozL7h1T7KMLCwiEHW4+VhfQFpHoqPgSkSPe1A1zcICb+o0nLoYCqqo+xOOLttIpJYFLhnX1LkEROazEe7VhY4wPeBAYBdQBU6y1axs8fhbw68jiQuA2a63jVT4iIvtTVl/Ds5sXk5ucwbm5Q2OKfWH5Nkprg/xwUh9SdCkhEYmSlyNf5wPJ1toJwE+Bv+9+wBiTAfwNOMdaOx7IBzp7mIuIyH5NXT2HqlA9N+QdS0IMlxIKhR3+NW8LSf44rtOlhEQkBl4WX8cB7wJYa2cDYxs8NhFYBvzdGPMZsN1aW+RhLiIi+wiGw/xz5UxS/QlcE+OlhN5fW8yGkhouHtaVLmmJHmUoIoejZosvY8zbxphLjDGxvrt0AMoaLIeMMbsPc3YGTgZ+ApwFfN8YMyjG7YuIHJR3tq1iY2UJl/YcRVZiSkyxD0Waqt50jNpLiEhsopnz9RfgWuBvxpi3gMettfOiiCsHGnYb9Flrg5HbxcA8a+02AGPMp8BoYHVjG8vKSiU+XnMqGsrJUTPHtk77qG2bNtd9K/vpmFPI6Rj9vpq3qZTZW8o4c3AOxw/t5lV6she9nto+7aPoNFt8WWs/AT4xxqQAFwMvG2PKganAQ9baukZCZwLnAi8aY8bjHmbcbQEw3BjTGSgFxgOPNJVHSUl1c6keUXJyMigqqmjtNKQJ2kdt28KSAmbtyOcbPYeQXZ8S07768wcWgOtH5WoftxC9nto+7aM9NVWIRnW2ozHmJOAa4HTgHeB5YDLwOnBGI2GvApONMbOAOOA6Y8ydwFpr7evGmP8B3ous+6K1dnk0uYiIHAr/2jAbgB8MOyGmuK3ltfx35Q6G5KRxYl6WF6mJyGGu2eLLGLMRWA88Btxura2J3D8DmN9YnLU2DNy8192rGjz+PG4RJyLSogpqyni98EuGZHThlNwB7NxZGXXsE4u3EnLgxrE9YuoJJiKyWzQjX9/Ye1TKGDM+cgbj0d6kJSLinWn5cwk5Djf1ja2pam0wxFOLC8lKjufCoWqqKiIHptHiyxgzCfADU40xN+AeOgRIAB4CdHaiiLQ7lcF6ntq0kM6JaVzYY0RMsa+tLGJndYDbx/UiVU1VReQANTXyNRk4EcgF7m5wfxD4l5dJiYh45cUtSygL1HLXwBNJ9kd/kQ/HcZi2YAu+ONRUVUQOSqPvPNba3wAYY66x1j7VYhmJiHgk7Dg8smEOiT4/384b23xAA/MKylmyrZKzB3WmV8dkjzIUkSNBU4cdfxMpwE4xxpy89+PW2uu9TExE5FD7uGgt66qKuaznKLokpccUO21BAQA3jtGol4gcnKbG3BdEvs9ogTxERDw3dcNcAG7sOy6muG0VdbxhixiSk8bE3plepCYiR5Cmiq8lxpjewMctlYyIiFfWVxYzvWgtx2T1YmTH3JhiH1+0lWDYYcoYtZcQkYPXVPH1CeDw9VmODTlAP08yEhHxwKMb3UsJTck7Nqa4umCYJxdvJTM5nouGqb2EiBy8pibc923JREREvFIZrOO5zYvplpTBOblDYor976od7KwOcJvaS4jIIdLshHtjzKP7e1wT7kWkvXhhyxIqgnXc2m8CCb7oCyjHcZg6v8BtL3FUdw8zFJEjSTQT7j9piURERLzgOA6P5s8j0efnmj5jYopdsLWcxdsqOGtgZ3pnpniUoYgcaZo67PhG5PsTxpguwDggAMy11u5qofxERA7KJzvXs6ZyJxf3GBlze4mpkfYSU9ReQkQOIV9zKxhjLgEWA98CbgIWG2PO9DoxEZFDYVq+214i1on22yrqeH1VEYM7p3JcH7WXEJFDJ5pra/wCGGOtLQQwxvQBXgfe9TIxEZGDlV9VwvvbV3N0Zg+Ozopt9OqJxW57iRvG9FR7CRE5pJod+cI91Lht94K1diPu9R1FRNq0RzfOxeHA20t0TIrnYrWXEJFDrKmzHa+N3NwAvGGMeQK36LoCWNICuYmIHLCqYD3PbV5MTlIa53UfFlPs66t2UFQV4JZje5KWqPYSInJoNXXYcff1HCsjX2dHlqvYf+NVEZE246WCpZQFavnhwBNIjKG9BLjXcYwDrjtaE+1F5NBr6mzH6xp7zBijc65FpM1yHIdp+XOJj/PxrT5jY4pdsLWchYUVnDmgE3lqLyEiHmh2wr0x5lzg90A67oiXH0gFcrxNTUTkwMwszmdVRREXdB9Ot+SMmGKnLtgCwA1jNeolIt6IZsL9vcD3gZXAVcDzwAteJiUicjAe2RBpL9E3ton22yvreH1lEYM6pXJCnywvUhMRiar4KrXWfgzMBjpaa38CnOJtWiIiB2ZzdSnvbbeM6pjL2MyeMcU+ubiQQNjhhjE91F5CRDwTTfFVY4wZhDvydZIxJhFI9DYtEZED89jGeYRxuCHv2JgKqPpQmCcWbaVDkp9Lhqu9hIh4J5ri6xe4c77eBE4FtgOveZmUiMiBqAkFeGbTIjolpnJ+9+Exxb6xqogdVfVcMTKX9MRo+k+LiByYZt9hrLWf8PXFtY8xxmRZa0u8TUtEJHavFCyjJFDD9wccR7I/tgJqaqS9xPVqLyEiHovmbMeewH3ASUA98KEx5gfW2iKPcxMRiZrjOEzNn4s/Lo5v9zkmpthFheUs2FrO6f070TdL7SVExFvRHHZ8FPgQ6AMMAhYAj3mZlIhIrGbv2sSX5dv5RrchdE/pEFPs1PkFAExRewkRaQHRjMvnWGsfbLB8rzHmW14lJCJyIKbmR9pLxHgdx+0Vdby2cgcDO6VyYp7aS4iI96IZ+ZprjLl894Ix5hxgvncpiYjEpqCmjLe3rWRYh66My+4dU+y/Z29UewkRaVFNXVg7DDi4Xe1vNMZMA0K4ne5LgCktkqGISDOe2DifkOMw5QDaSzw0K5+MJD+Xqr2EiLSQpq7tGM2omIhIq6oNBXlq00KyElK4sMeImGLfskUUltdx09ieai8hIi0mmrMdU4Ff4/b4igc+An5pra3yOLc9PPXU1P3eP3r0WEaMGA3Ahx++Q2FhwT7rdO2ay+mnfwOAFSuWsmDB3P1u68orr8Pv91NSsos333xlv+ucdNJkevXqA8BLLz1DTU3NPusYM5Rjj50IwMyZn7B+/Zp91snI6MD5518KwIYNa/n88xn7fb4LLriM9PQMamtr+c9/nv7qfp8vjnDYAWDcuEkMGjQEgLfeepVdu4r32U6vXnmcdNJpACxaNI/ly5fss058fAJXXOFO59u2bSsffPD2fnM644xz6dLFHSV45plHCYfD+6wzcuTRjBp1NAAfffQeBQWb91mnc+cunHXWeQCsWvUl8+Z9sd/nu/zya0lISKSsrJTXX39pv+uccMKp9OnTF4BXXnmeqqrKfdYZMMAwYcLxAHzxxWesXWv3WSctLZ0LL3SPsm/cuIFPP52+3+c777yL6dgxk0Cgnueff3K/65xyysn06NEfgHfeeZ2dO3fss06PHr045ZQzAFiyZCFLly7cZx2fz8dVV10PwI4d23nvvTf2+3yTJ59Nt27dAXjuuScIBgP7rDN8+CiOOso9E3DGjA/ZvDl/n3WyszvxjW9cAMDq1SuZM2fmfp/vkkuuJjk5mcrKCl59df9XHDvuuJPo23cAAK+99iIVFeX7rNOv30AmTToRgLlzZ2Htin3WSUlJ4eKLrwJg8+aNzJjxwVePVQXruaY+joyEZGrLK0jJyiYUCvHss/s/L2jMmGMZOnQkAPM/f5/vp5fRrWA1Tz0146t1cnN7cNppZwGwbNliFi/e/0yLa65xDwAUFxfx9tv/3e86p556Jt27u532X3jhKerr6/ZZZ8iQ4YwdOx6Azz77iPz89fusk5mZxbnnXgTAunWrmTXr0/0+30UXXUFqahrV1VW8/PJz+11n4sQT6N9/EABvvPEypaX7dg/Ky+vH8ce7FzOZP382K1cu32edxMQkLrvsGgC2bt3C9Onv7vf5zj77m3Tq5F4O+EDfy32+OHJyuh127+UN6b28bb6XH3PMBAYPHgbE9l5+550/2O/2ILo5X/cDacD1wLdwu9s/HEWciIjnKoJuMZPuT4opbnFhOSU1QVISfCT4NNAvIi0nznGcJlcwxiyx1o7a674V1tqhnma2l6KiiqYTPcLk5GRQVFTR2mlIE7SPvDd312bOmfUoZ3cbzONjL4sp9vY3V/Li8u28e+M4ju6k3l5tnV5PbZ/20Z5ycjIanYAazX/3fMaYzN0LkdvBQ5GYiMjBmHaA7SWKqup5beUO+menMHlQjhepiYg0KpoZpv+L225i90ST84A/eZeSiEjzttVW8EbhCoZkdGFSp7yYYp9avJX6kMOUMT3w+dReQkRaVjTF1xvAPOBE3JGyC621yzzNSkSkGY9vnE/QCXN93jExtZcIhMI8vmgr6Yl+LhvezcMMRUT2L5ri6zNr7RBg31NdRERaQV0oyJMbF9AxIZmLe4yMKfat1TvZVlnPjWN6kJ6k9hIi0vKieedZYoy5BpgLfHUurrV2k2dZiYg04fXCFeysr+KWfhNIi0+MKXbqgi0AXD9G13EUkdYRTfE1LvLVkAP0O/TpiIg0b1r+XOKA6/ocE1Pc0m0VzN1Szqn9sumfnepNciIizWi2+LLW9m2JREREorGgZAsLSws4o+sg8tJiuxD21AVu484pGvUSkVbU1LUduwP3AMOAWcD/WGtLWyoxEZH9eWSD217ixr57D8g3bWd1Pa+u2E6/rBRO7pftRWoiIlFpqs/XY8BW4GdAMnBvi2QkItKI7bUVvF74JSY9h+M7xTYo//TiQupCDjeM6YEvhrMjRUQOtaYOO/aw1p4BYIx5H1jcMimJiOzfExsXEHTC3ND32JjbSzy2qIC0RD+Xj1B7CRFpXU2NfNXvvmGtDTRcFhFpaXWhIE9smk+H+CQuibG9xNurd1JYUc/lw7uRofYSItLKYrmarK6tKCKt5vXCFRTVVXFV76Njbi/xSKS9xJSxmmgvIq2vqf8CDjPGrG+w3COyHAc41lq1mhCRFuE4Do9smEMccH1ebO0llqi9hIi0MU0VX4NaLAsRkSYsKC1gcdlWzuxq6JMaW3uJR+a7o143ju3pRWoiIjFrtPiy1m5syURERBozNdJeYkrfY2OK21FVz2srdzAgO4WT+sZWtImIeCWWOV8iIi1u20G0l3hy0VbqQw5TxvZUewkRaTNUfIlIm/bExvkEnTBTYmwvUR8K8/iirXRI8nPp8K4eZigiEpuozrk2xgwDsnEn2wNgrf3Uq6RERCDSXmLjAjomJHNxjO0lXl9VxI6qem4+pifpiWovISJtR7PvSMaYB4BzgfV83W7CAU7xMC8REf5b+CU766u4td+EmNpLOI7DI/O3uGdH6jqOItLGRPPfwdMBY62t8ToZEZHdHMdh6oa5+Ijj+rzYJtov2FrOosIKzhzYibzMFI8yFBE5MNHM+drd20tEpMXsbi9xetdB9E7NjCn2kfkFANw4Ru0lRKTtiWbkaxewwhgzC6jdfae19nrPshKRI97UDXMAuLHvuJjiCivqeMMWMSQnjeP6xFa0iYi0hGiKr3cjXyIiLcJtL7GCwRk5HNcpL6bYxxcVEAw7TBnTI6azI0VEWkqjxZcxppu1dhvwcQvmIyLC47vbS+SNi6mAqg2GeHJRIVnJ8Vw0TO0lRKRtamrkaypwDvAJ7tmNcXt917UdReSQqwsFeXLjfDITkrmox4iYYl9dsYPimgDfHd+L1AS/RxmKiBycpoqvWwGstbG1lBYROQivbl3OzvrqA2wvUYA/Dq47Su0lRKTtaqr4+sIYUwm8D3wAfGStrWyZtETkSOQ4Dv/aMBsfcdwQY3uJ2ZvLWL6jknNNDj07JnuUoYjIwWu01YS1tgdwNrAAOB+YZ4z51BjzS2PM+JZKUESOHJ8X5/Nl+XbOzR1Kr1jbSyzYAsCNYzXqJSJtW5NnO1pr1wHrgMeNMZnAN4EfAr8AkrxPT0SOJP9aPxuAm/rF9v+7zWW1vL16JyO6pjOuZ0cvUhMROWSaOtsxHjgOOBM4A0gBPgR+BXzU3IaNMT7gQWAUUAdMsdau3c86bwH/tdY+fIA/g4gcBtZVFvP+jtWMyezJ2KzYmqM+urCAsAM3ju2p9hIi0uY1NfJVAswCXgIusNbmx7jt84Fka+2EyGHKv+OOnDX0e9wLdovIEe7fG9xRr1tiHPWqrAvy1OKtdE5N4PwhOV6kJiJySDV1eaF/AV2A64HrjDGTIiNV0TqOSHNWa+1sYGzDB40xFwNh4J2YMhaRw05JfQ0vbFlCr5SOnN1tSEyxzy7dRnldiBvG9CA5Xu0lRKTta3Tky1p7F4AxJhf3sOPtwBPGmGXAe1EcJuwAlDVYDhlj4q21QWPMcOBK4GLcw5jNyspKJV5vrHvIyclo7RSkGdpH0Zm2dB7VoQB3Dz+e3K7Rz9kKhR2mLiogOd7HXacNonP6gU1F1X5qH7Sf2j7to+g0e3kha22hMeZZYA0wCbgWGAc0V3yVAw33gs9aG4zcvhbogTt3LA+oN8bkW2sbvYxRSUl1c6keUXJyMigqqmjtNKQJ2kfRCYRD3PflZ6T5Ezk/e1hMv7M3Vu0gf1cN147Oxampp6imPubn135qH7Sf2j7toz01VYg2NeH+PNxi6zjcbvazcYuly6y1X0bxvDOBc4EXI3O+lu1+wFr74wbP8xtgW1OFl4gcvl4vXEFhbQXf6TuODgmx9ed6aJ7bXuLmY3p5kZqIiCeaGvm6HbfY+j6wwFobjnHbrwKTjTGzcC9JdJ0x5k5grbX29QPKVkQOK47j8PD6L4gDpuSNiyl2XkEZ8wvKOb1/JwZ0SvUmQRERDzQ15+v0g9lwpFi7ea+7V+1nvd8czPOISPs1Z9cmlpQVcna3weSlZcUU+/Bcd9TrlmNja0shItLaYjl7UUTkkHo40l7i5n4TYorbWFrDW6uLGNE1nYm9Y+uELyLS2lR8iUir2FC1i3e2rWJ0x+6My4ptztYj87cQduCWY3upqaqItDsqvkSkVUzdMAcH91JCsRRQZbUBnlm6jdyMRL45WE1VRaT9UfElIi1uV301z2xeRPfkDpyXOzSm2KeXFFJVH2LKmJ4k+PUWJiLtj965RKTFPZbvNlW9ud94EnzRN08OhMI8Mr+A1AQf14zO9TBDERHvqPgSkRZVEwowNX8uHROSubr30THFvmGL2FpRx5Ujc8lMTvAoQxERb6n4EpEW9fzmxRTXV3Ndn7Gkx0d/OSDHcXho7mbigO8co/YSItJ+qfgSkRYTcsI8uP4Lknx+boixqepnG0tZsq2Sb5jO5GWmeJShiIj3VHyJSIt5q3AlG6tLuLTnKLomp8cUe9/sTQDcMb63F6mJiLQYFV8i0iIcx+Gf62YSB9zab2JMsYsLy/k0v4Tj+2QyOreDNwmKiLQQFV8i0iJmFuezpKyQb3QbQv/0TjHF/nP2ZgDumKBRLxFp/1R8iUiLuH/dLABu6x/bqNe6XdW8aYsY1S2dE/rEdv1HEZG2SMWXiHjuy/LtfFS0lonZfRiTFduZig/M2YyDO9dLlxISkcOBii8R8dwDkVGv2/tPiimusKKOF5Zto19WCmcP0qWEROTwoOJLRDy1ubqUV7cuY0hGF07tMiCm2H/N20Ig7HD7+F74fRr1EpHDg4ovEfHUvzbMJuQ43Np/YkyHDUtrAzyxeCtd0xO5ZFg3DzMUEWlZKr5ExDO76qt5etNCuid34ILuw2OKfWzhVqrqQ9x8TE+S4vVWJSKHD72jiYhn/r1hDtWhALf0m0BiDBfQrgmEeGT+FjomxXPt6O4eZigi0vJUfImIJ8oDtUzdMIfOialc02dMTLHPLdvGzuoA14/pTkZSvEcZioi0DhVfIuKJR/PnUR6s4+Z+E0j1J0QdFwyHeXDOZpLjfUwZ8//t3XecVNX9//HXlO0Ndll6WZqHpUqTIgp2ooKxJbF9LYkGK/ZfYqKiRo2JLZqILXaN0VgRu6ggKEVAmhzYZeltG9vbzNzfHzPg0meR2fp++pjH7L33nDufy3Xufvbcc8/RBNoi0vwo+RKRw67MV81TOd+REhXLpd2G16nu2yu2s76okvMGtic9ITpCEYqINBwlXyJy2L28/nvyq8v5XcZRJEXFhF3PH3B4dM46vG4X14zQVEIi0jwp+RKRw6rS7+Nf2XNI8ERzefcRdar7/srtZBVU8JsB7emSEhuhCEVEGpaSLxE5rF7fuJhtVaVcmjGM1Oj4sOsFHIeH56zD49IE2iLSvCn5EpHDpibg5/Gsb4h1e5nUY1Sd6k63udi8cs7p146MVnERilBEpOEp+RKRw+bNjUvYUFHEhV2H0DYmMex6AcfhodnrcLvg+tHdIhihiEjDU/IlIodFTcDPw1kziXF7uA55ZEgAACAASURBVLaOE2h/vDqPFbllnNm3LT1Tw79VKSLSFCn5EpHD4r8bf2B9+Q4u6jqUDnHJYddzQq1eLuCGUWr1EpHmT8mXiPxs1QE/j6yeSazby3W9xtSp7mfZ+SzdVsoZmekc0SYhQhGKiDQeSr5E5Gd7fcNiNlQU8X/dhtI+Ninseo7j8LdZa4OtXurrJSIthJIvEflZqvy+Xa1ede3r9eGqPJZsK+WXmW3JTA+/g76ISFOm5EtEfpbXNixiU2Uxl2QMo10dWr38AYcHZuXgdsEtYzIiF6CISCOj5EtEDlmV38c/sr4hzu3lmjq2er23cjsr88r5Vf/29ErTE44i0nIo+RKRQ/bK+oVsrizm0ozhdRrXyxcI8LdZa/G6Xdx0tPp6iUjLouRLRA5Jma+ah7NmEu+J4uo6tnr9b9k21hRWcP7A9nTTaPYi0sIo+RKRQ/JMzlxyq8q4ssco0mPCHyKi2h/gwdnriPG4uFFPOIpIC6TkS0TqrLC6gn9mzyY1Ko6reoyuU93XlmxhfVElFw/uSMfk2AhFKCLSeCn5EpE6ezz7G4p9VUzufQxJUTFh1yuv8fPw7HXEed1cO7JrBCMUEWm8lHyJSJ1sqSjm2Zx5dIxN5tJuw+tU9+n5G9laWs2kozrTLjH8pE1EpDlR8iUidfLg6q+pDPi45YixxHq8YdfLL6/m8bnrSY3zcvVRavUSkZZLyZeIhC27NJ/XNiyiV0Iav+58ZJ3qPjpnPSVVfm4cnUFybPhJm4hIc6PkS0TC9lf7JX7H4Y/meLzu8C8f63ZU8NzCTXRNieXiwR0jGKGISOOn5EtEwjK/cAPvbVnO4JSOnN4hs05175+ZQ03A4bax3Ynx6rIjIi2broIiclCO43DH8k8BuKvfKbhcrrDrLtlawtsrtjOwXSK/zGwbqRBFRJoMJV8iclDvb1nB9zs2clr7TEamht9Z3nEc7v5qDQC3H9cDdx2SNhGR5krJl4gcUJXfxz0rPyfK5eb2zBPrVPfz7AJmri1kXPfWjM1IjVCEIiJNi5IvETmgZ9fOY335Di7LOIoeCeEnUDX+AHfMyMLtgruO7xnBCEVEmhYlXyKyX/nV5TyyeiatomK5sfexdar73MJNZBdUcPHgjmSmJ0YoQhGRpkfJl4js10OrvqbYV8VNvcfSOjou7Hr55dU8+M06UmK83DomI3IBiog0QUq+RGSfbEkuL6xbQPf4VC7NqNs0Qn/7Zi1FVT5uHtONtPjoCEUoItI0KfkSkb04jsNtyz7C5wS4p98pRLs9Ydf9MbeUFxdtpldqHJcN6RTBKEVEmiYlXyKyl2lbVjArP4eT2vbm5HZHhF3PcRxu/yKbgAN3n9CLKI8uMSIie9KVUUR2U+ar5s4VnxLt9nBPv/F1qvvR6jxmri3k+B6pnNgzLUIRiog0bUq+RGQ3j2V9w6bKYq7qMapOQ0uUVfv50+dZRLld/OWEXhGMUESkaVPyJSK7rCkr4F9r5tAxNpnJvY6pU92H56xlU3EV14zsQq+0+AhFKCLS9Cn5EpFdbl/+MdUBP3f3PZkEb/hPKdq8MqbO20jXlFgmj+oWwQhFRJo+JV8iAsBHW1fy2fbVjEnLYEKHvmHXcxyH//fJKnwBh/tO6kV8VPhPRoqItERKvkSEkpoq/rDsQ6Jcbv7a/1RcdZgA+83l25izoYjxvdM4uVebCEYpItI8KPkSEe63M9hSWcLkXsdwRFJ62PV2VNYwZUY2cV43957YO4IRiog0H0q+RFq4BYUb+ffaefRKSGNyrzF1qnvPV2vIK6/hpqO70SUlNkIRiog0L0q+RFqwmoCfm5ZMwwEeHjiBGI837LrfrCvk5cVbyExPYNJRXSIXpIhIMxP+lbaOjDFu4AlgEFAF/M5am1Vr+w3Ab0KLH1pr74pULCKyb0+smcOPJdu5qOsQRqaF/5RiWbWfGz6yuF3w6KmGaI1kLyIStkheMX8JxFprRwF/AB7aucEY0wO4ABgNjAJONsYMjGAsIrKHNWUFPLjqa9rGJHJH5kl1qvvArBzW7ajkyqO6MLhDcoQiFBFpniKZfI0BPgaw1n4HDKu1bQMw3lrrt9YGgCigMoKxiEgtAcfh+h/eoyrg595+40mJCr+/1vebi3l6wUa6t47jljEZkQtSRKSZithtRyAZKKq17DfGeK21PmttDZBnjHEBfwcWWWtXRTAWEanl6Zzv+K5gPae3z2RiHcb0qvIFuP7DlQQcePQXRmN6iYgcgkgmX8VAUq1lt7XWt3PBGBMLPAeUAFcdbGetW8fj9epCX1t6etLBC0mDaoznaOWO7dxrZ5Aem8Bzx/2a9NjEsOve8fFKbF45V47uxsShzaeTfWM8T7I3nafGT+coPJFMvmYDE4A3jDEjgaU7N4RavN4DZlhrHwhnZ4WF5REJsqlKT08iN7ekocOQA2iM58gXCHDBnFep8vt44MizoMQhtyS8GL/fXMx9n6+mU3IMN4/o0uiO7VA1xvMke9N5avx0jnZ3oEQ0ksnXO8BJxpg5gAu41BhzI5AFeICxQIwx5heh8n+01n4bwXhEWrx/rZnNwh2bOLvTAE7vkBl2vdJqH1dN+5GAA4+f1oekmEheOkREmreIXUFDHekn7bF6Za2fNSKjSD1aXryNv9mvaBeTyP39fnHwCrVMmZFNTmEFVx7VmTHdWkcoQhGRlkGD84i0AJV+H1cveocaJ8AjAyfSKjou7LqfZuXxUmgw1duO7RHBKEVEWgYlXyItwJQVn7KiZBv/13UoJ7YLfw7G3LJqrv/QEu1xMXVCJjFeXTJERH4uXUlFmrmPtq7kuXXz6ZOUzj39Tgm7nuM43PSRJa+8htuO7UHftuE/FSkiIvun5EukGdtcUcz1P7xPrNvLU4PPIc4TFXbdZxZs4uOsfMZ0bcWkozpHMEoRkZZFjyyJNFN+J8CVi96msKaCvw04jczktmHXXbi5mLu+zKZNfBRTJ2bidrkiGKmISMuili+RZuqR1bP4tmAdp7XP5OKuQ8Out6OyhsvfXY4v4DB1YibtEmMiGKWISMuj5EukGfo6dw0PrvqaTrHJPDxwAq4wW64cx+G66SvZUFzFjUd3Y2xGaoQjFRFpeZR8iTQzG8p38PuF/8PjcvHM0HNpXYdhJZ6cv5GPV+dzTLdW3Hx0RuSCFBFpwdTnS6QZqfT7uOz7NyioqeDvA05jWOvwO8p/t2EH93y1hvSEKJ6YkInHrX5eIiKRoJYvkWbCcRz+sGw6PxRt4bwuR/J/dejntbGoksveWY7jODw9sa/6eYmIRJBavkSaiZfXL+S1DYsZmNKBv/Y/Nex+XuU1fi55exl55TXcf1Ivjtb0QSIiEaWWL5FmYG7Bem5b/hGpUXE8P/RXYY/n5TgON35kWbKtlAsGtueyIZ0iHKmIiCj5EmnicsoKuGTBf/E7AZ4acg5d4luFXffxuRt4e8V2hndK5q8nHxF2a5mIiBw63XYUacJ2VFdw4fz/kF9dzoMDTmdsevgTX3+alce9X62hY1IMz53ZT/M2iojUE11tRZqomoCf337/JqtL87iyxyj+r1v4HewXbSnmivdWEOt188JZ/dTBXkSkHqnlS6QJchyHW5dOZ1Z+DuPbGe7IPDHsujmFFVzw5lIqfQFeOKs/R3ZIjmCkIiKyJyVfIk3Qo1mzeHXDIgYkt2fq4LPwuMJrxM4rr+a8N5aQV17D307pzfjebSIcqYiI7Em3HUWamOfXzud++yWd41J4Zfh5JHijw6pXXuPnov8tY01hBZNHdeWSwXqyUUSkISj5EmlC3tm0jD8s+5A20fG8OeIiOsSFd8uw2h/gindX8P3mYs7p147bju0e4UhFRGR/lHyJNBEztmdx9eJ3SPTG8N8RF9IzMS2ser5AgKum/cin2fmMzWjNo6caDSkhItKAlHyJNAFzC9Zz6YL/4nW5eXX4eQxI6RBWvYDjMHm65f2VuYzqksKLZ/cn2qOvvYhIQ1KHe5FGbl7BBs6b9yo1ToAXh/2akWndwqrnOA63fLKKN5dvY2jHJF49ZwDxUZ4IRysiIgej5EukEfuuYD3nzX2VqoCPpwafzUntjgirnuM4/PnzLF5evIUB7RJ5/VcDSYzR111EpDHQ1Vikkfo2fx3nzXuV6oCfp4ecw+kdMsOqF3Acbv1kFS8t3kKfNvG88euBpMSGN9ejiIhEnpIvkUZoTv5azp/3GjUBP88OPZdT2/cJq54vEGDydMuby7fRv20ib/xmIGnx4Q1FISIi9UPJl0gj88k2y+Xf/w+/E+DfQ3/F+PYmrHpVvgCT3l/B9FV5DO2YzH9+NYBWavESEWl0lHyJNCKvrV/ETUunEeP28vyw33BC295h1Sur9vPbd5czY00BR3dtxctn91cfLxGRRkpXZ5FGwHEc/pH1DffZGbSOiuPVo85nWOvOYdXdVlrFRf9bxuKtJZzQI5XnzuxHnJ5qFBFptJR8iTQwvxPg9uWf8OzaeXSOS+G/Iy6kd2J4cy6uyivj/DeXsr6okt8MaM+D44/QOF4iIo2cki+RBlRSU8WkRW/x2fbVZCa15fWjLgh7yqA563dw8VvLKKryceuYDG46uptGrhcRaQKUfIk0kJyyAv5v/uvY0lzGpffkmSHnkBIVG1bd/yzZws0frwLg8dP68OsB7SMZqoiIHEZKvkQawDd5Ofz2+zcprKng991HcGfmyXjdB79dWO0P8OfPs3hh0WZSYrw8d2Y/jsloXQ8Ri4jI4aLkS6QeOY7D0zlzuevHz3ABjwycwAVdh4RVd2tJFb99dznzNxWTmZ7AC2f1p3vruMgGLCIih52SL5F6sqO6gsk/vM9H21bSJjqB54aeG/Y8jd9t2MHv3l3B9rJqzurblofGGxKi9USjiEhTpORLpB4sLNzEFQv/x/qKHYxJy2Dq4LNoF5t00Hq+QIBH5qznodlrcQF3H9+T3w/vrI71IiJNmJIvkQgKOA5PrvmWe1d+gc8JcFPvY7n5iLF4XAfv37WhqJKrpv3I3I1FdE6O4YkJmYzs0qoeohYRkUhS8iUSIWtK8rnw29f4tmAdbaITmDr4LMam9wir7rs/bufmjy3FVX7O6JPOg+OP0OTYIiLNhJIvkcPMcRxeWv89U378jDJfNae1z+TvA06jTUzCQetuK63iD5+uZvqqPOKj3PzjVMNvBrTXbUYRkWZEyZfIYbS2rJBbl03nq9xsWkXH8cSRZ3J2pwEHTZ4cx+GNZdu4/YssdlT6GNk5hUdPNfRIja+nyEVEpL4o+RI5DKoDfp7InsPDq2dSGfBxXHpPXjruPGLKD/5EYk5hBbd9tpov1hSQEO3hryf35pLBHXGrtUtEpFlS8iXyM83JX8utS6ezqjSP9JgE/tH3DH7ZsR9tE5LJLS/Zb73yGj+Pfbuef81dT5XfYVz31jw03tAlJbxR7kVEpGlS8iVyiHLKCvjLyi+YtmUFLuDSbsO4rc8JB50iyHEcPrC53DEjm03FVXRMiuGu43sysU+6+naJiLQASr5E6mhHdQUPZ83k3znzqHECDG3VmXv7jWdI604HrTt3YxH3fJXNvI3FRHtcXD+qK5NHddOAqSIiLYiSL5EwlfmqeW7tfP6ZPZvCmgq6xKVwe+aJnNGh30FbrH7MLeW+r3P4JCsfgPG905hyXE91qBcRaYGUfIkcRLm/hhfWzuef2XPIqy4j2RvD7X1O5PLuI4j1HPgrZPPKePTbdby9fDsOMKpLCn8e14PhnVLqJ3gREWl0lHyJ7EdxTSUvr1/IE2vmkFtVRqI3mpt6H8ukHqMO2q9rydYSnpi+kreXbgWgb3oCfx7XgxN6pKpfl4hIC6fkS2QPmyuKeTrnO15a/z2lvmoSPNHc0OsYJvUYRevouP3WcxyHr9YW8tT8jcxYUwDA4A5J3DC6Gyf3StPQESIiAij5EgGCidP8wo08v24+721ejs8J0DYmkcm9xnBx12G0OkDSVVbt583lW3l2wSZW5ZcDwduLd/0ik0GtY9TSJSIiu1HyJS1aqa+K/21aygtrF7CiZBsARyS24aoeozm70wBiDtCna/n2Ul79YQtvLttGUZWPKLeLc/u144rhnRnUPon09CRyc/c/zpeIiLRMSr6kxQk4DnPy1/LGxiVM27KCMn81HpeLCR36ckm3YYxJy9hva1VxpY/3Vm7n1R+2sHBLMLFKT4jixqHduHRIR9olxtTnoYiISBOk5EtaBMdx+LFkO+9vWc6bG5ewoaIIgC5xKVzdZTQXdh1C+9ikfdat9Pn5LKuAt1ds4/PsfKr8Dm4XnNQzlQsGdeCknmlEedz1eTgiIs3KwoULuO22m3nxxddp1649AFOnPk63bhmceuqEg9a/994pnHDCyYwcOXrXuokTT+H99z8BYObMr3jzzf/gOA5VVVWcf/5FHHfcibvKPvjg/SxfvpTnn3/tMB/Zvin5kmbLcRwWF21m+pYf+WDrj6wpC3aCT/BEc16XI/l150GMTO22z47wpVU+vswp4KPV+XySlUdJlR8A0yaes/q241f929EpWdMAiYgcLl5vFPfddzePPvqvw9pXdunSH3jjjdf4298eJT4+nqKiHfz+95eSkdGD7t17UFlZydKlP9C9e08WLlzAkCHDDttn74+SL2lWqgN+5hds4ONtK5m+dSUbQy1c8Z4oJnToy+ntMzmlvSHeE7VX3W2lVXy8Op+PV+cxa10h1X4HgE7JMVx8ZEfO6tuOfm0T1IFeRJq1KTOymbZye53ruT1uAv7APrdN6NOWKcf3PGD9oUOHEQg4vP32G5x99q932/af/7zCF198isfjYdCgwVx11XVhxzVt2ruce+55xMcHB7VOSWnF00+/SFJS8G7HjBmfMXTocEaOPJq3335DyZfIwTiOQ3ZZPl/lZvNV7hq+yc+h3F8DQLI3hnM6DeT0Dpkcl96TuD0SrooaP/M2FTFr7Q5mri1k8dafOsf3TU9gfO82/OKINgxsl6iES0SkHtx88x+4/PKLOeqoUbvWZWdnMWPGZzz55HN4PB7+9KdbmT17FkcffcxudadOfYxXXnlh13JxcfCP77y8XDp23H36t+Tk5F0/T5v2LrfcchsZGd158MH7yc3dTnp62wgc3U+UfEmT4jgO68p3MLdwPXPz1/F13ppd/bcAeie2YVybHpzQtjdj2nQn2v3TnIk1/gBLtpUya20hs9YVMm9jEVWh1i2v28WYrq0Y37sNp/ROo1ur/Q8tISLSnE05vudBW6n25XA84Z2S0orrrruJ++6bwoABgwBYt24t/foNwOsNpiyDBh1JTk72XsnXlVdet1efL4B27Tqwffs2evc+Yte2JUsWk5qahs/nIycnm3/+81EAXC4X7777FpdffuXPOo6DUfIljVp1wM+K4m3MK1jP3MINzC1Yz/aq0l3bW0XFMrFDX8al92Rcek86x/00bc+20ioWbCpgweZiFmwq5oetJVT6fmoS7982kWMyWnFst9aM6JJCYrS+DiIiDW3MmGOZOfNLPvzwA6666jq6dcvg9ddfwefz4fF4WLx4EePHnxb2/k47bQJPPvlPhgwZRlxcHIWFBdx339385S8P8NFHH3D55Vdx9tm/AmDr1q1MmnQpl1zyO6Ki9u6ecrjot400GlV+Hz+WbOeHos0sKdrCkqIt/FiyneqAf1eZdjGJTOzQlxGpXTmqdRf6p7TH43KzrbSKZZtLeWv7OpZtK2XRlhLWF1Xuqud2QWZ6AsM7pTCmWyuO7tqKtPjohjhMERE5iMmTb+L77+cD0LNnL44//kSuvPK3OI7DwIGDOPbYcWHvq3//gUyceCY33HA1Xq+XqqpKJk26mm7dMvjii0954YX/7Crbvn17evXqzZdffsHJJ48/3Ie1i8txnIjt/HDKzS1pGoHWk6Y8gKffCbC2rJCVJduxpbnYklxWlmxndWkePuenlqlot4e+Se0YmNKBo1K7MCK1K0kkkF1YQVZ+Oavzy1m+vZRl20vJLavZ7TNax3oZ1imZYZ1SGNYxmcEdkkiMqd+/NZryOWpJdJ6aBp2nxk/naHfp6Un77Sysli+JCL8TYHNFMTnlBawtK2RteQE5ZYXklBWQXZZHVa3WLAg+jTgwpQMDUzqQmdiOtp403FUJrC2sImtTOa8sKWdKwQryymv2+qyuKbH8oncK/dsl0r9tIv3bJdI5WdP6iIhI46TkSw5Jhb+GLRXFbK4MvrZUFrOpopiNFUXklBWwvryQGmfvR47jPFH0TkinU0wqqa4UYvxJBCri2VHiYeP2KqYXV/JCWSlQuls9tyuYZA3ukESvtHh6p8XTKzWePukJtIqN3H15ERGRw03Jl+xS5feRX11OfnUZuVVl5FWXkRd6z68uJ7eqjC2VxWypKKagpmK/+0n0xNIxKo1EEonyJeBUx1JVHk1JSTS5xQ7L/LDsp08NvSDK7aJTcgx9uiXQNSWWrq3i6JUaTLS6t44jxqtR5EVEpOmLWPJljHEDTwCDCP52/Z21NqvW9suB3wM+4C/W2g8iFUtL4TgOlQEfZb5qSn3VFPsq2VFTQVFNZa3X7ss7aioprCknr6qMYl/VQT/Di5cYJ44UXxuoiaGmKprKiigC1dFQEwM1sZQGvHu0W4HHBW0To+ibHkO7xGjaJkbTOTmWLinBV9eUWNomRONx61ahiIg0b5Fs+folEGutHWWMGQk8BJwBYIxpD1wHDANigW+MMZ9Zaw/+278J8gUCVAZ8VAV8VPl9wZ/9PioDNT8t77Gtwu+jwl9Dua+GMl8NpaGEqiz0qnb5KaqqpMJfTUWghsrQy6GOzyU4LvB7wRcNvrjQexT4o3762RcF/uDPvoAHHy5cQKtYLx3io2gdF0VaahSpccGfU+OjSIuLol1idOgVQ1pclBIrERERIpt8jQE+BrDWfmeMqT1e/1HA7FCyVWWMyQIGAvMjGM8BbSkv4Yb5n1NUU4nPCeAjgN8J4Hf8ofcA/l3rAgRwQu/B9QECBELrHWq/ByBSOYffA4Gdr2gIxNZa9gSTqp2vQFSwvD8K/F5i3VEkemJJjo4mOTqKpBgPSTFekhI9JMd4gz/vXBcdXJcY4yU1zktqXBStYpVMiYiIHIpIJl/JQFGtZb8xxmut9e1jWwmQQgP6b1Y2M0qWHLygQ7C1CFfw3XGH3ne+PIB3j3VuCLhDZd24ceOp9Z8XD15X8BXl8hDl9hJN8D3G7SXa7SHOHU2cJ2rXe1piAoEaP9EeF/HRHuK8HuK8buKi3MRFeYLv3uB7fNTObcHlGI9bTwKKiEijcd11k5g06Rr69u1PTU0Np59+Ihdf/DvOP/8iAK655gomT76ZV155nj//+W7y8/PJylrFmDHHcs01V3DLLbfRrVvGPvf94YfTWLduLVdeee2udXfe+UfOOONshgwZxpo12Uyd+hiVlZVUVFQwatTRXHbZFbt+T37xxafcf//dvP76O7Rpk35YjjeSyVcxkFRr2R1KvPa1LQnYcaCdtW4dj9frOVCRn+WucUfTZ1kHiquriXZ7iPF6iHZ5iPGEXl5v6GcvHjd43W48bhdet+und5cLr2eP99rb3S4lPS1MenrSwQtJg9N5ahp0nhq/Qz1Hxx03luzsHxk7dhTffvstxxxzDAsWfMvkyVdRVVVFXt52Ro8eyujRQwH47ruvWLNmDWeeeRrR0V5at47f72cnJcUSHx+92/aYmChatYonJsbhL3+5nccff5yMjAz8fj+TJ0/miy+mc9555wHwyScfcNFFF/H559O59tpr9/kZdRXJ5Gs2MAF4I9Tna2mtbfOAe40xsUAMkEntB+D2obCwPFJx7jK+Y7tDqOWA48DOYatC6aU/9Ko+PKHtRYPZNX46R02DzlPToPNUf6as+JRpW1bUuZ7b4ybg33uIIYAJHfoype/J+62bmXkkL774LBMmnMtHH33GySefztSpj5GTs4VVq1YycOBgcnNLOOecCbz88htMnfoklZWV9OzZh+pqHw899CiFhQVUVFQwZcq9dOrUede+S0oqKS+v3u3/n6qqGnbsKOfdd6czcOAQEhLSdm2/5ZbbiYqKIje3hM2bN5GXV8DZZ1/AZZddwDnnXLhrjsmDOVAiGsln998BKo0xc4BHgBuMMTcaYyZaa7cCjwGzgBnAn6y1lQfYl4iIiDRTRxxhWLduLY7j8MMPizjyyCEMGzaCBQvmsmjR94wYMWpXWbfbzYUXXsJJJ41nzJixAIwePYbHHnuSkSNH89VXX+y1/88++5hrrrli1+v77xcAkJeXS8eOnXYrGx8fv2texw8+eI/TTptIYmIi/fsP5OuvZxyW441Yy5e1NgBM2mP1ylrbnwGeidTni4iISN1N6XvyAVup9ufntE663W569TqC776bQ2pqGtHR0YwcOZo5c2aRlbWac8/9zQHrG5MJQFpaGvn5+XttP+mk8Xv1+QJo164Dq1at3K3s5s2b2L59GwMGDOLTTz+iQ4eOzJ49i5KSIt56awsnnFD3f5s9adRKERERaXDDh4/g5ZefZ+TI0QAMHHgk1gYTo+Tk3Z/Jc7lcOLVmUTnU/tRHHz2GuXPnsGnTRgB8Ph+PP/4Ia9Zk8+23s+nTpy+PP/4UDz/8OM888xIFBQVkZa0+pM+qTcmXiIiINLjhw0ewZMliRo06GoCoqCiSkpIYNGjwXmV79uzFrFlf8/nnn/ysz0xISORPf7qLBx74C9dccwVXXHEJvXr15swzz2HatHcYP/7U3cpPmHAGb731xs/6TACX49RxUM4Gkptb0jQCrSfqfNr46Rw1DTpPTYPOU+Onc7S79PSk/TbHqeVLREREpB4p+RIRERGpR0q+REREROqRki8RERGReqTkS0RERKQeKfkSERERqUdKvkRERETqkZIvERERkXqk5EtERESkHin5EhEREalHTWZ6IREREZHmQC1fIiIiIvVIyZeIiIhIPVLyxgj2CQAACG1JREFUJSIiIlKPlHyJiIiI1CMlXyIiIiL1SMmXiIiISD3yNnQAsn/GmDOBc62154eWRwL/AHzAp9bau4wxbuAJYBBQBfzOWpu1r7INchAthDHGBWwEVodWfWut/aMxZgJwB8Hz8Jy19hljTBzwCtAWKAEuttbmNkTcLdn+vjsNG1XLZoxZBBSFFnOApwjzmtcQ8bY0xpgRwAPW2nHGmF7AC4ADLAOuttYGjDF3AqcRPGfXW2vn7a9sQxxDY6GWr0bKGPMP4H52P0dPAucDY4ARxpghwC+BWGvtKOAPwEMHKCuR0xNYaK0dF3r90RgTBTwCnAyMBa4wxrQHrgSWWmuPAV4C/txgUbds+/vuSAMwxsQC1PoOXUrdrnkSQcaYW4FngdjQqoeBP4euYy7gjND5GQuMAH4D/Gt/Zesz9sZIyVfjNYfgL2kAjDHJQIy1Ntta6wCfACcQvCh9DGCt/Q4YdoCyEjlDgU7GmC+NMR8aYwyQCWRZawuttdXAN8Ax1DpnwEfAiQ0Ssez13WnYcFq8QUC8MeZTY8wMY8yxhHnNa7CIW5Zs4Kxay0OBr0M/77yOjSHYQulYa9cDXmNM+n7Ktmi67djAjDG/BW7YY/Wl1tr/GmPG1VqXDBTXWi4BeoTWF9Va7z9AWTkM9nPOrgbut9a+aYwZQ/C24g3sfm5KgBR2P2c710n92+u7Y4zxWmt9DRVQC1cOPEiwdaU3wV/SO2pt3+81T+ct8qy1bxljMmqtcoWSYtj92pZfq8zO9fsq26Ip+Wpg1tp/A/8Oo2gxkFRrOYnghSl+j/XuA5SVw2Bf58wYE0+wjwPW2m+MMZ0IXmT2dR5qnx+dm4az5/fErV/gDWoVwZZiB1hljCkCUmtt3+81T+etQdTus7Wva1vt9fsq26LptmMTYa0tBqqNMT1DnbtPAWYBs4FTYVeH/KUHKCuRcydwPYAxZhCwHlgB9DbGpBpjooFjgW+pdc6AX6Bz01D2+u40bDgt3mWE+m8ZYzoSTLLKwrnmNUy4Ld6iWndndl7HZgOnGGPcxpiuBBPjvP2UbdHU8tW0TAJeBTwE76vPNcbMB04yxswh2JHx0v2VbYiAW5C/Aq8YY3Y+5XOJtbbGGHMjwb4qboJPO24yxkwFXjTGfANUE+xQLPXvHfb93ZGG8W/ghdD3wiGYjAUI/5on9esm4JnQH5Y/Av+z1vqNMbMI/pHpJtgdY59lGyLgxsTlOM7BS4mIiIjIYaHbjiIiIiL1SMmXiIiISD1S8iUiIiJSj5R8iYiIiNQjJV8iIiIi9UhDTYhInYRGuV5FcByz2p6x1v7LGONYa11h7msc8AGwc2JkD5BIcPLeJw9QLwV4wVp7ZmhMqGettafur/whxOIiOIfdh8Dt1tpSY8xEYJi19g5jzKnAMwSnTHkQeBdYa6099ufEICItg5IvETkUm621Rx6mfS2w1o7buWCMORKYb4x5LTRg8L60BgYDWGs389OgtYctltDE6M8BU4GLrLXvA++Hyp0D3GWtfdoYcwfwirX2tsMUg4g0c0q+RCQiQlMuPUNwwuQA8KC19qUwqmYAZUBVaJL4fwOdgY7A58DvgMeAjsaYdwjOofmVtTbDGPMCwXn/hgKdgLuttc+HWspeAnoBa0L7O9Nau3Z/QYQGyb0F2GCMuRb4JTCO4ATpvwRONMbEAleFjrcSeCr06hI65j9aaz83xkwBRgJdgceBzwgmdWkE5zS81lq76ADxp4b+HfoAVcCN1toZxpjxwN1AFJADXG6trT23nog0QurzJSKHoqMxZvEerwF7lJkC5Ftr+wPHA1OMMQP3sa9hofqrjTF5wIXASdbaKuA0YLG1dhTByZbHAkOA6wi2vp25j/11AY4BJhK8JQhwB2Cttf2Au4A9Y90na+1WoBA4ota6Zwm2gN1hrX0MeBJ40lp7N/APgjMZDA19/lPGmJ1z3cVaa/taa6cCLwK3WmuHAFcArx8k/nsIznuYCVwE3GuMSSc4s8Ip1trBBGdSeCCc4xKRhqWWLxE5FOHcdjwe+C2AtTbPGPMewZajJXuUW2CtHWeMiQFeBoqttfND9f5jjDnKGHM9kEmwpSgROFDrzqfWWscYs4yfJmY+CbggtM8Fxpi6zAfoABVhlj0R6GOMuTu0HAX0DP08F8AYkwgMB543xuysl2iMSTtA/GMJTUNlrV0KjDLGnE6wJe3L0H48QEEdjktEGohavkQkUva8vrg4wB98oZauy4EJxphfAYRu9/0dyCV4u25FaD8HUhnaX+250/z7iOegjDHtgBQgO8wqHuB4a+2RoeR0BD9N/FxRq0zlzjK1yu1MnPYVfw3BJHBnXH1C+/mm1j6GA2fX9RhFpP4p+RKRSJlBqOXLGNOGYD+prw5UwVpbBNwJPGiMiSPYYvWUtfZVgk8fHkkw6fBRt5b7zwm1HIVuj/anVjKzL6GWuL8TfKqyPMzPmcFPfcD6AsuA+NoFQse42hhzYajcScDMg+x3JnBeqHwf4GNgHsEWsJ23RG/np9uUItKI6bajiByKjsaYxXusm2mtva7W8t3AE6FbfB7gXmvtwjD2/SzBPl03Ao8CU40xfyTYEX0O0J1gMrLeGPMlcGkY+7yH4G2+JQRbsbay71uJw2odl5dgMnVLGPvf6Vrg6dDnuIALrbUltW4v7nQB8KQx5lagGvh16Fbj/vZ7J/CMMeYHgonnRdbaLcaYy4A3jDEeYCPB/nIi0si5HOeAf/yJiDR5oVamHGvtbGNMV4Ljc/W01gYaODQRaYHU8iUiLcFKgi1NHoJDQPxeiZeINBS1fImIiIjUI3W4FxEREalHSr5ERERE6pGSLxEREZF6pORLREREpB4p+RIRERGpR0q+REREROrR/wdPH7StSpFUzwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x504 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(figsize=(10, 7))\n",
    "ax.plot(x, y, label='No HCA')\n",
    "ax.plot(x, hca_y, label='With HCA')\n",
    "ax.set_xlabel('Elo Rating Difference')\n",
    "ax.set_ylabel('Win Probability')\n",
    "ax.set_title('Win Probability versus Elo Rating Difference')\n",
    "ax.axhline(y=0.5, linestyle='dashed', color='grey')\n",
    "ax.legend(loc='lower right')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Computing the Team Elo Ratings\n",
    "\n",
    "Now we can compute Elo ratings for all 30 NBA teams over the course of the 2017-18 regular season. A detailed discussion of the assumptions and math behind Elo ratings is included in [this post](http://practicallypredictable.com/2018/04/15/elo-ratings-for-nba-teams/).\n",
    "\n",
    "#### Elo Ratings Update\n",
    "\n",
    "The method is very simple. First, we need a function to update the Elo ratings, based upon the prior ratings, the adjustment for home court advantage, and which team won the game. We need to specify the parameter $K$, which controls how much to adjust the Elo ratings for each game. We will use the value $K = 20$ in this notebook.\n",
    "\n",
    "Here are the formulas used to update Elo ratings:\n",
    "\n",
    "$$H_{new} = H_{prior} + K \\times (W_H - p_H)$$\n",
    "\n",
    "$$R_{new} = R_{prior} + K \\times (W_R - p_R)$$\n",
    "\n",
    "The $W$ variables are 1 depending upon whether the home or road team won. Notice that $W_R = 1 - W_H$ since a win by one team is a loss by the other.\n",
    "\n",
    "The $p$ variables are the Elo win probabilities for the home and road team, computed using the function above. Notice that $p_R = 1 - p_H$ since there are no ties in basketball."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "def update(*, winner, home_elo, road_elo, hca_elo, k, probs=False):\n",
    "    \"\"\"Update Elo ratings for a given match up.\"\"\"\n",
    "    home_prob, road_prob = win_probs(home_elo=home_elo, road_elo=road_elo, hca_elo=hca_elo)\n",
    "    if winner[0].upper() == 'H':\n",
    "        home_win = 1\n",
    "        road_win = 0\n",
    "    elif winner[0].upper() in ['R', 'A', 'V']: # road, away or visitor are treated as synonyms\n",
    "        home_win = 0\n",
    "        road_win = 1\n",
    "    else:\n",
    "        raise ValueError('unrecognized winner string', winner)\n",
    "    new_home_elo = home_elo + k*(home_win - home_prob)\n",
    "    new_road_elo = road_elo + k*(road_win - road_prob)\n",
    "    if probs:\n",
    "        return new_home_elo, new_road_elo, home_prob, road_prob\n",
    "    else:\n",
    "        return new_home_elo, new_road_elo"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's test out our Elo update function for various situations. If the home and road team are equally matched and there is no home court advantage, the winner's Elo rating goes up by 10 points, and the loser drops by 10 points. Elo ratings are zero-sum, since the loser gives up points to the winner."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1510.0, 1490.0)"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "update(winner='H', home_elo=1500, road_elo=1500, hca_elo=0, k=20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1490.0, 1510.0)"
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "update(winner='R', home_elo=1500, road_elo=1500, hca_elo=0, k=20)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, let's add in a home court advantage. This shifts the win probabilities."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1508.04, 1491.96)"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "update(winner='H', home_elo=1500, road_elo=1500, hca_elo=hca_elo, k=20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1488.04, 1511.96)"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "update(winner='R', home_elo=1500, road_elo=1500, hca_elo=hca_elo, k=20)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The teams are still equally rated, but now we see that the home team is the slight favorite. When the road team wins, it's Elo rating afterwards is almost 1512. Compare that to the 1508 updated Elo rating the home team would have gotten if it had won.\n",
    "\n",
    "#### Computing Elo Ratings for the Whole Season\n",
    "\n",
    "In our simple Elo rating system, we will set all teams to an average rating of 1500 at the beginning of the season. In future posts, we will examine ways to extend the system to incorporate information across seasons. Doing this properly requires some thought around roster and coaching changes.\n",
    "\n",
    "Setting all teams to an initial 1500 rating means that we start off knowing nothing about the teams. By the end of the regular season, hopefully our ratings system will have learned enough about team strength to make useful playoff predictions.\n",
    "\n",
    "The below function computes the Elo ratings over an entire NBA regular season. The function is long, but not very complicated. Here is an outline of what it does:\n",
    "\n",
    "1. Set all the initial team ratings to 1500\n",
    "2. Get the match up results and sort them in chronological order\n",
    "3. Loop through all game results:\n",
    "    - Get the Elo ratings from the home and road teams prior to the game\n",
    "    - Figure out which team won the game\n",
    "    - Get the new Elo ratings based on who won the game and home court advantage\n",
    "    - Store the before and after Elo ratings and the date of the game so we can plot time series charts later\n",
    "    - Store the new Elo ratings\n",
    "4. At the end, check for data consistentcy\n",
    "5. Return the end-of-season Elo ratings and a time series of Elo ratings for all the teams, along with the match up information used to compute the ratings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "def simple_nba_elo(*, box_scores, teams, hca_elo, k):\n",
    "    \"\"\"Compute simple Elo ratings over the course of an NBA season.\"\"\"\n",
    "    latest_elos = {abbr: 1500 for abbr in teams['abbr']}\n",
    "    matchups = box_scores.matchups.sort_values(by='date', ascending=True).copy()\n",
    "    home_probs = []\n",
    "    road_probs = []\n",
    "    home_elos = []\n",
    "    road_elos = []\n",
    "    index_check = []\n",
    "    elo_ts = []\n",
    "    for game in matchups.itertuples(index=True):\n",
    "        index = game.Index\n",
    "        home_team = game.team_abbr_h\n",
    "        road_team = game.team_abbr_r\n",
    "        winner = game.hr_winner\n",
    "        home_elo = latest_elos[home_team]\n",
    "        road_elo = latest_elos[road_team]\n",
    "        (new_home_elo, new_road_elo, home_prob, road_prob) = update(\n",
    "            winner=winner,\n",
    "            home_elo=home_elo,\n",
    "            road_elo=road_elo,\n",
    "            hca_elo=hca_elo,\n",
    "            k=k,\n",
    "            probs=True\n",
    "        )\n",
    "        home_info = OrderedDict({\n",
    "            'date': game.date,\n",
    "            'game_id': game.game_id,\n",
    "            'abbr': home_team,\n",
    "            'matchup_index': index,\n",
    "            'opp_abbr': road_team,\n",
    "            'home_road': 'H',\n",
    "            'win_loss': 'W' if winner == 'H' else 'L',\n",
    "            'win_prob': home_prob,\n",
    "            'opp_prior_elo': latest_elos[road_team],\n",
    "            'prior_elo': latest_elos[home_team],\n",
    "            'new_elo': new_home_elo,\n",
    "        })\n",
    "        elo_ts.append(home_info)\n",
    "        road_info = OrderedDict({\n",
    "            'date': game.date,\n",
    "            'game_id': game.game_id,\n",
    "            'abbr': road_team,\n",
    "            'matchup_index': index,\n",
    "            'opp_abbr': home_team,\n",
    "            'home_road': 'R',\n",
    "            'win_loss': 'W' if winner == 'R' else 'L',\n",
    "            'win_prob': road_prob,\n",
    "            'opp_prior_elo': latest_elos[home_team],\n",
    "            'prior_elo': latest_elos[road_team],\n",
    "            'new_elo': new_road_elo,\n",
    "        })\n",
    "        elo_ts.append(road_info)\n",
    "        latest_elos[home_team] = new_home_elo\n",
    "        latest_elos[road_team] = new_road_elo\n",
    "        home_probs.append(home_prob)\n",
    "        road_probs.append(road_prob)\n",
    "        home_elos.append(new_home_elo)\n",
    "        road_elos.append(new_road_elo)\n",
    "        index_check.append(index)\n",
    "    matchups['home_prob'] = home_probs\n",
    "    matchups['road_prob'] = road_probs\n",
    "    matchups['home_elos'] = home_elos\n",
    "    matchups['road_elos'] = road_elos\n",
    "    matchups['index_check'] = index_check\n",
    "    if not all(matchups['index_check'] == matchups.index):\n",
    "        raise RuntimeError('indices do not match!')\n",
    "    matchups = matchups.drop(columns=['index_check'])\n",
    "    return matchups, pd.DataFrame(elo_ts), latest_elos"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's run the function to get the 2017-18 Elo ratings for all 30 NBA teams. As discussed above, we are using a home court advantage adjustment of 69 Elo rating points and a $K$ value of 20."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [],
   "source": [
    "matchups, elo_hist, curr_elos = simple_nba_elo(box_scores=nba1718, teams=teams, hca_elo=hca_elo, k=20)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### The Results, and Some Plots\n",
    "\n",
    "Here are the Elo ratings for all 30 NBA teams as of the end of the regular season, ranked best to worst."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('HOU', 1718.7573739310872),\n",
       " ('TOR', 1642.509234000021),\n",
       " ('PHI', 1637.8605055619669),\n",
       " ('UTA', 1616.2033964377317),\n",
       " ('POR', 1595.065188211564),\n",
       " ('GSW', 1590.3946390420315),\n",
       " ('NOP', 1587.2519843938655),\n",
       " ('BOS', 1586.1753617623024),\n",
       " ('IND', 1584.6564274796217),\n",
       " ('OKC', 1580.234680473253),\n",
       " ('CLE', 1570.556557419121),\n",
       " ('DEN', 1568.7112357272322),\n",
       " ('SAS', 1541.9814371909993),\n",
       " ('MIN', 1540.460835899911),\n",
       " ('MIL', 1521.473057845756),\n",
       " ('LAC', 1512.9777428218233),\n",
       " ('MIA', 1512.1543637174311),\n",
       " ('WAS', 1484.998604454014),\n",
       " ('DET', 1467.7427511888648),\n",
       " ('LAL', 1461.962359042527),\n",
       " ('CHA', 1460.0431212254493),\n",
       " ('BKN', 1403.3122168209793),\n",
       " ('SAC', 1392.8896638705985),\n",
       " ('ATL', 1374.0186175508284),\n",
       " ('NYK', 1367.6683600631823),\n",
       " ('CHI', 1365.4361876958365),\n",
       " ('DAL', 1351.5809302667749),\n",
       " ('ORL', 1344.7360522769086),\n",
       " ('MEM', 1314.910648773433),\n",
       " ('PHX', 1303.2764648548855)]"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sorted(curr_elos.items(), key=operator.itemgetter(1), reverse=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice that since Elo ratings are zero-sum, the league average at the end of the season is the same as at the start of season."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1499.9999999999998"
      ]
     },
     "execution_count": 40,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sum(elo for elo in curr_elos.values()) / len(curr_elos)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "(The reason the average isn't exactly 1500 is due to small numerical round-off errors during all these calculations.)\n",
    "\n",
    "One of the results of the function is a time series of the Elo ratings by date and team."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>date</th>\n",
       "      <th>game_id</th>\n",
       "      <th>abbr</th>\n",
       "      <th>matchup_index</th>\n",
       "      <th>opp_abbr</th>\n",
       "      <th>home_road</th>\n",
       "      <th>win_loss</th>\n",
       "      <th>win_prob</th>\n",
       "      <th>opp_prior_elo</th>\n",
       "      <th>prior_elo</th>\n",
       "      <th>new_elo</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>2440</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701221</td>\n",
       "      <td>MIA</td>\n",
       "      <td>3</td>\n",
       "      <td>TOR</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>0.378393</td>\n",
       "      <td>1654.941373</td>\n",
       "      <td>1499.722224</td>\n",
       "      <td>1512.154364</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2441</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701221</td>\n",
       "      <td>TOR</td>\n",
       "      <td>3</td>\n",
       "      <td>MIA</td>\n",
       "      <td>R</td>\n",
       "      <td>L</td>\n",
       "      <td>0.621607</td>\n",
       "      <td>1499.722224</td>\n",
       "      <td>1654.941373</td>\n",
       "      <td>1642.509234</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2442</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701225</td>\n",
       "      <td>MIN</td>\n",
       "      <td>4</td>\n",
       "      <td>DEN</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>0.531625</td>\n",
       "      <td>1578.078736</td>\n",
       "      <td>1531.093335</td>\n",
       "      <td>1540.460836</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2443</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701225</td>\n",
       "      <td>DEN</td>\n",
       "      <td>4</td>\n",
       "      <td>MIN</td>\n",
       "      <td>R</td>\n",
       "      <td>L</td>\n",
       "      <td>0.468375</td>\n",
       "      <td>1531.093335</td>\n",
       "      <td>1578.078736</td>\n",
       "      <td>1568.711236</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2444</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701222</td>\n",
       "      <td>ORL</td>\n",
       "      <td>5</td>\n",
       "      <td>WAS</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>0.364324</td>\n",
       "      <td>1497.712134</td>\n",
       "      <td>1332.022523</td>\n",
       "      <td>1344.736052</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2445</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701222</td>\n",
       "      <td>WAS</td>\n",
       "      <td>5</td>\n",
       "      <td>ORL</td>\n",
       "      <td>R</td>\n",
       "      <td>L</td>\n",
       "      <td>0.635676</td>\n",
       "      <td>1332.022523</td>\n",
       "      <td>1497.712134</td>\n",
       "      <td>1484.998604</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2446</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701220</td>\n",
       "      <td>CLE</td>\n",
       "      <td>10</td>\n",
       "      <td>NYK</td>\n",
       "      <td>H</td>\n",
       "      <td>L</td>\n",
       "      <td>0.853405</td>\n",
       "      <td>1350.600259</td>\n",
       "      <td>1587.624658</td>\n",
       "      <td>1570.556557</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2447</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701220</td>\n",
       "      <td>NYK</td>\n",
       "      <td>10</td>\n",
       "      <td>CLE</td>\n",
       "      <td>R</td>\n",
       "      <td>W</td>\n",
       "      <td>0.146595</td>\n",
       "      <td>1587.624658</td>\n",
       "      <td>1350.600259</td>\n",
       "      <td>1367.668360</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2448</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701227</td>\n",
       "      <td>OKC</td>\n",
       "      <td>7</td>\n",
       "      <td>MEM</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>0.869252</td>\n",
       "      <td>1317.525610</td>\n",
       "      <td>1577.619719</td>\n",
       "      <td>1580.234680</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2449</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701227</td>\n",
       "      <td>MEM</td>\n",
       "      <td>7</td>\n",
       "      <td>OKC</td>\n",
       "      <td>R</td>\n",
       "      <td>L</td>\n",
       "      <td>0.130748</td>\n",
       "      <td>1577.619719</td>\n",
       "      <td>1317.525610</td>\n",
       "      <td>1314.910649</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2450</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701226</td>\n",
       "      <td>NOP</td>\n",
       "      <td>8</td>\n",
       "      <td>SAS</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>0.639873</td>\n",
       "      <td>1549.183969</td>\n",
       "      <td>1580.049452</td>\n",
       "      <td>1587.251984</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2451</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701226</td>\n",
       "      <td>SAS</td>\n",
       "      <td>8</td>\n",
       "      <td>NOP</td>\n",
       "      <td>R</td>\n",
       "      <td>L</td>\n",
       "      <td>0.360127</td>\n",
       "      <td>1580.049452</td>\n",
       "      <td>1549.183969</td>\n",
       "      <td>1541.981437</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2452</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701224</td>\n",
       "      <td>CHI</td>\n",
       "      <td>9</td>\n",
       "      <td>DET</td>\n",
       "      <td>H</td>\n",
       "      <td>L</td>\n",
       "      <td>0.479677</td>\n",
       "      <td>1458.149204</td>\n",
       "      <td>1375.029734</td>\n",
       "      <td>1365.436188</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2453</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701224</td>\n",
       "      <td>DET</td>\n",
       "      <td>9</td>\n",
       "      <td>CHI</td>\n",
       "      <td>R</td>\n",
       "      <td>W</td>\n",
       "      <td>0.520323</td>\n",
       "      <td>1375.029734</td>\n",
       "      <td>1458.149204</td>\n",
       "      <td>1467.742751</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2454</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701219</td>\n",
       "      <td>BOS</td>\n",
       "      <td>11</td>\n",
       "      <td>BKN</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>0.802880</td>\n",
       "      <td>1407.254609</td>\n",
       "      <td>1582.232970</td>\n",
       "      <td>1586.175362</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2455</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701219</td>\n",
       "      <td>BKN</td>\n",
       "      <td>11</td>\n",
       "      <td>BOS</td>\n",
       "      <td>R</td>\n",
       "      <td>L</td>\n",
       "      <td>0.197120</td>\n",
       "      <td>1582.232970</td>\n",
       "      <td>1407.254609</td>\n",
       "      <td>1403.312217</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2456</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701223</td>\n",
       "      <td>PHI</td>\n",
       "      <td>6</td>\n",
       "      <td>MIL</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>0.732127</td>\n",
       "      <td>1526.830528</td>\n",
       "      <td>1632.503036</td>\n",
       "      <td>1637.860506</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2457</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701223</td>\n",
       "      <td>MIL</td>\n",
       "      <td>6</td>\n",
       "      <td>PHI</td>\n",
       "      <td>R</td>\n",
       "      <td>L</td>\n",
       "      <td>0.267873</td>\n",
       "      <td>1632.503036</td>\n",
       "      <td>1526.830528</td>\n",
       "      <td>1521.473058</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2458</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701229</td>\n",
       "      <td>POR</td>\n",
       "      <td>0</td>\n",
       "      <td>UTA</td>\n",
       "      <td>H</td>\n",
       "      <td>W</td>\n",
       "      <td>0.542422</td>\n",
       "      <td>1625.354961</td>\n",
       "      <td>1585.913624</td>\n",
       "      <td>1595.065188</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2459</th>\n",
       "      <td>2018-04-11</td>\n",
       "      <td>21701229</td>\n",
       "      <td>UTA</td>\n",
       "      <td>0</td>\n",
       "      <td>POR</td>\n",
       "      <td>R</td>\n",
       "      <td>L</td>\n",
       "      <td>0.457578</td>\n",
       "      <td>1585.913624</td>\n",
       "      <td>1625.354961</td>\n",
       "      <td>1616.203396</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "           date   game_id abbr  matchup_index opp_abbr home_road win_loss  \\\n",
       "2440 2018-04-11  21701221  MIA              3      TOR         H        W   \n",
       "2441 2018-04-11  21701221  TOR              3      MIA         R        L   \n",
       "2442 2018-04-11  21701225  MIN              4      DEN         H        W   \n",
       "2443 2018-04-11  21701225  DEN              4      MIN         R        L   \n",
       "2444 2018-04-11  21701222  ORL              5      WAS         H        W   \n",
       "2445 2018-04-11  21701222  WAS              5      ORL         R        L   \n",
       "2446 2018-04-11  21701220  CLE             10      NYK         H        L   \n",
       "2447 2018-04-11  21701220  NYK             10      CLE         R        W   \n",
       "2448 2018-04-11  21701227  OKC              7      MEM         H        W   \n",
       "2449 2018-04-11  21701227  MEM              7      OKC         R        L   \n",
       "2450 2018-04-11  21701226  NOP              8      SAS         H        W   \n",
       "2451 2018-04-11  21701226  SAS              8      NOP         R        L   \n",
       "2452 2018-04-11  21701224  CHI              9      DET         H        L   \n",
       "2453 2018-04-11  21701224  DET              9      CHI         R        W   \n",
       "2454 2018-04-11  21701219  BOS             11      BKN         H        W   \n",
       "2455 2018-04-11  21701219  BKN             11      BOS         R        L   \n",
       "2456 2018-04-11  21701223  PHI              6      MIL         H        W   \n",
       "2457 2018-04-11  21701223  MIL              6      PHI         R        L   \n",
       "2458 2018-04-11  21701229  POR              0      UTA         H        W   \n",
       "2459 2018-04-11  21701229  UTA              0      POR         R        L   \n",
       "\n",
       "      win_prob  opp_prior_elo    prior_elo      new_elo  \n",
       "2440  0.378393    1654.941373  1499.722224  1512.154364  \n",
       "2441  0.621607    1499.722224  1654.941373  1642.509234  \n",
       "2442  0.531625    1578.078736  1531.093335  1540.460836  \n",
       "2443  0.468375    1531.093335  1578.078736  1568.711236  \n",
       "2444  0.364324    1497.712134  1332.022523  1344.736052  \n",
       "2445  0.635676    1332.022523  1497.712134  1484.998604  \n",
       "2446  0.853405    1350.600259  1587.624658  1570.556557  \n",
       "2447  0.146595    1587.624658  1350.600259  1367.668360  \n",
       "2448  0.869252    1317.525610  1577.619719  1580.234680  \n",
       "2449  0.130748    1577.619719  1317.525610  1314.910649  \n",
       "2450  0.639873    1549.183969  1580.049452  1587.251984  \n",
       "2451  0.360127    1580.049452  1549.183969  1541.981437  \n",
       "2452  0.479677    1458.149204  1375.029734  1365.436188  \n",
       "2453  0.520323    1375.029734  1458.149204  1467.742751  \n",
       "2454  0.802880    1407.254609  1582.232970  1586.175362  \n",
       "2455  0.197120    1582.232970  1407.254609  1403.312217  \n",
       "2456  0.732127    1526.830528  1632.503036  1637.860506  \n",
       "2457  0.267873    1632.503036  1526.830528  1521.473058  \n",
       "2458  0.542422    1625.354961  1585.913624  1595.065188  \n",
       "2459  0.457578    1585.913624  1625.354961  1616.203396  "
      ]
     },
     "execution_count": 41,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "elo_hist.tail(20)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can use this time series data to plot the path of teams' Elo ratings over the course of the season."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [],
   "source": [
    "def plot_elo(*, data, team, ax):\n",
    "    ts = data.loc[data['abbr'] == team, ['date', 'new_elo']].set_index(['date'])\n",
    "    ts = ts.rename(columns={'new_elo': team})\n",
    "    ts.plot(ax=ax, label=team)\n",
    "    return ax"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [],
   "source": [
    "def plot_elo_for_teams(*, data, teams, title):\n",
    "    fig, ax = plt.subplots(figsize=(10, 7))\n",
    "    for team in teams:\n",
    "        ax = plot_elo(data=elo_hist, team=team, ax=ax)\n",
    "    ax.set_xlabel('Date')\n",
    "    ax.set_ylabel('Simple Elo Rating')\n",
    "    ax.set_title(title)\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is a plot of the Elo ratings for all six of the NBA division winners."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAGiCAYAAACif2GLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8FdX5+PHPzNzsCSRAWAKyCHrYFGURFBH3hbqitnbX9ltb6/KttS6ttmpb26qta/1prV9rW2vV1g1U3FcEFRCQ9SBB1pCQfV/uzJzfH3MTQkI2kpsbkuf9evGCzHLmmXNvuM8921jGGIQQQgghRM9gxzoAIYQQQgixlyRnQgghhBA9iCRnQgghhBA9iCRnQgghhBA9iCRnQgghhBA9iCRnQgghhBA9SCjWAQjRXZRSs4DfAwMJvpjsAH6mtV6nlJoO3KS1vqiLrmWATK11QQfPWQt4TXadD4wG/qy1ntyB8i4F7ge+jGyygH7Ah8DlWuuaNs5/A/iG1rpAKfUqQV2tb+/1O0opdQiwCHCBK7TWSw+wnG8B1wMGqAKu0Vovj+z7OfBdgv/7ngRu11qbRueeDtyltT4q8vN3gJ82Kr4/MAIYobXOa+U+Pgam1L/+SqmJwKNAaiSum7TWr+/n3K3Ah1rrbzfaNh34r9Z6tFLqRII60pHdIaCAoL42NDpnEMH7+wmt9RWt1NVWoBaoJnh/WMAzwJ1aa1cpdS5wqtb6mlbKeAx4Wmv9Vgv7syLxH9dSGe2llLoEuFFrfXSjbUuBkQSviYlsexVYSFDX6VrrP3T22kJ0J0nORJ+glEoAXgZO11p/Ftn2LWCRUmpM5MO7SxKzTjppfwmdUmr0AZb3odb67EblJAKLCRKUv7Rx7mn1/9BazzvA63fESUCu1vrUAy1AKaWAu4GpWuvdSql5wPPAyMi/vwpMI0iAXwfWA88qpZKAm4ErgV315Wmt/wH8I1J2HPAB8IdWErPvALcDWU12/T/gca3140qpo4H3lFIDtdbufoq5WCn1utb6yRZuM7s+eYxc8wbgARq9XsD3gZeAbyilbtZaF7VQFsA3GyWvKcC/gHuBq7XWC4AFrZyL1vp/2tifA3Q6MYt4A/iHUmqA1rpIKZVJUNd7gOnAMqVUCDieIGHd1kXXFaJbSXIm+opkIJ2g5aLev4AywFFKzSHSMqWUeoKgxeUIYAjBh1MhcA4wFPgfrfU7keOqgaOAwQQfHNdorcONL6yU+j7wY4LWukLgKq31xgO9EaVUf+ChyHUNQUvKL1r4oG9qIEHrT1GkrLOBXwDxkXv4u9b6l0qpv0WOfzeS1HxIkLymAncAW4DJQBzwQ631R5EPyr8BYyP3mQus1VrfppS6HbgAqIvsu1RrvbvRPZ0E/Bbor5R6V2t9klLqcuAagkQqj6DeNkXqfUDkOi9rrW9sdH+1BK9PfdnLgaFKqfjI9Z/SWldGrvk34FvAs8AZQApB0vq7FuruRmCP1nq/SW2khej8SFm6yW4HyIj8Ow1ordXyZuBBpdRHWusvWzkOpZRFUBeN69IGfkjwnksFLgfa1XKkta5USl0FZCulbgbmE7zuPwWWAFla6zqllANsB04FHgb+DLwIPAjMBsIE75HLgEEE74PUSIJ7D3AKwev6CXCt1ro80or3RGTfSOAfWutfNomvSCm1HDghcr2vECTZecC5wDJgJrBNa71NKXUbMEhrfVVL5UdaI1t6T8cDdwJzCV7DlQS/42WR8j4BjiT4HRoK/IjgPV4TKSNqLc2id5MxZ6JP0FoXAzcArymltiil/knwwfGW1rpuP6dMBU4m+BC4DqiIdMvcD9zU6LiZBC0WEyN/fti4EKXUXIIP/DmRrpi7gBdaCfVdpdSqRn/2d+wDBAnOEQStBVOAn7VQ3pxIORuVUvkEicgftdb/iXywXwd8V2s9HZgF/FwpNUhrfVnk/JO01jualDkT+FPkfv7G3mTmAWCd1noCcDGR1pJIN99PgBmR67wRKaOB1vpd4FcELX0nKaVOJni9TtJaTwGeAl6MxAyQrLWe1CQxQ2u9VWv9SuS6FkEisCDyGh9C0NVXbydBFyVa6xe11tcSJOvNRLoJrwOu3d/+SBk5Wuv5WutN+9l9JUHd7gTeImjVaSmZfp+gpe2pSCtQU2Pr3x9ADnAFcF+j/WcSfBl5C/g7cFUL5bR0HzsJ6kE12rYJWEeQAAGcDnzZuCsVOBY4kaA7dxpBsnNkk+JvIWjpmhL5YxO0dNZL1VrPIXjv/EwpNWY/IS6KXAeCL0wvA680iu2UyM/701L5Lb2nbyLoZp8WeR/msG+iuzbyfl9A8BqcqbWeQdCFfXwLMQjRJknORJ+htb6HoCXsGoKWhhuBlZGWqKYWaq3DWutcoBJ4LbI9m6Clot4TWusKrXUtQffXGU3K+QowDlgS+TC9C8hQSg1g/07SWh/V6M8F+znmLIJWPhO57iORbfvzYaQLbCJBq8ZA4D+R+jAEH27TlFK3EiQyFkELUmu2aa1XRf79GXvrYx7BhxKRlqv/RrbvAlYDnyml/gis0lq/2MY1zgSe0VrnR8p7AhhOMPYOgq7ZFkW6554lqPv6bjeboKWxnkXz8X0tuRx4SWu9pZ3HN44lkWAc16Va6xEECf9fIklrS26NxHfbfvZlN3p/DAOuBt5QSqVF9l8B/CuS/C0gSNQu7mDY9eP1GnsMuDTy78uAvzbZv4ZIa5hS6jfAc1rrJU2OOQt4JPK75RO8Jxu/d18C0FrvIuiq3N/vySLgxEir1hyCJPRTghbSIQRfqlpKzloqv6X39NnAeQT/T6wiaBmd2Ki8DyPleQS/V0uUUn8GSoD/ayEGIdokyZnoE5RSs5VS12uty7XWL2utbwAmEXwInbafU2qb/BzezzEQfKuuZ9P8w94B/ln/YUrQIjcdKO7wTex7HdPk57jWTtBa+1rrXwNbCbp26hOYlZGYPiMYRB8mSApaU93o36bR8W6Tc736axN0C11K0OJ3r1Lqrjau4bDvPRIpu/4+K1o6USk1kqALziNIdksiu7az71iwLILWs/b4GkGLSuPrNG7hnN7KuZMJWvpeBtBaf0zQCjWzpRMiidU3CFrcTmgtsMi4uBAwUSk1iiBJviTS7aYj+1ps8WsqUkYqwReRxv4DzFRKTSB4Pf/TJI4S9rbiesAzSqkfNymj6eva9L3b0nursRUEX7LOB5Zrrasi77HXCH6XFdDSZJKWym9puwP8b6Pf32PYd2xqw/tQa/0tgi87mwla3P7dQgxCtEmSM9FX5AO3KKUadzUMIxh/taYT5X5NKZUQaR35LsEMscZeB76ulBoW+flHwNuduF59mVcppazIRIfLgTfbee6VwOlKqfOAwwhmb96itV5I0FWUQPCBBMEHbKtJXxOvEAxERyk1kGCMl1FKTSGYhbpBa/17gsHmM9oo6zWCBCMzUt5lBInd5tZOirQevQc8r7W+RGvd+EP3JeCbSqmUSL1dSjBuqVVKqQwirZ+Ntzdp4VzeShGbCcbS1XfzjiVofVnZ2nUjrXTX0PIYuPr4ZtefQtCtvlhrPVxrPVprPZpgAsTU+uu3UVY6QWvWn3WT2byRn58mSO6f01pXNTn3bIL39hKt9W0ELclNX+fXgCuUUnGRsXFX0v73bn0cJnLOzQRdmvVeJkgM32vn+Mv2qP9di4/E+1eCGd/7UEoNUkrtAAq11vcRdN+29R4XokUyIUD0CZGB5OcDv1NKjSAYsFsKXKa11o2Sp46qIujayCDoxtundUVr/YZS6k7gTaWUTzCWZ75utHxDE+8qpZq2vv2CfbuYriH4AF1DMJD/NYIBzW3SWmdH4rmXoEXnZWCjUqo2Ut56gkQkm6Bl5H2l1Pz2lE3QOvOYUmoNQSK1DajSWq9WSj0LLFdKVRC0UrS4NEMkzjeVUvcC70Q+FPOBs7XWvlKqtVOvAkYBFyilGncJn6K1XqiUOoKgCyyeIFn7RzvuaxywWzeZ6NFeWuuSSCz3R5J4l2Apk6YtU/s7959KqTPYd/zS2EgXGwRfsGsJBu5XESTH32tSxhdKqX8TvD5NuxkB/qWUqiZIxh3gOVpOCP9KUMf7W55jEUEX5drI61wM/KDJMb8F/gisIvj8+ZSgW7ajFgHfZt/k7A2CST5/OoDyWvIbgnhXEtTNKoKxh/vQwXIzvwXejtSlS/N7F6LdLGNa+owQQrQmMmtwrdb6j7GOpSeIdGGt1FovjbRMfQjcqrVeFOPQhBDioCItZ0KIrrKeYAkIh6Bl6j+SmAkhRMdJy5kQQgghRA8iEwKEEEIIIXoQSc6EEEIIIXoQSc6EEEIIIXqQXjMhID+/XAbPNZGRkUxxcdNFvkVXkLqNPqnj6JM67jypw+jrrXWcmZnW4oLf0nLWi4VCTtsHiQMidRt9UsfRJ3XceVKH0dcX61iSMyGEEEKIHkSSMyGEEEKIHkSSMyGEEEKIHkSSMyGEEEKIHkSSMyGEEEKIHkSSMyGEEEKIHkSSMyGEEEKIHqTXLELbUz344L1ovYGiokJqamrIyhpOenoG1113Ew89dB+5ubvxfZ/Bg4dw9dXXMnDgIF59dSGPPfYIWVnDAaioqOCII6Zw3XU3xvhuhBBCCBFtkpxF2dVXXwvAq68uZNu2rVxxxdUYY7jyyh/w9a9/izlzTgRg2bJPuOGGa3n00ScAOO20M7niiqsB8H2fK6/8HzZuXM/48RNjcRtCCCGE6CZ9Jjm77Z1sFm7c06VlnjN+MLedPLbD52m9gdTU1IbEDGDGjJksXPgiq1evbHZ8VVUV5eUVpKSkdiZcIYQQQhwE+kxy1pPs2rWLrKwRzbZnZQ0nN3c3AG+++Rrr1q2hoKCA5ORkvvOd73HIISO7O1QhhBBCdLM+k5zddvLYA2rliobMzExyc3Oabd+5czszZswkLy+3oVszJ2cX1113NSNHSmImhBBC9AUyWzMGjjhiCoWFhSxe/EHDto8/XsLOnTs56qip+xyblTWcn/70Rn75y5uoqanp7lCFEEKIqDC+wa2ooXZ3MZU6h4rPt+PXubEOq0foMy1nPYllWdx1173cf/+f+Oc//wbA4MFDuPvu+3Acp9nxM2bMZPr0Y/i///sLV175v90drhBCCHHA3IoaarYX4BZV4JZX45XXBH9X1IBvmh2bftzhMYq057CMMW0fdYCUUjOBO7XWJyqlngaGRnaNBj7WWl+ilFoADATCQLXW+iyl1DjgCcAAa4ErtdZ+a9fKzy+P3o0cpDIz08jPL491GL2S1G30SR1Hn9Rx50kdNufXudTuLKR6W0FDUtaUk5qIk5ZIKC0JJy2JUFoiJR9p7KR4sr53EpZlNRzbW+s4MzPNamlf1FrOlFI3AN8GKgG01pdEtmcA7wLXRg4dB0zSWjdOru4BbtFav6eUegQ4D3ghWrEKIYQQonPqCsopXbqJ6i15DS1iVsghcXQmiaMGET+4P6F+STgpiVhO81FVdXvKqFy/k9qdRSQeMrC7w+9RotmtmQ3MB/7ZZPvtwINa691KqSFAOrBQKZUO/EFr/TIwDXg/cvwi4HQkORNCCCF6HLesmpKPNlK1MZjoFpfZj6QxmSSOzCRhWDpWqPlwnf1JmTiCyvU7qVy/U5KzaBWstX5OKTW68Tal1GDgFPa2msUDfwLuBwYAHymlPgWsRi1p5UD/tq6XkZFMqJ1vgL4kMzMt1iH0WlK30Sd1HH1Sx53Xl+uwbHMuu55egldVR9KwdIafdiT91LB9uiXbywxMpeStz6nenMuAr87Cid+bovS1Ou7uCQEXAU9prb3Iz7nAI1prF9ijlFoJKKDx+LI0oKStgouLq7o61oNeb+2n7wmkbqNP6jj6pI47r6/WoTGG8pVbKflgA1iQcfJkUo8cSZ1lUVDQfIxZeyWq4ZR98gU7ln5BysRgPdDeWsetJZzdvZTGqQTdlI1/fhZAKZUKTAY2ACuVUidGjjkL+LAbYxRCCCFEC3zXo/C11ZS8vx47KZ4hF88ibcqoA2otayplYuSZ0ut3dvhc4/mULc+mZldRp+OIte5OzhSwpf4HrfUi4Aul1MfAG8AvtNYFwHXA7UqppQRdn//t5jiFEEII0YRbVk3eM0uo2riL+KHpDP3m8SRkDeiy8uPSU0jIyqB2RyFuWXW7z/PDHvkLl1Py4UaK3vq8y+KJlah2a2qttwKzGv08aT/H/GQ/2zYBc6MZW3f57LPlXHPNj7j99t9xyimnN2z/7ncv4fDDx7N7dw7XX/8LRo0aDcCTTz7Bf/7zb559dgEJCQkxiloIIYTYy6uuo3LDTso+zcavriNl0ggGnDy53YP9OyJl4ghqc4qp3LCT/jMPa/N4vybMnheXUbe7GGwLt6iScFEFcQMO3udRyxMCusGoUaN5663XG37Ozt5MdfX+vxG8+eZrnHLK6bz99hvdFZ4QQgjRjDGGmp2FFCxaya6/vk3J+xvw61wyTprEgNOOjEpiBpB8+DAsx6Zy/S7aWovVragh79ml1O0uJlllMeDkyQBUbc6NSmzdpc88IeC29W+wcPf6Li3znGETuW3i6W0eN27cYezYsZ3y8nLS0tJ4/fVXOf30s8jL2/fN89lny8nKGsH551/Ir3/9K+bNO6dL4xVCCCHaYoyh4vPtlK/8Ere4EoBQRgqpR44kZcIInKT4qF7fTogjadxQqnQOdbtLYHC//R4XLqlkz3Of4JVVk3rUKDJOnIRfG4a311KdnUf/Y8ZFNc5okpazbnLCCSfxwQfvYoxhw4Z1TJ58ZLNjXn75Jc4553xGjhxNXFwc69atjUGkQggh+rKqTbspfmctblk1yeOzGHzxLIZ9dy79ph4a9cSsXv1MzcoWJgbU5ZWS98wSvLJq+h97OBknTsKyLJzEeBJGDKAutwS34uB9HnXfaTmbeHq7Wrmi5bTTzuRPf/oDWVnDmTLl6Gb7y8rKWLr0I4qLi/jvf5+hsrKC559/hkmTJscgWiGEEH2R73qUfLgRHJth355DXEZsxm0ljhyEk5JA5aYc/LDXsN2vDVP68ReUr9oKviHj5MmkTRm1z7nJ44ZSu6OQ6uxc0qaM7t7Au0ifSc5ibfjwEVRXV/Pf/z7ND394FTk5u/bZ/8Ybr3L22ec1PNi8pqaGiy8+l+LiYjIyMmIRshBCiD6mfPkWvPJq0qYfGrPEDMCyLVImjKBseTYlG3ZhhqZTuX4XJYs34lfVEuqfTMbJk0gaPbjZuUljh1D87jqqN+cdtMmZdGt2o1NOOY09e/IYOXJUs30LF77EGWfMa/g5MTGRuXNPZuFCeWqVEEKI6HMraihblo2dnNAjxmvVr3mWt3gjec8soeiN1Zi6MP1nK4Z954T9JmYAobQk4of0p2ZnIX5NuDtD7jJWWzMhDhb5+eW940a6UG9dVbknkLqNPqnj6JM67rzeVIcFr62iasMuBpx2BKmTR8Y6HAByn1pMXV4pAMmHDSP9hAmE+iW1eV7pp5sp/Ugz8MwppEwYEe0wD0hmZlqLq/ZKy5kQQgjRx9XuLqZqwy7iBvcjZeIhsQ6nQfrs8fRTwxh84UwGnT21XYkZQPLYIQBUbc6LZnhRI2POhBBCiD7MGEPx+8FSUxlzJ2HZnX8MU1dJHDWIQ6aP6XDrZGhAKqGMFGq25uO7HnaU1mSLFmk5E0IIIfqwqo3BemLJhw0jcUTXPYoplizLInnsUIzrUbOtINbhdJgkZ0IIIUQf5YddShYHS2ekzxkf63C6VNK4oGuzuh1PC6jLL6N6S8/pApVuTSGEEKKPKlu2Ba+ihn7HjCPUPznW4XSp+KHpOCkJVG/Jw/g+lt28PcqrqaP0I03Fmu1gYNhlJxKXnhKDaPclLWdCCCFEH+TXuZR/tgUnJYF+M8bGOpwuZ1kWSWOH4NeEqd1VvM8+4wePqNr9t/eo+Hw7RBK3cGFFLEJtRlrOusGWLdk8/PAD1NTUUF1dzbHHzuass87mtttu5tFHn9jn2DvuuI1NmzaSlrb3WWJnnjmPs88+v5ujFkII0ZtVbcrBhD1Sp4/Fju+d6UDSuKFUfL6dqs25JB4yEAhmpha/s466PaVYcQ7pc8bjpCVR+OpK3KIKiMz0jKXe+Wr0IOXl5dx22y+44467OeSQkXiexy9/eROffrq0xXOuuOIaZs06rhujFEII0ddUrN0BQMqknrkOWFdIHDEQKyFEdXYe3jHjKFm8seF5ncnjh5M+Zzyh1ETChcFs0HCxtJx1q4qFt1D7+YtdWmbCkeeTes5vWz1m8eL3mTp1BoccEizo5zgOt9xyOwUF+bz66stdGo8QQgjRHnUF5dTtLiFxdCahtPatHXYwshybpDGDqdqYQ87j72Jcj7hBaWScNHmfmamh9BSwLMJFlTGMdq8+k5zFSkFBPllZw/fZlpycTFxcXIvnPPzwAzz55BMNP1977Q2MHRv7R2kIIYToHSrXBa1mqZN7zoKz0ZJ8+DCqNuaAY5ExZxKpR45sNjnAcmxC/ZNxpeWse6We89s2W7miYciQYWzatHGfbTk5u9izp+Upu9KtKYQQIlqM61G5YRd2UjxJh8Z+fFW0JR06hMwLZhA/uD9OckKLx4UyUqj5shKvug4nKb4bI2xOZmtG2ezZx/PJJ0vYtSvo43ZdlwcfvJctW7JjHJkQQoi+qHrLHvzqOlImDMdyen8aYFkWSaMHt5qYAcQNCJbQcIti33rWZ1rOYiUlJZWbb76dO+/8Lb7vU1VVxezZc5g16zgefvgBvv/9bzcce9VVPwGad2seffQ0vv/9H3Z36EIIIXoZYwzlq7YCfaNLsyPiMlIBCBdXkjA8tk9KkOSsG4wfP4EHHnik2fY33/yw2bajj57WHSEJIYTogypWb6N2VxFJhw4mbmBarMPpUUL1yVkPaDnr/e2ZQgghhCBcXEHJhxuwE+MYcOoRsQ6nx2no1iyO/YxNSc6EEEKIXs74PoWvrca4PgNOOQInJTHWIfU4dlI8dkJcj1jrTJIzIYQQopcrW5ZNXW4JyeOzSD58WKzD6ZEsyyI0IAW3tArj+TGNRZIzIYQQoheryyul9OMvcFITGXDS5FiH06PFZaSCb3BLq2IahyRnQgghRC9lXI/C11aBbxhw+pHYiS0vgC6Ctc4g9o9xkuRMCCGE6KVKlmjCRRWkHjWKpFGZsQ6nx4sbEMzYdGP8GCdZSiPKPvtsOS+99By33/77hm0PP/wgo0aN5thjj+ehh+4jN3c3vu8zePAQrr76WgYOHMSrry5k27atXHHF1Q3n3XrrzznvvAuZOnV6LG5FCCHEQcIYQ9Wm3ZSv+JJQRgrpx0+IdUgHhbge0nImyVmMGGO4+ebr+frXv8WcOScCsGzZJ9xww7U8+ugTMY1NCCHEwauuoJyS99dTs70AHJuBZ0zBjnNiHdZBoac8AL3PJGfFH2yg6ovdXVpm8mHDyDjhwL6NlJaWkpqa2pCYAcyYMZOFC19k9eqVXRShEEKInqx66x6qNu1mwMmTsUKdS6C86jpKl26i4vNtYCBxVCYZcyfIYrMd0FMegN5nkrNYWrFiOVdddXnDzzk5u7jwwq+SlTWi2bFZWcPJzW05ibQsKyoxCiGE6F7GGIrfW49bXEncoH70mzrmwMrxfMpXb6X04y8wtS6hjBQy5k4kaczgLo64b0gaO4TaXUUxjaHPJGcZJ0w44Fauzpo2bXqzMWeu65Kbm9Ps2J07tzNjxkxKSooJh+v22VddXU1CQusPbhVCCHFwqN1Z1LAafdmnm0mdfAh2fPs/lo0x1Hy5h+IPNuAWV2IlhEifO5G0KaP6xAPNoyVWuUJj8urFyKBBmRQWFrJ48QcN2z7+eAk7d+7kqKOmcthhh7Ns2SdUVQVrrZSVlbJlSzajRx8aq5CFEEJ0oYrPtwGQODoTv7qu4YHk7eHXhsl/cRn5Ly3HLakidcoosi47iX5Tx0hi1gv0mZaznsayLO66617uv/9P/POffwNg8OAh3H33fTiOw8iRo5k//6v8+Mf/Q3JyMq7r8pOf/Izk5OQYRy6EEKKzvMpaqjbnEjcwjUHzjibn8XcpW55N2pGj2lyLzBhD4WurqdmaT8IhA8k4cRLxg2RcWW9iGWNiHUOXyM8v7x030oUyM9PIzy+PdRi9ktRt9EkdR5/UcecdaB2WfrqZ0o80GSdNIu2o0ZQty6Zk8Ub6zRxH+nGq9XM//oLSpZtIOGQgg+cfg2X37pay3vo+zcxMa3EQee9+RYUQQogexhhDxZrtWCGHlAnDAUg9ahR2cgLln32JV1Xb4rnVX+6hdOkmnH5JDPrK1F6fmPVV8qoKIYQQ3ah6yx68smqSx2dhJwRdmHZciP7HjMWEPcqWZe/3vKrsPApeXYnl2GSePQ0nKb47wxbdSJIzIYQQopvU7CoKnnVpQdqUUfvsSz1iJE5aEuWrt+FW1DRsN75PyYcbKViwHDyfgWceRfyQ/t0duuhGkpwJIYQQ3aBmewH5z3+KcT0GzZtK/OB9Eywr5NB/1jjwfMo++QIAr6KGPf/9hLLl2YTSkxny9dkkHz4sFuGLbiSzNYUQQogoq966h4IFKzDAoLOnkTx2yH6PS5k4grJlW6hYu4P4oemULNb4VbUkjRvKwNOPbOgGFb2btJwJIYQQUVSVnUv+ghUAZJ47vcXEDMCybfofexj4hqI3PsevqSN97kQGnT1VErM+RFrOusGuXTt5+OEH2LNnD4mJiSQkJHDFFdcwfPhw/vjHP1BQkI9lWaSkpPKzn93EkiWLWbduLT/72U0A3HXXHaxbt4a///1pAF55ZQHZ2V9wzTXXxfK2hBBCtKFq024KFq3Esm0yz59O4iGD2jwnWWVRvmobXkUNg+YdTUJWRjdEKnoSSc6irKamhptu+ik33ngLkycfCcD69Wu55547Ofnk0xgwYCA333wbAM8++xR/+9tjfOtbl/L00082lLFx43rS0zPYvTuHYcOyWLlyBaeddmYsbkcIIUQ7VW7YSeHrq7HiQgw+fwYJwwe06zzLshhy8SywLXmech/VZ5Izx30C2/+oS8v07dl4oUtbPeajjz5g2rQZDYkZwMSJk3nwwb+wdOlHvPzyixxxxBSOPnoqF174NYwxhEIhwKIDIh0nAAAgAElEQVSsrJT8/HxGjhzN4YePZ+nSj5g//2I2bFjH9df/okvvRQghRNepWLOdorfWYCWEGDx/JglD0zt0vjyCqW+TVz/KcnJyGD78kIafb7rpp1x11eV84xsXMm7cYXz3u9/nlVde4uKLz+N///cKtm3bCsD06TP4/PPVfPzxR8yadRyzZh3Hxx8vISdnF0OHZskD0IUQoocqX7WVorfWYCfGMeSiWR1OzIToMy1nXuhSPC7t9usOGTKEjRvXN/z8hz/cA8Dll1/Knj15TJt2DHPnnoznebz++qvcccdtPP74k0yfPpOVK5ej9UZuu+13ZGRkkJ+fx8qVK5g589huvw8hhBCt82vCFL27lqqNOdjJCQy+cKY881IcEGk5i7Ljj5/L8uWfsnbtmoZtO3fuID9/DwsWvMBTT/0DAMdxGDv2MOLjgxWfjz56GmvXriEcDpOREQwGnTBhEi+//BKzZklyJoQQPUn1l3vY/Y/3qdqYQ/zQdIZ87VhJzMQB6zMtZ7GSnJzMnXfeyyOPPMgjjxTieS6OE+KGG37BlClHc889d3Hppd8gKSmRxMQkbrrplwAkJiYSCoWYMuXohrJmzZrNsmWfMHLk6BjdjRBCiMa82jCFb35O5dodYFv0n63oN/1Qeeal6BTLGBO1wpVSM4E7tdYnKqWeBoZGdo0GPtZaX6KUuhX4CuACP9Faf6qUGgc8ARhgLXCl1tpv7Vr5+eXRu5GDVGZmGvn55bEOo1eSuo0+qePokzrunJodhZS8vYa64kriMvsx8IwpxGf2i3VYvU5vfZ9mZqa1OBU3ai1nSqkbgG8DlQBa60si2zOAd4FrlVJTgbnATOAQ4DlgBnAPcIvW+j2l1CPAecAL0YpVCCGEaC8/7FGyeCMVq7aCZdHvmHH0n3WYzLAUXSaa76RsYP5+tt8OPKi13g0cD7yhtTZa6+1ASCmVCUwD3o8cvwg4NYpxCiGEEO1Sm1tC7pMfUrFqK6GMFMb/6FTSZytJzESXilrLmdb6OaXU6MbblFKDgVOAayOb+gGFjQ4pB/oDltbaNNnWqoyMZEIhp7Nh9zqZmTIgNVqkbqNP6jj6pI7bz62qZd2C5bhVtQyerRh++hHYcSFSYh1YH9DX3qfdPSHgIuAprbUX+bkMaFzjaUAJ4O9nW6uKi6u6KsZeo7f20/cEUrfRJ3UcfVLHHVP45ue4lbWkHz+exBljKSypljrsBr21jltLOLu7HfZUgm7Keh8BZyilbKXUSMDWWhcAK5VSJ0aOOQv4sHvDFEIIIfaq2VlI5dodxA1KI23qmFiHI3q57m45U8CW+h+01iuUUh8CSwkSxSsju64D/qqUigc2AP/t5jiFEEIIAIzrUfRWsFblgNOOlPFlIuqiupRGd+qpS2l89tlyfvWrnzN69Bgsy6K2tpbTTz+Tiy66hHfeeYvnnnsGy7LwPI9zz72As846G4CLLjqHIUOGYlkWvu9TXV3FjTfewvjxE9t97d7aFNwTSN1Gn9Rx9Ekdt0/J0k2UffwFqUeNZsBJk/bZJ3UYfb21jmOylIbYa9q06dx+++8BqKur4xvfuJCMjIEsWPA8d955L6mpqdTW1nDLLTeSkJDIyScHk1PvuefPDc/Q/OSTpTz++KPcddd9MbsPIYToa8KF5ZQty8ZJTST9uMNjHY7oI/pMcvbC9jAri7y2D+yAowc4XDAyrkPnVFVVYds2Cxa8wBVXXE1qaioACQmJXHnlT/jjH3/fkJw1lpu7m7S0vjVbRQghYskYQ9Hba8HzyThpEnZCx/6/F+JA9ZnkLJZWrFjOVVddjm3bhEIhrr32eh566H6yskbsc1xW1nByc3c3/PzTn15FXV0tBQUFzJx5LFde+ZPuDl0IIfqsyrU7qN1VRNLYISSPG9r2CUJ0kT6TnF0wMq7DrVxdpXG3Zr1nnnmK3Nwc+vXb+6iPnTu3M2TI3v8A6rs1//KXh8jJ2UVGxoBui1kIIfoyr7KW4g83YMWHyGgyzkyIaJMpJzFy0UWX8NBDD1BZWQEE3Z0PPfQA8+df3OzYH/zgCgoLC3j++f90d5hCCNEnlS3LxtS6pM9WhNKSYh2O6GP6TMtZT3P88SdQVVXJdddd0zAj85xzzuOUU05vdqxt29x00y+58sr/Ye7ckxg0KDMGEQshRN9gjKFqcy5WQojUI0bGOhzRB8lSGr1Yb51+3BNI3Uaf1HH0SR3vX92eUnL/tZjk8VkMOuvoVo+VOoy+3lrHrS2lId2aQgghRCNVm/MASB4rkwBEbEhyJoQQQjRSvSUPHJvE0TKERMSGJGdCCCFEhFtaRTi/jMSRA7HjZVi2iA1JzoQQQoiIquxIl+ah0qUpYkeSMyGEECKiOjsXgKSxg2MciejLJDkTQgghAK+6jtpdRcQPS8dJSYx1OKIPk+RMCCGEAKo27QYjszRF7ElyJoQQBzOTD6Y61lEc9LzqOkqXbsIKOSSPz4p1OKKPk+RMCCEOUpa/krjwjwi5t4LxYx3OQa1k8Ub86jr6H3tYr3xcU15FLatze99Crr2VJGdCCHEQsvxNhNw7sfCwzSZs//1Yh3TQqt1VROXaHcQNTCPt6DExi8PyV2J7H3Z5uWvyyjnp8eWc+fcVbCuRVtaDgSRnQghxsDE7Cbm/AepwncsxxON4T4KpiXVkBx3j+RS9sxaAAadMxnJi8LFoPBz378S5txPy/gSmuMuK/nRnKRc8tYqCqjCegRc37OmyskX0SHImhBAHE1NAXPg2LMrxnB/jO/Pw7fOwKMT2X4x1dAed8pVfEi4oJ2XyISQMH9D9AZgyQu6vcfwXMASL3tr+ui4p+uMdJXz1mdVU1nncefphJDgWz6+X5OxgIMmZEEJ0BePjuH/BcR8E40XpGuWE3NuxKMB1vo3vnAqA58zHkIHjvQCmMDrX7oXcsmpKP/4COyme9OPHd/v1LX8zceHrsM1qfOsY3NDNwXazttNlhz2fny7S1Lg+f5s/mcumDufUsQPZkF/J+j0VnS5fRJckZ0II0QVs/z84/iIc/20c79muv4CpJeT+FtvswLPPwbfn791nJeE538CiNujeFO1S/N46TNgjfc54nKT4br227b1NyP05UIDrfAM3dBPGOgJDIrbf+eTsH6t2s7momm8flcWZhw0CYP7EIQDSenYQkORMCCE6yfJX4HhPY8jEkIntP4vlr+66C5gwIfdObKPx7Ll4zmVgWfsc4tsn41tjcPx3sfzNXXftXqoqO4/q7DwShg8gZeKI6F3IGDCFWP6n2N4zhMK/I67uB4S8B4F43NDN+M5XwbLBCmGs8VjsBFNywJcsrQlz9+IvSY13uOH40Q3bTx07gNR4hxfW5+Eb0/l7E1EjT3UVQojOMLmE3HuBEG7oRsAn5P6CkHsP4bh7werkOCbjEnL/iG0+w7em4jlXBR/kTVkOnnMZtvsrHO9xXOuOZglcX+e7HuE9ZdTllVC2fAvYVjAJoKvqyfhAHpbZgu1vwTKRP5TuexgZ+NZM3NClYA3bN0Z7Mra3Csusw1izDyiM+5Zup6ja5Za5Y8hM2dsimBTn8JXDB/HM2jyW7Spj5oj+B1S+iD5JzoQQ4kCZ2shyFhW4zpUYexwAnvMdQt7jhNx7cEO3g+UcYPkejncftvkE3zoiSP6suJYPt4/Et47BNp9imaUY67gDu24vYHyfcGEFdbkl1OWVUptXQrigHPy9LUb9jz2cuIFpXXCxckLuw1hmFRZV++5iCL41Ad8ei7HGYKxDW03YjTUZANtfi2d3PDnbVlLNX5fv5JB+CVw+o3mL4PxJQ3hmbR7Pr8+T5KwHk+RMCCEOhDE43iPY5ks8+zR857SGXb59Dr6/Dtt8guM9ixf6+gGU7+N4f8bxF+NbE4LB4lZCm6e5oe8SF15ByP074bgZrSZz9fdh+x8Adfvcw8HEGINbWhUkYrml1OWVULenDOM2mpjh2MQP6U/8kHQShvQnfmg6cQNSO31t380jLvxzLHZiyMKzp2OsQxv+YHXsGsYaiyEByxzYjM3fvreFOs9w84mHkhhq/qVgzqh0BiXHsWBDPr89ZRxxsVg6RLRJkjMhhDgAtv8ajv8uvnUYnnP5vjstCzd0NXHhL7H9Z/H9CRj7qPYXbgyO93Ck/MNxQ78Eq50P4raG49vzcPyF2P4r+M75LR7qu7sJuXdjm2B8XJ09A6z09scZI25FTZCA1SdiuaX4teG9B1gQNzCN+KHpxA/pT8KQdOIGpXX5GmaWv5WK/N9gUYhnn4vnXLr/LucOFRqHscYHr4kpBav9rVuf7izlpY35TMtK44IJg/d7TMi2OX/CYB5bsYsPthZzytiBnYtXRIUkZ0II0UGWvwnH+z8M/XBDN+y/dcpKxQ1dT8j9OSH33vaPPzMGx3sMx38T3zoUN/QrsJI7FJ/nfA3bfw/HexbfPqn5B7zxsP1FlO95EtvUYOiPRSmWycZY0zp0rWjza8LU5gVdk/VdlF7Fvovthvonkzg6k/ihQctY/OB+2HHR/Xiz/DWE3N9jqMJ1LsN3zuuysoNxZ6sj487a1zVtjOHWd7IBuP3kca2Oo7tgYpCcPbd+jyRnPZQkZ0II0RHGJeQ+AHi4oevAymz5UPswPOdSQt5jhNw/4YZ+3fL4M+NhmWU43ivYZg2+NRI3dFuHu8UAsFLxnK8R8h7D8f6NF/pRo+vsJOT+GdtsxLLSCDtXYKwk4tzfBckZsU3O6vLLqNlR2NAi5pZU7rPfSUkg6dAhQSIWaRlzErt7GYzFON59ACRl3Exp5YwuLX/fcWftS85e2pjPipwyzlGZHNPGWLLpWf0Y2T+RRV8UUBX2SI7b9z3p+j6LNhUy65D++0woEN1HkjMhhOgA238Fi5149hkYe0qbx/v2V/D9tdjmYxzvabzQN/c9wJRg+2/ieK9jURCcY03BDV0LVr8DjtO3z8R4i7D9N/D9eRgrC9t/Ecd7Boswnn0c6YOvpbAormHhWtvfjH+Acxe6Qvnn2yh+e+8aX1ZCiMSRg4KxYkPTiR+aTii1nd27UWJ7rxPyHsaQhBv6OfHJs6Gyax8obqxxGOKx/c/xjGlz1m2N6/Gbd7OJdyxuOfHQNsu3LIv5Ewdz39LtvLm5kPMadYHmV9bxowXr+XBbCV+bPIQHz57Q6fsRHSfJmRBCtJcpjqxnlobnfLPt4yEy/uyqyPiz/+L7EzHWUVhmE7b/Krb/ERYuhkQ8+yx8+yyMPbLzsVoh3NClxLl34Hj/D6jDNlswZBAO/RBjz8J20oByYACGdCyT3fnrHqDyVVspfnddsFr/CRNIGJZBKD2565a56AomP9Kd3R83dCvGbjsROiBWHMaaim0+xjIaY7X89II9lXV874W17Cir5YpjRjAmI6ldl5g/cQj3Ld3Oc+vzGpKzFTllfP+FdeSU1wLwyc7S1ooQUSTJmRBCtJPj/QOLalznhx1r1WoYf3YTIfc+jDUQ22wBwDAc15kXGRvWsbFlbTHWdHxrSsOAf88+Gc/5XvOuUsvCWOOwzfJg8dNunhTQkJglxzP4wlnED+qC5S2iwPGexKIO1/lR9BKzCM/5Crb7Mbb/Cp69/+Ts89xyvvv8WnaV1XL+hExumjOm3eWPz0xhYmYKb2cXUVIT5sUNe7jlrc24vuHmuWNYsr2Ed78spqCqjkHJ0rXZ3WQOrRBCtIPlb4zMnhyDb5/e4fONPQ7PuTQy8H4rvjWTcOh2wnF/xne+0uWJWRC0hRv6EZ49m3DoVrzQNS2OYTPW2OCUbm49q80tiSRmCQy5qOcmZpa/Gcd/H986FN8+MerXM9ZkfGsktr8ETFGz/S9u2MM5T64kp6yWX5wwhr+cO5GkuI71Sc+fOJiwbzjvX6u44fUvSI13ePqrR/K/x45ixvBg3NqKXWVdcj+iYyQ5E0KIthgPx/srAJ7zgwNeVNa3v0I4dBvhuL/gxv08GLMW7W47axhe6HqMfXQbsXV/cmaMofjdYD2vQfOO6poFYaPBGBzvbwBds1xGe1gWvv0VLDwc7/WGzb4x/O79LVz+0noc2+IfF07mJ8eNOqDu3/Mj3Zkb8is5amgab106nRPHBDOKpw0PWoZX5EhyFgvSrSmEEG2w/bewTTaePRdjTzzwgiwLY3VgvbNuVN9y1p2TAirX7aAut4RklUXiIYO656IHwDKfYpt1+NZ0jH1kt13Xt+divL9j+2/gmYuoDNtcsWA9r20uZHR6Iv+86AjUoJQDLn9kehLXHz+aWtfnZ8eP2mfR2qnDgkR5ubScxYQkZ0II0RpTjuM9GQzYd74b62iiqHsnBXg1dZQs1lhxDukn9OAZgcYl5P4dgx08C7M7WYn49qk4/gIqqj9k/rP9WZVbzpxR6Tx2/iQyktp4+kM7XN/oweiN9U+MQw1K5rPdZXi+wbF70MSMPkC6NYUQohWO928syvGcr3X+IeY9WWRSgEVhMCkgykqXbMKvrqP/rMNivjxGa2z/dSxy8O0zwGr+rMpo85yzMMZiR9F/WZVbziVHDOXprx7ZJYlZW6Zl9aMq7LMhv7Ltg0WXkuRMCCFaYPnbsP3XMAzHt8+OdThR112TAur2lFLx+TZCA1JIO7r9Mwy7namILJ2ShOdcEpMQPtudwrvbxjBlcA53n2Zx/zzV6vMwLX8btvcimHCLx7TXdBl3FjOSnAkhRAtsfwkWPp7z9bYfIN4LdMekAGMMRe+sAwMDTpzc5c+77EqO91yk1fSiDj3jsqu8sbmA+f9exf/7LBjn9r0pq1oe+G8qcdzHCLnXEvKewPbf6fT1p2UFydnyXbLeWXfrub8VQggRY5ZZD4DfjicB9AaNJwVES+X6XdTtLibpsKEkjuq5kwAwedj+QgyZ+PY53X75p9fk8p3n1mIMfGfaPAxZ2P7i4GHo+8RpsL13iQtfieO/DATPyrT9FZ2O4fCBKaTGO81azrYUV3HLW19wwVOr2FNZ1+nriOZkQoAQQuyPcbHMJnxrJFg9dImHLjcAQwaW2QimFqyELi3drwlTsngDVsghY24nZr1Gm6kk5P4RCxfX+RZY3bsIa255LTe8von+CSH+dfERTB/eH8+bR8h7LHgcl3MxAJa/Bcf7K7bZgCEe1/kmvn0eceGfYpnVYOo6FbtjW0zN6scHW4sprKpjdW45j63YxVvZe9dde3pNLtfM6oInWoh9SMuZEKJ3M2Ec96847kNgTLtPs8wWLGoxVg9OIrqaZeHbJ2FRhu2/3vbxHeDV1FH01hr8qjr6zRxHKK19jxnqdqaakPtrbPMFnn0yvn1Ct4dw79Jt1Lg+t5x4KNMji8H69skYEnG818CU4riPEnJ/hm024FvHEo57KEjarHh8exoWtVhmbRtXatv0SNfmnMeWccmza3gru4gZw/sFY99sixfX7+n0NURz0nImhOi9TDUh9w97H1/knAsc0q5TLbMhKMLqwcs8RIHnnI/tL8LxnguehGB1bialcT3KV2+j9JMvMLUucZn96De1h04CMDWE3N9gG41nz8Vzroz+IsFNbC+p5slVuxmdnsglRwzdu8NKxrdPxvFfJS58efDFgeGEQz/A2Puunefb03H8l7D95Xj21E7Fc9zIdO5Zso2yWpevTR7C/0wfwZShQUvyK7qAN7IL+aKwksMGHvh6a6I5aTkTQvROpoSQewu2WY0h+JCz/SXtPt3268eb9aGWMwCrH759Dhal2P6iAy7GGEPlxl3k/P19Sj7YgIVF+gkTGHrJcVihblrltiNMLSH3DmyzHs+ejedcc8BPguiMP320jbBvuP740c1mZXrOPAw2YOE63yEcd1+zxAyCLxSGZGx/eYdai/fnhNEZvPiNo1j542N58OwJDYkZwAUTgycMvCCtZ11OkjMhRO9jcokL/zyyqv9phOPuxhDC9j9u5/kGy2zAMAiszOjG2gN5zrkYknG858FUd/j8uvwy8v79EYWLVuFV1pI2dQzDvnci/aYdujcxM17wpycwdYTc32GbNfjWLDzn2pgkZpsLq3hmbS5qUDLzJw5pfoA1Ajf0J8JxD+M781ueQWyF8O2jsdiDZXZ0Oq7jRqaTmdJ87NoZhw0kKWTzwoY9mE4mgWJfkpwJIXoVy99CXPgmLHbj2RfjOT8GKw1jTcE2X4LJbUcpOViU9b1Ws3pWKp5zHhbl2P7LHTq1Zkchec8upS6vlGSVRdZ355IxdyJOYuTD3eTjuE8QF/42IfdXnW7Z6TQTJuTeiW1W41szcEPXgRWbET93Lf4S38CNc8a0uCK/sceAldFmWcaaDoBllndpjI2lxoc4fdxAsouqWZtXEbXrRMuavHKueWUjZTVurENpRpIzIUSvYfkbCbk3A6W4zuV4oW82jBny7VkA7Wo9q+/S7GvjzRrz7XMwpOF4L4Fp3wrxVdm57HnhU4zrMXDe0QyadzSh/skAWP4XOO6fiAv/EMd/EajGNuu6ZND6ATMuIfdubLMC35qKG7ohZuvZrdtTwYsb8jlySCpfObzzS4z49lQMVpcsqdGa+oenP7/h4Ova/MMHX/L0mlyeWJUT61CakeRMCNE7mHJC7t1AHW7oZ/jOvH12+/YxGGxsf2mbRdWvb9anZmo2ZSXjOedjUYHjLWjz8Ip1OyhYuALLssg8fwYpKisoxteEwj8nzr0ex/8QYx2C61yNG/oNQJD8xYLxCLn3YJtP8a0jcUM3xnSh4Ts/+BKAn58wpuWFZjvC6o+xDg8mtpjotWqdMnYAaQkOL23Ygx/rVtAOyC2v5e0twZIg/1iZg+f3rNglORNCHPyMwfEexqIQz7kEY89ufozVH2NNwjYaTGGrxdn+egypGKt9Mzt7K9+eh6E/tr8QTHmLx5Wt2ELRG59jJ8Qx+KKZJI0KxukFLZm3RpZ7mEY4dDtu6D585xSMPRnfGo9tlkMXjIvqEOPhePdjmyX41iTc0M1dvqZbR6zIKeO1zYUcM6IfJx/adc9vDZbU8LH9lV1WZlOJIYd5hw1iZ1kty3YdPI95enZdHr6BzJQ4tpfW8PaW1v9P6G5R7VhXSs0E7tRan6iUGgz8FcgAHOA7WutspdQDwGyg/jf/PCAOeApIAnKAy7TWVdGMVQhx8LL993D8JfjWBHx7fovH+fYsbG8Ntv9Js5a1BqYIizx8azpYffz7q5WE58wn5P0Nx3sJL/StfXYbYyj9SFO2LBsnNZHB848hbmAwm8/yswm5vwbqCIduwkS6lRvznPOw3Y043gK80JXdcUdgfBzvIRz/A3xrPG7olpgmZhB0rwH84oRDu6bVLCIYd/ZUZNzZnC4rt6kLJg7hmbV5vLh+DzNHdP9jrjrKGMPTn+8mwbF49NyJXPDv1Tz+WQ6nj+s5T6xo838epdQOpZSnlCpUShU1+vcypVTzObx7z7sBeAyoXyTnLuBfWusTgFuA8ZHtU4EztNYnRv6UAr8CntJazwFWAj888FsUQjTlh3vILLmuYPJwvEcxJOGGftLqLLu9485a7tp0vFcixx7ZtXEepHz7TAwZwcSAJo8Oqt6SR9mybEIZKQz52rGNErNthNzbgGo85yf7TcwAjHUMhqHY/ntgSqJ7IxBpYX0Ex38H3zoMN/RLsGK7GO6S7SW8v7WYuaMzOG5kepeWbawxGAZi+59FdWbsnFHpDEyK46WNe3B9v9n+6rDH9a9v4p6PtvaIrs/lOWVsLqpm3uGZzB6VwYzh/XhnSxFfFnd8ZnK0tOdr4fvAhVrrgVrrAcDZwALgcuChVs7LBhp/hZ0NjFBKvQV8E3hPKWUDhwGPKqU+Ukp9L3Ls8cBrkX8vAk5t7w0JIVpmfEPxBxvY+efXqNQ9bxBshxmPkHsfFtV4zuVg7Wf5gcasgfiWwjLrwOynC8bswvZfijxP8YzoxHywsRLwnAuxqMHxXthnV9Wm3QAMOutoQv2Cgf+YHELurZEHhl+J77Sywr7l4DnnYhHG8Q58TbU2GYPlb8Xx/ozjv4FvHYobuhWs2C+ceu+SbUAw1qzLWVaka7Mcy2zq+vIj4hybc8ZnUlAV5qPt+ybZlXUe3/rvGv6+Moc/fLiVH7y4nuoYfzl8+vNgxvYlRwbrH35v6nAAnli5K2YxNdWebs3JWuuGtmyt9SKl1G+11iuVUi1+5dBaP6eUGt1o02igWGt9qlLqV8CNwN3Ag8A9BF2d7yqllgP9gPqvaOVAm+2kGRnJhHriwoYxlpnZV54J2P0Otrr1asJ8+cxSyiNJWXhzLpnHqxhH1bq26rim/F/Ulm0gLmku/TLOaVeXUG35XGrKNP1TVhOfsrdr0xhDVeHjuLgkD7iKuKSe08URTe15HxtzIeV5L+H4i0gf8E1sZwDG89m1NZ/49GSyJg3Hsix8N4+KgtswlJDY/2oSUs9vu2z/XMpz/02I18gY+B0su3NPJKjne/m4NStwaz/DrV2B8YOkwQ6NIW3QH7Gdrut+O9D/C9bnlgetZmMHcsaU4V0WT2Ph6jlUFb1BauLnJPY/BgDjV2FMuEvr4HvHjeaJlTks2lLMRTNGAVBe43Lh/33Ch9tKOHfSEEqqwyzU+RTUuLz0vRlkpra/O7mr/r+tqnN5cWM+I/oncuH0kTi2xWXHJ3Pru9k8vSaPP15wBMnxsX94UnsiKFFK/RB4kqCl7ZtAkVJqPB2bUFBI0OIGsBC4A6gC7q8fT6bU/2fvvOOkqM8//v7O7N5e742jHXfA0DsIqIDYUEGxYmyxa4ymmRhjYvKLMb8kGn8mahITu7FhBxVFROlNOHpZDq7Ccb3f3u7tzPf7+2OPfr0f7vv1uhfD7pRn5vZmn3nK5zG+BsYClUAYUFv/b7Px7rIyf0naqcTFhVFU1HgRr5+209uurVnuomjRt3hLqwkcEItV46byQD4Fh0rRHN3XodYUzV1jIdOxma8BMdSYd1JT3MKONDWeAKCmYgUVruN1OEKuw276JBXKq8ZAde/5/baV1nyONUxROdMAACAASURBVK7Gpp6nvPA1LNuduLOLsdxegof3pbi4GtRh7N4/ICjE1G+hsvZ8qG3ZvnUxB12+R2nhJ0h9TttORrkQahea3I4mtyM4dPwtopDaTJQYhxRTcZdqHC9zbh/tuRc8+ZUvmvX9MYmddz9RQ7Bjp7ZmHVV1C+onIfwCoarw2p/vsHq7oaF2ksIcfLD9CL+fMQi3aXH9uzvZklfJ5cPi+NelBlLBj5fs48M9hUx5ehVvXzeG1OjgZvfdEffbCreX93cX8t9teVR5TO6a2JfSkuP3jBtGJ/K39Tm8sCqDG8b2adexWkpTDmdLnKsbgQvxFeZnA+cBt9S/9nAr7FgDHH1MnQHsBoYCawzD0A3DsONLZ6YBa09Y9xJgdSuO48ePnxNw55aQ//YavKXVhI5LJu7KyQQPTQKpqM0q6m7z2obyYDOfRmBh2n4EohVP1aIPUiQj1Pbj+l2qFpv5Egobpu3OLp+n2BuQ2vko4n0D0VUJroO+1FDQ4FB080Xs3h8hyMfSrvOp17cC31gim0+yQ51es9QgykTIvejm29i8D2P33oTd/F90+RlQjBQTMfXb8dr+jtf+Mpbtp0j9vG6vMTtKhdvLu7vy6R/uYM6QmM47kAhEidFoKtsnAGy9iaZyEJT5av06CE0IrhgeR4XH5MM9BVz99na25FVy7cgEnr98OHZdw2HT+Ne84fxs+kCyyt1c+noaG3I7r9ZQKcXGQxU88Olexjy3nl8tS2d/iYvLh8Vx75R+J617y7gkNAEvpx3uEdMOmo2cOZ3Ow8A1Dbz1bCuP9SDwomEYP8CXsrzB6XSWGYbxJrAB8AKvO53O3YZhPA68ZhjGXUAxcEMrj+XHjx+gemcOpV/7RD6jzx9N6JgBAASlJlCxfj+1BwuO6VE1iFJociVQh9Qv6gKLW4Ym1yHIw9LmorSxrd5eatOwWW+jyc1IfSa69b5PhkO7FkQT1+O7jLBj6ddhs55Dt96jNjOFyIl7CIt/GyGrUSTitd2CEtPasG9fZEuXyxFqM0pMOX0dpYBDxyNjahcCXwG3QkOJwUgxFqmNQ4mh3apZ1hLe2pGPyyv5+Tl9sWmd2xUstUloVhq69bpPa44EoATd+gSpXdhhXclXDo/nX5sO8eMlTgBuGtuHJy8eetK0AyEED88YxICIQH6+dD/XvLOdZy8bxpUNjatqB0U1dVz/7g521k8uSI4M5KZxSSwYlUBCA+nUfhGBXDQ4hi/SS0g7UsXEpPAOtae1NOucGYZxMfA4EA0cu8JOpzOluW2dTmcWMLV+ORtftO3UdZ7A18l54msFQBtj2378+AGoK6ig9KudaIF2YudNJLDf8adze2wYengQtZmFKNNqeBC1cqFb/0SXa1BoSG0WiNPn63UHQu0GQGrntWl7nwPxNprcgNQGH2sCsPSGnkP9HEVqs1DW+2jWMvrOCyEgshJFCKZ+G1K7tF0OkdQuR5fL0a1FmFq9c6bK0OQOhNrm+5fjWlSKJCxtZr0zNgpEaDvPruuwpOKlLYcJsmncOKbzU2hSmwgW9Y6Zhml7EE0uQZcrEGorSkzskOOMTQxjUFQQmWW13D4hif+9cAhaI1HoG8b2ISncwR0f7+aexXvJrXDzwNQBHSIlIpXih5/uZWdBNXOGxHDXxH6cPTCyUVuOcvuEvnyRXsLLWw73fOcMX4TsZ8AuoPtjfX78+GkR5et8T6+xl004yTED39Nr8OBEqtIycR8qJSj55OHeQh7AZv4VQT4KGwIToQ6jRCd0lLUBn0hsEEokt2l7JfqjSEKoNGxmJQITr+2Obte76vEIG5a+AJv1d+xhVXiqzkNE3wai/V9kShuIFBPQVBq6+RxCpftScUffJwxLOwclxiK1sSDi233M7sCUkn9uzCWnws3N4/oQFdQFET6RgBT90VQuUrsapQ1FYkOXK9CtxZhaxzhnQgheuGIEzuIarhmZ0KyjNWtQNJ/cOJ4b39/J4yszyS538+eLhmDX2xfJe3ZDDisyy7ggNZpXrxrVrFN2lBnJUaRGB7FoXyGPnZ9KTHD3PYy2xDkrdjqdrZt868ePn27FfagUd1YRjv4xBA5ouOswKDWBqrRMag/mH3fOlEKTn6FbryIwsbSrUSISm/USQuWg6AHOmSpHkIcU45vUNGsSIZDaNHT5AULtRooJKHFWx9p5hiK1mRStSqc2N4z4712HaOvvoAF8orRp6PIrFPb6NOVYlBjnc8R7sSiwUool+4v548oMDpTWEhKg84PJXTeBwtJvRMltWPp1Pnu0FKQYiaa2I2Q2ShvYIccZkxjGmMSW14COiA/l85sncOP7O/nv9iMcqnTz4vyRhDna1jG5IbecP6/KJDE0gGcvG9Zixwx8dXO3jk/i0eUHeXNHPj+aOqBNNnQELTn71YZh/B8+3TH30RedTueqTrPKjx8/bUYpRUV91Czy7MalMhxJUWhBAdQeLEDNHoWgCpv5HJrahCICr+0nKG08Qu4EQKicVhpiIlQ2SqR0aIG9UHsBkFr75l4edc58TQB3+ZsAWoBSiuqduVRs60tQagKavWPli5Q2Fq/tYSAIJYadMZHM9TnlPLYigy15legCbh7Xh1+cnUxiWNedn9KmYp0iBmzpl6OZu9HkJ1ja/V1my6kkhjlYdOM47l60h68OljLvja28de1oksJbJ6tSWuvl3sV7UcC/Lx/RpsjX9aMT+dOqTN7cfqTHO2dHKzPHn/CaAmZ3vDl+/PhpL+7sYjyHSwlKicfRJ6rR9YSmEZQSj2tfFpS/iT1kCQIXUozGtP0UhG/GnxK+G1SrnDNVjs18Ek3txtR/7OuS6yA02TFDyZVIxdIu9aVqRde0zvdmpMdL6Vc7ce0/guawEz45tVOO09g0gd5IQbWHBz/fz5cHfbVyc41YHpmRwuCY5uUjugIlJtVPaFiJpW4C0bETClpDaICN168exa+WHeC1rXnMeT2NRTeOZ1BUy7prlVI88Ole8qo8/GrGIKa1cdpCRKCdh88dxK7CzhsW3xJa0q3ZcXdVP378dCrKtChfsw+AiOnNCMwqSfjoTGInvoc9pAZFGKZ+R31h9wkRERGBIrLFzpmQTmzmE8eKtzW5pkOdM6H2oLChxOB27khg2e7uGKPOcDz55ZQs2YpZ4SKgTxSxl47HFt4zJCl6KjsLqrj5/V3kVXmY1j+CR2elMKlvD5s7KXQsfS4260U0uRSpL+hWc2yaxhMXDaF/RCCPr8jgtg93seSWCS3a9l+bDrHsYCkzkqPaHfG6d0rXpZsbo1HnzDCM/zidzrsNw/iGBhoBnE6nP3Lmx08PQilF6fJdeIsqCRnZj4C4xou0hdyObr1KQEwm0tSp2DORoLE/bbTjTYn+aGonqNrGdaKUQpNfolsvABJTvwVNrkCoHU1v16qTrEWozHqphDMj5dWTUUpRtTWT8tX7QCrCJ6cSMW0oop0F22c6X6QXc+/iPbi8kt/MHNRhXYidgdTOR1lvoVufI7Wrul2CRAjBj6YOIKe8lte3HeGhpft559bJTW6zJa+Sx1dmEBdi5x9zh50k3dFbaSpy9u/6f/+nC+zw48dPO6nakkHNnkMEJEQQNXtUwyupSnTrhfqWeoGlnUfR2lFU73LTZwDYoxvZTAwEtROhcn2O0Wkr1KFb/6kv5A7DtP0cpY1FqFo09V59u/70dp+jUPsQSGQ7U5p+mseqraNk6XbcmYVowQHEzBlH0MC45jf8DqOU4h+bcvnDNxkE2TVeuXIklxk9/JqJIKR2Ebr8GE2uQurnN76uqkOodITagyb3AhWYtkdAdLyI7h8vGMLOgmre3VXAeeuzuboRod6j6UxLKv41b0SDGma9kUadM6fTuaV+8Rqn0/nAie8ZhvEavoHofvz46QG4DhZQvnofemggcZdPQmtAt0zIDdjMfyGoQAoDS78HpaUQ0PcQ7NpO7cEC7NGNRc6O1p3lojjFOVO12Mzfoqn0+oHSvzw2gFxqZ6HL99DkJiyt/c7Z0Xqz9jYD+Gka96FSSj7filXtxtE/hthLxqGHdMzMyzOVOkvy0NL9vLUjnz5hAfz36tGt6lrsTiz9MjS5GE1+gtRmH2+OUdUItQ9N7kWoPT7HDPOkbXVrKZat43XiHTaNl+aP5IJXN/Pjj3cz6MZxTGhAe2xLXiUHSmu5akQ8M5Ibr7HtbTSV1nwRSAEmGYYx8pRtuq9q0I8fPydRV1RJyedbETaduCsmoYee8iV6UrTMjql/H6ldfqyuLGhQPAiB62B+o0Xex52z7NPe063/oKl0LG0Glv7Dk9KNSqSiiEGTm7GUCaJ9A4V99WbC18nnp1Oo2ppJ2UqfExwxfSjhkwcjzoA0UWdiScX33t3B6uxyxiaG8t+rR3dpJ2a7EXFIbTq6XIMm30WoinpnLBtRX9Xkm8KQjBQjkNoIlEjB7v0pmlyOpRa0XdamCfpFBPL85SNY8O4O7vh4N1/dOvG0DsxFe30j6K7u4AkD3U1Td8rHgWTg78DvT3jdBPZ2ok1+/PhpIVaNh6JFm1Fei9i5EwiIP7ng+NRomWl7AMTJM+X0oAAc/aLx5JZgVbtPd+7w1ZzB6R2bmrUGXX6DFKlY+gOn16sIgdSmoMvPEWovSoxu+8kqL0Kl+xzFXqQG35vwllZTtnIvWpCjXry4kTy3n5P4YE8Bq7PLOT8lmpeuHElwB0uMdAW+CQ1rsFlvA6AIQIkRJzhjBojgU7Y5B10uQ6gdKDG+od22m1mDovnDHIPffO7knsV7WXjdmGM1ZVIpFu0rJDLQxsxBZ07UDJpOa2YBWcBYwzCigRB845t0YBzwdRfY58ePn0ZQpkXRJ5uxqmqJmD6U4CEnyEGcFi27FanNa/TpNjg1AU9uCa6MAsLGNCBGKUJQxCJU7gnHKES3/onCgWn7WaOFxEedM01uxNLa6JypUmzmswjqkO1x8Pw0SfmafaAU0bNH+h2zFuK1JE+uycKuCZ64eGivdMwAlDYUU78bcKPECJRIbbY5QGoXostlaHIZltY5zhnAr2YPYXV6MUsPlPDEmkx+NcM3PXJjbgX51XXcOCaRgDOsSaXZszEM43+ATMAJrAUOAH/qXLP8+PHTFNLtpejTNOqOlBM8LInwKcdlJYRcj937ALpcjRQGXvvTSH1+k2mHoFRfSqD2YEGj6ygxwCePoapBWdjMpxG4sPS7QPRtYrtRKILR5Mb64dWtQ8iN2L0/QVNbkWLCMYVzPx2L+1AptQcLcCRFETQ4sbvN6TW8vCmH7HI3t4xLon9E767Lk/qlSP0qlDasRV2bSgxBigFochOoyk6zS9MEz80dRnJkIE+vy+GL9GIAPtpbCMD8Eb1zlFdTtMTVvBXoDywEZgGXA8WdZ5IfP36awnOkjCNvrsadWUjggFhiLhzja9NXlejmX7GbfwFcmPqtmLb/PS2N2RC28GDs8eG4c4qRHm+D65woRqvJ99HUXqSYjtSa6O4CEHakNgFBEUJltfg8laxFN/+B3fwTUIup34lpe7RD5jj6ORmlFOWrfdUqkTOG91jZh56G27T4w7J0gmwaP5nefWry3YYQSO0CBCaaXNGph4oItPPylaMIsmnc/+leDpS4+NRZRGywnbPbKDjbk2mJc5bndDor8Q0+H+t0Oj/D56z58eOnC1FKUbklg4J312NV1hI+dQhxV05B6KBZK+qjZWtaHC07leDURJCK2szCho9f75xpchm6tRBFLKbtvhaNPTo6t1KoTS2yRch0qgvvQZfLkCIZ0/YUUp/rH7HUSbj2H6Euv5zgIX2anCrR2UileCXtMOtzyrvNhtbwaloehyvc3DGx7xkj4dBapDYThQ1NftWmyHhrGJUQyhMXD6XSY3H5m1spdnmZNywOm3ZmpTShZeObKgzDuBnYAjxgGEYe0DNmT/jx8x3hZM0pB7GXjCOwfwia/BTdXIygqEW1ZU0RNDiRivX7caXnEzLs9DTlUedMl9+gEJi2n7S4MF9qE1CWDU1ubFqFXFlo8kN06x0kFpZ2BZZ+U7cLY57JHJsqoQkizmlmqkQn801GKb/8Mh2Aa0cm8D+zU4kLaf18xK6gus7kmQ05hAfauL8bZzC2l386PdgE3DUkoG0RUxGBEpPR1HqEOoASQ05bRSrFfzO89A0WXNCnfX/LC0YnsiWvkle35gEwf9iZl9KElkXO7gDinU7nCnwNAv8Gft2JNvnx4+cE6goqyH/jeBqzz02jCEn6HLv3TmzWS0AFlnYpXvuzrY6WnYg9JhRbVAjurCKk1zrtfSX6o6jvktKuQWmNCN02hAhBiZFoKgNUUcPrqAJs5m+wWW8CkYTEPIllu83vmHUyVTuysSprCRs7EHtkSLfa8sb2IwAMiQnmvd0FTP/PJl7dehhLdm5Epi28sPkwxS4vP5uRQnRQ7/yMlnkkeyokO8olW8tkm/dj6RcA+KJnDbCzXPJticWawtPvK23hD+cPZlr/CIbFBnNW/x42EquDaNY5czqdeU6n86n65QedTufYlmznx4+f9uM5UkbB+xuwatxEz46gz+WbCLTfjy4/AGyY+vfw2l/0zYgU7SviFkIQPDgRZVq4sxtwoIQDJcYhxRisNszgk5ovtanJ01ObmrXSp5lUX8fmtf8NW2DLZur5aTtmbR2VGw4gHDbCzzo94tGVFNbUsfRACSPjQ1h1x2T+dOFgJIqHlqZz2X/T2JFf1a32nUi528s/NuYQHWTjpzNTutucNrO/6rhD9nGOl7o2OsFKjKvXM1wNynPye0qxNM9Xx1riUW0+xok4bBoffm8cK+6YjHaGljo06mQZhnGFYRj5hmHsNgxjcP1rZxmGsQH4W5dZ6MfPdxT34VIKP9yEPbyQAbeuJ3r4X9HVciAeU/8BXvt/fCnCDiyQP9ql50rPb/B90/47TNvv2yQmK7UpwCnOmapGN5/CZj2Nbx7nA5i2X4DoHcrqvZ38FXuQHi8RUwajB3Vv+vDdXfmYUnHT2D7omuCOif1Yd9cUrhoRT9qRKi56bQu/XpZOpdtsfmedzL825VLpsbh/6gDCA3tn1Axgf6XPORsRoVFap/g6v43XVuhIbTYCF5pcd9Jb+yolOTVHhWyh0N0xUVBdE2esYwZNR8CeAO7Bl8b8jWEYjwDLgW+A7n3E8uPnDMedW0LxJ2uJnryW/td9REDwLqQYhtf2MF77c0j94k4Z/B2QEIEeFkRtZgHKaiTN0dYboohFilSE2lUvx+HGZv72FMmP8/1F/12EWeGicN1+9PAgwsYld6stSine3H6EQJvG1SOPK70nhDp4/vIRvHf9GAZFBfHClsOc/eImPt5biOrk4vPGKKqp49/fHiI+JIDbJzQuIdPTUUqxv1ISYoNbUwMItcGXeSbldW27rlb9TM5TU5tL83wO31mxvnKL/Nq2p0+/SzTlnNU5nc5FTqfzGeDi+p9RTqfzV/Xdm378+OkE3NnF1Gx9l/7XvkPUuB0g4vDafodp/zNKmwqi86oKjqU2PSbu3I5XzJHaFAQWmtyCbj2DpjKwtPPrJT/6NL8DPx1G+fr9KEsSOd1ANDCLtSvZeKiCg6W1zDXiiGwgEjUzOZoVt0/ml+cmU17r5e5Fe7hu4Q4ySl1dbuuTa7JweSU/nT6w1wrOAhR7FGV1iqFhGsE2wbx+duokLM5tWEqnWUQiUoxGU7tB+Yr1D1RZHKiSjIjQmBTju1YFtT2vfrAn0tRd/sT4pgu4rH5qgB8/fjoJd84+NPfj9JmzFFuoG0u7Fq/9GVQnqm+fSnOpzfZwVFJDt15El+uQYiSWfm+nzOXz0zjesmpc+w4TlBhB8LCk7jbnWCPATWMbd9AdNo0Hz05m1Z1TmJ0SzcqsMma+9C1PrM7EbXZMoXlTKKX4y+pMXt2aR0pUUJO29gaOpjSHhvv+9qbF6fQNFmwqsciqblt0S2q+xgDdWg4cj5pdnGQjMdAXEc/voLTmmU5TztmJV7DC6XRWd7Yxfvx8Z1EWqnwhodGPEjooC9MzBG/A37BsN3ZK+rIpHElRaMEOag8WoDq4S06JgSgSEFShiMe0PeTvxuwGKjYeAAV9Zo/qdsHZDbnlLNpbyKCoIKa1oPNuUFQQb187mpfmjyA62M5f12Yz86XNfJNZ2mk2KqV4fGUGT63NZmBkIO9dPxaHrXf3xR13znznoQnBNQN8f4sf5HjblDaW2tT6aSBfk13tZW+FZEiYRmqYTmSAwKH505otpamq3oGGYbzcwDIATqfz9s4zy4+f7w5CHkA3/4kWnIHlduAqvQVbwvxOTV82aY8mCE5NoHpnDp68UgL7xXTgzgWWfiG6tRjT9giIM7MNvifjLfVFzeyxYUSO6EdxSfc9d2/Jq+SG93ZiKfjjBYNb7CgKIZg3LJ7zBkXzlzVZvLj5EAsW7uCKYXE8dv5g+oR13AONUorfLj/IvzcfIjU6iA+/N65D998d+OrNLCLsEB94/JoPCdcZF6WxrUyyucRicmwrG3+EA6nNRJef82VeCRDBxUm+fQghSAgS5LkUUqkWFfO7TMWGYouagirmxCns2nenHrWpK/+zE5ZXdrYhfvx8FxEyB5v5MAKTyr1DcBVcTvRF53a3WQQNSaR6Zw6u9PyOdc4AqV+D1K7qUuczv8pDdZ3F4Bi/fvbRqFnE1CGIbvyy25FfxYKF23F5LV64YgQXpLb+cxbqsPGH8wezYFQiD325n0X7ilieUcrD5w7i9olJ7VaOl0rx8JfpvLo1DyM2mPevH3tGTALIr1VUmTA5Rj/NIZ4/wM6ucg+LDpmMidJx6K37jEjtAgpqdrK9PIKBIQIj/PjvIDFQI6fGosSjiAtsfL+5NZJVBSabSy28EsBLom5vvbPYi2n0TJ1O52tdaYgfP99FdOt1BCYF31xE9f4U+tw6qbtNAiCwXwyaw07tgXzUrBEdn/rqQsdsS14l33t3B5qAPT86+4xuv28Ob2k1Lqcvatadw833FFZz3cLtVHks/jFvOPPaqfI+KiGUT28az5vbj/CHFRn8ZvkB3tmZz5NzhjIxqW1SM5ZU/PwLJ2/uyGdkfAjvXT+W2OCeOa2gtThPSWmeSKxDY3aijS+PmHx1xOSyfq0rO1AihSWFNwBwcZ86hDg+DD4hqL7urFYRd8qMeKkUW0osVhaYZNVLb8Q6BOOjdZYdMdlS2oZIXi+mdyfN/fjpxQi5G01tpq5iEFV7BhB+1mBsYUHdbRYAQtcISk3AqnZTl9875hw2xKqsMq5+exvlbpPSWpOsstruNqlbOSlq1k1OanpJDde8s53SWpOnLzG45gTpjPagCcHN45JYd/cUrh+dyK7Cai59PY2ff+Gk3N3yDkSlFCsyS5n7Rhpv7shnbGIoH35v3BnjmNVairRSXwNFQ84ZwEVJNsLt8NURk2JP62rEijyKb8vG0TcwhzHhX5/0XmKQ73j57tP3ueSwyWsZXrJrFKMiNX4wNIDfjnFwRX87yeE29lZIaszvTjOB3znz46c7UArd8gWnC5aNwRYZSviEQd1s1Mkc69o80PFdm13Bkv1F3PDeDkypmJ0SDcDuwt7V11S2ai9HXl+F9LRR3uAEekLULKPMxVVvb6fY5eUvFw3hhk7oeIwNDuCZy4ax+MZxGLHBvL7tCNP/s4mFO/ObLXJfn1PO/Le2cd3CHWzJq2KeEcf7148lqpeOZzqV9EqLP+30kFEtGRquEeNo2AUI1AVX9rfjVfBhTus+e8uOmCgElyQsxn7KMPSEwOORsxPZVW7xRZ5JjEPwuzEO7h3qYGSkfizKPT3JgaVge2nnd+X2FFrknBmGEWcYxlzDMOYbhtExjzl+/HyHEWo9mtqP67CBpyCeqPNGdLvW1KkEDYxF2HVq05v/UutpLNyZzx0f7camCd68djT3Tu4HwO7Cmm62rOXUOPOo2pKBt6SKqq1Z7d5fxcb0bo2aZZS5uOqt7RRU1/HY7FRu62QB16n9I1l+2yQenZWCy2vxwGf7uPKtbTiLT/8MbD5cwTXvbOeKt7axPreCi1JjWH7rRF66ciQRvXgCwFHqpOKD7Dqe2VdHWZ3i4iQb9w1tOhI4KUYnNUxjR5lkT3nLnKKKOsWmYos4h2B8tIbgEEI5j70f5xBoAgpO6Ngs8UheP1iHTcCdgwOIDTzdLZnex5cD3ex3zo5jGMbFwDbgNuD7wA7DMOZ2tmF+/JyxKBOb+QZKaRR9M5ag1ASCkttXc9MZCJtO0KB4zAoX3uKeM9ewOV7cfIgHPttHmMPG+9ePZWZyNCPiQ4HeEzkzy12UfrUTYdfRHHYq0zKQrUjNnYovapbXbVGzg6Uu5r+5jbwqD4/OSuHeKf275Lh2XeOBqQNYfecU5gyJYV1uBee9vJnHV2Tg8lpsz6/ihvd2cOl/t7Iqq4xZg6L4/JYJvHHtaEYnnhkjxLKrJU/s8vBNgUVcoODBEQ7m9bNja6YZRAjBdQPtCOC9bC/eFsjqrCgwMRWc38cG+mwANLn82Pu6Joh3CPLdCqUUXql4Mb0OlwXXDbTTP6RhlyQuWCclVCO9UlLRxgkGvY2WVNf9ETjH6XRmAhiGkQJ8CHzamYb58XOmosllCPKo3DcaszqKuKtHdLdJjRI0OBHX/iO40vMJiOu4GZ6dgVKKp9Zm88SaLOJDAnh3wZhjTll8SABxIXb29ALnTFmS4iVpqDqT6IvHIms8lK/ZR9XWTCKmDW3TPrszapZeUsOVb22nsKaO389O5Qdd5JidSP+IQF6/ejRL04t5ZFk6z2zI4Y3teZTW+kRSp/eP4OEZg5jaP7LLbesspFIsO2Ly2SETCcxM0Lmin52AVnRf9g3WmJGgs7LA4pt8k4uSGo8i1lqKNYUmYXbfqCYlxqKIQ5OrsdTtIHz1tAlBPues0gtLDnvJdSnOitWZFtd05mBijE5GtSSt1OK8xDO/MaAlaU37UccMwOl0ZrRwOz9+/JyKqkW3FiKtXVeq2AAAIABJREFUAErWjyF8ciq2iJ4r7xA0KB50DVd6XocL0nYksl6L6ok1WQyICOSTm8Yfc8yOMjI+lNxKDxXtiEB1BeVr9lFXUEHI8L6EjuhH6NiBaEEBVG7NbFP0rDarsNuiZvuKapj/1jYKa+r44wWDu8UxO5GLh8Sy6s4p/HjaAKo8FpP6hvP+9WP56IZxZ5RjVu1VPL+/jk8OmYTb4QEjgGsHBrTKMTvKZX3thNrgizyTsiaiVmsLTWotmJVg8+mRCa1+GLr7pGHoR5sCFh/ysrbIom+QYMFAe7MPDeOjdQSwpaT7B993BS1xsnIMw/iJYRhh9T8/BbI72zA/fs5ENLkIQTllW0aBPYawyandbVKTaAE2Qob2wSyt8UVfeiCmlPxkiZN/bz6EERvMpzeNZ1DU6V2vI+J8ztqeRurODlW48Zjdq15em1FAVVomtqgQomaPAny/g/BJKSiPSWVaZjN7OE5dcRWFH2+i6KNvQUHkOcO6NGq2u7Caq97eRlGNlz9fNIS7JvXrsmM3RUiAzq9npnDwZ+fw2U3jmZEc1e1TEjqSjCqLP+/2sKfCN9Py4VGBGBFtr2cNtgmu6O+bu/lRI80BplR8k2/i0ODc+ONRLUufjUKcNAz96BinjcUWgTrcOaRlTmO43aeZllWjKHZLUB5QZ273dUucszuAaUAGkFW/fHcn2uTHzxmJssrQ6j7EdAVR6ZxE3LyJaD2sCaAhomaNRA8PonJDOu6cjh+G3l6e25DLOzvzGd8njEU3jiexEfX2kfEhQMN1Z6uyypj8/AZ++eX+TrW1KcyqWkqWbgddI/ayCWgBx7/kQscORAsOoGprJpa7rsn9WDVuSpbtIP+NVbgzi3D0jyHxhnN8UdAuYmdBFVe/vY1il5e/zhnK7Z1c/N8WAm2nC7D2ZpRSLD/i5W/76qioU8zrZ+PeoQGE2tt/jmfF6iSHCNJKLfZXnl6U/22JRYUXzo63EWw74XgiASXGoKm9oA4DxyNnADenBBDXQANAY0ysH56+pcTCZv4Pdu/9oHpPk09raPaqOJ3OQqfTucDpdMY5nc4Yp9N5ndPpPNIVxvnxc6YgTQtv5j/Q9Doqdk8j4dpZBMT3jtFFWqCd2EvHgyYo/nwblsvT3SYdo8RVx7Mbc4gJsvPegrFENyF5MLI+zbmn6OSbeUG1hx98sgdLwbu7CsitcHeqzQ2hpKTk821It5eomSNOq+/T7DbCJ6Wi6kyqtjQcPVOmRcWGdPJeWUHNrlxsUaHEXTGJ+KvPIiCh6z5rO/KruPrt7ZTVmvztEoNbxnX/YPUzHZepeCG9jo9yTUJt8MCwAC5OsneY4LImBNcODDjWHGCdUOIglWL5ERNN0GAtmNTOB44PQ08MEqSGaszrZ2NsVOseTsdG6dgEbCmtRlN7EZSgW++0/cR6MI1W1RmGkcnJw89Pwul0pnSKRX78nGFYLg/lqz4jcdYWvNVRhEy8Cy2wZ4jNthRHnygizzYoX72Pki+2E3fl5B4Rdfj7+hyqPBaPnz+I8MCmi4SHxARj18RJkTNLKn6weC9FNV5mJEexKquMf27M5U8XDels00+iYkM6nsOlBA1OJHTMgAbXCR0zkMrNGVRtzSRswiD0oONSCHVFlZR8sQ1vcRVacACRM4YTOqo/op3ji1rL1iOVXPfODqrqTJ65bBgLRnffFILvCtnVkpcP1FFSpxgarnFragDhHRAtO5WBoRrT43TWFlmsKjxelL+7XJLv9hX1RwWcflypTUVZIWjyGyx1I3ZN56cj2jYCK9gmGBGpsaMskLzafvQJqkGTnyHlBShtYLvOr6fR1F/uLOC8Jn78+PHTDN7yGgreXUPU6M8QmkKF/ajXOWZHCZuYQmByHO7sIqo2Z3S3ORyqcPNK2mH6hzv4/vjmozN2XWNobDD7imqOPfk/tTaLNTnlzBkSw9vXjqZ/uIM3dxyhqKbp1GFH4s4upnLjAfTwIGIuHNOo06vZdcInp6C8FlVbfNdfSUnFpgPkv7UGb3EVoaMHkHTrLMLGDOxyx2xVVhnXvLOdqjqTf8wd7nfMOhmlFCsLTJ7e66G0TnFJko37jc5xzI4yr5+dYB0+O+ylsr45YNkRX4H+BY11UIoApDYTQRlCbWm3DZOifIm7jeVXY9p+iECiWy+eJHZ7JtDUX+84p9OZ7XQ6s4HKo8v1/1/QRfb58dNr8eSVUfD2WkIHbiIwrgRLnAf28d1tVpsRQlAz1YBgB+VrnXjySrvVnifXZOGxFA+dOwiHrWWOyMj4UGpNSUaZi1VZZTy1Npv+4Q6euWwYdl3jvrMG4DYlL2w+1MnW+7Cq3RR/sRU04asza0bwNHTMQLRgB1XbsvDklVKwcD0Va53oQQHEzZ9M9AWj0RxdK5pqSsmfVmVw7TvbqfVKnr98BFd30EgmPw3jMhUvH6jjvWwvgTrcZwRwWb+OS2M2RqhdMK+fHbcFiw55OVhlkVEtGRWp0Se48b9BqV0AHE9ttodxYf/Fobn5tnwiUkxEikloaieaXNvuffckmrqj/e6E5VOv6PWdYIsfP2cMrvQjFL6/Ac1RSsy0NBQRWLbbutusdvHhngLOfWMbD3nsgKJ4ybZmi9M7C2dxDQt35TM8LqRVsxmP1p2tyCzjB5/sQdcE/5k/ksh6p+iGMYnEBtt5Oe0wVZ7ObdlXUlH8xTakq47Ic4fjSGxeykGz6URMSUV5LQoWrqcuv5zgYUkk3jKjSwv+j3Kows38t7bx9Loc+kcE8tnN45k/vOcJKp9JZFdL/rLbw9YySWqYrxtzeDu6MVvL2fE6/YIFG4st3snydW9e0KfpkgKlpSBFsi9yptquNSjkfgLFFsZEHKTYYye7RmHa7kBhQ7deAdX19aKdRVPOmWhkuaH/+/Hjp57KtEyKP00DDfpesx2hebH020H0bBHXxlBK8dzGHO5dvJc6S/G1S7EtMRarqpbSL3d0y2in/12ZiVTwyIxB6M0onZ/IUefsd18fpKjGy29npTAx6fjvJciuc8/kflR6LF7Zmtfhdp9IxcZ0PLklBKUmEDY+ucXbhY4egC0i2NeocdkEYi8Zjx7Y9UO5P99fzOxXNrPpUCVXDIvj69smMb5P7/yM9waU8slV/N9eD6UexZwkGz8aFkBkA3VenYlWPzkA4EitIjnEV+DfHFKbgcBEk+vbfGzdeh+AiTFRQL3mmeiD1K6sbw54v8377mm0tCjh1LvvmZXc9eOnA1BSUfrNbspX7kEPcdD3RoU9cC9STEBqM7rbvDZhScUjyw7w2DcZ9AkL4PNbJpAU5uCB3FpIjKT2YAHV27K61KbNhyv4PL2YKf3CuWhwTKu2HVEvp2FKxZzBMdwz+XTtrdvG9yXMofPvb3Op9XbOLD93TjGVG9J9dWYXjW1Vc4Ww6STeeA5Jd55P8NCOHxzeHJZU/HpZOt//cBduU/LUnKH854oRzTZk+Gk7NfXdmB/keAmuT2PO7WdH76amnJQwnbNifdG6i5KaF5AFkNo5AGhyVZuOKWQWmtqEFMMYFjGIYN2nlXbYJbH0q1HEosmPQXXuQ1VX0ZRz5nfA/PhpIdJrUfzZFqq3ZWGPCSXh+tE4Qt5G4cC03QM9oLOxtdR6LW7/aDcvpR1meFwIn988gYlJ4fx65iBqLfhbQChaUABlq32K9l2BUorHV/iK4X8zM6XVHaOxwQEMiQlmQEQgf7+sYVHW8EAbt43vS1GNl3d25neI3Sdi1Xgo/nybr87s0vHN1pk1hOawo9m7RyPvxS2HeGHLYYzYYJZ+fwI3j0vqEZ27ZyqZ1ZI/7/Kwo1wytBvSmI1xfbKdnw4PYExL5TBEPFIMR6hdoEpafTxN+qJiln4tNl3jiv52XBb8ba+Hg9V2TNttCExs5kut3ndPpCnnbIhhGF8bhvH1icuGYXwDDO4i+/z46fF4S6ooeHsttQcKcPSPIeG66TiC30JQhaXfAKL7i6OVUnh2foJ0tayIv8RVx9XvbOfz9GLOGRDJ4hvHkRQeCMDVIxOY0CeMN9LLKJ40BCxJ8WdpSE/nj0X6JrOUdbkVXJQa0+ZxO5/dPJ6vb5tEVBOaaHdP7kegTeMfG3MxZfunBhxN/SqlKPliG9LlIfKcYTj6RLV7311JboWbP63KJDrIxkc3jGN4XGjzG/lpE1Ipvjri5em9HsrrFJf2tXH/sAAiujiN2Rh2TZAa1jon0ZfaVGhyTau2s7y5aHItUqSgxATAJ3h7S4odjwXPOevYVXEWUoxGU1sQclOr9t8Taco5mwv8vv7nxOX/AeZ1umV+/PRwlFJU78zxyRiUVBE6diDxV05BD9iFLlciRSpSm9vdZgJgZm2g8rUbqXr3gRat/8iyA2w+XMlVI+J5+7oxRJwQ3dGE4LHzfc9nv9xdQtikFMwKFyVfbEN1gCPTGFIpHl+RiQAemTmozfuJDLQ3m4KLDwnge2MSyalw8/HeojYfCyCv0s3k5zfy1NosXM483DnFBA6KJ2xC28+hO1BK8dDS/bi8kt/PHkxscNfXuX1XUErx6kEvH58gKntp387vxuxspHY2Cr3VqU1P9dsIFJZ+7UlZiCmxNu4e6vsc/vuAl/UVD6DQzghh2kbvUE6nc2VXGuLHT2/CctdRsmQrrv1HEA4bsZeMJ7h+qLTu/di3jv5DEN2ffgCo27fM9++uTzDz92JLHN7oum7TYumBYlKigvjnvOENfiFM6RfB/OFxfLy3iOXjk5gxIJbajEJKv9pJdBNaXe3hta157Cqs5pqRCacNNe8MfjilP69vzePZDTlcNSK+TV+MllTc98lecircLNx+hO8Fe0ATRJ83stelAj/cU8jyjFJmJkdx3ajujwafyXydb5JWapESqnHXkADCOlG7rEsR4SgxDk1t8Y1zEi0Y66UK8LqWIUV/lDjrtLdHRercbwTw/P46XssIw9X3Li6M+zdCZqC03quV37UqhX78nAF48svZ8+xSXPuPENAnij43nXvMMUN5EGoPUiT3qBtDXfqKY8uur59qct3VWeW4vJI5Q2KbdEgenZWKQxc8vjqL4DnjCEiIoGb3IcrX7Osos49xqMLNYysyiHDY+N15XXNdB0QGceWIBPYW1bDsQOtrZAD+vj6bdbkVCGBYdQ1mWQ0hI/phiwjuWGM7mdJaL48uP0CQTePJOUN7nWPZm8isliw6ZBJu9w0FP2Mcs3qONkfpVguiZ6oAm/kXQCK1a0A07LKkhun8ZLiDcDu8d3gWXxZedtKw9d6I3znz46eFKKWo3HyQgoXrqCuvIXzKYBKum4ot/PgXrVB7EHhRYmw3WnoysrYcMzcN28Ap6H1G4dn6PlbxwUbX/yLdN9x8zpCmOyH7RwRy75T+5FV5eH7rEeLmT8YWFULV5gwqNze+/9ailOLnS/dTU2fx2PmpJIS2bfRLW3hgan8A/r4hp9WSIZsOVfDkmiySwhw8MiOZu/Q6pICIKS0r2S2o9nDPoj3MfSOt07pGW8rvlh+g2OXloXOTSY7snRMuegMuU/HKgTqUgu930him7kZqU1AEoMnVTar6C7kZu/dBNJWBPfiSY92ejdE3WONnI3wO2uL8a6nybAXVc+YAt5YWOWeGYSQbhnGZYRi6YRi9q1DCj58OwKrxUPTRt5Sv3ocWGMCQ288j8mzjtBE5mtwOgNTGdYeZDeI9uAaUJGDobILPfxCUxPXN3xpcVyrFFweKiQ22M7lv88Oyfzx1AHEhdp7bmEOhBfFXTUEPDaR89T6qd3eMyv57uwv4OqOUWYOiuL6LRwINjwvl4sExbD5cyYbclnekVri9/GDxHhTwr3nDme9QDNQUacGhzUbNlFIs3JnPuS9+y0d7C9l0qJKvM7pvGsOKzFIW7ipgTEJog9IjfjoGpRRvZNZRWufTMDPCe0ZJRIcjgpDaWQjyEKrhhzjN+gK7+ThQh6nfT3DUz1tUIhLr0LgkyU6ddLC04EI0uaGDje86mnXODMNYAHwCPAPEAOsNw7ipJTs3DOMswzBW1C/HG4axyDCMVYZhrDUMI7X+9bsMw9hsGMYGwzDm1r8WaxjGl4ZhrDYMY6FhGL0rB+DnjMKdXcyRN1bjzi4iMDmOPjefS3hqwzU3Qm1DYUeJEV1sZePU7f8agIChs3GMmY8eNxj35rewyk93nrbkVVJU4+XC1JgWibuGOmw8MiMFl1fyx5UZ2MKDibtyCprDTumyHdRmFLTL9sKaOh796gDBdo2/Xtw96bQfTfMNIn9mQ06L1ldK8Yul+8mt9PDT6QOZ2i8c+85sTOCvNTTZ/Xm40s0N7+3kgc/2UWfJY87Q4n3ta0poKy6vxS+W7kcX8PQlBrYuntf5XWJlgcWOMsmQMI1L+p7ZmnFSOxdoWPNMyPXo1r9RRGDa/ozUL2jVvqfF6cQEWKwsuYBy98YOsbc7aMlf2i+B6fjmaxYC44FfNbeRYRgPAS8CgfUvPQG86XQ6ZwC/AYYZhpEI/Ag4G7gY+JNhGA7gt8BbTqfzXGArcE+rzsqPnw5AWZLyNfso/HAj0l1H5IzhxM2fjB7cSFpNlaOpLJQYDqLrUm/N4U1fgXCEYhswEaHpBM9+ECwvtSv+ftq6R1OaV0XlU7vhFZTVvDzG9aMTGRUfyru7Cth2pJKA2DDi5k9G6ILiT9NwH2571OdXX6ZT5jZ5dFYKA7opnTa5bwTT+kewPKOUnQVVza7/9o58Pt5bxJR+4Tx49kBczjzMshqckeEc8CjS8k7fh1SK17bmce6L3x4rul91x2Qem51KcmQgSw8U4+qG1OafV2WSXe7m3in9GZ0Y1uXH/66QXS35KNdLqM2XzuztXZnNocR4FKH1qc3jn2shd2Mz/w9wYNoebVPdrk0TXNI3EFPZ+Tx/OKgjHWh519ES58xyOp3H7iZOp/MI0JJ++YPAVSf8/2ygn2EYXwE3AiuAKcBap9PpcTqdFcABYAxwDvBF/XafA61znf34aSfSa1L4/gYqvz2ILSKYhAXTCZ/YtOhpT0xpWmW5WEUHsKecg9B9chiOCdehRQ2gdsNryKrCk9b/Ir2EueY6Riy+lur3f0z5sxdgFqY3eQxdEzx2fioAjy4/iFIKR1IUsXMnopSiaNG31BVXttr2D3cc4ROnz8m5bUILuro6CGlaVKZlYlbVHnvtx/XRs2ebiZ4dKHHxyFfphDt0/jVvBDpQsfEAaALbeF9FyIrMk53VzLJarnl7O79Yuh9NwN8uMXh3wRgGRAYhhOCK4fG4vJLlB9vm5KblVTL3jTT2FrV8pmG1x+SHn+zl+W8PMTAykF+ck9ymY/tpnlpT8crBOmR9nVlXj2PqFoQdqU1HUIZQu30vySxs5h8BiWl7GKW1XU51cqxOgqOWtSWzKHX1ztRmS2Knuw3DuB+wG4YxDrgP2NbcRk6n8wPDMJJPeCkZKHM6nRcYhvFbfBG5/cCJhRxVQAQQfsLrR19rkqioYGy2MzRH3w7i4vxPu61FKUXmO+vw5JURObIfyVefhd6Aivup19ZVtgevCyKjp6EH9IzrXr7XF9aPmjCHmBPstc17mPzX74Nv/0Pcgr8A4CysYnrumzzkegUtMJSQMZdQlfYx5X87h4Tr/0rU7B806pxeGRfGFTvyWbS7gFVHqrlmbBLEhRESoJP17gZKPv4W454LcES3TAKj1FXHfR+ux2HTeP3GiSR0gXTGUXI/TaN83X48zjyG/eACNLuN62JD+fOabBbvK+LJ+RqDY0NO26681svdr27B5ZW8e8tEJgyOo2RrFmZZDbGTUxh8zmD0Lw+y7nAlcXFhWFLx7JpMHlmyl1qvZN6IBJ6/ZgxJEYEn7ffWacn8fX0OSzPLuP3c1kUSSmrquHPRHg5VuPnz2hyW3HW6FMGpn+Nvc8r53htpHCxxMWVAJO/cNJGBMf7KkqZo631WKcXTaZUUexRXpgYzY/B3R9TX9MyhpvhLggPWExg2mOqix1G4CIr6FQHB5562fmuv8YLhgme21bLkSBQ/mRqM6CGyRi2lJc7ZD/GlIWuBl4GvgQfbcKwSYHH98ifAH4HNwIlXPAwoByrrl2tPeK1JyspcbTDpzCYuLoyioubTMH5OpnLzQcp35uJIiiLs/NGUVrmhyn3SOqddW6WwezcD4ZSWJ4DoGde9Mm0JAHV9pp9krxp+DVr4Y5Qu/ydMvQ8RGEHaP+7lIddC3EHx9Ln3Q2x9xyBGfkzVBz8m//UfUrLxI8IW/BM9vOGi/F+dPZAlewt5cNFuzooPJtCmQ98YImeOoHzlHva9+DWJN5yD5mh6XJFUPm2wgioPv5k5iGihKCqqQnq8VG3NItjogz2qc77E3IdKKVy3HzRBbX456R9sIvr80QDcN7kfdy/aw2Of7+WpOcZJ27m8FgsW7mBXfhV3TuzLrKQwCgsqOLJsJ2iCgDEDqat2M6FPGBuzy/hi+2EeXe4T+o0OsvH0JQZXDo9H1HkpKjo5lZxkF6REBfHpnnyy88oJbuHYJqkUN7+/k0MVbsIcOp/vK+SL7YdPGvR+4udYKsU/Nubyp1WZWFLx42kDeOicZOzS8t9HmqA999nVBSYb872khmrMipbfreuskrETQ51rJXWunQiKMfVbqag5C2pOvg5tucaD7Yq+QaVsLJ3MruwNJIaMOeHYRSDiOuAk2kdTDmezaU2n01njdDp/5XQ6JzudzglOp/PnJ6Y5W8Ea4NL65RnAbmATcK5hGIGGYUQAw4FdwNoT1r0EWN2G4/nx02pqs4soX7MPPcRB7NwJCL2lBdCHEJQgtTGNavF0NcoyqUtfiRaeiJ5wsjMh7IEEzfwRylONa/n/kfZ/VzI2eyEZAYMI++FX2Pr6bmSOsfOJenADduN8vM6vKPvrVDw7Fzd0OFKig7l9Yl9yKty8uf34TMrwCYMIHZeMWe5qtkGgymNy6we7+HBPIRP7RXDfWT4pC295DfnvrKNi/X4qN3WcTMeJSK9F6bLtIHxdp/aYMKp35OBK99WszDPiSI4MZOHOfAqqj7foey3JXR/vZuOhCuYPj+PxC3zpGNe+PMzyGkJH9j8mtzIzOQpLwSWvp7H5cCVXDItj9Z1TuGpEQqNRSSEElw+Lq09ttlxv7Z+bcll20Fe/9tpVowB4ck1Wg+sWVHu4buEO/rAig5hgO+9fP5Zfz0zB3uLPv5/WcqhG8kGOlxAb3Do4oNuGmHcbQkNq5yJwITiEpV2O1Od32O41IZjbV6HQWHL4uGSHZn1MgPcuNOvjDjtWZ9DoX55hGNIwDKuBH2kYRlsqUx8EbjEMYx0wB/hfp9OZj68LdDW+iNyvnU6nG3gcuN4wjLXANOC5NhzPj59WYVa4KFmyFTSN2HkT0UMCm9+oHk1uBegx+mZKSqrevQ9VXUTAyMsa/OIPmnobIjia2pXPMCB/BWlB40n80ZdEJiaftJ4e0YeIOz8k9Mq/oupcVL52E5Xv3It0n15Hdt8UnzO17BQnInSEr+vQfajxuqmMUheXvJ7GFwdKOHdgJEvvnopN03DnFFPw1lrM0moQAk87GgyaomKdE7PcRdiEQQT2jyX2svEIm07Jsh2YFS50TXD/1AHUWYrnv/V1ukql+PESJ8sO+qQ+npvrm6hgVrspX++LwIVPST12jIsG+7Tj4kMCeOXKkbwwfyRxIc2PQbp8WDwAi1rYtbnpUAV/XJFBQmgA/5w3nHMGRnHOgEi+zijl28OnS4Lc98leVmWVcVFqDCtun8S5yb1r5mdvw20pXjpQh6nglpQAor4LdWYNILXzUGhY2kws/dYO3/+oqL4kB+eSVj6U3OpyUAXo1lsA6NYbCJnV4cfsKJoa39TuRyan05kFTK1fzgYubGCdF4AXTnmtAJ8D58dPlyC9JkWLNyPdXqIvHN26gdTKi259isKG1CZ2npEtNUcpahb/Es+Wd7ANmETo3D80vGJAMOsH3MzUfX9nWdhFzHjgZfpFhze4qhCCoLPvxj5kFlVv3YVn81t4D64l7Hv/JiBl+rH1+oQ5MGKDWZ9TjseUOGy+24g9LhzhsOE51HDk5+uMUu5ZtIcKj8k9k/vxu/NSiA62k7nOSdmKPSAg+sIxuA7k484sxKx2YwttufPcHJ68UqrSMrFFhRAx3RdltMeEETV7JKVf7qB4yVYSrpvGglGJPLkmi1e35vHjaQN4ak027+8uYGJSGK9cOYoAXcMsd1HwwQasylrCzxp8kkjxuD7hLLt1IsmRgSfNK22OkfEhpP4/e+cdH0WZ//H3zGxJsumVkAChLr1LR0BBkapiAXs77Gc79U49Tz394Xmnp6Jn7woWREEQBKX3DtIWQklIgfS6dWae3x8bAjEVyBLEeb9eeQV2nmefZza7O9/5ls83OpjFqfmUezVsltpDmwUuH1Pn+DXW3pnQudL4e3RICqtmbOM/qw7z1bUnbiLSi1ysTCtiQHIEn13V1VD/DzBCCGYe8pHrEYxsZqJL5O8rF6oxEXIrfOaPgPAqPTMbC0mSGJ+Uz/T9LZifWcx9bT5FwosmX4yi/4Ki/RdV+g9IVT+LuhAIaFJvZkN0ziLtdvurdrt9h91u32K325+32+2GRLTBeYMQgoLFv+LLKyW0e0tCu7Y8pfmyvhiJHHT5MpCiA7TLhuNcNA3XqndQmnUm4o5ZSNbq+VlCCP6x5AC3517Ena0+YsRDn9dqmJ2MKb4Dkff/TMjIR9GLjlD81mWU/fgMQvVWjhmWEoVL1at4aCRZwto8GrXIiVp2In9PCMGb69O57psduFWN18d25J8Xt0MRkD5nE4VLdyEHmYm/agChXVsQlOR/fRvTe6arGvmLdgAQM6o78kmFRbbOyYR0bI73aBFFqx1YTTJ3XpBMuVdj0sztvLMpgw4xIXxxdXdsFgVvXinHvl6DVuIiYkB7IgZ2qLZej2Zhp2SYgf8iM7FjPC5V5+c6Qpu6ENw/bw9ZpR4eH9qaQS0jK48NbBnJ0FZAuHg4AAAgAElEQVSRLD1UWOVvM2uXP9Q8pXszwzA7C6zJ1dhcoJFikxiffH7rmTUIKSIghtlxOkR0o71tLzuL4zlUVoIudUdT7kOTL0EWaZWetOMIIXg/1cvzO5q2u0BDvGOfAyp++YtbgVD8+mUGBucFpZsP4nRkYUmMImp4l1ObLNwo2tcIgtCUqwKzwVPAufJ/OBe/iByTQsTU75FDqhuLQgie+jmVtzdm0D7Wxlu3jiMxvOFeKEkxYxv9dyLv/Qk5OgXXklcoev0itLyDAAxL8a+54nBhlXlByRWGVYX3zOXTuGfeHp5depB4m4U51/dicrdmaC4vObPXk7fhAOa4cJpdN6TSKLMm+T2anqzGM86K1+xDLSwnrHdrrElVXy9Jkoi+uBumSBulmw/iOpTDzT2bE2E18euxMpLDrXx9bXeig814jhaR881atHIPkcM6EzGwcUVzJ3T0JzDP2ZtT65iT88yOy3+czHFJjJdWHgb874Vvdh0jyCQzzt70CdLnO5lOnVlpPkIUuK2dpUFCzwZnhiSHMiHJ3+/3q8yb8Sp3giShKbciaIasf4+k76ocv7tYZ0ehTmxQ0/5tGmKcpVQUAfzqcDi2OxyOB4FzI7HGwOAMKdl0gKKV/gKAuFMqAPAj6/OQKEKXJ/jvAJsQ98YvKJ/zV+TwZkROnVNjVaUuBI8v2s97mzPpGBvCd9f1PO1eleaU/kQ/vJqg/jejZu2gdPZDAAxsGYFJllj+G+PMmuzPt3IfySezxM2EL7by7a4c+jT3h/p6Nw/Hm1fC0Rmr8GQUENklmYRrB2IKP+GotyREIikynsyqz326eLIKKd1yEFNkSGU487fIFhOxY3uBIpP/03aCfSp/H9GGbgmhfH1tD5qHB+E+kkfOrHXoHh/Rl3QnvHfjd7nrFGejfUwIPx8ooMyrVjs+e/exKnlmNQmZDmjh954tP1zI+oxiNqQXcaDAxZgOsYRZDS9OIPFU5Jn5BNzYxkK01Si2OFu0Ce/FBZFrOOxsy/r8iu4uUjCq6UFAwqS+DsKFpgtmp/uQgCtanJp3u7FpyLtjl91urxQdsdvt3YG6VSkNDM5xhBAUrXH4DbPQIOKvGoByqjlMogxF+w5BGJoyMTAbbSCeX3+g9Ot7kYIjifjT9ygx1Y0DXQj+snAfH2/NonOcjdnX9SS+AcnodSFZQwm7ejrmNoPx7VuKmrOPUIuJvs3D2ZZdSqHrhCyEJT4cyWKi6HAuoz7ezPajZVzXvRnfVxiIztSjHPvyREiwzZTByOaqBoOkyFgSI/HllqC76+9eUBe6VyV/0XYQED2qB3IdEhWW+AiiLuyE7vKSv2ArN3ZP5Jdb+9IuJgTngWPkfLcRoQtix/YmtEuLM9pXbRyv2nSrOj//RpD2462Z3D13DzaLwkdX1F1kcNx79u9Vh/lss7+w4eouNbcjM2g8fspSyXELLmpmolvUHzfPrCkQckcmtOqHRYY5R3w4VVH5uC5fgcQxFO0DVuVqHHMLBsUpNA9pWuO5Iat3BJbb7fY9drt9J7AZGGS32w/Z7faDgd2egUHjI4SgcNluStan+tX/rxmIuYHiqCejaN8hUY6mTAKpuijp2cK99RtKPrsZzMFE3PEtpsTqfT1VXefBHx18vj2b7gmhzL6uJ7EhZ2aYnUzwYH+HNdfqdwEY1joKAaxKO+Hh0oDM4CDMZW4Ul4dpo9rx38vsWGQoXLmHvB82g4DYcb39IcFaQj7HQ4+e7NP3nvnzDHdUhjOPh1zrIrRHK4LbJeDJKKBkvf/+tHxPBnk/bEaSJOIm9iWkfeJp76khVIY295wIbb6+Lp3HftpPTIiZ767rSd96GtYPaBHJhSlRrDhcyAfr04mzmRnW2qjODCSlPsGyYyrhZhhn5Jk1CVHWMEY3N1Gmwo+ZJ27sNGUyutQat3ctP2a4CFJgXHLTes2gYcbZBKA1/urJsUA7/G2XhgMjArYzA4MAIHT/Rbls22HMMaEkXDMQU8Spq5/rWj6y/gOCaH8hQBPhWvM+pTPuQLLYiPzTbMytLqg2ptyrccu3u/jy16P0Sgxj1pQeRAc37pePpetY5IjmeDbNQHeXMKxCimFZRWgzo9jNlTO2Myvfn2T7xdCW3N4nGa3cQ86s9ZRuOogp0kbC5EH1GjjW5mdeFFC65RDOfdlYm0cROaRjg+ZIkkTMqB4oYcEUr99PwZKd5C/cjmRRiJ/Un+BWgc/Z6hhro0NMCL8cLKDMo/L8soM8v+wgSeFW5l7fi24JDVNRP+49c6s6V3ZOMBqaB5hFWT68OoxubsZi5Jk1GSOamYizSqw4ppHprOhCKZnRlAeZd2wS5ZqJSxNlwsxN/zdqyCcyG3+/y2En/zgcjrQKeQwDg98FQtPJ/3Er5bsysCREEH/1wFMPZVbgKf3CX5KtXNskTc6FEJT/8h/KZj+MZIsl8u75mFsPrDYup9zLFTO2sehAPsNSopg1uQeRp1gp2BAkxUzQwNsRnjI8m2bSMzGMcKvC8kOFzHfkctFHm1iXUUxwi1gAkp0u3Ol5HP1iJZ7MAkLaJ9LsusFY4uqvGLUmRoJ0+saZ+0g+RSv3IodYiR17anmGcpCZ2DG9AImy7WnIIVYSrh6ItfnZ8TydHNq8YuY2Xl+XTtvoYH64vhftTqHFUv/kCIZXeMuu6WqENANJoVewMkcj2iIxKM4IZwYaz445qNm7azxmliWuamVGB75J8yGEP7x5zNuCZXmXEmspYnhC0xtm0DDjbAHwEH4v2fGf4QHck4FBo6OVu8mZvR7n/mysSdHET+qPEnyaYT1xDG/5fASJ6PLFjbvRhiwvBOXz/o5zwXPIkS2IvHdhpaL/yezPL2fMp1vYdrSUKd2aMePqbgFN+g7ufwsoFlyr30WRJIa0iiK92M2t3+3Co+q8PLoDz17dA8msUO7IImf2enS3j6jhnYkZ26vetk7Hka1mzHHheI4VI9RT08NWS13kzd8CEsSN631axrm1eRTRF3fFmhxNwjUDG2RQNibHBWm3Hy2jS7yNOdf3Ijni1M/jnQmdWXHvoAZ72wxOj4WZPlQBlyWZMBles4DiWv0eJZ/eSOnMqbWO6RKp0DVSJrVUZ0uB//vj+3QfmpCZ2DIes9J46R5nQkO+qWMdDodRnWnwu8WTWUDe/C1o5R6C2zUjZnTPOpO/60PRZgIqmjIFpLObPyJ0jbJZD+De8ClKfAcips5BiUyqNm7dkSJu+nYnRW6Vx4ak8MjgVgHXsJLD4rD2vBLP5i/x7V/KqLad+HFfHp3ibLw7sTP2imbh1qRo3IdzUcKCiB3b+9QEfysISorGl1OC52hxg/LFAISqkTdvC7rLS9SILtVkM06F0G4tCe12anp4jUXHOBtjO8Ti1XT+N77TKWumHScq2EwHo/9uQMl166zN00gIkugXa3jNAol372LK5jwGgJq1A/XoXkzNak5ZmNTSzN5iD7NTi1GXvMeOVg/QNkymZ9S5E95vyJVlid1uHwkscTgceqA3ZGDQWAghKNt2mMIVe0AIIod2JKxPmzMyUiT9MLK+HNnUBl0ackpz1aN7kEwWlNi29Q/+DUIIvHt+wrloGmrGVkzJvYi441vk0NhqY+fsyeG+eXvQBLw+tiOTu9XcqDwQBA+eimfzl7hWv8uUW2bSMiKIvknhBJ9kDEcOsuOMDSesb5vT9l5ak2Mo3XoY576sBhtnhct24z1aREinJEJ7tDqtdc8VPqrolWlwbrMgU0UXMCbJ9MfrnXkWUbN3U/LZLSCbCB5yN64Vb+DZ+jWmy56ucXwMZQzNW8zSmDF8kXw3AFe2MJ9TIswNMRPTgEWA7wx7axoYnDV0n0r+gm0ULtvtV5if1J/wvm3P7MMnBIr2ARKCoIg7TqnBuWvDZxS+MojC6SNr7En5WzKK3TyywMGxUjee3Qspem04JR9eg5qxFWvPSUTc9UONhtmM7dlMnbMbsyIz85puZ9UwAzC37IupRR+8uxcgCtIYmhJVxTADsCREEDm04+mHlYHg1vGYIkIo23kEtcRV7/iynUco+zUdc1w40Rd3O6e+hA3OT7JdOhvzNZKCJXpFG16zQKGXHKP4g6sRnlLCJr+NbfRTSNZQ3Fu+QejV/Um+jG0U/ncoA5fdQ4TnGLpioWfBClqFnjteM2iYcTYVvxCtUvEjOxwO451mcFaR9HQQGQ0a6yss49jM1RWq/5E0u34oQS1iQWQja79ARRLoKe9BrEMWv6JLvTEH9W/QHCEE5YumUfb1vSAEojwf19JX653zwPw9pG2cS+HrI04YZd2vIOqRdYTf8BFyUPU8p4+3ZvLgAgdRwSbmXNezUqn/bBM8ZCoIgWtN4BqJSIpM+ID2oOmUbEitc6xa6qJw2S4kq4m4cX3OKKRtYNBQ5mf4EMDYZHONgsAGZ47wuSj+eAp60RFCRj9FUM9JSJYQLF3HoxemoaatPzFWCFyr3qZo+kj0/EOED7ubG7sm0rZoCxetfahBN81nk4ZWa9bezM3AINAIDZP6d8y+x0Dk1jnUmXqUozNW48svI7RnKxKuHljZINukvoVJm44kaq7kqXsPHkzqhwhMqKbbG7htH2Xf3I9z0TTk6BQiH1yOHN4M54o30Yqza54jBEt/+or7dtzOWyX/JKZw1wmj7KZPatQwA3h3YwaP/bSf2Aqtq27Nmi7J29rjSiRbLO4NnyK8zoCtY+vYHFOUjbJdR1CLal+ncPluhE8jamgnTJGnLptiYHCqHCnX2Vao08om0S3y3PLInC8IXad05l2o6Zuw9plMyMWPVh4L6nMtAO4tXwOgOwsp+eQGyr5/DCkojIg7viV0zDN0jLIyVSwnrDwDn2NJk5xHbTTkXZMP7LTb7Z/b7fYPj/8EemMGBseRxH4kipFwYlJfBVE9qi40naKVe/1CprpOzOieRI/oekImQRxDFv7m1rK+5pT3IOvfI5GLLo8DqXoCfrX9eMoo+Wgy7g2fYkruRdR9izEn9SDkkifA58K5aFq1ObqzgLzXL6bbz1PpqqbyS/AQ7mj+Vp1GGcD0dek89UsqCaEW5lzfk05xpy6o25hIJivBA25BuIpwb/0mcOvIMhED2oMuKN5Qc9MS1+EcXPuPYkmMxNY1MMr9Bga/ZV6GX+R0fPK5lcd0PuH8+V94dnyHufUgwq6eXuV1NrcbhhyWgGf7bLwH11D436F4d/6Auc0Qoh5eg6XjqMqxli5jAPDs/vGsn0NdNMQ4mw88AywGlp/0Y2BwVpD1LQAI4pDFLmT9+yrHPUeLODpjFSWbDmCKDCFh8mBsnaoaUIq25KTnWwviFGpbRC6K9i2CSDTlmnqH66U5FL01Fu/exZjtI4m8ez5yuF9LKuiCG1DiO+De8CnqMUeVea4178ORTSw39+XHUbNZ0PMl1nqTyCpx17rWy6sP888KEdI51/ekfUzTdSo4maCBt4Os4Fr9bqWWUCAI6dAcc0wo5bsz8RWWVzmmqxqFS3ZBRfNy4yJpcDb4tVBjV7FO+zAZe7jhNQsEWkE6zl/+gxzZgvBbvkAyVdWalGQFa89JCGchxf8b7Q97jnqciLt+QImoKnJtSuqBHNEc756fEFr1nrVNRa3vHLvdfjyTeGktPwYGZwVJbEWg4DM/jyAaRZuBpKei+1QKl+/m2Jer8eWVYuvagmbXDamuOyU0ZP0XBMFo8mAkCpCEo+bFakDRPqkQnL0RpLrDYsLnovj9SagZWwnqdyMRt32FZD3hyZIUE7Yxz4LQKV/w7ElbVClZ9QHlUjDvt36a60ZeRJ/m/tDk5qyapQ5eW5vGv1YepmVEEHOu60mbqHMnZKdEJmHpOh4t61d8qYG7l5NkiYgBHUAIitdV9Z6VbEhFLXYS1ivlrGuRGfwxKfUJZhz2YpLgqlaG1yxQOH/+F2g+bJc9hWyLqXGMte8UkCTksAQips7FdumTSHL1fFNJkrB0vgzhLMSXtiHQW28wdZn1x7N5lwPLqOo1WxbQXRkYHEcUI4lUhNQJpARU05+R0JDd/+bojF8o3XIIU0QI8Vf1J2ZU9xqFTCWxA4k8dHkIunwR0PDQpqTvQtFXoUvt0eW6u5UJISj95s+omdsJ6ncToVe/gaRU34+lyxhMKQPw7pyH79A6AJy7FmAqy+YH6zCeG9MLsyLTu7nfoNiSXT1RdXNWCdNWHCK5wmPWMjK4QedzNgkZ/gBIEqWzHkB4ygK2TnD7ZpjjwnHuzcSX7zdkfYVllGw6iBIaRMTADgFb28DgOEIIvjzspdTn75+Z1MSNs89X1Nz9uDfNQEnoiLVX7ZEMc1IPIh9YRtRf1mFpP6zO57R09rfg8+46d0Kbtb57HA7HuIrfrR0OR5uK38d/2py9LRr8kZH1rUgIdLk3AKqnM2XpA1FMx4jqvpTwC9rS7MYL/dWYtT7HYgB0eSRC6o7A5jfO6gttCg1Few8ATflTvdIZrlVv49nyFaaWfQm98uVa75olSSJ03D8BKJv/d4QQHFj4JgDOHjfRL9nfuLpnszAkYEtWVePM5dO4f94edAFvjOtEUvjptaAKNOaWfQge9gB6/iHK5v09YOtIkkTEwPYAFK/b729sv2QXaDpRwzsjW4xG0waBZ0O+xvZCnbZhMhc1M95zgcK5aBroWq2esJMxJ/eq1bN2MpZ2F4LFhvccyjur82pjt9vH2e32NhX/vtxut/9gt9uftdvtTd+y3eAPgSS2AqBLvSjfm0n2J8s5Or8T3qI4IrrsJWpQEbKpjg+oKEHWN6BLLRBSB5DM6HI/JPKRxL4615b1xcjiMJo8AiHX7X3xHlhN+Q9PIIXGEX7TZ9VyIH6LOaU/lq7jUA+vJ3PhKyTmrGGHtQt3jr+0ckyo1UTHOBvbj5ainqTX838rDpFa4GJq3yQGtYysc52mxjb6SZRmnXGv/QDPnkUBWye4TQKWhAic+7IpXrMPd3oeQSlxBLc7uzpvBn9MCjw636T5sMpwYxtDOiNQqNm78Gz7FlNSDyzdJjTa80rmICwdLkLLTUXNqbm46GxTV87ZX4B/AEF2u7078AUwB4gB/n12tmfwh0boyPpWdBFFztwc8hdsQ/hUIod0hZgnEVgwqW+CqKUBttAq8sVUfw/Mii9MXR4M1BPaFKUo2hf+PDXlxjq3qRVlUvLZTYBE+I2f1thOqSZsY54BWcH6iz/3zDLgtmpNyXsnhuH06ezN9UtFrDtSxLsbM2gbHcwTw859B7ZkshI+5V1QzJR9cx+68/Salde7jiRVhi9LNqQiKbK/Wte4SBoEGF0IPj/ow63588xirUY4M1CU//QCCEHI6Kca/bNtraja9O5e0KjPe7rU9S66ERjmcDh2A9cBcx0Ox/vA/cCldcwzMGgc9P1IlFDmSMB9KI+glrEk3jiM8D5tQElBU25GohST+lr1EKUow6T+E0X/BV1KQZdHnjgk9UAQUlG1WXMloaLNRKLUX50p1S7mKlQPJZ/cgCjLxTb+BSxtBzf49JS49vzafCIApaZIBo+ubgSenHdW5lW5f/5eJAmmj+1IyO9ETNWU1B3bJU+glxylbPYjpzRXCIFnz09oxVn1jg1KicOS6PckhvdvZ2iaGZwVFhxysa9Up1ukzACjf2bA8KVvxrtzHqaU/lg6XtLoz2/pdClI0jmTd1aXcSYcDsdxZccRwEIAh8MRuLp4A4OTcO/z38G4MloRfUkP4q7sV+WCq8tj0KU+yGI7sj7vxESRjdn3V2SxDV3qi2qaBtJJ2l+Voc1cJFHdhS3pacj6QgTN/bpmdVD23V9Qj2zG2vtagofc1eBzE0LwzNID3OecQJY5ibCRjyCbq+eOVRpnWSU8t/QgaUVu7u3fgr5JEQ1e61wgePgDmFr1w7PtW9xbZzVoju51UzrzT5R8cDWlM6Y2aE5I9E6synpsHc4NSRGD85tsp85MRxmhJriutcXw1AaQ8oX+PF3b6KcD8jrLobGYWvXDd3gdennT6+7XZZypdrs90m63JwO98PfXxG63twLOHTEQg/MST1YB1ogdCF0ifNi1hHZJrv6BlCRU0/0IIlC0T5H0w0j6Lsy+x5DIQJMnoJr+BlL1SkZdHgTUENoUAkV7Hwkd1XQbSDWnVx5vy+Re/wmmpB6EXfVag78whBC8sPwQb23IICoumcSnthM38oEax3aMtRFilpnvyOPjrVl0jA3hsSGtG7TOuYSkmAib/DaYQyib/XCtHRKOo5Uc5fC0YXi2fA2ShO/gSrSizFrHC02lbPbDeBY9ipz+Ks6FzzTyGRgYVEXVBZ8e9OLT/YZZmNkwzAJF+d4V+PYtwdx+BJZ2QwO2jrXzGBA63r2By49tKHUZZy8C24B1wPsOhyPbbrdfA/wCvHQ2Nmfwx8W1/yessQWo3r4otjp6REqRqKb7kFAxqc9jUv8BOFGVe9BMt4FUc5hBSL0QBCPrq6uENk/0z+yDkPvWPFfzkf3hn/xtmaJaEn7z50iWhofQ/rXyMK+vS6dtdDCzp/Qg3lZ7A3BFlujZLIxij4pJlpg+rhNW0+8zp8UU147Q8c8jXEWUfn1vreK0voytFL02HPfBDVj7TME2YRoIgacWj5vwlFPyyfW4136AktgVpXk3PJu/xHd4fY3jDQwag4VZKkecgmHJQXSPMsKZgUIIQe63TwFgG/1UQNeq7Bawq+nzzuqS0pgFDALGOByOeyoeLgPucDgcn52NzRn8MXGn5xHaYoX/P6FT6h0v5AvQ5MuQyAOsqKZ/oCv15CRUCW1WNM4WHkzqRxX9M2+rcZruLqX4w2spWvEBpqSeRN3/C0p0qwaf239WHeaVNWmkRAYxe0pPEkLrruoEuKBCWuPBgS3p0YQ9MxuDoIG3Y7ZfjM/xM+51H1U77t72LUVvjkYvySb+2pcIm/w2Qb2vBdmEp4ZWUHppDkVvj8W7ewHmDiOIvHchYVe8DEDZ948h9OqtvgwMzpRDZTo/ZalEWyRu6dy07dLOd7w75uDctxJL58swt7ogoGsp8R2QY1rjc/yCUD0BXas+6rwFdzgcWQ6HY8dJ///R4XAsC/iuDM4vhKvWxPtqQ4XAuWcpIcnZqL5uCLlhFYmacguqcjs+838QcvcGzfltaFPW5yCRU2v/TK3kKMVvjcHn+JnQ7pcRec+PlW2ZGsJra9N4aZVf0X/2lJ4khtVvmAHc068Fb43vxMODG24EnqtIkkTYNW8iBUdS9sOTaHkHAX8T4/KFz1P6+a1IsonwW78kdsyjSJKEbIvB0nEUatYO1KN7K59LzdlP4fSRqEe2EHTBDUTcPgs5KBxz6wFYe1+DmrEV98bPm+pUDc5TvJrg0wNewC+bEWL+fXqyz3WEz0XZ3L9R8vnNoJiwjQ6cVuJxJEnC2mUMwlOK78CqgK9XF8a7yiCgSPqvmH03YVL/BcJX73jXwRxCW/k/FCK4/j6WJxayoivjQUqsf2wF/tBmUIUgbS6KNqvW/pnqMQdF00f61f/730yLB+dWactUH2+sT+eF5X5F/9lTepAc0XDh2KhgM5O6JGCSz4+PqxLRnNArXwZvOSVf3oXuLqHks5tw/vwSckwKkff/jLVCsfs41t7+v4ln69cA+A6tpeiNkegFhwm55G+EXvNmlW4MtrHPgcVG+Y/PoruKzt7JGZz3fH/ER65HMKKZifbhRjgzEPjSN1P436G4VryJEtuWlCdXYWre9aysbel8PLTZtFWb58e3vcE5hRCColV7caenYlJfQcKHLNZhUp8HUXsTbyEEzp1rCG2Thqa1Q0gB/jBKFnT5AiSOYVJfrLV/ppZ3kKI3RqEXphMy+u+EXvU6ktJwBfC3NxzhuaUHaR5mZfZ152arpbONtedVWHtciXp4HQXTeuD9dS7mNkOI+vNSTM06VR/f+TIkayjuLd/g3jaboncmINylhF37FrZL/latGEOJaI5t5KOI8jyci148W6dlcJ6zp1hjRY5Gs2CJ8clGF4DGRqheyhc+T9EbI9Fy9hE85C6iHlpFSNv+Z20P5tYDkIIj8QZQNLshGMaZQaPjyymhZGMqJm06EoWoyhR06QJksR2T+iyImvssOvdlE5riDzHq1qsrRWMDSaUgrThQY/9MoeuUfHU3wlVE6KRXsY18tMFVmU6fxksrD/H0kgMkhFqYPaUHKYZhBlS0sLryZeSwBER5PkEDbiNi6ve1tlqRLCFYuo5DL0yj9PNbkBQLEXfMIuiC62tdI/jCe5FjWuNa/U6VcKiBwengVAVfHPQiS3BzGwtm2ajObEz0kmMUTR/p96CHNyfizh8IvfylUyq2agwkxUzwsPvPmqeuNgzjzKDRcWfkE9lrByFJaaieLujy1aimx9HkochiDyb1aRDFVeYIXads2ybCOqSi60kIKbCJn5XrVoQ2oeb+ma5Vb6EeWoul++UEDbi1Qc/p8mm8veEIF7y9jv+sTiPeZuG7KT1pE22Iop6MbIsh4p4fCb/9G0In/RfJVHvVKkBQn8n+eRHNibz3JywdLqpzvGSyEjrxRdA1yuY8Xmt1aEPw6Rqv7F/BxDUfk1NHE/f7tn3P7Zu/OaO1DM5Nvk7zUeSDMc1NtLAZl87GpvS7R1Azt2HtM5moR9bU26w8kNhGPkrErTObbH0Awy9r0OjopduJ678RtTyEvE2XET1KBmQ05UEgCEVfjNn3JD7zsyD5PSXluzMIa7MeSRFoylX1NhlvNCQrmnI34K7WP1PN3U/5j88i2WIIu6L2RubHcfk0PtuWzevr0skp9xJqUXh4UCvu6pdcrS2TgR9TXHtMce0bNNbS4SIi7vD31ZPD4hs2p9NoLB1H4d27GO+u+Vi71i0qXBO/FmfzwPa57Cw5CsCCo3u5uVV1mZVNhRl8nbEdgC1FmfSJSj7ltQzOPTQhWHFMY1O+RopNYlRz47LZ2Hh2zsf761xMKQMIu/ZtpPMkv/ZMMN5lBo2KUEuJ6jobZEHe+sso21dKxBAvSmGDhcAAACAASURBVLAFJAVNuQcIRtHnYvY9gc/8HEKLpXTrDlpc6UAXsehy4EQGa0JXqt+hCV2j9Mu7QXUTNuUd5LC4Wue7VY3Pt2Xz2rp0jpV5sVkUHhzYkrv6tSA62DDKGhNLx1GnNF6SJGwTXsS7byll3/0FJd6OKb5hxqBHU/lv6gpeT12NKnRGJ9hZeMzB+oIjNRpnr6eeqO764PBGwzj7nePTBetyNX7OVsn3ioqm5hYUowtAo6K7Syn77i+gmAm76nXDMKvAeBUMGg8hkF2vYQ4vpfzIcExxg0HTce49SdldktCUW1GVyUgcw+z7G07HRsLabEY2q+imy0Fq+nsG14o3UdM2YO15JdYeV9Q4xqPqfLA5k/7vrOeJn1Mp9aj8eUBLNt3VnyeGtTEMs3MEU3x7bGOfQy/OouiNUQ0Sp91alMmoVe/yyv6VNAsK46v+N/BJ32uJNgezviCt2vg9JTksPOagT2Qy7UNjmZu9i1xPebVxTs3HvVu/Y3Xe4cY4NYMA4NIEi7N9PL3dzVdpPkp8ggvjFZ7sZiUh2LhkNjbOhf9EL84kZMRDmJp1bOrtnDM0/VXQ4LxB1hdism7CldUMnzYJW6d4ilbtpWznEUJ7ppwIC0oSujIZlWBM2keEJ78KLXWECEOXT80zEgjUnH2UL/wnUmgcoRWCpifjUXXeWnOY5xftI6vUQ4hZ5r7+LbinfwtiQ+rOmzJoGkKG3YcUHEHZrD9T9PZ4wm/4CGvXsdXGuTWVf+9bxpsH1qAjuKVVX57uNJJQk1+Trl90SxYec5DpKiYp+ER/0+kHVgPwQLshZLqK+duuBXyRvoUH21f1Ai865uCbzB0sztnHkgvvIjn499Uj9XymzCdYdkxl+TEVlwZBCoxKNDGimYlwozVTQPClb8a1+h2UuHaEXPyXpt7OOYVxG2DQKMjaLyjae2jeII4uGkFQi3iUECvBbRPw5ZXiPVZcbY6uTKR4/0TkIDeK1YtmGgdSw4RZA4XQVEpn3gmqh7BJr1arHtyXV86gd9dzz7e/UujycU+/Fmy8awBPj2hrGGbnOMH9biT81i9Bkin55Hpcaz6ocnxDwREuWvE20w+sJjkkgtkDbuKlbmMrDTOA/tEtAVhfkF75WJqzkO+yfqVjWByXJHTgmuQe2BQLn6RtQtX1Kmssyz0AQJHPzdQts/AZHQyaHFUXzE73e8oWZqkoEoxPNvFcjyAmtjAbhlmAEJpK2awHQAhCJ72GZG649uMfAcM4MzgzhEDWvsKkTQdCyJ5/KXJQIkqI/4IW2tV/MSvfeaTaVG9eCbmL48ldOQ5NGuZX5m9iXMunox7ZjLX3NVi7ja9yzKPqTJ2zmyMlHh4Y2pqNdw/gmYvaEldHb0yDcwtrp0uJvHs+Ukg0ZbMfonzBc5SrXv6+6yfGr/mQA+X5/CmlH8svvJshsdUbzA+oMM7WnWSc/e/AGjQhuL/tEGRJIsxs5Zrk7mS6S/jpmKNynBCCZbkHiTIHc3nzLmwqzGCaY0ngT9qgTlbkaCw5qmIzSVzV0sxzPYK4tLmZEJNhlAUS18r/oWbtIOiCGwLazPz3imGcGZw+QkPR/odJm4kgjvL8v+LOisfa4oS3KahlLEpYEOV7M9G96ompQlC4bDcIsLadgGZ+CCRbU5xFJbq7hPLFLyKHJRB6+UvVjr+w/CC7c8u5sWcir17etc6G5QbnLuaWfYi6/2fkmNY4f/kPc6ZfwgcHVtPaFs2cQbfyQtfLsNUi69E9IpEQxVzpOcvxlDHzyDZaBkdyxUm6SLem+KVgPkzbWPnY/rI8stwlDItrw8vdxtM6JJo3Dqzh52P7A3i2BnUhhGBVjopJgse7WBnezIRFMYyyQKPlH6b8pxeQbDHYxv2zqbdzTmIYZwanh3BjUqeh6IvRpdb4zP/Cedh/QQs6yTiTZAlblxYIn4Zzf3bl464Dx/AcySeodRzBrRsmixBoPDvmgM9F0OCpyCHRVY4tO1TA2xszaBsdzHMXtWuiHRo0FkpsGyx3z2dXeCKjMrcw98Ayful/Q6VnrDbMskKfyGT2lOZQ6HXx7sF1uHWVe9oOqtJeq2NYPENiUliZd4h9pbnAiZDmiLi2hJmtvN/nKiyywn3bviPLVRK4kzWolX0lOjluQe9ohVAjfHlWEEJQ9t0j4HMROvHFWoWn/+gYxpnBqSOKMalPI4tN6FIPVNMLIEXjOZIPQFBy1Q9baBe/pEDZr/7QplA1ilbsAVki6sLODVryyx3ZzN59rBFPojqezV8CENS7am/NfKeX++fvxSRLvD2hMzaL0U/vfGCj183NPa4mLbk3rTK34X1nInppTr3z+kW3AOCXnP18lLaJWIuNKS16Vht33Hv2UYX3bFlFk/dhsW0B6BaRyD87X0qBz8WdW7+tlp9mEHhW5vi9+UPijc90YyCEoHTWgxS+MQrhc9U4RsvZh3fvYsxtL8Ta6xT6J//BMIwzg1NDHMXs+xuy2IcmD0c1PQVSCO7MAjxZBVgSIpB/I7hqCg8hqFUc3uxCfPmllGw5hFrsJKxnCubo+puHz3Pk8ucfHdw1dw8/7M0NyGlpBen4DqzE3GYISnSryseFEDy0wMGxMi9/vbA1PZqFBWR9g7PPuoI0XIqZkslvE9TvJtTMbZQveK7eeQMq3h9P7/6JUtXDXW0GEKxUl025LKEjzYPC+fLIdvK9TtbkH8YeGkfz4PDKMbe06suExM6sL0jnpX1LG+/kDOqlyCvYUaiTFCLROtS4FDYGruXTca/7EPXwelwr/lfjGN9+//vc2vuaBrfC+yNivCMNGoykp2L2PY5EFpo8CU15ACQzuttH/sJtAEQOq9kTFtrV720oXp9KyYZU5GALEf3rFwNNK3Lx4I97CTbJhJhl7p+/h53Ham+fc7q4t34NgLWiRdBxPtuezcL9+QxpGcl9/Vs0+roGTcea/DRkJPrFtvY3s7fF4HX8Um/rpT5RySiSRJ7XSZjJyi01CNICmGSZm1r1oVzz8uiOeTg1H8Pj2lQZI0kSr3QfT6uQKF5NXcWGguqFM+c7QvVS9NZYij+4Gl/GtrO27tpcFR0YGm8yjIRGwJu6gvL5TyOHJyKFRONc8gp6WV71cfuXAzRpe6bfA4ZxZtAgJP1XTOpTQAmqMhXNdCNIEkIICpbsRCtxEd6vHUFJ0TXOD26bgBxswenIQvg0Igfbq3nYfotX07lzzm5KPBrTRrXnzXGdcPp0bv72V/Kc3kY7NyEEnk0zwRSEtfvEysf355fz959TiQwyMX1cR2TjC/y8wan52FqUSfeIREJNViRZxtL2QvTiTLS81DrnhposdA9PBOC2lAsIr0MC4IaWvTFLMvOO7gFgeFzbamPCzUFM73k5AP+puHD9kfBsm4XvwEq8e36i6NULKfn0ZtScfQFd06sJVudqWGXoG2OENM8UrSiTks9uAUkm/KZPCRn1OMJTSvmiaVXGCU3Fd2AVckzrKhEKg+oYxplB/YgSTOrLgIpqehxdGVN5yLknE6cjC0tiJBEDaveESYqMrXMSAOa4cGxd6vdCvbD8IFuyS7mqSwJTujdjrD2OR4ekcKTEwx3f7cKnNU6OjnpkC1rufqxdxyBXiIIeLHTyp+9341J1Xh7dgaRwQ4PnfGJLYQY+oTMw5sQFwlxxJ+/bv6Le+dck96CtLYaprQfUOS7eGsr4xC4AWGSlMiT6WwZEt2RobGuW5R5gS2FmjWNOhXRnEZev+ZgVFXlu5ypCCH/4S5IJm/IOpha98ez4jsJ/96P063vRChvXk6jp/urMZ3e4KfIK+scqBBnVmWeEUD2UfHojojyP0AnTMKf0J3jg7SixbXCv+wg190Q1spq5DeEuxtJ+eNNt+HeCYZwZ1IuivYdEEZpyHUI+cTFSi5wULN2FZDERO7pXvT3Rwnq1Jqh1HDGjuiPJdX8hLkrN460N/urIly5tXxl2eGRwK8bZY1lzpJinfqnbw9FQ3JtnAmDtPZkyr8oLyw9y4fsb2Z1bzs29mjO+47lRTWrQeKzJ97dgGniSsXQ8zOJNrd97dXvrfqwdcR9x1vrlX26rKAzoH92yVokOgIcqtJ5eTV1Z73PWhRCCR3b8wJqCNB7e/gMuzXdGzxdIfAdWombtwNr9coL6TCHyz0sJv/kLlPgOuDd8RsGLvSib8zh66Znlmgoh2FKg8cJOD18e9uHU4JJEE5e3MFqsnSllc/+Gmr4Ja+9rCRo8FQDJZME25lnQVcrnP1M51rt/GQDmdkZIsz4M48ygTiR9DYq+El2yo8snQn5C08lbuBXhVYke0QVTZEi9z2UKCyb+8n5YEupuWZNZ4ub+eXuxKhLvTexCqOVElzFZknh9bEc6x9n4aEsWn27LOv2Tw6+3497wOVJoPD/qXRn83gZeW5tOnM3C+5d35qVLGtYk2+D3xbqCNCSoIp0hx7RBjkzGl7oC0YiVkxdEJfNWryuZ1uWyOscNjknhgqgWLDzmYGfJ0dNeb1bmryzPO4hNsZDuKuJ/B9ZUHivw6CzK8uHV686rO1u4VrwJQPCF9wD+HDxrt/FEPbKWsMlvI4cn4lr5FvnTulO+8J/oruqdRurDUazx790ePkz1kucWDIlXeKZ7EBNamA1NszPEvWkG7jXvoyR2Jeyq16rk7lm6TcCU0h/vzh/wHVoLgO94vlm7C5tkv78nDOPMoHZEESb1bQQWVNOfQTqRm1G8fj/e7CJC7M0J6ZTUaEv6NL8Kf6Fb5fmR7emaUL2aM9Ri4pNJXYkONvHXRftZd6TotNbyl33/GXxO3o2Zyp3zUilw+nh4UCtW3dGPCR3jjUTh8xCPprKpMINOYQlEWoIrH5ckCXO7YQhnAVr2zkZbT5IkJiV1o0NYXL3jHq7oxfna/lWntVa+18nTu38iRDEzf/BtxFltvJ66iowKo+abNB9zM1S+TWt6b5qaux/v7gWYWl2AuVW/KsckWSGo73VEP76Z0CteRraG4vz53xT8XzecS19FeJ31Pn96uc4bez1Md3hJL/drmT3V3crkFAsRFgnf4fUNeh6DmvE6fqF01oNIQRFE3PwZkqXqDbokSYSOex6Ash+eRHid+A6vw9S8O3JobFNs+XeFYZwZ1IwQmNS3kChBU24E6YQB5s7Ip2RDKkp4MNEXd21UA+ZfKw+zMbOEyzvFcVPPxFrHtYoM5oPL/bk8t323iyPF7lNeq2DVR/j2L2O5pS+vll3A6PYxrPxTP/56YWtDy+w8ZltxFm5dZVBM9fwvS3v/Hb23iRLzL4prR/eIROZm7yK1hkq3+vjH7kXke508bh9B5/AE/t5xJC5d5dndi8l06vxa5PcIrs7V2FLQtH09XSvfAiDkwvtqHSOZLAQP/hPRf92GbcwzAJTPf5qCF3viWvM+Qq1eGJTj1vkw1ctLuzzsLdHpGC7zWBcrt7WzEB/kv+R5D6ym6I1RlP3wZOOf2HmOenQPxe9fRfF7V4DmJWzKuyix1QtdAMwp/bF0vxw1fRNlc/8Gqqcyt9OgbgzjzKBGZH05sliPLnVBl8cCoPtUilbuJefb9QDEju6JbG28nI2lhwp4fV06KZFBvDzaXq/RN7hVFM+PbEee08fN3+6k3Nuwi42mC75avYWSuU9QKoXwSdLDfHltDz6d1I2UyOD6n8Dgd83aGvLNjmNuNxwAXwPyzgKBJEk81G4oAngt9dS8Z8tzD/J1xnZ6RCTyp5T+gL9woU9kMnOydzHjsN/DfHkLExYZZh7ykuNsGgNNdxbg3jgDOaollq7j6x0vWW2EXPQw0U/sIOTiv6C7Siib/TAF/+6Le/OXCF2j2CuYecjL8zs8bCnQaGWTuL+jhfs6Wmlpq3qp82ye4f+95St0d2lAzvF8Qy85RumsByh8eSDevYswt72QyAeWYq0nXB865h+gmHGv+wgw8s0aiqn+IaeP3W7vD/zL4XAMt9vtvYEfgOOlG285HI6v7Hb7XCAG8AEuh8Nxmd1ubwd8DAhgJ3Cvw+Ew5LPPFiIfRXsPQVBFOFPGeeAYhct2oZW4/B6zi7pirUU243Q4Vubh3h/2YJYl3p3YmTBrw96at/Zqzq6cMj7bls0DP+7lvYmd6zTqNmQU88Sifdy5/3FChZONfZ7h22vGYFGM+5Q/CmsL/MbZgBo8Z0pEIkp8B3yH1iA0H1IN4rKB5rJmHekYFseszB38pcMwWoVE1TvHqfn4y6/zUCp00463kpIlif/rOppJa2dxuNRKUojExc1M2EwSXxzyMX1rMfe2M6HUU6DT2LjXfQw+J8FD7kJSGn4ZkoMjsV32NMFD7sL5y39wrf2Q3Fl/Yc2hMta1nIwPhfggifHJZnpGyTV+Fwify9+qDRCeMjzbviV4wC2NdGbnH0LXcS75D84l/wVvOUq8Hdu4f2LpdGmDoiZKbFuCB93h95TKJixtBp2FXf/+CdgVyW63Pwa8DxzXIOgNvOJwOIZX/HxV8Xg7YEjFY8dN8FeApxwOx1BAAiZicHYQApP6JhLlaMqtqCVh5M7ZSN7cTWhlbsIvaEviTcMatR+mpgvu+WEPeU4fT49oQ8/E8PonVSBJEtNGtWdAcgRz9+by3qbaZQg+25bFuM+30iJ9PsN9mxCtL+SyyQ8ZhtkfiDLVw7r8NOyhcbVWWprbXYjwlKGmbz7Lu/MjSxIPthuKJgTTU1c3aM7L+5aT5izkztYD6BZRNR2gV2QSY+PGIEkyFnMakiQxIFahT7TCviKV+ZlqIE6jVoTqxbXqHSRrKEH9bjyt55DD4rFM+Bfbpu7h9QnbWdnyeoKcOUw8OJ1HgzfQK1qp1XDw7l6IcJdg7X0tSHKlR8egZjybZ+Jc+DySJYTQSa8S9charJ1Hn1I6S8jIx5BssVg6jECy1t8VxiCwYc0DwJUn/b8PMNZut6+w2+0f2O32MLvdngBEAj/Y7fZVdrt93Eljj8cVFgAjA7hPg5OQ9fnIYgs6PSnc3IbsT5fjOpiDNTmaxBuGEjmkI7K5cfOxXl+Xzsq0Ii5tF8PUvsmnPN+iyHxwRReigkxMW3mIo6WeGse9vzmTRIqYpn4I5hBiJr9hJPz/wZiXvQeXrnJ58y61jrG0HwGAc9lrCL1pwn4Tm3ehjS2aLzO21dsUfWfJUf53cA0tgyN5tMPwascLPTqSSKJcK+TdtDnke51IksTk1mbig2UWZ6s4Ss7eeXp2fIdekk1Qv5sqdQVPBU0I1uSqPLfDw5z8ULCEMC6ykIfTX6Dnpucpe2ccRe9MxFeLce3e4u8GEjLiISydR6NmbD2rnQl+TwghcK54E2SFqD8vJXjgbafk6TyObIsh+rGNhN/4aQB2eX4SsLCmw+H41m63p5z00AbgfYfDsdlutz8J/AN4DXi54nc0sNput28AJIfDcbzWuxSo9xMcFRWCyWQkcf+WuLiG94JUPTsoz/sIRDhH5/XDmb4Pk81K8hW9iO7ZKiCGzKqD+fxr5SGSI4L44qa+xNhq14Gqi7g4eHFcZ+6ctYNpa9KZcUPvKscP5TvZk1vOTD5GcRfR7IbXie7Y7Yz2fiqvrcHp0div8febdwFwZ/eBxIXV/NziwqtR17+Hc9d89MVPk3D9a01ixD/VayS3rfqaj7I38Wr/moMHHk3lsXXz0YTg3aFXk5IYU+W4W9V5ZV0RupDoHu9mfr6L19JW8dagSQA8EOTj6TWFfH5I5aWh4YRbA+tFFkJwaPVbIMkkTfwLllP4+woh2HDUw5eOcrLKNcwyTGwbwoS2IYSa42Hw17gObSJn1pOU71xE0f6lhPW5gvhJz2NN8reVU8vyyd27CGvLHiR270+pfg9Hdv2ItH0Gcb2GnvZ5na/fBeW7l5CXvZPwftfQzF77DU2DOMPX6Hx9jWsjoDlnv+E7h8NxXPPgO2A6cBR42+FwqECO3W7fCtiBk/PLwoB6tRIKC42S6N8SFxdGbm4Dk11FPmbvMyB0MudciDtLENqjFZGD7OhBZvLyGr+fZYHLx7Wf+u9u/zeuI7rTQ66zZq9XQ5jQJoq3E8OYuTWTazrGMrjViVydmZsyGOVZQ/fSJZhSBqB2v6nhr00NnNJra3BaNPZrnOkqZml2KgOiWxLqtpBbRyJ48PWf4nlzNAWLp+OxJhAy/M+Nto+Gcml4B5KDI3h371r+lNSP+N+Eg3QhuGfrbDblZXBNcg96W5pXeb00XfD2fi8Hi3UGxipc3aol3x6J5R3HWq6O70a3iETaxYUxLtnEnCMqr24s4M4OloC2KfMeWI07bQuWbhMpJhYa+PfdV6Ix94iPw+UCGRgUpzAmyUykReAqKsd1fGConZBbZmFKXUn5gmcp3fwdpVvmYO19LbZLn8C792fQfJi6X01ubikicTByRBJFa75AGfn0aYXczufvguK5/wZA7j+1Sc/xfH2N6zI4z2ayzU92u/24mM3FwGb84cqvAex2eyjQFdgDbLXb7cMrxl4GnJlktkGdCN2LVPIcklRM3uoB6GpHEqYMJvqirvX2vzztNYXgwfl7ySr18NiQFAa0iDzj51RkiRcvaY8E/HXx/irtnVbuOcBTZW8jFCth17xZbzcDg/OPbzN/RQBXJ3Wvd6wcHEnEHbOQI5pTPu8p3Fu/CfwGf4NZVriv7WBcuso7B9dVOz7NsYTZWTu5IKoF/+42tsoxXQi+OORjT7FO10iZya3NWBQTz3cZjQCe3LWwssH7xc1MdAyX2VWsszg7sPlnrpV+0dmQC+9t0PiMcp3/OTy8vtfL4XJBryiZJ7tZua61hUhL7Uakpd1QIu9bTPhtX6E064xn80wK/tWb8kX/B5KEtddVQIWeWv+bEJ5S3Ntmn/kJnkeoufvx7llYow6dQeA5m1eou4FX7Xb7MmAw8LzD4VgA7Lfb7euARcATDocjD3gEeNZut68FLMCss7jPPxx6zn8xB6dRur89csw1JEwZjLXZmRtLdTF3by4LU/MZ2iqSBwY2XgPcXonh3NgzEUees7I4oMStMtzxCrGiiNDRT2KKN1T//2gIIfg6YztWWWFCHflmJ6NEJhNxx7dIQeGUfnkX3tT6e25WWVPXzjhn7boWvYi3hvLh4Y0Ueiv9Q3yatpnXUlfRxhbNpxdMJvg3VaVzM1Q25Guk2CRua2tBqfCGDY9ry+gEO+sK0pmbvRvwFyDc3NZv7MzLUNnXCPlnPl1w1FW1wF4vOeYXnU3qgalC6qM2ct06H6V6eXGXh93FOh3CZR7tbOX29lYSght22ZIkCWvny4h6aBVh13+AHJmMKMvF3G44SkTzynFB/W40CgNq4LgOXfDQhhnSBo1LQMOaDofjMDCg4t9bgGo1tA6H48EaHtsHGGIoZwG9cA7B0Wvx5MeitHySsLDAGmXHWXqoAIBnLmrb6GX8TwxrwzxHLv9efZgrOsezb+0cxruXkhfZhdg6BC8Nzl92FGezryyPCYmdiTA3vIm9KbEL4bfMoPi9Kyj5+Doi7/0JU2Ldxp3wlONa9TbOpa9ibjeUiFtmnPa+gxQT97YdxD92L+K9Q+t5zD6cn4/t5/Gd84mxhDCj3/XE/EaZfelRlZ+zVRKCJO7qYK3WouiZzpewJDeVZ/cs5rou/tzMMLPEbW3NvLrXy0epXh7vGlSnZ6o+5mWoLDmq8nBnK61D/caUe/NM0DWC+t1Uaw6fJgTfp/tYnqOhC2gRIjGhhZmO4TXLYjQESZYJ6nU11u6X493zE6bkXlWOK5HJWP6fvfMOrKq8///rnHN39iYJI6yw95QhIEtFUEDFiVWLq7VWW9va+vu2ttVWa+0W90BxIDjAgYJskL1HWCF7z3uTO885z++PEwIhCbkJYYh5/XnP8zznSe4953zOZ7w/PafgP7QcNXcvpgY8q2ruXrTyLKx9r6t37HKkVocusgPWfjMu9nZ+kLTFdn7ACN9BrLYFaF4rPu0xTBfIMAPYlusk1KLQO671y6qj7WaeHN+Far/GX77ZQ/Ka3xLAhHTDv1tUadTG959FOXsAQ5S1uVi6XUnYnPkIr5PK12ajVTQs1yK0AJ5Nr1H214FUf/UUwluJf//nqAWHzmnvczsOIdps59WMLWwqzeDHOz/CLCm8M+xWuoTU1RrcXqqyJCtAuBke6mEh1FzfoOkSEs39nUeS46nk+f1rTn0epjCrgxmXCm8c86O1sP+mEIIdZRoCWFOg1n7m3foOmKy1IcWG+DZfZXWhRrRF4u6uZh7vY6VXROOyGM1BUsxY+16HElm/3Zxt5N0AeLa8Ve+YZ/NblP97As63bmu0AvRyw7v57Roduvvb7pkXiTbj7AeK0N2YfH8BSceVcTu29r0v2LnLPQGOlroZlBh23sQvb+ufyOB2oQzY+Wci/EW8H3UrPfoMPS/nauPSJqBrfJK3n1iLgwlxDbeZaQrb4JsJmfZH9Mo8Kl+bje45VaMkdB3vrsWUPTeUqo8fQ/e6cEx6nLA5RljIs+nVc9p/iMnCA12uoDLgZdZ3C/BoAeYPmsXQqLqyM4edGu+kB7Ap8FAPKzFnqbx8tPtY4q2h/HXv6tq+mwDjEhQGRyukV+l8ltOy/LOsakGF3zDsdpVrVPgFauZWtOKjWPtNR25EVDfPrfNlrkq4GR7vY2VIjOm8FiecjqXnZOSIJHw7FyF81YChx+Za/HOqFv8MZCNs7Nkw/4Ls52IitACeja+AJQTbiLkXezs/WNqMsx8oWt4iFJsL55ER2PtcWFf9zjxDt2lYcvM1joJFliT+k7yTGb417DGlUjrkoTZNsx8oq4uPU+J3MzOpL2a55XI79vGPYBt9H1rBQZxv3Y5QffjTVlDxzytxLbwHvTwb26h5xDyxh5Cr/x/WwXOQI9vj3f4++mkGUEu4J2UY4SYrOoI/97maaYm96hzPqdZ59YgfCbivu4X2jrPf2kNNVp7sORGPFuBPh1bWfi5JErd1NpNgk1hVoLKrBf03d5cbc/pEyOgCNhSpeLcajpC30wAAIABJREFU+la2YQ2Lzmq6YEG6H1XArSkWQkwX9lqVFBO24XcivE58ez5BcxZQ8dI0vJvfQEnqR/Qvv0NJ6Ilv98dolfkXdG8XGt/ez9Arc7EPvwPZfuGiKW3Upc04+wHiLynHbF+JHjBhTrkH6QIr5G/LNYyzocnBdwJoLmrefiK/fRKvKYxfhP2Kab2Smp7UxmXJRzl7AbipBSHN05EkidDrn8XSdzqB4+spe6Y/la/NRs3fh3XwzUT/egdhs/6OHJ5gjFdM2K+4F/zV+Ha8f07nDjfbeHvoLbw4cCbzOtdNpi/x6bx4xIdPh7ldLaSGB2eA3tx+AMNjO/BJ3n421/QbBbApEj/uZsEiw8J0P4We4DvnCSHYU65hkeHOLhYcCmwsClC193PkqI6N9lX8Ol8lxy0YEavQL+ri6FXahs8FScK9+h9U/HMcasYWrANnE/WTb1BiOmMf+yDoKt5z9IReyggh8Kz7H0gS9jEPXOzt/KBpM84ucU6Wu7cWekDDc2AR5rAqAp4xmMJbrw1TsGyv8ZwNSTo/xpnudeF8Zy6oXmJuf5l3772mjubZmWRU6Ry7gArpbVw4KgNelhemkRoay4Az2hq1BElWCL/9NUwpI9Gd+Vh6TiHq0Q2E3/YaSkzneuNtI+4CxYJn4ysI/dzaA4+OTeHG9nWT1V0Bwf/S/DgDMLujmcHRwRs2siTxrxE3AIa0hiZO7S/RIXNrihmvDosyA0GvWeAVFHkFvSJkQs0SV8SZcKkSB+Ovwjbs9gYlbLKrdZbnqURaJG7seOF7mZ5EieqApcdktOKj6K5CQq77M2G3v4FU0+bLNngOkiMKz+Y3EQFPE6t9P1Ezt6Jm78DS+xqU2JalALTROrQZZ5cwgYpqcuevwLU7o9XWrFh7gLBuWxFCQoq5tdXWDRZNF+zIc9I9xkGUvfVvxEIIqpb8HK34GPZxD+Podx392jUu9OfVBP877OO/h/0Ue8/t4dnGpcey/IP4dI2b2vdvtbC2ZLYTef9Son61g4gfL8aU1HinCTk0FuvA2WjFxwgcW9Mq5z+JTxO8dMRHsU8wJdHE+HYmdFdxs4zAkfGduCm5P/ucBbyfXbeF0bBYEx0cEsdcOj4tuJfEPTUhzYE13q+xCQqS0NmSOg/b0NvrjQ/UhDN1Abd3NmO/wOHMM3FMeQJzl9FEzPsYx/if1fnNSBYHtpF3I6pL8e5sPd07IQRC9bfaeueCe52hQ9cmn3HxaTPOLmGc246j+wJUHchulfV8+eVo5ZuxxZWiS1eAlNAq6zaHtJJqqv0aQ8+T18y7dQG+XR9h6jSMkGv/0OT4jUUqHg1UAR9lBlrdU9nGxWVRzh4kYHYQwrPNQTLbgtbLs4++D8BIsm4lNF3wxjE/mdVGKHB6exO+fcso/VMqVR8/1qy1nuw5EYdi5pm0VahnGHY9IhQ0AelVwRl8e8o0ZAn6RBrGWWTlcVLzviYvehDZlvp9c7/KVcn3CEbHKfSKuPjt98wdhxD50FdYUq9q8Lh91DyQFTwb5rfavaL6q6cofaobatHRVlmvpQQytuDftxRTUn/MXcdc1L200WacXbJoVV6qDxkl+4EiJ6rz3NzoQggq1qcROdDIv9FNM895jy1h+3nMN1Pz9lP1yeNI9kjCb38TSTm7Z07VBasLVCwydA2VOVips7e8zXt2uZDpLmdzWRajY1Jo34IG262FueMQTB2G4D/4FVpZZtMTguDDzAAHKnV6R8jclmJGzdiCc+G9oGt4t7591vOcaVQk2sO5Mbk/Jf5q9lTm1TmWGmY8Io44m74uynw62W5Bj3AZR40HzLvtXYYffR2AtYV1qz8zqoyOBDEWiZkXMZzZHJTIZKz9r0fLP0CgmaLEDaF7nXg3voLwVOD68MFzFi1u+T5cON+fBwhCbniurXjqEqDNOLtEce3KAE3HkmA8VDzphee0njejGOE5RkinHHSpD0K+OCr523ONqrXWNs5OzzMLu+VllOiOTe+lVKMiAKPjFG7rbEaRYHFWIOgQThuXNifDdC3RNmtt7GPuAyHwbHr9nNc65tTYVKzR3iFxbzcLovgIlW/cDHrAyHHTNdyr/9ngXO+uxZT+vjP+4xvqfD4mNgWAjaUZdT7vGiYjSzTZNcCjCT7IMHLTBtSENIWm4tv+Hl1c+2hng51lGs4aiQ2/Lngn3Y8Abu9ixqZ8f4wB+9iHgNaR1fBuW4jwVSE5olEzt9aq8l9oqpf+Br00A/uER7F0qacV38ZFoM04uwTRfQFcezORHVZirjXUrM/FOBNCULEhjciB+wDQlOtbZZ8tYVuukzCrQo/YkFZbU+g6rvfvq80zs/a5psk5uhCszFeRJbiqnYkEu8zEdibK/YLleee3v2Ab559NpRn8+9gGos12rjtDduJiYO0/EykkBu/WBeeUTK4LwZIswwi6JcWCqaqAyldnITwVhN30X0Jn/QM5JgXvtnfRnAX15nu3vYNwl+F8+w600wyxUTEpAGwqretxsyoSnUNksqoFbrXhl5ZSn84LB402Sz3DZYbHGsaZP20FuqsQ26CbGNfOjCZgQ7FxbX2eo1LoFYxPUIKuLr1UMHcajqnjUMMTWpLe4nWErhuVn4qFyJ98jRQSS/VXf0QtvrDhTd/+z/FufQdT8gBCpvz2gp67jcZpM84uQar2ZSH8KmGDUjBHhmCOD8ebXYruC75q6nTcabnongLCehxDkIyQLo4Ya6nbT3q5hyFJ4a0qLun+5hn8B77A3G0cIdc+FdSc/RU6BV7B0GiFqBqxzqlJJqIshr7TmX0B2/j+kF5dxt3bFwHw+pCbCTVZL/KOjBw124gfIdxl+M6hwfa2Uo1st2BojEJHUxWVr9+IXpGN4+r/Z1RDKiYcEx4F1Ydn7X/rzNW9LgLHNyDZwhHuMirfmIPmMdIM4q2hpIbGsrksk8AZobXUcBkBHHPVvyaOuzT+dsBHvkcwLkHhwR4WLPLJkOY7ANhGzGV4jIJdMTTPDjs1VheoxFklZrT/foQzz8Q+9kHDE7rx5RavETi6Cq34GNaBszEl9CBs1gugenF9+JMLFt7UnYW4PnoYTDbCbn0VyWS5IOdto2najLNLDKFquHaeQDIrhPU3GoI7uiSALvBkFLdovYpNR4gccBBJ1g2vmXRxvvZNWTUhzVYsBvDt+QT3yueQY1IIv/OtoFuNrMw33uAnJZ4ab1UkbuxkvOG3FQd8P6kMeLlz2/uUBzw8128ao2vCdZcC9ivuAUnGs+HlFv22fJpgaXYAswTTE4Xh/crbh+2Ke3FM/GXtONvQ25DDE/F89zp6dWnt54Gja0ALYB9zP/YxD6AVHiL3pdtrDYHRMSm4tQB7zhBZTQ0/mXdW12DYXKzynzQ/bhXmpJi5qdOpBuu6qwj/weVGcnnyAKyKxMhYBWcAXjpiVCbe0cVcr+/n9wVr/xuQwxPxbn231sBtLp4NhmFnH3O/seaAG7D2n4masRnPhpdaba+NIYTAteghRHUpIdOewtSu53k/ZxvB02acXWJUp+WiVfsI7d8R2Wa8Vdq7GlWVLQltuvZmoXsqieiXhiACXR7firttHh/uM8Is16bGtcp6au5enB88CJYQIn70AXJITFDzjrs00qt0+kTIJJ2hpN4/UqZ3hMxhp94idfQ2Lh6qrjNv52KOVpXwQJeR3NFx8MXeUh2UqA5Y+kxDzd2Nmrm12fNX5qtUBuCqdjLmTx4icHQNlj7XEjrz+bqSDyYr9vEPg7+61gAA8B/6GgBLr6mETH8Gc+oEqnZ/TvVXfwQM4wxgY+mJOudNCZUxS6eKAnQh+DQ7wLsnAphl+EkPC2Pj674Uebe+A7qKbfgdtZ9dmWBCAgK6kUrQNez7Fc48HUkxYxs9D+FzUbHujWbP10rS8ad9g6nTMMwdTv1OQ2f9HSkkpia8eaw1t1wP73ev409bgTn1Kuyj7z+v52qj+bQZZ5cQQgic29NBlggb3KX2c3NcOEqYDc+JIoQWfLhN8wZwbj1GRL+jyCYvmjINpIvjts53+ViZXsqgxDD6Jpx7s3O9qoTKt26DgJvwW1/BlBh8b9AVNV6zyUn1vWySJHFTJzMmCZZkBfC2FQd8b3jywHLWFB9nSnwqv+81+WJvp0FOekmc79+HVpET9Lxyv2BlgdF38orNT9TIxQwn/PY3kBpoSWUfcTdSSAyeDS+he10IIfCnfYMUEoOpwxAkxUT4HW9hSeiOZ/U/8O74gCtqjbO6eWdmWaJLmEyeR1Di1Xn1qJ+V+SrxNolf9rbS4wwJDK0yD/eqvyPZI7EOnlP7eZxNZnS8Qrcwmevaf/+badtH3g0mG2Ur/tPsMKRn02sgRD2jSA6NNcKbAQ+uRT85Z+HixlCLjlK17HdIjijC5sxvUBy4jYtL2zdyCeE5XohaXk1Ir2RMobbazyVJwt4lAeFT8eWVBb1e4YY0hFpF1JADCCzo8tXnY9tB8cG+AkNocsC5q7QLLYBzwVz08iwcU36Ltd/0oOfmu3X2V+h0DpXpGtrwzz/OJjM50URlwNBhauPS5/WMrbyRuY1eYfG8NHgWykUK3TeFpduVOCY9jl56gor516KVB6dhuCw7QECHyYVLEFtew9R+EBE/XoxkcTQ4XrKGYB/7EMJTgfe711Fz96A7C7D0nFxrzMmOKDo8ugzJFoHro4eJLDhAz7A4tpZl4W8g7wzguQM+9lXo9AiX+WVvKwn2+v/n6s+eQPiqCJn2x3pNzm9JsfDzXlbM8vcznHk6ckgMtiG3EChOx39wedDzhK8a77Z3kcLisfa/od5x64CZWPrfgHriu/PSaF3oOq4PH4SAh7DZ/0Jphc4ZbbQ+l+Yd7DKhOW89Qgic244DED6kS73jjm7tAKhOy6t3rCG0ah+FGw4TN247iqUSXZ4J0vnrZXk2dCFYuCcfh1lmZq9zbxdV9dmvCaRvwNLvehyTftWsuSsLarxmiaazavlMTjIRY5VYXaiS724rDriUWVuczpMHlhNrCeHdYbc2WQCwr1wjrfLihawdU5/EMfnX6KUZVMyfhlaWddbxmVU6W0s1EgP59P72pyhJ/Yi475Mmm1LbR89DsoXjXvdf/PuWAkZI83SsiT0Iv/Mt0AJUvnUbU62huLUAuyvq3md61FRUujUYG6/wUKqlVsvsdPyHV+Lb+wmmTsONXpWXOSf7T3rWvxj0HO+uRQhPBfaRdzeagB82sya8ufzPaJXB3fODxbfjfdTMrVj7z8Q6oL5x2MalQZtxdh4Qmk7pir3kzF+Bv7AyqDm+3DL8BRXYuyRgjqnfbsjaIQYl3I77cB66v2lvTuXWo1jjMwnvcQBd6oSm3Njsv6O12JBZQVall+t7xhNmPbdwhv/IarybXkNJ7EP4Lc1zx5f7dLaVarSzSfSNPPs8i2yEN3VhCH62FQdcmmS7K7h/52IUSeatoXPo4Di7weIMCF4/5ue1Y378FylkLUkSIVN/h2PKE+hlGYYHrRHRWCEES7KMBPrJG3+KOb4Hkfd9huyIbvI8sj0S26h5CFcR7jX/AlnB0mNivXGWHhMJmfEMwlXE7ev+jV0L1Ms76xgicVU7E7d3NjMnxYLSgOdLBDy4Pv4FyAphs//xgwiVmRJ7E9JnEoHj61Fz9zY5Xghh5AHKJmwj72l0nBwWZ1Se+6up/uL3rbZf3VNJ1Rf/B2YHITOebrV122h9Lv+r5wKj+wIUf7aN6v3ZCL+Kc2dwOjjO7TVes2H1vWZg3NBD+3RABDTch8/+JqW5fbjTjpMwcT0CGU15GKSLV7K+cI9R/XWuIU2h+qj65BcgyUaehLV5uWvrizR0ARMTTUFJefSNVOgXKXPMpbO99IdbHOAK+Cj0Vl3sbdTDq6ncs2MRZQEPT/e5muHRHZqcs6lYRRXg1QxR1ItBsVdHF4KQKU/guPpJ9PIsKl68Fu0Mgwhgd7lOepWgR+5yuolCIu9fihwaG/S5HGMfArMdtADmlJGNetvsYx7ENnwuIUVH+HPacjaWZNQ5LksSszqauSKu8Zcr96oX0EtPYB/zwFn7jV5uRE/5OUBQFZaB4xvQCg5i7T+jyXCibdjtmJIH4tv5IYGMLWdfN3cPFS9eg//wt2cd517xLKKqGMfEX6BE1m+n1calQ5tx1oqoLg+Fi77Dm1mCrXM8pugQ3EcL0Kp9Z53nL3biPVGMNSkKa1Ljb8QhfdqDBFX7z56nUrUnk+jhWzCFutDlWQi5W4v+nsZYsDuPnyw7RJmnad21Mk+AL44UkxrjYNg5dgVwr/2PITQ7eh7m9gObPf+I0+j7NyQm+CqxGzuZMUvwcXYATyMinJczuZ5Kxq+bz6T1L6NfYt7DJ/Z/yZ7KfG7tMJC5HYc0OV4Tgg1FGmYZJGBT8YU3ztYWqjy118eHNWr6IZN+heOa/0OvyDZCnKeJmmq64NPDRch6gCmZrxPxwDLk8Ob1w5XD4rCPuAuoH9I8HUmSCJ31AubOo7i6+Aj9d76PK3D2+9bpqMXHcK/6B3JEEo4fmJBpaP9rUGK74t25CN11drmjk7po9tEPNLmuJCuE3vAcAFWf/qrRNBm9uhTnm7cRSN9I5dt3EMjZ1eA4tfAwng0vIcek4Bj3cJPnb+Pi0mactRL+YieFH2wiUOIidEAn4mYMJWxACmg6VfvPnlNyymvW9azjTGF2bCnx+Asq8Bc3rK2jqxqBwk1E9juIrHREU+Y0OK6l7C1w8euvj/DRgUKuWbCT42Xus45fvL8Qvya4fUDiOfVr00ozcK94DiksHsfUJ5s9P6ALst2CDg6pViQzGGKsMlOTTLgCp6o8fygU+aq4cfM7ZHsqKfRVcfw0zayLzTuZO1iYvYv+EYn8te+1Qf229pfrVPgFI2MVeoTLpFfp5F9AseGdZRqLMw2jbFOxRm5NLmPIxF8Scu1T6BU5RoizxLgfrN64glIlkqE5n9DtrvkoEUktOq9j6u8IufYpbFfce9ZxkslC+F3vUhUaz30nNvHd3s+CWl8IYXi0NT+hM/6KbKuflnE5I8mykXum+fF813h7Lq08G//+zzElD8CUMiKotc2dR2IddBNqzi682xfWOy50DefCe9ArsrH0mQYBN5Wv31QvTC6EoOrTX4GuEjrjWSSzrd5aZ6PCf269nRtDCEGaqwj1PFWlfp9pM85aAU9GMYWLvkOr8hJ5ZS+iJvRBkiVCeiUjmRWq9mY1+tajVrhxH87DHBuGrXPTyfKhfY3QTWPeM/ehdOJGf4sQEvboX9cJZwoheGr1cT452LJWUAFN5+dfHkYTcH3POE6Ue7h2wU42ZVU0OF4IwcK9+ZhliZv6Nu+N/0yqPvs1qF5Cpz+N3IIm1tnVOpowNJuay8REEw7FCIkF9EvLe3S+KPd7uGnzOxyvLqVHqKFLt6si9yLvymBneS5PHPiKKLOdN4bcjL2JBvcnWVtkGNdXxpsYVaPL9d0F8p4ddmosOO7HKsP17U0I4NPsU55nx1WPEjLtT+iVeVS8eC2lXz7NCtETi1rNjLHjUaKaDtk2hmyPwHHVo0EZTXJoLPqsF1AQtPvy9wjV3+Qc356PCRxZjbnHJCz9L15ruIuJbdjtSLYIPN+9hlDrexyF343z3R+B0LGPeaBZL6oh0/4IZgfVX/4B3Vv3pdz99dMEjqzG0msq4XctJPT65xCuIipfnYXuPlXZ79//OYGjNd9R7+Cr9oUQ/P3IWlK/eY6nDq4Iel4wBHSNX+3/givXzuevh1e16tqXA23G2TlStT+L4k+3ITSd2GmDCR/SpfbCk61mQnq3R6vy4kkvanC+c2c6CMNrFswFa+8cj+ywUn0oB12t+2ARQmBiIeYIF6p+HSZLXcXnDZkV/G9LNk+sOIpPbf6byn+3ZLO/qIrb+rfj1Rv68K9re1Dl17jpgz18sDe/3vid+S4OFVdzTWossY6W66v5DnyJ/+BXmLuOxTro5hatcaLK+Hs7t8A4M8sSI+NMVKmwp/zyzz1zBXzcunUhh1xF3JsyjL/3N6RK9lS0btVYSyjxVXPvjkUEdI2XBs+mYxMFACcp8OgcceqkhskkOmT6RcqEmmBLyfk3uLOrdV6tUcWfl2phUqKJHuEyhyp1Dp1WNeqY8Agh059Bd+azqkCl2hbHVXEakQmdzuv+zqRr/xl803E4iZW5VHz797OO1b1Oqpc+YbT/OUMM94eEZA3FNmIuwlWEb/eSOseEpuJ8927UzG1YB9+MdcitzVpbiUzGMfEXiKpi3Cueq/3ct/8L3N8+jxyTQtitr9R48O7HPu5naMVHqXzzVkTAiwh4qFr6W1DMhN7wbNDfUUDXeGzvMp49sgaA/6VvYlnewWbtvTEq/B5u2bqQtzN3ALA4d98llzZxsWkzzlqIEIKKjYcpW7EP2WoiYfYIHKn1EzxDa1owuXZn1DumVfuo3p+NEm5vcG5DSIpMaJ/2CJ+K52jdxsaB3E2Epe5GdccgbHfUm/vqdkP0ssyj8vnh5rWCOlxSzd83ZpAQauGpq4zw6639E1k0pz8hFoWffXmYZ9am17nAWqMQQPjdhjteNhE664UW3/wzqo19tcRzBjAm3shT21B0eRtnbi3AHdveZ2dFLre0H8jTfa6hb0Q7FEliVyuX9DcXn6Zy/84l5Hqd/KbHBCbEnT0N4HTWFRpes7EJhsfMLEsMjzVRrcLe82hwF3t1Xjziw6fD3C5meoQrSJLEzA5mJODTrECda8Yx7qeIWS/yXa+HCZU1JnU5d+mZllA0/hEKLaH4Vz2PWpDW6Djf7iXozgIcEx5BiW24mOmHgn30fUZ7rvXza6u7hRBUffyY8XKZOoGwm19sURWrY9xPkaM64dkwH7X4KGrxMVwf3A9mOxF3LayjJxcy7Y9YB85CPfEdrvfvNwo1yjOxj/0JprjuQZ2vSvVxx7b3a1MHloyci0Mx88jezzhedW7pDelVpVyz8XXWl5zg6oQeTE/sTZ7Xecl45i8V2oyzFiCEoOzrPTi3HsMU4SDhltFYk6Mp9Oj8N81HkfeUV8oSG4a1Qwy+7FICpa4667h2n0BoOuFDuzTrgg2pDW1moeo6GRUeED6sjtcA8OsPgVRX6+lEuYevj5XSOcoOwNu7gn/Qarrg51+m4dcEf5uaSoTtVBhpdKcovrxzMCmRNv75XRb3fXYQT0Cjyqfy8cFCOoRbGZcSdZbVz4772+fRy7Owj/8ZpoQeLV7nRJVOmBliLC0z7uJtMj3CjcrNy1X3zKep3LN9Ed+VZTI9sTcv9J+OLEk4FDM9w+LZX1lw0XJDCr0uZm5+m/Wlxg39kW5jg57r0QRbSjQiLRL9o05dZ6PiDIN7VYF6Xt7anQHB/w77cQWMwpLBMacqHduHyAyPVcj1CLaW1DUO1yTdjF+xc20HG7aL1Htyaspw/pQ6EVkL4Prop40q4PvTVgJgG3LLhdzeJYkS3QlL3+mouXsInPgOAPeKv+Ld8ham5AGEz323xY3FJbOd0BlPgxag6pNf4nz7DoTXSdiN/6pXGSvJMmFzXsLcZTS+vZ/gXvEscng7HJMeD+pcBV4XMza9xeri40yK786nV/yIsbGdeaH/dKpUP/fsWER1EOHuhlhfcoKrN77G8epSftJlFG8OvZk57QcAsCy/dbxylwttxlkLCBQ5qT6UiyU+goRbRmGOCgFgeZ5KmlOv510JG1DjPdt7KklT9wXIPlRIRWQ4IX2al09ijgwxDL6cMp5ZdoARL22hKP9lzKHlVJ0Yhim6fuXaGztyEcDjY1IYlxLF5pxKDpdUB3W+V7fnsCPPxcxe8VzdvX4Zf7cYB1/NHczI9hEsTStm1vu7eW1HLu6Azq39E4OSrWgItegI7jX/Qo7sQMjE4G4sDVHuF1T4BZ1D5HMKu5zsH7ih+PIsDPjHsfWsKj7GpPjuzB80C9NpLwyDIpLw6ippVQ2H588nuypymbLhVbaX5zArqS8vDZ7drN/U1hINnw5j4pTaxtwA7ewyg6IVMqvrG0jniqYLXj7io8QnuDrJxLiE+hIU17U3Y5ZhWU6gVnOt2KuzoVgjzioxOu7i9Z7sFRZPdqcRfBPfEzVzK95Nr9YbI7QAgWNrkWM6o8QG78W8nLGPfRAwRGk9m9/C/c1fkKNTiLh38TkXSlj6TsfcbRyBI6vRCg5iGzWvUaNYMtsI/9FClHjjhTZk2h+DOn+aq4hrNrzGfmcBd3YczIKhtxBaY1DOSu7HPZ2GcchVxOP7vmi29uN7WbuYs+VdqlU//xowg9/3nowiyYyL7UKoycKy/IMt1pN88sBynju8pkVzL1XajLMW4MsvByB0YCcUh+GhqvALdtToJu2vqHujt3dNQAm1UX0wt1ZAdtfeQl7vM4QFfQbjb0GrmZOFAdKRfIYk5pMUvRp/ZTi6/a56Y6t8Ku/tyych1MKMnnHcNcio+loQhPcsvdzNX9adIMZu5unJjUtyxDgsfHTLAG7qk8COPBfPrDuBBNzav12z/zY4GQ74BWgBI0/CGtKidQAyziHf7HT6RcpEmGFLiYb3eyCroQvBx1kB9gURttOF4MPs3YSZrLw6+EYsZ/RrHBBp/GbOVI4/33yUs5cZm96kwOvi/3pNYv6gWTiCLAAA43e0vlBFkagtAjidmR1MmGX4LKd1pVJWF6pkVguGxShMS25YGyzKYgi7VgYM7x3AshwVXcD09qYGhV4vFJIkMT2xN3/uNp6ALZyqL5+qVwEYyNyG8DobFLb9oWLufAWm5IH4939O1ZKfI4XEEDFvSbMlUBpCkiRCr38WTFZMKSMInfGXs46XHdFE/mQ5EfM+rtPjtDH2VRYwfdOb5Hqd/K7nVTzf77o6L2gAT/WewpDIZBbn7uXtrB1B7z3NVcRje5cRbrKyeORcbu0wqPaYVTExNaEH2Z5K9lTWz11uivTqMl45sYV/HFtHvqdhFYPvI23GWQs4aZxZE0+F69YXGTdVmwxFXkGUlcZFAAAgAElEQVThaSX6kiwT2r8jwq9SfSiH3SUBFmhRqIqCF5nNLakY6xSHC4npFg8Lpq1ElgUZGydh65hcb+gH+wpw+TR+NCgJiyIztVsMCaEWPtxfgDvQ+Ll1IfjFV0fwqDpPT+7WZFK/1STz3+t68puxKQBM7RZDcnjzSrZP4tu9hMCxtVh6TTVKxM+BhooBMqrLWVscnEDwSRRZYlScCa8Gm/K857SnC0F2tWBVgcqCdD/OwNkNj61lWeR6nUxr14uQBkIvgyKN39XZjDMhBIty9nDl2hf5uvDwOe1dEzqPb1vGT3Z/glU28d7w2/hp19HN9nwedekUeAWDohXCzfXnRltlpiYaUilf5bWOR7TEp/NFrkqoyQhnnrVNWKKJMJMh07K/QmNnmUanEIlB0RfPa3aS6Um9KbWE8OnAm8BfjWvxI3U8G4HDRkjT0uPSbDJ/MZAkCfuVD4LQwWQj4p5FQed5BYMpsTfRT+wl8sEvgwqRyiExWHpMavK6OeIq5uYt7+AMePn3gOt5pNvYBudYFROvDrmJaLOdJw8sD/pl7U+HVqIj+PfAG7gipn6By/TE3kDLQpuf5u0HDB3DhdkNa7x9H2kzzlqAL68c2WbGVBPO9OuCDUUqIbLOlBJDG+hAZd3cnNC+HUGW2JLu4o30ALLQmeMvwiTBmsJGcl6EiqwtA1FQ79DfN2ezTFXoMuAASeGlVOztzXMnkil21xWG1YXgtR25WBSJuQMN74dZkbm9fyJOn8bSQ42Hqd7YkcvGrAqu7hYTdE9MSZJ4bHQKG348jBen9wpqzpnonsraCrDQG5475wqwjCodGegQYvzcPVqAWZvf5qYt77C8oHlGxKh4ExKwIuv86P60JnvLjbwQj2Yknp+NJXn7AJiV3LfB4z3D4rHKCrsbKQrI9zi5Y9v7/HT3p6S5inli/1d4tZYZOxV+D7dufY/n96+lW0gMX4+Zx8T4lj3g1haelM9o3NiZmGgi1iqxplCl4Bx1z4QQLMowmpTP7mgmpIH+k6djUySuTTbj0+GVo8b3dX2Hsxt0F4o+YQl0dkTznCMWJfUqAkdW4dvxfu1x/+FvQTFjaUb+3w8B68AbcUz+NRHzPsbcaVirrOkK+GrzPZWIRKRmeI+b4kR1GbM3L6DU7+Zv/a7jlg5nF/hub49g/uDZBHSNe3csorwJDbQNJSdYUXSU0TEpTG7kOp4Q15UQpfmhTSEES3L3YZUVQhQLC7N2oonLIye4zThrJlq1D83pwZIYWXsD3V6iUa3C0LxP6b7hd0D90KYSYiWtb08+TeqKWdW4+dBerhiYwLBYhRKf4EBF/R+UrC/FpL2OSa2b77G3wMX8rdlscYRgTzYelgV7hvGZT+bpNXW9Qd8eLyO93MOs3gnEhZx607pjQCKyBG/vbvhhuyPPye9XHSfGbua5qanNflikxoYQ2sI+mu5vnkF3FRotRmI6t2iNk6i6IKtaJ9khYa1Jrn71xBZyPEbP00f2fEZeM1zhURaJfpEy6ZUqmVWX9k3gu5oCFJdaytZSjaPORpK6dY2leQeJs4YwppH/t0VW6BPejkPOwjpGlxCC97N3MXbti6woOsqVsV24pf1AcjyVvJ6xtdl7PuwqZuqG11hTfJxp7XuxfMyP6Roa0+x1wOiluq9cp71DOmtI2ywbrYl0AR+dYx/VXWUaByt1eoTLDA2yE8WoOIUEm4QuoHeETGr4xfeawcnQZi/cusqOcT8DSwhVn/0G3VWE7ipGzdmFOeWKZrdRu9yRFDMhU3+HpcuoVlmv3O9h1Jr/ctX6l5o0hJpLrqeSGzcvoNBXxZ96T2Vup6Y7bYBhTP0ydRzZnkoe3v1po9eMLgR/OGToo/2h1+RGnyN2xcyUhFQy3OXsd9Z3RjTGfmchR6tKmJLQg9nJ/cj1Ovm26FjQ8y9l2oyzZnJmSFMIwepCFRmdwdueItRbTLLnBMdcep0cljUFKkvDErGrAW7Zv5PUDmGYQm2Mr0kUXl14hpdBFKBoHwAgix1oei67yzTcqsajXxlCsI9c2wtbu1IClWFE9elL97hQ3t9XwI68U8bGKzXyGfOG1g13to+wMbFLNDvyXOwrrFtFWur28+NPD6DqgvkzetEurG7l5/lEzd2LZ8PLKLFdcYx/5JzXy3EL1NPEZ4t91fzz2HrDLd9zIuUBDw/t+rhZb1tjThYGFF26hQEBXVDhs1ERKGKL80tAsCgzgNaAptfa4uOUBzzckNinXo7J6QyMSCIgdA46DRHjXE8lt259j0f2LEVH8Pd+1/HRiDt4qvcUIsw2/nVsfbOUxb8uPMw1G1/jhLuMR7qN4bOJdxPeTCXz01lfpKEDVyaYmny56Bcp0ztC5rBTZ3d5y4xutypYnBXAJMEtKcF7vxRZYk6KmWSHxMyOF68HbkPMSOoDwJLqckKv/T3CU0HVJ4/jP2qIhlp6TrqY2/tB8MLRdRT6qkhzFXPHtvfxaE23zQuG0zuA/KbHBO7vMrJZ8x/rfiVXxnbhm6IjzE//rsExS3L3sbcyn1lJ/WrzVhvjukQj0tKc0ObHuYbHf2ZSX+6qMSwXZAafC3cp02acNZMzjbPDTp18j6BPzhdE6NVI9khSc79GF3DIadzkv84LsDgrQLgZ7sw7QoK7ivChRnVTssOQaDji1GvbuSAEJvUlJPxo8mgAvsjO47Vjfp7dUcG+wirm9E1gfIqKYvWgejoQMTCFZyYbLuPfrjiKLgQHC1yszSjnig4R9EuoX6lTWxiw+1QSpqYLHlp2iFynj1+NTWF858Z7fbY2wu/G+cEDIHRCZz7f7BYjDXHMZXiLTnpO/nZkDVWqn8d7jOfhrqO5tl1PNpVl8o+j64Nes2eETIJDZnuZhvsSLQxYVViCLJlQlHJ8opR8/yHyPaL+SwCwJNfI2Zid3P+saw6subnuqszl3aydjF37IquKjzE+rivrxj3EnZ2GIEkSURY7j3QbQ0XAy7+Pb2hyr0II/nF0HXO3fYCm67wyeDa/6zkRpQV6UCepVgXrioy8r6FB5G9JksTsjmYUCT7OOlU92RyW5gRwBuDqZBNxtubtPTVc4Ym+NhLtl9YtuV94Ozo6Ivm68AiMuBtTyghDnuEbIxm9rRjg/HKiuow3MrbS0R7JDUl92FaezQM7m/cy2RBlfndtB5CHu47m0RaEphVJZv6gWSRYQ/lz2rdsK6/btcarqfzl8CqsssJve17V5HoT47vjUMwsDTK0qQvBp3n7CTNZmRTfnX4RiQyKSGJl0VFyayIj32curTvB9wB/fgVIYGlnKJOvrqmyGpH2P0KmPYW503C6py8GYH+5xtLsAMtyVKIsEo/2stJ7ah8Sbj4lvwHUes/W1Kwl6+uQxW50aRCa8iiHq0awotBImMxXLcSHWHhqYjdk/SgA5uThyDYzozpGMrNXPLvyXXywt4B/bzgBwLyh7Rv8WyZ2iSE53MriA4VU+Yxzv7Apk9UnypnYJZpHR104ZXIhBK4lj6Ll78d2xb2tctNXdcHaQqPRda8IhcOuYhZk7qBbSAxzOxqGxD/6zyDZFs7zR9ayuTSz6UUBWZKY2NFOQKfVJRgaQheCjOryZs35Ot8QirwqIZJbOgxgS+VKzLLGl7kq5f5TN75q1c/ywjRSHFEMauLN9qRx9qdDK3ls7zIkJP7ZfwYfDr+d9me01Lo3ZThJtnBePbHlrDfKatXPvJ2L+cvh1STbI/h89D3ckNRw3ltz+DZfxasZCfeWILXCEuwyE9qZKPeLZvdRTXdpbCjSaGeXmNSuZeH8SxFJkpiR2Jtqzc+a0hOE3fRfUCxoJenIYQkoief+XbXROE+nfUtA6DzZayL/GXADY2M681VhGr/Z/2WLw++ugI9btpzqAPJkz4ktznGMs4bw0qDZ6EJw347FlPlP9Vo+mT7y45QRQXXycChmJsZ3J726jEOupiV7ThYxXZfYC5tiXHNzOw1BR/Bu1s4W/T2XEm3GWTMQmo6/sAJzbDiyxUShR+dApU6Hkq2kRNixjbwHU4fBtKvYR7jkY1upyjf5KnFWiUd7WYizyZjCHViT6oqy9omUibNKbCvVcPldKNobCCyopgfwaApvZt0PQATZWMwmHriyJ9F2M5IwjDMhnZK4+P2ELjjMMn9em86C7dl0CLdyTQPaZGCEU+4YkEi1X2PJwSJWpZfx/IYMOoRb+d/0Xi3WJ2sJ3s1v4tvxPqYOgwm9/q+tsua2Uo1yv2B0nEKYWeKpQyvQEfy+92TMNVIRURY78wfPBuDBXR8HndMxob0dk2SENs8lRykYnkn7luGr/82m0oygxnu0AMVeK7rQmN2+PfNSRuAXXvL82/DrhmfoJF8XHsatBZiV3K/JG3T30FhCTRbcWoBJ8d1ZP+4hbus4qMF5dsXMb3pMwKdrPFfT/qUhfrH3c5bmH+SK6E58PWYe/SJa3k3iJK6AYE2hSrj5VEeAYLk6yUS42aieLPEF553QdMH7Gcb/9NYUM6aLKIFxPjhVSXcIU0IPHJN/DYA5iCrANlrO1rJsluYfZEhkMtcn9sGqmHhr6Bz6hCfwduYO/nEseG//SapVP7dte4/dlXnc2sHoAHKu3+Ho2BR+1WM8uV4nD+/+FF0Iyvxu/nVsPVFmOz/vHrxXbkbNb21pE6HNgK7xRuY2AGadJsJ7Q1JfwkxWFmbt+t43U28zzpqBv9iJUHWsicZbwJpc4y1hxLE3CL3pP0iyjKnDYCTAnr8HgYQNlZ/3shJtrfuvFgEvzg8ewPXRw8iSxPh2JlQBGwv3IFGJptwKUgKLMgOU+e1cE/8Zd7R/0dD/UhwIIZDEMQQyQjolAJkUbuPRUZ0ocQfwBHTuGZJ8Vr2k2/snokjw8rZsHlp2ELMi8frMPkTbL1zuSyBrB1Wf/grJEU343HeQTI3nuAkhWJzpZ3MTQrCaEHydp2KSYFKimTXFx1lZdJSxMZ2ZEp9aZ+zI6I48njqOXK+Tn+9ZGpSxFW6VGRitUOAVHKw8fzeBE9Vltfkcr50ILsH+s7wjhCnxWE1VhJpNdAmNYXJ8d1aXrSPeFmBXmVbb0/HjmpDmrCC8VYok88aQm3lzyM0sHHYrSfbws46/qX1/eoXF82H2Hg45678J+zSV5YVpdAmJ5qORdxJ3Dlp2p7MiX8Wvw9QkM5ZmGko2xWitpAp4+3gANYi+mysKVPI9glFxCl3DLo1k/tZkYEQSHewRfF14GJ+m4pjwc0Jv+BshU55odI5XU9lZnnveX1wuV4QQ/P7gNwD8ofeUWgMqzGzlg+G308EewV8Pr+a9rOClI3yayo+2f8iWsixuSOpT2wGkNXik2xjGxXZhRdFRXkzfxAtH1+FUfTzW/UoimpGeMjG+OzbZxOeNGGdCCL4qSOPKtfP5NO8AnR3RjIlNqT0eYrJwY3I/CnwuVhQdOdc/66LSZpw1A39NvpklMQq3KthSohJencPg3v0w1ZQImzsYSYkpe18mLTOPz77bR6W7riaW7nVR+fpN+La/h3fL22gVuYyMVbArGuuKu+ITXdHl6ewoVdlWqpFkh6qyIwyIzaBveAU5bkG6S0USxxFSe5DsddZ/YFgHukTZCbeZmuxr2S7MytTusZSpCuVejT9P6sbAxLM/dFsTvboU54K5oAcIv/11lKizd0s4VKmzplDjvYwAOdWNG0U7SzVKfIKRcQphZuNGJ1H3Rnc6P+8+ltExKXxVmMZbmduD2vukdiZkjAq/luQoBcOfDq0kIHTCTFa+KkyjwOtqcs7SnHxkSWZo9KnfxbzOIwDIV7cgAYsyAhR53awqPka/8HakhsUFtZ/xcV2ZltgrqLdtRZJ5sudEdARPp31b7/iW8izcWoDJ8an1RG9bSoXfEJ2Nski17Zmay9AYhSHRCieq9DpexobYU67xRY7hpbu+w6WVzN9aSJLEdYm9cak+1pakIylm7GPuR4nu2OicR/cu5eqNrzF5w6usLDzaZqQ1k2X5B9lRkcN17Xox4oz/c4ItjA9H3EGU2c4v9i1jXUlweo3/d/Br1pakMzUhlf8NnInSAvHzxlAkmRdr8s+eTvuWNzK2keKI4u6U5kmJhJosXBXfjSNVJRx21e3/vLcyn1mbF3DX9g/JcJdxd6ehfDH6nnp/x9xOQ4Hvf2FAm3HWDHz5FYBRDLDh0BH8spWRhV8QNuFUVeGJQAj5ShzDneu5Lkmh0uPnseVHam9OuruMyleuN9qeRBg5PP4DX2KVVcZEr8epRrKt8lHKAwofZASwyJCZmc3/dhiejavbfQ7AmsIqJLx1QponsZpklt4xiJ2PXkmk7ewPDCEEA7t3YtLQPtw4vAd3DTx73lFrInQN53s/Rq/IxjHlt0HlmZ1UUtcFvHPC36BnQ6/xmsmSkXP0QfZuDrmKmNN+IP0iGu5YoEgyLw6cSZjJyr+ObQjqYdI+xMhRKvGJVhMwPZ3vSjP5vOAQQ6Pa83+9JqGJpnMpdlfkUeozjLKRsackDsbFdqFHaByf5W9maIxOsU/wRnohqtCZldyvseXOmUnx3RkV3Ylvio7w3Rk5fSdL3q+Kb7zzRHP5Ji9AQMA1SSbMLQwvSpLEbZ3NJNol1hVpbC1p+LvNqNJ567gfswwPpFqb1DT7PnMytBlMLs/O8lyW5O4jymxnX2U+t217j2mb3mB9yYnzvc3LAp+m8se0lZglmSd7NVwN2y00lneG3YouBH9JW93kmmV+N+9l76KzI5pXB99Um9bRmsRZQ3h58GyEAFXoPNlzYoteus4UpM33OPnR+g+YvP4VNpZmMDm+O2uvfJBn+00jtgFve5/wBIZEtmdV8TGy3BXn9kddRNqMs2bgyy9HtluQ7LCuzIxZdTPuivG1goB+TeeBpQfZp3QnWq/kp70kJnaJZl1GOe/vLUB3FlIxfxpq1nasQ24h8qGvjHUPfomiLWZC7BIkdFYVxfJOuh+PBj1tPj7Zn4fD2hlN6keq40uS7QH2lFsp90c3aJwBxIdY6Bp79jCREIIlWQGOeYy8HFtYBN4LGKZ3r3iWwOFvsfScgiOI3pk5bp00p05qmMyoOIVct2GEncnuckMVfniMglVR+cvh1TgUM0/0mHDW9RPt4UyOTyXP6+SAq7DBMenVZdy29T12leYCcG2yiRiLxLf5Kjmt2BBdF4L/O/g1AH/qPZXZyf0JNVl4N2vnWXMpnj+ylgRLCiZJJyXk1OUtSRLzOo9AFTq5ge3YFMh0RWLCzMxWSMBvDEmS+H81D5g/HlpRx+hdXXwMu2ziiujWKTwp8+lsLNaItUqMiD23h49VkZjX3YJNgfczAqcqqWso9uq8dMSHqsPdXS10DLm8b6VDIpMZFtWB5YWHWVHYeLhICMEfDhnhuDeG3MzqKx/gmoSebC/PYfbmBcz+bkG9qr426vJG5jay3BXckzKMLiGNV8sPj+7A5PhUdlTksLM896xrLszahU/XuDdlWG3y/PlgVEwKLw6ayaPdxtYaWc1lSnwqVlnhs7wDPHt4NSNX/4e3j22nd3gCi0feycLhtzXp6b+r0xAEsLCFhQEvp2/m4d2ftmhua3F531HOA/bO8ThX/h2PEsIo324iOp1SU/7bhgz2FFQhtzf6hmnZu3j+6lRCLQovfrOJkv9OQcs/gG3UPMLmvIQS0xlT8gBE5TZkbQkxVsGAKIkct+CIU6dXuMSLaw9hkiVeuKYHujIdSYLxcVvQkVhbOgkhpTa21bMihODTbJU1hUaF2fgEBZ8OW1rSSqoF+I+tx73yWeSoToTd9gpSELIJq2oq6K5KNDGzo5koi8TX+SrZp4U3hRB8nRtAAqYkmXg9YwtFvioe6jKKxCZypACmJBjh6YYeQD5NZd6Oj1hZdJSfbv4EIQRWxdCo0oH3T/gb7vTQAj7K3cueGn2gIVHtCTVZuCm5P3leZ6O5FLsr8thbESDcFE2/yPq9GW9s358os513s7YyMCqAItm4KmZCk7lj58qQqPZMT+zNjopcPi84BBgaaWmuYkbHdm61h8XyPBVNGAZza/SljLfJzO1iIaDDq0f9tbIpVQHB/CN+qlS4uZOZflGXX57ZmUiSZPRalGR+s/9LqlV/g+O+KjzM5rIsrk7owejYFHqHJ/D2sDl8M2YeV8V1Y33pCaZtfIPbtr7H3hb0UbzcKfd7eOHoOiLMNh7rPq7J8T/uPByAVzO2NDpGEzpvZW7DoZiZ04T6f2swK7kfT/S8qsWFBmFmKxPiunG4qpi/H11HmNnG66NvZuXY+7gytktQa8xI6kO4ycrC7F0E9OY90yoDXv5yeBVbyrJasv1Wo804awZJd40jrLeGtvYFHt94HbNGXVF7bGNmOf/+LotOkTauHW/0mgtk7yQ53MZzgyVeLH4cqewE9om/NDS8aowRS59riJzRDUlSUU33M6GdkQwfZgKlqpQ8l4+HhnegV1woQhqCIIGRkW/jUNysL52IXzSe99EYQgiW5qh8W6CSYJP4WU8rU5PMmCSj3U1rGRhnw73yORCC8DteR3Y0raVW7hdsL9NoZ5PoHSFjVyRu72your+T7idQE97cV6GT6xEMiVGIsRp5Bw7FzINdrmjiDAYT4rqhSBLfFB6td+zPad+yz1mAQzGzqSiDFUXGmN6RCsNiFDKrDemOc6Va9fP0oW+xySae7HUq1HtXTS7F243kUjx/ZC19Q8YAcHVy/XC2QzFzR8fBlPjdvJ2zBL/uI9bc97zly53Ob3tchSJJPJO2ioCu1YY0J8a1Tkiz2KuzuVgjwSYFrcwfDP2jFKYkGqHrBel+/Lrg1aN+iryCSYmmZleDfp/pFR7PT7qOIttTyd8aqMAN6Bp/PLQC5TRv6UkGRibxwYjbWTrqbkZFd2Jl0VEmrX+Fe7YvIi0I2YQfCi8cXUdlwMtj3a8kymJvcvy42C6khsayNO8AhY3ko64oPEq2p5Kb2vdvVnL+xeTHnYeTbAvnF92vZPOEh7kndXizcuQcipmb2w+gyFfF8mb2+f0wezduLcAdHQc3d9utSptx1hwknaqPHgahEz3rbyhWBwAV3gA/+TwNWYKXZvQmrLNRFKBm7ySQu4fxq+eSqJfwvONHfNPp/jpvFI4h8VhTIvHlWBDycLqEytyWYub+VAtv7cjBokjcP6xGp0xS0JRpWOUqxsR8i0sNZ2d587/CL3JVVtRIfPysp5Vws0SY2XioFfsEh85j9SGAmrePwLG1mLuPx9xpeFBzDKPR8JqdrDDqGaEwOk4hzyNYnmdIWnydZ3jNpiaZWF10nGxPJbOT+xFmDq7LQZTFzvCojuysyKHYV137+crCo7x8YjPdQ2P5eORdSBiGxklDdlZHMw4FluUEKAtSgqEx/nd8EwU+Fw92uaKOfljv8ASGR3VgdfGxerpnuyvy2FehEW1OZFCUTLKj4d/FPSnDUCSJPc4s0j07UXUT689zpwMhBFWBSOa0u4VMt4uF2btYVWwYZxMayTfbWKSys9AX9Dm+zFXRgWnJplaXgLmuvYke4TL7K3Se2efjeJXO4GiFGe1/OIbZSR7rfiWdHFG8fGIz+yrrttlZkLmD9Ooy5nYcQvfQhuV7RkZ35JMr7mLxyDsZEpnM5wWHGLd2Pg/u+rhZbdQuNP85tpE5W97F18J+scGQ46nkzcxtdLRHck+QPTklSeLHnUcQEHqjhUwn26jdE+S99lLgytgu7Jr0KL/uMYHQIBq8N8RdnYYiAU8dWkFlwNvkeDDuVW9mbsciK9zWYVCLzttatBlnzcCz5t9oefuwDbsDS/fxgPFl/nL5kf/f3n3HV1WfDxz/nDuz9yQJgRDyZW9BZCoiIE5w77Zqta5aV2unbfVXRWvVqlVrcde9rQooQxmyN5wwAgECISFkj7vO749zEwIJ2ROf9+vly3Bz7r3f+3C497nf8/0+DzklVdw3vhcje4RhCQzHGtsXd/Zqip6fiVF+hMoZc3g77BIeXLCdTQX55gMaR3CEfouv0svR91ZjeN1omsYZcTZ2HCqstyemzzIFgwAmR89Dw8eiQ82rs/XlATdf5XiIcWrc1d9JuOPYB1lNK6lD7fthXb7kWQACJ/yiScdXeg2WHvYQaofTTpgVubinnSiHxvwcD18f9LC3zGBYpIXEQAuvZZszTNf1bFq/uGpT4/tiAN/4Z8ZyK0u4Y8PHOCxWXhgxmxGRSVzTZwRbS3L5OMcsRRFqN/szunzwzp6W92c8WFHMs7uWEucM4Y708XV+f33qKAzg9ezjZ8+OzZoZnJt88k0gSYHhnJdgrgXpEVxAgAUWHPS02+xZdpmPp7a7eGmHC483hQHBpzEncxFL8nfTOyiq3jU1B8p9/HePm2c3FNfMiDZkb6mP1Ue8JAVqDGtCN4DmsmgaP+njINKhkV9l0CfEwrVp9g6tA9hVBFrtPDZ4Jl7D4L5Nn9dUqi92VzIncxEhNgf3Zkxu8DE0TWNiTBr/G/cz3jztSgaGJfDBgU38fN0HHfAKmu+TnC38ZfsCFubtqrks3x6eyFyMy+flPjUZZzMu9V+aZM6Ivbp3TZ3kcUdpPovzd3NGVCr9w+LaeshdmgqN5ZfpE8guL2xyiaQl+VnsKjvChYkD691s0JEkOWuG8sXPoIXGEXz+wzW37Sqo4NPteYxJDueusccWNttSRoC7HMNVTuhVL5My5efcPyGVgoQ1TFv6AoerSrF5XkKjnPLMBLx5+bizjvUnO1lPTLRgfJYpxDjzGRxeyL5yg6wmNuD+OsfNFwc8RDs07uznIMJx/IdLcrCF9FAL24t9HKpon9kzb/Ehqta9hzW2L45+5zTpPsvzvFR4YVJc3R14AVaNq9PMNV+f7zffmKb1sJNTUcy83EyGhfdotKfbiarroM3LzcRnGPxi/UcccZXzp/5TGRRm7vZ8aPg52DULf9MX1qxpGBNjJSPMwpYiH+sKWnZ582H9Wyp8Hn5zkm+M5ycOIMoeyFv71tW8EUt8LUAAACAASURBVK8vzGFLkUGkPZ5RUdZGWwDd1Xc8SQFh3Jg2gkkJNko88H0brzU8WuXjtV0uHttSxc4SH4MiLARaYUDwaAqqqij1uDgrrk+9913gX1tY6jYajKNhGCw65OEf26owgPOS2y9hCrFr/CLDwdkJNm7q62jxTtBTwZmxfZjVYzBrCw/UzNY8tfN7CtwV3JU+vsn16jRNY2p8Bgsm3MyE6N78UJDN7tIj7Tn0ZttSnMtdGz4hyL/pq6lldurz9r71nLXkBbYU191stLM0n7f3rycjJIZLmrl7Otjm4OqU4eS7yvj44Jbjfjd3j1mo9We9us+sWVu6L2MyZ0Sl8sWhbTUziA35jz9ezS0B0h4kOWuG0CtfJOLmT7AEHavwnxYVyNPnKl6ZNfC4RcjOIRdiCUsk7Ia3CBh+CQDuqGwIKsGjefhw9ytYjBX4tAEQdgUArs1mmYzteWUs3nOUcT0j6u2J6bVehcd6E5MSzEsHTVnntODgsTZSd/Z31CmKW6169mxxPT0Y20LlspfA68aYeDeLDvtwNTIz4jUMFh7yYLccazh+IhVmZWKcOWMyKMJCcrCFN7LX4sPgutTmzZqBWQm/V1AkC/N28fcdS/guP4tp8RnHvcH1Do3m2p4j2VN+lLf2mYUgNU3jyl527Bq8l+1udt/NlQX7eHf/BgaFJXDFSRbuBlhtXJEyjCOucr7wf4t/PHMxA4PHo2Ewo561ZicaFJbAurPvZmJMGmfG2wiwwPyDbVOrrdJr8Pl+N3/eWMXKI16SgzTu6OfglgwnE+Js+Aw7g0LMtRxTYvvWuf+RKh9rjniJ8n9xWHq4/nO72GUuyn8/243DCjf3dbT7wvzEIAsX9bQTYv/xJmbV/jzQbG7/sL+n4otZK0gKCOPm3s1rng3mzGT1+f7ugY1tPdQWK3CVc/3qtyn3unl22MWcGduHHwqy602uGuLx+fj9lq+4c8MnbC4+xItZK+oc81jmIryGwa/VWS2qP/bTXqOxoPHvrB9qZohKPVW8vX89iQGhTE9QzX7MU4HNYuFfI2YT4wjij1vnsb4w56THHqgo4utcnSHhiYyMSDrpcR1FkrNmcPY/B1viwONus2gaVwxJJDro+FkO56DziP6DjnPAdAAyS/J4YsdiouxBhAGXJi3GMGx4bL/AnjYBLSiKiuX/wbVjES+tOcmsWTUtGJ91JhlhDhICNdYd9Ta4zmlxroeP93mIcGjc1c9B9EkSM4DBkRYiHRo/5Ld9U2/DXUHFspfRgiL5OHoWH2S7mddIfbD1BV4KXAZjY6wNfihemGJnZpKNS1PteHw+3ty3lhCbo0V9GjVN45z4DMq8Lh7LXESCM5R/DL2wzu6ju/tOJNBi44nMJVR4zWKlsQEWZiTZKHHDx/saLmBaW5nHxR3rP0YDHhk4vcE36Ooii6/sXc36why2FmlE2GI5LdpKfDMbZ4fYNSbGm+Nd2orZM59hXnp+aGMlX+V4CLLBNb3t3D/QiQozk6bJCTZsGgwPHc+sxMFMiOld53G+PWSuHTsv2caQGDu7Sn0cPKGMxaajXh7ZXMnWIh/9wy08OCiAIT+CHZNdSZwzhD/0O5tSj4tZy1+lyuflwX5TCLS2rBDvuQn9CLY6eH//xg7ZkNQYj8/HzWs/ILu8kHv6TmRmYn9+4l8H9oq/bVBTHHVVcOXKN3kh6wcyQmJIcIby+cFtVNa6/Lip6BAf52xhaHgiMxP6tWi8PYMimJ6g2FB0kJX+UiXv7t9IqcfF9amj2qWuWXeREBDKc8Nn4TF83Lj2vZOuP3tt7xp8GPw09bQu0ZZMkrMO4DV8/HLjp1T5vDwx5DyeG1hGYoCbN7KGgpaMZnMQds1cAIrmXsm2tUvoGR7AtPT6F9VW0zSNqYk2fMbJ1zlVeQ0+3ucm1AZ39nMQE9DwX7lV05gUb8Xlg+WNtEhqrso1b2OUF7B/4p9ZV2ie/AsPeShx1/9mbBgG3xzyoAFnNtJM2mnVmJFkJ9ppYf7hTA5WlnCpvzZYS0z1X9rUgOeHzyLaEVTnmPiAEG7qPYZDVSXHTZlPSbDRI1BjWZ6XHcVNS3j+sm0BWeUF3JI2ltOjG677lRYcxaSYNFYUZHP3xs8YGDyuybNm9TkrwYazevasCWu8TrStyMvfNlfx3z1uqrzmovw/DAng9NjjF+eH2c36Y+VeGzf1uqDOupoSt8GyPC+RDo2RUVbO7mnuVlvqPw9dXoO397h4YYeLSi9c0tPOrRmO49ZNio5zdc8RjInqSZXPy5DwRGa3ophxsM3B+YkDyK4oZEXB3sbv0M7+sn0BS/zV9O/zr6GbGt+XpIAw3t+/iRJ345tVMkvymP79v1mcv5tz4jL4ctyNXJI8mBJP1XHlcP6mfwvAg61oQA5ws78LyL+zVmIYBv/ZsxK7Zun0XYddweTYPtzddyLZ5YXcteGTOp+VVV4Pr2evJcIewEVJ7Vf3sTkkOesAL2etZPXR/VyYOJDz4g3OS8pkW2kAv9pqY+UBs4KxI+NMwq6Zi89VwdNH/8iv0subVKtpdPSxdU5r6lmfs7nQi9sH4+JsxDWSmFUbG2vDboElud5Gv8W+vGclT2QubnSxpeHzUbHkWby2ID6LmY0GjI01a6vNP1h/ErirxEd2mcGQSAuxTRw7HGvbUT3D1BJjo1M5O64vfxkwjXG1ered6PY+4wi3B/DMzqUU+7+RWS0aV/V2oAFv73E3uqh9cd5u/rN3FSoklt+os5o0vuqyGiVVkYTbYhgTY2tWjGoLsWtMirdR7D75ZcT6HCz38ZxexbO6i4MV5uzmH4YEMCPJjtNa/7l7dqINDfPv/MRzZkmuB7fPTG6tFo2R8U7C7PBDvpddJV4e3VLF94e99AjUuH+gk8kJbb8zUzSdRdN4csj5jIvuxZzBM1v9d3FZ8hAA3t2/oS2G12IfHNjE87uX0zckhueGzap5XVbNwnWpIynzunivkcuv83Izmb7032SVF3BX+nhePe1yQu1OZicNqXkOgB8Kspl/eAdnRKUyuYk1vE5mbFQqA0Lj+fzQVt7Zv4HM0nwu6DGQOGdI43f+EbgvYxLjonvxv0PbeSnr+LpwXxzaRr6rjCtShtWsL+xskpy1s6yyAh7e/g1R9kAeGTQdq9ecIXtr3yTcDhc/X7gEt9e8bGMZMJM5MXcTbpQydenP8TahZ1rNOicLvL/XTekJs1Br/QnbiGbsYgu2aYyOtnLEZbCp8OSXSw9WFPP7LV/zaOYiXm+kErNLn4/3cCarJz1FrsvK+Dgrl6WahWSX5HoodNVNYKpbNU1pZNastuzyQr7N28moyGQGhsU3+X4nclisvDX6Km5Oa3gNTYQjkNv7nMFRdwXP7T62oaNXiIVJ8VZyK+vvYlCtyF3JXRs+waZZ+Oewi5pckHVafAYJzjAG+GfNpie1rqxDc2bPStzmDNYjm6vYWuRDhVl4YKCTq9PqbjI5UWyA2TB+f7nB9uJj51aV12Bxrodgm5m0A9gsGqfH2KjwwpPbXORWGpwZb+W+gU56nKRUiOhY6SExfDT2eoa3wRqdM6J7kRwYzqcHt1LubfqSgLa0seggd2/4lFCbk1dHXV6nBM9VKSOwaxZe2bvqpF9Ivz28k+tWvY3X5+OF4bP5bb8pNcsUBoTG0S80lgWHd1DoquCR7easWWuKtlbTNI2be4/Baxjcu8lcv/xj3QhQH6tm4V/DZxHjCOahbfOP66pQvRHghiaWMOkI7foOp5Qao5Ra5P95hFLqgFJqkf+/y/23/1EptVIptUwpNdp/W7pS6nul1HdKqeeVUt3yndhnGNyz8TMqfB4eGTSDOHsWFmMHPu10ruxzKQAHHDv55wqzEvEXmfm8xiQW9rsXSnMpfPEivE2ooh0bYGFmko1SD3xQq1FzpcfH1kIfCQEaiYHN+4dfvTFgUQNlNf6zdxUew4cG/HbLl3XqHtVWseQ5igMT+TbmPEJscH6yHbtFY0aSDY8BX+Uc/2Zc6E8MewZrpIU2PbF8I3sNBs0vn9EaN/YaQ6wzmH/tXs624mMFNc9LNpPPr3I8fHWg/svOv93yFTmVxdzdd0KzdpXaLVZ+1edywmxRnBFrI6aBdYRNUb32rNgNq/NPPnu2PM/DQxsq+f6wl7gAjVsyHNyuHCQ3o33R1ETz3FpQa8Z0WZ6Xci9MircdN+s2Ls6KXYMwO9ymHMxO/XHvlDyVWTSNS5OGUOpx8eyuYzPRHSW/qowbVr9Dlc/D88NnkV5Prbb4gBDOSxzA9pK8eivI7y0/yi3rPsBmsfDe6ddx8QmXyDRNY3bSYFw+L/dv/oLlBXuZGte3TnPzlpqVNJhoRxAun5ehXWRhe1cSHxDK8/71ZzevfZ9CVwWbiw+x8ug+zopNb7BdVkdrt6RHKXU/8G+guiTxCODvuq5P9v/3jlJqBDAJGANcATzrP/bvwO90XZ+AueznwvYaZ3t6PXsN3x/Zw7T4DC7uMQir1+zV5bVeTHpIDGfHZkBQCY+v28iugnJeWLUfDRg1616CzvkNvoI9FL14Ib6yxreXn5lgIyVIY9URL1sLzQ/XNYdduA0YHmVt9reyxCALKszCjhIfe+sp1VHudfPa3jVEO4L494hLqfJ5uXHNe/WuxfDkbMa9YyELxj2Ly7BwYYqdIH+T6DExVmKd5vqs/FqNPVflezCAsTFNnxFy+7y8uW8d4fYALuwxsPE7tJFgm4M/9p9KudfNecv+w6K8XYBZ5uPWDAdRDo3PD3h4bffxlzj/d2g77+7fwNDwRH6ZPqFZz2kYBvvLorBqZsHdtjAp3oZFg4W59dfO8/gM3t3rRtPMtkUPDnIyKKL551bPYPPc0ot9ZJf58PoMvj3kwWGBiSfsyI12WvjdECe/HxJA//Af76LmH4vLU4YRYLExJ3Mx/ebN4ZIVr/Ny1kr2tXMDa7fPy01r32d/RREPqDM5J/7kbfFu8C8pmHtCWY1yr5sbVr9DobuSRwedy+iolHrvP6uHuTbv4xyz7MWvm7iUoSkCrDau9+9Qv7H3mC6xsL2rmRSbxq/6TiS7opA7N3xSU27kJ71avgymPbTnjNQuYFatP48EZiqlliilXlZKhQLjgXm6rhu6rmcDNqVUrP/Yxf77fQkc3wukqzJcWLyLwXCzv6KIh7bNJ8zm5LFBM7EY+7AYa/Bp/TEs5rbmO/uOA8wSG9e8v4k1OcWckx5NWlQQQVN/TeCEX+DN3U7Rv2fjO0lrjmpWTePqNAcWzWzUXOk1WJ5jJkrNuaRZW/WH/rt76/aMfHf/Bo66K7g+dRTn9xjAbWlnkFVewK82flbng73iu+fIihvPpqhx9Ao+vim1VdOYmWxuavjfAXMmxTAMlud7sWswshmteL46pJNXVcblyUNbvGuspS5LHsoLw2dT5fNw1cq3ahru9giycO9AJ72CzcT56e0uStwGeVVl3LvxM5wWK/8cdnGzd1PtKvFxqMJgWKT1pGVRmivCoTE80srBCoPMkroJeXaZD7fPLAQ8Mb51/SvP9s+ezT/oYXWBl6MugzNi69+RG+0023WJU19acBTfTvw5D2RMZmBYPEvyd/ObLV8y8tunOHPJv3hUX8iGwpwWF3k+mT9tncfSI3uYmdC/0S9Kp0f1pF9oLJ8f3EpuZSlgvmfds/EzthTncm3PEVzdwCL8lKCImpmyi3oMZHB4Qtu9EOBXfSfx7phruMy/vk3UdW/GJMZH9+KrXJ3Xs9eSEhjO2XF1S/t0pnZLznRd/wCofa1qJXCfrusTgd3AH4EwoKjWMSVAOKDpum6ccFuXZ/W+gs37JJXuj7lq5ZuUelw8NOAcEgPDsPiOzZpVGxOZwoiIJAg9wi5/8cWbRpmtmjRNI/j8R3COuhrPvrUUz70Cw13R4PMnB1k4O8HGUZfB+3vdrM+rIjFQI7GF63MywqyMjDJ7Ri6rVWbBZxi8sHsFDou1Znv5g/3OYnRkCp8c3HLcN0pfyWHK1n3El6c9jgZc1stRZ+HwiCgrSYFm8nKwwsfuUh+HKw2GRllrZtia4tUWdgRoKxcnDeL9068jzObk7o2f8fD2b/AZBmF2sxvDqGgrWaU+5myp5IGNi8l3lfNgvymo0NhmP9d3/oX7E+LadjZpcsLJL2fv9s+gpoW2/m2jX5iF5CCN9QVevtjvwaKZ696ESA+J4Z6MScyfcDPrp9zNY4NnclZsOjtK83lixxKmfv8Sw755kvs3fcG3h3e2uqXSvNxMXtqzEhUSyzPDLmx0Y4OmadyQehpuw8db+8wvYS/vWckHBzYxMiKJRwbOaPQ5b0s7g4yQmDadNavmsFiZHNtHZs0aYNUsPD98dk3B5OtTR7Wovlx76sh3w490Xa+em/4IeAb4BKhdZTUUKAR89dzWoMjIIGy2zrvs4anaTFn+lwDsL/2C7SW9uaP/eO4aMRHDl0/JoSVYbD2JjjsTrdZJ8JvhZ3Hpwtexx+cw0DuCWaNSjvtHFfuLV9j/XAUlqz+k8p0bSbnjAzTbyWeFro0y2FxcwAr/uqHxKUHExra8DcWNoV62Li7gswMezkoPJ9xp4Yt9W9lVdoTr00cxKCWx5tgPpl7P8E+e5A9bv+bs3hmMjEkmb8Uz/NDnOvKCezO1ZyAje9Utqgtw1cAq5qwu4qWsAnLKC7CRwvT0UGJjmlYKY2vhIZbk72ZifBrj0lq366mpYmPrvpbzYweyIuFOzp3/Mk/t/J5D3lJeGX85ATY798YZfLiznHczy7D7xjE1zs7vRp+NpZlvCkVVPtYfrSA5xMrpaeFt+iYcGwvpOQVsLvTgDQokIfjYW8T+veY/w9GpYUQHtv7f2ixPJU+vK6bAZTAxKQCVHFbPeOo/X0Tb6coxjiWUoT2TuI8zKXFXMu9AJp9kb+GL/dt4Ze9qXtm7mhCbk+nJigtSBjIzpT9Rzrplb07GZ/h4dOkiLJrG+2dfR+/IhssXVbs1/Az+uv0b3ti/jnMOKv6wdR5xASF8fM5PSA6OaPT+18aO4trBXesyWlfX1udpLKF8cvZPeG77Mu4ZMZkIZ+ON5jtSRyZnXyul7tB1fSUwBVgDLAUeU0o9DiQDFl3X85VS65RSk3VdXwTMABY29uBHj5a349AbYbiwu+cAkFMZxICQQm7rnc5v084iP78Uq+dtrHhwGeeTn1923F3HB/WiZ1AEuZZc/nlGb/LzS+s8vPOSF6gsPkrp+s/Y97/nCBz70waHc1lPK//YZiZnyukhL6/hS6KNObeHjQ+y3by8/ijXpjl4dL3513F9j5HHPbYTK/8cehFXrHyT2d+8yoJxPyN32RcsHvM6wVaDs2OMk46lp2bQM1gjuzQYzXDitLqJ81WSl9d4PSGv4eOGZe8AcFPP0a1+vU0RGxt60ueJIIDPxv6E61e9zTtZ68kqPMKrp11BtCOIPs4i1pcuYHDwOUQxjvc2F3FmfPPWbc3PceM14PQoS73nS2uNi9LYWQgfbytidqqZHPsMg21HXEQ5NHyl5eS1wdP2sRlEOzWOVBmMj6x7bjQUY9E2uluMJwb3ZmL/3jyqzmXV0X18mbudrw7pvL9nI+/v2YhV0xgT2ZNpCYrp8YrejSzw/vDAJjYdPcjlyUOJ94Q0Kxazkwbx6t41TJ//bwwMXhw+G2e5lbzy7hPP7qK9ztN0LZq/9z8fd7GHPDr+762hhLMj5/FuBf7h3705DvirrutrgO+A5cAHwG3+Y+8BHlJKLQccwPsdOM5ms3rfQ2M/XxxOY87uaAD+pILN6XGjHItvHgaR+CyT6t5Xs3Br77FU+Tx8lLu+3sfXbE5CLn4cAHfWskbHkx5q5aIUG9N7BZLQzIrx9ZkYbyUpyOwaMP9QPt/lZzEhundNn8nazopL55fp49lbfpR/zX+KN4fMwWUPYXaqg+AGLlFqmkZckNlaw6rZyK7aQlPTlZeyfmDV0X1cmDiQafFdo01JtCOI90+/jot7DGLl0X2c+/3L7Co9wi83fEpm+WaGRGcTatf4MNvNf/e48Tax+KvPMPg+z4vDAqNj2memeHiUlTA7LM/3Uulv6XS40qDMA33a4JJmNaumcXNfBzf3dUhpDNEsNouFsdGp/HnANH448w6+n/QLftdvCsMjklhesJc/bp3HmIXPMGHRc/x12wJWH91fZ92s2+flUX0Rds3CvRl135sbU112ocrr4aH+53BGdK+2eGlCAO08c6br+h7gdP/Pa4Ez6jnmT8CfTrgtE3MXZ5en+fZg8X1IviuIWzYFMyNhEAYHsBrL8XARFt88NMrxWGeBVv8luitShjEncxHP717OZclD6/22Z43ugxYQjse/rqoxZyfa2+zbhlXTuDzVzt+3ufhknw8NCz9voP7X/RlnsvTIPopLMygKS+eskAJGxzS+pft/h5fhc48k3p7CqqIVLMmPZ1Jsw5cod5cV8H/bvyXaEcT/DWp8rUdHCrDaeH74LFKDIvjHzu+ZvOR5qnxepsSmc0ufARS64YXMKnOnapXBz9IbTmABthX5OFJlMDa2eevxmsNm0ZgQZ+OLAx5W5HmZnGBjV0nbrTerLSnIQlLTr0IJUYemaWSExpIRGsud6eM5XFXK/NxMvs7NZHHeLp7etZSndy0l1hnMtLgMpiUoJsSk8eGBTWSVF/CT1FGk1uqX3FQDw+L5ee8xhAYHcFPqmHZ4ZeLHTL6utobhxer9JxpebtmcwIjIvjwx5FoMbSAWQwfjEFbvZxgE4LNMP+nDBNscPDxoBuVeN3dt+KTeqvyaxYItZTje/F34Ktp3W3l90kKtDI/ygRHK6eETGtzZYtU0ZobNoChyOEmHFnBG78b3c+wtP8rivF1UaauZ3auEcl8xL9TTILg2n2Fw94ZPqfB5+L9BM4hxtnxtXXuxaBoP9pvCP4ZcgNcwiLAH8OTQC9A0jUiHxt39nQyJtJBZ7OPxLVXkVpy86C/A94fNxc/jY9t3RcL4OLMP5uJcDz7DqEnO0kPkLUN0bXHOEK7uOYLXTruCbdPu57VRV3B1ynAMA97Yt45rV71N/68f4w9bvybAYuPuvhNb/Fx/GTidOaedL4vvRZuTd9pW0LyfYTF28u7BSIq9g3h11OUEWG34LGaJDJvn72gcwWeZClrDLTRm9RjEzIT+rCjIrtNaopotxdyF6Nm3rm1fSBPlutdS5SsnNWAURQ0U8P4qx8PWijCSjqwh6/B/uX/z541ufX8rex0GcHXPwZwVn8hpkSksOLyDHaX5J73P3D2rWF6wl5kJ/bkwsePqmrXEVT2Hs3DiLXw1/iYSAo6tM3BaNW5MdzA10UZelcETW6vYeZJ+nAVVPjb7C/OmtnOSFGrXGBltJa/KYGuRuYM2yArxzSxmLERnCrLamZ6geHLoBWyeeg9fjPspd/YZR8+gSEo9Lm5NG3vcv0chugpJzlrI8B3E8LzBEZeVN3JG8Nboqwj2N9n2WU7HwILFyMTAgtd6QaOPp2kajw2eSbQjiIe3f8POepISe4pZO8e9r2mXNttSpdfDG/tWsKNiGT7Dyod7XfUetyrfwxcHPESUH+DK1bdTpM7kq1yddxrol+fx+Xhr3zrCbE4u8BePvaW3edn0xZPMnu0tP8pfti8g0h7Io4PP7RbfXFVobL0VqC2axoUpdq7pbafKB8/qLjYdrZugLcvzYgAT4jpmH8+Z/i4Rn+93k19lkBZqkV6WotuyaBqnRabwu/5n893kX7B16r08oM7s7GEJUS9JzlrCMNhf/AgOi4en9w7gxZE/I8wecOz3WgSGNgAAn2UCaE2rYxXrDOaxwTOp9Hm4Y/0neI3jL3HZelbPnDXcx7I9fHBgI/mucs6KDyQtxMK6o76aTgTVdpZ4eTPLTQBurlpyBTFDpjFn5KWE2Bz8bstXHKgoqvex5x/OJLeqlEuShtQ0nZ2R0I+UwHDe3beBAtfxO3ENw+BXGz6j3Ovm4YHTT5nGvqfH2vh5Xwdo8NJOF6vyj9Vv8voMluV5CLS2vKhwcyUHW0gPtbC/3Jz17COXNMUpJMYZLF82RJcl77Yt4PLMp0/QPr4viObGPvcT5ai7otlrnYlBJF7rJc167PMTB3Bxj0GsKdzPc7uWH/c7a3gPLGEJTd4U0FYMw+DFrB+waRZu7D2ay3vZsQDv7j3WJPtwpY8XM134gCt2PkpscSYBY39Gz6AI/jxgGsWeKn654dN6L2++4a+mf03qsaraNouFG3uPocLn4bW9x7/e17LX8N2RLKbFZzA7aXC7ve7OMCDCyu3KgdMCr+12syTXTNA2FvoodpvtrpwdWC2/uscqtP1mACGEEPWTd9vmMgoJNl7DYzjpG/VH4k+yXsGwjMXtmAta/f3VGvJ/g2YQ5wzh0cyFbC85fNzvbCkj8RUfxFuU06Lht8R3R7LYVnKYCxIH0CMwjKQgC5PireRXGczP8VDqNnhed1HuhcuiC0hd+wz2PhOwxZn96a5OGc6U2HQW5++uqeJfbX9FEd8c3smIiKQ6pTmuThlOsNXBy3tW4vJ5a45/aNt8wu0BzBl8Xre4nNlcfUKt3NXfSYjNTIC/ynHXbAQY10GXNKsNibQQ7dBwWMyemEIIIdqfvNs2k9X7IhqlYLuOSEfPdnmOKEcQTww5D5fPyx3rP8btO3b50OZfd9aRlzZf3G1uULi597HyGecm2wm3m70Rn8usIq/K4JxEG8M2m73rA2oVytU0jSeHXkCEPYA/bZ3HnrKjNb97K3sdPgyuracXXZg9gGt6Die3qpRPcraYlzM3fkapx8VfBkw7pRfyJgdZuHuAk0iHxuf7PejFPtJDLSS2Qd265rBoGrf1c3BXPyf2VvTSFEII0XSSnDWD5vsBq28ZPk01WBqjLUyLV1yePJQNRQd5euf3NbfbOzg521V6hHmHMxkVmcyIyGO1ygKtGrN72vEYkF1mMDzKysx4D5Wr30QLicU56PzjHichIJRHBh5fWXBnAwAAE0FJREFULsRrmBsBQmwOLuwxqN7nv7H3GCxovJC1grf2rWNR3i6mxKZzefLQdn3dXUFcgIVfDXASH2AmRW3dR7M542jv3aFCCCGOkXfcZrB5/oOBDY/tdtDa/4PyrwOnkxgQyhM7lrCp6JA5hpThALhbuO7MV1mM4al/p2V9qst6/Lx33aKzw6OsnBFrZWikhWvT7Lg3foRRfpSA0deh2eoW3J2dNJiZCf1ZXrCXl7J+4NvDO8mpLGZWj8GE1HM8QGpQJDMS+rGx6CC/3vw/Qm1OHh9yal7OrE+kQ+OeAU5uU44O2wgghBCic0ly1gw+y3i81ttbtI6sJcLtATw55AI8ho871n+My+fFEhSFNSYNz/51jdYOO5GvsoSCR0dQ/ObPjrs9v6qM61a9zaqj+467vdBVwdv715MUEMbMhP51Hk/TNK7q7eCmvk4cFo2K5S+DphF4+g31Pv+J5UIez1wMwHWpIxscd3U3giqfl4cGnENSYONFbU8lQTaN/uHN678phBCi+5LkrBm8tmvxWSd36HOeFZfOtT1HsLUkl7/vMJMZW8pIjIpCvPm7mvVYVWvfxSg5jGvzp3hrJWJz967iq1ydv+nH95d/c986yr1uftZ7NDZLw6eKO2s5nr2rcPSbhjUq9aTHxTqDmTP4PCp9HtYV5TAkPJEh4YkNPvaYyBQuTBzI7KTBXO2fORRCCCFOVZKcdQMPDTiHlMBwntr5PRuLDmLvZfZxq1z+cpMfwzAMKlfMrf4DlaveAMwCsG9mmx0HvsvPIqusoOb2l/esJMhq55qUuov1T1S2YA4AQVPuafTY8xL7M6uHWQKjvo0AJ9I0jZdGXsLzw2fJ7JEQQohTniRn3UCIzcnjQ87Haxg8kbmEgNOuwRqbTsV3z+Ha+V2THsOzbw2enI3YM85Cc4ZQufINDJ+Xb/J2kFNZTM/ACADe9Ncc+/LQdvZXFHF58lAiHIENPrZ7/zrc+gLsfSbUJI6N+fvQ83l5xKVc04TkTAghhPgxkeSsm5gck8bw8B58lbudLFcFoVe8AGiUvHMrvsriRu9fPWsWNOl2nMMuwVe4D/eOhTUFXv81YjYR9gD+u389bp+3pun4zfVsBDhR+TdPmI/dhFmzakFWO+f3GIBVk1NQCCGEqE0+GbsJTdO4tc9YDOCFrBXYU08jaMo9+I5mU/bpgw3e11dRROW6D7BE9cLe9ywCxlwPQMGyf7Pg8A5GRCQxKjKZS5OGkFdVxqP6QlYe3ceNViuxH92DtyD7pI/tObQd16ZPsaWMwN5X+tQJIYQQrSXJWTdyXsIAUgLDeXvfegpc5QSd/QC2pKFUrnyNqi1fHnfs+/s38tf1CzAMg6q174C7nMAx16NZLNhSRmBNHATb5hHpKud6/27Ja/y9O5/etZQAr5vbVr9J1YYPKZp7BUZVWb1jKv+2etbsPlkPJoQQQrQBSc66EZvFwk3+fpOv7l2NZnOYlzetDkrevwNf2REANhYd5I4NH/P7dV/x+t41VKyYCxYbAaddA5izcI7R12L1ebgsT68pANs/LI5RkckA/ObQJhxFB7BEJOM9uJnid26tU7rDeySLqvXvY00YgGPAjA6MhBBCCHHqkuSsm7k6ZQShNicv71lFldeDLXEAwdN/j1FymJIP7sbl9XDXhk/wGgbBNgfvrZiL9+AWHIPOwxIWX/M43ycNp0qzcnXudgItx/o13tRrDGllR5i16zssEclE/mop9rRxuDZ+TPmCx44bS/nCp8DnJWjKPWiNlNoQQgghRNPIJ2o3E2p3cm3PERyuKuWjnM0ABE66HVvvsbg2fsznXz/CluJcrk4Zzn/GX8YF/jZPdv86s2pz83YyP7YvUcU5ePasqLn9oh4D+ThPx+LzEHLRHCxBkYRd9zqWyJ6Uf/0wVZs/B8BblEPlqjewRPfGOeTiDnr1QgghxKlPkrNu6MbeY7BqGs/vXo5hGGgWK2FX/AvDHsTQJc8wyDD404BzmB2Xysz8TLIDInim1hXJPWVHWZS3i80ZUwCo+OHVmt9VrX0b657lOAbMwDloJgCWkBjCf/JfsAdR8t+b8RzcSsXiZ8DrIuisX6FZbQghhBCibUhy1g0lB4ZzYeJAtpUcZlH+bvPGqFTmDpxJmKeKF/cuI8zmpHDp69i9bualnsY/di2tac/0RvYaDGD0yMuxxqRRteEjfBVF+MoLKP30t2APIuSiOcc9p63HYDMBrCqlaO4VVCyfiyU8iYCRV3bwqxdCCCFObZKcdVO3po0F4PndywGzQfkT4SnoiYMJ37OCymX/pnDhC2C1M2Xab/EZBret+4ijrgre2reeCHsAF/QYSMDo68BdQdW69yj730MYZfkEn/NrrFE96zync+hFBJ19P76CPebuz8l31tvgXAghhBAtJ8lZNzU0ogdnRKWyKG8XXx7azv9t/5ZoZzDqutfQAiMo/eQBqnK24hx8PqN7juD2PuPYU36UC5fPJd9VxmXJQwm02nGOugosVsq/eZzKFXOxxvcncOJtJ33eoHMeJOC0a7AlDyfwhHVsQgghhGg9Sc66sVv7mLNnP13zLhU+Dw8PnE5sbB9CZj8JPg8AAaf/FIAH1JkMCktge0keANf5a5pZwxJw9J+OrygHgJDZT6JZ7Sd9Ts1iIfTy54i4axGaI6jdXpsQQgjxYyXJWTc2NS6D9OBovIbBtPgMLvbXKwsYNpvA8bcQOuJC7H0mAOCwWHl++CwCLTYmxPQmIzS25nECx5oJXMDoa3GkndGk55aCs0IIIUT70E4sLNpd5eWVnBovpJm+OqTzr93LeX74LBIDw477XWxsKHl5JcfddqCiiFCbkzB7wHG3u/euxJY0TNaQNVF9sRVtS2Lc/iTGrScxbH+naoxjY0NPOsshNRC6uekJiukJqsnHJwWG13u7PXV0Ww1JCCGEEK0glzWFEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQSc6EEEIIIboQzTCMzh6DEEIIIYTwk5kzIYQQQoguRJIzIYQQQoguRJIzIYQQQoguRJIzIYQQQoguRJIzIYQQQoguRJIzIYQQQoguRJKzU4BSSuvsMZxqlFIWpZSzs8fxYyDnb/uSc7ntKKXkM7Od+M/TIP/PP/r3BKlz1g35T9y+wIO6rt/QycM55SilbgbOBXYDT+u6vqdzR3RqkfO348i53DpKqV8AI4Dtuq4/3tnjOVUppRKBfwDv6rr+QWePpyuQbwHdkK7rBpAGXKeUmgryTaOtKKWuAqYBdwNhwC3+2yW+rVQdQzl/21f17I6cyy1THR+l1GzgHGAOMFspdY//dvncbANKKa3WuWgBMoARSql+1b/vtMF1AXKSdRNKqUCllM3/cxQwAXgZ+BvUfOCJFvDH1u7/43hgqa7rWcCLwACllEXi2zpKqUjA7v85BJiEnL9trnacgdOAFXIuN50/fg7/H8cDP+i6rgP/AaKVUoG6rvs6bYCniOrztNa52B/YAZRgnqchgCRnomtTSqUCjwJj/TeVAgt1Xb8JyFdK3ec/7kd9MrdEPbF9AnjV//NAYJO8GbeOUuoB4BPgr0qp2bqulwIL5PxtWyfEeRbmef2y/9dyLjeiVvweVkpdAPwBeFQpNRy4F0gBnlNK9e3EYXZ7J5ynl/tvDsY8X3XgPuAZILxzRtg1SHLWPYwDZgKjlVKxuq67gKX+390H3KiUipZvxC1SO7bRuq7vAgr9ly7OBxYDKKXSlVKOBh5H1EMpNQyYCFwGzAMuU0qdr+v6N/5D5PxtA/XE+VJgnK7rBf7zVs7lBpwQv6+AK4Hp/mR2F3CaruvXArGYSZp8mWiBes7Ti5VSM4Ag4H7gJswZs+pZtB8tSc66mJP8g+8FvIO5bmQsgK7rFUopm67rG4FlwPMdNshuqpHYhgJnAOi67gVigBygXCn1NuZ6HVvHjPSUkgGs1HX9EPAt8CZwp1LKCiDnb5upHedvgP8Ct/gv1wcCh5BzuSEnnqf/BW72/y4cCFFKxQFuoBLkUnwL1Y7zQuAtzFnJAcBR4AHMJC0B87L8j5YkZ12IUioCiPb/XL0o1YL5gfYnoBgYppTqfcJdbwfe7biRdj9NjO1wpVSa/y6jgF9gvlF8quv6vbqul3f0uLurWoum9wAzlVIB/lmIBZgzERfXOlzO3xZqQpwnA0MwEzI5l0/QWPz8l93GAi8BHwEf6bq+rFMG242dJM5ezER4LZCv6/otuq5vAlYAL+u6vrxzRts1SHLWRSilfgqsBy7w31S9s80H7PNfypyHOf1bPcPj8S/wLdN1/f1OGHa30JLYAoeBB4FZuq6/1bEj7n6UUjcppX7q3xIPoPnPzZXATuA3AP6kIAco8N/PKudv07Ugzl6gAvgtci43N34HMJOGd4G7gIm6rr/WKQPvZpoR51LML8ab/fez67ru0nV9Q6cMvAuROmedTCk1GXPdzT7Mb2hX6bq+pdbvzwAO+ndcoZS6FXNq+Bld13d3/Ii7jxbGth/whK7r2R0/4u5HKRWNeVk4GziC+YXvqer4KaWGAOmYH25zgULMGZxf67q+pFMG3Q21MM4PAPfITE+rztMHdV1f1Blj7o7k/aDtyLqDzjcCMxn4Vin1IJAIbPFfhvsboICf1jr+fSBcErMmaWlsJTFrukhgh67rtyqlwoGngQP+rfB/A4YCFwEHgZHALOC38kbcbC2J84OSmNVo6Xm6qJPG213J+0EbkZmzDqSU0nRdN5RStwAVuq6/6p/q9fl3T32O+Q1irVIqHUittatNNEBi2/5OiHGprutvKKVGYe5sywd6YK4l+xdQBnyo6/rezhtx9yRxbh2JX8eQOLcvWXPWgWrt7pkC3F8reXDWKo9xrv/YndXJQ/XONnFyEtv2d0KMf+OP8WrgOWAY5rfmEcBq4ArMSxsS42aSOLeOxK9jSJzblyRnHUAplVDr54mY3yr2Y/YSA/D4/78dKFL+5q/V/LtaRD0ktu2vgRg/5b/5CGaZlyd0XT+MuVzim+o3b4lx00icW0fi1zEkzh1DLmu2I6VUMmaZhjjgM+BLwIVZ0mEv5q6VcbUWpM8Afg7cpOt6XmeMubuQ2La/JsZ4oq7rO5VS/wIMzG/LEcDjuq4v6IxxdzcS59aR+HUMiXPHkpmz9nUD5nb2uzAXoz8AlOu6vs2/Vftl4Mnqg3Vd/xKzvoskD427AYlte7uBxmNcPUN5J2b7lQ90XZ8ub8TNcgMS59a4AYlfR7gBiXOHkZmzNqaU+glm4cddQG/gL7qu7/YvQr8ZOKDr+lO1ji8ArtV1/YvOGG93IrFtfy2M8XW6rn/eGePtriTOrSPx6xgS584jM2dtSCn1N2AG5rX3ocD1mJfSwLwmvwBIVUpF1brbFUBWR46zO5LYtr9WxFjKujSDxLl1JH4dQ+LcuSQ5a1vhwIu6rq8F/gk8C1yllBqm63olZtX5AKBU+VsI6bo+T9f1rZ024u5DYtv+JMYdQ+LcOhK/jiFx7kRShLaNKLN32IfAD/6bLgc+BTYBTymlbgLOxlw8afWXdxBNILFtfxLjjiFxbh2JX8eQOHc+WXPWDpRSYZhTvhfoun5IKfVbIAqIB+7Vdf1Qpw6wG5PYtj+JcceQOLeOxK9jSJw7h8yctY8kzJM5XCn1NGZT11/ruu7u3GGdEiS27U9i3DEkzq0j8esYEudOIMlZ+5gI/BqzOvLruq6/2cnjOZVIbNufxLhjSJxbR+LXMSTOnUCSs/bhAn6HWXhPrsW3LYlt+5MYdwyJc+tI/DqGxLkTSHLWPl7Rj/UdE21LYtv+JMYdQ+LcOhK/jiFx7gSyIUAIIYQQoguROmdCCCGEEF2IJGdCCCGEEF2IJGdCCCGEEF2IJGdCCCGEEF2I7NYUQvwoKaV6AZlAdS/AQGAZZoHN3Abut1DX9TPbf4RCiB8rmTkTQvyY5ei6PkzX9WFAP+AQ8H4j95nc7qMSQvyoycyZEEIAuq4bSqk/ArlKqSHAHcAgzB6CG4ErgUcBlFI/6Lo+Rik1HfgzYAeygJt0XT/SKS9ACHHKkJkzIYTw81dA3wFcBLh0XR8LpAMRwLm6rt/pP26MUioW+BswTdf14cDX+JM3IYRoDZk5E0KI4xnAOmC3Uuo2zMudfYGQE44bA/QEFiqlAKxAQQeOUwhxipLkTAgh/JRSDkABacBfgKeAuUAMoJ1wuBX4Xtf1C/z3DaBuAieEEM0mlzWFEAJQSlmAh4AVQB/gXV3X5wKFwJmYyRiAVyllA34AxiqlMvy3/x54vGNHLYQ4FcnMmRDix6yHUmq9/2cr5uXMK4Fk4C2l1JWAC1gK9PYf9wmwARgJ/BR4VyllBfYD13Tg2IUQpyhpfC6EEEII0YXIZU0hhBBCiC5EkjMhhBBCiC5EkjMhhBBCiC5EkjMhhBBCiC5EkjMhhBBCiC5EkjMhhBBCiC5EkjMhhBBCiC5EkjMhhBBCiC7k/wFMu5ZfmD3jTQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x504 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plot_elo_for_teams(\n",
    "    data=elo_hist,\n",
    "    teams=['TOR', 'MIA', 'CLE', 'HOU', 'GSW', 'POR',],\n",
    "    title='Simple Elo Ratings for 2017-18 NBA Division Winners',\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here are the Elo ratings for the 4 teams in the Eastern Conference middle playoff brackets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAGiCAYAAACif2GLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8VeX9wPHPvTd7JyQBEqaMhz0EBASZgqjgto7WWWertbZ1t45Wra1tbdX+tIqtdVRxC4qgbJQtez3sQBII2fvmrvP749zE7EFyczO+79eLFzfnPuec7znJvfd7n2kxDAMhhBBCCNE2WP0dgBBCCCGE+IEkZ0IIIYQQbYgkZ0IIIYQQbYgkZ0IIIYQQbYgkZ0IIIYQQbYgkZ0IIIYQQbUiAvwMQoqUppQxgN+Cu9tRlQB/gZa31sCYc72bgH8BR7yYLEAWsBe7QWtsb2P9r4HqtdZZSajHwG6313saev6lqibfcTq31jWd4zMeBHVrrz5sZXn3nOBd4HOgG2IDjwENa693NOObNwO+BfVrrC1oiTl9RSk0DVgJvaa1vqvbcKmCs1jpCKXUJcL7W+he1HGM3cI/WelW17WOBj7TWfZRSTwLxWut7mhDbm8AsIBMwgEDgMHC71vq0UuoYcJXWektjj9nI896M9/cH3AZ8BbiAu7XW6yuVWwX0BvIxX59BwHta69+3UBzTaPr7Rl/gL1rrK1siBtG5SHImOqrpWuus6huVUn3O8HhrtdZzKx0nBPgWuAn4VwP7zip/oLW+6AzP31RV4m0BMwBfJpRTgHeAy7XW33u3/RhYrZQapLXOPMND3wg8qrV+p4VC9bWTwDylVJjWugRAKdUbGFheQGu9EFjoh9he0Fr/pfwHpdRfgf8DrvLhOSt+f0qpG4FTWuvz6yj7gNb6I29sMcBepdRyrfV3PoyvPr0B5adzi3ZOkjPRaSmlooF/AqMwawO+wvwgcDVi9y5ANJDjPdZc4FHMb+yJwH+11r9TSv3HW36lUuoizNq2q4AI4BngCDAMsybiTq31d0qpBOA/QD8gGzgF7NZaP6mUegq4HHB4n7tZa32yidc90HvdkUB3YDtwjdbaXtvxgSuAscDzSik38CXwJ2AqZg3XNuAXWusCbw3KRmCE9368ALwJzAR6YdYK/a6WsJ4C/lCemAFord9VStm950ApdQfwC8wa0QzMGqID3lqdAmA40BPYifmh/gfgHKCv957+swlxbwJe9sYcCLyvtX7Wm9wvBxYD44FY4EGt9adKqQDgz8BczNqddcDPtNYOpdRjwJWYXUmOeben13IfcjBrpC4D/ufddqP38V3e+3AzZi3VXKXUEODfQBiwHwgvP5BS6m7gfszapF21nAulVHJt11lb2Vos915v5eNZMX/nEzD/viyYNV7bgVRgvNb6gLfsMuAlYBW1vA6B56n6+7sfiFZKrdRaT28gtkjv/1necx2j6u/XSS2vV2/ZW4FfY/6dZWF+Aat8jZMxfx/Xaq3XKaXmAb/1HqsE+A3m3898IFkptRS42Hutk7znPgLcorUuauA6RCclfc5ER7VSKbW90r9PaynzImYCMhwz+RiJ+cZam/O8x9mvlMoEPsBssvhQKWXBfDO/SWs9FvOD6RGlVLzW+hbv/tO11ieqHXM88Fet9WjMZKz8Q/FFYI/WejBwNXAugFKqJ/BLYJz3PF97j1FfvJX/lcdyO+aH0QSgP9AXuLiu42ut/wlswayZ+BR4GDP5GKO1HgmkA89VOvdurfVgb1mACK31ed7r+I23uae6sUCNGg6t9cda61NKqRnAg977OBLzw/Ez770HGAPMAQZjNl1frbW+v1LcLzQx7reBf2utx2AmCOcrpX7kLXcWsFRrfY73mH/3bv+ZN46RmAl3JHCNt8ZnOHCO1noUZmI3v5Z7UO4t4IZKP1/DD4lade8Cr2utR2A2ZfcGUEqNAp4Epmitx2Em27Wp7zrrpJQKxUwaV1Z7ajyQBEzUWg8B/gs8rLUu9j6+zbt/P8zawC+o43VYy+/vccwa4boSs+e9f+d7MBPcZcCBSs/v9r6mPqOO16tSaiRmAj/He08XAo9Vuu7pmF825noTswGYr9uLvK/jO4BPgBDvtR72NqdPBKYBI733+ghmoihEraTmTHRUtTZrVnMhMElrbQBlSqlXMZOT52opu9ZbU2HF/JZ8PfAhgNba8H57nquUuh4zQbBg1mLUF0OK1nq79/FWzFoqgIuAs73HPqmU+si7PQ3YAWxVSn0FfKW1Xl7Hsetr1nwImKWUehDzAzIJsyavscefC8R4jwFmjcHpyueuVv5z77WkKaVOA3HU7A/nof4vi3OABeXNm1rrN5VS/8BMxACWaK3LAJRSu7znOKO4lVLhmLVrcUqpP3ifi8Cs2dmEWfOx2Lt9a6VznQ+8rbUu9f58jfd4H2AmPlu857Vh1nTVZRHwilKqK2byvB9vDW1lSqkumB/wb3nvyXfePmdg1lR+rbU+5f35Ncx7WHn/+q7zg1riul8p9RPv4wBgNfBI5QJa6/VKqd8Cd3oTsGlAoffp/wPWeGsR7wDma63dSqmmvA7rU7lZMwGzhvdh4I/e59d6Y6zv9ToTM/E+4S37d+/xpgE9MJPJV7TWO73HnIVZ+7zc+7sF82+5f7XYdmHWxG301qR9rLXe1MTrE52I1JyJzsyK2YxS+efA+nbQWnu8nYyPYX6DLv+Q24aZUG0FHsD8ALfUfpQKpZUeG5XKu6rt6y4/N+aH6c2YNQ0vKKWqNCs10nuYH44pmE1QWwFLE45vA+7TWo/y1gSdQ9V+R9Wbauq6zso2YNZgVKGU+qdS6nzvOasvBGzhh99XY87R2Lht3v3PrVR2Aj/UbDq896r6uVyVY1RKdVVKdfce70+VjjUWs3mrVlprB/AxcC1mk9qbdZX1qnytrkZsL9fQdVb3Qnk5rfUwrfXPqzfLKaUuxkyKwEzKXy2Pw9ucuRO4FPPLTXntYZNfhw3xJvH/A6ZU2lzkjbG+12v132GoUmqQ90cXZjJ2k1KqvMbaBiyvdF/K72GVQSxa6zx+qJl3AwuUUj9rzjWKjk2SM9GZLQXuUUpZlFLBmAnLN43c9+fAbKXUpcAAzNGbv9VaL8KsLQjG21cK8824KR82XwI/hYrakcsBw9vkshtz5OEfMROrcU04brkLgN9rrRd4fx4P2Bo4vqvSNZTftyBvTeLr/FA7caaeBp5QSo0p31Detwqz1mEJcK23RgRvE202cKgJ52hU3FrrAsxk8Vfec8VgNrle2sDxlwHXK6WCvcd/BbjOe97blFJR3nK/x2xOrM9bmEnyFMxrr0FrnQ18zw9NhWdjNg2C2SQ9WynVw/vzzS14nfWZBSzSWr+C2SR5GT+8DsDsW/Y8sKlSn7vmvA5rpZQKBGZj1nRWV9/rdSVm0253b9k7+aFf3Smt9TrMBOttpVQYZr+72eUJnDL7le4EQqn0mlFmn9TlwDqt9ZOYv98zee2KTkKaNUVHtVKZndcrexSzw265X2B20t2F2cS1BLOTfoO01oeVUn/CTGCGYTZ37FdKlXmPtxezaeMwZvPnaqXUFY2M/X5gvrd5LhuzhqtEa73D20S2RSlVhFlbVGM6Ba/zlFLbq21zefvYPAp8qpQqxuwsvhror7V+o57jLwT+qJQKwuxo/xfM2gcbZmfvXzfy2mqltV6rlLoN+IdSKgLz93EYs3k6A/hGKfUCsMKb+GRi9vvxVGpOakhT4r4eeNn7OyifluFdVf9o339hNrN+j1kLswqzP5UHSAY2KHOal+PUkixV5m0eDAcWaq1d9VzjdcB/lNn5/xDmlBNorXd5m62XK6UKqT1JqfM664utAa8C73mPF4CZJF6plLJ6axu/wKwxe7XSPmf8OqzmeW+TqoHZRLm8juPspI7Xq9Z6qVLqAWCJ956fBG6l6mjZ/yqlrsTsL3q3MgeqvK/M/o8u4BKtdZFSai9gV0ptwuxzdiGw2/vaysXs+ylErSyGUb2lQAjhT97mjm3eD+hgzL4yT2itv/JzaEI0i1JqImZyNszbx0wIUQupOROi7dkLvKSUsmHWJHwoiZlo75RS/8VsQrxGEjMh6ic1Z0IIIYQQbYgMCBBCCCGEaEMkORNCCCGEaEMkORNCCCGEaEM61ICAzMxC6UBXSWxsGLm5JQ0XFE0m99b35B77ntzj5pN76Hsd+R4nJETWOlm51Jx1YAEBtoYLiTMi99b35B77ntzj5pN76Hud8R5LciaEEEII0YZIciaEEEII0YZIciaEEEII0YZIciaEEEII0YZIciaEEEII0YZIciaEEEII0YZIciaEEEII0YZ0qElo26ojRw7zyisvYrfbKS0tZeLESVx44VyefPIxXnvtzSpln3nmSQ4c2E9kZFTFtjlzLmLu3MtaOWohhBBC+IMkZz5WWFjIk08+yjPPPE/Pnr1wu9387ncPs2nT+jr3ufvuXzBhwrmtGKUQQggh2opOlZw9ueIwi/afbtFjzhuUyJMz+tX5/Lffrubss8fRs2cvAGw2G7/97VNkZWWyePEXLRqLEEIIIdq/TpWc+UNWViZJSclVtoWFhREYGFjnPq+88iLvvPNmxc/33/8g/fr191WIQgghhGhDOlVy9uSMfvXWcvlC167dOXBgf5Vt6elpnD6dUec+0qwphBBCdF4yWtPHJk2azMaN60hLSwXA5XLx0ksvcOTIYT9HJoQQQojq3PnplO1ZjGEYfouhU9Wc+UN4eASPPfYUf/rT03g8HkpKSpg06TwmTDiXV155kZ/+9IaKsvfc80ugZrPm6NFj+OlP72zt0IUQQohOp+izB3HsWkiXP5zAEhrtlxgkOWsFgwYN5sUXX62x/Ztv1tbYNnr0mNYISQghhBDVGM5SHPuXYUsYgNVPiRlIs6YQQgghBACOg6vAWULQ0Iv9GockZ0IIIYQQgGPPYgCCh0lyJoQQQgjhV4bHQ9ner7CExxPQa6xfY5HkTAghhBCdnuvEFozC0wQPvRCL1ebXWCQ5E0IIIUSnV7bnKwCChlzk50gkORNCCCGEwLHnSwgMJWjgdH+HIlNp+NrJk+k88cSj9O7dh+LiYp599vmK5y655AIWLlzK4sWLmD//VZKSkjEMA4vFwi233M6YMeP8GLkQQgjRObizDuPO2E/Q0IuwBIX5OxxJzlrTzp3bWbLkS+bMqTkKZNasOdx9970A5ORk8/Of387LL79Gly7xrR2mEEII0anYt34AtI0mTehkydmTe79m0cm9LXrMed2H8OSQ2Y0qe9dd9/DGG69x9tljSUzsWme5uLguTJs2k3XrvmXevMtaKlQhhBBCVOPOPkbJyr9jiUggeMQl/g4HkD5nrSo+PoHbb7+L5577Q4NlY2PjyMvLa4WohBBCiM7JMAwKP7kfnKVEXPJHrKEx/g4J6Gw1Z0NmN7qWy1dmz76QNWtW8umnH9VbLiPjJAMHDmqlqIQQQojOp2zHJzj1cgIHziB49NX+DqeC1Jz5wW9+8yjvvfc2JSXFtT6flZXF2rWrmThxUitHJoQQQnQOntI8ij5/CAJCiLzib1gsFn+HVKFT1Zy1FTExMdx77/088shvKrZ9880S9uzZhc1mwzAMHn30CaKi/LfoqhBCCNGRFS9+CqPwNOEXPoEt/ix/h1OFxTAMf8fQYjIzCzvOxbSAhIRIMjML/R1GhyT31vfkHvue3OPmk3voe764x85jG8l7eRa2roOJvX8tloCgFj1+YyUkRNZaXSfNmkIIIYToNAy3k8KP7gMg8qp/+C0xq48kZ0IIIYToNEpXv4T71F5CJtxCYN8J/g6nVpKcCSGEEKJTcB7bSPHXz2GJTCT8oif9HU6dJDkTQgghRIdXuuFN8l65CDxOIq94AWtYrL9DqpNPR2sqpcYDf9JaT1NKJQKvA7GADbhRa31YKXU/cK13l8Va66eUUhYgFTjo3b5ea/2IL2MVQgghRMdjuJ0Uff4Q9nXzsYTFEnXDfwkaMM3fYdXLZ8mZUupB4AagfDKvPwPvaq0/UEpNBwYppQzgx8B4wADWKqU+BUqArVrreb6KTwghhBAdm6cwk4K3b8R55Dts3YcSffP/sHXp6++wGuTLmrPDwBXA296fJwE7lVLLgGPAfYADmKO1dgMopQIBOzAGSFZKrQRKgfu11tqHsfrM1q1bePzxR+jTpy8Wi4WysjJmz56D1vuZOXM2EyacW1H2kksuYOHCpSxevIiUlGMVC6ELIYQQommcqdspePPHePJOEDT8UqKufQVLcIS/w2oUnyVnWuuPlVJ9Km3qA+Rqrc9XSj0OPKS1fhzI8jZjPg9s01ofUEp1A/6otf5QKTUZeAcY19A5Y2PDCAiwtfi1NEdMTBjnnjuRF154AQCHw8GcOXMYNGgQ0dGhJCREVpS1Wi0kJEQSGRlCWFhQlefOVEscQ9RO7q3vyT32PbnHzSf30Peaeo/dRTkcfG0entICEq58mvh5j7apFQAa0porBGQDC72PFwHPACilQoB/A4XAz7zPbwFcAFrrb5VSyUopi9a63klmc3NL6g2gaNFvKdv52RlfQG2CR1xGxLyn63w+L6+EsjJnxQR6eXl5GAa43Qb5+aVVJtbzeAwyMwspLLRTUuJo9qR7Mjmi78i99T25x74n97j55B763pnc4+Ll/8BTkm+OyJz4C7KyinwTXDPVlXS2ZnL2LXARZjPnFGCPt8bsc2CF1vpPlco+gZnM/VkpNRI43lBi1pZ9//0W7rnnDqxWKwEBAdx//wOsWLGMV155kXfeebOiXEFBvv+CFEIIIToAw1VG6bevYgmJJuTc2/0dzhlpzeTs18B8pdTdQD5wPXAZMBUIVkpd6C33CPAc8I5S6mLMGrSbWyKAiHlP11vL5Stjxozlqaf+WGXbihXLuPvuX9TocyaEEEKIM2ff+gFG4WlCp92HNaR9Njn7NDnTWh8DJngfpwCzqhX5FAipY/eLfReZEEIIIToaw+OhdNWLYA0gdPJd/g7njMkktEIIIYToEBz6G9ynNcGjr8IWk+zvcM6YxTDabVeuGjIzCzvOxbQA6ajqO3JvfU/use/JPW4+uYe+15R7nPfKXJyH1xD7q+8ISBru48iaLyEhstYhpFJzJoQQQoh2z5m6HefhNQQOnN4uErP6SHImhBBCiHavdPVLAIRNbf8TuEtyJoQQQoh2zZ17grIdn2DrNoTAgTP9HU6zSXImhBBCiHatdO0r4HETNvXedrUSQF0kORNCCCFEu+UpzcO+8U2sUd0JHn21v8NpEZKcCSGEEKLdsm/4L0ZZEaGT78ISEOTvcFqEJGc+tnXrFiZPHsvy5V9X2X7TTdfyzDNPcs89d5CScqxi+zvvvMmll15AWVlZK0cqhBBCtD/2re9DQAghE272dygtRpKzVtC7dx+WLVta8fPhw4coLS2ttew33yxh5szZNZI5IYQQQlRlOEpwn9pHQI9RWMNi/R1Oi2nNtTX9LnfNPkoOnmzRY4YN6E7slMH1lunffwAnThynsLCQyMhIli5dzOzZF5KRcapKua1bt5CU1IPLLruS3//+cS66aF6LxiqEEEJ0JK70XWB4COwxyt+htCipOWslU6ZMZ82alRiGwb59exg2bESNMl988Tnz5l1Gr159CAwMZM+e3X6IVAghhGgfXKnbAQjoYMlZp6o5i50yuMFaLl+ZNWsOf/3rcyQlJTNy5OgazxcUFLB+/Xfk5ubw0UcLKC4u4pNPFjB06DA/RCuEEEK0fa60HQAE9Kj5udqedarkzJ+Sk3tQWlrKRx+9z5133kN6elqV57/+ejFz517Kz39+HwB2u52rr76E3NxcYmM7Tju6EEII0VKcqdshMBRbwgB/h9KipFmzFc2cOYvTpzPo1at3jecWLfqcCy64qOLnkJAQpk6dwaJFn7ZmiEIIIUS7YDhLcWfsIyBpOBZbx6prshiG4e8YWkxmZmHHuZgWkJAQSWZmob/D6JDk3vqe3GPfk3vcfHIPfa+ue+w8voW8F2cQMukOIi//ix8ia76EhMhalzOQmjMhhBBCtDvlgwECkzvWYACQ5EwIIYQQ7VBHHakJkpwJIYQQoh1ype2AgBBsXQf5O5QWJ8mZEEIIIdoVw1WG69ReApKGdbjBACDJmRBCCCHaGdfJPeB2EpA80t+h+IQkZ0IIIYRoVzrq5LPlJDkTQgghRLtheDw49n0N0OHW1CwnyZkQQggh2gXD7aTw/Ttx7PkSW/dh2LoN8XdIPtHxetEJIYQQosMxHCUUvHUjjv1fE9B7HNG3ftAhBwOA1JwJ0WmsOJJDSl6pv8MQQogm85TkkPfapTj2f02gmknMHQuxhnfxd1g+I8mZEJ1ARlEZ132wk199pf0dihBCNIkzJ428/7sI17GNBI++iuhbFmAJDvd3WD4lyZkQncDezGIMYN3xPPLsTn+HI4QQjeLOPcGxZybjPrWX0Ml3EnndfCwBQf4Oy+ckOROiE9ifWQyA24Blh3P8HI0QQjROybI/48w6Rtishwi/9M9YrJ0jbekcVylEJ6eziiseLz2Y5cdIhBCicTyl+di3fkhgfB/CZj2MxWLxd0itRpIzIToBnVVMoNVCz6hglh/Joczl8XdIQghRr7KtC8BZQuy0O7BYbf4Op1VJciZEB2cYBvuzSujfJYyLBiZQ5HCz7kSev8MSQog6GYZB6fp/gy2QmCm3+jucVifJmRAdXGpBGcUONyo+jDkDzKHnS6RpUwjRhrmObcB9ai/Bw+cREN3V3+G0OknOhOjgyvubqfhwxveMJiYkgKUHszEMw8+RCSFE7UrXvwFAyISf+jkS/5DkTIgObp93pOag+HACrFbO79eF9MIydmUU+TkyIYSoyVOcTdmOz7AlDiSw32R/h+MXkpwJ0cGV15wNSjAnbZSmTSFEW2bf9A64HYRMvLVTjdCszKeLUimlxgN/0lpPU0olAq8DsYANuFFrfVgpdTtwJ+ACntZaf6GUigf+B4QC6cAtWusSX8YqREels4oJtlnoExMKwIy+cQTZLCw5mM2D5/WtdZ8juSUsPZjNzaOTCA3sXKOkhBD+Y3g8lG74NwSGEjLmOn+H4zc+qzlTSj0IzAdCvJv+DLyrtZ4C/BYYpJTqBvwCmARcAPxRKRUMPA78T2t9HrANM3kTQjSRxzA44B2pabOa30AjggOY1CuG3aeLSM2319inqMzFdR/s4okVh7lr4T5cHpl2QwjROpyHVuHJPkrIqCuxhsVytDiH27/7kFxHy6wLnOso5Z7tn7Gv4HSLHM9XfNmseRi4otLPk4AeSqllwI+BVcA5wHda6zKtdT5wCBgBTAaWePf7Cjjfh3EK0WGl5NkpdXkqmjTLzRkQD8DSQzWbNh/+5iBHc0uJCw3gq4NZPLj0oAweEEK0itJ13oEAE83pM57ev5z5Bzby9vHvW+T4bxzbxAepO3gzZXOLHM9XfNasqbX+WCnVp9KmPkCu1vp8pdTjwEPAASC/UplCIBqIqrS9fFuDYmPDCAiQJpjKEhIi/R1Ch9Ue7u36DLO/2ZjecVXivX58bx76+iArUvJ4eM7giu3vfJ/KB7szGNczhq9uH8/s1zbwzo6T9E6I4OkLB7V6/O3hHrd3co+bT+5hy3DmpJG5dzEhvUfT/exppBTl8uWpfQB8cXoff5h4Yb37G4bBVSvfIj44nH9NuqrG8y6Pm3dTtwGwq/hUm/69+bTPWTXZwELv40XAM8AWoPLdiQTygALv49JK2xqUmyvd0ipLSIgkM7PQ32F0SO3l3m48bNaM9QgNqBJvMDCiawSrDmVz+EQuUSEBHM0t5a6PdhIRZOPlixSekjLeunwoc9/eyjPLDhKOwW1je7Ra7O3lHrdnco+bT+5hyyn++v/A4yZg3C1kZRXx3J4VeAyDmKBQtueks+HoMfpFdKlz/535J/kkZRdBVhu/7TeTEFvVFOfLk/tIKzHrfXZkp5N6KpdgW2umQTXVlSC25mjNb4GLvI+nAHuATcB5SqkQpVQ0MBjYDXxXqeyFwNpWjFOIDmN/tZGalc0ZEI/TY7DiaA4Ot4e7Fu6l2OHmzxcMpG+sOXggMTyID64dSWJ4EI8tO8SnezNaNX4hROdguF3YN76JJTiSkNFXUegs490TW+kaHMHz4+YC8PnJPfUe4/0T2wFweNxsz0ur8fybKVsAmNSlD07Dw56Ctvt+1prJ2a+BG5VS64A5wLNa61PAi5jJ1wrgMa21HXgauFYp9R0wEXi5FeMUosPQWcWEBVrpFR1S47kLKk2p8dyao2w7WciPhnXlqqFVZ+PuExPK+z8aQUSwjXu+2M+qozmtErsQovOwb34bT346wWOuxRIcwbsntlLkcnBb33O4us8Igqw2Pk+vOzkrc7v4OG1Xxc8bco5Xef5IUTars44wMa431/QYCcC2/JoJXFvh0/o8rfUxYIL3cQowq5Yyr2NOsVF5WwZmAieEOEMHsorZn1nMqO5RWGuZK2hYYgQ9ooJZfCALu8tD39hQnps1oNZjDesawdtXDueaBTu4+ZPdfHr9KEZ3j/L1JQghOgFPcTbFi5/EEhxJ2PkP4PJ4eP3oRkKtAdzYayzRQaHMSOjPkgzNgcJMBkYm1DjG16cPkOss5arkEXyUtpON1ZKzN4+btWY39x7L0CjzC+i2vHTfX9wZkkloheiADMPg0WWHcBtw38RetZaxWCxc0D8eu8tDoNXCa5cOISK47u9r5/aK4dVLhmB3ebj+g10cypY+nkKI5ite8jRGSS5hsx/BFtWNr07t50RpPtf0HEVskNnF4pLuQ4C6mzYXnNgBwL39JnFWeBybc0/gNsxpgErdTt4/sZ34oHAu7j6Y/hHxRAQEsa2Wps+2QpIzITqgLw9kseZYLjPOiuOC/nV3oL1qWFcCrBaemtGPkd0aHrl0sUrg+QsGkl3q5JoFOzhVWNaSYQshOhln6nbsG/6NLVEROtmc0vSVo+sBuLPvhIpyc7opgr1Nm9Wn9smwF7E88yCjopMYHJXI+LheFLjK2FdozmX2efoe8px2ftJrNEFWG1aLhVHRSRwqyqLAWXOux7ZAkjMhOpgSp5vHlx8i0GrhmfP717v8yZikKI7+6rwXFsyrAAAgAElEQVQmjcK8YVQSj0zpy4mCMq75YCd5dmdLhC2E6GQMj4eiT38NhkHE5X/BYgtkS24qW3JTmZ04sMrIzIiAYGYmDuBAURb7CzOrHOejtJ24DYNrepp9ySbEma0F5U2b/zm2GSsWbug1pmKf0THJGMCO/JM+vsozI8mZEB3MSxuOk1pQxl3n9KBfXFiD5YMDmv428MuJvbhtTDL7Mou54aPdlDrdZxKqEKITK/v+PVwpmwkeeQVBA6YC8K8jGwC466wJNcpfljQUgM9P7q7YZhgGC1K3E2S1cXnSMADGx/6QnG3PS2dbfjqzug6gZ1hMxX6jYpIA2mzTpiRnQnQgx/JKeXnDcbpFBHH/ub19dh6LxcLT5/fn8sGJbEzN547P98oyT0KIRvOU5lH0xe8gMIzweU8DcKIkj0Un9zI0qiuTuvSpsc/5iQMJtQbwefreiqbNHfkn2V+YyQVdFXFB5pfRvuFxJASHsyH7eMVKALf0HlflWGfHJANtd1CAJGdCdCCPLz9EmdvgyRn9iAjy7eSKVouFl+YOYmqfWJYeyuaZ1Ud9ej4hRMdRsvRZjOIswmc9iC3G7FYx/9gmPBjcddbEWrtjRAQEMavrQA4XZ7PbO0dZ+dxm1/UYVVHOYrEwPrYXp8oK+TB1J73DYpmW0K/KsZJCokgMjpCaMyGEb604ks2Sg9lM7BnN5YMTW+WcQTYr/7l8KPFhgXy4O0PW4BRCNMiVvpvS717DFt+P0Ck/B6DIVcY7x7eSGBxR0TxZm0vLmzbTd2N3u/gkfReJwRE1kq/x3n5nTsPDTb3H1JhOyGKxMDomiXR7ARn2trfCgyRnQnQADreHx5YdwmqBZ2cNqHcQQEuLCA5gWt84Thc72JdZ3GrnFUK0P4bTTuHHvwTDQ8Rlf8YSEAzA/45vo9BVxk/7jCPIWvca2TMTBxBmC+Tzk3tZmqHJc9q5OnkEAdaq6Uz5oIBgq43reo6u9Vij23DTpiRnQnQAr25O5XBOKbeenczQxIhWP//UPrEArD6W2+rnFkK0D4arjIL//gRXyiZzEMAgc156t+HhtWMbCbEGcGPvsfUeI8wWyJyuipSSXJ7ZvxyAa3uOqlFuaFQ3xsT04Pa+4+kSVPvAqB+Ss7bXtCnJmRDtnM4q5vm1R4kPC+TB8/r4JQZJzoQQ9SlPzBz7vyZQnU/kta9WPPfVKc3xkjx+1GNknYlUZZd4mzaPleRydkwyqpYVAwKsVr6a/FMeH1xjYaIKo6K9IzbzpeZMCNGCnG4P936xnzK3wV/mDCQmJNAvcXSLDGZQfBjrj+dR5pJRm0KIH5iJ2Q049i0lcOAMom/+H5bAH9b7ffWId9LZWqbPqM2MhP5EBAQBVKyTeSZig0LpGxbHtry0NtdfVpIzIdqxf6w/zvZT5oLlFw2s+e2xNU3tE0epy8PmtHy/xiGEaDsMl4OCt27EsW8JgQOnE33Le1USs625aWzKPcH5iQMYEBHfqGOG2AK4rscoEoLD6x080BijY5LJd9o5WpzTrOO0NEnOhGindpwq5G/rUkiKDOaZ8/v7OxymSNOmEKISw+Wg4O2bcOz9isAB04m+5X0sgaFVyvzrqDnpbOWlmhrjD0PnsH3m/cQEVT1eU2vARse0zaZNSc6EaIfsLjf3fLEPl8fgHxcrov3UnFnZxF7RBFotrD4qyZkQAoo+/Q2OPV8SOGCat8asaiJ1tDiHhSf3MDgykSnxfZt0bKvFQmC1UZ0uj4cL39rKzZ/srmOvmtrqoADfzlIphPCJP609hs4q4Zazk5jaJ87f4QAQERTA2OQoNpzIJ6fUSVyo/xNGIYR/uDIPYt/0FrZuQ8was1o6+v/5wCrchsEv+5/XItP/vLvjFFtPFhKQUUSp001oYN1TcpQbHt0Nm8XS5qbTkJozIdqZDSfy+L+NJ+gbG8rj0/o1vEMrmtonFgP4NkVqz4TozEqW/xUMD+GzH6k1MdtbkMEnabsYFtWtYmLZ5ih2uHn+22MAuDwGO041PLFsidPNEp3DoIhEduWfxOlpO2sES3ImRDtS5HBx75f7sVjgpYsHER7U8DfD1jS1r1mLJ02bQnRe7qwjlG1dgK3bEIKGzau1zHN6JQbwqJpRY/b+M/HallROFzsY3tWc53FTWkH9MXoMbv9sD3cu3Ee0EYvd42J/4elmx9FSJDkTopXYXW6KylxnvP+pwjKuWbCTlDw7PzunJ+f0iG7B6FrGqG6RRAcHsPpYbpsbmi6EaB0lK/4KHjdh5z+IxVozzdiSm8qSDM05sT2Zmdj8wUxZJQ5e2nCcLqGBvHrJYPMcqfWPGn98+SG+OewdoVkaBbStlQIkOROiFZS5PFzyznYmz9+Mw930ecA2nMhj5ptb2JxWwOWDE3novKZ1nm0tNquFyb1jOJ5v52heqb/DEUK0Mnf2Mexb3sOWqAgecWmN5w3D4FnvzP6/HTSzRfqa/X1dCkUON7+e1JsBXcLpGRXM5rSCOr8gvvF9Kq9/n8ag+DACrRZyc8ypPdrSoABJzoRoBc+sPsL2U4WkF5ax6mjj59MxDIPXt6RyxXs7yClx8oeZ/Xj1ksEEB7Tdl+7Uvt4pNaRpU4hOp2TlC+BxEXb+A1hqWSNzTdZRvs0+xoyE/kzo0rvZ5zuWV8p/tqbTKzqEG0eb02KM6xFNdqmTo7k1vyAuO5zNY8sOER8WyLtXj0DFh3P0pIVQWyBbJTkTovNYcSSHVzenEh9mjl78dF/j+jWUON3cvWgfjy07RExIAB9fN4o7x/Vs1UXNz0T56FGZ70yIzsWdewL75newJfQneNSVNZ6vXGv22KAZLXLO59YcxekxeHRqX4JsZkozNslspqze72x3RhG3f76XIJuVt68aTs/oEIZ3jcDugoFhXdGFmRS7HC0SV3NJciaED2UWO7j3y30EWi28/6MR9IoOYcnBbEqc9Y8KOppbykVvbeWTvacZkxTF8lvGcm6vmFaKunn6xITQKzqEb1NycXlkKSchOouSFX8Dt7POWrPFp/azLT+dS7sPZXh092afb9epQj7Ze5oRXSO4bHBixfZx3v64lVcrOVVYxk8+2kWxw80/5w5ijDeBG9HNHEAQb4nDg8HRkraxUoAkZ0L4iGEY3Ld4P5nFTh6behYjukVy+ZBEih1ulh/OrnO/ZYezmf3m9+zNLObm0Ul8dv0oukcGt2LkzWOxWJjaJ5aCMjc7ThX5OxwhRCtw56Vh3/Q21i59CR51dc3nDQ/P6ZXYLBYeUtNa5Jy/X3UEgN9NP6vKiM8hCeGEBVrZ4q05K3a4+clHu0gvLOO3085i3qAfErlhXSMB6OEYwF+Gz0VF+HcZvHKSnAnhI298n8aywzlM7RPLXef0AKj4dldX0+bf16Xw4w93YXe5efEixZ8vGNim+5fV5Yd+Z23jW6gQwrdKVr4AbgfhMx/AYqs5v/1HabvQRZlc22MU/Ru5hmZ9Vh3NYfWxXKb1ja0xEXegzcro7lHszywmt9TJ3Yv2sjOjiB+P6Ma943tWKTs0MRwLcOi0ixt7j6mx6oC/tL93fSHagT2ni3hq5WG6hAby8txBFd/qhiSEM7BLGMsO51BYbVqNfZlFPLvmKMlRwXx5w9lcO6L51f7+Mrl3LBak35kQnYE7/yT2jf/FGteH4DHX1Frmn4e/I8hq49cDp7bIOf+58QQAv5t6Vq3Pj0uOwgBu/Hg3Sw5mc17vGP58wcAafXYjggLoFxfK7oyiNjX9jyRnQrSwUqebuxbupcxtrnvZNeKHJkmLxcJlgxOxuzwsOZhVZb/y0Y0PndeXEd0iWzXmlhYXGsjIbpFsSSugyHHmc7sJIdq+0jUvg6uMsBm/wmKruWxbhr2I/YWZTO7Slx6hzZ+fMbvEwbcpuZzdPZLhdbxXjks2z7MxNZ8BXcJ44/KhBNpqT3mGd40kv8zF8Xx7s2NrKZKcCdHC/rYuBZ1Vwq1nJzG7f83q+8uH1N60uca75NGUPrG+D7IVTO0bi9NjsP54/ZNBCiHaL09pPvYNb2KN6kbI2OtqLbMxJwWAc1tg6gyAJQezcRswd1Dd/cPGJEdhs0CX0EDevXo4MSF1r/U7zLuqwM421EdWkjMhWlBmsYPXt6TSLSKIx6fXvu5lv7gwRnSNYNXRXHJKnQA43R7Wn8inf1xou+r8X5/p3qWcPmvk1CFCiPbHvvEtjLJCQiffhSWg9veuddlmcjaxhZKzhfvN95R5qu7kLC40kAXXjOTLG0bTJya03uOVj9jcfbrh9ThbiyRnQrSgf248QYnTw30TexEWWHfH0suGJOLyGHypMwHYerKQYoeb8zpIrRnAhJ7R9I8L5bN9p8koKvN3OEKIFma4nZSu/T8ICidkwi11llufk0KoNYCR0UnNPmduqZO1KXmM7BZB7waSril9Yjkrruai69UN947Y3JUhNWdCdDinix38Z2sa3SOD+PHI+jvzX+Ydyl1eq7TW23H+vN4dJzmzWizcPrYHTo/Bm9vazpp1QoiWUbbjUzz5aYSecwPWsNrfu3IcJewrPM3YuJ4EtcBIyKUHs3B5jCrTYTRXXGggyVHB0qwpREf08objlLo83DexNyEB9b8J9YgO4ZweUXybkkdGURlrU3KxAJPayUSzjfWjYd2IDg7gv9vSsbvqn3hXCNF+GIZB6eqXwGIl9Lyf1VluQ85xAM6Na6EmTW9rw1zV/Ok4KhveNYLTxY42U8svyZkQLSCjqIz/bksnOSqYHzdyCozLBydiAAt2nWJLWgEjukUQG1p3p9X2KDzIxg2jupNV4uSzvdL3TIiOwnloDa60HQQPvxRblz51llvfgv3N8u1OVh/NZVhiBGfFNtxc2RTlTZu720jTpiRnQrSAlzec8Naa9Wr0pLFzVQJWC7yw/jhOj9GhmjQru/XsZGwW+NeW1DY1j5AQ4syVrn4JgNCp99Rbbn1OCkFWG2fH9Gj2OZcczMbpMbiknlGaZ2p4+YhNSc6E6Bgyisr47/Z0ekQFc30TJo7tGhHMpF4xFDvM5r6ONBigsh7RIVysEthzuph1x/P8HY4Qoplcp/bj2P81AX0nEth7XJ3lCpx2duef4uyYZEJqWTWgqb7wNmnO80FyNsKbnO3KaBsjNiU5E6KZXlx/HLvLwy/P7U1QHZMc1qV8zrMgm4XxPZo/OWNbdcdY81vzv7ak+jkSIURzla55GYCwqffWW25Tzgk8GC0yv1lhmYuVR3MYnBBOv0aMwGyq7pHBdAkNbDMjNpufyjZAKTUe+JPWeppS6mxgEXDQ+/QrQD7wsPdnCzAZGAaEVi+rtV7g63iFaIqThWW8tT2dnlHBXDu8W5P3n6sS+O2yQ4zvEV3v1Bvt3bjkKEZ3j2TpwWyO5ZU2OO9QuWKHmxs/3sWwrhE8NaN/o/ZxewxsVkvDBYUQTeYpyMD+/fvY4vsRNOTCesuuyzkGwMS4Ps0+79JD2TjcvmnSBHP1lmFdI1h9LJd8u5PoeiatbQ0+Tc6UUg8CNwDF3k1nA3/TWv+1WtEl3vIPAN9prfcppW6ro6wQbcaL649T5ja4f1LTa80AYkICWXHLWKJDfP49ya8sFgt3jO3B3Yv28caWNP5wfsOJlmEYPLj0AGtT8thxqpAnpverWKO0Lu/sSOeRrw/y6fWjGJvccWsihfCX0u/+BW4HoVN+jqWBqTHWZx8nwGJlbGzz+5st2u9t0qxn4tnmGtHNTM52ZxQxyc99gH3drHkYuKLSz2OAi5VSa5RSbyilKhbFUkr1wEzknmqorBBtQWq+nbd3pNMrOoRrhjW91qzcWXFhdAkLasHI2qZ5gxLoGhHEuztP1lj0vTavbzjOh3syACgoc3Mwu6Te8ntPF/HI1wcpcxv8e6vMqyZESzPKiild/waWsDhCxl5fb9lil4Md+emMjE4iPKB572+FdhcrjmQzKD6MgfHhzTpWfcpHbLaFQQE+Tc601h8DzkqbNgEPaK2nAEeAJyo99yvgBa11WSPKCuFXbo/BvV/ux+E2eGBynzoX1BU/CLJZufXsZIocbt7bearesjtOFXLvp7uJDQngvom9ANicVvcanSWVFpuPCrax+EAmRY1IAIUQjVe2bylGSS6hE2/FElR/v6/NuSdwGR4mdunV7PN+uS+DMrfBXB/WmsEPIzbbQr+z1m5L+VRrXT5c61PgJQCllBWYCzzWUNn6xMaGEdDA5J+dTUKCVDj6wrPLDvLd8TwuG9aNn0/vj6WB5jZhun/mAF5Yl8J/tqfz8JxBtfYNyy1xcPvCjTg9Hv53wziSokL4x/rj7MoqrfPv+e6PdrI/q4R7JvUhISKYJ5ZqVqUXcss5zf9g6OjkPaL52sI9PF6US1JYFAEtMAt/XdKPrwWg6+QfEdrANe88YX4Bu7Dv4Gbfn48WawBumtjHp/e6S5cIIoJt7Msu8fvvtLWTs6VKqXu11puAmcD33u3DgP1a69JGlK1Tbm79zR6dTUJCJJmZbWNYcEeyJS2fx5dqukcG8dzMfmRl+f9bVnty1dCuvLPjJP/bcIw5A6rO8u0xDG78aDfHckr53awBjOkSittjEBFk49sj2bX+PX+hM3l1fQqDE8J5cGJPThc5eAKYv+4Yc/t2zOlJWoq8RzRfW7iH+wtPM33Nq9zXfzIPqxk+OYdhGBTsXIolLJbC8AEUNXDNy04cwIoFZYtv1v0pdrhZvC+DAV3CSLTh83s9NCGCzWn5pKTntcogrbqSwNZui7kb+LtSahUwCXjau11hNl02pqwQflNgd3HXwn14DIN/zh1MXAeb0b813DYmGYDXNtecVuPlDcf5+nA2U/rE8sRsBYDNauHspCgOZpeQW+qsUj6twM6vvtKEBlh57dIhhATY6BUTyqReMaw7kU9KXmmNcwjR0SzN0LgNg/8d347b8PjkHO7Mg3jyUgkaML3BgQB2t4uteWkMi+5GVGBIs8770Z4MSp0e5qmEVmmhGN41Ao8B+zKLGy7sQw3WnCmlTgBJQB7mVBfR3sdHgNu11tvr219rfQyY4H28FTi3ljIfAh9W21ZrWSH8xTAMHvz6AMfz7Tw6sz+TO+iM/r42JDGC83rHsDYljz2nixiaaPbz+C4ll2fXHKV7ZBCvXjK4SpPnuOQo1hzL5fv0As7v1wUw+/3dvXAfeXYXf5kzEFWpo/A1w7ry3fE8PtidwQOT+7Tq9QnR2lZlmnUbp8oKWZedwnnxfVv8HM4DKwAIHDi9wbJb81JxeNxMbOZ6miuO5PDoNweJDA7gmjOYquhMDK80Ge2YpKhWOWdtGlNzthq4UmvdRWsdh9k3bCFwB/BPXwYnRFvywe4MPtl7mjFJkTx5gfJ3OO3anePMofWveyelzSgq446Fe7FaLLx+6VDiq41eHeedFqPyoIAX1qWwITWfiwfGc8PIqiszzFUJhAVa+WD3KVkySnRoRS4Hm3KOExkQDMDHaTt9ch6HNpOzoAENJ2frWmA9zc1p+dz66W6sFlj003H0jW3c3IjNVT5ic9cp/3ZXaUxyNkxr/Vn5D1rrr4ARWuttmBPFCtHhHckt4eFvDhIRZOOVS4bI6MxmOr9fF/rGhvLxngxOFZZx+2d7ySx28sT0szinlpUSxiSZb5ibUwsA2Jiaz1++O0ZyVDB/u1DVaO6ICA7g4oEJpOTZ2Zha9yhPIdq79dnHcBoebu49luSQKBad3Ifd3bIjlQ2XA8fhtdgSBmCLa3iQzfocMzmb0IiytdlzuojrP9hFmcvD/MuGMrVffMM7tRAVH0aQzeL3EZuN+YTJU0rdqZQKV0pFKqXuAnKUUoMaub8Q7Vp581mxw83zFwxs9Oz2om5Wi4XbxyRT5jaY9+42NqTmc8mghIplnqqLDglkUHwYW08WkF3i4O6FewF4Zd5gYuvo91feDLJgV/3TdgjRnq3MPAzAjIT+XJE8nEJXGd9kHGjRczhTNoGjmKBGDDZweNxsyTnB4MhE4hqYbqM2R3NLuWbBTvLLXLx48SAuGNB6iRlAoM3KoPhw9mUW4XT7pv9eYzQmufoxMAtIB1KA6cCN3m0P17OfEB3CssPZbDtZyGWDE7hyaFd/h9NhXDu8G5HBNlLy7PSLC+WFWmrAKhuXHE2J08M1C3aSWlDGr87tzYSeMXWWn9w7huSoYD7fn0mJ0+2LSxDC71ZlHibMFsi4uJ5cmTwcgI/SdrXoOX7ob9ZwcrY9L51Sj+uM+pudKizj6vd3cLrYwbPn9+fqZkzu3Rzn9orBY4Dd5b/krMEBAVrrNOCqWp5qcN4xITqC+d+nAXDfxOYv3it+EBEcwF3jevL6llTeuGwokcH1vx2NTY7i7R0n2ZlRxPge0fxqUv2/D6vFwo+GdeWFdcdZfCCLqySxFh3MiZI8DhVnMztxIEFWG0OiujI4MpHlmQfJc5QSE9QytfyOAyvAGkDgWZMbLLveu55mUxc7L3a4ueaDnRzPt/PA5D7cVkctemv47bSz+Pn4ng2+J/lSgzVnSqkLlFKblVKHlVJHyv+1RnBC+NvB7GJWH8tlYs/oilGFouU8MLkP+++bxJBG3NvyQQHRwQG8Mm8wAdaGK/5/NKzlmjY9DhdFe07gqacWruxkLsV7a04RIoQvrM4yP4qnJZxVse3K5OE4PG4WndzbIudwHl2PK3UbgX3GYw2pf2JWt+FhwYkdBFqsnNulT5PO89GeDPZlFnPDqO78poEvXr4WZLPSNSLYrzE0Ji18CXNppd2ADHsSncob3lqz28b471tcR9fQYubl+sWF8vsZ/RidFEWP6MbNndQvLoyx3mk40gvsJEWd2ZxLHoeL059swnEyFzwGEcNr7+ic880unNmFBPfsQkCk9E0UvlXe32x6Qv+KbVckD+fp/cv5OG0XN/Qec8bHNgwD+7r5FH3+EFishE6+q8F9Fp/cz6HibH7cczTxwU1bA/Pt7enYLPDApD6y4gqNS86ytNZf+DwSIdqYAruL93edIjkqmAsHdvF3OJ2exWLhrnN6Nnm/a4Z1Y0taAR/tyeAXZ9A07XG5yVy4xUzMAGdO7aO4XPklOLPN2cvtx7OIGNr0WIVoLLfhYU3WEXqGRnNWeFzF9h6h0UyM6826nBTSSvNJDq05+rkhhtNO0Se/wr75HSzhXYi64S2C+p9X/z6Gwd8PrcWKhXv7TWrS+bafLGBnRhEXDoinW6R/a6zaisYMCFirlPqbUmq2UmpK+T+fRyaEn72/6xQlTg83j05qVBOaaJsuG5xAsM3Cgt0ZTZ7zzHC5yVr0PWUnsgnpbS667MytPTkrPZJR8dh+POvMAxaiEbbnpZPvtDMtoV+NmqbygQGfpO1u8nHdeank/fMC7JvfIaDHaGJ/uabBxAzMWrxdBae4JGkIZ0U07cvs29tPAnDT6O4NlOw8GvOJcw4wGngEeMr770kfxiSE33kMgze2phFss/CTkfKG0Z5FhwRysUrgYHYJ/9mW3uj9DLeHrMXbsB/LJKRvAgmXjsUaGoQrt/ZlXUqPnAbAEhyA/Xi2TH4rfGqVt0lzWny/Gs/N6z6EQIuVj5s4atNx+FtyX5iCK3UbwWN/TMzPl2CLbVwN8N8PmYui/6J/w4MGKissc/Hx3gx6RgUztU9cwzt0Eo0ZrdnwdMBCdDArj+RwNLeUa4d3o0u12epF+/Pk9H6sOprDkysOc27PGAYl1N8fxvAYZC/dQenhDIJ7diF+7hgsNiuBseGUnczDcHuwVJqI2FPmxJ6aTWBiFIFxkZTsT8OZXUhQfM3lX4p1OkHxkQR2qb9ztWg9nuJsLKGxWFqxhtydfxJb9Jl/8VuZeRgrllqXaooNCmVm4gCWZGj2FZxmcFRig8dzHFpL/vwrwOMm4vK/EnLubY3u+7UhO4UNOceZlTiAYVFNm/7ik72nKXF6+MWE7lWWbOvs6vxLVEq95v1/pVJqRfV/rReiEK1vfsVAgGQ/RyJaQrdIcyUBu8vDXQv3YnfVPeLSMAxyvtlJiU4nOCnWrDELMBd6DogNB8PAlV9SZR97ShZ4DEL7diWklzlpZm1Nm67CUrIXbyPri61Ss9ZGlO34jOyn+lO66h/NOk7hgp9R+OlvGnfOnZ+T8wdF2a5FZ3SuAqed7/NSGR2TXOd0GVd5mzYbs5yTM3UbBf+5FgwP0bcuIHTS7U3qlP/3Q98CcF8jmj8rMwyDt7wDAa4fIS0UldX3NeFf3v+f5IfmzMr/hOiQjuSUsPxIDuOSoxjRTWo3OoqLBiZww6ju7M0s5pnVR2stYxgGuSt2U7w3laCu0SRcNg5r4A8NDIGx5pQf1fudlR41mzRDz0okpHfdyZkz01x+yplTROnhjBrPi9blOLSWgv/dBh43jsNrzvg4nsLT2De/g33dfDwFDf9e7ZvfMf/f8u4Zne/b7GO4DaPKFBrVzeo6kMiAYD5O24Wnni8CrtMHyH/9CgxHEVHXzydo0KwmxbIz/yQrMg8xqUsfzolr2iCYHacK2ZVRxOz+MhCgujqTM631996HV2mtV1f+B9zaOuEJ0frekFqzDuv3M/rTPy6Uf21OZeXRnCrPGYZB3pp9FO08TmBCFAlXnIM1uOrSUAGxZnNo5X5nhseg9OhpbOHBBHWNJiAihIC4CMpSczCqLf/iyCqseFyw+bDUnvmRK303BW9eBxhYQqJwpe0849+H49Bq84HhoWznZ/WW9ZTkmpO6Ao79y/DYC5p8vor+Zgk1+5uVC7UFMrf7YNLsBWzwrnVZnTv3BPn/uhSjOJuIK/9B8MjLmxzLPypqzZrW1wzgLRkIUKf6mjXne5svb6rWpLkGc4CAEB1OUZmL93adoltEEHNVgr/DES0sPMjGq5cMIdBq4d4v9pNV4qh4Ln/dAQq3HiUgLoLEK87BFlKzr2GgNzlzVkrOHKdy8ZQ6COmbWNEUFNIrHsPppsw7/Ua58qk2AhOjcJzKo+xEdotfo2iYO/cE+fOvxLAXEHnNKwT2nw2p35UAACAASURBVIJRlImn4MwmK3YeXFXx2L7jk3rLOvYsBrcTa1R3cDvMn5toZeZhIgOCGRNT//yLP0oeCcB7J7bXeM5TmEn+a5fiyU8j/OLfEzrh5ibHcbAoiy9O7mVUdBJT4+uuxatNYZmLT2QgQJ3qa9Z8Gvg9cJSqzZmPANN8HpkQfrBgdwZFDjc3jU4i0CbTZ3REI7pF8sjUvpwudvDLLzWGYZC/8SAFmw4REBNG1yvHYwurvYklIDoMLFVrzspHaYae9cPyUHX1O3NmFWIJsBE3YxgA+ZsOtei1iYZ5irPJf/1yPAUnCZ/3LCFn/4iApBEAuNJ2NPl4hmHgOLAKS1gsgWdNwnV0Pe68uleJsG//GICIq8w+bg3VtFV3tDiHlJJczovv2+AUPxO79KZ3WCyLTu6l0FlWsd1Tmk/+/CtwZx4idPr9hE3/ZZNiKPfSoe8wMGvNmjpx7Md7MyhxevjJqCQZCFCL+po1j2mtV2mtRwK7gCOYiVo6MKqV4hOiVb274ySBVgs3jErydyjCh352Tk/O6x3D14ezWb5wO/nrDmCLCiXxygnYIupeRcASYCMgKqxKn7PSIxlYbNaKhAwg5P/ZO+/wtup7/7+OtmR57xXbiZ2TODtkEbLZe5VSVltGS3dLbxctl7a/0vZeCrSlLRfaAqUljBZIE6AQIHuSvZ1jJ957L8ma5/z+OJJsx7Itr9gQvZ5HTxzpjK8kW/qcz3i/M+JAEHoFZ4pXxt3ciT7eijE1FtOkBJwVTThrW8fmSYbpg+Ky0/bC7XjrCzGv+AaWld8AQOfLMHmqB2+ePxd3/Vnk1gr0uSsxzlVtqJ1Hgwdcsq0Jd9FWdBnzMOZfhTYlH5e0KeTSpuJx0fHSPXy1dPeAJU0/GkHgzsy52L1u1lWrmmeKu4v2F27HU3UU0+IvEnHNzwLbv1ZxhA3VJ0NaS4W9lTeqjjHVmsDVKdNC2ifwPBSFvx+uQSvAHbPGx9x8ohOKt+bPUIMyCdgFnAF+PbbLChPm/NPmcHOyvpNFGdEkRYTlMz7NaASBP143nbuMMlOLq1HMBpJuXYwuanDLJV1sBLLdhexw+1wBOjFOSkCj13Yf36jHkBKDq7YN2ekGwNNqA1lBn6AOmUQtVL9c28PZs/OC3NFA20t34Snbh3HeZ4i47rHAY7p0f+Zs6MFZ58mPADDkrcI4+0bQaHEeeSPots4T74LsCfR2GWffBB4nrlPvhXQu2/u/ILV4B1+oOMiq2OAWYufyuYy5aBB4peIwitdN+98/j7tkN8bZN2O99beBjFdRZyPfObqBbx75N62urkGP+9fSfXgUmW/mLgvZgs3PkdoOTtR3cmXYEaBfQqnbfBHIBF5HLWfeAITlr8N86jhQ1Y4CLM4Yut1JmE8eKVYD39S7aFPgYa0V2RqaF2ag76zVFnAFME/uqyNlmpQAioKjUu0r8w8D+IMzY2Y8hpQYus7WBXrRwow+iqLg2L+W5t8swC1tQi9eSuTtz/bSNNNEpyFExA8rOLP1CM401gT0uSvxVBzC29R3Itjp60czzr5J/dcXpPWXaeuJq3BLQO4j0usivak4pPWlmqNYk5TL4ZZKKv9xL66CjeinriHyzr8gaLovKJ4q2o6MQpfs4bXKvj1qPbF73bxacZgEQwQ3pc4IaR098TsCfH5ueBCgP0IJzqolSWpHNT6fI0nSu6jBWpgwnyo+rmwDYFFGX+HQMJ8+ZLsLndtLQ2QEHzU5+eW20L7sdD45DU9zZ9B+Mz/n9p35AzBDvPr7JQgCUYvU7Fnb/rMjeCZh+sPbWEzbn2+k4/WvonhcRNz4v0Tf/waCrndmXBAEdOmzkZtLkbtCLzMrshd7wRY0sZPQxKtisCZ/afNI78EA2daE+8w2dJnz0cZnA6BLFtEmT8clDTy1KXc20vHagygaHc9mLQHAJX0U8jrvzJzH/eX7MJ3YgC5rEdFfWNvrNSjqbGRd1QnyrAkYNVpeLD0woPzGv6tO0Op2cM+k+Ri1vbXsazqc/Kewof/noij8u6CejPAgwICEEpy1iaJ4D3AQuEsUxSWAZWyXFSbM+WdfZRsCsCAtnDm7EPD3jc2cmsSUODPPBpHXCIY/c+asawu4AuiC9KkZU2MQ9Nru4CyQObMGtjFPTkYfb8V+urqPsG2Y4aN4Pdi3/I7mJy/GXbQVw/Qrifv+PizLv9orW9QTXZqv72wIlkee6mN4bc0Y8lYFyoOGmdeCVt9natN5/G2QvRjn3NLrfuMcf2nz/eDPRVHo+OfXkdtrOb7oC7yQuQBF0AbkOELh8tgM7q08SLvOhPmLryIYeztk+LNmPxbXcFPaTErszQG5jmDreb50HxoEPp91UZ/HHlx/ii++dZKD1cGDzbJWB50uL4szo8ODAAMQSnB2P5AkSdJWoBRVnPYnY7imMGHOOy6vzKGaDqYnRhBlGtTVLMynAE+zOnFpSYji2RvyEYCn95QPup9f68xWUBlwBQiGoNVgzIjH02zD09GFu7EDjdmApsckqCAIau+ZotB+MLTMXZiBcVcepvX3q7C9+yiC0Urk3S8Sdd8/B/WI1GX4hwJCn9h0F24FQJ+3KnCfxhKLQbwMb/VxPPWFgfudR9cB3SVNP8bZvtJmP1Objt1/xXXqPfS5K3lp0gJsOiPKpPl4Kg4h2we/mACQD75GjLuLV9Pm8EFHfa/H/FmzGVHJXJ0yjfuyFwLwYtn+oMc60FrJ8fZark6ZRrq594XszrJW9voqEG+dDC7GKzWqf3fTEga2ULvQGTQ4kySpWpKkJ30//5dvejOsMRDmU8Xxuk4cHpnFmeGs2YWCP3Omj4tgTkok2bFmCho6BxUi1VpNCDotitMDBO838+MvbXadrcPTZkcfb+0jOWAR09BGmbGdqMBrcwY7zKee5i43Hb7Xc7goThudb/+E1t+vxlN9DNPCu4n7wX5Mc28NSeYhMBRQGXpw5vLpmxlyV/a63zhXzY45fbIZcmejWtKctABtXO9Gfl3KNLW0efpDZEfv3kNPzSk63/4JgiWOiM/9H3taKplkicE67QpQZNxFg7saKLIX+/Y/omgNrM2Yx9qKw70e92fNvpe3Eo0gMC8mnXnRaXxQV0i5vW+J9/kSNWjzB3E9eWJXKQAWvYZ/n67HK/f9Wyr0BWdiODgbkIFEaG8URbFWFMWToijm+u5bLIriXuB3522FYcKcBz6u8PWbpYeDswsFd7MvOPP1kInxFpq7PDTa3QPuJwhCIHvmdwXoD39w1nGkVD1XECN0QaMhasEUFK9M58mKIT+PTzqKonDtPw5x0f/tZUdpy+A7BMElbaL5iSV0bfsDmrgsoh98m8jbn0FjCb2nSRs/BcFoDXkoQHHZ1anHSXPQRPYWrDbkXwM6E84jb6IoCs7jG0CR+5Q0/QRKmwXdpU3F3UX72vvA4yDys3/itKCjze1gaVw2BvFS9XkXbhp0na4T7yA3lWBecCc5ySJbG85S1aV+3p2bNfNzX84iFOClsgO9jlXv7OTtmpNMtSawzNc352dXWQt7Ktq4bEoct81MocHmZmd53/fzdKNavp+aEO6OGoiBMmCPAw+iljEfEUXxx8AmYAuQdx7WFibMeWNflfphFZ7UvHDwtNjQWIxoTKpF01Tflbz/yn4g/H1nPV0Bgm4Xb0VjMQZEaw3xwb1aI8Q0EIQL0m/zZL2Ns81dtDo8fPb1o7xwqCrkfWVbE+2vflkVlW2rxLz6IeK+txdD3srBdz4HQaNBmzoTb0MhintwKQl38S7wOLHOvLLPYxpTJIbpV+KtL8Rbc7K7pDnnpj7bQo/Spm87ANu7j+KtPYXp4vsxzryWPU2lACyNz0KXMQ/BHINL2jxgpldRFOxbfw+CgHnlN7kzcx4Kqp4Z9M2a+bkxdQbxBgtryw/h8HZnNNeWH8KtyNybvbDP7/0Tu1SLqO9dks2t+Wo2+a2TvUuooJY1TToNWdGhTUdfqAwUnLkkSVovSdLTwJW+20xJkh72TW+GCfOpQFEU9lW2kRZpJCO6fwHSMJ8eFI9XLTPGdpdWRN+VvNQ0eGO+PlHNgFlyBxbQFAShlzitX0bjXDQmPcaMOFy1rXg7HYOe/9PEZt8QxpcuSifWrOdHHxTxg42FuM/xJe2Joig4Dr5G8+MLcB58DV3GPGK/vQ3rtT9H0A//S1+XPhtkL56awYVYXZKatbLO6hucAZjm3gpA185ncZ/dgS57Mdp+7JbU0ua0QGnTeeo9unY+hzZ5GtbrfwnAbp8/5sXxWQgaLYa81citFXgb+tfJc5fswVN+AEP+NeiS8rgpbQYWrZ5XK45Q2NEQNGsGYNLquDNzHs3uLv7tE6/1yDIvlR0kQmsI2EL52VPeyq7yVtZMjmN+WhSLMqJJjzLyTmEDDo83sJ1XVihqspMXbwkPAwzCQMFZzwYAO3CtJEmlY7ucMGHOPyUtXTTa3WEJjQsId6uaydLHdU9O+ntgpBAyZ5Hzskm6ZTGm7MH9V3sFZ/HWfrfzy3H45TlGguxwU/vKTjqPDz7gMN5sKW5GAB66JIuNX7iI/MQI/na4ms/98xgtXX1LzN6mUtr+egsdr34ZxdVFxA2/IuabmwI9YyMh4BRQcWjQbV3SJtBbMOddEvRxw/QrwBCBY9/ffSXNgU3FjXNuBo8Tx8cv0fH610BnJOquFxAMFhRFYW9TGemmKCaZYwDQi2sAcA9Q2rRv+g0AllXfBsCqM3Jj2gzKu1q57+A/g2bN/HwhawEC8GKp2mP2fp1EtaOd2zPmEKnvLRzr7zX73iVZgCryfNP0JDqcXjad7R5aKG9z4PDI4ZJmCAwUnPXMlbZJktTZ75ZhwnyC2VcZLmleaPgnNXVx3Zmz3HgLAlDYOHjmTKPXYcpKCKnR3JSlBmfaKDMao77f7SxT1ODMXjw88+2edJ6qxFXXRtvHZwYdcBhPOpwePq5sY25qJAkWA5nRJt65Zx5X5yWwo6yVK186GCgzK14P9m1/pPmJJQEx2bjvf4xlxTcQtKMzYW3wTV06j7894Hbe1kq89RKG3OVo9MEV7gWDBeOMawL/P3dK81z8pU3b2z9GsTURce3/Q5emerBKnQ00u7u4OD67W7Jjqhqc+TN45+IuP6i+TlOWo89ZErj/zsx5ABR2NgbNmvmZZInhiuSpHG6r5nBrFS+U7gPg3nMGAfZWtLKjrJVVObEs6NGze4u/tHmq+2IjPKkZOgP9RmeJovhCkJ8BkCTpvrFbVpgw54+A+Gx4GOCCITCpGdudybLotUyKMYWUORsKOquJqIVT0EUNnC3QRVvQJ0TiKG9CdnnQGIYXcCiKQudxtQTm7ejCWdmEKTNhkL3Ghx1lLXhkhdU53Y37VoOOF2+Zwf/uKOG3u8u5+h+H+PtSyN/zCJ7KwwgR8Vhv+z3GeZ8dstn2YGhjM9FlLcJ9dgdyRz2ayOCTuP6ASO8LkPrDOPdWnIf/hS7nYuTIZP5QtIPPZc4lxdS3vO0vbXrrTmOYdjnmZV8JPLa7yVfS7DHpqY3NRJs0FdeZHSgeJ4Kud5AYyJpd9oNe9y+KzSQ3Ip4ztqZ+s2Z+7stexMa6Qv775Eb2tVSwPD4H8Zzhh9/sLAXUXrOezEyyMjXewgdnGulweog06gJ/W+FJzcEZKHP2XWCb79bzZ/8tTJhPPHa3l3cLG0mw6JmeFP7AuFA4d1LTjxgfQaPdTZPdNarni1k2Devswb0QzVOSwSvjKOtfYX0wnFXNeJptgayg7VToDfbnm83FaslrzeTeU5UaQeDhFZN57uocvtL6IpP/dT2eysMYL7qDuB8cwDT/9lEPzPwY594Cityv7hh0B2cG8bIBj2WYdjnmld/Ees3Pea/2NL+SNvPUAPIXljXfRZ+zVLWX6vH89viCs6XnTEgapq4Btx23L6vlx1N9HNfJ/6DLWoQ+d0WvxwRB4MnZ1/OwuHpQw/KVCZOZHBHHvhZ1ivjcrNnHlW3sKGtlRXYsi86pPAiCwC35STi9Cu8WqkLMki8rHQ7OBqff4EySpJcGup3PRYYJM1asL6in1eHh7jmp6DRh+b4LBU+zDbQatOcYnft7YUIpbY4Fgb6zEUxt+vvM4tbMQhtlxl5Ug+wamYbYWKAoCluKm4k26pif1jeT5Crayor/3MAXbW9Qr0viS1E/55Goh3AbY8d0XcbZN4Mg9LFfCqxb9uIu2oomdhLaxNwBjyVo9Viv/yX6nCWBAGdzQ/+lZtNFnyPm6+/3kuZQFIXdzaUkGa1MjugdxPozd+e6Bdg3PQmoWbNgQezF8Vk8lLdiUMNyjSBwb5YakKWZorgqWez1+BOBrFlW0P1v8pU2151Sf5/9k5qTwoNXgxL+NgpzwaIoCi8cqkIjwOfnpo33csKcJxRFwd3SiT42AuGciTG/nIbUNLqlzVAxJEejjTDSVVKPIvc/rdgf3i4X9qJadHERGDPiiMjPQHF7sReNvI9ttDnTbKei3cnKnNheF0ayvZmO179G23M3IDeXYV75LZK+vxf7pBW8dryWW149QoNt5JnNXWUt1HT0Ff3VRqeiz7kEd+kevK19s46eioMoXa0YxEuHlL3b36wGZ+X2VoptoSn7A5y1NdHgtLE0PqvP+QxTloFWj7tH35mnTsJ5bB26jHkYpl0e8nn6447MuVwcl8XD09b0ep/eK2xkW2kLy7NiWJIZE3TfybEW5qdGsr20hbpOZ3hScwiEg7MwFyyHazo4WtvJFbnxYQmNCwivzYni9gaEZHsybZwzZ4IgYJ6SjOxw46weuiCr7VQleGWssyYhCALW6ap0g62gcrSXOmICJc0e/WaK00bLb1fi2P8yuvQ5xHx7C9brHyM1Po71d83l5ulJ7K9q58qXDnKibvgzalXtDm597Sg/3FgY9HG1tKngPLauz2PdJc1LQz6f3evmeHt3gLx5APmLc+nuN+ubnRKMVvTZF+OpOoLcqZYO7ZufBEXBctn3R6X0G6U3sX7pF7k9o1s+4+9Hqrlv3QlMOg0/WTl5wP1vyU/Gq8Af91bg8MjhkmaIhBSciaKYKIridaIo3iSKYnAjuTBhPmH4xS7vm58+zisJcz7x+PvN4vrKWuTG+7TORnkoYCiYpwyvtKkOApSDVkNEvhqU6WIsGNPjcFY04WmfWMbq/uBsdY9+M8f+fyC3lGFaci8x39qCPmNe4DGzXsuzN0zn4RU5VLY7ue7lQ7wrDa83b19lG7ICO8tb8QTJUBpn3QiCJmhp0yVtAo22Ty/XQBxtrcajyNyQmg/A5vqhB2fn9pv5MfgkNVxFW/A2FuM8/C+0KfmqS8EoIysKj20t5nvvFxJj0vPmHXOYnzawBNGN0xPRCPC3w+rnrRiW0QiJQYMzURSvBI4A9wJfAI6JonjdWC8sTJixpMnuYn1BPZNjzazIHtseljATi2CTmn6sBh2ZUcZA4/J4YMqIR9Br6TpbNyQZDGdlE54WG5a8VLQmQ+B+f6A2kQYDutxe9lS0MT0xgtRIdcpQ8bqxb/0D6M1EXPXfQeUxBEHgoaVZvHjzDADuXXeSp3aVDlkuZF+lqqPe6fJytLZvBk4TmYg+dyWe8gN4feKvALK9BU/5AXSTFqAxBy/lBWO/r9/sxtQZTI9MYndTKV3egW3CQA249zSXEm+wMNUafOI20Hcmbca+5bcge9Ws2Sj30Do9Ml/dUMDTe8uZHGvm3c/PY2EIE+7JViOXTIrB6VXfo3DmLDRCefd+CSyTJOlWSZJuBi4GHhvbZYUJM7a8cqwWp1fh3vlpgzbFhvl04W7uK0Dbk6kJEdTbXEEFUM8Hgk6LKTsRT5s9kOULhc5j6iDAuVOhlrwUBJ0GW0HlhNE821PRisMj95rSdB55A7m1AvPiz6PpJxDxc62YyDt3zycjysj/7CjlKxsK6HJ7B9ynJ/t9dm2g9p4FI2Be3sNSyV20DRQZw9TQS5oA+3z9ZgvjMlmdOIUu2cPe5sEFgsvsrdQ4OlgS17ffzI8ubTZCRAKuU//BceAVtIl5g2qqDZWWLje3vXaUdQX1LEyP4t175jE5NvQM2K353QW3cHAWGqEEZ3pJkkr8/5EkqTjE/YCAWfpW38/zRVGsEkVxq+92u+/+DaIo7vLd957vvlxRFHeKorhDFMX/E0Ux3B8XZlTwygovHa7GrNNw+6yB7XfCfPrwBzzBes6g+8ujMAQbp7EiIEgbYmnTa3diP1OLPs6KMa13Jlhj1GPOTcHTasc1jD62seDcfjNFlrFv/h1otJhXfDOkY8xMtrLxCxexKCOKdQX13Lj2SNAG/3PpdHk4Wd/JlDh1UndXeWvQ7YyzrgeNrldp0280PpR+M0VR2N9SwSRzDCmmSNYkqROeoZQ29zSXAqqfZn8IGg2GqatR7C3gdWO59L8QNNqQ1zcYXW4v1798mL2VbdwwLZE3PjeHeIth8B17cK2YgEErYA5PaoZMKAFPuSiK3xFFMdJ3ewgoG3QvQBTFHwB/BfzvxnzgKUmSVvlur/vuz0XNzq2SJOlq331PAY9IkrQcEIAbQ31SYcIMxObiZsrbHNw6I5kYU/+K7WE+fSiKgrOuFV20pV+R14DH5jj2nZlykoZkhG47WQmygnX2pKAZFn9ps/PUxBgM2FzcjEWvCWhjuQo24q0rwDjvNrRxg+vB+UmMMPDm5+Zyx6wUjtR2cMVLBzlUPbD18+HqDrwKXJWXgJhg4ePKtqA+nhpLHIapq/FUHcHbeBZFUXBJmxEssegy54e8xrO2JlrcXSyIzQRgcewkLFo9W0IYCggMAwwQnEG3W4AmLhvjvNtCXlsobCttobDJzmdmJPPnG/Mx64ce+EWb9Pzi0lweWTU5PKkZIqEEZ/ejljKLgVLfz18O8fhngVt6/P8i4FpRFLeLovi8L9hLBmKAt32Zsut6bOsXu30PGFjtL0yYEHnR15h677yJLZ+xv6UCh3fi6VN9knE3daI4PX2ySz3xy2kcre04X8vqg9ZkwJgeqxqh2wY2QvcPAgg6DRHTgxtrmzIT0FpN2AtrkD2hl//GgrLWLs40d7E8KxajToOiKOqEIWBZ9Z0hH8+o0/C7a0R+vmYKDTYXN71yhLdO9R/U+kuaC9OjuGRSDHa3zOGa4O+1cY769eU48hbehiLk1goMeauHlJny95stjFPfG6NWx7L4HAo7G6mwB8/a+dnTVEaM3kR+5MBzeIYZ16DPXYn1pv9F0I7uBecWnzH95+emjqgF5N756XxpQfDfzzB9GdQfRJKkeuD24RxckqQ3RVHM7nHXPuCvkiQdFEXxJ8BPgd8DT/r+jQN2iaK4DxAkSfI3SHQAg3YexsZa0OlGL537aSAxsa+444VMcZONTcXNXJwVy5pZIwvOxvK13VB+kht3vcjDs9fwq4tGf+rqk8Jov8YNxeqXdryY2u+xV8dayIwx8c8Tdfy/a/PJjhuf6TJ5ThaVlc1oG9pJHMBgvf1MLZ42O/Hzc0jOjOt3O/dFOdRuK0Bf30bcnO5MzPn+jHijqAmAG+ekkZgYiU3aQWPZPqxzryd19uJhH/fRa/NZODmez718iK9sKKDc5uYXV01Dc06m5lBDB0Q0c0g4yeTsVDgER5rsXDuvb+DgXXUHhW9+G++Jf2OIjwcg7qJriD3nNRvoNTxeqP7OXTl5Gonx6nY3TJ7BB/WFHHBUMT8rM+h+5Z0tlHe1ckPmDJKTBp6IhEiS/3vrINsMHUVR2FraSrRJx9Vz0tFpx6+76EL7Lus3OBNFsYTe5ue9kCRpYHGT4KyTJMl/qbAO+ANQCzwrSZIHqBdF8TAgAj3zzJHAwJcYQEvLxBoVH28SEyNpaBi/q/+JyFNbzqIocPes5BG9NmP92v7y0EcA/K1wP9/KvAStcOG1XI7Fa9xYWAOAO8oy4LEfXp7D194u4LtvHee5G/NHdQ2hIiep04D1R8ogO7jHI0DDjtMA6KamDvichOwk2FZAzd4ivGlqEDcenxEbjlYDsCBRfQ/a3lLny3TLvjXitSxIsPCfu+dx9xvH+dWmMxwqb+GZ66djkx1sqi/iw/pCPtAUQY6XpyXIi0gEprPxVB1fnpMa5Iga9OJlOE/+h8YP/giAM+2SXusc7DXcUV1MhNZAisca2G6hWQ0E1xef4Oa4GUH3e7vyJAAXRaaP2+d4cbOdkmY714kJtDSPX5n/0/xd1l/QOdAn/ipg9QC34bBRFMVFvp8vBQ6iliv/CSCKohWYCRQAh0VRXOXb9mpgxzDPGSYMoDa2vnK0hniznhum9f9lN94cbKkMWL3UODoCvnphRo6rugWNUY+un0lNP7fkJzEvNZJ1BfW9JvvOJ7oYC/r4SBzljcju4OVtV0M7XUW16JOiMKQMLO2gj7NiSInBUd6Ip3PgUulY4fLKbC9rYUqcmewYM57qE7hOf4A+Zyn67OFnzXoyNSGC/3x+PnNz4P3Wg+S/+0dmffQk3zm2gXdrT4PbQB55XBKfTZGtgexUDweq2nF6gjsy+Eub3oYzaJOnoY0JXRexxdWF1NnA/Nj0Xur6ORFx5Fji2N5YjFsOXmbe0ajO4S0NIj57vgho0eX0n5ENMzYMFJzNlSSpTJKkMqDd/7Pv/8MqcwJfBX7nm968BHhMkqT3gCJRFPcCHwA/liSpEfgv4OeiKO4BDMAbwzxnmDAArD/dQIvDw11zUjHqJm4m6tnivQD8V54qcvlG1bHxXM6nBm+nA0+bHUNa7KDK6RpB4OdrpgDw6Kaz4yZB0W2E3hj08dYdBQDEXDItJDX4iPwMUMBeMD6aZ/sq27C75cCUpn3LbwEwr3loxMfu9Dh5t6aAh45uYNWuP3AkYhskl+HQtaOzx3Jf2nJ+lHwbFC3iwYxVfHPKJQAYE+vo8sgcrgk+SGDIvxp06kzbUKY0AXY1lQKwJMiQw5qkKXR6XBxo6TuksbOxhH9VHiPTHM2MqPGbKPf3m4WDs/PPQD1nPwXW+37e2G/2nwAAIABJREFUhDpp6edzwOOhnECSpFJgie/nQ8DSINv06QKVJKkQWBnKOcKECYW/HapCAL4wgQcByu2tvF1zihlRyXx/6ipeqzjC2zUF/HrmNZhHudH3QsNvhzTQMEBPlmTGcL2YyNtSA+tPN3DT9POfbTVPSaZ93xm6ztZhye39Jd1V2oCjrBFTVgLmAXrSemIRU2nZdgrbqUoiFwynM2VkBCQ0JsfhbSrBeeRNtKkzMEy7YljHK7E181F9ER/UFbKnuQyXLwuVYLBwe8YcrkiaSkW1mV9sKuMfpQI5saqMysL0KMSEVDLN0ZQ6ykCTws6y1qAekRpTJIb8q3Ad+/eQg7PtjcUArEyY0uexNYm5PF+6n80NZ3pNY9Y7O/nK4bfQCALPzr+1V8btfOLweNlV3oqYYAnb240DAwVnQj8/B/t/mDATmiM17Ryq6eDK3HgyJ/AHzV9KPkZG4auTL0YjCNyaPounz+7iw7pCbkgL3psSJjSc1WpgYEwLPQvwyKrJbDzTyC+2nOWqvHhM53ngKGCEXlyHIisBo3ZFVmjd7suaLZ8e8vG0JgPmnCS6ztTirm+HQRvNR5edZa3oNQIXT4rBvuExUGQsqx8K2QPSLXvZ11zBh/WFfFhfRFFnd0ZxZlQKVyTncXnSVObFpHdPFqbBrIQY7v/3SQqb7EQZtYgJEWgEgTsy5/F44VaIbmBXeQLf6+e81usewzX5EvR5a4b0fLc1FGPVGZgfpBS6ND4bg0bL5voz/GSaGvR5FZmvHnqLemcnP5t+OQtjgw8LnA8+9mU5w1mz8WHQaU0f5+b0J4bMdJgwIfLiIbUJ+d4J7KPZ7nawtuIQKcZIbkqbCcCt6bN5+uwu3qg6Hg7ORoizugW0Gowpg1vO+MmJNfPARRk8s6+CPx+o4ltLQtfgGg0EQcA8OZnO4+U4q1swZahflLZTFbibOoiYkYEhcWgBVkR+Bl1nalXNs5nnT9qgw+nhWF0HF6VFoa8+iG3vi2gTpgR6uvqjyWVnU30RH9UXsbn+DO0eVWjWrNFxVbLIZUl5XJaUR5q5/9dheXYs739hPl9ZX8DC9KhA4HZH5lx+U7gVU1I9B86k4fB4gwbg2rhJmJc9OKTnW25vpcTezFXJYtDsV4TOwJK4LLY3FlPn6CTZZOWpou3saCrhqmSRr06+eEjnG222FKuZ5p7ep2HOHwMFZ+EALMynguYuN+sK6smJNbMqZ+L6aL5cfohOj4vv5C7H4NNRmh6VxIyoZDbVF9HsshNnCJsGDwfZ7cFV344hJRphiNmvh5ZO4rXjNfxudxl3zEohMWJwdfROl4dHN50lwqDlF5fmDnfZgFra7DxeTldxLaaMOGSXh7bdhQg6LdFLxaEfLzsRjdmAXapGCSK+Olbsr1LNxpenm+l4/R5AwfrZP/Xx0FQUhVMd9XxYV8gH9YUcbKkMfBllmqP5TPpsLk/OY2l89pBK/ZNjLXzwxYt63ZdujmZNYi6bGs6AroMDVe0syxqdz4jukmb/5eM1iVPY3ljM1sazpJoieaJwG5nmaJ6ec2PI2cSxYktJM2adhoszQ7+YCTN6DBSc5YmiuDnIzwKqon+YMJ8IXjtWi8Mj88V5E9dH0y17+UvJx1i0ej4/qfcXyGfSZ/Pzgg/ZUHOKL2YtGKcVfrJx1bSCogyppOkn2qTn+8tyePjDIh7fWcpvrpw64PaVbQ7uefM4J+tV6YHvXDxpyHY3PTFldhuhxyyfTsfBYrw2J1GL89BZh16iF7QaLGIanUdKaSusgYTzU9rcU6FOvV5f8yLe+kLMy76CYXLvFuROj4ub9/yNo22q5IkGgUVxk7g8SS1XTotMHPWg5a5J89XgLLaWXeWtQYOzlw5X8+KhKt68I3Trom0NvuAscYDgLCmXnxV8yD8rj1LQXo9O0PCX+bcRYzAP78mMEtXtDgoabFw6Oe68l/LDqAwUnF03wGNhwnwikBWFvx2uwqzTcMfsieuj+XbNKaoc7dyfvbDPB/MtaTP5fwUf8kblsXBwNkwCwwDpw8uKfH5uKi8cquIfR6q5f3460xKD+3IerG7n828ep8HmJifWTElLFzvKWkc0TCDotJiyEuk6U4uzoon2A8VoLEaiRtDQb83PoPNIKU2HS4m6fPawjzMUdpe3MttTSNKRP6OJzybi6p/22eZXpzdxtK2GVYlTuD1jDqsTp4x5tvjK5KnEGyw0xdSxo6yJHy7P6fX4zrIWfvRBIV4FNhY1cWdQPbTeyIrCjsZi0kxRTImI73c70ZpImikqIJvxWP6VzI8d/9aLLSW+kma432zc6HcMRJKkbQPdzuciw4QZLpuLmyltdXBzftKE9dFUFIVni/ciAF/OWdLn8VRzFMsSctjXUkGpbWIYV3/SCARnqcMLzvRaDT9bPQVZgZ9tORt0m7dO1XHT2sM02d386rJcnr1BbdTfXjry98zsM0JvfOcQisdLzNKp/XqDhoI+KQp9nJW2gipkh3vE6xsMu9vLqeomftP1B1BkIm/7E4Kxd4C7t6mMv5buI8+awN8XfI5b02edlzK+XqPljsy5oPNwsLMYu7tbd6yq3cGX158KlFX90hKDcaK9lmZ3FysTJw+Y6RMEgTWJ6iTntSnT+VLO6Gi9jRT/81wT7jcbNyau2FOYMKPA03vKAXjgoonr6ba3uZwjbdVcnTKNnIjgH4a3pavZjbeqj5/PpX0qUGQFZ00LutgItBbjsI9z2ZQ4VmTHsrm4mc3FTYH7ZUXhf3eU8JUNBRh0Gl65bRYPLMhgdnIkMSYd20qaR6yTZs5JAgFkpxt9fCSW/AyUEfiuCoJARH4GilfGJlWPaG2hcLCqnQc6XyXDWYZp6Zcw5C7v9XiX1813jm1AAH47+wZM2uEHnsPhLp+RuTemJiA67PB4ufetkzTa3fzq8jzSo4xsL23BKw/+Xm5tUAP4gfrN/HxjyiV8Y8pSfj/nhnHvMwPwyDLbSlqYFG1iStz4llcvZMLBWZhPLXsrWtlb2cblU+KYmTywIvx48n/FewAGnM66NmU6Jo2ON6uOj5sg6icVd1MHimtgs/NQEHzCtALw081n8cgydreXB9ef4sldZWTFmPjPPfNZM1ktY2k1AsuyYqhod1LS2jWic2vNBozpauAes2Iana/eR8uTS1B8k4vDwTI9HQSwFfQVQR1tio7t5P6ut3BGZmC99ud9Hv9N4VaKbc18OWcxi+LOv3zEFGs80yxpYG3l3ZIKFEXhRx8UcaS2g8/NSuHeeWmszomjxeHhaO3gNkLbfMMAy0MIziZb43l0+uVE6SeGxM+h6g7anB5W5Qwu1hxm7AgpOBNFMVsUxWtFUdSKopgz+B5hwow/v/dlzb598fjZnwxGTVc7G+sk5kWnsWgATaNIvZErk0WKOhs55muWDhMaziqfvln6yEs0M5Ks3DUnFanRzlO7yrhp7RHWn25gSUY0739+PmJC71Ldymz1nNtKRl7ajLt0FvHXzMOYFonzxLt46wtxHnlz2MfTWU1ETknGVdOKu2XsfBMVj5P5+x5Bi4z5M39AMPa+UDrcWsUzZ/eQZYnlR+LQdMRGky/lqP2c7zee4O9HanjlWC1zUqw8fmUegiAEJr0HK212ed3say5nRlQyicbgvYkTmZ5CwWHGj0GDM1EUbwfeBp4G4oE9oijePdYLCxNmJByv7WBTcTNLM6NZlDFxR8E31Kj9LLdnzh30KvUzGbOAsJ3TUBmqM8Bg/HB5NhEGLU/sKuNIbQd3zErhjX6m+FZkq+fcNgp9Z/o4KxFiGp7y/eDLmNm3/2lEmdT4eeq19lhmzzp2PEe6o4SNMTcQP6O3wr5L9vKdoxuQUXhq9vVE6IY/1TpSbp00E62so1ZXzsMfSsSb9bx488zAtOKK7Fg0wuDB2cfN5Thlb0glzYnI1pJmdBqB5aMkKRJmeISSOfshquVSuyRJ9cA84OExXVWYMCPk93t9WbOlEzdrBvDv6hNoBYHrU/MH3XZ1Yi5xejNvVZ/AI58/fapPOs7qFjRmA7qY0cliJFuN/Gh5NjqNwKOrJ/O7a0QM2uAfpTmxZiZFm9hZFlqvUii4z6jzWJroNLzVx3Gf2T7sY8XMyEDQa7EVVI1ZubzlpKrCVDLnG30e+13RDgo66rln0nyWJ4xvUcai1ZNvnAx6F96IJv58Y34v26IYk555qVEcrGqn3dF/v59fQmPFJzA4a7K7OFzTwaL0KCKN57fvL0xvQgnOvJIkBYrskiTVAOFvhjATlqImG2+fbmBOipVV2d1Xf45Dr9P06zl4m8vGcXXdlNpaONhaxfKEySGVPwwaLTemzaDBaQsIXIYZGE9HF96OLowhmJ0PhQcXZlL83WV8Y/GkQY+7MjuWdqeXIyH0KoWC68x2EDRE3v4MAF3b/zjsY2kNOix5qXjbuwLl39FEURQ0NUeo0iQxN693sHKyvY7fndlBmimKn06/fNTPPRy+MmUhAOLUDpZn980crc6JxavA9rL+M6HbGosxaLQsiZ/YF4bB2FbagkLYFWAiEEpwdlIUxW8AelEU54qi+GfgyBivK0yYYfOHvRUoqL1m/i9OT9UxOv75DeSmEpxH143vAn2srzkBwM1DsGW61Te1+WZVeGozFEa7pNmTUMU5V/p6lUZDUkNxduIpP4guYx6GqWvQZS/BVbART5007GNG5Ku6WraCqhGv71zk1kpMzmZO6HJZ3MNU3CPLfOfoejyKzBOzrpswzfC35eYyKyqVIlcFtY6+wbQ/aOmvtNnotHGivZbFsZOwDMG9YKKwxd9vFtY3G3dCCc6+DqQDXcALQDvwtbFcVJgww6WizcEbJ+vIi7dwzdQEAOSuNtr+fk+gT8clbRrPJQZYV3USvaDhmpTQjasXxmYwyRLDu7UF2DyuMVzdp4OA2fkoDAMMl2VZsQjAthA1sgbCXbIHZA/63BUAWFaqpcKuHc/Q4fRwyV/28ZMPi4Z0TGNGPNpIE/bCGmSPd/AdhoCz/AAAtVH5JPWwvXqmeDdH22q4LX02lyXnjeo5R8o9WfPxKgqvVfTNQcxLjSTaqGNrcXB5FL+Y7IrE0Eu0+yrbuP31o9R1Dn/ydjRwemQ+OttMYoSeGRN4uv1CYdDgTJIkmyRJD0uStFCSpPmSJH2vZ5kzTJiJxDMfV+CRFb61ZBIaQWBj7WnW/eFy5KYSzGv+C136HNwle1CcI59O8zaV0vLHK3BXHBryvlJHA6c66rg0KY/oIWQNBEHgM+mzsXvdvD+CbMmFgrOqBUGrwZA0fkMhcWY9s1Os7K9qx+YaWfDjOrMDAIMvODPMuBZNXDaOA6/y3NYjFDXZefV4LU5P6J0ngiBgnpKC4vLgbmgf0frOpUbap65z0rzAfWc6G/lN4VYSjRE8NuOqUT3faHBL2kwsWj1rKw4jnxOA6TQalmer8ijFLX3lUbY1+vXNpoR8vucPVrGlpIW/Hhz9zOVQeOtUHU1dbj47M2XC2txdSPQbnImiKIui6A1yk0VRHN3LqzBhRoF6m4u1x2rIjDJyS34SJbZmdqx/mBX1p6lJnUnElT9BL14KXheusztGfL6uXc/hKd2LY//aIe/772q1pHnTEEqafj6T7pvarByfqc1Pis6a7HTjbmzHkBKD0E/D/vliRXYsbllhb0XriI7jPrMNtHr02aqThKDRYl7+VfA4sO1+HoBOl5fdQzyPIT5SPX5z54jWdy5dpeqFS+Y0db2yovCdoxtwyl7+Z+Y1xI6zh2QwovQmbkidQZm9hV1NpX0e91sa+UuAfhRFYVtDMbF6M7OiQ7OKkxUlUO5++UgNjlHOXIaKoig8u78SrQAPXDT+9lFhBrZv0kiSpA1y00iSFHZCDTPh+PP+Shwema8vmYQHL49/8DhfL9pMgyGC5xffh6DVYZiqjvK7C0dW2lQ8bhwHXwfAU7ZvaPsqCuuqT2DR6rkyWRzyuXOtCcyLTmNr41kaRiEDGCpu2cv9B//FNbteoMs79pY/I8VZ2wrK2PSbDZWA3tkI+s7krlY8VUfRTVrQy/rItPBuurRWPmt/hy/MVM+zsagx6DE6nB6e2lVK6zmWTbo4tYw1msGZoihENp2gVJPGolxVw++F0n3sa6ng+tT8kCaUx4u7fJm+teV9s+KB4OycMnWxrZkqRzvLEnLQCqFdDJyo66Spy41eI9DU5WZ9QcMIVz48tpe1UNBg48bpSaRHTYz+vwudUHTOYkRR/J0oisdEUTwkiuJjoihOvMudMBc0rQ43LxyqIjFCzx2zUvjVgdf52v6/oxHg0Vk3cdDXb6bPXoxgtI6476zz2H9QbOoXoKf6OIoz9C+14+21FNuauSJ56rB1nW5Nn4VXUVjvy8CNNYqi8MPj7/J2zSkOtlYGXA0mMo4y9f2ZCMHZoowoTDrNiIIzd/FuUORASdPPgUaZVwxXkKC08dOEw8SYdGw80xQ0w/n68Vr+Z0cpv9jae9pXH68GZ55RDM48jWexeDsosYikR5mo7mrnl6c3E6M38euZV4/aecaCRbGZ5FkTeKe2gGaXvddjGdEm8uIt7Cpv7VU+3toYumVTYB/f78MPlmejEeCFQ+NT2nx2n6pz9+DCiWtzd6ERSnj/MuAB7gLuBazAX8dyUWHCDJVnPq6g0+Xla4sy2VBzlAUf/Q8prk5MVz2KLXMBxbZmXLIXQWdAP2U53oYzg0pqeGpO9btN646/AaCfuhoUGXf5wZDXuq7KX9KcGfI+53JT+ky0gsAb52lq849nd/NyxWFmRaWQaIzg6TM7qepqOy/nHg5em5POY2VoLEaMmQnjvRxMOi2LM6IpaLANu/Hbr2+mn9IdnMmKwqObzrDWdB2KRodrxzNcOjmWqnYnJ+r7BlrH69T7XjlaQ3Fzd9ChNRvQmA2jmjkrO6kG8O6UOQD8+OR72Lwufjr9cpKME7vhXBAE7sici0v28n5t397O1Tmx2N0y+yq7/wa2N6jDACsTQw/O/EMid85O5YrceA7XdHCoenT7/gajsNHGpuJmFmdEMy816ryeO0z/hBKcZfuGAI5LknRUkqTvAHPGemFhwoRKg83Fnw9UkhRh4OI8PWc2/JilLeV4xMuIWv0QYmQCHkWm2KaaVRtEtbQ5UPZMtjXR8odLaX+prxmG3NlIx9F30KXNxrz0SwC4QyxtyorC+pqTROqMrEnMHepTDZBktLIyYQqHWqsos49comEg3qkp4BenPyLVFMnaRXfyyLRLsXvd/L+Cj8b0vCOhbV8RittL9JI8NPqJ0YXhdwvYUTa8vjPXme2gM6HPWhi4b92peg7VdLBkxnRMc27GW1fA7ebTAHxwpqnPMU76AjavAo/vLO31mD7OiqfNjjJKfU8NRerfRNyUhWysk/hP7WkWx03ijsx5g+w5MbgsSZ0i3e6bwOzJKl9pc2upGly5ZS87m0rIssSSZQktU9vl9rKvso0ZSREkRhi439fr9fx5Hgx47oCaNftKOGs2oQhV52y5/z+iKM4GhjarHSbMGPL0nnLsbpmvLUnl+Y9+zQOlu3FGpZJ81/MIGg1iZBIAhR1qP8e5wdlvi7bz2Y9fxiV3fyk5Pn4JXDY8VUeR2+t6nc9x6HXwejAuvBN91iIAPKUfh7TWAy2VVHa1cU3KNEzakSlwX5E8FYDtDWMnSHu4tYqvH34Li1bPywvvJMUUye0Zc5kXnca66hPsbZoYgr498bTa6TxWji7agnXm+TfR7g+/IPJwJDXkzka8NSfR5yxB8E332t1eHttWjEEr8MiqyZh9shqzyt9ApxHYWNQ7OHN7ZU432pidbGV2spW3TtVztLo786OPs4IC7tbR6WPU1hzFi4asGRfx8In30Asanph13SdmElC0JpJktLKzqaRPifjizBgMWoEtxeqF0cHWKjo8TlYnhj6lubeyDadXCfQjrsiKJTfOzPrT9TTYzo9MTqPdxb9O1JEVY+KqvPHPMIfpJpTgbBqwTRTFAlEUTwAHgaWiKJaIohiWKQ8zrlS3O/jb4SrSowwU2T/g24deQ9HoSL73VTS+K1jRmgjAaV9wpk2YgiY+G/eZbZR3NPBE4Ta2NpzllYrDACheN127/hw4h+vM1l7ndBx4BbQ6TPM+iyYyCU18Du6yfSghWCqtq1bLkDePoKTpx293szPIRNloUGFv5e79r+KUvfxl/mcCE2gaQeBXvp6hh0++h1eZWIYhrXskkBWiLxHHfUqzJzOSrcSb9TRIu/G21Q5pX7dvulg/JXCdzHP7K6lqd/LgwgyyYszoM+ahiclAqdzP0sxojtR2UNPRXUItarLj8irMSrby45Vq6e2R97pLdro4dcjA3TTy0qbs9ZDccZpyfSavtxynsquNr09ZihiZOOJjny8EQWBZfA71zk6kzt6N+hEGtUx9or6Tug4nWxvUfrOhBGfbStTAzi9SLAgC91+UjsursPZozSg9i4F56XA1Do/MlxdkoNV8MoLmC4VQPrluAHKAq4BrgVxgEbAKWD1mKwsTJgSe2l2G06uwdGY712x7iliPA+uN/4s+c35gG/8XQmGPD1jD1EtRHO38c++LuH3Bxe+KduDwenAeW4/cVo1+8jIAXIVbA/t5qo7hrT5O5Nzr0VjVK0199mKUrla8DQMnlD2yzPrqU8QbLKPiI5gbEU+y0cqOxr5X9iOl3e3g7v2v0uC08diMK7ncl6Xzc1FsBrdnzOFkex0vB5loGy9cDe3YT1ejT4rCMjV1vJfTC40gcEtiC7+v+S61r/b1mRwIl88/0z8MUNfp5Pd7ykiw6PnOxd02QbqMuSgd9dyUof5O9yxt+kuaM5OtrM6J5eLMaN45VRfom9LHjd5QQMmZY1gUB/Vxefy59GOyLLE8lLdi8B0nGCt9YrLBstN+t4APpHq2NpxFJ2hYFh/63/W20maMWoElGd0afJ+dmUKEQcvfDlePuX+uw+Pl+YNVRBm13DErNOmPMOePUIKzGmA2sLLnTZKkMkmSJl5NI8wFQ2lrF68cqyUtyUl78Vrmttcgz7yeiKUP9NouzRSFVWfoHZyJlwHgOP0RojWRB3OWUO1oZ235Ibp2PAOCgPW2pxEi4nEXbQ0EP479LwMQs+yLgWPpsxYD4B6ktLm7uZRGl43rUqej14y8D0oQBJYnTKbRZetzZR+Mf1efCJR2B8Ijy3zp0BsUdNRzf/ZCHshZHHS7R6ZdilVn4NenN9Pq6ivIOR607lL7rWIumTaqXpqjxa0d69GgoC3eOiQhZPeZ7QhGKzrfRcevtpVgd8v8cHlOL4NqXbraDrzKWA7AxjPdkhr+AYEZSVYEQQhkz361rRhFUQLB2WgMBZQeVs3OD8RG4FUUHp91LeZPoJ3Rct/k5Y6mvn1nfkmNDacrOdxaxcLYTCL1xpCOW29zcbLexqKMaMw9eiIjjTpun5lMdYeT94v69gyOJutO1dNod3PP3DSsYZPzCUcowdl7wEOoWTL/bdUYrilMmJB4YmcpHsGFI+0Ed1So05LxV/13ny9lQRAQrYmc7WzC7esr0+cuxytoWdpcyvenruTbucuwaPVsPPAqnvIDGPKvRpeYiyFvJXJbFd6GIhSPC8ehfyJYE7HO7pYC0GerwYunbODg7I3K0Stp+lmekA1028b0R0F7PV8+9CY/K/hwwO0UReHHJ99jS8NZLkvK4xf5/Su4J5si+W7eCprdXTzeI7s4Xjgqm3CUNGDMiMOUNfH6Z2R7CxklGwDQyi66iraGtJ+3rQZvQxH6nIsRtHr2VrTy6vFa8hMjuGtO74yHLmMuALEtp8hPjGBHaQudLg+gamoB5CeqQdjijGiunZ7E7oo2tpa2oI00I+i0Iw7OZHsLk478AYegZ11MErekzRxSuW8ikWGOZnJEHLuaSvtksvITI0iKMLCxqlA1Cx/Cc9xR6i9p9rUVu2++OhjwwhgOBoRFZyc+oQRnCZIkrZEk6d4et/vGfGVhwgxAYaONf52sJWJyEQmtJSxsq0SftxpdyrSg24uRibgVmRKb2oxd5HZyKCqVGR11XBOVTIIxggeyF3FtyU4AzMtV+1h9nlq5dxduwVWwEcXejGn+7Qi67iyANmU6gjFywMzZ5vozvFZ5hMkRcSyOmzQqrwEQKKMMFpy9XXMKgIJzhhvO5bmSvfyt7AD5kcn8ef6t6DQDf0R8OWcJUyLiebFsP6cGOfZYoigKrTt9WbNlEzNr5vj47wieLk4nrATg2Pa3QtrPfVYtaepzV+L2yvxgYyEAv7lqap/3R5+hTkJ6Ko9wVV4CTq/CtpIWFEXhVL2NrBgTUabuLMkvr1H/Xn61TS3b6eIicLfYUOThl8kr3vgxMZ4Wns1eis2ayM/zrxz2sSYCyxNy6PS4ONzWO1gSBIFVObF06NVs9JD6zXzBmX9IpCdTEyJYnhXDzvJWTjeMjci0X3T2hmlh0dmJSijB2WZRFC8TRXHidNaGueB5fGcpSkI5NmMD32tSm3HNyx7sd3v/xKbkK+v9pnAru+Ky0aDg8WUwvpqQzRUNhZyxJuP22eMY8lYB4CraGihpmhbc2evYgkaLLmsB3vpCZFvfUkRVVxtfO/wWBo2W5+bdGrJ6eChkWmLIssSyu6l0wMb8d2rV4KzK0U6HO7jO1q7GUn566gOSjVbWLroDq27wEo1Bo+WxGVfiVRQeOfn+uFk7dRXX46ppxZybjDF1/EVnz0XxetQhE72F/Af+QrvGSkTpFkqa7YPu6z7jD85W8H/7KzndaOeeuaksTO/rF6qJTEITnYan6ghX5sUDsPFME7WdLpq63IhJJv5edjDg8DAnLZqbpydxtLaTd6RGtbTplfG2D69M7Tq7C8uxtUimVF7MnMdPpl1Ksmlia5oNxgp/aTOYpEZ2LFibsQhGZkWH1uOoKArbSpuJN+uZ2Y/B+AMXqbIWYyVK+/wB9bhh0dmJSyjfEmXAB4A77K0ZZiJwvK6DDRWFkFSKqNGOb1iZAAAgAElEQVRxSeUhNLFZGKb3f4Xun9iUOhs40V7LhppTNE5aAHRLahj3v4xOUfhb+hxeKjsAgDYuC018Dq6irbhOf4AufS66IGXJQN9Z2f5e97tkLw8cfINmdxePzbiKOTFpI38BzmFFQg7tHifH+5kALOxoCEyqQu/BiJ48U7wbBfjrRbeRbg7dKPzSpDwuT8pjZ1Mp79QWDGnto4EiK7TtOg0CxCwduh3W+cB16j/IrRWYFtxBfEIKjuxVpMiN/Hbde4MGtK6i7QjmGGosuTy5s5QEi57/XtW/0KkuYy5yey2zLDaSrQY+PNPE0doOAOqsBXzv+Ds8X9qty/fD5dloBfifHSVoY30Tm80dQ36OisdJxxvfQkbgp9PWkBIRx92T5g++4wRnWXwOAsGHAtKTvKB3YXEmhCwRUtRkp6bDxfLsmH73uSI3nowoI/88UUun0zOS5feh3ubiw7NNzE62Mj8tLDo7UQklOPsyqhBt2FszzKghdzbS/vK9eOr6qm8Pxi92FEBGAVpBw18FL7i7MF/yJYQBmuz9E5tSRwOPS1sBuH3R3QgRCbgLN6M4bTj2vACWeLanzeWPZ3dh86haQ4a81eCygezFtPCuoMfv7jvrLUb7i4IPOdhayS1ps/jCpIuG/FxDwV/a3N4YXNnGHzAtjVOn+qQgQwHVXe1sqj/DvOi0YZVdf5F/JXpBw89OfXDefTftUhXupk4i8jPQ+wy8JxpdO54FwLzsKwBMXnwjANayzbx2vH9ZDW9TKXJLGfrJy3h4UzFdHpmfr5lCjKn/5nr/UIC36ihXTImnqcvN349Ug7mdYy61JPpOTXcQPTnOwp2zUylqsrO/Uw0EhtN3Zt/0JHJDEa/ELed4TApfnXzxqAy+jDexBjOzolM50FoZ+Ezwc7hDnYlrbogMOYjylzT9+mbB0GoE7pydit0t805hcJ/U4fLWyTq8CnwuPKE5oQl1WnNsx0bCXHA49q/FeeRNbO8+OqT9ylu72Or+GPRufjptNQmH/gV6M6ZFfZX8e+Kf2NzaeJb36yQWxmayOikPw9TVyO01dL77KEpXK5al93Nv7jIaXXZeKFWzYP7SJlo9xnmfCXp83aQFIAi9+s7eqSnguZKPybMm8MTs68asD+oS31BAf3pnb9ecQi9o+GbuJQCc7qzvs80rFYeRUYad6Zhsjecrky+moquNP53dPaxjDAdFlmn7+AxoBKIX55238w4FT9Ux3MU70U9dg85ndG+cdhmKoGG15yA/3Xy2X0snl0/frDBqHh+ebWZ5VgyfmZE84Pn8QwGeyu7S5kdnmyCtCAXINEdzqLWKyh72W/91SRZGrcCfTvsU74cYnHnqJOybn6RZn8jvp84nSmfizk+IE0AorEjIwSV7+bi5vNf9W3z6ZnKH2iMWCgF9syD9Zj25bab6Pv9zgOB9qCiKwqvHa9FrBG7OTxq144YZfUIJzpqAE6IoviyK4gv+21gvLMynG9ep9wL/egbRB+vJ2mPVENFCqj6OLzrakFvKMM2/HY2l/6tQ6J7YbHM7APiRuBpBEAJuAY7dfwGtHtPSB3hw8hKidEb+dHYXnR4n+ryVCKYojHNvRRMRH/T4GnM02pR83OUHUbxuim3NfPvoeixaPc9fdBvWYRqch0KS0cq0yEQ+birr5XIAUGxr5mR7HasSp7AgVlXLPzdz5lVkXqk4TMT/Z++9w9w6y/z9+xz1NqPpnt7skXsvcUvimPReCIHQsiy7wG9hYckusIS6LGVZCAsssLQvAdIbIc1O7Nip7nEd27Kn91406tI55/fHkTRN0miKW5j7uuaaGek9RdLRe573KZ9Ho+f2wqlXkn5h3mbyDFZ+VvPWqBv/ucTrbCPc78GysAhtuvm8HHOy+N4a7TUDEC1Z6ErXsix0GsXbxwM7asZtpyhKLM/xW00l6DUCP7imakIjXxstCmg9wubSDExaETLbweTmzoIlfHauqt/34gjvWUGakftWFrLfHUJC4VB9DQEpNU+QIssMPfU5kEJ8PedOvEYNnyxfi+UcXvPnm81x8s68Uoi9fY1UWnIhbGBXCp0fQpLM280DVGaaKEpPnohfajexvjidt5oGaB70T7jvPl8IeYIQ+YlON6e6PVw9N4ss83vn83kvkopx9iLwTeBV4PURP7PMMiVkbx+hhr0IkebHvjd+kdJ2kqzwyKlGEBXWZOXjj6j4JysEGElVJLS5MassJgKrr9oae96w7A40aXNI1xn5dMV6+kI+flO/D9GcQeZXjmJ7/8+S7l9Xug5CXjwtR/j7Q08yFA7wX0tuZL7t3K9QN2WV45PDvNvfMurxFyJVmjflLyBdZyTfaBtnnL3eXUeLb5A7ChfHLQJQZAU5MHGo0qo18MCC9+GTw/yqbs80Xk1qKLIy7DVbO/U+pecS2d2D//CTaLIr0M+/ZtRzhgXXIigyH7We4rnT3Ww7Ozp8Fap7m3D9HupzNrM/kMdnLythbtbEBqgmbQ5i2hzCLUcw6TRcVm6CvHo0ipZvLryGG+bMR4Bx+YGfW1+CUa+lSRegwK9l/xgvUSL8+x8iXL+Huvyt7CrLRCdo+UTZ2pS2vVRYl1mCXtSM0jvb29tIQJa4tWwBVr2GXXUTG2eH2lx4gtKEXrMoH1ishh6fqk5eCX2sY4glP3uH7+xO3rQnGkKfDWle/CQ0zhwOR/TT25XgZ5ZZpkTw9KugyJi2fB4xswz/gYfjVjmO5Y3GfjqDauhgTdhH6OwudBWb0OYvSum4V2RXYBS1fHX+sEEmpuWhKVgCgOnyz8Qe/4fyy7DrjPy6fh9eKYRoyUKYoHpRF7khvbDvj5xwdfCRkpXcXbQspXObLlFjc6xY5gvtp9AKItflqZIJDlsubX4XrtDwSvxPEYX/RCHN3pcP0/q715CDE3tSbpyzAIAa97nPhLgkvGZ7/x+EAxg3/iPCGNmLaAHLfdaT6DUC/7b9DC7/8Hvs3fFfAHw1dAvlGSb+eX3quYDawuXIg23IQ114MmpAE2adbhl5Riu5BiuXZZayv6+JNu+whzPbrOejq7KoMXhJk7XsaxrvzRuL5OrA88LXwZjG5203gj7AB4uWk22wpHyulwJmjY41GcUcH2ynL6hW2EZDmjcUzWdzaQYNA37q+5NXue6unzjfbCQ3z8/BpBV54kRH0sKR/3qzgZCs8H8HWqjrj18BHJRknjnZRbZZx9aK1I4/y4Ujmefst5HfrwO7Ge01231Oz2qW9zTBk9sAMCy6EdPmT0HYj2/P7ybc7pGj7WBQJ791Z3YAqXvNAO4oXELtdV9mdcbo8nHbnQ9ivft/YxpRADadgftK19Ab9PJEy9GU9h8tCgg07GW+LYfvLEos4DrTbMgqQ0QYFXZp8g5wZLCNTdnlZOhNwHDV6hm36qXp9LvZ3ulkUVoey9PHV5L66rvwnmlHCYQJ90+suWTV6knXGWnzn9uwpuo1O3tRe80UKYT/nd8iGGxxC0k0+YsQ0wsx1u/iC+sK6XAH+U5EbyzUsI/Q2d0ct67mqNbBf107D6M29eT6aN7ZiVOvsN97hmwxg/9eN9xt7+b8BSjAs40nRm23qlLgpFH9nNub2iY8jue5L6P4B2lafT+1GQMICPzT3A0pn+elxObschRUyRmA3d21mDU6NuWVs6VC9YRNFNp8vaEfjQAbS+wpHdNm0HJ9VTa1fT4OtbnijjnaMcQrtb1km3WEZIX/2BXfe7ajtpdeX4g7F+ahu4h6zs4Sn4SfkNPpvCnyu9zpdFZEfkd/EtdxzzJLEhQpRPD0DsSMEjRzFmJc8xEEYzq+t3+NEkqcV9HnC/Hy2R4y0kNYwwHyT21HtBehX3TjpI4fr3pMV7oW09qPjHv878rWohc1/Kpuz4S5HAD9tjn0682sGGznFyvuOK/tatJ1Rpam53Oof7iiLBrSvDnizYKRVatqUcDjLUcIKzIfLlk5LpdJCUv076qO/R8enFiTC9TiizZf/BvJTOE9c/F7zQLHnkN2tWNccy+icbxkgSAI6Bdci+Ib4NMFnczPNvOHw23sbR7Au/O/Afih5g7uWJibsqclStQ4e/3oswA8tP525mYMe7OiHs6nG46N2s7p7aTaoBpnGYMSHf7EkhqBky8TOPoM2rJ1fF1aCCYPV2RUUWa5+HTmZoKo3tnrPXW0+gZxurvZkFWGQaONtXLanSS0OegPcbjdxcqCtFFCwBNxdyS0+cSJ+KHNH73VAMAvbl7AmsI0XjzTw97m8cUJ0ZDmBy6ykKYSli6YPuLFTFLz2eFw3ORwOCoif9/mcDiedzgc33I4HJdek7RZLgpC9XtQ/IPoF1yLIAiIRhvGy+5DGerCf/jJhNs9daKToKSQnSFxW0c1YsiLaf0nEDTnridcntHKXYVLqPP0sX0CyQ9FUbj/+Au8a8snP+BigXz+pQA3ZZcRUmT29zcD8Hz7KUQErh/RNSFqnJ0e6kZWFP7c9C4mUctdhUvH7c91sI7woBddVqQh9iSMM1c4gDscvwJxuiiywuDei9trBqiis4KQ1Lurj6jny2de5UfXOxCAnz/7AsFT23lXv5iz1mV866rJtz7SFauyLaWdTu4tXsGaSDFIlHxTGqszini9s47uET0+jw60c9roRUZhkd/Ca13xQ5tKwI37mS+CRkfwhv/mQEjNX3tg8RWTPtdLheXpBdi0Bt7sqWd3JKQZ7QpQajdRkWHizaYBglJ8MehHjnUgK3DVJEOKV5RlkGfV85dTXQTCo/d9vGOIbTW9rC1K44qyjNi18vWdtaMWlD3eIDtq+1ica00ofJuIsNtPx6Nv4z6RWg7iZAj1DtH6650MvHn+9REvdpLlnN0PfAMwOhyOpcDDwHNAFvDDVHbucDjWORyO3ZG/VzocjlaHw7E78vOByOM/dDgcexwOxwGHw/HJyGOZDoejZ8TYf57Wq5xlSiiKQrjt+IyuaoZDmsO9KU2b/hFELb7Xfx73WIqi8PCxdrSiQFhw8ZHWI6A1YLzs4zN2Xon4VMV6AH4xQYL7Yy1HeKnjNP2R/Lexemfng2hF2Vs99bT5XBwaaGFjVtmo/J+RYrxv9zbQ4O3nloJFpOtGV46FB7y49tegsRjI3Krm5IVdKRpnJtVL1HqOvGeXgtdM6msi3LAXXeXlaLITG1f6uVeA1kjw5DbWFKbziVWF3NDxJwB+YXw/D1xZQZ41tWbaI+kxWDhtm8PqwRa+WnFZ3DE35y9EVhRe7lDbXimKwpHBNuxmK106DfP9Zp5pjH/T9Gz7DvJAC+Ytn+fBVgmsA8zVF7A0RZX8SxGtKLIxq4x6bx9/juRpjmzZtKU8E09Q4mDr+Ou+1xvkR283YDdquW/l5HpZakSBuxblMeAP80rN6KKRH77dAMD9G8sQBIHVhWrHhyMdQzxzclgy55nqLsKyMulCAEVR6N12hGDHAANvnk4p7zRV5FCYnhfeRQ6E8NXHF8b+WyaZ5+wjwBVOp/Mk8CHgr06n87fAZ4EJm6U5HI5/Q81bi876K4EfO53OKyM/jzscji3AXKfTuR7YBHzJ4XBkRMY+OmLs/0z5Fc4yZXxv/ZL+H28kcPCRGdtn8OTLoLegq9gUe0xjL8Sw/A6kzlOEzuwct82RjqFI+XcGy5r2UeTrx7j63oSyFjPJfFsu78udx76+Jg6OqYSM0uDp599PbMOmNXDzuo8CJO2zea5Ym1GMThB5s6eeFyOVeDflLxg1Jk1npMCYhnOoK3aDiVcI0Le7GkWSsV+xEF2OamyFB1Nr6VMQCeG1+WfeOLsUcs1ADWkCGJbfkXScoDejn7sZqeMkUn8zX3b4uDq4h6PaKoKlm/no8ql1lPhpzVu8llmGTpGxNeyNOyYa2oxWbXb4h+gKuFmWXoAlPwuLoqGjs2Ncw+9wezW+t36FJrsS01X383i7qgf4wKL3rtcsSrTw5tBAK8WmdCpHzEHJ8s5++FYDroDE/RvLyDRNPvB0d1TzbERo83jnENvO9rK6MG1U9edXryjHoBH4z9fr8IVUD/5jxzvQigJ3LJpc5fjQwToCzb2IBh2yP4T7WOOkzz0eiqLQv/OEqqcnQLjPnVJF+N8SyYwzxel0RpfKW4BtAE6nM1U3Si0wcmZaBdzocDjecDgcv3M4HDZgDxBtoq4AGiAUGbvS4XC87nA4nnQ4HO/d5dhFiuzuwbv9ewBJw42TIdx9FqmnFn3VVQhjPDWmKz4LgPf18XIVDx9tB+Bqh5G/b9iDJGgwX/UvM3JOqfDpiPfsl3G8Z5Ii809HnsUjBfn+4hsonLsZNLoLYpxZtHpWZRRxbLCdR5oPIwA3zFkwbpzDlkO7f4gX2k9SZc1m7ZiQl7e2E399F4biLMxV+Yh6LaJJn3JYM9r6qe0caJ15z7QR7ru4vWYAgaNPg6jBsOSWCcdGqzaDp7bDmz8B4I2S+3jwhgUptwQaSatvkD80HsRZoFYKR73VYykx21mdXcRbPfX0HnmGoT9+BL0UZrk9n5JK9SZeFdSzu7Nh1HbuF74Giozl1u/zSls3HlMH6Yqd6wsuThHgmSRqnAFcmVM5Kk9zQ4kdnSiMk9Rw9nh46HAblZkm7ls5NWN7QY6VpXlWdtb10e1Rc0p/9LZqKEW9ZlFK7CY+ubqIVleAXx9s4USnmxNdbt5XmUn2JLTNAh0DDLzjRGMxkPehjQh6La5Ddcih6adseKpb8JxqRZ+Xjm15GQDBrvOjjXipkCxhJ+xwOOyAFViB2l8Th8NRCkzo23Q6nU87HI6yEQ/tB37rdDoPORyOrwLfcDqd9wP+SA7bQ8CvnU6n2+FwnAYOOZ3OHQ6H417gZ0B8afYRZGSY0U6ioulvgZycqbWzaX/xX1H8gwhaPaHaN8g0h9FMM9G396CqwJK97nbsY88rZxPBBVvwntqFzVePsUTNgfIGw/zldDeF6UaWD71Gnq+f+sXXs8SRmnzGTHB79hJWnCnkxY5TDBmDVNjU1XJOjo3vHt3J/v5m7i5bxqeXb0AQBDxlK/E1HCIrXYsYqZI8X1xb4mBvXxPVrk4uz6tgcfH4dc3y3EJ2ddcSUmQ+tXADubnDyepyMEzHm6dAFKi8cy2myHM9WVZ87QNkZ1nGSUKMZWFoDhyFAdE/5esvysjt5bBE18E6EAXKr1uGIfPibKgd7K6nu/ldLIuvIa+sbOLxG++k5tn7CR34A4GWExhLlvOLr39pyh0lHnh7O0FZ4t6r7kNT/Swh5ysJP7e7SpdysLsZz7ZvkdFTzzJzDleUziWPHPp3VbPIb+H3NSf54FLV0HNX76DbuQPzwqso3Hwnv3/ujyDA+wvWjbqO3qtkZ1uZs99Gh2+I2yqXxK7PnBwbOcCmikx21fSiGPXk2tRw9Ef/Uo2kwIO3LaZgTuo9a8fyifWl/PNfqnm1aZAr52bx0pkeLivN4O61JeOule/cvIjHTnTyP3ubaBhSjbl/3Fie8vdR8oc49dBRUBQq7tlAWmUeyoYqOnafhPpOcjZOvYett32A5l3VaIw6qj66GW9LP0OHG9C5k88X051LLjWSGWffB45ExvzW6XS2OxyOu4HvAt+awrGedTqd0RKSZ1ENLiJhzKeA3U6n83uR518DvCPGfjuVA/Qn0Hf5WyUnx0Z39+QbGIfbjtO/+zdo8uZjWHYH3le+S9sbT2Bc/aFpnc/AgedAEAgUXR73vLTrPwWndtH63H+Rds8vAXj8eAcuf5i/X5GHeefPCAkives+MaXXNR3+oXQdn+57hu8d3Ml3F19PTo6NHWedfOPwdvKNNv6j6lp6eiItbwrXQO0+2vdvQ+9433k9z5Wm4XyW67Kr4r5PJRr1BqEXNVxvd4waM/COk2C/B9vqCtyCiDv6nNmAIsl0NPSgtSU3OM0BdVqp6e2Z1uc09vrt21WNv9uFdUkJLkmB83wNpIp3l6rqLyy4JcXXn4Umbz6BZrVyUn/lF4evpUlS7+nj92f3M9eSxbXp8/E5rsF/4M+0H34dXcnqcePvLFvKn3b9HlNEgmXRUAel2PFoNCAKLPJbeLCrhs4uF4KiMPDw/eo5XvNNTrZ28GZ/NQSN3JrrOO/fyQvFLXMW8kzrcZbp59DdPTTqOt1YlM6uml6ePtTMXYvy2Fnby7bT3VxelsG6HPO03qOrS9LRigK/29vIq6fU8Obn1xUlvFa+uKGUr7x6loffbSXLpGPNJI7f8/IRAn1u0tZUEkhTt9PML0R420n77pMIFXkIU3CEyMEwHY+8hRKWyLhhBa6wQjjizeur6USzoCjudlO9l10KJDI6k0lpPAVsAG5wOp1RdU438PdOp/NPUziH7Q6HIyobvRU45HA4TMBO4PdOp/M/Roz9LXDnyLFTON4sU0BRFNzPfRkUGest38OwXP0YAsf/Oq39yt5+QvXvoC1ehZhAMV8//1o0OfMIHH4CyaWWfT9yTA1p3qs9iK2/mb/mLaQwIhp7PrklfyEFxjQeaT5Mf9CHNxzkM0eeJazI/HTZbTEdMQDDkpsB8B9++ryf56qMIkyiahzdGCekCbAkkrR905wFZOmHQ4OhAQ+ug3VorMZxfSqjIcRUQpsFkbBm6wzmnHlOteI+0oAuy4r98viv63zS7nPx05q38MZp8h448gyIWgxLbkp5f/oFqiaeJm8++sU3xx4/PNDK109ux59iK6UfnnmdsCLzb44r0Yoi+oXqfoOntscdPzctm/v6G2L/r/H1k6U3I2hE9LnpzAuYQevi+bNtBA4/Trj1KIaVH0BXtJzfN+xHQoaeIhb9DXk1vrXwGt7d+gXSdOPbL20pj+Sd1fURkmS+8VotogDfvqpy2r11s8163leRyfFONy+e6WFlvi0m4RGPjy7PZ16ko8QdC3PRp6ht5jnVgvd0K/o5dtLXV8Ue15j0WJeVInkCuKubJ33+iqLQt+M44X4PtlUVmCvVPDqNzYRo1hPsnHpYU1EUFPm9JceR9NNyOp1tTqfz2Ij/X3I6nbuneKxPAz+JVG9uBL4DfAqoAD45ojKzHPgy8OnI2E8Bs9Wa54ng8b8Sqn0T/cLr0Tu2os2dhyZvAUHnTuQkmkcT7te5E2QpdrOIhyCKmK74J5BC+N/+NXV9XvY0D7K5OA3LOz9BEkR+U7qOCsv5V7fWiRr+oXwdXinEQ40H+dLBFznr7uEfytdxRc5o2T9t6TpEexHBE88n1W47F+hFDV+suoJ/nruJfFP8MNPS9Hz+sPoDfG/xDaMe95xsBUnGvsmBqB/tVNemRY2ziYsCzBodGTrTjOWcBbtd9O04hqDXkn3zqnHndiH4XcN+vnN6Jz8+M7qTndRTS7j1CPqqLRP2ex2JcdU9CLZcLDd+OxZ+rHP3cs++h/lV3V6ebj02wR7UnqlPtx5jUVoet0SqhnXztqhyFyfjG2dKOMiW9uP06MwMao0sHhpOONfPsaNDYF7IzP8dO4Dn5f8ArQHLdV/DHQ7y+4YDCJKOYqUMq+HCfybnC40gYkwg4bMo10qORcfuhj7+eKSNM71e7l2Wz8LcmQnBv3/xcLXlv24qS2rw6TQiP7y2iqV5Vj6xOrUK0dCAh76dJ9Tv2vUrEMYYdGmrKhC0Iq4DtSgJJEMS4T7WhNfZhj4/A/uIsKggCOjz7EhDPiTP1OR3el86TMef33xP6aWd02+U0+lsAC6L/P0uqiduJA9GfuKxJcHjs5wjlJAf9/MPgEaH5eb/jD1uWHoL3ld/QPD0KxiX35lkD4mJNjo3LLw+6TjjqnvwvPxtfO/8lif16rE+az+GdPgUrxWuwG8vjNv/8XzwkZJV/OjsG/y09i3c4SAOa86oVlBRBFHEsPxOfLv/h+DpV2OetPPF5+ZumnDMDSO0z6IE29XWMsay8Z7NyXjOAPKNaTT5+lMamwzZH6LnhUMoYZnsm1egy7g48syiHRZ+WbeHe4qXM9eaDUDg6F8AtU/rZNDmLyT7G8OaYn1BLx868Aj9IR8C8PuGA3yoeEXSm/EPnLtQgC87tsQKCUSjDV3FJkJndyENtqEZ0wXCfWwbRr+LJ4pWMtfTw4b+JmRvP6I5A0NeOm5gsd+CtfNR5IEWTFd+Hk1mCQ/X7WUg5IeeUhZlv/dzzVJFFASuLMvkyepOvrWrDqtew5c2l0+8YYpcMzeLApuB4nRjSnppG0rs7LhvfDg7Hoqs0PvyEZSQRNb1y9HaxxfcaMwGrEtLGXq3Hs/JFqxLUmsppkgyg+84EQ06sm8cb/QZ5tjx13cR7BzAVJGX0j5H7ttX14kSlgn1utFnvze8uLM9HGaJ4X3j58j9jZg2fRptzrBMgWHJrQAEj00ttKlIYYKnX0W0F6HJX5x0rKAzYdrw9yi+AVz7/ky6XmDJqV+BIPKTwpVUnAf5jETYdAY+UrISdziITtQk7QJgWKHWrwQOP3U+T3HKKLJCoGMAbYYFjWl8RZcmXQ3bpqJ1pkgyhcY03OHgqB6eUzmn3u1HCA94SVtTiXnuxaNsftbdg4hASJH59+ptsRV74OizoNGhX3TDBHtITEAKc9/BJ6jz9PG5yo1clzef464O3h1oTbjNscF2Xug4xUp7IdfkVo16Lip0Gzz1yrjtBt7+IwBHyjdRbVPf33Cr2q5MP0dtMbTaZ+aTXa/h16Vj3vovhGSJX9XtwSBooa+QhTkXh8F8sbAlYjT5wzJf2FBKriX1CsmJMGhF3vjEGh7/wNJph0nH4j7eRLBjALOjAMv8xJ62tFUVoBEZ3F+TsvfM39iN7A+pVdZxclb1eWoqRKBjfGeDiQj1DKFExHkDzT0TjL50mDXOZgFAGmzHu/NHCJZszO/711HPafIXocmuIHD6FZRQalpXIwk17EPxDcS6AkyEacMnkTV6bh94hi9nVyN3nCS45BYazPYZC2nK/hCBtuR98OLxj+WXUWHJ5MG1t7AkPbGxoC1YqubPnXx5WuHg80WobwglGMaQH78iV2szgQDSBJ4zf0svLevuudUAACAASURBVL96ldvapi9E2/HGSXx1qqRH+oaqiTc4TwRliQZvH6syirgyp5Ld3bW81HGacPdZwm3H0FddhWieWmWzoij8y7Hn2dPXyC35C/n3+Vu5r0z1fPyh8WDC7b7vVCuhv+K4atx3zLAgft6Z7O3DfeR5NPmLuHnlXYSiAsotRwDQZlgQ9FrWe7TYpAD/l347kj6NZ9tO0Op3sdxYBZKOhbnvrSbn0+WKsgw0ApSkG/mH1fET3KdDmlGLWTezqgSSN8Dg204EvZaMK5LndGqsRqyLi5FcPjynEy8YRuI5rfZpNc+PLyUSXQhMJe9s5Dzub+md9PYXK7PG2QzjCV6afcI8L30Tgh4sN3wD0TS63FsQBPRLboWgR80dmyTRkGayfLORiLZcDmRdS6nczk3O74IgULP6wwAzZpz17TpB5+N78LdOzkDLN6Wxd8tn+f8WbEw6ThAE1XsW9hOsfnE6pzotho404D3bPuG4YJu6Yk1knAkaEY3NlDSsGWjvp/svB1CCYZa2i4gKtE+xKMDX2E3bq8fR2Ixk37BiQvmO80m9pw9JUaiyZvPdRdehE0S+dnI77oiXdCLh2WT8+OwbPNl6jFX2Qn62/DZEQeDy7AoqLJn8pe0EfcHx7//+vmZ2dJ1lY1YZl2ePD6FpsivQ5MwjeGbXqBzIwJFnUMJBjKs+yN3Fy3lg6xcBCDcfBiLf+0w9RsVOsymP/5e1nJfOdPO/te+gEQRyfOqxFuTMGmcjybHoeeqeZTxxz1IM2ovnuk3GwJunkQMh7Buq0FjGFzqMJW1NJYgCrv01KHJy75kcCuOr7URrN8c8ZGPRmPRo0kwEOwYmff8MtKtzl6DTEGjuuyTvv/G4NK6cS4RjHUPM/5+3eORYx4U+FQaCPqr7UzuPUOMBAoceRVuwFOOaD8cdExXTjCqfT4bgqW2gM6utalKgyxPk+2HVkBMDLgzL7+SUUc0jqDBPP6wpB8P4atT3xnWgdtr7S8RwaHNmRHwni+QP0r+rmr7XqiecsAKRfDN9gT3hGG2aCckTQAmPF6EMdg3S9ex+lLCELjcNU0Bhhc9G6xSKAsIuL70vHUYQRbJvWoXGfGFyDBNxNpJvNteazVxrNp+qWE+Lb5DOg4+ARo9+4dRCms+0HucHZ3ZTbErnoTX3xELmoiDwsdLVBGSJx5qPjNvuB2dUr9mXHVsSeqb1C6+DkJdQ7Zuxx/yHHgVBxLDi/epxMooRLFmEWg4PbzioFsr/tfgmQjYXDx4/wqmhLm4rWExTNxi1IuUZ51fL71JgY2kGFRkzJ5IcHvQS6vdMPHAKBFr78JxsQZeThnVZaUrbaG0mrIuKCQ948TqTL/58tZ0oYQmzozBp5MQwx47sDyGl2Ikkdv7t/YhGHeZ5+ciBEKHuc9M27nwza5zNIL8+2EJAUjjQeuGVjr9x6hWWP/dj6tzJ3byKLON+7ksAWG79AYIY312uLV6JaC8meHIbSjiY8nlIPbVIXWfQV105ritAIp440cEZsZj2gi0gajFv/TfqPKqHq9w6fc+Zt6ZDzVEQUJNQe85N2FGbMw9t4XKCZ3Yhe86/uz0Q8QrK3gChCV5joL0fQa9Fl5k4mTZWFOAaPXmGeofoemY/SiBM1rXLyIhIXVw7lDlpOQ0lLKn99vwhim9eiWFOYmPxQlETMc6qIkUAX5h3OZeFA2T2NRKee/k4z3Mq7Otr4nNHn8OmNfDw2g+Raxidx3VP0XKMopY/NB4c1dC6wdPPmz31bMwqY11m4uTsqFRHINItINx9lnDjASyLr0YTkVYRBAFt0QrkvgZkbx+hxv0oLS8BYE9fg2BxcZJqAD5VfhnOHg9VWWa0F5FX872Ioih0PrWXjkffQvJOrZox4b5lmb7XTgCQedXiSXmo09ZUgiColZtJFn/RkKYlQUgzSjS0GehMPe9M8viRXD70+RkYS9SFu7/5vRHanP1WzRD9vhDPnVIbzTYOnF/5hHgcH+wgrMg83Hw46bjA4ScINx3EsPR29JWJQ3WCIGBYcjOKf5BQzesJx43bfyykmZo3QVEUHjnajkEjUHTf78m4fy/aOfOpjRiZ5ZOQJ0iEN5InYd+sGhFDh+qmvc9EGFa8H+RwrIrvfBJoGZGL0ZC4sbDkDxLu92CYY0cQE69s41VshgY8dD29D9kXJHPrEiwLijAUZqGYdFzlzqDDMznjrG9XNcHOQSyLishek7hh+IXkzAjPGYBVq+cbkvqdf8SeWvXaSOo9fXz84ONIiszvVr2f+XF0ADP0Jm4rWEyDt5/d3cPe3r+0qTfWu4uWJj2GrvwyBGM6wVOvoCgKgUOPAWDf+NHR44qWA2po0/38A4hB9VhrpEwUQQHzEEVCPmYpnYCkzJhExCyJCbT2Ibl8KIEwg3vOzOi+h440EuoZwrK4GEPB5PIktelmzI4CQr1D+Oq64o6RfEH8jd3octPQTdDRQ58XyTubRFFANKRpyLdjKFa/j7PG2SyjeOx4BwFJXT00Dkw+aX4mURSFuoin5rGWI4Tk+L3QlIAbz4vfAK0Ry00TN2EwLFWrNicjSBusVlfqhkj/wInY3+qips/HDVU5ZGZkoc2twi+FOTTQQpU1G4t2epVPksePv6kH/Rw7tpXlaDOteE63Eh46N5+ZYfkdaleEI+e/atPf0gsRY8vXmNg4C0YmOH2CfLMow54zb+S3j66n9iF5AtivWIh1qWqYCKKAuSofu6zF2pn6++o+0YTnRDO63DQyrlo849VoM0WNuweDqKHEPOzVK697i5Co5Wc6C9s7nSnvayDo4979j9Ab9PKDxTdyZU5ig3RsYYCiKDzdehyDqEkoOBxF0OjQO7Yi9zcidZzEf/AxBIMN28rbRo3TFq8EwPPq9wk37MWwcCMai4GCoeFbRV/zHA61qkb3bL7Zuccb8TwJBq1aUTlDnv6w28/gnjOIRh32TeOldVIhLbKAcu2vies9855tB1nB4pi4p6g+Lw2ESRpnbWo6hiE/A63ViDbDQqC1b8I8uEuBWeNsBpAVhYcOt2HQCCzIsdA2FCA4SYG+maQr4I4pl3cHPLzadTbuOO+uB5Fd7Ziv/ByazIlzDbSl6xBteQROvICSgmK52hXgbbUrQFpq2jW/O9QCwIeWDVdC7utrwiuFuCp3bqLNUsbjbAdFdbELgkDa6gqQFYberZ/2vuOhsReiK99AqP4dpCRSCDON7A8R6nJhyM9Al5tGoK0fORT/M4tNcEnyzWCkEK0Xye2n6+m9SEM+0jc6SFs5OhE9bb5apeboHLebuAQ7B+l7rRrRoCPnplWIF2mPXEVROOvuocKShUZQp89wxymkztMoVVcR1Bn5avW2lBT9JUXm7w49QY2nl89UrOejpauSjl9hL2R5egGvdJ6hxTdI9VAnTnc3V+dWxVWrH0tUUsP9wteQB5oxLLsN0TA6L0pbtEJ9TQ37QNRgueFb6OfY0XhDLNFkUKjJxTtg478jTbdnKzXPLYok4z3TjsZiIOva5aDAwBsnZyTpfeCNUyjBMPaN8+PK56SCPtuGqTKPYMcAgTgeq6hhaU7BOBN1WnRZNoJdrpSNq2B7PwjDIVFjURZKMDytbgMXC7PG2QzwZmM/df0+bl2Qy9I8K7ICLa4LF9qsjXjNbihSV0MPN707bozU14h3988Q0wswb/lCSvsVRBH94ptQPL2E6t+ZcHzQuUPtCrAoufBslLO9Hp471c3iXCuXlw57cV7rVsU5t+RM3zjznm4FQcBcpU4WlvmFaKxG3MebkPyp59JNBsPyu0BR1LY+54loebmhKBNTaQ5I8qgw56ixkWIAw5yJPGdq4newc5Cup/ep+mNrK0lfO/5z0efb6dGHWT1oTmgURpF8QbpfOASSrIpfps9cIvVM0+4fwiMFmRcJaQIEjqhturJW3cMny9fR5B3g57VvT7ivt3oaeKu3gWtyq/j6gqtTOv7HS1cjo/CnxkM803ocgDsLU2tnpp9/DQgCIecOAAyrPjhujJhegBAJqxrXfRxt7rzYje/xitt58rJ7EQWBpkF1flswq3F2TvE1dCMHQpgdBZgqcjGWZONv7EmappAK/qYeVa1/jh3LkuJp7Sst8v0f3F8z6vHwkI9Aax+GwswJ+/FG0eelo4QlQr0T95ZVJJlg5yC67LRY1xBD8Xsn72zWOJsBHjqsrg4+vqKAErt6ETZdwLyzaPL8naVLWWkvZGdXDW1j9KY8L3wdwn4sN34LwZD66ncyVZvDXQFSyzd78J0mFOCLG0tHhbR2d9diErWsT8G7l4xQv4dg5yDGkmw0FrUCUNCI2FaWo4Qk3Ecbp7X/RBiW3QaidlqhzXgVksmI6v0Yi7IwlqqGhC/OhK7ICsGOAbSZVkRjfEHdKKLZgKAVCbT0EepzY1tRTvoGR9yxgiBQnSNhkTX01rYl3GdUlVxy+UhfX4WpPH7f1YuFaKVm1DhTFEUVntWZMCy8jvvnXUGuwcpPa96i0Zu8Q8KevgYAPla6KqboPxG3FS4mXWfkz83v8kzrCdK0Brbmzpt4Q0C0ZKEtWaP+nVGCrnxsw5aIfMa8LQjmTCzXfAUYFgjV9niYm5HGNXPVG2C2WTejAquzjCeaH2uZr1Y62q9YCAL0v3Fy0u2ToiiSTN+uEUUA00wfMMyxYyzJJtDcG1voAXidybXN4jGsdzZxaDPY7UKRZAz5wx5/Y8Q4i+fFu9SYNc6mScdQgJfP9LAo18KqgjRK7Wp44UIWBUTzzealZXNv8QpkFB5rGS7BD9a+TeDYs2hL12BYcfek9q2r3IRgzlD7RiZxPStSiODpHYj2YjQRccuk59zn5ZmTnSzIsXB91bBXos3n4tRQFxuyyhL2s0uV4Ylu9GRhXVKCYNAydLgBeZJGUCqIliz0VVsItxwm3F0z8QZj8DV00/zzbUnzxsYSaOkDUUCfn4GhIBNBp8HfNH77UO8QSkgaNcElQhCEmFfLuqQE+xULkk7s7YWqAew63ZJwzNCRBvyN3RjLc0hbN33P6LmmZoxxJrVXI3WfVQWWDVZsOgPfXHA1fjnM16vHK/KP5J3eRgRgbZIqy7GYNTruKVpOd8BDm9/FTfkLJvW9iGoNGld9IGFlnu3u/yXzK0cRIx40QyxRWw0VfXyFqh4/m292bpGDEX2wDAu6XFXUWZ9tw7qkhHCfB/exqS0mXYfqCPd5sC4rTag7Nlmi3jPX/uFiFY+zDUQB87z8lPcz9lpLRrTd3MhcWY3ZgC7LSqCtb8rG68XCrHE2Tf58tB1JUScsQRAojXjOLmRRQNRzNi8tm9sLF2PW6Hik6TCyoqDIEp6IdIb11h9MetUkaHQYFt+M7Oog6Hw14bhQ/V61K8DC61I6xk/2NCErqtdspBdhV8SYmW6+maIoeE63IWhFTGPaAIl6Lbalpci+IJ7qxIbEdJhOOyf30UZQwHtmYjFZADkQItg1iGGOHVGnQdCIGIqyCPd5xslgjEyoTYX09VWkr68iY+vEK25Dro1GnR9N0wByMH5o09+gVnllXbPsoi0AGMkZt2rgzov10lRD1cZlt8fG3Fm4hMsyS3i58zSvdcU3xn1SiHcHWlmcNof0FCVmony8dLhX4p2Fyas0x2La8EnM13wF0xWfTThG0OpHyYGIRp2aaN2pCoReWZ7BlzaX8a+byiZ17Fkmh6+mA0WSY16zKOnrqxD0Wgb3nkX2hya1z7DLi2tfDaJZjz2B13sqGIoy0efb8dV1EuxxEepzE+pyYSzNmVQ+my7bBhpxQjkNyRPAfaJZPfaYuctQnI0SlmOVnJcqs8bZNAjLMn862oZVr+HOReoqszRdnWijORnJ+MorZ7n6DwcJz3BlSb2nD4tGT57JhlVr4LaCRTT5Bnizpx7/gT8TbjuGYdUH0ZWk1hB3LKZNnwLAu/NHCRNTgydVfSRDCvlmDQM+njzRgSPbzE2OnFHPvRaRDbhqmvlmwc5BwgMeTJVzYvkJI7GtKAeNyNChunNS6aNfdBNojQSOPDWpZF7JF8QXMWBSddUH2vpBAUPRsGCvKRLa9I/xvsXyzVIsozfPyyf9snkpGVL5pnS22/oQJQVfXfzKgGD3EJo000UnNJuImoikS6U1OxLSfEYVWJ5/TWyMIAh8b/ENaASBb5/aEXc/hwdaCcoSG7ImH6qvtGZxS/5CFthyJ729aErHcs1XEE2T04/T56WjBMKEBzyIgsAXN5ZxWXHyfSjye0Op/UKRqOWRxmwgfd1cZH+Iwb3xi70S0b/7JEpYwr55wYRpDJNBEIRY7qnrQG3K2mbj9qMR0eemEeoeShjFCPW76Xjs7ZgEiC5jtAc3Ftq8xFs5zRpn0+CVml7ah4K8f3Ee1sgNP9eqx6gVJ/Scvejs5nfvtnK0w83Z3ombSaeKrCjUe/qosGTGbqD3lqjl8Y827se7/T9Bb8FywzenfAxtwWL0C64j3LCXUN34wgBFUQiefBnBYEVXuXnC/f10TxOSAv+yYbTXLCzLvN5dS8kM9NRMFNKMorEYsC4sIjzoxXt25js8iEYb+oXXIXWdQWo7nvJ23jNqKTqiQHjQm7R9UpSR+WZRjGWq0Ts27yzY3o9g0KKdQINoKpSaM3jFpnpx46mIS94AsjeAPjux8O3Fxll3D8WmdMwaHeG2Y0g9dRgWXTcub3NRWh6XZZZyaqgTnzTeu/FOrxqSumyKeZS/WXkXr1/x6VjF6LkmKgacSrgJwFvbQcv/bmNw39n3TDud84nkCcQkf3T28eFj2/IytOlmho42EOqbOHkewNfQha+2E0NhJpYFiRubTxVjeS66bBteZxvu400IWg2mitSq9Eeiz7ODohDqGq+RGGjro/Oxd5BcPtIum0fm+8YXwxiKIo3nL/Em6LPG2TSIFgJ8bPnwDV8UBErSjUlzznq8Qf51+7CY4LGO1L5cqdDmd+GXw1Rah2/Mq+1FOKw5uKtfRnZ1YFr74Zgq+FQxR/rweV/773HPSd1nkXrq0FVtRdAm94g0D/p57HgHczNN3DJ/dDL4oYEWXOEAV+XMnVbIS5FlPM52RKMOY2lOwnG21RUA50xWwxgJbfonEdqMGpVpK9VzS6Wxb6BZ1Tcb2YpJa7egSTPhb+6JeQYlb4DwgBfDnIxzElJcZS/CbRWpNfrxNXSNC8GEulW9Jl122owf+1zgCvnpCAzFxGcDR58FwLAsfi/NSksWCqoneyx7osbZFDxnwHkPAcfU21PUoBo63IASlhl85wy9Lx6esGJ3ltF4z7SBoiSUoBC0GuyXLwBZGVclmQj3cTUMmHHlwnNy/QiCoOaeKWpXElNlXtwoxUQY5qgh9bHXmremg66n9iEHwmRevQT7+qq4r0Nj1KvyQe0D5ySH+Hwxa5xNkfp+H7vq+1lblDZOJbvEbmTAH2YwTj6Aoih8aftZerwhbpmvGgrHO2eufVC0GGCkp0kQBO4tWcGtbUcBMK792LSPoytbh65yMyHnztG9+IBgdbRKc+JG5/+zp5GwrPCFDaVoxqjT74pJaExPKd7f3IvsDWCuykfQJL7kdXYLhsJMgh2Jc6Smg37+NQjGNDW0mULoNDzgJdDWj6E4C3NkpetvSr4aDLv9BDsHMRRmIuqGJ0ZBEDCV5qAEwjHvx0h17XOBVhS5JX8RL1l6QFbw1o72SAZ71JWx7hLxnEVDmlUjQ5p6C/r58WUwoguk2jEt1IKyxMH+ZhbYcsnSX7yyISPR56SBKMRagiUj7PYTaO5Fl5uGoTAT79l2Oh/fk5LXdxYVj7MNBLA4Ei+iTZV5aKxG/A3dE3onFVkh0NyLJs2ELufcLYbM8/LR2tVrerIhzSjxKja79pyh5/lDIArk3Loa6+LkRTTG4iyQZIJtySumL2ZmjbMp8scjUfmM8e7h0vTEchp/OdXF885u1hal8ZMbHIjCzHrOYj0oLaMbhN9ly2Vzbz1n7UUpVU+mQsx7tvPHox4PnHwJBAH9BF0BWl1+Hj3WQXmGidsXjpdQ2NVVi1YQ2ZxdHmfr1PGeioQ0U3Dl63PVVVuyXpRyKDylUI2gM6JffBPyQAvhxn0Tjvc4h89bl2VFNBsINPcmPbavVs3tMleODyfEJDUieWexaqdJtm2ZDLcXLubVWGhztKRG9D3Wn8ObxUxy3KWGZudaswm3HEbubcCw6HoEXXwNp7mR72DtmL6qRwba8MnhaUvDnE8ErQZTeS6hbteEAp/eM+rnbF1cTO6d67AuLSHU7aLj0bdT8vz+rRMa8BBsH8BYnI3GkrhYRBAEjKXZyL5g3BDgSIJdg8iBEMaS7HPqdRVEgcyrl2JbVR5LpZgsWrsFwaAl2DGIoij0v3GK5uffRTQbyHv/+pTkdqIpHVPVO1PCEmH3hW3DOGucTQF/WOLRY+1kmXTc7Bh/AcbkNMYUBXS6A3z5lbOYdSI/vXE+Vr2WeVlmjne5RzUzng7xPGcApqPPoEHh4dwFHJohpXrdvC1oi1YQPPFXwpGWNbKnl3DDPrSlaxFHCHXG42d7mwjJCl9YXzKueXJPwMORwTbWZZZgnSA0mgw5JOGt6UCTZpqwPREQW1UGu+NPdqHeIVp/9Sqdb5ya0vkMhzafTDpOURQ8p1oRNCLmuXPUibg4C8kTIJwkx8RXo3qnxlakAhiLs0EQYkUBw+Kz5665+JqMYjRpJqqNHvxNvaMaNwd7XAgaEW2cnJqLkZc71Gv8ypxKfG/+EgDDsjsTjq+MXP81Y4yzqL7Z+imGNC8U1sWqWKn7eFPScd7TbarQ8zzVU525dQkZVy1GDoToenofQ0cbZvPQkjAZfbBomsZEMjtRj7uxJPmcPBMYi7LIuHzhpJqoj0QQBAx5dsIDHnpeOMTQoToM2Tbm3LMhZekPQ2GmOtdN0TgbeMtJ2+93IQcmVw07k8waZ1PgBWcPfb4w9yydg0E7/i0siWmdDRcFKIrC/dvO0O8P87UrK6nIUF2/S/JseIIS9f0zI70RzW+pGOE5U2QZ//4/IeuMvJTr4M9Nh2bkWIIgYN56PygK3l0PAhA8/Qoo8oTCsx1DAR4+2k5JupE7F4338rzeU4fCDIQ067tQQtK4cvRE6CN6QsGu+N4B14FalLBMz4G6Kd1gdHOvRLBkEzj6l6QtsIKdg4T7PWrehkGtqjJOoH4t+0P4W3rR56XHVeQWjTr0c+wEOwaQvAGCHYOqR84wc1Vb444pCNxWsJht1l71OokUWyiyTKjXjS7blrTZ+sXCYMjPmz11LEmbQ37HKQLvPo62cHlMNyweJSY7OkEcF9bc06saN1MtBrhQGMty0ViNeJxtCcP+oX63KvRclj2qAte2rJTcOy9DNOjof62a/p0nLnkdqnOBKvnTCpFF2UREja2xVdhjOZ/G2UwQNcJ8NZ3o8zOY/6n3TapziGjQoc9LJ9g5tRQVb20HglZE0E1PW3M6zBpnU+APh1XP00eXx1/ZDGudDXvOHj/RyfaaXjaX2rlv5fB2S/PUfLXjnTMT2qx195KuM5I5ItQSqn0Dua8B0/K7yLTl8pe2atzhQJK9pI5+0Y1och0E3n0cqa8x1uhcvzC5hMbzzm4CksKn1xaji5MHFtWHmq6+WXRSMsUJ88VDl2kFjUgojucs7PKpuSBAIKLjM1kEjRbDsttQPD2EanYnHBctBDDPHw7FGosjE3EC48xX1wmyEtdrFsVUlgMKDB2uRwlLKXkTp8vthYvZYetHRol5BcL9HpDkSybfbHunk5Aic3NeFe5n1XC+9fYfIoiJe4BqRZEySya1np6YIR+WZfb1NTHXkkWe8dJqfSSIAtbFxSjBcCx0OZaYhIJjfAqBsSiTOR/ahC43DffxJrqe2ovkmZl56L1CqNtFuM+DqSI3pUWTxqRHn5uu9s5NYITIIYlAWz+63LQp99A830TbMJnmziH3rnVopyC1YyzOAlmJtbJLlfCAF8nlw1icfUEXjrPG2SQ52eVmf4uLLeUZlGfEzzUZq3XW5vLzwI6zWPUafnLD/FFyEUvnqDenYx3TLwoIyzKN3n4qLVmjvET+fQ8BYFr3MT5UvAKvFOLZ1hPTPh6o/TbNW/8FZAnvzh8RdO5AzCpDk5dc4PC1OvULc928rHHPyYrCru5acg1WFtkmX4o9En9zL4JeG/OITYSgEdFlWQn1DI1L2h86XK8aPxFDz3s2NVHYsRhXvF89twRVm2p1aRuiUacaUxG0djOaNJOadxZHQyqacJ9sxR3NOxs63ACkrm82HRbZ8si02zlichNo7SM85IuFjWeiUlNRFEIN+1BC5074+YV2NYx9R/MhpPZqjGs/gq5s3YTbVVqyGAj56Q2qyfDHXe14pOAlF9KMYllcDMJw5d9IFEXBGxV6TrAY0qaZyLt7A2ZHAYG2fjoeees90aR6phjWB0td6sJYmq0aIQny+QKtfSDJl4zXDFQPX/59V5J900pEbeIFUDKm2mfzYvEyzhpnk+QPhxMXAkSxGrRkmXQ0DvhQFIXPv+zEFZD49tZKitNHJ3gujlR6HpsBz1mLb5CQIlM+It9M9vQSOP48mlwH2tK1fLB4BSICf47TDH2qGJbfhZhRin/fH1ACQxgWXp80hOgLSbzTNMD8bDOFaeMTXk+4OugJeqYtoREe8hEe8GAozJxU/oM+Jw1Fkgn1eWKPSf4g7uNNaKxGsq5dhqjX4j3TPqXQprZ0HWJmGYEjzyANjvdA+Jt6kL1BzI6CcdWlxuIs5EBonGdPDkn4G7rRZlpV71+i15ZnRzToUEJqiXmqnQGmgyAI3F64mO3WSGHA2fYRxQDT95wFDj/JwM+vZuCXNyK7Z17byB0OsKu7hnV6I+bdP0Ew2bHc8K2Utq0cUxQQ1Te7lIoBRqK1mTCW5RLsGBiXlzmR0HMUUach6/rlpG90ILn9dD7+jhrKu4gJu3znPFdOURS8Z9sR9NpRi7KJiGkYNsa/9qNt20wlU0vQvxAIgoDObpnWXZigpAAAIABJREFU/G8oyETQinid7ZMKoQ8bZ+MdB+eTWeNsErgDYZ6s7qTAZuDquclFUUvtRpoH/Tx0pI3d9f1srcjk3qXjy6LTjFrKM0wc7xia9hc/XjGA/93HQQpiXPcxBEGgwJTG1ty5HB5s44RrZsRWBY0O85Wfi/2vnyDfbG/LIL6wzFUV8S/+aEhzuvlmUUX9yX7JotWDIw0g99FGlJCEbWU5okFH+vwCwoPeqYU2RVHN1Qv78e744bjnPacSr56HQ5ujJ2J/YzdKWMY8N7mnURCF2IpQNKhtec4HtxUsZqe1HwkFr7N9hIzG9D1n/r1/ACDcdJD+n21F6qlNvsEk2dF1loAs8ZX6d1D8LizXPTBhsUuUuWPkNPb2RYyzS9RzBmpfVRhfGBBLZE+gzTWSqKJ8zq2rQSPS+/IRXAdm9nObSXq3H6H/tWoCTeeu2jTYOYjk8mGqyEOYhLfIkJ+h9s5NkHfmb+oFjYi+8NwvxC4mRJ0G65ISpCFfysa/oij4m3vQ2IwXvFBp1jibBE+f7MITlPjwsvxx1YVjKbEbCUoKD+yoId2g5cfXOxKuApbkWen3h2lxTS//YmwxgKIo+Pf9ETQ6jKvuiY37cKRjwMMz6D0zrv0woi0PwZyBrmJD0rGv1arneVVFfAN3V3ctAnBFTsW0zinqzh6plJ8Kuhw1GTXqGZDDEkOHGxAM2ljFWkbkBpVqv8uxGFd/CE12Jf59DyH11MUel4NhfDUdaNPN6OPoj+kz1BXg2InYG63SrEwhibhMNSz0+fbzJmZaYcmkPCuX/WYXwY4BAq39aCyGaefASD21hOreQlexCfPW+5F76+n/2fsINR6YoTNXQ5orBluZd3YX2oKlGNd/IuVthys2e5AUmb19TZSY7RSaZqbh9IXAVJ6DxmLAc6oVOeKBVWQ1n3BsKH7CfVXkMeeDGxHNegb311yULZ/8TT0EWvpif58ronOJuWpyAuGx3rn9HsKu0VpykidAqNuFsTBzyuHBSxnbqgoQBbWQK4VrK9TtQvafe8mRVJg1zibBEyc60Ajw4WX5XP/W7/ha9faEY6NFAUFJ4T+vnku+TU1oHDraSPtDryP5g7Gx0aKA6eadvR65yTtsETd33X6kjpMYFt00aqV/dW4VeQYrT7Uej9taZioIOhPpn3kZ+6dfRtAkT2R9rb4Ps05kXdH4G5Qr5OdAfzMr7YVkTkOgU10B9SIadZMWXYyG2qIVm57qFmRfENvS0liSbnrVHASdBs+Ztqlpnmm0mK97AOQwnle+F3vcV9uJEpYwJ6guDez7OUKoBX9Ld8xVr0gyvrpONDZjSqXmpoo8dDlpWBYWTfq8p8MdhUvYHtE8U4LhGRHD9B94GADjuo9iuf7rWO/8CYq3n4Ff3UTgxIvT3r9PCrGrw8m3I8Ub1jt+lLQIYCyxsKa7j5OuLgZDfjZklk37vC4kgihiGVMYEGjpRfIEYvIZk0GXacVUnosSDBPqnTlB7plAURQG90S6uQjTawmkSDKeky2j5v6Rx4mFNEsnn+s03Dt3jEe9+eLIn7pQaG0mLAuLCPd7YjJDybhY8s1g1jibFDdW5fDNqyqZYzPQHXTzaPPhhE3LyyPG2XXzsnh/RCpCkWQG954l1OfGX9cVG7skUhQwnYrN00NdbOt0sspeGEuiH9j9G0C9cY1EK4rcU7ycwZA/lug8E2hz5qLNX5h0TNOAj7O9XjaVZMSVIXmzp56wIrNlmo3OpUEf0pAPQ1HWpFdAokGHNt1MqNuFIssMHaoDjYhtRdnwGJ0WU2Uekss35YRmw9Lb0RQsIXD4CcLtJwFi7nfLgvihoeDZ1xED1SCLMZ0yf0svSiCMqXJOSq9VYzaQ/+HNWFIIP80ktxYs4nXLACFBNWanW6mpyBL+g48gGNMwLLkFANP6vyPtvkcBAddD9+J7+zfTOsau7lpubj5IxVAHhtX3plQEMJJsvZl0nZFaT08spDmVZucXG9ZFUc0ztTDAE6sunto1ZShQveiTraw71/gbewi09WOqyMNQkEmwc3BcG7JU6X/jFL3bjzJ0sG7cc8MhzdxJhTSjRPXOxhlnF5GxcaFIW10JAgweqJlwIR17v4ov/Ps1a5xNgs+sK+Yf16iT0pXZlbjCAQ4NtMQde8uCHL65pZKf3jg/dsP01nQgR0Q4RzagXhL1nE2jjdNPa94G4J/nbkYQBGT/EIP7HkPMKEE3b8u48R8qXgEwo4UBqbCrXjUotiQIaW6LiNlOW0KjeXpJnbqcNGR/iKEjDYQHvVgXFo1T6zbPU8MPU63aFEQRy3VfA0XBs/07hN1+/I2RZscZ45P65aEupI6TaAJqpa23Wm2gHl0RpqKLdCGZY7SxLLeYt81qWxb9NPPNQmdeQx5sw7D8LoQRXlbDwuuxf/pFBHMm7me/iPvFb6TULiseu+r38dn6t5ENNqw3fnvS2wuCwFxLFvWePt7sUXu2Xmr6ZvHQppsxluYQbO8n2DmoCj1bjar45xQwRPKhAq0XT7sdRVEYfEedj9I3VA1rik2hy4HndCvuIw0ABOK0FJpqSDOKNsOCxmbC39QTC98pioK/sUeNHqRYrf5eRJdhwTwvn1CXC39DYj04JSwRaO1Dl2VDY5m68PlMMWucTZGo8bCrO34Sq1Wv5TPrirEbh0N87qPqylk06NR+aJEvUbZZT2GagQMtLlz+yQvmNXr7ebbtOPNtOVyTVwVA4OgzKAEPxjUfjlupWG7JZHN2OXv6GseJZJ5LohIa8fLNfFKIFztOUWRKZ6U99VLyeEw13yxKVHpj8G11cratGt9CylSWg6DTTLlqE0C/4Fq0ZesInngB15t7QVGwLIofbgzWvglE5C8UGX9NM4qi4KvtRDTqYje4i5k7Cpfwu8x22vO0KbVhSYZ//58BNd9xLLqSVWR8dgea7Ep8ux5k6NFPokxS2y8ghVn4zm9IkwLYrvsaom1q1W4VlixCiszOrrMUGNMoNZ+7jgznE+sSdaHas+0wSiCsVhdPMU9Ha7cgmvQXlefMV9dFsHMQ07w56HPShkWgJ5l3FuwZou/V4wh6LRqbiWDHwKjqwdEhzaldY7FWToFQrCdluN+D5PZfFPlTF5q0ter92pWkSXygvR8lfPFIjswaZ1Nkc1b5/8/eecfJcdb3/z0z26/33nR3GvVmFavYVnO3MTaYYgMhNFMChNDyIwmBhCQQSAKYxEAwhGqwsQ3GuFdJlm1ZvY+kk673fnvbd+b3x+zutb1+pztJz/v10ut1mn1m5tnnntv9zrd8vlgkmVdGMc6GE2jvxd/QiaM4E9fCPPOPqHngCeovVuXT4w/x7T3Vk57L/1TtJWwYfLp8C7IkYeg63j0/BEmO+8UV5X1FZmHAxfKeBcI6u2u6KEtzxtWIe6H1LO5QgDvzlw3RgpsssXwzlx3LGLISYxGt2DRCOs6K3LieLMmiTDu0KUkSCTf/IwZW+k+3I9utJCyOb5wFz+0CIPHWLyPrjYT8yXiragn3+3GW50y5XcrF5LbcxZxz+vhywQVkx9Q7E+j9HfhPPImSsxhL0VVxxyiZC0j99AtYStbhP/QIPf97F7q3O+7YeBw48kduazpKW1oJzk0fmfJcoxWbQUNnY0bJZfNF6VyQg+yyE4pIzkykd+1oSJKEvSCNcJ+PUO/s6dVNlMG5ZilXmw+8ttxUsypyEsaZ7g/S/uQBjFCYjBtW4CzLwgjrQ2RIphvSjOIcFtoUIc0BbFnJOMqy8Td24auP/wDgq51adf9sMf8/zecpSVY7a9MKOdTdQGfAM+74qNcscVUJjrJIwv6FARfrJ9YXUZbm5CcH6jnVNvHcsxafm9/UHaLYmcqd+csACJx6lnDTCVKufi9K6uhJ37fkLiLd6uR39UcI6OEJ33Oq7G/oxR0Is70sfujjsYgw7l0Fy6d1n1CnG93jx1E8+XyzKNbsgcT65LWjV41GwxBTrdoEsJVvgbIPY+DEWWiWgMcjeO5VJEcylsI12HKdIFnofvEQMLEqzflAqs3J9uwKTva1cLqvdfwTRsF38GEIB3Gsf/+Yv2M5IYPU+/6EbdltBKt20/2DGwmPkoowGEMPk/TM1wAI3PbPSMrU27hUJAx8OW66DEKaUSRFJjHi5bWmJ047h3A+5Z15zzUTbOvFpeZji7wvsyoy3ayKnEBTbMMw6HjuKKGufpKuWoCrMi+mKzg4tDndkGYUe3GGWbQQqeSOGmnCODNJiXrP3orvPfPVtoMsYZ9itGWmEcbZNNiWVY4B7GofmeA5GN0fpP9UA0qSA2dZtplsKEt4qwe+nOwWmX/ZWUHYgK88P37iYpQfX3gDvx7mU+WbsMiy6SJ/0dTOyrjtb8c8165YuLtwJe2Bfp6N5HrNJi+eN59MdpSPNM56gz5eaD3DoqQsliRNM9w1zZAmgJJgx5qVjLM8Z0yhVmdJFpLNgufs1EObhmEQcu4AIwzV/xP3OuGuOsLt57Eu2IykWEhYYyamhzxWJKsypQqvueJteUsBeKZ5anvOMAx8+34JsgXHmnePO16yuUj+wC9xbP4Y4ZZTdH9/B6HGsTtk9O99kNzOGp7NX8mKFXdMaZ5RFiQO7MNLWd8sHokrilES7CStKZu2RzCar+ZvmFvjzPSanQUJUq6uHPJaTGdwAt6zvgPn8Z5rxl6YTuoWs2OKLdKRIxAp5pmJkGYUxWHDlpOKv6mbsC+Ar74DS6prUj0pL2fs+WnYC9PxVbeNiHToPjMcbM9NHVNA+WIijLNpEK0oHC3vLEr/qQaMYJjEFSVIsoxss+AozCDY2kt40BPYzvIMbqzI4LXabv54euxGtmA2Y/5ZzVtk2RN4byTBP3huF6Ha/diW3YajcNm414hqnk01tNl3pJr2Jw9OKOH6pfOd2BWJjUUjc26eaj6NXw9zV/7yaX/Ix4yzaVTcSJJE7r1byLw9fsgsNs6i4FyQPa3Qpr+hk1BPCKu9Ab32JQInnx4xJhrStFZcC4Czshww19yebZlWOORisyO7AhmJZ1vOTOn8UMMRwk3HsS25ecJ5YJKskPj2b5Nw2zfQe5vo/u8bCZx5Oe5Y3d2O++mv06fYqNry8WmF2MHUeJOALHtCTFrjcsGS7KLgYztjwrTTwZaVjGSR4ybMX0w8Z5oIdvSRsKhgRLeNqBfKP45x5qvvoHuPhpJgJ/OW1bGUA0uKC9lli1Vaz1RIMza/kkwwDFPXKxASXrNhRHPPeoblnvnqO8AA+zxaL2GcTYMVKXlk2Fy83Fo1qtfEMAz6jtSALMXKz4GB0OYwMdF/2lGBXZH4x5fO4R6lkW2Un1W/hTsU4ONlG3FEwi6el/4DANf2z0/oPahJWaxLK+KVtirqPBPPxwHzvfXuq8JztimmDj4azX1+TrT2c3VRKgm2kR9CjzaYlYdvzx/foBxvTv76DpRkJ0pK/N6nE0WSpAkZiq6FpnzAVEObfYfMKr7ka9YD4Nv/0IgxgYhxZqu4DjClPKxp5joqnjemdN+5It3mYn16EQe762nz949/wjB8+34JxC8EGI3XO2r4r3O7cV73aZLu/SlGyE/PT96B78DIte5/6mso/j5+ULaZHeMIKk8Ep2LlK4u289XF1182+WazgaTI2PLSCLb3TVmuYroYeiTXTJJIHuY1A1P+RXba8NV1jPqZrwdCtP/5EEiQeeuaIVXekiRhz4vk1vV5Y5Xe0crv6RKV1Ij2zhXG2VAcxZnYclLMsPUgTb35qAcnjLNpIEsS12UuoNnfx+m++J4uf30HoU43roV5Q8pznaVm6M57YWjeTVmak09tKKapL8B39w5tjzIYTzjIjy68QYrVwQdL1gIQrHmL4NlXsC7chrV4bI/PYN5XvBoDeKju8ITPAQh2uGOev959oxuoAK9cGL1Ks8XnZnf7Ba5KLaQ0YXoVhzGF5ynom00VZ0nmlEOboR4P3nMt2LJTcC5bjZSQSaj+0JAxhmEQPLcLKSEDJXdARy5540qUsEb4zP+iey+t5tE35CzEAF5onZz3zAj68B96BDkpB5t6/cTOMQy+dOzPfFN7mYPdDThWv5OUj/0ByZ5I30P30f/Ct2O/t2DNPnz7fkFVYjbPlW6aMdmLz1Zcw7sLV87ItS5n7JGwX9SzdLHxnG4g1NVPwtJCrHHa90iShKMog7DbR6gr/oNF3+FqdI+f5HUVcaVFBuedec40IVmVWH/M6WLPTUWyWSCsgzQ/9LrmE5IkDVRuDtKb89W2I1kV7Lnzp5JaGGfTZGuk/+PLbfGTDPsihQBJK4Z+yFvSElCSI7o0w5qyfmZjMUXJdh7YV0dVZ/xig9/UHqQj4OFDJetIsppG34DX7AuTeg+35y3FJis8N8kvymjiqeyyE+x0461qGXXsS2MYZ080nUDH4B0F0/OaweCQ5sULH5mhTbNq0z9KJdBo9EW0j5JWlyLLMtai1ehdtej9A/Im4fYq9J4GbOXXDqnITFALSF2tIwW68B98eEbey8XiphwzB2eyoU3/iT9jeLuxr71nwkn6x3qb0dzmXn26+TRgFmGkfuo55NQiPM/8M+5H/xojFMD9mPm387WKbdyQt3jcNm2CmSVqzET/ji8mUZFwZImUDaPrLMb0zuKENvVAiL4D55HsFpLjyO/AQN6Z+0hNrJfmTLVWkhQ59tlny0mdVkX05YqzPAdreiL9pxoI9XgI9XkJdfZjL0yfdHeL2WT+zOQSZVvMOBuZdxZy+/Cea8GalRz7g4wiSZLZssQfGvGU6LIq/NOOCoK6wVeePzvCGxPQw/x31V6csoWPlkUSw5tOEDjxFJbSDVjLt0zqPSRabGxIK+ZoT9OkwkxRQb/MW8x8t9434xcyhHWDVy50UZBsZ2HGyOTUxxqOIyPxtvylk5p33DlFPtTtF9E4A0haYebcdD5/FN0/sZCMHgjhPlGH7LLHKrUshasACNUPeDGH55sNxrnu/SBb8L7xsykXJMwFFYmZLEhI55W2KnzhiWv7xUKa6yYe0nyk/kjs52cGFb5YcheR+ukXUPKX43vjZ3R9ZwOhhsOcWnANB1MLuX0G9qNgcthzU5EsCn0HztP6+L6LWhzQf6reFJxeVoQlefQk+lhRQJxWTn2Hq9F9QZLXLIi1ehuOLScFZCn23qZbpTlifpHQ5nyRhJhvmN6zcjM378D5QRIa88vLOOvGmaqqG1RVfSXy8xpVVRtUVX0l8u/dkeP/qKrqPlVV96qquj5yrEJV1T2qqu5WVfUBVVXnpSGZ40hiSVIOb3TW4BnWp9J9rBYMg6SV8bWNoq5s34WRIdFbFmaytSyNly908fTZoR8CD5zfS4Ovl/cVryHTbrreB+eaTSWcF/UAjld5GkUPhvA1dGKNiDM6K3MJtPaMaB8CcKipl25fiO1l6SPmVt3fxYHueq7NWkC2fWqaZFEMXcff0IklNQFL0vTyzSaLvSCd5PXlhHo8dL5wbEKGUv/Jegx/yNwfkSdnS6FZoBEcFNqMGWeVI40zOTkH29JbCDcdJ1S7fybeykXjhpyFeMJB9nZUT2h8uL2K4NmXsZRuwJI9Mh8oHiFd57HG46RZnWzPquCMu32I6LKSkkfqJ5/GunAb4fYqJHsSXy1eT5rVyZaM0im8K8F0kO1Wsu9aH6uqa3n4dVoeeR1fTfusPnwYYZ2eN8+BIpO8Yey9ZUl1mVGPuo4hzbR1f5C+A+eR7dYhrd6GI1sUbBGpnpkMaUZJWFpIymbVbPotiItLzUdJduI+Xocn0nrsijLOVFX9EvATIJoRuQb4T03Ttkb+/U5V1TXAdcAG4D3Af0fG/ifw95qmXQNIwPTq2WeRbVnl+PUwrw/6kjHCOv3HapHsllH7zX2jdz8BScdzYWQ4UJIk/nVnJVZZ4h9eOIc3aOqQHeiq55vay+Tak/ibhWZyeLi9Cv/hx1Dyl2NbfOOU3sPWMTyA8fDXdUBYxxn5YEkZQ4E52hUgXsumxxvNQoC7plkIAGblkxEIXdSQ5mBSrl6ILS8Nz5km+o/XjTnWMAwzpKnIQyrdhnvODF0ncG4Xcko+Smb8UIvz6r8EwPfm/03/TVxEbsyOhjYnJqnhefUHYBg4t3x8wvd4tb2KNn8/b89fyh35Zr7e0y2nh4yRHcmkfPj3JNzyNRrv/A4ngZtzVayTaHAumDnsBenk3L2R7HdtxFGahb++k9bH3qTlt3vxVLXMipHmPl5HuNdL0opiLImOccc7ijMx/CECrQO5nn1HatB9QZKuKhvVaxYlmnc2kyHNKLJFIWV9BYrDNqPXvZyQZNnsuRnW8dW2I7tsWDOmp9M308y2N6oKuGvQ/68CblVVdZeqqg+qqpoEbAGe0zTN0DStFrCoqpoVGftq5LyngZ2zPNcpE6+VU//pBsL9fhKXFCJbR+bGdAQ8/LzhIG85+wh1uAn1jVTFrshwcd+6Qup6/dz/Ri19QT/3HXoU3TD4n9V3khHpJ+h5+btg6FP2mgEsTc4hy57AK21jJ/ZH8UYFDiMudFt2ivlB2tCJb1go4qXznVhkiWtLhoZ2DcPg0YZj2GWFW3IXTWneg5mrkGYUSZHJvGUVkt1C1ysnCLSP3ivVV91mJh6r+UMKReSUfKTELEJ1pucs3HIKo78da8W1o/5urZXbkNNL8R169JIqDFifXkSK1cFzLWfG3XO6ux3fW79GTivBvnziz2mP1B8F4O7ClVyfvRAZKa6+mqRYcW3/Gx52mnv09rwlI8YILi6OgnSy71xP7j1bcFbkEmjupv2J/TT/ajf9WuMQr9V0MEJhevedQ7LIJK8rn9jcopIakc8c3R+kb3/Ea7aqdNzznRW55oPZiulLkAimRuLSwthnr6No/rW4mlW1NU3THlVVtXTQoX3ATzRNO6Cq6t8B/wh0A4OzP/uAFEDSNM0YdmxM0tJcWOZA7+nW9CW49lvZ1XmBrKwkQt4Aja9pSFaFkp3LsaeNrPr51YlDBA2dvQk9bPakYOnoI2vBSPHVf33bMh471cb9b9ZxLukwtZ5u/t+K7dy5eAUAwc562vb/BlvuQgp3vA9p2NN+VtbEnwZuKlzEL6sO0GxxsyI9vrcvSktdB7LNQsGKotiTn/PGFWg/ehHf4WqKVpkFEB39AQ4197GlLJ3yoqHG2ZHORs6423lHyXLK86fv2u+K9JQrWFWCdQJPv9Ml7tpmJeF4xwbO/+Y1up89wuJPXR/XOD/75AEAircvxTXsOr7ydbiPPEWa3UdP85sAZKy+kdQxfpfy9o/R+vuvYD37BOk7PjmNd3VxuaVoMQ+dP0STxc3KOHsuusatu78DIR/Zt36e9NyJVfT2BX083aJRmZzJTZWLkCSJzTml7GmpRk+EHOfQ9dQNnadaTpNqc3LXohXYptEV4FJiMp8Rc0JWEgXLCvG29ND86kk6j9TS8dQh3JnnyL1uMRmrSqeVyN11vI6w20f25oXkTjDEmOosoeOpQ4QjLfj0s03o/iD51y8np3ACzd+zkihcVTzvDIL5zGzsU2PrEur/fIjslcVkzLO/g4v96fO4pmlRMa3HgfuBPwKDVyUJ02DT4xwbk66u8dsozRab00t5vvUsh2rrcb1RR6jfT8pmld6QDm1DPSiGYfCjk68D8Jqrhy8CbUdroTS+Mv5Xt5bx8Vdf4Q/1p7kqtYC/KtxEW+SanpcehHAQ2zWfpr1j6PvPykqKjZsIVycV80sO8OiZo+SVj75Rg939+Dv6cJbn0DF4zV0O7IXp9J5pouF4PbacFP50ug3DgE0FySPm8uAp0/C4NXNx7LVgVz+eM40kryufVK9IIxTGXd2GNSOJbm8QvLOrkzTm2uakkriyBPeRGs7+fh/pO4e2owp29NF7thl7QTr9Vgv9w66jZy0DnqLlyG68h58DwJezfszfpb7kbpC/StvzDxBa/r5L5kP/upQyHuIQD506SP7CoXsuusZGwEPH8z9AcqURWnz3hPf0b+sO4w0HuTN3Ge3tZku0HekV7G65wEMnD3JvRIA5yltdddR7enh34Up6Oue+v+PFYLKfEXOKLJO4bRn21WX0vlVF/8l6ah7dR/3zx0heW07i0sIpCbm2RyQV5NLsSa2FNTMJ94U2gm4fzbtOIzusyJV5l856XkLM1j6VKvPIeY+TcG7qnP3eRjM6L3aS/bPRhH9gB3AAeA24UVVVWVXVYkDWNK0dOKSq6tbI2JuB3Rd5rpMiWrX5lnYK95EaLGkJJK+JX0q9v7sezd3GzTmLaLIHaHaE4kpqRFldbEEuPAthhQ9k7hiSCxMVJ7UvuWXa72GieWdRCQ1HnHYjwxWY99SaT5ZbhoU0dcPg8cbjJFns7ByU3N3z5ll69p7Be35yfRc9VS0YIX3Gk2unStq1i80P72O1I8RpB8tnxMMSaUgfrD1AsGoPSuYClLSiuGOjmIUBt15yhQHbsyqwSDLPjSGp4XvrVxieTpybPopkH+mFHo1oSPOdBStix26KhM+fjhPa/FPTSQDeJkKa8xpragIZ168g/0PbSFxVit7vp+ul4zT+9GV6D5xHH0e8ezB6KIz3QiuWFBfWrORJzcNRlIkR1rnw8Ovo/iBJV41eoSmYn0RFgefjw+zFNs4+AXw3Ur25GfiGpmkHMA2v14FHgU9Fxn4e+Lqqqq8DNuD3F3muk2JbVgWSATn7W8GA9G3LRn2K+3WkVdKHy9ahJmazy9mJEQzHLRsP6mE+cfhxdCkMjZW8ed4fe80IBwlWv4mSs2jCbWzGIsuewPLkXN7srB1ReTqYqISGM44hNFyBeU9NNy6rzJq8oU8H+zprqff2cGvu4lh3A8MwYjkcvprx21cNJtZYfgbayMwEkkUh89Y1SBaFjuePEuoxPYy6L0j/yQaUZOeozcqjRQG+t36F4evFGukKMB7Oqz9onncJFQak2pxcnV7MoZ5GWnwjn1yNcAjPrh+AxYFz830Tvm6jt5c9HRdYn1Y0RNh4QULfAE9ZAAAgAElEQVQ6i5Ky2NV+nv5QYOA+hsGTTadItti5NlNUuV0KWJKcpG9bSv6Ht5O0dgF6IET3rlM0PvgSPW+enVCXAd+FVoxgGNfCvEl/QUelKvrOtSA7JpZrJhBMlFk3zjRNq9Y07erIzwc1TdsUqdR8j6ZpvZHjX9M0bYOmaes0TdsTOXZG07TrNE3bqGnahzRNC8/2XKfDgoR0PugrorBPwVGZa/Y4i0Nf0M8fGk9Q7EplS0YZK1PzeNVpRmwHN0KP8q2Iqvmd+cugJ4fa7oFenKH6QxDon7Su2VhszSonMKzydDBGKIyvrgNLWkLchrqDFZhbXj/L2Q4PG4tSsQ7LCfl1JOH97sIBr0aoxxPrOOCtbptwVVagrRd/QyeOkkyscfL75gpreiJp25dhBEK0P3UII6zjPl6LEQqb8hly/C8DOTkPOSkHvcvsEBFP3yzu/S7RwoAbchYC8Hzr2RGv+Y89gd5RjWPtPZN6APl9w1EMhu6vKDfnLMKnh3hlkIf4YHcD9d4ebsxRsV8huWaXC0qCnbRrFpP/ke1mo3IDevaeoeHBl+h+7TRhj3/Ucz1nm4GptU+yF2ZA5G846aoF86ZhtuDyYF5qh12K6L4gH2rJxiOFqV05eguIPzQexxMOcm/RamRJYkVyHoecfYQVCe/51iEGye72C9xf9RolrjS+s/w28pJs1HQP5MIEq/YAYCu/Zsbex1iiumC2HDGC4bhesyjO8hws6QmEzjWTgc6WkqHr0Rv08UTjCUpdaWwepCUV9ZqhyIR7vYS6JyaIG/OarSwde+AckLCkANeiAgLN3XTvOU3f4Roki0ListE9fJIkxbxnMPHfryTLODf8BQQ9l1THgBsi3QKGhzYNw8D7yvdAknBe91cTvp5hGPy+4Sg2WeGOvJFCsjflmvd7epCERyykmS9CmpcqisNGysaF5H9kO6lbFiFZZHr3VdH44Mt0vXqSkNs3ZLweCuM934KS7MSaPbmQJoBss+AozsSa7BReM8GMI4yzGaLnNQ1nUOLHGY284q0fddyv6w4hI/GeyJfv8pQ8ArLBhSwIdfXH2v90BDx88tBjKJLMj1a/gySrnZIUJw19fgKR3LRAlZmGZ10wc56zdWlFuBTrqMaZNxLSHCu3S5IkklaVIRsGdymhERIajzYcw6uHeF/xGuRBoQRfvWmcJa00Kz2j4dOx0H1B+k9FwoRl8Qsq5hJJkkjfsQxLqou+gxcI93lJWFIwblsVS6HZdUHJXYKcNPH35Vj3PrNjwOsPXjIdAxYkpFOZmMmrbVV4B4XTPadfJVR/CNuy27Fkjd5OZzjHe5s53dfG9dkLSbWNFCNemZJPniOJ51vOENJ1DMPgT00nSbTYuC5zYlIKgvmLbLOQvK6c/A9vJ23rEmSHlb6DF2j86ct0vngslmLgq26bckgzSubtV7H0r28WXjPBjCOMsxnA39yN+1gtUrqLh1JbOdzdGHfcid4WDnY3sDO7kjyn+aS2NDkHCXgi3TTK+g5fwDAMPnfkCVr8bv5W3caatAIASlId6AbU9/rMfLMLb6BkqzOSbxbFrljYnFHKWXc79XFCY76aNlBk7AVmvsWLrWf5r7O7RhgCrkX59CNxtyXEkoyhX5C/rjuEIklDGkFH881kp42kSCGFdwLGmftkvRkmXDF6mHCukW0WMm9ZA5HQbtLq+IUig7FEGtfbJhjSjN0rOQf7yjsJN58kcPzJyU92jrgheyFePcSe9guxYx1P/TsArq2fmdS1Ho5pm40MaQLIksSNOSpdQS9vdtZypKeJukhI0yFCmpcNskUhaXUZ+R/aRvrO5VgSHbiP1tL4s1foeOYw7qNm2sBUQpqD7yHEXgWzgTDOpomhG3S+aKrcZ+1YQY4zicM98Y2zaCHAvcWrY8cSLDYqEzN5Qq/Dmp2Mt6qFh069yTMtGtdklPFX5ZtjY0tSTSOnpts3K/lmUaKhzVeGec9Cbh/B9j4chenIVrPY4e9PPMu/aS9zsm9ovlytJ8RjIYV0DHznmmPHj/Y0cbSnieuzF5LjGCgSCHV7CPf7cRRmYElyYs1Iwl/fgR4aPdXQMAwzpKnIJCwbu5pxrrHlpJB56xrSdy7Hmj5+myqbej2Jd/0nrp1fmvS9XNd/GSSZ/uf+DUOPXwE837gxkncWbYQeajqJ++jTWMs2YS1ZP9apQzDbNR0jzeocUgU8nJsjVZvPtJzmiaYTgKjSvFyRIl048j54HRk3r8KalkD/qQZ8NW0oyU6z16VAMM8Qxtk0cR+rIdjai2tRAY7CDFam5NPqd9M8rPLMGw7ySMNRsu2JI740lqfk4Q4H8C7OAgNq3jpJutXJD1a9fUjYryTVFFat6fbG8s2sM5hvFmU0SY2YhEYkpHm+v5OqfjMU+WQkZyfKnpouHglbMYC+Q9Uxz9qvIgbq+4dpTPmHqfs7SjMxQvqYjY99te2EuiMq+875//TqKs+ZcDWpJMs4N30EOXHy/d4s2Quxr34n4abjBI7/adLnzwVr04pIszp5ruUMQT2M59XvA+Dc+tlJXeeltnO0+fu5I38ptjHaL23OKCXJYufpZo0/NZ0iQbHF9r3g8kSSZRIWFZD7gWvJvP0qHCWZpG5cOC9lFAQCYZxNg7DHT/drGpLNQtq15pP4ylTTRT48tPlU82l6gj7eU7hyRM++lSnmOfvSPfRYwtzWncF3l94WC31GKY54zmq7fQRixQAz7zkrT8igyJnCrvbzhI0Bz0tMQiOib/bCoATuJ5tODbnGnppuGpHRizIItPQQaO7GEw7yaMMx8hxJbBuWQxTNN3NE1LWdJdlD7hkPd0QvLDGSoyYY4FLznllkmTvzl9Hs7+PHhx/Hf/BhbHmLJtUrtj8U4B9OPIuMNML4H45NVtiZXUmtt5saTxc35izEqQiNqisBSZJwVeSSfdcGEpYUzvV0BIK4CONsGnTvPo3hD5G6aSFKgunVWpVitqAZHtqMhjTvifOlsSJinP396ed4JLmFFN3Clq6Roa/SiOesrtNNqDqabzbzSfCSJLE1q5yeoI9DESPT0HV8Ne0oSU4skbBcVPpgTWoBmruNs26z36ZhGOyu6SIn0UbuetMb0XeomicaT9AX8vPeolVYBqn/G4aBr64D2WWPXdtekIZkUUY1zkI9HrznW7HlpmLPHb069krFklWJfc27zNyzY3+c6+lMiK8s2k6+IxnP7gdAD5Fxyxcn1SXiX0+/yAVPJ59YsJHlKePnEd0UqRIFuE2ENAUCwTxCGGdTxNfQSf/JeqxZyUM8N1FD62jPgCr8+f5O9nRUsyWjlAUJI/uuLUs2xUh7Q36O5hsgS0NCgVGyE2w4LDJy81EMv3tW8s2iDIQ2TaX/QHMPuj+IszQLSZJwhwK83lnDsuRcPlS6DhgIbZ5u76fdE+SakjQcRZlYM5LwnG3iyaojSMA9RUMN1FBXP7rHj6MwPRZikCwK9qIMgp1uQr0jW+n0HY3KZwiv2Wi4dn4JZIX+5755SXjPkq0OvrdoG+9sPEKnPQnX+ndP+NzX2qv53+p9VCZm8mV124TO2ZFdgVWScSlWdmRPvBpUIBAIZhthnE2RjsefBiB9+7IhT/eZ9gQKnSkc7m6MGVcPRQRXh/fyi5JsdaAmZuGQLfzbhrfjqswj2NEXk9WIIkkSJakO8jvM9jyzkW8W5drMBSiSxCttZt+5mIRGRFx3V/t5AnqY67MruTFHxSrJsdDmnhpTVPeaklRTVmN1KegGC2oCXJu5gGLXUE+Xb1i+WZSoltrwbgF6KEz/8Tpkp42EhVOvtLrcsWRVYF/zHsItp/AffXyupzMh1p19hcRwgJ/nr+QbJyfWsc0dCvDZI39ERuL+lW+fcMVlstXBd1bcxn+uuF2ENAUCwbxCGGdTxVOH1f8ctryRIbWVKfm0B/pp9PUS0nUeqjtMqtXBrbmLR73cz9a+iz9v/jCLk7NJWmV6g/oOXxgxriTFyXLvEQBsCzaPeH2mSLE6WJNayMHuenqCPtNAkiQcxaZxFs0325lTSYrVwbWZCzjW20x1fxe7a4b203QtKsBvgbt6snh/waoR9/LH8s2GGmfRwoPhkhoerRHdFyRxWdGUGh1fSSTs/CLICp7nvomhz+smGxihAN7dD4AtgT3l1/BvR18aVZZmMP906nlqvd18umJzTHZmory3aDV3FSwff6BAIBBcRIRxNkWSCs5gaf8Z4ZaRDZSjCf5Hepp4ofUsrX437yxYMeYTfUViJstTzPCmLS8NW3YK3qqWmGBilLJkhTWhUwTTK5CTc2bwHY1ka9YCwobB3oZzBFq6seelItutGIbBC63nyLC5WJNqfhnelmcank80nWBvbTelqQ6KUswcuZACf0xpJz1s5dqeoUUOhmHgq+9ESbBjGdZ6yZpqtoga3hTefaQGJEhcMT/6aM5nlMwFONbeQ7hVw3/ksbmezpj4Dz2C3tuE8+q/5Btr303Y0Pn04T/gD4/eyPrVtvP8X81+FiVl8YXKifUgFQgEgvmOMM6miLXSzGsJnH1pxGsrU82igCPdjfy6LqptNnb12GAkSSJxdSkY0BdpTRRlhXGBBMNLR/bEtZ+myjWRBtBN52rBGPBkHe9tptnfx7asChTJ3EI35S5CkSR+X3eCXn+YawZ1BXi2WeMXSY3ogPdI7ZBculCnG93jx16UEbek3VGahREI4W8yQ6X+5m4CLT04F+RgSR7Z21MwEteOL4JswfP8t+a198wXaTnlvPaTXJu5gE8u2oTmbuPbZ16JO74v6OdzR59AkcxwpuiJKRAILheEcTZFbJVbAQieeXnEa1HP2XOtZ3i+5SyrU/JZOkkvV8LCPGSXjf7jdejBgS/Uyr7DAFSlrB7t1BljdUo+dlnB1ugGwBGR0IhWad6QM6DXlmFzsSmjlNP9zWD1Demn+cu6gzRbAxilaQRbe/E3dsVe840S0owykHdmitz2CfmMSaNklOJYdy/h1jP4D/9+rqczKuHWM8ipRSipprzBt9beSrErlR9U7eVA18iWaF879Rz13h4+W3FN7IFIIBAILgeEcTZFlLQilKwKAlV7MAb1AwRIt7kodqZyorcFHWNSXrMokkUhcXkxuj+I53RD7HhW21sAHLQtm94bmAB2xcKalEIWdVuRHNaYkvbzLWdRJGmEVtlt0Zy65HY2RzxntZ5uXm2rYn1aEXnrTOkC96Hq2Dn+OrPoYXgxQGwOhRkgS/iq2wl7/HjONGFJS4jlvgkmhmvHFwa8Z2OECecKw9+P3tOAMkgINtFq5/sr70DH4DNH/jik7+ZLref4Ze1Blibn8DeVk2txJRAIBPMdYZxNA2vlNgj0E6x5a8Rr0Sd5l2LlzvypGVKJK0qGyGoY4RC2+n1UKYWc8o7fAmgmuNFWSHbYRk+OA0mSaPf3c7C7nvVpxaRYHUPG7sxSwQBnRifZCaZi/2/qDmEA7yteg70gHWtWMp5zzYT6vJF8sw6URAeWlPghStlmwV6QTqC1h959VRDWSVpZIlS9J4mSXoJj/fsJt53Df/iRuZ7OCMIdZlWwMqzx+KaMUj5aup6z7na+pZle6p6gj88dfQKLJHP/qreP2QlAIBAILkWEcTYNbAu3AxA8O3po8478pSRZ7VO6viXRMUhWo4NQw2EIuDnuXEFN90jtr9ngao+ZwH802bzfS23nMCBu38L6Dh08yXhtXbT43IQNnYfqDpFksXN73hJTVmNVKUR6YgY73OjeAPbC+PlmUaKhzb5DF5CsilD1niKuHV8AxTovvWfhiJ6ekjVSb+zvFu+kzJXOA+dfZ19nHV89+SxNvj4+X3ltTCNQIBAILieEcTYNrOVbQFYIxMk7u6tgOTdkL+Sz0xSKTVpVCpgK+9F+mg3pV1Hf6yc0BWHRP55q5c/a6C2RhpPbZua7/UkxRXVfiOSbXZ8z0jjbXdMFvaYh9VTzKV5uraLJ18ddBctIsJietIRF+chOG+5jtfiqzTwyR9FIYd7BRAsRzPMLkO1Ck2oqKGlFONZ/gHD7efwHfzfX0xlCaAzjzKVY+f6qOwD44P7f8lDdYVak5PGZitkTYRYIBIK5RBhn00B2pmApuopQ3QF0b8+Q1wqdKfxq/XtZkBg/l2qi2PJSTVmN8y34z5pitu78DYR0g8Ze/6Su5Q/pfObPp/nsU6cJ6wMVk2FfgIYfv0DvW0MbnevBMKHGbmqdQXZ56nCH/LzcVkWRMwU1MWv45dld043Ua+aCPdl8il9GWla9b1BHADOXrgjdF6TnTfML2VE4dv6YNSMJJcH0PiauEoUA08G14/Og2Oh/4d/nlfcs6jmzxDHOADakF/PxBRtpD3iwSjL3r3z7iB61AoFAcLkgjLNpYqvcCno45tWaaQbLanjbUlCyKsnILgKgpts3qWsdbOzFG9Lp9Yc50eqOHffVtBPu99M/qPAAIuKwYZ2uHBtBQ+eH59+gJ+hjZ3bliDBkpzfI/oYersrOZk1qAXs7qnmuVWNZcm6spVWUxBUlIEkYgRBKkgMlxTnuGqRtX0bqdYuxZSaPOVYwNkpqIY4NH0DvuDCvvGfh9nMgW5DTRje+/1bdxrsLV/K9lXewOHnme8oKBALBfEEYZ9PEGsk7C8TJO4uH3t9BYJKGXMLCPGQbhBybsZRdF2uAXtXlGefMoeyp7Y79/Nqgn6MK/cH2PsKeAW9cVJk/eYFpXP3P+b0AXJ+9cMS1X6zqIGzATZWZ3Jq7mLBhEDYM3le8ZoQhZ0ly4qo0c4Uc4+SbRXFV5JK8ZsGE3qdgbJybPgZA8PxrczyTAcJt51AyypDG0CpzKlbuX/V23lm44iLOTCAQCC4+wjibJtbitWBLiKt3Fo/+P3+VngduIdRwdML3kCwKVvkYyIkYWXewrtCUtHjsROuk5rqnZkBf7PVBxlm0tyWAv2Ggn6evpg3JqrB0oZlf5g4FcMoWNmeWjrj2s+fMa9xUkRHrFuCQLbxjlNY4yevKkV12XIsn125HMH2UzDIAwp21czwTE72/A8PTFTffTCAQCK5EhHE2TSSLDVv5FsJtZwl3jxTKHIxhGLHiAf+JpyZ8j3BnLVT/2Dyv00F5uovtC9J5o76Ho819E7qGNxjmQGMvK3ISKUl18HpdD2HdIOT2EerqR3aZOV1RQy3U6yHU1Y+9MINMZ2Isx2xLZtmIJtH+kM5L5zspS3NSmeGiLCGdz5Rv5h8XXz9CbiOKLTuFwvt24iwZmbsmmF0kix05OY9w1/wwzsLtZq7jcBkNgUAguFIRxtkMYI11C3hlzHF6xwX0iAEXOPXMhK/v3fsT5HA7FlcYX0MnejDMx9aaHqcf7x/bIIzyVkMvgbDBlpI0Nhen0uMPcbLNjb+uHYCk1aVIFiUW4vRVm8ejMhYb0s0+lvEkNPbWdeMOhLmxYiBE+feLd/LhstlvMSWYGnJaEXp3/bxo5zSWjIZAIBBciQjjbAawTTDvLFC12/xBkgnVHSTc2zzutY2gF9++nyMlZOBctADCOv66draWpVOZ4eLxk620uMev2oyGNLeUpLKxyGyttLe2O+Ypc5ZkYc9PI9jhJuzx4420S4rKWNy34GruLVodN0z57FnTkLupUqj2Xyoo6cWgh9B7m+Z6KsI4EwgEgmEI42wGUHIWISfnEjj7CsYY2mPBiHHmWP9+AAKnnhv32r6Dj2B4unBe/Zc4y83EfG91G7Ik8ZGrCgjqBj8/1DjudfbUdqNIcHVhCpuKTePstYhxJtktWLOSYy2UfLXt+Go7sKS46LGZIczKxEz+a+XbSB4WpjQMg2fPdZDqsLC+UFRSXipEqyLnQ95ZuC0S1hTGmUAgEADCOJsRJEnCWrkVw91GuPlE3DGGYRA8txspMQvn1s8A44c2DcPA+9qPQFZwbPww9rw0JJsFX3UbhmHwrmW5pNgt/N+hRnyh0cNTbn+IQ429rMpLJtFuoSjFQXGKg+raLsK9XrNiUpZizcd795/HCIRoTUlkyff38vDx0T18x1vdNPT62VmegUUW2+lSQYmEqfWumjmeCYTaz4HVhZycN/5ggUAguAIQ36YzhG3hNgACo+SdhdvPofc2YSu/BktWJUpWJYEzL2MER9cqC154nXDjMWzLbkdJLUBSZBzFmYR6PIS6+0mwKbx/VR7tniB/ODm0cjPU7aHrhJmP9mZ9D2HDDGlG2VScysKgGQ51RDxmtpwUJKtCsK0XgMd6TZHSf9t1AX8ovkfwmbORKs3K6YntCi4uSpqplTfXnjND1wm3VWHJqhD9UgUCgSCCMM5mCGvFVgACZ1+K+3pUpNZafg0AtiU3mU3To3locfDt+REAzs33xY5FE/S9F0wNsg+tKUCR4Mf7GzCMAdX/9mcOcf7Xe/A3drG7xpTNGG6crZVNb5u9yMwVkxQZe77ZSsmQJH7R4kOWoKHXzy8Oxw+dPnu2Hasssa1s7BZMgvlFNKypd9XN6Tz03iYIekRIUyAQCAYhjLMZQknJQ8lZTPD8XozQyAT94LldAFgrIsbZ4psA8J+MH9oMdzfgP/4ESt4yrAs2xY5HE/R9NaZxVpji4FY1i+Otbl6vM1tIBVp7CDSZBlnvwfO8VtuFVZZYV5ASu86mwmTWyjpuWcaakRg7bi80jazWBCceJL6+vZwEm8J3X6+hPzA0dNrY6+Noi5vNJakk2UcXDxXMP5Q0s3n8XMtpxIoBMoXAsEAgEEQRxtkMYlu4FYJegtVvDjluGAaBqt3ISTkoWaYUhbXsaiRHCoFTzw7xeEXxvf4g6GGcW+4bEu6xJDmxZibhr+tAj+SZfXSt+UUbldXoO2LmESkOK95zzbS39LK2IBmXdaAXYR462ZLBfl1h8N1d5TkgSzzshRS7hQ+syue+tYW09Qd58ODQ9k5R4dkbK0SV5qWGZHUiJ+UQ7pzbnDNRqSkQCAQjEcbZDGKtNPPOgudeHXI83HYWo68Va8U1MUNLUqzYFu1E76ol3HxyyHgj6MP7xv8hOVNxrL57xH0cpVkYYR1/RAZjfUEyq3KTePpMOzUtvXhON6IkOym6bQ0Y8C45yObi1CHX8NWa574elDjd1j/wHjKSOHXDVfzcA+9cmoPTqvCJ9YWk2C384I1aen0DzbIHjDORb3YpIqcXz7nWWbhdGGcCgUAwHGGczSDWsqsBCFbvG3I8FtKM5JtFsS0xQ5uBYaFN/5HHMPrbcWz4CySba8R9Ynlnkd6XkiTx0bUFGMAbr2gYoTBJK0pIW1FMv0XhDiXEtflJQ+8REZt9y1DYO6iVE8CvTrQCEveuNKvnUhxW/urqIrp9IR54y8xRcvtD7KnpYll2IoUp8bsACOY3SloRhIPoE9Dbmy2CtftBVlByFs/ZHAQCgWC+IYyzGUR2ppp5Z7X7McIDHqbgOTPpf4Rxpu4EScY/SFLDMAy8e34Ekoxz00fi3seen45kVfBVD1Ro3rE4m2yXlYLGdlBkEpYVIVsUnlQcJEqwsLNnyD18dR0YLhu1hjSkCXpTn5/nqzpYlZvEspyBXLSPXFVIpsvKD9+qp8MT4OULXQTCBjeKKs1LlrkuCjACHkJ1B7EUrER2JI1/gkAgEFwhCONshrGWboBAP6GI3lks3ywlf0TvQDkhA0vpBkI1+9D7Iz0ta98iVH8I25KbUdJL4t4jJqnR7SHYbYYkbYrMlytTKEanMSMFxWmjze3nR70GfknCe6QmJpAb7HCjewMkFGdSkOzgjboe9Eje2++ONaMbxLxmURJsCn+9sYT+QJj736jj2XOiK8CljpJmap2F50jrLFi7H8JBrGWbxh8sEAgEVxDCOJthrKUbAAhFigLCLacx+tuxlm+Jq+NkX3IzGAaBU88CmF4zwLn5Y2Pex1maDYDvwoD3bLvfC8APenR0w+DVqg56kajPSiPc58Vz1gxfRftpOooy2VSUSoc3iNbej24Y/OpIEy6rzF1Lskfc8wOr88hPsvPTgw08e7aD3EQbKwZ51wSXFlEh2rnSOgue3wuAdcHmObm/QCAQzFeEcTbDWErNZt/Ris2BfLNr446PSmoETj6L3tuC/+gfULLVWDP10XCUDc07C/V5CVe30WK38VxvkBeqOngp4t1KuaoMgL6DF2IhTTDFZ6OFAntre9hT001tj487FmXHlcZwWBT+ZnMJvpBOjz/EjZWZQjj0EkZOi3YJmCPj7ELEOIvkagoEAoHAZFbFqVRV3QB8S9O0rYOO3QN8WtO0jaqqrgK+O+iUq4G3A/uAM8DxyPHHNU373mzOdaZQMiuQXOmxooBos3NbxTXxx+eoyOmlBM68aLZqCgdxbv7YuEaPJcmJNSMxJqnhPlYHhkHKqlLY1cCP9zfQ6gmSYFNYXplNt5aD93wL/oYufPUdKMlOLCkuNhab99lb282+ejMvbXhIczDvXZ7LD96opbrbx02iSvOSZi67BBihAMHqN1FylyAniH0kEAgEg5k140xV1S8B7wf6Bx1bBXwYkAA0TTsMbI28djfQqGnaM6qq7gQe0jTt07M1v9lCkiSsJesJnHqGcE8jwao9yKlFyOmlo463L7kR754f4Xn5u0iOZBxr3zuhezlKs+k7cB5fTTvuY7VIdgsV68rYUt3PruouAHYsSMeqyCRdVYb3fAudLx7D8IdwVOQCUJrqID/Jzu6aLjzBMAszXKwrGL2BuVWRuf+2xTyptXFtadrkFkcwr5BsLqTErDnxnIUaDkPQO0RgWSAQCAQmsxnWrALuiv5HVdUM4JvAXw8fqKpqAvB14DORQ1cBa1RVfVVV1UdUVb2kOiJH8858b/wMw9M5ar5ZFNuSm80f9BCOdfci2SeWxxWV1OjedRLd4ydxSRGy1RITpYWBlk32gnSs2cmEOt3AQD9NSZLYWJxCty9EIGxw78q8cb12GwpT+OcdFVgVERW/1FHSigl31cWKRS4WsXwzUQwgEAgEI5g1z5mmaY+qqloKoKqqAjwIfAGODOwAABHOSURBVA7wxhn+YeARTdPaI/8/DRzQNO0FVVXvBe4H3jnePdPSXFgsynjDZp3+Vdvof/rr+F4zk/szVt9AatboUgF66k30/SIR3ecm/7bPYR9j7JDz0ly0/+kAoW4PAMVbF+PISuLejES+/up5znd4uH1lAVmR6ylbl1D98BsA5K8swZZiaqjdtCSXR0+0YlUkPnFdOVmJ9im/9yuJrAn+nuYz/twF9NYdIM3WjzUt/6Ldt7bBDPvnrr0Ba/ro63g5rPF8R6zx9BFrOPtcaWt8sRoiXgVUAg8ADmCJqqrf1TQt6kW7l6HG10uAJ/Lz48A/TeQmXV2e8QddBIykRSAr6B5TP8yXvZa2tr4xz0m449vo3m56lVwYZ+xg7EUZeKtacBRn0odEX+Tc79xQyaF2D4V2OXZvIzcNS4oL2W6lJxCO3WdVhhNFgtvVLPAGaPMGpvK2ryiyspLG/Z1eCgQTTIOs7dxJrKUX58PP0MP0n96NnFFGdzh51P1+uazxfEas8fQRazj7XM5rPJrReVGMM03T9gFLASLetN9GDTNVVVMAu6Zpg5UwfwI8CjwM7AAOXIx5zhSSzYUlfwWh+kPIaSWj6pUNxrHu3indy6Xm461qIWlN2ZDjW0rSuHNt8ZANLSkyufdsiWT8DVCS6uTFv1xLsVD6v+KIaZ111sTC8ZPFMAz6//QVlNwlONe/f9zx4eaTGL4e7Mtvn9L9BAKB4HLnYnnOxmIhUD3s2N8CP1VV9ZOYBQXxpfLnMdbSDaaY7ChVmjOFa2EejqIMFNfEQpGywxr3+JJsoVd2JaJkLwTMHDDHmndN6Rrh9iq8u/4bZAVL/jKshavHHB88/xog8s0EAoFgNGbVONM0rRpTHmPUY5qmvYUpnzF4zAVg22zObbaxLbkJ754fYptl74AkSRM2zASC4VgXbEZOycd/6BESb/8XJHvCpK8RrNpj/qCH6XvoPtL+eheSdXQvbPD865F7C+NMIBAI4iHK7WYJ28LtZPxTtdkBQCCYp0iKBce692H4+/Af/cOUrhGsiggtqzsJt5ym/9l/GXWsYRgELryGnJyHnFE26jiBQCC4khHG2Swiu9LnegoCwbg41r8fJAnvmz+f9LmGYZhafkk5pHzgF8gZZXhf/T7BC2/EHR9uP4fR14p1wSbRXUIgEAhGQRhnAsEVjpJegrVyK6HqNwg1n57UueG2c+i9zaaWnz2R5PeY8jG9v70Pw98/YrzopykQCATjI4wzgUCAc8MHAfDt+8WkzgtG2pNZy83CF2vZ1Tiv+yx6xwXcf/6HkeNFMYBAIBCMizDOBAIBtqW3ICVk4Nv/G4yQf8LnxfLNBlUlJ9z4FZScxfj2/oTAmZeGjj//OpIrDSVn0cxMXCAQCC5DhHEmEAiQLHYca+/B8HTiP/7nCZ1jGAaBqj3IybkomRUD17I6SHrvD0G20Pe7T6F7ewAId9Whd9VgLduEJIuPHoFAIBgN8QkpEAgAcKz/AAC+fRMrDAi3njGT++P0jrUWrsa184voPQ24//i3AAQviHwzgUAgmAjCOBMIBABYclQsZRsJnnmZcEf1uOMH8s2ujfu6a8cXsBSuxr//1/hPPDWo2fnGGZuzQCAQXI4I40wgEMRwRr1nb/1y3LHBc1HjbEvc1yXFStJ7fggWO32//wwB7UWwJWApWDlzExYIBILLEGGcCQSCGPaVdyI5kvHt+xVGODTqODPfbDdySj5KZvmo4yy5i0m46R8w+lrRu2qxlm5AUuZD1ziBQCCYvwjjTCAQxJBsLuyr70bvbSKgPT/quHDLaYz+9rj5ZsNxXvspLKVmxzaRbyYQCATjI4wzgUAwBMeGvwDA9+bommfj5ZsNRpIVku/5CY4NHzS7EQgEAoFgTIRxJhAIhmAtXIWlYBWBU88Q7rgQd0wgkm9mGyXfbDhKejFJd38fJTl3xuYpEAgElyvCOBMIBCNwbv006GF6H/rYiNwzQ9cJnt+DnFoompcLBALBLCCMM4FAMAL7qndiX3UXoeo38bzw70NeC7ecwujvmFC+mUAgEAgmjzDOBALBCCRJIvEd30VOK8bzwr8TvPB67LVovpltAvlmAoFAIJg8wjgTCARxkZ2pJN/zEwB6f/0RdE8XMJBvNpq+mUAgEAimhzDOBALBqFjLrsZ1/ZfRu+twP/q5gXyztGKUjNK5np5AIBBclgg1SIFAMCauHV8kcOZl/EceQ07OwfB0YVty81xPSyAQCC5bhOdMIBCMiaRYSL7nJ0iOFLy7HwDAVn7NHM9KIBAILl+EcSYQCMZFSS8m8Z3fi/1f5JsJBALB7CHCmgKBYEI4Vt1FuOk44Z5GlPSSuZ6OQCAQXLYI40wgEEyYhJu/OtdTEAgEgsseEdYUCAQCgUAgmEcI40wgEAgEAoFgHiGMM4FAIBAIBIJ5hDDOBAKBQCAQCOYRwjgTCAQCgUAgmEcI40wgEAgEAoFgHiGMM4FAIBAIBIJ5hDDOBAKBQCAQCOYRwjgTCAQCgUAgmEcI40wgEAgEAoFgHiGMM4FAIBAIBIJ5hDDOBAKBQCAQCOYRwjgTCAQCgUAgmEcI40wgEAgEAoFgHiEZhjHXcxAIBAKBQCAQRBCeM4FAIBAIBIJ5hDDOBAKBQCAQCOYRwjgTCAQCgUAgmEcI40wgEAgEAoFgHiGMM4FAIBAIBIJ5hDDOBAKBQCAQCOYRwji7TFBVVZrrOVxOqKoqq6pqn+t5XAmIvTu7iL08c6iqKr4zZ4nIPnVFfr7iPxOEztklSmTzVgJf0TTtg3M8ncsKVVU/BtwCnAe+r2la9dzO6PJC7N2Lh9jL00NV1U8Ca4DTmqZ9Z67nc7miqmoe8F3gYU3THp3r+cwHxFPAJYqmaQawAPiAqqrXg3jamAlUVb0HuBH4HJAMfDxyXKztNImuodi7s0vUuyP28tSIro+qqu8AbgC+DbxDVdXPR46L780ZQFVVadBelIGFwBpVVRdFX5+zyc0DxCa7hFBV1amqqiXyczpwDfAg8E2IfekJJklkXa2R/24BXtM07QLwY2CJqqqyWNvpoapqGmCN/JwIXIfYuzPO4HUG1gFviL08cSLrZ4v8dwvwpqZpGvBTIENVVaemafqcTfAyIbpPB+3FxcBZoA9znyYCwjgTzH9UVS0BvgVsjBxyAy9rmvZRoF1V1S9Gxl3RG3qyxFnX/wB+Hvl5KXBMfBhPD1VVvwz8EfiGqqrv0DTNDbwg9u7MMmyd78Lc1w9GXhZ7eRwGrd+/qKr6NuCrwLdUVV0NfAEoAv5HVdXKOZzmJc+wffruyOEEzP2qAV8E7gdS5maG8wNhnF06bAZuBdarqpqlaVoAeC3y2heBj6iqmiGeiifN4HXN0DStCuiOhC5uB14FUFW1QlVV2xjXEcRBVdVVwLXAu4DngHepqnq7pmkvRoaIvTsDxFnnu4HNmqZ1Rvat2MtjMGz9ngHeC9wUMWargHWapr0fyMI00sTDxBSIs0/vVFX1ZsAFfAn4KKbHLOpFu2IRxtk8ZJQ/+lLgd5i5IxsBNE3zqqpq0TTtKLAXeOCiTfISZJx1TQI2AWiaFgYygUbAo6rqbzHzdSwXZ6aXFQuBfZqmNQMvAb8GPqOqqgIg9u6MMXidXwQeAj4eCdc7gWbEXh6L4fv0IeBjkddSgERVVbOBIOADEYqfIoPX+WXgN5heySVAF/BlTCMtFzMsf8UijLN5hqqqqUBG5OdoYqqM+aX2NaAXWKWqatmwU/8KePjizfTSYoLrulpV1QWRU9YCn8T8oHhC07QvaJrmudjzvlQZlDRdDdyqqqoj4oV4AdMTceeg4WLvTpEJrPNWYAWmQSb28jDGW79I2G0j8L/A48DjmqbtnZPJXsKMss5hTEP4INCuadrHNU07BrwBPKhp2utzM9v5gTDO5hGqqn4IOAy8LXIoWt2mA3WRUOZzmC7gqJcnFEny7dc07fdzMO15z1TWFWgFvgLcpWnaby7ujC89VFX9qKqqH4qUxANIkX25DzgH/D+AiFHQCHRGzlPE3p04U1jnMOAF/g6xlye7fg2YRsPDwGeBazVN+8WcTPwSYxLr7MZ8MD4eOc+qaVpA07QjczLxeYTQOZsHqKq6FTP3pg7zKe0eTdNODHp9E9AUqbpCVdVPYLqH79c07fzFn/GlwRTXdRHwH5qm1V78GV96qKqagRkWrgU6MB/4vhddP1VVVwAVmF9uPwO6MT04f6tp2q45mfQlyBTX+cvA54WnZ1r79Cuapr0yF3O+FBGfBzOHyDuYH6zBNAheUlX1K0AecCISivsmoAL/v707C7WqDOMw/thpMIisaKIkG6y3i0gbQCSQpCD1QqSbMhpOgQ1EdRNNFlHeGBhhVEgQFg0XYkETURR1UZEgjVC9ZYpgpZVR0IQNdvGtU7tTqcd91lp7n/P8bs5msxZ8589m8a5vvKzj+tXAJAuzndrdXC3Mdt2BwKeZeVVETALuBT6vlsIvBaYBC4AvgdOAc4HFPohHbHdyvsXC7C+7+zt9raX29iufB6PEnrOGRcSEzNweEVcCP2fmI1V37x/VCqrnKG8Rb0fEVGBKx8o2/Q9zrd+wjH/IzMci4nTKyrZvgCMoc8lWAD8CT2XmxvZa3J/MuTvm1wxzrpdzzhrWscLnLOCGjgJin47tMeZV164bKiCGVrfpv5lr/YZlfHOV8VrgAWA65a35VGAtcD5laMOMR8icu2N+zTDnelmcNSQiDu/4PIvyZrGJcp4YwG/V34+B76M6AHZItbJFw5hr/XaQ8fLq662ULV7uzsyvKNMlXhl6eJvxrjHn7phfM8y5GQ5r1iwiJlO2ajgUeBZ4AdhG2dZhI2Xlyhkdk9LnAlcAizLz6zba3A/MtX67mPGszFwXESuA7ZS35QOAZZn5chvt7jfm3B3za4Y5N8ues/oNUpa0X0eZkH4j8FNmflQt134IuGfo4sx8gbLHiwXEjg1irnUbZOcZD/VQXks5fuXJzJzjg3hEBjHnbgxifk0YxJwbY89ZDSLiUsrmj58BxwBLMnN9NRH9cuDzzFzecf23wEWZ+Xwb7e0X5lq/3cz44sx8ro329itz7o75NcOc22PP2SiLiKXAXMr4+zTgEspwGpRx+ZeBKRFxUMdt5wMbmmxnvzHX+nWRsVu6jIA5d8f8mmHO7bI4G32TgAcz823gPuB+4IKImJ6Zv1B2np8I/BDVMUKZ+VJmfthai/uDudbPjJthzt0xv2aYc4vchHYURTk/7ClgTfXVecAzwAfA8ohYBJxNmUA5UG3xoJ0w1/qZcTPMuTvm1wxzbp9zzmoSEftTun3nZ+bmiFgMHAQcBlyfmZtbbWCfMtf6mXEzzLk75tcMc26HPWf1OZLyg54UEfdSDna9KTN/bbdZfc9c62fGzTDn7phfM8y5BRZn9ZkF3ETZIfnRzHy85faMFeZaPzNuhjl3x/yaYc4tsDirzzbgVsrme47Hjx5zrZ8ZN8Ocu2N+zTDnFlic1efh/PvsMY0ec62fGTfDnLtjfs0w5xa4IECSJKmHuM+ZJElSD7E4kyRJ6iEWZ5IkST3E4kySJKmHuFpT0rgUEUcDnwBDZwHuC7xJ2WBzyw7uezUzZ9ffQknjlT1nksazLzJzemZOB04ENgOrd3LPmbW3StK4Zs+ZJAGZuT0ibge2RMTJwDXASZQzBN8HFgJ3AUTEmsycERFzgDuBvYANwKLM3NrKPyBpzLDnTJIq1Q7onwILgG2ZOROYChwAzMvMa6vrZkTEIcBS4JzMPAV4kap4k6Ru2HMmSf+0HXgHWB8RV1OGO48H9ht23QzgKODViAAYAL5tsJ2SxiiLM0mqRMTeQADHAkuA5cBK4GBgwrDLB4DXM3N+de9E/l3ASdKIOawpSUBE7AHcAbwFHAesysyVwHfAbEoxBvB7ROwJrAFmRsQJ1fe3AcuabbWkscieM0nj2RER8W71eYAynLkQmAw8ERELgW3AG8Ax1XVPA+8BpwGXAasiYgDYBFzYYNsljVEefC5JktRDHNaUJEnqIRZnkiRJPcTiTJIkqYdYnEmSJPUQizNJkqQeYnEmSZLUQyzOJEmSeojFmSRJUg/5E5zQMaHZfeyEAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x504 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plot_elo_for_teams(\n",
    "    data=elo_hist,\n",
    "    teams=['CLE', 'IND', 'PHI', 'MIA',],\n",
    "    title='Elo Ratings Eastern Conference Middle Playoff Brackets',\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is a similar plot for the 4 teams in the Western Conference middle playoff brackets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAGiCAYAAACif2GLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8VeX9wPHPHcnN3oOEAGE+7C1L3Ip7j1p3be1w/KrWaqvWapfVttpardsOrRscqKDiqBOQveQhQAKEkL2Tm7t/f5yTkD3vTQJ8368XL27Ofc4533PuTe73PtMSCAQQQgghhBCDg3WgAxBCCCGEEAdJciaEEEIIMYhIciaEEEIIMYhIciaEEEIIMYhIciaEEEIIMYhIciaEEEIIMYjYBzoAIYJFKRUAtgC+Vk+dB2QDj2qtJ/fgeNcAfwNyzU0WIA74HPih1rqhi/0/AC7TWpcqpd4DbtNab+vu+XtCKZUB7APStNbl5rb7gV8A47XW2tx2OzBLa/2dXpxjJPBnrfWFwYu8zTkigLuAszDutw14AXhQa92reX+UUnHAMiAB+JXWekmQwg0JpdSnwHHAaK317mbbjwc+AX6utf5zR+8ppdRFwI1a6+PbOfY7wOta63+Zvy+pWuvSbsaVDewCNjfbbAH+prV+zvx9uUhrfVZ3r7Wb523x+gETgB8BK7TW1zYrd7xZTpub7EAp8BOt9bdBiuVTjL8jr/dgn3uAjVrrt4IRgzgySHImDjcntPdhY36w9MbnzT9szOThC+Bq4Mku9j2l8YHW+oxenr9btNYHlFKbgWOBN83NZwFLgXOAP5nbTgRe7OVpRgCqL3F2RillwYh9BzBfa92glEoG3gViMD6Ye2M6kK61HhOcSPvFXuAK4DfNtl0FFDX+EOr3VAecWuvpjT8opYYCW5RSa0J4zhavn1JqN8aXni/aKburVXy3A4/Q7HdxAJwIhORLmTh8SXImjjhKqXjgMYw/+gGMb9t3aq293dg9GYgHGmunzgLuBMKBNODfWutfKaX+aZb/RCl1BkZt20UYScbvgd3AZCAM+JHW+kulVCrwT2A0UAYUAlu01vcqpe4Dzgfc5nPXaK0PtIptGXA88KaZjDowav7uBf6klAoHFmB8yKOUOhu424y9HqMW5mul1HjgWSACo2bkGYxE9BlgqFLqfa31qUqpBcADQDRGbeV9Wut3zBqU75vbq4B/m7H7gbHmua5upzbjWIxakTO11j4ArXWZUupKjJpPlFJZwOPmzxbzfv/JvN6PgPeAuUAicDvGh+JzZtwbgPnAjO7ErbU+QSn1feB6jC4gZRg1UtuVUv8CqoEpwDBgE3CV1rpWKTUXIyGINl+v27TWHyulJpivRzJGjeAjWuvnaN8LNEvOlFJRwEJgRWMBpVQeRk3VGqXUb4DLzRhzmpXJNO9/JrAH4z3aRkfX2UFsTbTW+5VSOcC4VsebBzyI8R7MAD7UWn9fKXUXMFFrfblZbiHwd631DKXUecCvzRhqgFsx3j/NXz8NZAHPKqXu0Vq/0lFsZrKfBBwwf76Glu/LszDeS2MxXpMajKRPK6WGAE8A4zHet09orR9pdmw7xpccD8YXtWiM13YKxu/0R8DPMWr4ZmP8/vmAEuAhjNc/ANyvtV7c1X0WRx7pcyYON58opTY0+/dGO2UewfgAmoLxh3MacFsHxzvGPM52pVQJ8CpG095r5h//n2EkGrOBecAvlVIpWuvvmfufoLXe1+qYc4G/aK1nYCRjf2gW11at9QTgYoxECqXUMOBm4CjzPB+Yx2itMTkDOBt4B/gMmKSUSjHj26a1LlZKjTXPe4YZxw+BJUqpaIwPlaVa61nAGRhJUwD4AUbNxKlKqUQz9iu11jOBc4HHlVLDzfNPAo7XWp9g/nwccJPZrLwKo7m1tdnAqsbErJHWOkdr/aH543+BT7TWU4CjgSuUUpeaz40C3tdazzGP/1ezObcx7ukYCWe34lZKHYfxwXuMeY8eBJq/n2YBp2EklNnAxUqpMIzav9+Y13od8DczMX4d+IV5X48DbjOTmPasBxrMRA/gAuBtoM0XCKXUucCFGF82FmB8eWj0GLBSaz0J+D+MZKP1/l1dZ4eUUvOBMRivaXM/Be7RWs8FJgLnKKVmAU8DZymlksxyPwSeML8QPAFcqLWeBtwDvIWRWDW9fmZzfAFweQeJ2ejG332z3E+AvzZ7vvn78nSgUms9X2s9DvgGuNEs9w9gh9Z6PEZC/0OlVGPNazjwGlAMXGF+qXsYWGu+tjOAFOBWrfVjwBqMpug3gPuAh8xy12LUqgnRhtScicNNu82arZwOHG32YXIppZ7ASH7+2E7Zz7XWZymlrBi1TJdh/GFGax0wa5/OUkpdhvEhbcH4Ft1ZDHu01hvMx+uAa8zHZwAzzWMfUEo19mvZD2wE1imllgHLtNYftXPcr4Hh5gff2cAftdYepdTHwElmfO+aZU/BqNH4SKmmlko/xgftG8B/lFJzMGpq/k9r7W9WDowPrAyMWrrGbQFgqvl4k9a6uln5tVrr/GbXfEE78fvp5AujmTgeDSwC0FpXmTVYpwMrMWox3mt2jqR2DtOTuM/EuB9fNSub2CyxWK61dpmxbTbPNwXwaa3fNWNcC0xRSk3EqBF9rtmxIjE+yFd2cMnPY9SercJInm6h/S8RJwNLtNY1ZizPYSRijc/dZsay03wvtNbhdTb2X2wm0kx84GCfrsu11vtavT+uBs5QSt2JkRBGAjHmF4N3gCuVUv8BTsWosbsK+Kixj51Z01iMkQD3pK9h62bNq4APlNFfEpq9vlrr15VSu5VSN5nXfzzG7xAY9+12s1wVRi035jX+BYjF6BPYGNtZwByzBhLzetvzKvCY+XdjBUatuxBtSHImjkRWWv7Bt2I0RXRIa+0HfmM25f0LoyYgGqOG4w2MZsvnMAYfWLo4v7PZ40Cz8t5W+zY27fnN2o3ZGB8aDyullmutb28Vo1cp9RFGsjLdjAmMhGwhRg3hzeY2G8aHYdPAALOGrkBrvdGsWTsFI6n7tVnr0ZwN+NasGWncPxOj2eZyoLab19zcSuBmpZStee2ZUuoojGTj+nb2a/7auc3XqbNz9CRuG/C81voOs5wVo3mwopNr8tIqmVBKTTafq2qVOKRjNK915L/AWqXUQ0Cc1npLqwSouebX2rx2rfV9aK/pvqvrbK5Fn7NOfIbR1LscIyGZ2yyOxzCaE73AYrMpuLGZr7nG19bdjfO1S2v9H6XUIxi1d9Ds9VVK/QSj5u5RjCbKcqAxiWvxOiqlRnHwC9fz5rU8jdGfE4x7eHFjU71SKqGd60Fr/aRSainGF4zTgHuVUkp3MbhIHHmkWVMcid4HblRKWZRSDow/0B92sU+jG4BFZlPSWIzRm3drrZdifPN2YPyhBiO56jTpa+VdjD4xKKMj/PlAQCk1DWMU6rda6/sxmlCO6uAYyzC+8X+qtfaY297DSLKGYSSTYPSJWWQ2J6GMfnGbMGpGXgS+o7V+GSMhqsao9fE2u56VwFil1LHm/tMx+joN7cH1tqC1/hrYDjykjIEXjQnM34Fcs2ZoJcZr0Nh38Cq6/9r1NO73ge8qYyQswI8x7lunl4Hxmp1iHn8m8LG53amUusLcPgzjNW2d9B48kNYFGK/JcxgJQUeWYTSpJpiJ1ZXNnluO8f7GbLo9oZ39e3OdHTITk6OAO7QxMjYLo2bKZl7XVxi1pLdhNGVinu9UMwlCKXUixvu1dXNpT2M52nyo23n6VOBfWutnzefP5uDv7grge+Yx4s34xprPrcYYnDJGKXWdue194JZmf1Pe5mATadPvjVLqK2CG1vpfGK9LAjCkL9coDk+SnInDTes+ZxvMxKO5/8PoGL3Z/KcxOul3SWu9C6Mz+cMYowrfAbYrpb7F+OO+DeODCIzmz/+ZNSfdcQsw3mwiW4zRgbtea70Ro/ZhjTJGxV2L0Vm6PcswmujeaRZzEUaNwceNzTDamH7hh8DLSqmNwG+Bc7TWtebjy83tqzBqBj8zr61BKbUaoxbhQoyOzhsxkocrtdZ53bzWjlyIUSux1jzuR+a9+LX5/OXASeY9Wg0swajJ7BatdUl349Zaf4DxWn+olNqE0aR9ge5kSg+zmfMCjNrGDRjJxwVaazdG/7YfmMf6AGNajy+7CPk/GP3IOhxhq7V+DyOBW4PxejWvjbsBmGi+P58FNrSzf4+vszNa60rgfoxm+C0Y/f++5ODvBRj9/gq01pvMfbZhfBFYYu7zR+Bss0mxJ0Y3+73fhNHf7AIzptb+DPzILPc5RlN4Y4w3AhPM577E6Li/ttk1NmB0R/iTUmo0xt+UaIy/J5vM/x80i78N3K+Uuhrji9NvlFLrgU8xBqPk9fAaxRHAEgj06vdPCBFkSqnrgfXaGDHpwPjA+LXWetkAhyZE0ChjpOMbwAsddOoX4ognNWdCDB7bgL+b36rXAe9JYiYOJ+bAiBLz32sDHI4Qg5bUnAkhhBBCDCJScyaEEEIIMYhIciaEEEIIMYhIciaEEEIIMYgcVpPQlpTUSAc6IDExioqK+oEO47Ak9zb05B73D7nPfSf3sH8czvc5NTW23UnLpebsMGS327ouJHpF7m3oyT3uH3Kf+07uYf84Eu+zJGdCCCGEEIOIJGdCCCGEEIOIJGdCCCGEEIOIJGdCCCGEEIOIJGdCCCGEEIOIJGdCCCGEEIOIJGdCCCGEEIPIYTUJ7WC0bt0a7rnnl2Rnj8RiseByuVi06DQuuuhSPv54BYsXv4LFYsHn83HOOedz+ulnAXDRRWeTnj4Ei8WC3+/H6aznjjvuZvz4iQN8RUIIIYQIJUnO+sGsWbO57777AXC73Vx22YUkJibz9ttLeOCBh4mJicHlauDuu+/A4YjgxBNPBuChhx7F4XAAsGrV1zz33FM8+OBfB+w6hBBCCBF6R1Rydu/Hu1i6vTioxzx7fBr3nji62+Xr6+uxWq28/fYb/OQnNxETEwOAwxHBDTfczJ//fH9TctZcYeEBYmNjgxa3EEIIIQanIyo5Gyhr167hxht/iNVqxW63c8stP+exx/5GZmZWi3KZmUMpLDzQ9POtt96I2+2itLSUuXPnc8MNN/d36EIIIYToZ0dUcnbviaN7VMsVLM2bNRu98sqLFBYWEBcX17QtP38v6elDmn5ubNZ88snHKCjYT2JiUr/FLIQQQoiBIaM1B8hFF13KY489Ql1dLWA0dz722CNccMHFbcped91PKCsrZcmS1/o7TCGEEIex93aUUFbvDvl5impdNHh9IT/P4eKIqjkbTBYuPJb6+jp+9rP/axqRefbZ53LSSYvalLVarfziF7/ihht+wHHHnUBKSuoARCyEEOJwsrmwhmuWbOX8CWk8eW7oZgIoqnUx98lVXDEtg9+dPDZk5zmcSHIWYjNnzmbmzNntPrdo0eksWnR6u8+9/vrSFj9nZQ3jrbfeD3p8Qgghjkybi4yWm/d2lFDZ4CEhIiwk53l3Ryn1Hj9bi+tCcvzDkTRrCiGEEEegb0uNZMnlC7BkW3BnMmjuXV0CQEGNK2TnONxIciaEEEIcgbaXGMmZzQIvbTrQReneKXd6+GpvJQCFNS4CgUBIznO4keRMCCGEOALp0jqy4hycNCqZjYW1bC2uDfo5PthZhs/Mx5xeP1Uub9DPcTiS5EwIIYQ4wlQ4PRTWuhmfGs13pxpTOL28qTDo53nPbNI8ZkQCAAekabNbJDkTQgghjjDa7G82PiWaU8YkkxwZxutbi3D7/EE7R63byye55YxPieLo4Y3JWein7TgcSHImhBBCHGG+NfubqZRowm1WLpqcTpnTwwc7y4J2jo93l+PyBThjXCoZscY60VJz1j0ylUaIrVu3hjvvvI1///vlptn/H3/874wYkc3xx5/EU0/9g5wcjcViISoqmhtvvJnhw0ewbt0a7rnnl2Rnj8RiseByuVi06DQuuujSAb4iIYQQh7rtZs3ZhNRoAC6bOoQnv8nn5U2FnKWCM5fmu7oUgDNVCqX1HkCSs+4KaXKmlJoLPKC1Pl4plQY8DSQCNuAqrfUupdQtQGPG8Z7W+j6llAXIB3LM7V9rrX8ZylhDyW4P4w9/+A1//etjWCyWpu0PPPA7pkyZys033wZATs4O7rzzNp544p9Ay2Wf3G43l112IaeeeqYsgC6EEKJPdEkdFmBschQAE1JjmD4klo92l1FU6yI9xtGn47u8fj7cVcbw+Agmp8Wwo6wegAO1kpx1R8iSM6XU7cCVQOOscw8C/9Vav6qUOgEYr5QKAJcDc4EA8LlS6g2gHlintT47mDHdu+0Dlh7YFsxDcnbGRO6d2HZW/+ZmzZqN3x9gyZJXufDC7wBQWVnJ7t07ue++PzSVGzt2HAsWHMP//vcxGRmZLY5RX1+P1WrFZrMFNX4hhBBHlkAgwPbSOkYmRhIZdvAz5btTh7Dhgxpe3VLETfOG9+kcn++poNbt48rpGVgsFjLMZK9wkNac+WobqM85QMz07BaVKAMllDVnu4ALgOfNn48GNimlVgB5wE8BN3Ca1toHoJQKAxqAWcBQpdQngBO4RWutQxhryN122y+47rqrmTNnPgCBgJ+hQ7PalMvMHEph4QEyMjJZu3YNN974Q6xWK3a7nVtu+TlRUVH9HboQQojDSHGdm3Knl7lZCS22nz8xjXs+2snLmwu5ce6wPiUpjRPPnjHOaCKNddiICrMO2gEB5R9vwbmrCHtSDJEjBn6JxJAlZ1rrxUqp7GabsoEKrfXJSql7gDu01vcApWYz5p+A9VrrHUqpIcD9WuvXlFILgReAo7o6Z2JiFHZ7xzVLjx13IY9xYe8vqhcSEqJwOMIYM2YYv/rV3Tz44G+ZOXMm4eFWSkuLSU1t2URZXl7EmDGjSUiIYsGC+Tz88MO9Om/r44rgkXsbenKP+4fc5747FO/hxooGAGaNSGwRfypwwdRMXlq/n131XuZnJ/Xq+F6fn/d3lTMk1sEZ04ZitRpJXlZCJEX17m7fszqXl998uINvi2p5+cqZRIWHJmVpKKlm7+4iAMLrXIPiNe3PAQFlwNvm46XA7wGUUhHAc0ANcL35/BrAC6C1/kIpNVQpZdFadzq1cEVFfSji7pPKynpcLg8lJTVMmXIUGRnvsXjxEq6//v9IT8/giSee5cILLwFA6+18+OEKLr74SnJydNN+PZWaGtur/UTX5N6Gntzj/iH3ue8O1Xu4cqdRqzU8OqxN/OePS+al9ft5/LPdjInu3VqbX+6poLTOzdUzMikrOzixbVpkGDtK6sg/UIXD3vlkER/uLOOOD3aQX200g769Lp+TRif3Kp6ulH242ehYBVTklWCb2LZVK1Q6SgT7cyqNL4AzzMfHAlvNGrO3gI1a6x81Nm8CvwZuBlBKTQP2dpWYHSp++tOf4XAYbe933/0bcnN3c911V/PjH1/LM888zv33/0U6/AshhAgZXWpUZIxPiW7z3DEjEsmKc/DGt8XUuX1tnu+O93aYozTHpbTYPsScTqOwk0EBhTUufvDmVi5/fTOFtW5OHWMkZKv3V/Uqlq746hqo+3Y/9vgoLA477pLQnKen+rPm7GfAM0qpnwBVwGXAecBxgEMpdbpZ7pfAH4EXlFJnYtSgXdOPcQbVzJmzmTlzdtPP0dExLF78TtPPt932i27tJ4QQQgTDtyV12K0WRiVFtnnOZrVwyeQhPPTVHt7RJXxnypAeHTsQCPDujlLiHfamiWcbZcSGA8Z0GiMSWp7bHwjwr/UF/P5/u6lx+ThqaBx/Pm0cmbEOxv3tS1bnV/fwKrunZkMe+PzEzhpF/Y4CXPnl+D1erGEDO9NYSM+utc4D5pmP9wCntCryBhDRwe5nhi4yIYQQ4sgTCATQpXWMSYok3NZ+49l3pxrJ2QsbD/Q4OdtQWENBjYuLJ6UT1ur4TSM2a9sOCnh27X7uWrGTOIeNP582jiumZWA1ByRMSo9lXUE1Hp+/zTH7wu/2UrtxL9bIcKInZeGtqMWVX46ntAZHRmLQztMbskKAEEIIcQQIBALc98luat0+pg3puPvMiIRIjstOZFV+FTtK6zos157mE8+21tEqAXVuHw9/tYeYcBufff8orpqe2ZSYARw9Mgmn18+WIC/MXrtlH36Xh9jp2VjtNsJS4wBwF4emlq4nJDkTQgghjgAPfJ7HP1bvY2xyFL86YXSnZa+cngHACxsP9Ogc7+4oISrMyvEj24707Cg5e3bdfkrrPfzoqCwy49o2ph2dbdRirc4PXn+wgM9PzbpcLHYbMdNGABBuJmeeEknOhBBCCBFiD3+1h4e+2kN2QgSLL51GWnR4p+VPG5tCSlQYr24pxOXt3mLoOWV17Cp3cvzIJKLC2k5r1V5yVuPy8tjKvcQ77Pz4qPZHSR5tJnrB7HdWn3MAX42T6MlZ2CKNexGWHAtWC25JzoQQQggRSv9YtY/7P8tlWJyDJd+d3jRqsjPhNiuXTB5CudPLspzSbp1neY6xaPppY9s2aQKkRodhtbRcwumpNflUNHi5fu4w4iPan7pjZFIUadHhrN5fRSDQ94kbAoEA1Wt2gwXiZo5q2m6xWQlLjsVTWk3AP7ATREhyJoQQQhymnl2bz72f7CIjNpzFl00nK76jMXhtXTHNaNp8fkNBt8ovzynFaoFTRrc/ea3daiUtOpxCc5WAygYPj6/eR1KknetmDe3wuBaLhTlZcRTVutlb1dDt+DvSsLcUT0k1UWMzsMe3XHUnPDWOgNePt7Jnfe2CbWDHih4hCgr289hjf6Wqqgqfz8vo0eO4/vqbeOmlF0hOTua88y4C4O9/f4iCgv3cd9/9BAIBnn76cbZt24LFYiEyMpKf//xO0tN7NnJGCCHEkemFjQX88sOdpEaHseS708lOaDt1RmfGJEcxf1g8n++pJLfCycjEjvcvqXOzZn81c7PiSY7quMk0I9bB1uJaAoEAT6zOp9rl41fHjyLG0Xk6MmdoPO/oUlbnV7WZhqOnatbsBiBudtt+d02DAkqqCUuK6dN5+kJqzkLM5WrgF7+4lcsuu5pHH32Kxx9/jkmTJnPvvXc1lQkEAjz88INUVFTw298+QHh4OI888hfS0tL4xz+e4bHHnubss8/nnnt+OYBXIoQQ4lCxPKeU25bvIDkyjMWXTmd0Uu/WZW6sPXtxU+cDAz7cWUYAOHVs57P4D4lx4PYF2Flez1Nr8kmJCuPamR3XmjWakxUPwOr9fesP5iqspGFvKY5hyYSnx7d5PjzNHBQwwCM2j6ias9qld+Pa9GZQj+mYeh4xZ/+uw+e/+uoLpk+fyaRJk5u2nX76WbzxxusUFOwnKSmZP//5frxeL3fffR9WqxWPx8MXX/yP2247mIwdd9wJTJ8+I6ixCyGEOPysK6jmR29tI8Ju5cVLpjA+te1KAN11lkrlzg938tKmQm5fmN3hPGPLzX5pp3fQ36xR40S0d6/YSa3bxx3HZBMd3vGa2I2mpMcQabf2acRmwOuj/INNAMTPG9tumfCUgzVnA0lqzkKsoGA/Q4e2HYGSkZFJUVEhzz//T/Lz8ykpKcFizutSVVVFUlJy08+N4uMT2hxHCCGEaJRX6eSK1zfj8vl58pyJzMiI69PxIsNsXDw5neI6Nx/uKmu3TL3Hx//yKhiXHMWoLmroMs3BCJ/kVjAkJpyrZ2R2K44wm5UZGbFsL6mjqsHTs4swVa3KwVNWQ8zU4URktV/DZ40IwxYXibskOIMPeuuIqjmLOft3ndZyhUJqahrbtm1tsz0/fx/Z2SMZNWo0t956B3fffQf//vezXHPND0hISKC21miTb56gffDBck488WTs9iPqZRNCCNEN5U4P3311E6X1Hh5YNJZTu6jF6q4rpmXwzNr9vLDxAGeMS23z/Gd5FTi9/i6bNIEWI0VvXjCCCHvXtWaN5mTF89W+KtYWVHPiqJ4tgu4qrKT6m93Y4iJJOGZCp2XDU+Nw7ioi4PJi6WAEaahJzVmILVx4HGvWrGLbti1N25YufZOEhEQyM4cyapTRIfH22+/i3XffZt26NdjtdubMmcfrr7/StM8nn6zgtddelMRMCCFEG06Pjytf38yucic3zRvG97rRj6u7JqbFMCszlo93l7O/uu1oyffNJs2OptBornEJp6w4B5dPzehRHE39zno435nRnLkRAgGSF03FGt7552j83LHEzx+HpYtBCqEkn/QhFhUVxQMPPMwjj/yF6uoqvF4fY8aM5d57f8+rr77YVC4uLo677rqX++67m2effZ6bbrqVv//9IX7842uxWCA2No7f/e7BAbwSIYQQg5E/EODGd7bzzf5qzp+Qxl3Hjep6px66Ylomaws0L24q5OcLs5u2+/wB3t9ZRkpUGDO70YQ6IzOWE0Ymct3sLBz2ntUPzR5qHL+n/c6qVubgKaslZtoIIoZ1nUCGp8e3O1igP1kGsk012EpKag6fi+mD1NRYSkpqBjqMw5Lc29CTe9w/5D733WC5h/d8tJMnvslnwbB4XvnOtB4nPd1R6/Yy5dGvSYiws+bH87BZjS433+yv4szn13P51CE8fMb4oJ8XWt7nY59Zzd6qBnJuXtitRdBdhZUUvfwltthIMq48tstas/6WmhpraW+7NGsKIYQQh6in1+TzxDf5jEuO4l8XTg5JYgYQE27ngolp7K928WluedP25T1o0gyGo7Liqff42dqNRdADXh9l72+EACQvmjboErPOSHImhBBCHILe0SXcvWInadHhvHTJVBJC3Hn9ysYVA5othr48p4xIu5VjzMXJQ23O0O73O6v6OgdveS0x00cQMaxnAwgGmiRnQgghxCHmm/1VXL/0WyLDrLx48RSG9WBZpt6aNiSWyWkxfLCzjKJaF7vK68kpq+e4kYntLnQeCgcno+2835nrQAXVa3dhj48iYWFomltDSZIzIYQQ4hCys6yeK1/fjMfn55nzJjF1SGy/nNdisXDF9Ay8/gCvbC482KQ5pn+aNAGyEyJIjQ5jdX7H85AFvD7KPjCaM5MWTcUadug0ZzaS5EwIIYQ4RBTVurj01U2UO738+TTFyaP7t7nuoonpRNqtPL/xAMtySrEAp4zpvxgsFgvWgNcOAAAgAElEQVRzhsZTWOtmXweLoFd+tQNveR0x07M7nGx2sJPkTAghhDgE1Lq8XPbaZvZWNXD7wmwun9azecKCIS7CzjnjU9lT2cDq/GpmD40jNbrjhc5DobN1Nl0HKqhZt9tszlT9GlcwHXp1fYeYdevW8NZbi7nvvvubtj3++N+Jj4/nq6++oLa2ltLSErKzRwLwt789js1mY+vWLdxwww94/PFnmTBh0kCFL4QQYhBw+/xc++ZWNhfVcuW0DH529IgBi+WK6Zm8sqUI6L9Rms0dnIy2iosmpTdtD/j8zZozpx2SzZmNDt3ID3EJCYk8+uhT7SZvAO+88yaXXnoFS5a8xl13SXImhBBHqkAgwC3vaT7NrWDR6GQeOHVsm7WX+9OcoXGMS45iR1k9p3VjyaZgm5IeQ4Tdysp9lS2WOaz7Nt9ozpw6nIispH6PK5iOqOSs4rNvqc850HXBHogam0HisZ2v09VT9fX1rF37Dc8//ypXX30plZWVJCTIoudCCHEk+sNnuby2tYhZmbE8ee5E7NaB7ZFksVj4x9kT2FZSx9jk6H4/f7jNyvHZiSzfWcYLGw9w5fRMAj4/Vat2gs1K3Nyx/R5TsEmfswHS2beejz76gOOOOxGHw8GJJ57CO++82Y+RCSGEGCyeXbufv329l1GJkTx/0RSiw/tnyoquTB0Sy6VThgzY+f9wyljiHXbuXrGTHaV11G3Nx1ftJHbqcOwxoZ9WJNSOqJqzxGMnBL2WqysORwRut6fFNqeznvBwR4f7LF36JjabjVtvvQmXq4Hi4mIuu+wqrAP8bUkIIUT/eVeXcOeHOaREhfHyd6aSEtW/He8Hs6z4CB46XfH9N7dyw1tb+ae/BovdStxRowc6tKA4opKzgZCdnU1Ojqa0tJSUlBRcLhcbN67nkksua7f8rl078fv9PPXUv5q23Xzz9Xz11ecsXHhcP0UthBBiIK3cV8mP395GZJiVly6ZSnZC5ECHNOicPT6VK6dl4Ny8F3+Ym9hZI7FFH/q1ZiDJWchFR8dw0023cPvtP8XhiMDr9XDhhd8hK2tYu+WXLn2DU089o8W2s88+n8WLX5XkTAghjgD5VQ1ctXgLvgD8+/zJTOunSWYPRfcdN5IcvRunH3alJHHCQAcUJJaOZtg9FJWU1Bw+F9MHqamxlJTUDHQYhyW5t6En97h/yH3uu1Ddw58t0zy/8QAPLBrL92YODfrxDzWd3eea9blUfLqNF/xhvBAWzSfXziY9puNuQ4NNampsux3QpROTEEIIMUjsq2rgpc2FjEmK5KrpmQMdzqDm9/qoWr0LS5iNjPnjKK33cOM72/EfBpVOkpwJIYQQg8Tfvt6D1x/glgUjsFkHbi6zQ0Htpr34613EzsjmmvkjOHl0Ev/Lq+Cpb/IHOrQ+k+RMCCGEGAT2Vzfw0qZCRiZGcv7EtJCcw1tVT+F/v6B6XW5Ijt9f/B4v1d/sxBJuJ3bWKCwWC387YzzxDjv/WL3vkK89k+RMCCGEGAQeWbkXj1lrFoqJZr01TopeX4m7uIqa9bkcyn3OazfuwV/vJnZGNrYIY4qR1OhwzlIpFNa6WbWvaoAj7BtJzoQQQogBVlDdwH83HmBEQgQXTQp+rZmvroHixavwVTuxRoXjq3biKasN+nn6g7eynqpVO7E47MTNHNXiufPMGsc3vi0eiNCCRpIzIYQQYoA9umofbl+AW+YHv9bM53RTvHgV3oo64maPbpqM3bm7KKjn6Q8Bn5/SZesJuL0knTAJa0RYi+ePHp5ASlQYS7eX4PX7ByjKvpPkTAghhBhAhTUunt9QwPD4CC6enB7UY/sbPBQvWYWnrJaY6dnEL1REZKeBBZy7D73apaqvd+AurCRq/FCiJ2S1ed5utXLO+FTKnB4+31M5ABEGR0gnoVVKzQUe0Fofr5RKA54GEgEbcJXWepdS6jrgR4AX+J3W+h2lVArwIhAJFADf01rXhzJWIYQQYiA8umovLl+An84fTpgteHUmfpeH4jdW4ymuJmbKcBKPn4jFYsEWGY4jMwnX/nJ8Tje2yENjWaiGvaVUf7MLe3wUSSdO6rDceRPSeG5dAW9uK+aEkUn9GGHwhKzmTCl1O/AM0LiWwoPAf7XWxwJ3A+OVUkOA/wOOBk4F7ldKOYB7gBe11scA6zGSNyGEEOKwUlTr4j8bDpAV5+A7QVxI3FtZT/HiVbgLK4memEXiSZOxWA5OzRE50uib5cw9NGrPfE43Zcs3gNVC8hkzsDrCOiw7JyuezFgH7+4oweU9NJs2Q9msuQu4oNnPRwNZSqkVwOXAp8Ac4EuttUtrXQXsBKYCC4Hl5n7LgJNDGKcQQggxIB5btY8Gr5+fzh9BeBBqzQKBALXb8jnw389xF1URPTGLpFOmtkjMACJHGclZwyHQtBkIBCj/YCO+OhcJCxSOIQmdlrdaLJw7IZVql49Pc8v7KcrgClmzptZ6sVIqu9mmbKBCa32yUuoe4A5gB9B8vGsNEA/ENdveuK1LiYlR2O22PkZ+eEhNlbXYQkXubejJPe4fcp/7ri/3sLjGxb83FJAVH8FNJ47B0cfPL6/Tzd4311CxeS9Wh50RF88jafqINokZQCAlhrKkaBr2lpCcGIV1EH92Fn+9A+fuYmJHpzPqtGlYujE577ULRvL46nyW7a7gigUj+yHK4OrPhc/LgLfNx0uB3wNrgObv7FigEqg2HzubbetSRYV0SwNZMy+U5N6Gntzj/iH3ue/6eg9/88kunB4/N84dRnUfP78a8ssoW74BX00D4RmJpJw+HX98FKWlHU+X4RiRint9Hvs37iVieEqfzh8q7tJqipZtwBoRRuyJkynt5vQfwx1WshMieHPLAfYUVBIVNjiTz46S+/4crfkFcIb5+FhgK7AaOEYpFaGUigcmAFuAL5uVPR34vB/jFEIIIUKqtN7NP9ftJyM2nMunZvTpWNXrcil+bSW+Whfx88eRfsk87PFRXe4XOdIYGTqYp9So+jqHgNdP0qJp2GMiut7BZLFYOH9iGvUePyt2lYUwwtDoz+TsZ8BVSqmvgNOAP2itC4FHMJKvj4G7tNYNwO+AS5VSXwLzgUf7MU4hhBAipJ5YnU+9x89Nc4fjsPf+o7h+ZyGV/9uGLSaC9EvmEz9vLJZuzpPmyErCEm7Hubs4aKsF+F0e/G5vcI7l9tKQW0xEahxRo3s+xci5480JabcN/n51rYW0WVNrnQfMMx/vAU5pp8zTGFNsNN9WhJHACSGEEIeVcqeHZ9ftJz0mnCum977WzF1STdnyDVjsNlLPO4rw1Lge7W+xWYkYkYIzpxBveS1hyX3rgxgIBCh65WuwwJArjmm3r1tPOHOLCfj8JE4e1qv9J6RGo1KiWLGrjBqXl1hHf/bk6huZhFYIIYToR0+s3ked28dNc4cT0cuO+L56FyVvrSHg8ZF8+vQeJ2aNIkc1Nm32vXbJW1WPp6wGT2kNDUGYosOZUwhAQi+TM4vFwnkT0nD5AizLKe1zPP1JkjMhhBCin1Q4PTyzdj+p0WFc2ctas4DXR+nStfhqnMQvGEfUmN7PjxbM+c5c+w727apel9unY/k9Ppy5xdgTo4kc0q0JG9p13gTj+t48xNbalORMCCGE6CdPfpNPrdvHjXOHE9mLEYSBQIDyj7fgKqggSmUSN2dMn+KxRYYTnpGIq8BYLaAvGszkzJ4QhWtfGe6S6t4fK6+YgNdH1NghfWoeHZ0UxdT0GD7NraDC6enWPvuqGnjr2+D1w+sNSc6EEEKIflDZ4OHptfmkRIVx9YzMXh2jZl0udVvzCU+PJ2lR28lleyNyVBoEoCGvpNfHCAQCNOwrwxrlIOHYiUas63tfe1ZvNmlGje3bSFaA8yam4fUHeEd37/puW6657q1t1Lp9fT53b0lyJoQQQvSDJ7/Jp8bl44a5w5rm3fqwaAe5dd2bxb4hv4zKz7/FFu0g5ZzZQZs49mC/s95PqeEtr8Vf7yJiWDKRo9KwJ0RRt70AX72rx8fye304dxdhj48irJd96Zo7f0IaFuClzYVdli2obuDT3ApmZcYN6AACSc6EEEKIEKtq8PD0GqPW7JoZQwHIq6vg8m9e4vbN73brGLWb90IAks+Y0aM5v7oSlhyDLS4S554SAr6O16JsyC+n/OMtBPxtyzQ2aUYMS8ZisRA7YyT4/NRu3NPjeBr2lBDw+IgamxGUmsGhcRGcMCqJNfur2V5S12nZ17YWEQC+OzV465z2hiRnQgghRIg9tWY/1S4fP5kzjOhwo8brk5KdAKwq30uDr/O5wQL+AA15JdhiInAMTQpqbBaLhchRaQRcXlwF7dfiBbw+yt7fQO3GPbgOtF20pzE5cwxLBiB6YhYWh52aTXsIeHvWPFi/4wAAkWODlyA1TvT7340HOiwTCAR4eXMhEXYr545PDdq5e0OSMyGEECKEPD4/z63dT1Kkne/NPNjX7JOSXQA0+L2srcjv9Bjuokr8DR4islODUpvUWldTatRu3ouv2gmAp7TlklWBQABXfhm22MimlQms4XZiJg/HX++mThd0O46A14dzdzG2uEjC03s/SrO1U8cmkxIVxqtbCmnoIFlcU1DNrnInZ4xLIT4iLGjn7g1JzoQQQogQ+nxPJWVOD+dPSCcm3OjH5PH7+KIsl8Y06/OyzjvPN0510Tj1RbBFDE3CEmZrNznzu71UrdpJY7Ce0pajMD0l1UbiaDZpNoqdng0WCzXr87o98rFhbykBt7fPozRbC7dZuXTKECoavCzb0f6cZy9vMvqkfWfKwDZpgiRnQgghREi9sc3oaH/+xIOJ1dqKfGq9bi4cOhUrFr4o7Tw5a8gtAaslZAuUW+w2Ikak4q2sw1PecnHxmrW78TvdxB01BiwW3K0We2/Ib9mk2cgeF0nUmCF4Sqpx5XdvfcvGJs1gjNJs7fJpxjFfaKdps97j483txWTGOjh2RGLQz91TkpwJIYQQIdLg9fFeTilZcQ5mDz048rCxSfPczIlMi89gXeV+ar3tzzPmq2vAXVyFY2gS1vDQjSCMHNV2QlpfvYvqtbuxRoUTd9RowpKi8ZTVtKgJa9h7cDBAa7EzRwJQsy6vy/MHfH7qdxdhi40gfEhCXy6lXaOTolgwLJ7P91SSW+Fs8dyyHaXUuHxcMjkdmzX4zcY9JcmZEEIIESIf7y6nxuXj3AlpWJs1031asgu7xcrRydkckzISb8DP6vK97R7Dac4/FqomzUZNqwU0m1KjatVOAh4f8XPHYg23E5YSR8Dtbep/FvD7ce0vx54QhT02ss0xwzMSCB+SgHN3EZ7KzkdKNuwtJeDyEjUmOKM023PFdKPP34ubWtaevbx58DRpgiRnQgghRMg0Lht0/oSDiVWZu54NVQXMSRxGjN3BwhSjdunzDpo2G3LN5Cw7tCMIbVEOwjMScO2vwN/gwVtVT+2mPdjjo4iZMhyAsBRjcXS32e/MXVxNwO0lYlj7za0Wi+Vg7dn6vE7PX5/T2KQZugTpzHEpxDvsvLSpEI85bcj+6gY+y6vgqKFxjE6KCtm5e0KSMyGEECIE6tw+PthZxqjESKakxzRt/6xkNwHg+NTRAMxJGk6YxcoX7QwKCPj9OPeWYIuLxJ4U0+b5YIscmQaBAM68Yiq/3gH+APELxmGxGelC4wLrHrPfWcNeo3N96/5mzUWNGYItJoK6rfvwN7S/hFLA58e5qwhbtIPwzND1+YoMs3Hx5HSK69ys2GVMG/LqFmNus0sHSa0ZSHImhBBChMT7O0up9/g5f2Jai2a6T0uN/mYnmMlZlC2M2YnD2FR1gEp3y75QroJKAi4vkSPTQtbU11zjlBo163Kp/3Y/YalxRKmD03+0rjlr7OgfkdVxcmaxWYmdnk3A46N26752y9Rty8ff4CEySBPPdubgwICCprnNIu1Wzh0f2mbjnpDkTAghhAiBN7cZTZrnNWvSDAQCfFqyi+TwKKbEHxyRuDAlmwDwVXnLGfUb8swpNELcpNkoLCUWW2wE7qIqABKOVi2SJVtMBFZHGJ7SGgI+P679FYQlxWCLdnR63Ogpw7DYrca0Gs1WGAj4/FR8uo3yFZux2G3ETB4WmgtrZlJaDDMzYvlodzlvbS8ht8LJGSqFuAhjsEWt18XW6t4vZRUMkpwJIYQQQVbZ4OGj3eVMTI1GpUQ3bd9SXcSBhhqOTx3dYoDAMclGv6zWU2o4c4vBZsXRQZ+uYDNWCzBqzxxZSUS0SgotFgthKbF4K+poyC8j4PXhGN5xrVkjW0Q40ROz8NU4ce40Eh9vjZOi176mZn0u9qRohlx2dFOzaahdMT0DfwBuXaaBlk2aN214i5M+e5Jab8/XBQ0WSc6EEEKIIFu2oxSPP9BibjOAD4qMZODU9HEtts9MzCLSam/R78xb48RTWkPEsGSsYcFZ5Lw7YqYMJzw9nsTjJ7XbxBiWajRtNnbw72gwQGuxM4wEtHpdLs68Egpf+Bz3gUqixmcy5LsLCUuODc4FdMN549OICrNS6/YxNM7BwuFGP7dvq4t5t/BbZiQMJdoW3m/xtCbJmRBCCBFkS8wmzXMntE7OdmC3WDkhdUyL7eFWG3OTR7C9poRilzEJbENe/4zSbC08NY4hly3ssBYrPMXY3mDOh+bI6t5an2FJMURkp+I+UEHJG6vxe3wknjiZ5NOmh3T+tvbEOOxcMNGoIWw+t9kju74A4OaxC/ulj19HJDkTQgghgqikzs3neyqYlRlLdsLBub+KGmpZX1XAvKThxIdFtNlvYXI2AF+W5gEHJ4ONCPH8Zj3VOCgAICwtDltE92uY4maNAsAWF0n6JfOJnTZiwJKgWxeM4MrpGVw3OwuAvLoK3ti/hYmx6SxKG9fF3qElyZkQQggRREt1Cf5Ay4EAACuKdwBwSnr7H/zHmPOdfVGWS8Dro2FvKfbEaMISotst31cBn4fad+7Bu39Tj/Zr3vzY2SjN9kQMTyH9u0eTccUxOEKwCkBPZMVH8JfTFClRRnL56K4v8RPgp2MGttYMJDkTQgghgurNbcVYgHPGt27SzAHg1A5qZabEZRBnd/B5aS6uggoCHh+R2aGrNfPkfIrz079S++btPdrPGm7HnmBM1trekk1dcQxJwOoI6/F+oVTYUMPL+RsYGZXEOZkTBzocSc6EEEKIYCmobmBlfhXzh8WTEXtweokGn5f/le5idHQyo2LaT2jsVisLkrPJq6+gOMeYDyxiZOj6m3nyVhr/536F98C2Hu0bMSwFa2Q4jqHd62822P1j91e4/T5uGnM0NsvAp0YDH4EQQghxmHjzW6MT/3mtRml+VZZHvc/Dog6aNBs19jurzy3GYrcREcLkx5O7sumx8+tnuyy/snwvt29+l1qvi3Dve0TzJJb+7ccfEuXuev6zZy0ZEbFcPHTqQIcDSHImhBBCBIU/EOD5jQWEWS2cpVrWeL1vTqHRVUfzhSkjyXI7iKrxEjE8GYs9NFNoBHwePHvXYEtTWOMzca19mYA5SrQjf9nxP/61Zw1PvH0XzhW/x7vzAzy7vwxJfP3p6dxV1Ps83DBqAQ7b4Mg2JTkTQgghgmB5Tim7yp1cNCm9qZM5GKsCfFicQ3xYBHOSOp8BX8Wkckd5NgCRYzM6LdsX3v0bweMkbPRCIuZeQ8BVQ8O6VzssX+t183X5HrLry7lo1T/xm01/7q3vhSzG/lDrdfFM3mqSw6O4fPjMgQ6niSRnQgghRBA8tsroJ3b93JYJ2LaaYvKdVZyYOoYwa+c1YQ07DjC/JpY1kdUUDWs73UawNDZpho2cR8Tcq8Fqw/n1swQCgXbLf166G5ungX/v+JBon4c71al4w6NxbX2vw30OBf/MW0OVp4EfjpxLtH3gJp1tTZIzIYQQoo9W5Vfxzf5qFo1ObrFcE8CHRcYUGl31N/PVNVDxyVZ8Nvhteh6fleV2Wr4vPLlfAxCWPR9bfAbhk87CV7AZ757V7ZZfUbSDX+1YQUplPg1HXcmnWTNYkTAcf8VefAe2hizOUHL6PDyR+zUx9nCuzZ7TtN1bvIOG9a8PYGSSnAkhhBB99tiqvQDcOK9ts+X7RTuwWSyc2GpVgOYCgQDlH2/F3+DBMnck+8PcfFKyKySxBgIBPHkrscZnYk004o1c8H0AnF890255x7qXObdoG7Zhs8i68CGemnkhHyWPBqB0w5KQxBlqb+zfQomrjmtHHNU0KXDDN/+l4uFjqHnphwRcdQMWmyRnQgghRB/klNWxPKeMWZmxzM2Kb/FciauOdZX5zEkcTmJ4ZAdHgPodB3DuLMQxNIkRcyYwJjqZz0p34/J5gx6vr3QXgdoSwkbOa5psNWzMcdhSx+La+Ab+urIW5bX+iBu2LaM+PJr4q/6Dxe7gpLSxHD3/GjwWK3nrXsHp8wQ9zlB7p/BbAK4YPouAu56aV2+g5pWfYLGFE3fV81gcoZn8tzskORNCCCH64PHV+QDcMHd4m5nlPyrOIQCckj62w/199S4qPtmKxW4l6ZSpWCwWTkobS73Pw8ryvUGP19vY3yx7ftM2i8VCxPxrweemYfULTdv99RU4XvkJ9oCP3Wf+BlviwZrBH0w4hX3pExhduY97V/4n6HGGUq3Xzeelu5kQm0ZWfSkVfz+JhtXPY8+aQeItn+GYfOaAxifJmRBCCNFLRbUuXt1SyMjESE4fm9Lm+Q/M/manpqsOj1HxyVb8TjfxR48nLNGorTk5zUjmVhTnBD3mxsln7SPntdgeMfsyCIvEufJZAn4/Ab+fmpd+RExNEU+OmM/0o65oUd5isTBxzpUA1G95h/WV+4Mea6h8UrITl9/H9XWlVP71OHwHthIx//sk3PA+tuSRAx2eJGdCCCFEbz2zdj9uX4Dr5wzDZm1Za+byefmkZBfZUYmMiW5/VYD6nAPU7zhAeEYisdOzm7bPSxpOlC2Mj0KRnOV+jcURi33IpBbbrVGJREy/EH9ZHp4dH+H89K+4v13OV4kj+GbGxe02y0ZNPguAE8p28bedXwQ91lBZVqg5sSSHEz/+E4FAgNjLniH2woextLMg/UCQ5EwIIYTohZoGL/9aV0BKVBiXTE5v8/xX5Xuo87k5NX1cuwtp+70+yj/egsVmJXnRVCzNkjuHzc6xKaPYWVdGbl150GL215biK8nBPuIoLO1MuBqx4AcA1C69m7plv8EVk8rtE87gpA5q/mxJw7FlTmFe5T4+zd/E9prioMUaKh6/jxXFO7iseDsACT9+h4iZlwxwVC2FfCpcpdRc4AGt9fFKqZnAUqDxq8DjQBXwC/NnC7AQmAxEti6rtX4l1PEKIYQQ3fHMqj1Uubz84phsIsPazl+2vND48F/UQWLj2leGv95N7MyRhCXFtHn+5LSxLC/SfFy8k++PnNPOEXrOk7cKgLDsee0+HzZsJvasGXjz14PVzivH3ECFs4bjU0d3eEzHpDPwFWxmYXkef9v5BY/PuCAosYbKqvK9eJ1VHFW2G1vGZMKGzxrokNoIaXKmlLoduBJoHI86E3hIa/2XVkWXm+V/Dnyptf5WKfWDDsoKIYQQA8rj8/PwZ7uJCrNyzcyhbZ5/LX8T/96zlpTwaOYmDW/3GM5co5YpcnTbWjeAk9KMqTdWFOcELzlrnN9s5PwOy0QedyM1//0+Mef8gaU+iLQ6mRTXfowA4ZPOpP7DBzivKp8b92/hjnEnkB2dGJR4Q2FZ4XZOKN2F3e/FMe28gQ6nXaFu1twFNE+hZwFnKqU+U0o9q5SKbXxCKZWFkcjd11VZIYQQYiC9tb2EfZUNXD41g6TIsBbPvbxvAzdueIPYMAf/nfNdwttZFSAQCODMLcbisOPIbD+RGRoZz4TYNL4sywvaVBWevJVgtRE2fHaHZSJmXEzyr3fim/c9ttcUMy0hs9OVDexDp2GNH8qC0p1Y/V7+vmvw9j0LBAIsL9KcVWo0yjmmnj/AEbUvpDVnWuvFSqnsZptWA89ordcqpe4Cfg3cZj53K/Cw1trVjbLtSkyMwh6iRWIPNampksuGitzb0JN73DOeigL23H8cqRf+nvi53e87I/e5dwKBAE+sWYfNauHO08aTmhTV9NxzO1bz041vkxAeyYpTf8TMlKx2j+EsrMRX7SRxynDS0uPbLQNw9oiJPLjlU7Z6izh9yIQ+xe13OynJX0/EiBmkZQ3pvHBqLJ8c2ImfAMdkjuryveKbfS4VH/2Dszx1vJK/kfvnncnQ6I6vq6eC9V7dULafippi5pXn4ciaQsakwbOeZnP9vfz6G1rrysbHwN8BlFJW4Czgrq7Kdqaioj6IoR66UlNjKSmpGegwDktyb0NP7nHPOVctwV20k6K3/4h71Ond2kfuc+99klvOpgPVXDo9k2ifr+k+/mfPWm7b/A5JYZG8NvcqhgXiO7zH1evyALBmJnb6OiyIHQHA4pxNzHa0n+j9a88aPi/N5ckZF2K3dtwg5t71Jfg8WLLmdOu1/yjPmAZkgiOty/L+USfDR//gh84K3nTE8dtvPuC3k07r8hzdEcz36os71jU1adomnTPgvwMdJZ39PVrzfaVUY8P5ScBa8/FkYLvW2tmNskIIIZppXMTam78eb8nOAY7m8Ne4wPnPTzjYSf6fed9w2+Z3SA6PYvH8q5kS33nNVGN/s4iRaZ2WOypxGLF2ByuKd7a7wPi26iLu3LKMpQe28XkXa3F68xonn21/MEBrayuMectmJ7afFDYXNvoYLI5Ysvd+Q6Yjluf3rqN0AJc/6sjyQs1pJUbS6Zg2OJs0of+Ts58Af1VKfQocDfzO3K6A3d0sK4QQohlv3tdNj10bFg9gJIe/zYU1fJZXwTEjEpiZlQDAs7mruWPLe6SER7Fk3tWddp4H8DW4cRWUE56RgC0yvNOyYVYbx6eOZk99BbtaLavk9fu5eePbeAN+AN4q2NLpsRoHA7SefLY9gUCANRX5DI2IY0hE12aiXx8AACAASURBVE2KFruD8PGnECjfwy8SM6n3eXg6d1WX+/WnffWV5Jbv4eiKPdgyJmFP63wh+oEU8mZNrXUeMM98vA5Y0E6Z14DXWm1rt6wQQoiD/DXF+Ep3Y8+ehzd/A671rxF18u3tzqsl+u6x1Uat2Q1zjWWMnty9kl9te59URzRL5l2Nik3t8hgNeSUQgMguas0anZw2hqUHtrGiOIcxMQdXIXgqdyUbqgq4IHMKX5fn8V7hdh6cclb7AxD8fjx7VmNNHoktrov+ZsBeZyWl7jrOyZjYrRgBwiedjmvjEk6ryCMlPIpn81Zzw+gFxA2SiV3fL9IcX7qLML8Xx9TBOUqzkUxCK4QQh7DGpXjCJywifMKp+Ip34CvYPMBRHZ72VTXw1rfFTEiN5oSRSfxly6f8atv7pDtieHP+Nd1KzKDZFBrdTM5OTG2cUuNgk/XuunL+qD8hJTyK308+jXMyJlLpaeCzktaNUAZf0XYCzsoeNGka64XO6kaTZqPw8YvAasO/YQnX/z975x0eR3n17Xt2tqp3WbK6y7j3bgM2YEoAmxoIhN4S0giQhCR8bwq8yQspkJBCCZ1QDbbBYFPcccFNtuWikWw1q/e6fWa+P1aSJVtlV82Wmfu69vJ6Nc/znFm1o1N+J3UWjV4XrxTu9nv9YLO2QubSYZDSBN0509HR0RnWtOtWpc3HOuMGAJyZK86kSecsz+8+gaLBA3OS+cfx7Tyyew0J1lBWz7+DMSGnz9XsCk3VcBZUIYZYMcWG+bUm3hrKlPAEdtQU0Ox1o2oaDx34CKfq5Q+TLifaHMSyRN8oplVlh7vcwx99s47sa52TOTPCf+fMEBSJddbNKBXZ3Hx0LWFGC8/n7cQ+QDIg/aHe7eBAhcx5dQWIIyac1SlN0J0zHR0dnWGNJ38HiCZMKTMwj7sEwRqGa/8HaKp6pk07p6h3enjzQBkJoWaKLTk8nv0lSUHhrJx/BxkhXc/N7Ap3WR2q04MtPS6g1PPFcaPxaCpbq/N4s2gf22sLuSxeYnmCzymbFZFEki2cteXZuBTvaevbIqz+Omd764oxCYZeGxtOJWT5k4hxY1G+eo7fG6DabefNwjPfz/dlZS7nVx3DpCpnfUoTdOdMR0dHZ9iiuVrwlhzAmDQNwWRDMFkxT7oStf4E3sKzqxh7uPPqvlLsHhVpfDVP5mwkyRbO5m89QEZwVED7+NuleSoXxY0B4L9Fmfzu6BeEGS08NfmKdgdPEASWJUygyetiY9XxTms1VcWTtx0hKBIxdkyvZ7kUL1mN5UwKG4FNNPV6fUcESwhht74GRitLt/6LDLedf+Ztx60qAe0z0AynlCbozpmOjo7OsMVzYi+oCqa0k9EQ6/S21Ob73S3TCRCnV+HFvcXYourYZM8kxRbBqvl3kBHqf8SsDUd+JYgGrCmBrZ0RMZJIk43PK3No8rr47YRLTuuiXN6W2iztnNp07nwZtf4E5vGXIfSgg9ZGVmM5blUJqN6sI8aEiYRc8ydw1PNC7pdU2et5r/hAn/YaCFyKl69LD7OortCX0uxm1unZhO6c6ejo6AxTuqojMo2+ACEkFteBVWhnQa3PucCKwxVUtXhISm4E4MWZ15MSFBHwPt5GB57qJqzJ0RhMgYkliIKBJa3Dx8+LTueW5OmnXTMtPJHUoEg+q5Dbxz0p9SW0fPIbBGs4wVf87rQ1p+JSvPz+6BcAzI9KDcjGjljn3IZl+g0kVOXyUME2/n7sK7xnKNW+v6GU2ZXZmIdBl2YbunOmo6OjM0w52Qwwt/01QTRimXI1Wks1ntxNZ8iycwdV0/jX1ycwGjTKhTKSbOFMC0/s016Bdmmeyt3pczg/JoO/Tr2qy3o1QRBYnjCBFsXN+lbR2uaVD6O5mgi+6oleJTQ0TeMnBz5iZ20RyxImcEVC38dFCYJAyHXPIMaO5vai3aQW7WF1N80Kg02hvY5LK2VgeKQ0QXfOdHR0dIYlmqrgLdyNGDsGwymdgidTm3rXZn+odXi4a+VhjtU6WDRBoMnr4tL4sX3WkOuvczY7MpkV824lNajrQelwMrW5uvQw7oOrcR/+FFPGIqxzbut1/6dyNvFhaRazIpN4dtrVGPqplWewhhJ262toRgt/yF7HC5kf0uJ192vPvlBWX8qi2gKcMaOGRUoTdOdMR0dHZ1jiyduO5mrClLHwtI8ZU+dgiEzBfWgNmsfRxWqd3thaUMeSl3fzaU4185PDSRzZDMBl8eP6tJ/qVXCdqMYYFYIxPKj3BX1kUtgIMoKj2FlykMZVj4DRQsgNf+vVoXznxH7+kruF1KBIXp91U8CNAN1hTJxM6PInifA6eXjf2/wl+8sB2TcQwo+sw6IpMHn5kJ/dV3TnTEdHR2cY4tz9JgCW1ihZRwSDAcu069BcTbiPfj7Upg1r3IrK45uOc/07B6hsdvOr89P54KapbK7JJcxoYUF03+qwXCdq0Lxqn6Nm/uJLbU7kgdz10FRJ0NJfYOylQ/Or6nwePvgxESYrb8+5mRhL8IDaZJ13J+LUa5neWIplw1/Iaigf0P17QtM0pmZ/hkcwELPgniE7t7/ozpmOjo7OMEN1NuE6uBpDVFqXkTMA6/TrAb1rMxCO19q54o19PLvzBKkRVj65dQYPLkjlaHMFJc5GLo4bi6mL0Uj+0J7SzBhc5wzgencz15dlURY+kqDFP+nx2pymKu7c+x4Ar866sdN4qIFCEAQibvg7rshk7irazRtfPIWiDU1zgCdvO0mNpWyLH4+tj92nZwLdOdPR0dEZZrgOrASPHeusm7uVRhATJiHGj8N99DNUR8MQWzi80DSNtw6UcdErezhQ3syNk+LZcOcsZiT6FPzXlvuKyS8f0bd6JU9NEy3ZJQgWI5aE7uvFBgLN4yDq09+gIvCLMRfS0oMT1OJ1c/Put2jwOHlm6nIWRKcNml0Gaxjxd7yFx2Dknj1v8vahTwftrI7Yt70AwM6xFw7JeQOF7pzp6OjoDDOcu98EQcA66+ZurxEEAcv068Hrwn1ozRBaN7yod3q4Z9URHlwrYzQIvLB8As9eOZ4Qy0mpi3UVMibB0D7jMhC8TQ4qV+5Cc3mJvGACgji4v3btX/4Jtfo4Ryddxd6QOD6ryOn22q9riyiy13Nn6ixuSJoyqHYBmEZOxXTlE0R6ncSv+jmlzbWDep7SWI770MfkBMfgTJo5qGcNNL1+lUiSdEKSJEWSpBpJkmo7PN8tSdK0oTBSR0dHR8eHtyoXb8FOTKMvQIxK6fHaNtkA18FVQ2HasEPTNK7+734+lquYmxTOxrtmc/X4zmnHE/Z6DjWWsygmnVCTJaD9FYebyg93oTQ5iVg0jpCJyQNp/ml4S7Owb3wGQ2QKiVc9Afi6NrvjQEMpAEv64HT2lZjzvk/56MVMayhmy7vfH9SznDtfQVC9vJ04jZTgwY1YDjT+uPCbgetkWY6WZTkKuBL4CLgP+OdgGqejo6Oj0xnXnrcBsM6+pddrjbFjMCZOwZ2zAdVeN9im9QtN02g+VIQ9p2zIzsyubuFIVQtLR0Wx6uZpJIdbT7vms4q2lGZgXZqqx0vVqt14a5sJnZFO6KyMAbG5OzRVoen9H4HqJeTavzI2Oo3JYSP4ojKHE/b6LtccbC3MnxKeMKi2dUQQBMbf9joVwTFcdHQt23a8MijnaIoH585X8JiDWRM/vkf5kbMRf5yzSbIst//ZJcvyWmCKLMuZgG3QLNPR0dHR6YSmKjj3vIVgDcMy6Sq/1limXQuKB/fhoanx6SuNXx+j9ossqj/ZR+2GQ2jK4BeMb8r3OaxXjYtDNHQtNbG21Tm7LAB9LE1RqV6zD3d5PUHjRxJx/vg+a6P5i+Or5/Ce2Idl+g1Yxl8CwP0Z81A0jefzd3a5JquhjBhzMAmnjIEabIxBEdhueQm3IBL30S9pqi0c8DPch9agNpaTPWYxdqO5TxMdziT+OGf1kiTdL0lSsCRJoZIkfQ+olSRpnJ/rdXR0dHQGAE/uRtSGUizTrkMw+6eV1Tauxrn/g8E0rV807sujYUcOYpgNU3QozQcKqfzgaxS7a1DP3Vzgc84Wp3UdVal3O9heU8D08MTT5lh2h6Zp1Hx+AGdBFdb0WKKXThl0x0ypLaRl7eMIQZGELPu/9tevSZxEojWMN4v2Ue/urHdX53ZQ5KhnSnjCoNvXFaPGLiFzzu1EeOys/+yPA76/o7URYH26r5v5XIyc3QIsBUqBQmAJcFvra48Onmk6Ojo6Oh1p0zbzJ6XZhhiTgTFpOp7cTagtNYNlWp9pPlhE/eajiMEW4q+bR/xNC7CNGYGrpJby/36Fu2JwOk2dXoUdRfWMiwliRGjXtWRfVuaiaBqXBdCl2bj7OPbsUswJEcRcMWPQGwAAWj77A3jshCz7I4bQ2PbXTQaR+9LnYlc8vFq4p9Oagw2+9PGU8J5HOg0mSxbeC0BZaRb760u7vMa+5Z/k/DQFtbna7329ZYfx5G3DNGYJ+4xWTILBb+f6bKHXrxpZlktkWb5eluVwWZajZFm+UZblMlmWn5Vled1QGKmjo6PzTUe11+E69Ali3FiMKbMDWmuZeg2oXlyHPhkk6/pGy9ESatdnYbCZibtuLsaIIAxmIzFXzCB8oYTS7KTi3e20HCke8LN3Fzfi8KpckB7V7TXr2lOa/teb2bNLEYwisVfPDni4eV/QNA13znoMofFYZn7ntI/fmjKTUKOFFwu+xql4219vc84mD2G92akExfrq8EY6Gnj44MddDkZ37noDb+0JXFkf+b2vY/t/ALAtvJdCex1JtghEYXgl+vzp1ry0tTPzuCRJeW2PoTBOR0dHR8eHK3MFeF1YZ3834DRUW2rTdeDDwTCtT9iPlVPz2QEEi5G4a+dgij4Z2RAEgfA5o4m9ejYYDdR8doC6zUfQuvjl3Vd6S2m6FC/rK4+RGhTJuA7RqJ5QHG48NU1YEiMRreYBs7XHM6uOoTVVYhq1qMuvi1CThdtTZ1LlamFFycH217Mafc7Z1D4OcR8IBJMNQ9gIxnkdZDWW82LB150+rtSXoJQfAfDbOVMdDTj3voMhIgn3mAupdtuHXb0Z+JfWfBb4HXARvpRm20NHR0dHZ4hw7n4TDCKWmTcFvFaMTsOYPAPPsc1nRWrTWVRN9aeZCEYDcdfMwRwX3uV1tvQ4RnxnIcaoEJr25ftkKRwDMzh7U34tZlFgXnLXv7i31RTQori5fITktzPsKvHpdllGdh+NG2g8x7cCYBp1XrfX3Jc+D5Ng4F/Ht6NqGgAH6suIMFlJtnX93g8Vhqg0Iu21xIoWnpQ3UtJBMNktr29/7jm2xa+OY9fet8HdgnX+XRS7fPNQz1XnrFqW5TWyLBfIslzY9hh0y3R0dHR0APCWHcFbnIlZuhgxrG81Qpap14Kq4Mr6eICtC5z6r7JB04hdNqtXxXxTZAgjblqAbVQ8rhM1lL/1Fe6qxn6dX213k1XRzJyR4QSbux7HtLYiG4DLA0hpuopbnbOkIXTO8r4CwDRqUbfXjLCGct3IKRxrqeHzihwaPU7y7bVMPkPNAB0Ro1JBVfjNyInYFQ8flGS1f8wt+4akhy+8DVQv7qM9V1JpmoZj24sgmrHNuZ0ih8+ZG27NAOCfc7ZVkqS/SpJ0iSRJ57c9Bt0yHR0dHR0AnHv+C4B19nf7vMfJ1ObKAbGpr6geBXdVI+b4cKwp/s1xNFhMxFw1k/B5Y1AaHVS8s40WuesCcn/YWlCHBixO7/qXtqppfFaeQ5TJxuxI/4VjnSU1IBqwjBiaSI2maXiOf4UQGofYy3DzB0bNB+Cfeds51OjTN5t6BuvN2hBbR0YtMZoRgA2VxwDQFC+enI0YIlOJufKXAL3+YeHJ3YRSlYtl6jUYQmMpatV3G46RM3+qFee0/ju9w2saMLwGVeno6OgMQzRXi0/bLCgK84TL+7yPGJWCMWWWL7XZXA2xZ6Z7zV1RD6oW8IxJQRAInz8WU1wYNWv3U/NpJu7KBiIWjkPoRqOsO9rqzbprBthUdZxyVxM3JU3D2M3s0lNRXR48lY1YRkYhGPs2HD1QlOrjqI3lWKZd22sEbFxoHBfHjeHLylxeLtgNDK34bHeIUWkAhDSVMy08kV11J2jyuLAWZ6I5G7BMvx5L4jjEOAl39pdorhYES3CXezm2vwj4GgEAilrToCm2czByJsvyki4eumOmo6OjMwQ4dryM1lKDbeG9CMb+FZlbpl4Lmorr4OoBsi5w3GW+aEZfB4AHjRrhq0OLCKZpTx5Vq3ajOj1+r3/zQCkrDlcQE2RicnzIaR/XNI0/5WwC4L6MuX7v215vNpQpzeOtKc2M7lOaHflBxgIAPirzFdlPCTvzzpmh1TlTagpYEjcar6aytSYft/wFAGbpYgAsk68Cr7M91XkqSt0J3Ic/xThyWns3c+Ewjpx165xJkvRC678bJUnacOpj6EzU0dHR+WaiuVqwb3oGwRqG7bwH+r2fZeqZT226ynzRDHNi36MZpuhQRnxnIdb0WJyFVb46tOqmHte4FZVffJ7DQ2tzCDaJvLB8AoYuok0bqo6xt76EK0aMZ1IA9X3OVufMOjI6sJvpByfrzbpvBujIguhUprV2Z4YaLaQFD50j2R1idCoAam1B+2D5DZXHcGd/CQYjptG+Kirz5GVA912bzp2vgKZiXXhvexSxyF5PkGgi2k/B5rOJntKaz7f++9shsENHR0dH5xQcO15Ga64iaOkvMAxAUbMYkYQxbS6evK/w1pcDXaeHBgtN03CV1iGGWjGGnD7HMhAMVhOxy2bTsCOHxl3HqHhnG9GXTiVozOnRoMoWN/esPMzO4gYmxAbz2nWTSI04ffqgpmk8KW8C4JGxFwRkj6u4FgwC5sQhrjcLiUWMG+vXGkEQ+MGoBdy7bwWTw0Z06ZwONYawBBDNKDUFzIgYSbjJyr7i/XiLMzGNOg9Dq3isceRUDJEpuI9+huZ1IRhPCgdrXheOna8i2CKwTrvO95qmUeSoIzUo8ow3PfSFbiNnsizvbX16vSzLmzs+gLuGxjwdHR2dbyYDHTVrwzL1GtBUGvcOveaZt8GO6nD3OaV5KoJBIGKhRMwVMwCoXrOP+u0yWqtcBEBmWSOXvLqXncUNLB8Xyye3zujSMQP4ojKX/Q2lXJUwgYlh8X7b4W2sxV1Rjzk+fEiEZwHUmjzUhlLMGV3rm3XHFSPGc3/6PH482r9U6GAjGETEyGSU2kKMBgMXxGSQWnYIOJnSBJ9jaZl8FZqzEXfu5k57uA6uQmupxjrn1vaxZiccDTR73cMypQk9RM4kSfoPkAHMkiRp4ilrhufd6ujo6AwTBjpq9t6hch7flMfqqy4llEdp3PUewVNuHQBL/cfdltIcIOesjaCxCRijgqlavYfGr4/hrmwk5vJpvJ9TwyPrZNyKxmOLM/jR3OTTHJn6bdmIoTZCJqfwp5xNCMAjYwKLmtW/+wRoF2EK8/Z+8QDhPr4N6FlCoyuMBgOPT7x0MEzqM4boNBR5PZqrmQtjR+OozQfAPO7iTtdZJi/DseWfuA993D7cHVrnaAoCtvl3A76o2S8PfQoEJoVyNtGTi/8EkAb8DZ8IbRte4Ogg2qSjo6PzjWYwomav7CulotnNXw66eSJ9PnZ5C7aWGgzBQ1cj5Sr1OWeWftSbdYc5JowRtyyi5pNMnPmVHHppI39uMmI1m3ntuvFcmHH6fborG2jcdRzBaKA4wcSBhjIujx/H+LA4v891F+7GVWGEYBCVY0Bgjl1fUBsrsH/5FACmsYsH/bzBRoxKw4NvgPuS6HQaagtosIYRkzCp03XG1DkIoXG4Dq0h5LpnEAwinuL9eAt3Yx53CWKMbxzUeyUH+aIyl/NjMvhO8rQzcEf9p6e0ZoEsy5tkWZ4KZAF5QD6+AejD8251dHR0hgFtUTPbou8NSNSsvMnF3lKfcOuHRyqwx88ATUOpzO333oHgKqtHEA2YY8MGZX/RasZw6VTWB4UQ4fLwptnJ5xemdOmYATRnFQGgeVXyM32is99KCCzSUrdmNUrwBQieIqjZ0r8b8APNbafhlRtR64oIuuwxjL3omw0HxA4dmzF1+UR7HGyOSMGpdo5ECgYRy8Qr0Vpq8OTvAMDZKp9hbZXPKHc28djhdQSLZp6ectWwrDcD/2Zr/hafUyYD24BjwB8H1ywdHR2dbyadombnd46aqZrGXXve47m8HQHtuTa3GoD5yeEoGmyo8zlHSmv6aChQ3V481T7xWUEcnCHUWeVNXPp6Jr+o03g/JgabUUDckEXDztxOdWht9rQcLUEMtoBoIO54M2iwOGaU3+eVffYZLtdcBKEFq+sVlMLtp50zkGiqQuNb9+A9sQ/LrFsIuuhng3bWUNImRKvU5vu6NIHNUansqDl9GJFl8lUAuLM+QrXX4tz3PoboNMzSUjRN45GDa2jwOPnthKUkD9N6M/BvQsAdQDLwLrAYWAZUD55JOjo6Ot9cOkfNOksd7KotYk35Uf51fEdATsAnOb4f2c9eMY6MSBurKnwF8Ur10Dln7vJ60Aa+3qyND49UcOWbmZxodPHoeWn89LtzGHHjAsRQGw07cqhesw/VfTIS05JdguZRCJmSimVMPHFOkRuEFOKtp2ufdYWzpJbSzVWguYi+MBlzioTaVIFaO3jTDVvWPIb70BpMoy8g9Pq/Dduo0KkYotrkNApxy1+iCQZ2RKayserYadeaRp2HYIvAlfUxzl1vgteJbf49CAYDK0qy+Lwyh/Oi07ktZeZQ38aA4o9zVirLciNwCJgqy/In+Jw1HR0dHZ0BpKeoGcDqssMAlLuaOObnAPN6p4ftRfVMTwglJcLGg/NTyBd8+l1KbcGA2d4bbfpmA11vpqgav9t4nO99dBTRIPDGdZN4aGEaBkHAHBfOiJsXYkmOxnGsnIq3t+Gpb0HTNJoPFoEgEDwpmdwUX/n1TY3+6Zp56luoWrkDNIGg0O0ETZmPKd0nWOsp2Dmg99eGY9sLOLb8EzFOIuz2N/otSHw20RY585QcxFu4C2PyDDzWMDZUHT/tWsFoxjzhMtSGEl/dndGKdc53qXA28evDawkSTTw9ddmwd1z96fltkCTpVmAv8CNJkkoBvxXdJEmaCzwpy/JiSZJmAB8DbYUO/5Zl+V1Jkj4CogEP4JBl+XJJkkYDr+IbFXUI+IEsy6q/5+ro6Jw5HNtexBCVgmX82dUVdrbj2PaCr0Pz4p+fFjVTNJWPy072Ym2pzmNMSO+zKT8/VoNX1fjWWN+1102M5+mvkvDWGdAqjzM41V+n0z4UfAAjZ3UOD/d/dIRN+XWMirLx+nWTGBPdWbtNDLIQd80c6rcepSmzgPK3viJs1ig8VY3YRsdjDLGyVi3mAksLUmUw3iYHxtCupTYAFIebqpW70Dxgqn+ZiJseB8CUNg8AT8HXWGfeNGD3COA6so7mVT9HCIkl/J4VGGzDN13XFQZbBIItAm9rHZll3FIWRaTxeWUORfZ6Yuk8aswyeRmuve+gORuxzv4ugi2Sn+15l3qPkycnfWvYymd0xJ/I2d1AnCzLm4ACfOK0v/Znc0mSfg78B2hTG5wB/FWW5cWtj3dbXx8NLGp9rW143F+Bx2RZPg8QgOX+nKmjo3NmUaqP07zyYZo/fHhQ62/ONVyHPqFl3e8RbBFdRs2+ri2i0tXM+a0daVv9TEl+IvtSmm3OmUk08MD8DEoNcdgrhyatqXq8OEtqMcWG+Wq8BoAjlc1c8tpeNuXXsXRUFJ/dNvM0x6wNQTQQuXgiUZdMRfOqNGyTAQiZ4kunbajOY3VkLYIGzVknur8Pr0LV6j146+0Ym1YRNTkWY+JkwCeSismGp+DrAbm/NrwVMo1v3gmimfC73kVsTQGea7Q1BQCYpYtYEuer/esqtWkeeyGYfDEi68L7+KAki3UVMoui07g9ddaQ2DvY+DNbs1SW5b+0Pn+4tXvT32rO48C1Hf4/E7hCkqQtkiS9JElSqCRJ8fh00z6WJOkrSZKu7HBtm9LcWqCz4ImOjs5ZiXPf+wCodUWoNUNX0zScccvraXzjdjBaCb/7/dOiZgCrS30pzR+NWkiKLYJtNQUoWs/JhBa3wqb8WsZGB3VyXG6aPIIqSwLBrmpqGuoH9ma6wHWiBhQVW1rsgOz3cXYl33pjH4X1Th5akMob108mzNp7IihkYhLx356PGGrFFBeGNSWGIns9x1tqcKSHI1iMNGcVoSmnv6+aplG77gDusjqMahbGphXEXnNSZUoQTZiSZ6CUH0Z1NAzIfQK0rHsC3C2E3vgvTCnnhuPRFW11Z4ItAmPyzA6jnLpIbZqDCL78MYznPcD/Nlby4wOr29OZZ8PUg4GgJxHa5fiiZDXAclmWj7WmKP8GpANv97a5LMsfSJKU1uGlXcB/ZFneK0nSr4HftO73l9Z/o4BtkiTtAgRZltv+7G4Cwns7LzIyCKNR7O2ybwSxsaG9X6TTJ/T3tns0TaPh4Ir2/1vKdxI5fmrA+3yT3uMWeSvVr92MYBBI+elHBE+48LRrFFXl00qZGEswV4+bxLpamZdyd1FsaGRWTPclwBsyS3B4Va6flnjaexqfOg6yM/lkTyYP37RswO+rI0U7cgAYMS2V0H58bhVV43/WZfOH9ccINot8cPssrp0S4PDu2FBGThyJpmgYTCIrs31O72WjJxIr2KjcnoOpqoHIySmdlhWv3Y89twxrlAZZTxGx6FYsCRId3U11wvnU5G0juOEwISn9T+k7iw9RlbUaa8YckpbeMezrqHpCTR5LTRaETrmUuPgI4ohgdGgMX9Xm41a8nb5+NU3jvemX89DujyjN20FaSCQvLryBWYkpPZwwvOjpT42ngPuBVOAxSZJygF8BzwKX9LCuJ1bKstz2Z9rK1r3KgedkWfYClZIkZQIS0PFPl1Cg1z/v6ursfTTr3CI2NpSqqp6HXakqxQAAIABJREFUAOv0Df297RlP0V7c5TkYk6bjLc6kZt86vJNuDmiPb9J77CnaS8Pzy9C8HsLu+C/22NnYu7j3bdUFVDiauC1lJnU1dmaHJPESu1ide4hUrev6GqdX4dE1RxAFuCIj8rT3dPLEKdRlv83Gr3dz9cLz/Io89QVN06g7WoJgNuKwWXD28XPb4PTwwMdH+eJ4LWkRVl67bhLjY0P6/bWyOs/nnM22JSGOMcP2HEq2ZuMdcbI2rulAAXVbszFGBmEo/SWaKCCe/zBAp/M9cdMBqD6wEceIBf2yC6Dx/d8AYF78CNXVzf3e72zGHe6LlGmjlra/pxdEp/NSwW52VBUyQfQJA+c0VfHLQ2vZWpOPxSDyyJgL+NHohdhE07D8udHdH6I9pSfdsiyvlmX578ClrY9Jsiz/srV7sy98JknSnNbnF+FrMrgYeA9AkqQQYBK+CQSZkiQtbr32cmBrH8/U0dEZIlyZ7wEQdMmjGCKS8BzbjKbqfTxd4S07TMOL16C5Wwi9+T9YJlze7bVtXZrLE32T9BbFpAM91539e1cxBfVO7pmZ1GUtVnCCT7w02lXGy/tK+nwfveGtt+NtsGNNiemzvllOdQuXvraPL47XsiQ9ks/vmMn4WP8kL3rCoypsrckjLSiS9OAoTFEhWJKjcRXX4qnx/aK3H6+gbuNhDEFmwkeXo9UcwTr39i5rv0xpvl9vA1F35q2QcR1YiXHkNMzfgMYay/RvE/79tVim39D+Wltqc12xTLPXze+OfMHiLc+xtSafi+PGsOWCB/i5tBibaDpTZg8aPX2ndJTmtQNXyLJc0M/zvg88I0nSJmAh8IQsy2uBXEmSdgKfA7+SZbkaeBj4nSRJOwAzsKKbPXV0dM4CNMWLM3MFQlAUZulizGMWo9nr8JYePNOmnXV4q3Kpf2E5mqOe0G//E+u0a7u/VlVZU3aUGHMQ81sdgjhLCOND49hVW4RTOX2e44kGJ89sLyQ22MTPFqV1ua8pztdYMJoKntt9gmbX4MyFdBZUAvS53mxtTjWXvb6PvDoHP5qXzFs3TCHCOjC/jPfUFdPsdbc7AQChU33vcdPBQlzl9dR8mokgGohZNgv37n+BYCBo8YNd7mcIikKMk/AU7kbzuvplm339n0DTCFr6i3M6ndmGYBAxj1rY6V4XRKdhNoi8eXwvCzf9g3/mbSfRGsbrs27iv7O/Q3rw6bWZ5wo9xbE7tlk1yLLcp5hqq0M3r/X5PuC0WK8sy6d9pcuynMNQDCnT0dEZEDzHNqE1V2FdcI+vOHrMYpy738STuwlTkj7xrQ2ltpCG55ahNVUScs2fsc6+pcfrd9QWUu1u4fbUmRgNJ/+ePi8mnaNNleypO9EeSWvjNxuO4fCqPHXp2G7TleZYn3M2N6SeWoeX/+wt4cEFA98J6CioAsAaoHOmahp/2VbIn74qwGY08Pyy8VwzIX5AbWvrBGzrDASwjYpHDLbQcqQEe045mqIQc9UsRGc23pIDmCcvR4zqvrbJPOFyHJueoeWzPxByxe+6va4nvFW5uDJXICZOxjzxW33a41wg2GhmXlQqW6rzsBhEHh5zPj8eveicjJSdSk/OWaokSS938RwAWZbvGjyzdHR0hhvOvT5lHOuMGwEwj1kMgDt3I0FLuo40fNNQGsqof34ZakMJwd/6HbaF9/W65qO2lGbCxE6vnxeTzgv5X7O1Or+Tc7Ypv5Y1cjVzksL49qTunRkxKBwhKIpkpZxIq5F/7TrBXTNGDmjtmepVcJ2owRQd2qN22Kk0ubz8YM1R1uXWkBJu5dVrJzEpvv9pzFPZWHUck2BgYfTJ908wGAiZkkrDjhw0t5fIJRMJGhVPw+u+UUm2Rd/rcc/gpT/HlbUKx6ZnsEy4HFP6vIDtsq//C2gqwRf//BsRNeuJX0pLmBKbwHdHzCDjHI6UnUpPac2H8ElZbD7ledtDR0dHB/Ap27sOrcEQlYYx1Vd3YwiNQxwxAU/+TjSP8wxbeOZR7bU0vLActSafoIt/RtCFP+11jVdV+aTsKDHmYOZHd45qLYhKQxQEtnSoO3MrKr/6IheDAH9cOqbXX+xidDpaXRE/nJNIvdPLc7u71/jyF4dHYY1chappuIpr0BQ1oKjZ8Vo7l7++j3W5NZyXGsFnt88YFMesytXCgYYy5kalEHKK2n7I5GTEUCthc0YROi0Npe4E7kMfY0ycgimj50J/wRJC2E0vAND4zv1orsCSTkp1Hq597yLGj8c86arAbuocZGZkEs/Ou+Yb5ZhBD5EzWZZfG0pDdHR0hi+uI5+CuwXrjAc6OQTmMYtxlB/BU7gL8+jzz6CFZx77hqdRKrKxLfoeQZc+5tea7bUFVLvt3Jk6C1Ho/Ld0qMnCtPCR7G8oocnjItRk4bndxRyrdXDXjEQmx/cuWSFGp+E9sZfbRxv49x4Tz+8p5t5ZSUTa+p42emVfKb/deJznlo1nSaVPANfferMNeTXct/oIjS6F+2cn8ZslGZ1SuQPJ5tbRQItjTx90LgZbGXnPRe3/d2z/D6gKtkXf8yuSZUqfh23xgzg2Pk3zmv9H6HVP+22XfcNfQVUIWvpzhEG6d52zH/0zr6Oj029crSlNS2tKsw1Ta2rTk7tpiC06u9A8Dpy7XkcIjiH4it/7napqE55ddkpKs43zY9JRNI3ttQWUNjr567YCYoJMPHp+epfXn4rYms6zNp7gR/NSaHIp/HtX/6Jnu0p8AqyfH6vBUVCFYBKxjOw96lHr8HDXysO4vCr/uHIcj180etAcM6B9buOFcaN7vE5z23F+/SpCcDSW6df7vX/wpb9CTJiIc8dLuI5+7tcapbYQ5563EOPGYplytd9n6Zx76M6Zjo5Ov1Cbq3HnrMeYNB1j3NhOHzNlLASDEXfOxjNk3dmBK/MDNHsd1rm3I5isvS/gZEoz1hLMvOiuC9DP6yCp8duNx7F7VB67IMPvbkZDq3Om1BZw+/RE4oLNvLCnmGq726/1XZFZ5lNays6rxlvXgjXZPwmN1zJLsXtUfnVBBt+e5N8A8r6iahqbqo4TZwlhYmjPTQbOzPfR7HXY5t3p9+cOQDBaCLvpeRBNNL//Q1R7ba9r7BueBtVL0MU/QzDogurfZPxyziRJipUk6UpJkq5uHbeko6OjA4Br/wegKlhm3HDaxwzWUIyps/EWZ6I6BmZMkKdwF67Dnw7IXkOBpmk4tr0AggHbfP/7qL6qyafW4+CqERNOS2m2MSsyGavByLrSY6w6WsXMxFBumuK/Y9MWOVNr8gkyiTw4PwW7R+UfO/sWPStrclHW5HPsJrh9UhL+1Ju5vCov7S0h1CLy3akBKv73gcON5VS7W1gcO6rHKKamaTi2/hsMRqwL7gn4HOPIKQRf8ivUxnKaVz7S47Weoj04d7+BGDMKy9TrAj5L59yiV+dMkqRLgf3AncDtwMEO8y91dHS+4Tgz3wPBgGVa1ykf8+gLQFPxHP9qQM5rWvETGl+9GaU6b0D2G2y8RbvxluzHPPFbiJHdj1o6lY/LjgAnhWe7wioamR2ZTJGrBkQ3f1w6JqDZgmJ0GgBK6wzU705LIDHUwiv7Sqho7lqny1O0p1tHe1+pL2o2dUQICwwK4F+92cojFVS2uPnu1ARCLYMzqaAjG1olNC7sot6sI57jW1HKj2CZshwxPLFPZ9kW/wRj6mxcmStw7v+g63OKM2l44RpQFYKX/QFBHPz3QOfsxp/I2f8Ci2RZvk6W5WuA+cATg2uWjo7OcECpPo63cDemMRcghnUdsTGPXQIwIKlNTfGiVOaApmLf/Gy/9xsKHNteBPBLNqMNj6qwpuwo8ZYQ5kT17NBZnL56rvMmwrSEsIBsM4Qlgmhud86sRpGfLkjF4VX5+46i065XqvOof/bibqNAmWU+Vf0H5yQz26BQJooYw4N6tEHTNP69uxhRgHtnJgVkf6BomsbW6nzeKtqPAFzQi3Pm2PpvoHf5jJ4QRCOhNz0PpiCaP3wIpbG808e9JQdpeH45mquJ0O+80OOkCJ1vDv44ZyZZltt7tWVZzvNznY6OzjmOc9/7wElts64wpsxCsIQMSFOAUpsPisd39u7/ojZV9XvPwURtqsJ1YCVi3FhMo/3X1N5SnUedx8GyhO5TmgAVzS62HfFFyuJHBD5bWDAYEKNSUWoK2l/7zpQRpIRbeX1/KaWNnSVQPHnbQVNxZX3cpUREW73ZPDPYBNjgEqh1eHq0YVNBHUerWlg+Po6kcP9rugLBVVPAkRev4/M/z+Om7S+Tb6/lluTpRJu7dxyVmgLcRz7FmDyjXR6mrxhjRxNy5eNo9jqa3/shmubTePeWHqL++WVozgZCb/wX1hnf7tc5OucO/jhZRZIkPShJUmjr46dA4WAbpqOjc3ajaRqu/SvAaO1Rj0kQTZgyFqJU5aLU92+Go1KZC7QWsnudOLY916/9BhvHrtdAcWNbcE9AYqIrW7s0rx45qcfrfrvxOI6mIGyCmV11ffuxLMaNQbPXojSUAWAWDTy0IBWXovG3nZ2jZ57C1pmRHsdpdX+qppFZ1sSY6CAMJTUAbFdFNuX3XAj/XGt36PdmD3zUrMXZxNb3f0zVkzOIlb9gRsVR/lSTx9qFd/PXqct6XOvY9gJomt/yGb1hXXAPprFLcGd/jvPr1/CWH6X++avQ7LWE3PAPrLNu7vcZOucO/jhnd+NLZeYBBa3P/Y/P6+icpbx9sIy1OdVn2oxhi1KRjVKZg3n8JRisPWtqDZSkhlKZA0Dwpb9GCI7Gse3FgEU+hwpN8eLc8TKCJQRLAL94nYqXteXZJNvCmRXRvcOyo6ieDw5XMnVEKIvjMihy1FPQUhewnaa0+QB48re3v/btyfHEBptYl9v5+8NT8DW0js5xnVI/dazGTrNbYXpCKM6CKjTRQKYmsiGve+fsaFUzG/PrmJ8cHnBKtidqXC2888WfyP3fSYz7+lUajRbWzr8XNSyBpdnrmOps7HG92lKDc9cbGELjsUztfu5pIAiCQOi3/4VgDaf5o19S/9yVaC01hFz/N2xzbh2QM3TOHXp1zmRZrpRl+UZZlmNlWY6WZfnbsiyXDYVxOjqDRY3dzU/Xyvzwk6O0uJUzbc6wxHVwFQCWKct7vfbkKKdN/TrTWyEDYEyahm3h/WiOehxfn5162e4ja1Hri7HMuBGD1X/HY0PVMZq8LpYlTOw2YuNVVR79whdF/L9LxnJ+bJukRuBNEm2K9x0bNowGA5PjQylrctPg9KUlVXsdSkU2pvQFiImTcctfdpKH2NdabzY/0oqnthlbSjQRwRY25NWiah1HNZ/kuV3FAHx/jv+NEj1RZK/nqe0vs+Wvi7jos8eJdzZwcPJyYn6xj9uu+wsR1/8NFA9N7/0ATe36+17zuml87VY0ZwO283+IcMr0gP4gRowk5No/g7sFrbmKkGv+gm3enQO2v865Q7ctIZIk5dN5+HknZFnOGBSLdHSGgC+O1aBq0ORS+Ci7ku9MGfz2/XMN18HVYLRgHn9pr9eKIyYghMTiyd2Epml9ThMpVTlgMCJGp2NbeC/2jc/g2PJPbAvvQzjLhiE7tgfeCACwqvQQANf0kNJ8ZV8pR6tauGXKCGYmhhHS5HPOdtYWcWvqzIDOMyZNA1OQr56sA1JMEBvyapGr7cxJCsdTuBsAU9ocBHMILZ/+BlfWx9jm3g6crDeb0Tqqy5YWx4UmJ+9klXOoopkpIzpHVyuaXXxwpIJRUTYuGR0dkM2nktVQxgvyRhJ3vsJtJ/Zg1hQqk6aTfMOzXDRySvt1lgmXYZl+A67M93F89W+Czv9hp300TaNpxU/w5H2FecrV2C74Ub/s6grL9G+jNldhCEvAOk2XzNDpmp4iZ4uBJT08dHSGLWtza9qfv76/9AxaMjzxVuailB/BLF3kV1RIEATMYxajNlWgtEa/AkXTNJSKHMSYDATRhCE4Gtvc21Dri321b2cR3goZT+4mTKPOwzhivN/rWrxuPq/IISM4isnddL9Wtrj5v635hFuM/Hqx72/kMSExhJus7KkrDthWQTRhSpuLUnEUteXk98X4mGAAsqtbfPdUuAsAY+pcLNN8qT5X5sn3PbO0iQgRQrOLEUwiQWMTuDDD10m6vovU5sv7SnArGvfPTgpI/qMNTdPYUp3HDTte58kPHube1Y9wT9HXqCHRBN36GhN+somwDo5ZGyHLn0QIjqZl7ePtXaptODY+jWvPfzEmzyDspucGZXySIAgEnf9D3THT6ZGevvKmybJcKMtyIdDY9rz1/923ZunonOU4PAqbC2oZFWVj6ago9pY2caji7KxbOltxZa0G/EtptmEe0yqpkbuhT2dqTZVozgbEOKn9Ndv5PwCDiH3j39o74M4G+ho1+6IyB7vi4erESd1GF5/YlEeTS+HR89OJCfKl3AyCwIyIkeTba6l2tQRsb3tqM39H+2vjYludsyrffp5W58yUOhsxKhVj6hw8x7egNJbj9Cocrmzmp6GgOtyEzR6FGGThgrRIDAKsz6vpdJ7do/DqvlKibMaApwF4VZVVpYdY+tWL/GL909y+/kmePrKGeK8L20U/I+nRAwRPvabb988QEkPI8ifB46BpxU/av25cB1bR8ulvMUQkEXbnOwg9dHLq6Aw2PTlnv+nwfP0pH7tpEGzR0RkSthbWYfeoXDYmhlun+YQl3zigR88CwX1wNYgmzAFoMplaB597jm/r05neSl/ETewwIkqMSsUy7TqU8iO4s/2bXzjYqM4mXHvexhCeiHniFQGtXVnS2qXZjfBsUb2Dd7LKmRAbzB3TO4uizor0NQ/srQ8seuZQPDiTfalQT97Jz82Y6GAEfM6ZpnjxFu1BjB+HISgSAOv060HTcB1YyYHyZsJVhUucdsRgC6EzfGnWSJuJGYlh7ClppK6uCm/5UQDezSqnzunljukjCTL5N6bIrnh4qWAX8zY9y0O73uLyvW+zcs8bzK0/gXn8pcT8bBchl/8/BEtwr3tZpt+AefyleHI34dz9Jp6ivTS+fR+CJYTwu97tVrNPR2eo6Mk5E7p53tX/dXSGDetaU5qXjYnh4lFRJISaWXG4Qm8M8BOlOg9vyQHMY5ZgsEX4vU6MSsEQkYwnb1ufolxtnZrG+M7zO4MWPwiAY+MzAe85GLj2voPmasI6786AlN4bPU7WV+UyPjSOcaFxXV7z3qEKAO6fnYRo6PxjeFbr9IFAU5v37/uAC/N3gWjuVHcWbBZJjbCSXd2CUn4EzdWMKW1u+8ctU64BwYBj3woe/TyH7xk9mDSN8AVjMZhO3vdFGVGke4poeWYRdU8vwlOdx/O7izGLAnfO6F11v8Zt5085m5jx5dP8KutTZufvZMOeN7iteC+mqBTC7nqX8LvfR4zpWVC2I4IgEHLd0wiWUFo+/jWNr9wEipvQW17CmDjZ7310dAYLfxPqp/4kPXvyBzo6AaBqGp8dqyYmyMSsxDCMBgM3T0mgyaWw+mjlmTZvWODK+ggAy5SrA15ryljg09TqQ92Z0hY5i+3snBkTJ2GSLsaTt6099Xam0DTNl9IUTdjm3hHQ2k/Ls3GrSrdRM1XTeCernCCTgauk00cizYwYiUBgzlleSy3rKmTKFA+OhEl4Sw6gdpCZGBcTTLXdQ12Oz2nrKMZqCIvHNOo81BO7CSvPZ5noxRQdQvCEzvIfl5tzeaPhF1haykDxcHDLh+TVObh+YjzxIZZubSu01/HLQ58y48un+VPOZkY1lrE++1N+f/QTghU3QZc9RtQju/qsqC9GJBF8xe/QHPWoTRUEX/W/ujq/zllDT86Z7oDpnHPsLW2kqsXDJaOj2yMPt0xJwCDojQH+4jq4CgxGzJO+FfBaU8ZCoHP6zF+8rZGzjmnNNoKW/BQA+8a/BbzvQOI5vhWlIhvLlOUYwuIDWru6VXh2eWLXXZpfn2igqMHJlVIsIV3MnwwzWRkbEktmfQleVfXrzDcK97Y/z48bC5qKt+Dr9tfa6s4aj/mcs46RM4CdERcB8JjVgQGIWDSuUxG968AqYj+4mWDNyfORd/v2yloLwPdmdy2fcbChjPv3fcDcDc/yUsFu0gSBj6tkXt31CvEV2ZgnLyfqZ7sJvvjnCKb+TRSwzrsL68L7CLr8f7Cd90C/9tLRGUh6irmPkSRpQxfPBWD04JqlozM4tIlqXjYmpv21pHArF2VE8cXxWrIqmpgc37Og6jcZpbYI74l9mMZeiCEoKuD17c5Z/jZsC+4O7OzKXAzhiV0K3ppGLcKYPAP34TV4K3Mxxo0J2LaB4OQczfsDWlfjtrO5Oo+p4QlkBHf9vr6T5ZvJeNPk7uuhZkUmITdXcbSpgsnhPcvDuBQv7xTvJ1g006K42RYazwTAnbcd87ilwEnnTCzeixAUiRhz8kf/V4V1/Dh/NBvMU4gXYrAkRWFNP5mOtW/9Fy0f/RLBHMxb45/i72XpfCdyO2PrMrlsrLV97zY0TeOB/Sv5oCQLgEmhsTxur0Xa8QKavRYxbiwhVz+FeeyFPd5XIAgGA6HX/HnA9tPRGSh6ipxdCfyu9dHx+W+B7me16OicxazLrcFmNHB+WmSn129rawzYr+sr90R/UpoAYuxon95Z3vaA6s40VzNqfXGnTs2OCILgi55pGo7Nf++Tbf1FqS/BfXgNxsQpAc9i/KTsKF5N5epuombNbi+rsytJDrOwIKX7Or+2poDdfqQ2PyzMosZt5/bUmSRYQ/nQaAXB0CmqOS4mmBi1juCWE5hS57RHxYobnNy76ggtYghK3D0AhE6wIQgCmqrS/PFjtKx+FENIHOEPrCV1li/K+r57Cma8/CQu/zR7vqjM5YOSLCaGxbM6aTIfZL7D2PVPgeIm+MoniHxo+4A6Zjo6ZzPdRs5kWd48lIbo6Aw2x2vt5NbYuWxM9GkdYhd1aAz4nyUZhJj9L+T+JuE6uAoEA5ZJV/ZpvSAImDIW4j64CrW2EDE6za913iqfGr7YQ0TMPOlKxJhROPe8TdClvx7yjjvnzpdBVbAuvC9gkd024dnl3dSbfSJXY/eofH/OiB41wdqaAvbWFXNX2uwez3xe9slm3JYyk2JHAx+VHUFJmAQn9qJ5HAgmG6OigpjuzQbA2JrSdHgU7lx5iBqHh1enxiBktyDat6GdCEKTxtP0zvdw7f8AMXYM4fd+iBiVypJINwLwpXEmd/MuY2q2Ad9pt0XVNP4obyDabef1ol1Y96/AC1hm3EjwFb9H7CUKqKNzrjHwCns6Omcpa1tTmpd3SGm2YTQYuGVKAs1uhdVHq4batGGBUl+Ct3AXplHnYQg5/T30F3ObplYAdWdtDQTGLurN2hAMIrbFPwbFjWPrv/tsX1/QPA4cX7+GYIvwSUwEQIWziW01BcyJTCbJFt7lNe+2pjRv7CGlCf6L0eY2V7O5PI/zotPJCIluj7iVjpgAiqd9GoDFaGCxeAzwNQNomsYvPs/lQHkz350Yz9TSSjAIGO0f4cx8j4YXr8O1/wOMaXOJ+OHniFGpAEQHmZmeEMoh4xjclkg82Z93ipx+XHaEww3lrDi0Guv+FYgJkwh/YB1hN7+oO2Y630h050znG8O63GoMAiztZlTMLVP1xoCeaE9pTl7Wr31M6W2Cp9t7ufIkSnszQNdpzTasM7+DEBqHc8dLqI6GvhsZIC2f/RGtqRLr/LsDFi/9qOwIGj1rm31VVM+C5HDSImw97uWvGO3rhXsAuL111NPsNhmO8JFAZ8d5mjcbLwaqIybySmYp72SVM21EKP8vLRil0UHo1DRs42eh1hTgOb4F86Qribj/IwzBnb/PHl6Yxs3TkgieeAlqYznekgOAT1T2SXkjKa5G4hpLMUkXEfnglnYnXkfnm4hfzpkkSWmSJF0hSZIoSVL6YBulozPQVLW42V3cyOyR4e2q6qcyMszKxRnRZJY1kVXeNMQWnv24D64GQcA8uX8lp2LCRARruN+RM03T2vW3uurU7IhgshK06PtozkacO1/tl53+cLy5hqrj23Bs/juG6DSCL3okoPVeVeXF/K8xCQauSujaOWvTNuupEaAjvYnROhQP7xYfIM4awmUjxgEwOTwBi0FkjcU3iqvt/da8LpJbspHFdF4/0sBjXx4jJsjEK9dOxHXoBACh09OwzrsbRBPWBfcSdtsbCKbTncilo6P56+US1la5CvfRzwBYUXKQYy01fM/kk9Uwj7kwIH04HZ1zkV6dM0mSbgQ+Bv4ORAM7JEn67mAbpqMzkHxxrAYNuGxMzwOWb5vuS6G8fkBvDOiI2liBp2AHprT5/a7lEgwipvR5KNV5KA29v8/ug6vx5Ps6CP1JcVkX+BwF14EP+2Vnb7R43Vy25d+UvHUvaCqh1z/rlzp9R1aUHKTAXsctKTOIt4ac9vGO2mZXjjtd26wrehOj/ajsCPUeJ3ePnYPZ4Ku9NBtEpoYnssvZhDBiAp7CXWheN96SA4iqh/2mcTy9vQhN03hx+QRinS7c5fVY0+MwhgdhHn0eMU8UE3rtXxAMPSv+m6ULwSDiPrIOt6rw55zNmA0iV3p9A9NNqbP8uk8dnXMZfyJnvwAW4JuvWQlMB345qFbp6Aww63qoN+vIhRlRJIZa+OBwBc1u71CYNixwHfoYNA1zALM0e+KkpEbPqU3N1UzzR4+CaCbk6qf82ttgi8CUNg9vcSZqU+f6QXUA529m1pdwY/42RjYUY517O+YxFwS03quq/DV3CybBwE9GL+rymjZts6ukWL+bVHoTo329cC8CcO/YzpplsyOTUdGoTZwMHgfe4kw8BT5R3/0mX4TttxeOYmFqJE0HCgEInZLSvr6raFlX+D4/8/EW7+O97PUUOeq5I3UWltKDYBAxjpzq1z46Oucy/jhniizL7TkeWZbLAP8UDnV0zgLsHoXNBXWMjQ4iI6rneiCjwcAtU32NAav0iQHttA3Etoy/ZEA2SaADAAAgAElEQVT2ax+0ndezc9byxVOoDaUELXkwoPE8ZulioPOQ9azyJpL/tIU18sA0fGTnbef7BTupNAcjXPY/Aa/vGDUb2U0jgD/aZqcSZrIihXYtRnuksYLddSdYEjua9NDOUeS2dGhWVBrg+9x4WgVpPYmzuGN6IvfNSkJ1ebBnlyKG2bCmdT1mqjfMEy4DTSNz1xsEiSZ+nDYHb8lBjAmT9IHjOjr455wdliTph4BJkqRpkiS9AOwfZLt0dAaMzfl1OLxqJ+HZnrhlyghfY0CmntpsQ6nMBaMVQ+sv7v5iHDkNTEE9Rs68FTKOLf/AEJlK0IUPBbS/WfIp17vl9e2vrTxaiUfV+PBIRd+M7oCmKkxe/xRmTeH3Yy+mQAtsLqs/UbM2bbOUcCvze9A264pZEUnYFQ9Hmzrf6+utEwFua20E6LSmNR36hc0nguvJ+wpvwU4MYQm8ec+3eOrSsQiCQMvREjSvQsjkFARD38Ysm8dfCsC0iqPcmz6XyJp88LowpugpTR0d8M85+wEwEnAALwONgD7nQmfY8NmxtqkAPdebtZEYZmXpqGj2lzdxUG8MQNM0vFW5PgHZXuqJ/EUwmjGlzUEpO4xqr+3yzOaVj4DqJeTqJwOOpogJkxBC43DnbEBrjR5tzPeds62wvt/pTfu2F8ioyWdt7Fg2xowmv/n0e+gJf6Jmbdpm354U36O2WVe0OVodxWhbvG7eLznICEsol3TRWBFvDSE1KJL1zkYMMaNw525GbarAmDqnXbdN0zSaDxT+f/bOOzyuwsrb750+o957l31dZVvuxsa4YbpJANMMgSyQhNRNJyGbZJNv0zbZkN3shgQIPRCa6cbGBXAvsi03jazeuzQaTZ+59/vjzowka1RdMPa8zzOP5Du3zshzz5zfOb8DKoHIGaHHL40Fe1wOTcZYlnbV8nDOfLx1SveoNhychQkDjCE4M5vNNrPZ/IjZbJ5vNpuLzWbzdwfKnGHCXIy4JR+dbjsAh5utmLQqitOjx7z9PbP9jQFhWw0kSxO4bSN6jE0Ebd5iADzVe4c85zr6Op6Kj9BNXYtuAsOoBZUK3eRVyNY2vM3HaO1zcaJNsZbodno50do34fP2ddXS997P6dEY+Nt0pXO10tY56nbNVhc/21ZJh93FH05/jE6lHjZrBv3eZuvHIWkGCEiUA+vO3mw6gdXr4u7sOWhUoT/6r0zMw+JxYsmYDT43MHiepquxC09XH6ZJaahNww8tH42/1exjW3wekT4XEY1H8PiDs3DmLEwYhWGDM1EUJVEUfSEekiiK48vhhwlzgfnJiU3M2/oYrU4rNd0OCuJN48o+rMpPICNaz2sn2+hzXd6NAUGPsaRzO1J3uCHoPocV21s/Ao2eyJt/O263/QABadNj3sr26m4AilKUjsiPa7sntE9ZlrG++g1UHju/LlzBmgKldq7KNnLmTJZlvv2+mf/dX893936iZM2y5gybNWvsdbKrrodFmaN7m4WiMGhGWx9c9kztQVQIbMguHna7q5KUur4jcf1ZMW1u/yiqvtI6ACIHNAKMF0mWea6uhIN+zzr3qQ/w1h1EMMSgTvp0ZqKGCXOxMWxwZjabVWazWR3ioTKbzedG2wgT5jzg9Hl5tfEYNp+btxtO4/BK5MeN7wanVgncXZSGze1jY9nl3RjQbwB7jjNn2fNArR0SnHW8+e9Ivc2YVn4bdcLEbRV1k1eCIOAu+5Adfknz0avyAfiktmdC+3TufgJP+XbK04t4O2Uqt2QUoRaEUTNn75/uYGtVFyCzufcwOpWab4yQNXv9ZBsycNuMlAmdp0oQmBubSY29m3aXjVJLM4ctTaxJmTRsQAiwLCEPFQJv6vzD5TX6YPekz+bCfroZbUIk+ozxD70PUNLTSJOzl6Qpq0FrwnXkdXwdlWiyioOzO8OEudwZi89ZrCiKfxRFsVQUxRJRFH8piuL4v8qFCXOB2N5egdXrAmBbaxUABaN0aYbiVv+NcXPF6JLVpYz3PAVngs6EJqsYb+NRZJciM3pbTtG5+Y+oEnIxrfjWWe1fFZmIJmM2npq97KtsIC1Kx/LcOCYnmNhb34PbN76mc2/7afreeRTBFMfPxKuJ15mYFpVMtjGO6hGCM7vHx6MfVqBVCeTn9+LV2FkTP33EIOnVE63o1AI3jtHbLBRBM9ruBp7xTwS4N3toI8BAYnVGiuMy2Oy2I+QuRD/zRgSNIl/2nagHSSayKGfC2UxQRjUBXJc5G93kFUiWRgC0o5xbmDCXE2P5mvI84AXuBu4HIoEnxrJzURQXiqK4w/97sSiKjaIo7vA/bvcv/50ointEUTwgiuKD/mXxoih2DFj3mxO4tjCXKRubTgCgEVSU9CoyTN44M2cAubFGcmMN7KrrwTPOG/mlhK/dP1vxHMua4Jc2JZ9ieirL9L3+HfB5iVz32zH7Zo2ETlwFkpfJvYdZkRePIAgsy4nD7pEoaeod835knxfriw8p/l83/AdHZZn58VkIgkBBZAIdbjsWjzPkto/tqaWh18WXF2Rgi60GScDYkzvssU609XGq3cbqggRiDdrxXnKQuf7gbEd7Ja83HifTGMPK5NHfwxVJBfiAPbc8RvTdTwEgSzJ9x+oQNGoipmZM+JxkWead5pNEanQsT8wPdm0CaLJHHtQeJszlxFiCs1x/E8Axs9l81Gw2fwsY1SVQFMXvowRxBv+iYuAPZrP5Kv/jZVEUVwCFZrN5MbAU+IEoinH+df8xYN3HJnR1YS477D4PH7SayTXFsSq5kC6fFbROCuIndqO/Ki8eq8tHSfPl2wPjaytHFZOBoB/qYH+2BOdsVu3CdfgVPFU7iZxzE/pp15yb/fv9zpZ6SliRp0hxy3IVW4rxSJv2bb/HW38IffF69mXOBvrnUeZHKPutCpE9q+yy8+d99WRE69GlNtLqtmDsy2DLKRsub+iA/9UTiv3FrdMnJmkGCJjRPlt3CJvPzYbsYtTC6B/5K/xB+I72yuAyZ00bvl4HpinpqPQTDxiPWpqpd1hYmyKiV2vQDfDNC3dqhgnTz1h9zpYF/iGKYhFwegzbVQKfH/DvucD1oih+LIrik6IoRgF7gC/6n5cBNeDxr1ssiuJHoii+Iori6DNbwoQBPmwtx+7z8Ln0GSwL1CtF9ExI1gRYnhsHwEfV47NKuFSQnFYkS+M5lzQDaHMXKnVhp7Zge/vHoDGQevcfz93+c+ZjV0VwhfswV/rfyyXZsagE+KRmbE0BnvoS7Ft+jSomg8jP/Sf7u5Rs7IJ4pSg+LxicDf4bkWWZR7acxu2TuXqeh99X7CDdEM3tKQuxuLwh5XKf34ctRq9hdcHE67qg34zWK0uoBYG7s+aMabs5senEag1sb69E9luOWP2NAFGzcs7qnAKS5o1p0wBQx6SjnbwCTc58VFETl3DDhLnUGMs8kCnAR6IomgEfIAJdoihWA7LZbM4PtZHZbH5NFMXcAYv2A0+YzeZDoij+GPip2Wz+LuAURVELPAP81Ww294miWAYcMpvNH4qieDfw38Cto51oXJwJjSbcqwCQlBT1aZ/Cp8J7x8wA3D99ATIyj578AF2MhcnZE7vR3Rxp4IE3T7K7sTf4ml5Or62jupxOIDJn+nm67ihs2bNx1h4GIOnzv0CXlMe5uk1bHB52a4tY7dpDrr4LXVIhSUBxZgyHmnoxRRuJ0A//MSi5HVT9/ssg+cj80jNEZmdRcuQ1dCo1awomY9BomevOguPQIlsHvUavlzazo7qbOVM8PNu+lzidkS3XPoTkMPH0gY9483QHX1w2+ONze0UHzVY3DyzMJittfMazoVialk+ZtZ112TOYkZU+5Pnh3tM1GZN5paaULp2TAk00dTVtmDLjyZieOeFzkWWZd9vKiNToWT91NkaNkoFLfGQLwDnz0LvQXE6fB58ml9vrPJbg7KZzdKw3zGZzQEd4AyXgwi9jvgrsMJvNv/I/vw2wD1j338dygO5u++grnQdKmnrJijGQFKH7VI5/JklJUbS3X34yXJ/XxXv1p5gcmUiKNwKPJIFXi2zqoa2td8JFzHPSothX201lfTcFWXGX1WvrLFeGgXiics/bdQvZi6D2MOrEfOT5XwI4Z8d6x9zOTs0cVrv20LJ7I8alyv4XZ0RzsN7CmyUNrCkc3py4b+P3cTeXYVz2FRzJC2hv7uRIVyPFsZlYu51YcRLvVSTzY20twfO2uX18441jaCJ7Oak7hg4Vz8+/kyRPBGgUS4/3TrVxqraTRFP/58YTu6oBuKEg/py8BqtiC3hedYgvZswfsr+RPicWR+fwCqW8Xl7KXa5MkEGbk3RW53TM0kyVtZPPpc+gr9tJH6Fr9D5LXK6ftReaS/l1Hi7oHIus2QwUAcsHPsxmc63ZbK4dxzl8IIpiwDBnFXDI3/W5FXjKbDb/YsC6TwC3DFx3HMe5oNT2OLjuuRJ+srXi0z6Vy55NLWackpd16dMRBIHGXjfYYvConVSP4kM1Estz4/DJsLNuYt5Yn2X6Pc7G5z+1pbWcE71jG5Okn/V5VFEpRN7yGILWMPoG42B7dRe7dIqcN3CUU2CU1ysnWobd1n16B46df0GdLBJx3c8AKOlpwCfLLBjgA5ZhjEavUg+qOfvjnloaXV2oc0/glX08Mfe2YI0awPoZqXglmY0n+21aHB4fb5vbyYjWsyhr+E7O8bAqeRK11/6IBfHjc/Nf4fc7295eibNWmbBhzD27fGZA0rwhbepZ7SdMmMuBsQRn7wP/CqwY8LhqAsf6CvBHf/fmFcAvgS8D+cCDAzoz84AfAl/xr/tl4KLt1vywshNJhoONY+v8kmWZFqvrPJ/V5UmgS/Pm9BkAVHXZwabUGe3srJnwfq/yF5LvqL4cgzOlvHSsNWc+WeInJz7g7gP/4OtHNo5pG23uQhJ+ehrdpOUTPs9QyLLMjqou7BEZqJIm4a78BNlvsTIvPRox0cR75R102t1Dt5V89L3xPVCpibrrr8HO0f1diqnrwGBHLajINcVTZetElmVqexz8+dBp1HnHcOHmv4puYk3K4Nfvc9OSUQvwz+P9AeyWyk6sLh+3TBv/uKaRmEjGOMMYw+TIRHZ31OCobUdl1KFNGvuEjTORZZm3mk9iUmtZlRw2mg0TZjTGImsmms3mUbszQ2E2m2uARf7fS4AlZ6zyX/5HKFZM5JgXmg8rlYxMncVJt8NDnHHkTqafbqvk8QMNbL5vLrNSLy8N/XzS43awvb2C6dEpTIpUsiJV3Q7oU+p2dnZWhxz2PBaK06KI1Kn5aIwF5BcDfS4vMhA1Qj3VWPC2l4MuAlXM0HqlIcf0unn48OtsalXq/k70ttDtdhCn+3RsESu67NT3urhpShJ6VuHY+Rc81XvRTVqOIAhsmJXGT7ZW8srxVr68YHBmyXX0DXxtZgwL7kWb2V9Iv9/vuD8wCwaQH5GAua+dTred/ztUize7FDQufjJlNXdkzR5ybkkROlblJ7C5shNzhw0xMYJX/YHaLdOTz/VLMSFWJBWwtawUyebCNCX9rLzNTlnbqLJ1cWPaNEzqiXd7hglzuTCWzNk2URRXi6IYtm4+A7vHx666/nb80taRNfGParr4y4EGZODtsvbzfHafLjave1Ar/vnm/dYyPLLEzenTg8squ+zgNpKgjWBnRzUeaWJTx7RqFUtzYqnudlDd+enUNY6X214+yrXPluCTJj7gW5Z8+Nor0SRNGvXG3OzoZd3uv7Op1cyyxDwezF2ADOzvrpvw8c+W7VVKML0iLz5oqTFQ2rx1ego6tcALpc3BrkRQrtu+5Teg0mBa9Z3gcp8scbC7nsKIBBL1EYOOFbDTKOlq4pnuD8Bg54GchXyt4Mzvo/2sn6lYZbxyvJUuh4cPq7qYnhzB1KRzb1kyEVYkFbLYrmTLjDnnRtK8yd+lGSZMmJEZS8BVC2wGPOHZmoPZVduD0ytR6PfQOtoy/DDlHqeHb7xbhkYloFMLfFh5abvOf/Pom6zf9zw7O6ovyPHe8Eua69JmBJdVdTsAgRtSp9LhtvNs7cRLF5fnKjffLeUXf1Bt9/goabJS3mkPji2aCFJ3PXidqEeRoY5ZWrhm1xMc621hQ9YcXlpwN2tTlbmJezrHU5Z6btnuv/YVeXHoCpaCRo+7vD84SzDpuG5yIuYOOwcGlCUEs2bz7ho0Pupkbxt9XnfI+q1AcPblw6/jM/QiavL45Yy1Iwa1VxcmEK1X8+qJVt442YZXks/a2+xcsighhyV2JfNsOAfBmUGlCUuaYcKMkbEEZw+hGNGGZ2uewYdVSoD1rSWK98+xluEzZz/cfJpmq5vvXpHD0pw4TrbbaOr97HcrhWJnRzVv+b8pBySu80mHy8YnHVXMiUknNyIuuLyqy0FKpI7vT7mKSI2O35XvGNbFfTRW5Cn73fwZCM7KO2wE8kDPHGma8H7GMrZpc2s5N+5+ihanlX+buprfF92IVqVmbmwmGkHF3q5PJ3Pm9PrYXdfDlEQT6dEGBJ0Jbd4SfE3H8PX2NwFsmKXItS8cbQaGz5pBfxZwQdzQod8FkUrHZ5/kBGsczyy8ZdS6MYNGzbqpyTRZXfz2k2oE4PPTLp7gzCCpmOOIxKy306EeWpc3VszWdsr7OliZXEik5uLoaA8T5mJnrN2al3aaZwLIssyHFZ1E69V8bmoycQYNR4cJzl4/2crrJ9uYmx7NNxZnszpf+Zb9YdWlZ2zqlSR+fGITAmBQafigtXyQZHQ+eLflFD5ZZt0ASdPllai3OCmIM5Kkj+Bbhcvo8jj4r9MfT+gYeXFGsqL1bD3dcVZS4YWgrN0W/H1LRSfNE2xA8dbsBYbv1Pxb9T7uPfASsizz5Nz1fK3gimCmKEKjY1ZMOqWWZvq8E7+xT5S99RYcXinYzAGg80ubngHS5tKcWLJjDLxZ1obV5R02awZwwN8MsDB+aHAmRiWjFdRgj2K1dhn5cRFD1gnF+hmpAHQ7vSzNiSUtSj++Cz2PuBo60cgCe0wWdnRUTXg/ZxrPhgkTZnTGEpx1AsdFUXxeFMWnAo/zfWIXO+WdSrHxirx4tGoVM1OjqOlxYnF6Bq3X1OvkBx+cxqRV8ecbp6BRqVhVoHzLvhSlzWdqD3LK2saG7GJWJ0+i1t5NxQhDoc8FgS7NgcFZTY8DGcj3TwZ4KG8RWcYYnqjZT41t/IX9giCwPC+eHoeHIyNkSC8GTvqDsztmpuKT+7NC48HbWIp9x2MIUcnoJl81+DlJ4pHj7/HjE5tI1Eewccl9Ie0RFidk45UlDnU3TOg6zoaApLkyf0Bw5r8Od+XO4DKVvzHA7pF4/XizP2umHpI1A6UZIFFnCkqYA0nQmVgrXwPVs3mgeOwu+gsyosmJVexDLiZJE8BZq2SJ95p62d428frRt5tPolepufo8TZkIE+ZSZCzB2bvAz4AtwEcDHpc1gcAqEGjNSlWKeI+19tedSbLM198tw+Ly8u+rCsmPUwKFvDgjhfFGPq7pHna+3meRTredX5dvJ1qj5xFxJVf77QM2t5aft2O2Oq3s7qxhQVwWGcZ+b6iqLgcA+f56QINaw6NTVuOWfPyy7MMJHeuqvM/GKKdT/uDsR1fmEalT80Jp87iyfbLHQe8L/wI+D1Hr/xeVqT8Y6fO6uOfAP3iy5gBTo5LZtPQB5sSGHoS9OF4JUvZ0Xfi6s+1VXRg1qkF+YerUaQjGWDzVuwate8fMVFQCVH7y0rBZs0aHhQaHhXlxWSHryLocHj4ss5MXGxH8OxkLgiDwvaW5LMmK4Ubx4hpf5KhtR9CoaYkR+KijEmkCGfCKvg5OWdtYkVRIlPbiyQqGCXOxM2xwJopiqv/X7cM8LmsCFhqr/N/Mi1IUW4zSAU0BTx5q5JPaHq4uSOCeWYPHg64qSMDukdhTP/Lw5eeONPHaibGZeX7a/KpsGxaPk+9PvopEfQQrkwsRUAxJzxcbm04gw6AuTYBK/7SI/Lh+G4eb06czNzaTt5pPsm8CtVBLc+IQhIvf7+xUu43MaD2pUXpumZ5CY6+LrVVjz17a3v03JUi54iH0AwZTNzos3LDr72xtr2BlUiHvLPkimcbhzVIXxGcjAHsvcFNAvcVJWYedxdmxGAaMcxNUarS5i5A6a/D1NAaXp0bpuTo/lmubn0YW1JhWfXfIPkP5mw3kpdIWnF6J++akj9ujbP2MVDbePYfIs7Q9OZd4ex14u2zosxJYmpJPp9vOMcv4M7DvtZQBYePZMGHGy0iZsyf8Pz8CdjA4a7bjvJ7VRU6v08u+Bgtz0qKCI5uK/J5lATsNc4eNX+yoIsGo5Q/XiUO+bQeGGm+tHD4LU9Vl57ubyvneB+V4fBd3hu2YpZnn6g4hRiZxf+58AJL1kRTHZrCvu44et+OcH1OWZZ6vK0ErqILGswFOdwSCs/6B54Ig8PNpSrDx05Obx50JiDdqmZcZy8GmXvpc3rM8+/NDp91Nm83N1CSl5une2cqXgmcPj+3G6i7bgmPn46iTRSJv6B/aUW5tZ+3OJzhpbeW+nHk8P//OUTMhMVoD06NTOdTTgMt34V6vN8sU1/3rJycOeU5bsBQAT/XuQcu/FnmEQl89x9OvH5I1g/5mgFD1ZpIs8/ThRowaFXcWpQ55/rNIQNI05iQOmhYwXg76Je3liSFHMIcJE2YYhg3OzGbzDf6feWazOd//M/C4rP+nfVTTjVeSg1kzgNxYA9F6NaUtVtw+ia++fQqnV+L3104mOcTMzUWZsUTo1GwZoe7sz/vrkYE+t29Qq//FhizLPHL8fWTgl9OvQTtggPGalMn4ZHlCH+yjcaC7AXNfO9elTh3kOyXJMtuqu4g3aihMGGyAuiA+i3Vp0ynpaWRj0/FxH3PN5ES8kszuUTKenxYBSTPglTUzJYritCg+rOqkcZTuYKmvA+vLD4NaS/TdTwZd8QH+UrWHNlcf/zZ1Nb+ZcR0a1dhsDxfHZ+OSfBy2TLxrdLxsPNmGRiVwfQiZUJuv+I55KvulTVnyUXD8f/Gh4mfem3B4hjoF7e6sRa9SUxSdNuS5HdVd1PQ4+dy0ZGINl4bBqsMfnBlyk1ielI9aEHiiZj/19vH93R+zNJOijyTFEDbcDhNmPIz4CSuK4g2iKOb7f79ZFMW3RVH8uSiKl8Yn0AQJSEQDByYLgkBRShSVXQ5+vq2S0tY+7ipK5brJoetI9BoVV+bEUdXtUMYMnUFrn4uXj7WgVysZt20XsLPz+boS3mgce+DyetNx9nfXc33qVJYnDY7b1/iLgDe3nXtp87k6xbfsnpziQcsPNPbS2ufm2kmJIYOIR6euQqdS88uyrTh8niHPj8TV/hv+xSptlgWDs/5g9d7Z6UgyPD9CY4Asy1hf+TqStZWIa/4NTUbRoOerbF0IwIO5C8flFL8oQak7u1DSZlW3ndLWPpbnxhEfYlqHJmMW6CLwVPUHZ67SjUitZVRk30SZL5l3zIPtUqr6OjllbWN5YgF69VDp8alDSuB5f3Ho2rvPGrIk4azrQB1tRBMbQbzOxE+nrqHN1cdd+18ccxa8w2Wj0dlLUczQgDZMmDAjM1LN2XeBnwIGURSLgBeAN4EE4HcX5vQuPiRZ5sPKLhJN2iHjl2amRiIDfzvUSHaMgV+uKhxxX0FpM0Tg9deDDbh9Mj9eno9eLYyrZuhsqLV3853St/nW0TfpHsOHcJ/Xzc9PbsGg0gQlw4HMiE4hzRDFtrYKvNK5k2YtHidvNZ0gxxTH0jNkqMDNNVTmBCDHFMeDuQtpcFj4a/XecR13cU48Jq3qoh3ldCpEcLZuajJRejUvHG0e9j1w7n8W94l30RYsw7j8a0Oer7V3k26IDhmcjMSiC9wU8OYp5b1fNzX0CCRBrUWbuwBfmxnJ2j7A10xN1o2PAEOD2HdaTgGh66bqehxsqexkbnrUJTOOzd1iQXZ5MeYkBQPxL+cv5kt5CzH3tXPfwZfHJFOX+mvUZoaDszBhxs1ImbN7gOVms/kkcBfwltlsfgL4OrD2Qpzcxcjx1j7abG5W5scPKfwNfDgLwP/cMGXUAt/V/k7PM6XNXqeXpw83kRSh5b7idBZlxXKizXZBBqY/WbMfGXBI3mBmaiSeqtlPi8vKwwVLyDbFDnleEATWJE+m2+PgYM/ZWSrY3L6gZ9qrjaU4JC/3ZBcPeh9kWeY9cztRejXLcobvmvvWpGUk6Ew8VrGTNtfwkx3ORKdRcUV2LKc77UNkQsntxdP56dpsnGy3oVEJFCb019pF6NTcNj2Flj43WyqGfhHwddXS9+YPEYyxRN35OIJqsMe0y+elydlLbggLidFI0kcwKTKR/V315zQ4H46Np9rQqQWumzS03iyANt9fd1azB1fpRnytZRjm3klO3lSW5cSyp97Cibb+v4m3m0+iEVSsTRGH7OuZI03IwH1zLo2sGQyQNHMGv4Y/n7aWG9Omsburlm8cfXPUms1jvUpwFs6chQkzfkYKzmSz2RzQ21YAmwDMZvPF7cB5nglYaAQCq4EsyYolWq/me0tzWZQ1NFA5k7QoPdOTI9hd14PN3V/n8vSRJqwuH1+al4lBow7Wtm0/zxYOfV43L9YdJlEXgUmt5amaAyPOo3T4PPylai9RGj0P5y8edr2ApcbZdG2Wd9gQH9vJ4wcakGWZ52pL0Agqbs8cPFS6tLWP+l4XVxcmoNcM/+cdozXwvclX0ed181vzjnGdS8A7641TbcFlsizTvvEAzS/sxGc7/0F0KCRZpqzDRmG8EZ168LXfO1txwn82xMQA+47HwG0j8qZfoY7NHPJ8naMHGcgJEXyPhUXx2dh8bo4PcOY/H5g7bJxqt7EyP55ow/BfjLT5VwDgrvh4gK+Z0qH5sH8A+m8+UcaO1dl7OGppZmli3pAB7n0uLy8cbSbeqGHd1IvLBuNscNa2gyBgyB4cnKkEgT/P/hwL4rJ4o+k4vzg1siVNqTNWj1UAACAASURBVEV5v8PBWZgw42ek4MwrimKsKIqZwByU+ZqIopgDXJytaheALZVdqAVCehmlRukxf3Mp312aO+b9rSlIwO2T2VmryGROr4+/HmggSq8OfhsPBAOj1Z15uvtofuET+uo6xnz8gbzccIRer4v7c+dxR+Zsmpy9wVb4ULxYf5gOt41/yZ1PtNYw7HpLE/MwqDRsOYu6s42n2nD7ZP60t459nfWctLayNkUkxTB4SHRQ0hym1m8g92bPZXJkIs/XlXCqt23U9QOsmRyDNrGZv5c0BP3DbMfrcTV2gU/C3frpNAvUW5zY3L6Qg7OnJUcyNz2abVVd1PX0y9WStR3n/udRxeWgL7495H5rbMrfXa5p/Jkz6Jc2955naXOjP1i+eRhJM4A2qxg0epz7nglmzdT+bsKV+fEsyIxm0+lOSpp6edcvad6YOlTS/MPuWrocXh70f4m6FJCcHtwtPejTYlHph9bsGdQanp1/B4URCfy5ajdPVu8fdl+llmbitUYyDNHn85TDhLkkGSk4+zVwBNgLPGE2m5tFUVwPbAV+eyFO7mKj0+6mpKmX+Rkxw3ZlqVXj8zhadYa0+crxVtpsbr4wOz347X9SgomsaD07qrtHlIZ6D1TiaeulY3/FmI79g83lrHjqAG6fhCTLPFm9H51KzRdy5vFA3gIA/lq9L+S2HsnHnyt3Y1RpeDBv0YjHMam1LEvMo8zaTq19YrVamyuU16fD7uFXx/YAcE/24EYAWZZ5x9yOSasa5Aw/HBqVip9OXYOEzM9PbRnzuWxsPYontZx6dQ1bqzrx2Vx0f3Iq+Ly7/dPprA1VbzaQL8xOQwZeKO2vqXLs+gt4nZiWfw1hmHqyGv97NnBu6XhY7G8K2NN5/uZsyrLMxlNtGDUqri4cmtUeiKA1oM2eB17XoKwZKDL8I8uUGsZffVzN280nUSFwbeqUQfuo6rLz+IEGMqP1wWzbpYCzrgPkkQedx+tM/GPh3STpI/jRifd5t/nUkHV63A5q7d3MjEkbVwNJmDBhFEay0ngVWAJcZzabH/Yv7gMeMJvNz12Ik7vY2F7djUx/If+5YG56FLEGDVuruvBJMv+zrx6dWuBL8/vlJUEQWJEfj8XlpaQpdE2Tz+HGVqZIVhZz86jzLDdXdPD3kiZOtNk40GBhR3slFbZObk6fQbI+ksLIRFYlFXKgu54jPUOlsNcaj9HgsLAhu5gk/ehzBNf4pc0PW0+Puu6ZNFtdlLb2MS0pArXGx17rabKMMUM6Q80ddiq7HKzMj8ekHVsmY3XyJK5MzGdbewXb2sYW1FYGxlHFtPJUSRPdH51EdnmJnq/4QbnbLIPWr7J1cbpvYtnM8RCqU3MgN01NJkKn5rUTbciyjOzqw7HrbwgRCRgW3DPsfs82c5ZpjCHLGMO+rtoJucyPheNtfVR2OVhTmECkbvSmhYC0OTBrFuCKnDiuzI3jo4YWDnY3sCQhZ5BVC8DPtlXikWR+trIA4xj/1j4LDLTQGIkcUxwvzr8Lo1rLVw6/zoHu+kHPByTssKQZJszEGNFKw2w2N5nN5tIB/37PbB5ngc4lxEj1ZhNFo1KyPI29Ln6/q4bqbgfrZ6SSEjnY4HNVvnLMM6VNyd6N5anbsWzfAT4JQa/Ba3Phbh0cIAyk1+nlex/0S4wfVnUFM2QP5i4ILn8wbyEwNHsmyTL/XbkLjaDiKwVLxnSda5KV4dkTsdQIZBXvnpVG0WQHssrH4sgpqIXBf77jkTQDBIxpBeBnpzaPqWi9NjCbM6IXR30DdnMTutRYYpaIqIw63G39mTO35OPm3U/z+T3PnPcB8KNlzkxaNWsLE6izOClt7cOx7xlkRw/GK76EoDOF3AYGZM5ME8ucgSJtdnkclPe1j77yBAh2aU4ZWdIMYFh0P4YF92K65ichn//RlXkQrQTU158haW6v7mJTRedFOXLpbHE1diHoNeiSh5/8EGBWbDpPFN+GR/Zxz/5/UNnX39gU6NQMB2dhwkyMsTlJhgGgvMNOdoxh2JvfRAkU/P9+Vy0C8NWFQ2WSZTmxaFXCkODMufdpXCc/wFbWgaBVE3elciNx1gx/E/z5jkqarW6+sSgbg0bF+7V1bGuvYEFcFrNi04PrrUgqYHJkIm82HafV2Z+xe6+ljNN9HdyWWTTi+J6BZBhjmB6dwq7OGvq87jFtE2Dz6X5fub7IepChsW5ooPCOuR2dWhhV1jqT6dEp3JU1hzJrOy/WHx51/UCwopdU/EDtRQLiV89EUAnokmPw9TrwOZVrfK/lFC0uK62uPsznKTAB8Ekyu+p6iDdqyIoZvv4vEEy8e7IJx8d/Bq0J4xUPjrjvGns3sVoDsWcUxI+Hfmnz3NedBSTNCJ16zFltdWwGUev/B/UwwUNxejRxqUrtYLSrfyC5xyfxkw8rUAnwi9WFl5RkJ8sy3l4H2tgIhDGWZ6xOmcTvZt5Al8fBHftfoN2lfEEINAOEbTTChJkY4eBsHDzxuWm8duesc/6BvCI/HgGQgevFRArih2YxIvUaFmbGcKTFSrtNufHLkg/HnieRDPOQhRgMqRKmwjRQCThqQhe476zt5rkjzUxNiuD7y3K5IjuWKkGR8x7yZ8oCCILAA3kL8cgST9ceVI4pyzxW8QkC8PWCK8Z1nVcnT8Yt+fi4o2rM29g9Pj6u7UZMNNEr9HDa3kacN4VdlY6gjAeK+ejJdhvLc+OImsCMwh+KKzCptfzavB2rZ/huS6fXQ7Ozl5nRqXylO4NMWc3L6PDEKAG7Llkpfvb4s2dP1xwMbrv7HAUmTY5e/lF/eJBEuK/BQpvNzfWTk0b8+1QkXxWWg68g9TRgXHgvqojhg1lJlqmzd09Y0gywONgUcO7rzg43W6mzOLlmUsI5kxjbXH30qDrAFs3je9qDWc+nDzdR3mlnw6w0ZqZcGr5mAXx9TvBJaGKGz6KGYkN2Md+edCW19m427H8Rm9dNqaWJKI3+rLKtYcJczoSDs3GQH2ciJ3bi2YPhSDTpmJuh3NS/vmjo7L4AK/wZth1+Sw33qc1I3XX4EtcDoGp5AZVBS2R2Iu7mHnyOwRkqm9vHv75vRiXAY9eJ6NQqluRGQGwLseoIrgvRkXZbRhExWgPP1B7C5fOyo6OKo5ZmbkibRmHk8F5SoVgzAUuNT2q6cXolri5MCPqu3ZczD1CMegO8a/ZLUOOQNAeSYojiG4VL6XDb+FPlzmHXq+7rQgZWqFK5qyuZBo2L/8HJayeV4fQBOcjdZqHM2sburloK/cHPucoa/fjEJr559K1gJyH0z5Mcznw1gFGr5uqCeG7qfBlZUGO8cqjh7ECanb24JN+EmwEC5EfEk6SPYE9n7TmXd4NdmmOUNMfC+y1lyMBMYx6lrX28Y+6g0+7mt5/UEK1X88Mrh87f/KzjtShdvJro8QVnAD+YfBW3Z87isKWJLx76J5W2Topi0sY9BD5MmDAK4eDsIuH310zmiZunMSdt+LbzgPwZmCjg2P1XJE02PjkDtboBqeZtPLUHiBEVafJMafPXn1RT2+Pk4QVZzPYfx2JqALVEsisv5KijCI2ODVnFdLhtvNF0nD9VKIHLNwuXjvsa58Smk6gzsaXtND55bIakgS7NZXnRvNZ4jDRDFN8umkNenJFXjrcEs4jvmttRC3BNiGHXY+XL+YtJM0Txl6o9w84QrLJ2opLhhtM6VAj8OrkWd3wbTx5qRJZltP7Mmbu9N5g1+9GUVaToI9ndVXPWgUmn287mVjMAf/PXAnolibfL2kk0aVmSPbrMfI/pBJN9tVSkr0UdYpD3QGr89XU5Z5kBEQSBxfE5tLisQVn4XCDJMm+WtRGtV3NV3rlr1HnH34H47/MXoRYU37P/+Kgai8vL95fmkWgaOi/3s463V7G1VMeM/wuoIAj8oehGlifms729UglsYy6NIfBhwnwahIOzi4SpSZHcNMo3/6lJEaRF6dhR3YW7tQKPeStSqtJlF1WsjIqy7/gT0ZOVOo+B0ubBRgt/PdBAfpyR7/l92HyyxMbWIwiSioaaONy+0AHTF3Pno0Lgl2Vb2dVZw8qkwgkV+qoFFdelTqXN1ccHY8ieybLM5spO4o0atvaV0Od1syG7GL1GzUPzMnH5ZJ4+3ERjr5OSZitLsmNDzlMcKya1lh9PWYVL8vGH0x+HXKfS2smtliTieyQMk9Mwx3rQxXdwqr2PvfUWNDEmBJ0GZ2sP/2w8SpohimtSRJYk5NLusvV3ek6QNxqP4ZElDCoNe7vqKLU0s6fOQofdww1i0pgGkk87/XcA/qReN2qwWGMPdGpOLDgra7dx4/OHefpw4wBpc/gM4v4GC6v/sicYdI/G/gYLzVY3101OCmk67JMlnhznwO4ut52dndXMiUnnirRUbp+ZSnmnneeONjMpwcT9xemj7+QziM+iBGfjlTUDaFVqnpq7nunRSo3erJhL83UKE+ZCEA7OPkMIgsDKvHi6HF4atv0FWRWJR5iOJsZE5JIVaDJm4z7+FmqhHXWkAWdNO7Ik4/JKfOs9MzLwx+vEYF3OB63l1Dl6EDV52J0q9tWH7vDMMsVyXeqU4Jijb00gaxYg6J9WNfpMy9LWPlr73MzKl/lr9V7yTPF81V/ndsfMVGINGv5e0sjrJ5UgdLhZmuPh1owickxxvN54LOSA56bWDh7uzETSqUm4ajrr0qfjEpwQ2c2TJY0IgoAuORpftx2v28s92XPRqFTBgvizrTt7qeEoakHgtzOvB5RO2qCkOWX06/fU7keq3o05bjHb7GmcaLONuH5tsFNz/FmpbVVdXP98CfsaLPxpTx3z4xR7mJKexmG3+d/99Ww93cFbZWMzBQ50aQ5nPPtu8ykeOf4+/69s65jP+4NWMz5Z5oa0aQB8e0kOWn+B/C9WFaJVX5ofm97eicuaAaK0ev658B7+3/RruCFEmUSYMGHGxqX5KXOesOw9jWWf4tPV9+YPcOx+csg69oqWIbVe55KV+fEYZBe60n/gi70RJIHI2TmoVCqMK74JskzXpj9gyE1S3L5be/iv3bWUd9r5on9OZ4CALPYvuUojQKgB7AECzQIL4rJY5A80JsKUqGSWJ+azu6uWY5aRx/l8cLoDBB8ndUqt2WOz12FSK5mxCJ2ae2en02H38LudNQjA9WchaQZQCQL3Zs/FIXl5ueHokOdnHLERKakxXjEJdYSeWzOKAIhJ6eK98g6arS60SdEIwFR3BBv8RrlL4s8+ODvR20qppZk1yZNZnzmLwogE3mg8xtsVjSRH6MY0Msy+/Y8AeBZ/Fei3HxmOiRrQPnmogbteKcXtlZiSaKKh14XTrtjD1A6TxXJ4fMF6ylCD5c/M8h1tsfLS8RYSjFqW5YS+9mfrSgD4sO30iKPIBvJ28+BB59mxRn67djKPXJk3JnPjzyreQOYsavhu37GQpI/gwbyF6IcxNQ4TJszohIOzceCs68Cypxyv1YH71Af0vfMokrPf08rV0kPH24foeOsgsnR+PK2uzI3jBtdH6Dw2fFHXIGjVRE5TrDf0M9ehisuhZ+fTGFKVG2Hd8Ub+tLeOzGg9jy7vN9s80dvKrs4aliXmcfvkfIwaFVurhpfcFiXk8My82/lL8S1nfQ1f8k8U+Nsw0wcCbK7oRJVaQ6vHwkN5i1h0Rn3Uv8zNQKMScHol5mdGD/GGmyh3Zc9Br1LzTO3BQQGBvbKFqe0ajppsJM9SXsv5cZlkm2Jxmtrwyl6ePdJEQ4Qy3exz+jxSDUpH36TIRBJ1Eew5i7qzlxuOAHB75ixUgsCD/k7ablMdN4pJSM2luE5tHnZ7X2c17hPvosmay/wrrsOoUfFWWduI51Nj60avUpM2xhE8Xknih5vLeWRLBfFGLW/cNZtvX5ELwEdVVhJ1Ef0+cWfwSW03do8ire+q6xnkOffzk1tY/vH/0epUsrflHTbueLkUu9vHb9ZOCpnNqrF1BzuDe70u9oxhfFSvx8lH7ZVMj04hb8Cg97tnpfGvSyb+peSzgLfXjjrSgHCJjKIKE+azTDg4GwcR0zJAhr5j9ejnbwC3Ddehl4LPu5q6gz+tR6rPyzlE6zV80fcBXsM8JK+OiKkZqPyjpAS1BtPyryF7nEh1r4FKoOlUI15J5j+vEYkcYDHxhD8weihvIQaNmityYjF32Km3OIc99rWpU8bsazYcHp/Eorg8CiISeL3pWFAqPZNmq4tSayNSfAP5EfE8MmXlkHXSovRBOWuiXZqhSNCZuDFtOhW2TnZ21gAgub10bzuBW5D4Z15f0K5CEARuzZiJS/ZgjO/i2SNNvOyoBOBKuV9qEwSBxQk5NDtHLoh3+Dz8xrx9SI2UR/LxasMx4rXGYNfr+sxZ6NBCfBPXinFYX3iA3r/fgTzMa+rc/xzIMsalDxGp17CqIJ6KLkfQvDYUNfYusk1xY+q663V6ueuVYzxV0sTUpAg++MJc5mXEsCo/Hq1KYNPpDnJMcdQ7ekI2hGzy+9nNSo/G6vJxuFnx1tvXVcefq3ZTZm3n60c3UtNt57aXj9Lp8PD7aycPW6v5Qr2SNbs9c5ay/xbzqNfwQWs5HlniRr+kebkg+yR8VueE683ChAlzbgkHZ+PAJKYj6DTYjtdhmHcvqLU4dv0tmHkIDLwWtGosO814ukPfJM8Gb90Bchyn6Yy6DYCo2bmDnjfM34A6MgHXvsdpj9CT5/Ny/5SEQXJMp9vOa43HyDXFsSZZudEHJhCMlD07F3ztnTIW/3U/92bNxy35eKb2YMj13j3dChlmBAEem9UvZ57JT67K56sLs9gw69yaXd6fq9h1/L3mAAD28mZ8fU6ei23BkDA4i3SLX9pMyuih3WnjGYsSxMX1Dg5AAtLmSJYaz9Ye4venP+Z35R8NWr6tvYIOt41bMmaiUymZDZ2gQehOA42HDusBfG1mkLx4GkuH7Ff2eXEeeB7BEIN+5jqg35D27WGkzR63gx6Pc0zNADU9Dq5/voQd1d2sLojnnQ1zgma4UXoNV+TEcqy1j2RtNF5ZoskxeP6oT5LZdLqDRJOWH69Wpkl85J8l+8Pj7wEwIzqVHe2VrH33LZqtbn62ooANs0IXnXskHy/WHyZGa+A/pl9LtEbPB63mUbOWrzceA7js6qW81kC92bm3CgoTJsz4CQdn40Cl1RAxLQOfzYWrXUJfdDO+NjMevy+Wu8WCoNcQv6YI2SfR+UHpOZc3Hbv+hqTNJ0aXSZXRgDZhsBGmoI8gbtVXke3dlLUfB+A7uYPXea72EE7JywO5C4IZkVV+Z/VtlcPXnZ0tDRYnb5a10drnJs6VSbRGz9O1B3H5vEPW/UvdJ6B3cGf6PBaOYPeQFqXnpysKJmQ8OxLzYjOZHp3C+61ltDituFuUwHtbZA85psH1TZMiE5kVk0aj1AxJdbgFCXusDk+nFcnpCa4XbAoYRl6TZJm/1yrB4Hstpwa9Lv+oVyTNO7JmB5d9UtuNqy0NAYFTJf8MLvf6/eAG4i7bjNTbgr54fXBU05qCBAwaFW+XhQ7Oxjq2aW99D9c+U4K5w86X5mXy3C0zh7wf10xS6gGdDsWCovaM7OGhpl467B7WFiawelIiAvBxTTdP1x7gRG8rd2bN5vGi9ah9Orqjy9mwMJKHQ0zSCLC5tZx2l431GUVEafWsTp5EvcPCCWvrsNs0Oixsa69gbmwGk6MurbFMoxGoN1OHM2dhwlwUhIOzcRI5U7nB9pXWYbziIQCcu59Acnrw9tjQp8QSIaZjmpSGu/ns5E1Zlrl93/N8qeQ1ACRrO66jb+BNvA+A/7RCa99QN/v41V/Dq9Iz06rcsFWN/QGXR/Lx99oDRKh1g270ubFGCuKNfFzbjcs7Ng+y8fJiaTOBWPW9si42ZBfT7rKxsfnEoPV2tFVTp65A643gV7OuPi/nMhqCIHBfzjx8ssxzdYdwt1qQVFChd5AbMbQo/NaMInzIkNgIkgohMw0kGZu5f2j8lKhk4rRG9vil0jPZ0V5Jla0LnUpNr9fFjg5FHu1w2djcWs60qBRmRPd7R2081Q4eA0tiCslr6m9e8DYMDc6ce58GwLjovuCySL2GFXnxlHfaMXcMlTaDNhohrjfAP4+3cOtLR+lxevjt2kn8YnUh6hCjf67xj9Rq6lCeOzM423RaMRG+ZlIicSYds9OiONDawa/M24nRGvjX/Kv4xltV+OpFUMnsZS+2EcaAPedvBNiQPReAtSmicpwRpM1/1B9BhmATx+WE7ywMaMOECXPuCQdn40SXGIU+PQ5nbTvEzkCdPhPX8bdxVCmFx7oUpSYrbuV0VEbdWcmb+7rq2N5eycam47S7bDj3P4tPnYtPNYmu2Ej2+9Q8e6R5yHaa6CR2J1xLqvsYgl7CUduO7C+ufrflFM1OK3dmzSZaO7gra3V+AnaPxN6GsXtCjRWfJPNiaQuROjWF8Ua2VXWxPq0YFQJ/rdoblJtsXjdfO7wRgHVRSzEOI2deCG7JKCJSo+OlmsO4O3rpihLwCXLITNLN6TNQ4Q9KelJ42a4CQcB2oj64jkoQWBSfQ73DEtJ36ym/hPrv09YCsLFJCVrfaDqOV5a4I6t/dJjbJ/FeeTsZ0Xp+IC5gUXcdnRGJCKZ4PP5aqwA+SxPuss1oMuegSZ856Lmb/PYbb4XInu3zj1rKC2GjIcky//FRFV97pwyDRsVLtxdx35yMEK+iQnq0gaKUSCpalPc5VHBm0qq4Mld5bZfnxuFLrsTqdfHdwqv4zjvVHGqyclvOVL6Ut5AKWyf/dvKDkMeqs/ewvb2CeXGZTI1W6tFWJReiFVRsag0dnPlkiRfrDxOh1rEufcaw13GpEjCg1UzAgDZMmDDnnnBwNgEiixSZzXa8HuOSB0DyYj/8CQC6VEXyUpv0xK+ccVby5t8D8yyBrS1lOPY8hTfmDgByVk4jWq/mmcNNQ8xjJUnmv1XXI6FC4zqC7PLialaCgUDm4Av+EUgDWemXNreeB2lzW1UXTVYXn5+WzO0zU3H7ZErrPVyXOoVjvS3BQOA/yrbS5umFjky+IH66dT+RGh3rM2YR3esDSaYmQpEoQ7nlpxgiuSqpAIA0Ty7PlnehzkrA3WrB3dE/NH7JMNJmrb2bLW3lFMdmcH/OPLJNsWxqMePweXip/ggaQRWsbQNlhFevy8eNYhLF1laifG62xGTgSZ+J1FmDNMDs1nngeZAlDAOyZgGuLkxArxZ4+wxfsQaHhefqSsgyxrAscfCoIrvHxwMbT/DHPXXkxhp4/95ilueObjFxzaREfK6hdhoVnXYquhwsz40PevAlJTkgrpUEIY5dR0x8UtvDtZMSeex6kUenrGZ6dArP1ZXwdtPJIcd5sf4wMnDPgAxYtNbAkoRcSi3NQ+rdAD5qr6LBYeFz6dOJ1Fx67v+j4T1LA9owYcKcW8LB2QQwTUpDZdDSd7wefdGtCIZo3I1K5iGQOQMwTU7rlzcPj0/ebHX28U7zSZL0ykDthiOv47FHI+mmYshNIi4niTuL0mizuYfUDJW19XHSl0JZ0lUInYr5ptM/LaDC1olBpWFSiLmYi7NiMGlVbBvB72yiPHdEkffunZ0enP/4+qk2HspXbDUer97Hns5a/lazH7XHRJy1kHnpY7NvOJ/clzuPaU7lhnVM34dWpSbdGPq8/jjrJl5fdC9fmjEVp1din1F57wZmzwLB2ZnS5tM1B5FRpjEIgsC6tOnYfG7+u2IXx3pbWJ08Kfi3AIPNVz3lynu8Mz6XQxHK++r1Z89kScK57znQRaCffeuQc47yS5tlHXbKB0ib/1m+A7fk4/viikF+VS1WFze/cIR3zB0szoph0xfmMikhYsh+Q3HNpETw6FHJqkGZs/f9kua1fp86r+TjhXbly05nRQ6bTneyLCeWx9dNRaNSoVdreHzOLRhVGr597G0aHf3myV5J4sW6w0Rp9NyUNn3w8QPSZojs2Qv1h4F+GfRyw9vrAJWAOuLsPM7ChAlzbggHZxNA0KiJmJaJ5HDjqLdimHcXPlUGKp2MOnLwh1tQ3tw1PnnzxfoSPLLEdyYtJ8cUh3jiHbzRSodmzGKlw/KLxRkIwBOHGgZtu6dWufF1z/0yKtcJwIejuh1Zlqns6yQvIj6kNYJBo2ZpdhzlnXbqeoa640+UZquLLZWdzEqNpCg1itxYI3PTo/ikppt8XQpFMWm831LGw4dfR4WAr05kRW5SyNqlC82UqGSWy8o4mq1yM3mR8aiF0P9tUg1RLE3M486iVIwaFb+p7kUwaLGVNSL7s5vTolOI1ugHmdE6fB5erD9Mgs4UDChuTld+BsZIDawPdHp9bKroICtaz5y0KNzmraDSUJUylZf80qrH3xTgqdiB1F2LYfbnURkGN4YEuNEvbb5brgRJ5dZ2Xqo/ypSoJG7N6JdBj7VYWfvsIY60WLlzZiqv3DFrXOOypidHkBVtQPYYgjM7QQnOVAKs8Wdu/69sDyetraR5ssERw9z0KJ65ZQaGAf5bk6OS+OX0a7B4nDx8+I2gNcfW9tO0uKzcmjGTiDMyYGtTQwdn7S4bm1rKmBqVzJzYy3PkkNdiRxNtRLgI/s+FCRMmHJxNmMiZirTZV1qLdvZ9oE5A5a0J1gQFmIi86ZUknq09RIRax20ZRazXRzDfFo2kFzEWpKD3S6d5cUbWFCRwqMlKSVO/VLPH764+aeZSdPkLUDmP42nvpaWzE5vPTUFEwrDHDkqb5zB79o/SZnwy3DO7/8Z389RkfDK8U97BQ3kLkZBpdPayNGIGOKJZlnN2g7bPJbPcUdgFH+UaGwVRw792AeKMWu4vzqDa6mafzohkdwfnnKoFFYvic6ixd9Psl9c2Nh2n2+NgQ3YxBn+WakZ0KvkR8UjIJOhMrE6eFNz/9qpurC4fN01NRrZ14m08gjZ3ET+ZtS6YOeur3Q+Ac+8zABgWfmHY811dkIBKgA8rFSn0V+btSMg8OO3zPAAAIABJREFUIq4MBqJ763u48YXDtFjd/OSqfP54nYhunGOMBEHgmkmJyC49XR47Vo+LNpubQ429LMyMIcGko83Vx6Mlm4jRGvhV0dXcMTOVF28rIlI3tBt3Q3Yx16dOZU9XLX+qUDqmn6sd3AgwkExjDDOjU9nVUY3V099I80rDUTyyxIbs4iH/fy8HJLcXyeEONwOECXMREQ7OJog2PhJ9VgKuhi5c7X5n+p4DeFvKhqxrmpyGafLY5c0tbeU0Onu5LVOxAbix7iCeM7JmAR6YpxRhP3Gof17hntouInRqpiZFYLzqG6gdSqF5Z4nS/VcYOXyAscrvhxa4UZ8tkizzwtFmTFoVnx8w/3DdlGQEYOPJNtalTSfbGMvUqGRM3Urd1hXDjOO50EhuL0arh0qjE0mA/Kixje/50fI8FmRG818dSkeh7UR/dnOgpYYsyzxZcwAVwqA6QEEQgtmzgd5m0C8D3jQlCXf5NpBldFNWc1P6dB4uWkezPore6r30djfiOvEO6tRpaLLnD3uucUYtc9OjOdTUy0cttbzbcoq5sZlBGRDgmSNN2D0Sj6+bxtcXZU84iLlmUiK4laLzWkc3mys6kOm32vjFqQ/p9Th5RFzJdQUZ/On6KcQNk50TBIE/FN1IuiGa35bv4K2mE3zYdpo5MenMjEkNuc3aFBGPLLGtvQJQOqKfrytBr1IHR3FdbgRnaobrzcKEuWg478GZKIoLRVHc4f+9WBTFRlEUd/gft/uX/1QUxf2iKO4WRXGBf1mhKIo7RVH8RBTF/xNF8aILJKOKlJusZa8yb1PlrsSx54mQ68atGCBvdo0sbwYaAe7LmYfsshFbXousK2BPTC/axMHS1PLcOCYlmHjzVButfS4sTg8nW/soTotCrRLQTbkaXXQ7+HqIKOsg2qcmf4TMWU6skWlJEWyv7qbNdvYzQndUd1Pf6+Lz01IGTShIjdKzJDuWvQ0WOmxetl/5Zd5Z8kX21VnJjNaTE3Nx1L6423pBBnWyUmdWGD22+Z06tYonb56OxWSkTFJhr2rFZ1OyNcGmgM4aDvU0UmppZm2KOGT6wgO5C7k/Zx5f9w97ByWY2FHdRaJJy6zUKNzmDwHQiqsA+FrBEnpTpxLr7mPTy18BnwfDwntHDaZWFyQgyTKPHlfGP/1k6qpB21R02tGrhaBx7URZlBWDQVJq1Gr6uthUrnwJuGZSInu76ni54Shz4jP4Qs7Yar/idEb+d87nkGSZB0teRUIe0QrjWr+0+b6/MWZfdz0Vtk6uT51GnO7y7FQMNwOECXPxcV4DHlEUvw88AQTutMXAH8xm81X+x8uiKBYDy4GFwB3An/3r/gF41Gw2LwMEYN35PNeJYCxIQWXSIXuVgcoagx3XwX8gOa1D1lWb9MSv8subm48OK29W9XWyo72SRfHZTItOwXH4VTyG65GR+UNMHRW2wRktQRD4l7kZeP4/e/cdXsdZJvz/O3Pm9KbebMuSJXncaxKX2LHTK4QkCwklIdRdFlhg2YXd5WUXWPb3g21vKLuwLFlqWCAQII0E0uM0xzWuY6tYlm3J6jq9zrx/zDmyZB31avv5XBcX0jnPzBmNT3Ru3c/z3Ldu8JN9rew+Y772ZfN8/c+7t30MJfQYljS8u7eUmhEyZwD3riknpRv8/K2hZTrGK7sR4N41Qyv437HMzKT97kgHXqud5u4kPbEUV1bmzZnppWzXh8sWL+Gv6rZxX+3QXa7DKfXYefCO5TxhKEgGnNl3AoCVvnI8io3Xupp58IQ5/fih6qGZrSK7m6+vvJXSAWvFjnVFaAsluKoqH8kwSBx7DslbglJurg2TJIk1y24B4Kr6F0nJVuzr7h71Wq9bVADuHrTYGa4prmVzYVX/c4ZhcLwrwqIC16TXAVotMmsKzQDv5dZWXmruYWmxmwV+O39zwOwE8B+b7hh2XV8umwur+HTtVgzAbbFxx7zhS2Gs8JUxz+Hj2Q6zEfpD/fXQ1k78h7rApTNlNCyiO4AgzBnTnY1qAO4c8P164FZVVV9SVfVBVVW9wBbgD5qmGZqmnQQUVVWLM2OzPWx+D1w3zdc6bpJFxrPcrFKu+F04N96NEQ8S3/twzvGuuuzuzV7iLbmnDX940syafWCh+WEdem0Hhq2K7nKZJnuMP5w9NuSYd60oxWu38MO9Z3i9xQwm1g/Y6WhfcxdWYx+GHuCe3hJqlJH7Y75zeRkuq8yP97WiT7BJN5gFcp+u72JFiYc1ZUMXo9+mFqPIEr85YlZtf+WkuVbuyjm03ixx1twJ6J9XzOfU7RTYx5dd2DDfz/oti0kYcGr3CaLJFIosc0V+JfXhLh49c4g6TxFbC6tHPxlmSyMwM6ap1gMYwXZsi69Bks/9p2zLrLeyYPBUUQ0PnD446nmXlbhRKk4A8Lfq1YOeaw3GiSR16gqnJrNyY+V8AH7XeJJYSuemukJ+2Pwmh4Nnec+CNWwqqRr3Of9q8TbevWAN/2fJtXgU+7DjJEnixlKVvqT539KjZw5R5cofFIxealJ9YlpTEOaaqe15cx5N036tqmrVgId2At/XNG23qqpfAP4B6AUGRipBwA9ImqYZ5z02ovx8F8qAHV0zwbdtKYf2NpFXV0bZ5vfT8PQ/YWndTXHxp3KOt26ooeF4K0ooSnHx4IAlkkrwi1P7KXF4uH/l5ViSKVpSl4Ois+yOa5D+uIsXehr4UvGNg44rBj60oZIHXmri+3vMtWc3rqygyJP9kPLCdR+m9dnH8frfg+9ED8XXDF8wtBh499r5PLjzJPu6Y9w4TGPp0Tz4Vhsp3eBjW6opKRlafqIYuEEt5skj7fQi8WabOd17+9p5FOfPjQ+Ksx0BLE4b5bWl/dm88//dRvOXty3nF4dOUBcI8V9/0Pin+zdyfeVinuuoJ2no/MXyLTnvTy6vZjZ+3Ll+AbYdjwBQdPnb8A+4prR7K32SBIbBjkWbeezYCywrLRsx6/dw035S9iD0FuO3lw76Gd/qiQGwekHeuH/2XD6ycRlf/hV0p8ws7w2rCrn7jYfJszl5YMs7gPHfY4Cflb5vTOPuUdfyP81v8neHnyKqp/jo0o2UjvH+X2yKi730hszgrGxRCYp7+MBWyG0q/psQRnep3edpDc5y+I2madnqk78BvgX8Dhh4172YAZue47ER9fREpugyx6f8vm3ILht9ALJC+PRROjqGTm0CpBzm9v6exnaU5YN7A/5vy156ElE+U7uVvu4o3X98DUOZh83VhN3uZl1eBTvONnH8dDt5562PuWdpMd94qYlQPE1dkRsjmqAjem7NWGLVezAe+1d07+207dCQ1XnIOXbAZb1raREP7jzJN15oYF3h+Kc7dMPgu6+ewKnI3FjpH/Z+3FJTwJNH2vnvHU28UN/JwjwHzlR62PEzSY8liXeHcFQW0dlpBo7Fxd4JXdv6bSqBx3aTPnKKf/+jxqqF5oJ1t8XGLXlLxnTOeErnhfpOFhe6sCdT9Ox5EiSJWNkmEoOOl7FWbcJIRPjcDX/HS6/9gA/t+CWepG1IQVkwW3r9zZtPYEEm3V7Nw7tbqHKe+yPnzUbzb6cKhzIl/y42wGrYSNpilHls/E/TcwSSMb6+4hYIGuBgWv/9lykleBU7rdEAFknibflL58T7baYVF3s5fegUgeNtWEt8dIfjSJHJrzO9lEz094EwPhfzfR4u6JzpRfZPZxf8A9cCu4FXgBtVVZVVVa0EZE3TOoG9qqpuz4y9GXh5hq91zBS/C9mqIFkULAULSXc0DDvW4nEgO20k2vuGPPeDE7uQkbh34XoS7X2EDnUjpTrwVJkLya8vXUzaMHg+x/kX5bu4LlMGY1PV0GnBUxY7TxUvxBZ6Aj2WJLQ/d/PtrDVlXlaVevhDfSetwaH9O0fzcnMPzb0x3rG0BJ/jXBCohzoH7Wi9ua4IhyLz3TdbCMTTbKmcG7s0AeJnzHIitrJRk7aj8i8qBZeNmywp/uGPxzAiHrYWVvOXdVfhtY4tW7HrdB+RpM62qnz0WJBk02so89Yg5ygo7P/TR8n7xB9QfSX86LK7kSWJD+z6BUcC7UPG/rxlH43hbt41bzWWpJNnz9upW99l/tEzVdOaAGU2P1hjrKnRefj0W6zyl3PfGDcBTJZNtnBtSS0A15csHrSm71LT+4q5MSJvy5I5s85TEISZD84+BjyQ2b15JfBVTdN2YwZerwG/Bj6eGftZ4Muqqr6G+cf2r2b4WifEUlSDEelGP693YJYkSdhK/KQDUdKxc3+l7u09zb6+M9xQuph5Ni9df3gLDLD2/jfWskWA+UEC8HSOdWcAn9xYiSJL3L58aBmBhnAXP523DiX0FBAnsLsRPZka9ueQJIn71laQNuCh/ePbGGAYBv+2wwz+7lt7rraZHu2j99vX0fPAVtK95vSr165wXU0Bwbi5qWIurTeLNpmBjGPh5HYoAkiyhG/5AsxFlik++tujfHfVPXyy9spRj816MVO/bnt1AcmGl0FPYcvs0hzyeooNKdM7dXNhFd9YfTuBVJz37HyItgEbVqLpJP9y7EWcssLfLr2aK+b72dsapHNABuV4txmcLSqYugXjawtLQDbYp5hlXr624pZxbQKYrPcsWItdtvBnmQ4Vl6JgYzuxEx3YFxTiqBzbLmRBEGbGtP821DTthKZpGzNf79E0bXNmp+Y9mqYFMo9/SdO0DZqmXa5p2o7MY8c0TdumadomTdM+qGlaerqvdSpYMv0V052Nw46xlZrrW5JnzxWO/XGzWdH9A1WXE9jVQLIjgM19Gkv8AJYi85wrfKVUOHw813GclK4POe/GBXmc+OxW7lw1dGdkQ7iLQ74yguV1KIHH0aMJQm+dHPFnuXNpCR6bhZ/ub835esN5XOvg9VN93FRX2L8xwTAMgr/4mHlfUnGiL/9n//g7lpb2fz1XMmeGYRBtbEe2W7FXTE3A6F5uLoT/VIHCmWCcj/z20Lju64snerDKEpsq/SSO/hEAqzq2fTJ3zVvJF5Zcw+lYgPfu/BmhlJkNffDETtriQT5SvYEyh5drawoxgOcHFCGu74owz2fPWQh2omo8Zpa3LR7gvQvWcln+/Ck791hsL67h5M1fuGQ3AhiGwemn9wMiayYIc9Gcqx12ocsGUunO4ac2bSXmNFl474v0fuc2UpFenj6rUWL3sFkqpu+NeixuO3b9j5lzmpkzSZK4vrSO3mSMXT0tuc89TNX2+pBZuJTNH0YJ/R6kFIFdjeip4WNej13hT5aXciYY55kxNkOPpdJ8+flGrLLEl66u6X88+uK3SBx8HOuiLci+cmKv/wA9ai4jvK6mAL9dYWmxmzLv3FiQnOwIkA7FcFQXD9oJORnWfA+OyiKKA2E+utDLqy19fOX54YP4gbqjSfa1Brl8ng+31UJCexbJ4cO6cPjisuf7i5ot3Fu5jgOBNj68+1d0JSJ8s34HfquDT2RqqWWLEGc7RITiKc4E49QUTO0GjWzz+Dyrgy8syZ39m26XckASbTxLuKULZ21Zf8cRQRDmDhGcTbExBWeZ5uixowdJNrxE047v0JmIcH1xLT1/PABpnfxrV6J3Hkb2lSPZPf3H3pCZ2vxDe+6pzeE0hruRgPJ1d2Px56OE/4AeiRM+MHL27L5My6UfZ+qVjeZ7b57iZF+MD182j0WZD/REww7CT/4Dsq8M370/xLn1zzHiIWKv/Q8ATquFJ+5dy4/vGr4+1UzLTmk6F5WOMnJ8fBvMtU4ft6epK3Tx3TdP8ZvDZ0c9bkdzDwawrbqAdGcDevcJrLXbkCxj720pSRJfX3Er1xTX8lxHPde//D16kzE+WXNl/waTZcVuyr02nm/sJq0bNPSYO/nqpjg421BQiU+x84/Lb6LIPrbG6cLUMHSDvh0aSBJ5V6qjHyAIwowTwdkUG0twZvE6kaQ4usXcrSm98SMkw+DunhISbb24llTgrPSh953qP1/WlqJqnLLCH88eH9d1NYS6mO/047I5cW7+CErfb0HWCexqxBhham1FqYf1FT6ebegetRn62VCc//vaSQqdVv5ys1kFPx1oI/DT+wHw3fsjZG8Jjo33Izl8RF/+DkbSLNOwuMjNwry5UwQz2tgOkoRzCtabDeSYX4h9XgHJ5g5+tK0Sj83CZ36vcfT4EYzU8BsvBtY3S2rPAmBbMnhKM9bSRejwqSHHDqTIMt9f/yes9JVxKtpHqd3Dh6s39D8vSRLXLSqkJ5ZiT2uA45nNALVTuBkAoMZTyPEbP8/d81dP6XmF0YWPnCLZHaJofTXWAs/oBwiCMONEcDbF5PwFYLGNuGMzcfQPSFENQynFuvZe/H1nuKOrm4oDvchOG/nbl5PubALD6F/DluW0WNlatAgt1MGJcO5NB+cLpeK0xYPUZHb1OTa+H8mSQom/SToUI35m5PO8f20FBvDTUTYGfO2lJsKJNJ+/qgq/w4qRThL8yf0YwXbct/0j1upNAMhOP46NH0QPniW25xdj+hlmUjocJ9HWi31ePrJj7JmpsfJvMJuY+4+e4lu3LqEkehLff11J9+Nfzjk+27Ipz6GYLZvqzdrMtrrBxWK7nztI99P7SYViI76+R7Hz0BXv4ebSJTyw+u24zsu+XZOd2mzonpadmlmX8rTibDFSafpeO4ZkkSm/du5kqgVBGEwEZ1NMki1YCquGzZwZiQih3/w1csrczRireScGEp/uXgppnYJrVmBx2vqPtxTVDjnH9aXmh/szY5zabAyb64dq3OaHruwqwLH+3ch9LwCZLNEIbl9SjN+u8NBbrSTTubNsB9qC/OytNpYWu3nfanNDQvjJL5NsehXbqnfg3PrxQeOdWz8GFivRF76BoU98r4dhGKT7xjblOlZTMaVp6DpGOvduWHtlIbbyPKINZ7m+wM5XSvZhJUXb7kcxcnRkaOqJ0hKIs3VhPjIGyYYdyPmVWAYsZk/HEqQyPVujDaNPk5Y5vPzo8ru5tqRuyHNXVeVjlSWebeyivnv6gjNh5gX3N5MOxvCsqcImOgIIwpwlgrNpYClchBHtRQ8PbdEUefZf0btP4Kg113ocDyucLLgLl1SJo9KHa7EZ2PQHZ+dlzmD0khrnawiZ11EzoOG5c8ufIccPAUmijSN/mDutFu5eWUpHOMlTxzuHPG8YBl98th4D+PI1NSiyTPzAo0Rf/CaW4lq87/r2kCyJxV+OY/09pDvqSRx6ckw/Ry7xNx+i+x+XkDj+woTPcb5ok3k/nIsm1hkBIPi/H6H7n9f1T9sOJElSf/as743jXN79HAAl0ZM8/Nq+IeOfz05pVueTbjuEEe3FWrNl0JhE67kazaP9e47Ga1fYuMDP/rYQO0/14bZZKPPYJnVOYfbp8SSBnfVIdgXfFUN/rwiCMHeI4GwaZAOq5488QySd7H881X6MyAvfQM6bj/das9WMfKKHPOfbQQ/isDzfPzbdUW+eK0fmrMLpY6WvjFe7ThBMjl4g9kjQ/LCuGVCsVClbgq1uC3J0H6meMMme8IjnyG4M+NG+oVObTx7r5NWWPm6sLWR7dQGpjuMEf/4xsLrw3fdTZEfu1jjObX8BQOT5/5szYzQW2WnR2O6pmR41UmlizZ0oeW6s+RNbj5PuPU1836/Ru04QP/REzjGOqmJsJX6ix9tI9UYwLGbw89xzj/ZPJWa9eMLMfG6ryifRsAMAW83WQWPirZmpaYtMrKULPZ5kMrJTm22hBHUFLjEFeREI7G5EjyXxXVaDxSGCbUGYy0RwNg4/at7Fz07uHXVcdhH/Q/se4atHngHM7FLo15+BdBLPO/4ZpbgIyW5lQUDGhhVb9BESex7ESJqL7tOdDSBJg6auBrqhdDFJQ+eFEda2ZT199hh22cLl59WSclz+XiyxPcDo2ZbFRW42LfDz0okeGrvPBQ/xlM6Xnm9AkSW+dE0NRjxM4Ef3YsSDeN/5DZTyZcOeUylVsS2/ldTJXSSbXhv15zifHu4i2WgGK4nDTw47jTgesVPdGMn0pLJmsV0PgWFO/8be+HHOMZIk4dtoBt4p7x24tn0SgNXRt/jYY4dJZKaPk2mdV072Up3vZGGek2QmODs/c5ZdN+hdVQlpneiJjglfP8B1NeeyrFO9GUCYeelwnODuJmSXHe/aqtm+HEEQRiGCs3H4yck9/N2h3xMbJQjIBmcLoz08dHIPXYkI8T2/INnwMrZlN2NbfiuSJBErMP96bSo08KxbgRHpIb7314AZnMl5C/qrvJ/vxlJzWvTpUdadNYa6OBJsZ3txDR5lcA0x+4rbUHTz+LFMhb1/bbasxrns2X/vPkVzb4wPrZ/HonwnwUc+Q7rtMI7NH8ax7u5Rz+m6+tPm6z//wKhjz5c48jToaSSHDyPSQ7LxlXGf43yTndI0dJ3Yzp+C1YUyfy3J48+T7jqRc6yjugRZbyXt3Ixt/ceQnHlcIx1mf1uIr7/cBMCe1iDBeJptVfkYuk6yMbPerGDhoNdMtPWiFHhwLzMD8MlObS4udLHAZ75fxHqzC1/fG8cxUmn8G+uQrTPdUlkQhPESwdk4bCpYSCSd5PXukftSypmisQujvUT1FD85+hyhx74AVieed/xz/xTR7qI4x2wRkluqcW7+IEgy0Vf+Cz0WRA+05VxvlrXKX06J3cOz7cdJG8OXwni87QgAt5YtHfKcZHNhX7EdKVFP/HQ3emzkqbBbFxdT6LTy8wOtxFM67eEE//5KMwVOhc9euZD43l8S3/1zlAXr8bz9/x/xXFnWqg0oVRtJHHmKVOZaxyp+8HEA3Df/g/n9gUfHdfz5sl0BJLuCvaJgQudINryM3n0C++o7cG75UwBib/4k59j0qT0oPb8ASSa4rxXros0UxE5zubuPb7/ewo7mHl5sMqc0t1fnk247jBHpGZI1S3YGMZJp7BX5WIt9WLxOok3tGMNs3hgLSZK4NpM9q53iGmfCzEr1RggdOImS58KzYsFsX44gCGMggrNxyDZLfra9fsRx9YqduGRhZTJKntWB+7l/xQh14L7+84MyHv9tO8H91RobK+uw5M3HtuI2Uqf3E9/9c4AhNc4GkiWJG0rq6EpE2N1zethxT7QewSJJ/Zm28znW3W1ObRoQPTHyrk27InPPqjK6oyke1zr4+stNhBJpPre1Gr+iE37yK6DY8b3vB0jK2Cv9Z7Nnkef+fczHGIkICe1ZLCWLzbpprnwSBx8fsWbbaJJdIdKBKM6FxUjDdFoYTWynOY3p3HAf9lXvQHL4iL35UM4dqfF9jyDHdmJxQ/jIaeQF1wDwb0s6kCX4+ONHePJYJxYJtlTmk2h4Gci13szcDGAvz0OSJJw1JRjxFPHTY+vqMJxPb6rkU5squaG2cPTBwpzV+5oGuoF/szrh97UgCDNL/Jc6DpsKFuKyWHmuY+Tg7PnOJlqceZSHu/icK4+3n9pDIH8hzqs+0T+mLRbkQKCNTQUL8Sjm9Kbzyo8CEH76n4CRgzOAGzIB1x/OajmfPxXtY2/fGa4srCbflrvAq7X2KqwWMxMYrR+9wfm9a8zdpP+y4wQP7W9FLXJx35pyoq9+H723Befmjwy7Tm44tqU3YSlfQXzPL0gcf3FMxySOPQ/JKLYVb0OyWLEtuwU90EqqZfe4Xnug7FTgRKc09UgP8QOPYimuQ6naaGYm174Tve8MCe2ZQWMNXSe+/zfIDh/+K1eAYRDrM3dwVnS+yV9vqaI1mOBwR5h1FT58DmXU9Wb2crMlkmuR2fg+0tA2oZ8jq8Ln4AvbFmFXxK+JC1WiI0Dk6BmsJed2gguCMPeJ37rjYLcobCms5niok5OR3mHHvdDRQLMzD2sixO2vfBcZ+Mria0nJlv4xz2Wyb9cNqDNlrdmKpXQJRsTMeFiKh+7UHOiq4kU4ZGXYVk6/bzsKwG3lQ6c0syTZgmP1VqRUB9GmtlGnwhblu9hWlU9jTxTdgK9cW4ucCBF59l+RHD5c1352xONzX4OM913fBtlC8JcfR48FRz0mfvAxAOwrbjX/f+XbzMcPPDbu188yuwKAo2piwVl878OQiuO44t7+qWvHhvuAoRsDUs070ftOY1txG+6lldjK8oiejJD2bydZ/xJ/sbGSDfPNNl8jrTcDSLT2INkVlEy1d/v8AiS7QuToGVLBkbs6CBe3vtfM3w15V4rm5oJwIRHB2Thd0z+1mbt9Uiyd4rWuZsJ+c/E8nQ0crLmK3zvzebT1cP+4ZzLHDwzOJEnCufkj/d+PljlzWaxsLarmaLCD5sjQKv+Ptx5BAm4uXTLieZyX3YMc24ORkoifGX0qLLsx4PqaAq6uLiD6wjcxwl04t38K2T2xKTDrgnW4rv4Mes9Jwk/8/YhjjXSKxOHfI/srUOavA8C2+GqwuUkczF3IdTTpSJxEaw/28nwszomVGYjt/AnIFhzr393/mDJvDUrFKhKHf48eOLdIP7bvVwA41tyJJEsU3rAKLDJJ732kA71IPU187/ZlfHBdBe9fWzHserN0JE6qL4K9PL//w1eyyORtVtFjSTof240xQnP78yW7grQ+9DKJzsCE7oEwdyTa+4g2nMVWno9jYdHoBwiCMGeI4GycsuvOhpvafL27mZiewpdZgC8586i+6wFkJL7d8AqGYZDU07zQ2UCVK59F7sELz+3r70Gye0FWhmRIcrmhNNMI/byCtO3xEK93N3NFQSWljpHrdSnly7G6zaAsoo282QHg1sVF/Nfbl/Kt25aiB9uJvPQfSN4SXFv/fNRjR+K6/vNYypYRe+1Bc9pyGMmmVzEiPdiW34Ikm29hyerEvuQG0p2NpMe5sQDoLz0x0a4AydP7SZ3ej23pTci+c+eQJMnMnukpYrv/FwBDT5N463dIrgKsddsBsBZ68W+swzCcJPPeT6L+Zcq9dr52w2JKPfYR1psNntLM8qxeiHvZfBJn++h+9uCYA9ZIw1mS7QFCb52c0H0Q5o6+180/AP2b6kRG5gP4AAAgAElEQVTWTBAuMCI4G6eFrnxq3YW83NlEPEdJjWzdsXnLbkJy5uG541+oKqnl9orlHAqc5fmOBnZ2txBKJbiuZOgvTdnhxfvu7+H9k28iWUbv65jtFnB+cPZUm4YB3Fo2ctYsy73mCtCjRI+dGvWDXJIk7lhWSoHTSviZf4ZEGPd1n0eyu8f0WsOeV7Hjvec7menNT6DHcmdvEpldmvYVbxv0uG3lbcDEdm3GGrMtmyY2pZmdtnRccd+Q5+xr3wmKg9jOH5vBeeMr6MGz2FfdPujf2HfZIqwFdtKurUQODf73HG69WeJMdjPA4OBMkiQKrl2BrdRP+PApQvtHD7qBQS2gJloYWJh9g7JmlSJrJggXGhGcTcC1JbWZkhpDswvPdzTgkBXW1m2j8CvN/bW+PlGzGYBvN7ySc0pzIPuKW3Fc8b4xXctw3QKeGKGERi6O9e9Ejh8gHVdIjdItICvd1UTs9R8gF1bj2Hj/mI4ZjXX+WlzX/CV6bwvhx7845HnDMIgffALJ4R8SqNiW3ggWW3/wNlZ6IkW0uQOLz9m/bms8jGSU+N6HkX1l2JZcP+R52ZWPfdXbSXfUk2x6jfi+RwCwr75z0DhJlim89QowUoR7V5CKmv+eI603i7f2gAS2Mv+Q15UUC0VvW4/sstHz4mFip4a2EztftlNEOhQjcbZvbDdAmHNE1kwQLmwiOJuAazJB1bMdg9ednY0FORJsZ1PhQpwW66Bfiiv95WwrWsSOrhP8rGUvTllhU+Ho05ZjcX63gJ54hJc7m1jtL2eBK29M57D4y7H5zcr/4QOHRxltCj/1VUgncd/0xTFl+cbKdd3nsZQvJ/b6D0gce27Qc6nT+9F7W7Atu3HIa8oOH7a67aTOvEW6q2nMrxfY3YiRSOFZNn9CH2TxA49hRHuxX/YeJEvuAp+OK94PQOy17xN/67dI3pIhwSWArciHw3MUZD89T70BMOx6MyNtFp+1FnqR7bnvv+J1UnSruS6v8/E9I24QMAyDZCZzBmNroC7MPSJrJggXPhGcTUB/SY3z6p290NkIwPZhisd+svZKAHqSUa4sqsY5RQHN+d0CHm85QsrQR9ylmYtn3XowdCJHRw9sUqffIr73YZR5q4dkgCZLUmx47849vTnclGaWbeXbAYgfGFv2LBWKEdzVaLa1Wb9oQtcb22kWmXVcPny201qzBUvRIuJ7f4UR6ca+8nakAbt3B/KsLEVKNBA9ETTXgDXm7qeZ6AhgpHXsFfm5TtPPMb+Q/G3L0KMJOh/bjT7MBoF0OI6RSOFYWAwWWQRnF6hs1ixv02KRNROEC5QIzibAYVG4srCKY6FOWgaU1Hi+3cxcXT1McLa1sJpVfrPWUHZjwVRY5S+ndEC3gF83vwWMfUozy7nuNuRkA6mwi1Rk5IbqoSe/BID7li/1L8qfStb5a3Bd81n03lOEH/s//Y/HDz4Oih2bem3O4+zLbwFJ7i+1MZq+145hpNLkbVqMbBt/W5t0VxPJ+hexLroSZYTSJ5IkDVqPZl9z17Bj7XVXYev5LpCm59kDxI+bGbQh680ymwFs5SMHZ5DZILDc3CDQ+/LRnGOy681spX4clUUku4Ike8c2xS3MDYmzZtbMXpGPvVIUDxaEC5UIziaov6RGZtembhi81NlAmd2L6inOeYwkSXx1+U1cXVzDOypWTNm1yJLEDaWL6UpEeKmziadPayzxFlPrGd+UhmT3YCtIgCQT3vX6sONSZw6Q1J7BWnMV1sXXTPbyh+W67nNYylcQe+OHJLRnSXc2kG47jG3xNUj23GvDZE8R1urNpJrfIB0YuQhrojNI+FAL1gIP7hXzRxw7nNiunwHguOLeUcfaL3sPyBZkfwXWqo3DjpMLq1E8YI0+TjocJ3x2/jDrzXJvBshFkiQKrlmB4ncROnCSdDg2ZEyyxwzOrAVuXDXmjlORPbuw9K812yiyZoJwIRPB2QRdW2yuO8tObR4MtNGZiLC9uGbEX4obCyr5xYb3UWib2n6F2ZIaXzz0FLF0ilvGmTXLcq9dA0DkSMOwY5JNZuDmWH/PtH4ASIots3tTIfjLTxDbZZaisK24bcTjbCvfBoZB4uATI47rffkIGJC3dcmEsn+GYZiL+61O7Jnp1JFYfGX47v9ffPf9eMTXkyTJLEjc/UsUT5q0fSPMGzp1HD/Tg+y0oeSN7b0kKRZz6jatE9x7YsjzyW4zS2Yt8PaXFBHB2YUjcbaPaKPImgnCxUAEZxNU5c6nxl3IS52NxNOp/sX4w01pTretRWa3gGOhTmDkrgAjca65GklvJxkuINndkXNM6tReAJQF6yZ2seNgnbca17WfRe87TeSZfwZJxr7s5hGPsWeCt5GmNmPNncROdGBfUIijemLlM9Jth0l3HMe25IZhM3lDrm3ZTVgXXjHqOFvtVUjoWLv/A4wk0fDlgxrTp0Ix0sFofz/NsXIvn4/sshF8qxk9PrjRfXZaU8l3Y3HbsZXnEz/TTXqUKW5hbhBZM0G4eIjgbBKyJTXe6DnJCx0NSJgtlWZDtlsAwCJvIcu9EyumKitWXAsAyUrf00/mHJNs2QNWF5ZhmqlPNde1f42lYiUA1upNyKNM11ryF6DMX0uy/iX06NByEIZh0POyWWokf+vSCX+Qxff/BgD76jsmdPxIrLVXmV90vIYS+DV6QqbnxXO7aBNnxr7ebCBZseBdU4URTxE6MLgUTLI7hMXj6F9756otBQOiTe2T+EmEmSCyZoJwcRHB2SRck1kA/ljrYd7oPslqf8WUT1eOR3bX5p0LV0zqL2f/TbeDHiFyxooeG7wg3IiHSZ89ijJ/9bC7DaeapNjw3fNdZP88HJs+OKZjrLVXgZ4i1XpoyHPhI6dJdgRwLZmHrXRofbCxMAzDDM6sTuxLb5zQOUZiyV+AnGkgb7Pux1ZiFpPNNmfv7wwwyk7NXLyrq5CsFoJ7mvp7qeqJFOlQDOuAOm/OGrOBupjanPtE1kwQLi4iOJuEzYVVOGWFh07uJWnobJ+lrFnW3fNX8w9Lr+dvV+XeyThWiq8AR2EfyH76nv7toOeSp/eDoWOdgSnNQddUsZLCLx7BsfadYxtfvgyA9HnBmZ5K0/eKBhaZvCsnnvkbPKU5uc4Iw7HVbjP/v2YzBTeuAlmi+5kD6LFkpvishK10bHXsBpIdVjwrK83NBkdPA/QXHh5YhNea70Yp8BBr7kBPjr0/pzCzRNZMEC4+IjibBIdF4cqialKGmX0Yrr7ZTLFbFD5es5kC++Szd3k33ABGmnB9BD01YK3TqT3A4PVm2ezLXGIpM4OzVNvggrrBPU2kQzF8a6tRfM4Jn386pzSzbMtvMV9j2c3Yinz4N9aRDsfpfv4gifYAtmIfsnVi2UvvumqQJQK7GjPFZ4OAuVNzIFdNKUZKJ3Yy9/pDYfaJrJkgXHxEcDZJ12amNt0WG5flL5jlq5k6topKrK4OdLmC0MvnFtanWszgLJs5i7f10vKt3xM53jor1zkcpUQF2TIoOEtH4gTebEB2WPFdMfFAerqnNLPsy26m4O8OYl91OwC+y2qwlviIHD0DaR1bxfizZlmK14lbrSDVHSLa2H5up2b+4I0NzmxJjXoxtTkXiayZIFycRHA2SdeW1CEjsa14EbYZWoM1U/zbNgAQ2tvc3wQ71bIHyZmHXGhO4cZOdIABoUMts3aduUhWB5aiGtKth/uvve/14xiJFP6NdcO2OxqLmZjSzLIUVPZ/LVlkCm9cDbKZHRlLfbOReC8zA9TAmw39bZvO7y1qK8vD4rYTbTyLoc+9DOmlru91syuIX3QDEISLigjOJqnKnc9vN9/P11fcOtuXMuVcS1dgUbpIUUt07zPokR7SnY0o89f2fxAkzpqFUGMnu9ATqdm83CEsZcswYn3ofWdI9oQIHTiJkufCs2pyPU1nYkpzOLYiH/lXLcXic066b6KtyIujuoREaw+x5g4km4LFbR80RpIknItKzXVumR2iwtxgZs3azazZApE1E4SLiQjOpsDGgkpKHWOrc3Wh8V5WB5JMYMcuUqf2AefWmxmGQbwtU6oirc+5kgtKdt1Z6yF6dxwF3SBvyxIky8Tf9jM1pTkS79pq5n3oGiwu++iDR+HLZM+MZBprgSdn9sVZOz0FaZO94f6spjB+ImsmCBcvEZwJI/JesQFJCpFI1hF55YfAufVm6XAcPRLvr1A/10ouKOXLAYjVNxKtN9flOGvLJnXO+KmDMzalORPs8/KxlZtr16z5uX8ex/xCJJtCtOHslAVT0caztP7gBfpePTYl57vUiKyZIFzcRHAmjEiyyLiXFIDsJNKcAM5lzrJTmu5l87H4nESb2jFSc6fkgqVsKQYSoWYzq5k3iYKzWYGdvwRmZ0pzOkiShP8Kc1NLNkgbMkax4KwqJtUXmbIAvG+n2VEjsOvcejdh7ETWTBAubiI4E0bl37YNSJJ234jkLUf2VwCQyExp2srycNWUYSRSxFq6ZvFKB7MUVpP2bCedzMe1uHxCBVsHMgyDwJsPz+qU5nRwLiql/P7teFZWDjvGt6EWSZHpeno/yZ7wsOPGIn6mm0RrDxavE3SDnucPienNcRBZM0G4+CnTeXJVVTcAX9c0bfuAx94DfFLTtE2qqq4BHhhwyEbgHcBO4BhwMPP4bzRN+8Z0XqswPIvThnO+heipYih9+4DNAJngrMSPZJEJ7m0i2nAW5wR7VU41Iw0p/z1gJPFvrpv0+dJth0m0athW3n5RTGkONNyUZpatyEfBtSvpeno/nY/vpvSezcjWif36COxuBKDwptUE3mwgdqKDaH0brrryCZ3vUiOyZoJw8Zu2zJmqqp8Dvg84Bjy2BvgQIAFomrZP07TtmeDtP4BHNE17ClgH/G/2ORGYzT7/NdsBSLpuAMwsUuJsL4rfhcVpw15RgOy0EWk4i6HPjSxIcHcjBj6U0BNIiTOTPl98/yPAxTOlOV7uZfPxrKok2Rmk+5mDE8p2JXtCROvPYiv1Y59XQP725WCR6XnhMHpybu32nYvSkTjRxnZsZXkiayYIF7HpnNZsAO7MfqOqaiHwNeDT5w9UVdUNfBn4i8xD64F1qqq+qKrqw6qqij+pZ5mt0Cy7kOxKEG/rJR2IoseS/b0pJVnCWVOKHomTaJ39kgupUIzAmw1ISgol+DvS53UKGC9zl+ZvkWwX15TmeOVvW4atLI/I0dOE9jeP+/jg7ibA3CUqSRLWfDe+9YtIh2IE3qif6su96MRbzXWezqpikTUThIvYtE1rapr2a1VVqwBUVbUADwKfAaI5hn8IeFjTtM7M90eB3ZqmPaOq6nuBbwF/Mtpr5ue7UJSLqxDsRBUXe6f8nParl3G8qZ3EoRbyl88HIH9RSf9r2dZVU3+wBc50U7xmcrXEJqvphUMYqTSlG/wEmmPYAvWTuiexlgN0dhzHe9ldlMyf3I7PC13efVs58u0/0PvSEUrUcjxjrLeWDMVoOXIKW76byo21/SVNCm9Zw6FjZwjuaWLBFrPf6XS8fy8Gp/eYU8IlSyvwTcE9Evd58sQ9nBmX2n2e1jVnA6wH6oDvYE5zLlNV9QFN07JZtPcyOPh6Dohkvv4N8JWxvEhPT2T0QZeA4mIvHR3BKT+v4XNhLfLSc7CFeKbgbNLj7H8tw+9CslroOtCCLZMZmQ3xtl66957AWuzDsqwWHoFAw16kSdyT0HM/AsB3xbum5d5eaApuXkP7I29Q/9MdlL13y5hqrvW+qmGkdNxrqujsHrypwLd1KZ2P7abh1ztZ9qfX0tkpdnDm0pPZLRt12olP8n04Xb8nLiXiHs6Mi/k+Dxd0zshuTU3Tdmqatjyztuwe4HA2MFNV1Q/YNU0b2P/n+8Bdma+vBXbPxHUKI5MkCe/aatANs78jYCvxnXteseCsKiHVFyHZNTv/IRmGQe+L5hRm/rZlWPxlSK6CSU1rGrpOfO/DSHYP3jW3TdWlXtAclUX4N6ukQzE6n9w7amsnPZkmtL8Z2WHFncm6DuSsKcVRVUzsZCe9B09N12Vf0AxdJ9HWh7XQM6n2Y4IgzH1zoZTGYuDEeY/9DfAxVVVfAP4M+NQMX5MwDPeSCmSXDQAl3z3kQ6K/mvwsNcqOHm8jfqbH/LBfUIgkSSjz15DubCR+4NEJnTPV/AZ6z0lsK96GbHdN8RVfuHyX1+CsKSXe0kXfKyMXkw0fakGPJfGsXphzl6ckSf2bA1qe3DPnWoHNBcnOIEYqjW2SPVUFQZj7pnVaU9O0E5jlMYZ9TNO0NzHLZwwc0wRcPZ3XJkyMpFjwrFpI4PXj/ZsBBnJWl4AsEalvw79x8uUrxsNIpel5+QjIEnlXLe1/3HPbV+n59vUEfvZR8j9ZjVKxclznje0xC8861r1rSq/3QidJEoU3rqbtZzsI7GrAVp6HK0cHBkM3CO5pAouMd3XVsOez5rvxXbaIwBv1BN6oJ2/rkmm8+gtPPLPRZrIN7wVBmPvmQuZMuMB411ThqC7JWbRUtltxVBaR7AiQ6pvZNYCBPU2kA1G8a6uw5p2r26VUrMD37u9BMkLfD96NHuwY8zmNdJL4/t8geUuw1m6bjsu+oMl2K0VvWz+gQO3QtWLR+jZSfRE8y+YPaax+Pt/ltdjyXAT2NIrOAeeJnzF3atqH6eQgCMLFQwRnwrhZnDZK3nE5jvm56yw5a8ypzUhD24xdUzpsls6QnTb8VwzN2NlXvg3XjV9A7zlJ4Mf3YqQSYzpvQnsGI9KNY/WdSJaZ2j9zYbEV+Si4bhVGIkXX7/cNqn9mGAaBXWarJu/66lHPJVstLLhtnegckEOitQfJrqAUeGb7UgRBmGYiOBOmnKtm5ted9b56DCORwr9pMbIj92Jp13Wfw776TpJNrxL6zWfH9MEf3/swAHYxpTki99J5OGvLSJztI37mXJ27+OluEmf7cNaUYs0fW1DhXzqvf3NA9PjMBfhzWToSJ9UXwV6eL+qbCcIlQARnwpSzuB3YyvOJn+kmHYlP++slOgKED7ZgLfTgWblg2HGSJOG9+z9R5q0h9saPiO747ojnNeIh4gefxFK0CGXB+qm+7IuOd20VwKDitIFdZl0u32WLxnweSZLIvzrTOeDFw2JzAOeKz4r1ZoJwaRDBmTAt3Go5GBCcQBX58TAMg55M6Yy8bcuQ5JHf0pLNhe8DP0PylhB+9G9JHHtu2LHxg49DMoJ97TtFtmIM7PMKsBZ6iRxvJR2KkewKEmtqx1aeh72iYFznsuaZmwPSoRh9bxyfpiu+cGS7btjEejNBuCSI4EyYFu4VC5AdVkJ7T4w782HoxpjXGkUb24m3dOGoLsa5sHhMx1jy5uN//0MgKwR+cj+pjtxtg8SU5vhIkoRnzULQDUIHTvY3OPddVjOh8/kur8XicxLc0zQtdfNGq802l/Tv1CwTwZkgXApEcCZMC9mq4F1XjR5PjqsHo6HrnPnB83Q9vX/0sYZBIJNVyd+6dJTRg1mrNuD9k29gRHsJ/OAe9GjfoOf1YAeJY8+hzF+LUjyzJUEuZO4l85DsCsH9zYSPnkHJc+NcVDqhc8lWC/nbl4Fu0D3FmwOijWdp+dZTxE52jj54lp0rPusVxWcF4RIhgjNh2nhXVyHZFAJ7mtBT6TEdkw7ESAeiRI6cJt7WO+LYWHOnudi8rgxr4fj7rjkufy/ObZ8k3X6MwE8/gKGfu8b4/kdAT4us2TjJNgXPsgXo0QSkdbzrq5HkiU8JOxeV4qguJt7SReRY65RdZ3DfCdANAnuapuyc0yXZkS0+K7JmgnCpEMGZMG1khxXv6oXokTjhgy2jHwCkAudqo/W9NnLV+cBOczrSf0XthK/RfetXsKrXkdSeIfzE3/c/Htv7MEgy9jV3jXC0kItntdn0XnbacC8b2qppPAZ2Duh96Qh6cmxB/khSoVh/xix2op1UIDrpc06n/inNCrEZQBAuFSI4E6aVd101kiIT2NWAkR59jU9/cGaRiZ3oIHa6O+e42Kku4qe7cVQXYysZ2qlgrCTZgu99/4OluI7oi98i9uZDpLuaSDXvxFq7DYtvaMV7YWTWfDeFN62h6NZ1yIpl8ufLc+NbV006FCO078Skzxc5ehqMzOJ6A0KHxvaHw2wRnQEE4dIjgjNhWllcdjwrK0kHY4SPnh51fKrPzGJkWz/1vaLlXGt0Lms2+fVgsjMP3wd/geTMI/irTxF6/IuAaNc0Ge6l83AsyF2keCJ8l9Ug2RUCbzagx5MTPo9hGIQPnwKLTNGt65BsCuGDLXN6c0CitRfZbkXJd48+WBCEi4IIzoRp512/CGSJwM4GDH3kRd3ZzJlbrcBRXUL8dDfxk12DxsTbeok1d2JfUDhlUz1KcS2+e38IRprEgUdBsWNbcduUnFuYPNlhxXdZDXo82b8LdCKSHQGSXSGc1SUoXifuJRWkQzFiJ8be0msmZYvP2srzRDkXQbiEiOBMmHaK14l72XxSvWEix0de1J3qi4IkYfE6yNu8GIDeVwdnz6ZirVkutsXX4H7b/weAffmtyM6JT5cKU8+7tgrZZSe4p2nCxY3Dh83sbXYtXLY/bOjAyam5yCkmpjQF4dIkgjNhRvgurwHJDKxGKomQDkSweB1IsoytxI+zroxEWy/RxnYAEp0Bog1nzcKmUzhtluXc8mf4P/IInnf8y5SfW5gc2arg31CLkUwTeLNh3McbaZ2wdhrZacNZZdbEs5X4sZX6iTa1kwrOvY0BiTOiM4AgXIpEcCbMCGueG5daQbIz2B9onU9PpUmH4yh+V/9jeZvM7Fnfa8fMumY7zQ9l/xW10zLNI0kSNvU6ZO/YCtoKM8uzYoFZmHZ/87iDqVhzB3okgUutQLKc+9XnWVkJBoQPnZrqy520bObMViayuIJwKRHBmTBjfJeb05DDZc/SmZIGis/Z/5i10Itr6TySHQECbzYQOXYGa7EPR3XJzFy0MKdIisXcLJLW6Xt9fG2d+qc0l84b9LhLrUCyWggdPDnqmsiZZKR1Emd7sRaJ4rOCcKkRwZkwY2xFXpw1pSTaekmc6RnyfHYzgOJzDXrcv7EOJIm+VzQwzClSsTj60uVeOg+lwE340CmSPeExHaPHkkQaz2It8GArHZyFkm0K7iXzSAdjxJrnzsaAZGcQI6WLKU1BuASJ4EyYUd511QAE9g6tzJ4to6H4nYMet+a5cS83F3Ar+W5cdeXTfJXCXCbJMnmbVDCMUQsVZ0WOtUJax71sfs7Afi5uDIiLZueCcMkSwZkwo+zzCrCW+IjWtw3qBgDDZ84A/JsWYyvPJ3/bskm1AxIuDs66MqwlPiLaGRIdgVHHh4+Y68lcSypyPm8r9WMr8RNtbCcVik3ptU6U2KkpCJcuEZwJM0qSJLxrqsGA4L7BDdHTmcyZxT80OFM8Dsru2YxTrDUTMN9HeVeqAPS+oo04NtkbJn6mB0dlEYrXOew4c2OAQXgOdAwwDIP46W5khyg+KwiXIhGcCTPOrZYju2yEDp5ET6T6H08FImCRsbjts3h1woXCsbAY+7wCYk3txFq6hh0XPpJ7I8D5XEsyGwMOtExoY0D48CmSPaFxH5dLqidMOhjDUVkk1lcKwiVIBGfCjJMUC95VCzHiqf7pJoBUIIric4oPI2FMJEki76qlAPS8dDjnDuBsuybJasFZO3Kf1HMbA6JE69vGdS3xtl66nt5Pz/OHx3XccLIbExwLi6bkfIIgXFhEcCbMCs+qhWCRCe49gWEY6IkUejQxqIyGIIzGXpaHa0kFyfYAkSNDe7fGz/SQDkRx1ZYh25RRz+ddvwgk6Hv9+IjFks+X7XwRP9WFnkqP/QcYRrS5EwBHpai3JwiXIhGcCbPC4rbjVitI9YSJnegYcTOAIIwk70oVLDK9r2hDAqPwYTMzm23XNBprvhvXknkku4Jjzp4ZhmHuBsWsTRY/lXuKVU+lCR8+hZEeucl69hxKgVv8sSIIlygRnAmzxru2CoDg3qYBZTREcCaMj+Jz4VtXTToUI7jnXIkWPZUmcqwVi8eBff7YW335r6g1s2dvjNxqLCvZHiAdiGLJBFLDNVEPH2yh6+n9o5briJ/pwUimRdZMEC5hIjgTZo2txI99fgGx5k5iTWZLJ4vIFAgT4Lu8BtlpI7CznnTYbIoebTiLkUjhXjpvXOVXrAUes9VYR4Bo49lRx2enNPO2LEGyWogOE5xlS36Ec0y/DpRdb+YU680E4ZIlgjNhVnnXmkVpQwfNbILInAkTIdut+DfVYSTT9L1uFqbNbjYZbZdmLv4rzFZjo609MwyDyPFWc8NBTSmOBYWkesKk+iJDxia7zJ2cibbeETsbxJo7QZbGle0TBOHiIoIzYVY5F5Wa2bLM559YYyNMlGdFJUq+m9CBk8RaOomd6MRW6sda6B33uayFXlyLy0m2B/qzurkkO4OkeiM4q0uQFQuOheZUZPS8NlCGYZDsDvZ/Hz6aO3uWjsRJtPdhr8gf0wYGQRAuTiI4E2aVJEv9a88kxYLstM3uBQkXLMkik7d1KRjQ8btdYBhj3giQi29DHTBy9iy7ESDbUsxRZQZn568708NxjHgKx8JiJMVC5MjpnOfM1mvLBnmCIFyaRHAmzDrP8gVIdgVroUfUOBMmxbmoBPv8AoxkGmQJl5q7XdNY2Iq8OGvLSJzty7nIv39KU5FxVJvBlDXPjZLnItbSNWhXZnZK01bmx1lbSqovQqKtd8g5z603E8GZIFzKRHAmzDrZbqXsnispum3dbF+KcIGTJIn8q5aBlJkyn2Qm1r9x+OxZsitEqieMo7oE2XpuCtJRVYyRSPX3xgT6pzSthd7+NXDnbwwwDINYcyey04a1xDep6xYE4cImgjNhTrAWeESNM2FK2Er9lL3vKgqvXzX5cxX7cNaUkmjrJXayc9Bz509pZmWzXgOzbdnMmbXAg6OyCNllI3KsdVB2LdUdIh0SLZvHCoMAAA6kSURBVJsEQRDBmSAIFyFbkRfZYZ2Sc/Vnz14bnD2LHm9Fssg4q0sGjbcvKASLPKikRrI7BJJZ5FaSZVyLK9Cjif5pTDi3iUC0bBIEQQRngiAII7CV+HEuKiHR2kM8s2A/2RUk2R3CUV08ZFelbFVwzCsg2REgHYqZOzW7gih5biTFApwr7xE+eqb/uFi2ZZNYbyYIl7xp3autquoG4Ouapm0f8Nh7gE9qmrYp8/03gSuB7D7z2wEr8DPACZwBPqBp2tDCQYIgCDPAt6GOaGM7fa8fx1FZROS42drp/CnNLEdVMbGTnUSbO3FWFaPHktjnFfQ/byv1o+S7ida3oceTSBaZ+KkurIUeFI9jRn4mQRDmrmnLnKmq+jng+4BjwGNrgA8BAxdUrANu1DRte+Z/fcDfAz/TNG0rsBf40+m6TkEQhNHYy/JwVBcTP91N7FSX2RUgx5RmVjb7FWvuGLAZwNP/vCRJuJfMw0jrROrPmi2bUrrImgmCAEzvtGYDcGf2G1VVC4GvAZ8e8JgM1AHfU1X1FVVVP5h5agvwVObr3wPXTeN1CoIgjMqfqXvW/exBkp1BnAuLke2517VZCz1YPA4zOOvMBGcFg4vhupeYU5uRo6fFejNBEAaZtmlNTdN+rapqFYCqqhbgQeAzQHTAMDfwLeDfAQvwvKqquwAf0JcZEwT8Y3nN/HwXSmZNx6WuuHj8VdGFsRH3dvrNyXtc7CW6u5FAZkqzdH0VhSNcZ3RJBZ27Golnem+W1JbiGji+2EtfZRHhlk70QATJIjN/9cIZ7QwwJ+/zBUbcw5lxqd3nmfotsB4zQ/YdzGnOZaqqPgB8FvhGdj2ZqqrPAauBAODFDOS8wNBqjTn09IhlaWC+iTs6gqMPFMZN3NvpN5fvsXNdtRmcyRKpYv/I11maB0DktFnvLIhE+LzxttpSwic7SfRGsC8opKsvOuQ002Uu3+cLhbiHM+Nivs/DBZ0zsltT07SdmqYtz2wMuAc4rGnap4HFwA5VVS2qqloxpzP3AK8At2QOvxl4eSauUxAEYST2igK86xfh37R42CnNLEdlEWTqlSl+F7J1aFbftbgCZHOM6AogCELWrJbS0DTtCPAQ8DrwIvBjTdMOAV8F7lFV9RVgE/Dt2btKQRCEc/KvWor/itpRx8kOK/ZyM3s2cDPAQBanDWeVuakg25dTEARBGq6h74WooyN48fwwk3Axp4Bnm7i30+9iusd9bxyn79Vj+C6rIW/rkpxj0qEYiY7AsDs/p8vFdJ9ni7iHM+Nivs/Fxd6c7UBmbuWpIAjCJca9dD6x5k5cau56aAAWjwOnqG0mCMIAIjgTBEGYJorPSem7Ns32ZQiCcIER7ZsEQRAEQRDmEBGcCYIgCIIgzCEiOBMEQRAEQZhDRHAmCIIgCIIwh4jgTBAEQRAEYQ4RwZkgCIIgCMIcIoIzQRAEQRCEOUQEZ4IgCIIgCHOICM4EQRAEQRDmEBGcCYIgCIIgzCEiOBMEQRAEQZhDRHAmCIIgCIIwh4jgTBAEQRAEYQ4RwZkgCIIgCMIcIhmGMdvXIAiCIAiCIGSIzJkgCIIgCMIcIoIzQRAEQRCEOUQEZ4IgCIIgCHOICM4EQRAEQRDmEBGcCYIgCIIgzCEiOBMEQRAEQZhDRHB2AVNVVZrta7jYqKoqq6pqn+3ruFSI9/D0Eu/nqaWqqvjMnCaZ96or8/Ul/3tB1Dm7gGTesHXA32madv8sX85FR1XVjwK3AI3ANzVNOzG7V3TxEe/hmSPez5OnquqfA+uAo5qm/etsX8/FSlXVcuAB4Jeapv16tq9nLhB/BVxANE0zgEXAfaqqXg/iL4ypoqrqe4Abgc8APuDPMo+L+zsFsvdRvIenVzazI97PE5e9R6qq3gXcAPwLcJeqqp/NPC4+N6eAqqrSgPejDCwG1qmquiT7/Kxd3Bwg3mRznKqqTlVVlczXBcBW4EHga9D/YSdMQObeWjPfbgFe0TStCfgesExVVVnc38lTVTUfsGa+9gDbEO/hKTfwPgOXA6+L9/P4ZO6hLfPtFuANTdM04H+AQlVVnZqm6bN2gReJ7Ht1wPtxKXAcCGK+Vz2ACM6EuUlV1YXA14FNmYdCwPOapn0E6FRV9a8z4y7pN/FE5Li3/wb8KPP1cuCA+CU8eaqqfh74HfBVVVXv0jQtBDwj3sNT67z7fCfme/vBzNPi/TwGA+7hP6mq+nbg74Gvq6q6FvgrYAHwn6qq1s3iZV7wznuv3p152I35ntWAvwa+Bfhn5wrnBhGczW1X8v/au/tYrcs6juNvPGjYLEjEzFyKkl/XGh4fiqHbGa62QCdTt0xc1omFYQ/4RyYItR78hzZdw55czdGTmIx0mc1iINaSxDnyIatPAuYDeDQhagjuKNIf13Wv2xNwzrnv+1y/+z7n8/qHs3N+P3bx2cV9vr/r6QcXAR+MiCmS+oEH88++BHw6Iib7abgh9dlOlrQV2J2nLC4GfgcQEdMi4qjD/D12CBHRDfQAlwNrgcsj4mJJ6/Ml7sMtcJCcPwqcL2lX7rvuz4MYkOFvgHnA7FzQbgU+IOkqYAqpSPMDRQMO0lcvjYg5wFuB64EFpBGz2ijamOXirE0c4j/6KcCdpDUjMwEk7YuI8ZIeBzYC3y/WyA41SLZvA84DkLQfOA7YAeyNiJ+T1uqML9PSUed04GFJfcD9wO3AoojoAnAfbpn6nNcDdwAL85T90UAf7s+DGdhX7wCuzj+bCBwTEccDrwGvgqfjG1Sf8wZgFWlU8n3Av4DFpCLtBNLU/Jjl4qwNRMQkYHL+urYY9QjSL7OvAf8BuiNi6oBbPw+sLtfSzjPEbM+KiFPzLecCnyV9QNwj6TpJe0u3u5PVLZj+B3BRREzIIxDrSKMQl9Zd7j7coCHkPAuYTirI3J8PYrAM87TbTOCHwN3A3ZI2VtLYDnaInPeTCuHNwMuSFkp6AngIuE3SH6tpbXtwcVaxiJgPPArMzd+q7Wp7A3guT2WuJQ371kZ4Xs+Le1+RtKaCZneERrIFXgKWApdJWlW2xZ0pIhZExPy8HR5gXO6fDwNbgBsAclGwA9iV7+tyHx66BnLeD+wDluH+DAw7w+2komE1cC3QI+knlTS8wwwj5z2kB+Q/5/uOlNQv6bFKGt5GfM5ZRSJiFmnNzXOkJ7MrJT1Z9/PzgBfybisi4hrSkPC3JW0r3+LO0WC2ZwA3S3q2fIs7U0RMJk0NPwvsJD3srahlGBHTgWmkX2wrgd2kEZwlkn5fSaM7UIM5Lwa+6FGepIm+ulTSA1W0uRP5M6F1vPagOmeTioH7I2Ip8C7gyTwNtxwIYH7d9WuAiS7MhqTRbF2YDc87gKckXRMRE4FbgO15G/xy4EzgEuAF4BzgMmCZP4SHrZGcl7owe5NG++oDFbW3U/kzoUU8clZARIyTdCAiFgL7JP04D/G+kXdO3Ut6ctgcEdOAk+t2tNlhONsyBuS8R9LPIuJc0q62l4ETSWvJbgVeAe6S9Ex1Le5Mzrl5zrAM5zyyvOasgLpdPR8Crq8rHt5SdzzGhfnaLbXiobarzQ7N2ZYxIOcbcs6PAN8DuklPzGcDjwBXkKY1nPMwOefmOcMynPPIcnE2giLihLqve0hPE8+T3iEG8Hr+82/AvyO/9LUm72axg3C2ZRwm5xX52ztJR73cLOkl0lKJ9bUPbuc8NM65ec6wDOdchqc1R0BEnEQ6puF44FfAfUA/6UiHZ0i7Vc6vW5A+B/gMsEDSP6toc6dwtmUMMeceSVsi4lbgAOlJeRJwk6R1VbS70zjn5jnDMpxzWR45Gxm9pK3s15IWoy8G9kr6a96ifRvwrdrFku4jnevi4mFwvTjbEnoZPOfaKOUi0qtXfiFptj+Eh6UX59ysXpxhCb0452I8ctYiEfEp0qGPW4GpwI2StuVF6FcD2yWtqLt+F3CVpF9X0d5O4mzLaDDnT0i6t4r2dirn3DxnWIZzro5HzlogIpYDc0hz7mcCnyRNpUGai18HnBwRx9bddgXwdMl2diJnW0YTOftol2Fwzs1zhmU452q5OGuNicAPJG0GvgN8F7gyIrolvUo6dX4CsCfyK4QkrZX0l8pa3DmcbRnOuQzn3DxnWIZzrpAPoW1SpHeG3QVsyt/6GHAP8ASwIiIWAB8mLZrsysc72BA42zKccxnOuXnOsAznXD2vOWuhiHg7aah3rqS+iFgGHAu8E7hOUl+lDexgzrYM51yGc26eMyzDOVfDI2et9W5SJ54YEbeQXua6RNJr1TZrVHC2ZTjnMpxz85xhGc65Ai7OWqsHWEI6Ffmnkm6vuD2jibMtwzmX4Zyb5wzLcM4VcHHWWv3Al0kH7nkOvrWcbRnOuQzn3DxnWIZzroCLs9b6kf73vjFrLWdbhnMuwzk3zxmW4Zwr4A0BZmZmZm3E55yZmZmZtREXZ2ZmZmZtxMWZmZmZWRtxcWZmZmbWRrxb08zGpIg4Bfg7UHsX4NHARtIBmy8e5r4Nki4Y+Raa2VjlkTMzG8t2SOqW1A2cAfQBawa5Z9aIt8rMxjSPnJmZAZIORMRXgRcjYjrwBeD9pHcIPg7MA74JEBGbJM2IiNnAN4AjgaeBBZJ2VvIPMLNRwyNnZmZZPgH9KeASoF/STGAaMAm4UNKifN2MiJgCLAc+Iuks4Lfk4s3MrBkeOTMze7MDwJ+AbRHxOdJ053uBYwZcNwN4D7AhIgC6gF0F22lmo5SLMzOzLCKOAgI4FbgRWAGsBI4Dxg24vAv4g6S5+d4J/H8BZ2Y2bJ7WNDMDIuII4OvAQ8BpwGpJK4HdwAWkYgxgf0SMBzYBMyPi9Pz9rwA3lW21mY1GHjkzs7HsxIh4NH/dRZrOnAecBKyKiHlAP/AgMDVf90vgMeAcYD6wOiK6gOeBjxdsu5mNUn7xuZmZmVkb8bSmmZmZWRtxcWZmZmbWRlycmZmZmbURF2dmZmZmbcTFmZmZmVkbcXFmZmZm1kZcnJmZmZm1ERdnZmZmZm3kv+tCxItGunVAAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x504 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plot_elo_for_teams(\n",
    "    data=elo_hist,\n",
    "    teams=['POR', 'NOP', 'OKC', 'UTA',],\n",
    "    title='Elo Ratings Western Conference Middle Playoff Brackets',\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [conda env:sports_py36]",
   "language": "python",
   "name": "conda-env-sports_py36-py"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}