{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Simple Tennis Game Win Probability\n", "\n", "This notebook demonstrates the simplest possible model of a tennis game. The probability that the server wins each service point is constant." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import seaborn as sns\n", "sns.set()\n", "sns.set_context('notebook')\n", "plt.style.use('ggplot')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def prob_hold_to_love(p):\n", " \"\"\"Probability server holds at love.\"\"\"\n", " return p**4" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def prob_hold_to_15(p):\n", " \"\"\"Probability server holds to 15.\"\"\"\n", " q = 1-p\n", " return 4*(p**4)*q" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def prob_hold_to_30(p):\n", " \"\"\"Probability server holds to 30.\"\"\"\n", " q = 1-p\n", " return 10*(p**4)*(q**2)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def prob_get_to_deuce(p):\n", " \"\"\"Probability game gets to deuce at least once.\"\"\"\n", " q = 1-p\n", " return 20*(p**3)*(q**3)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def prob_hold_via_deuce(p):\n", " \"\"\"Probability server holds from deuce.\"\"\"\n", " q = 1-p\n", " d = (p**2) / (1 - 2*p*q)\n", " return d*prob_get_to_deuce(p)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def prob_hold(p):\n", " \"\"\"Probability server holds.\"\"\"\n", " return (\n", " prob_hold_to_love(p) +\n", " prob_hold_to_15(p) + \n", " prob_hold_to_30(p) + \n", " prob_hold_via_deuce(p)\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's generate a plot of the probability that the server holds, as a function of the service point win probability." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "PROBS = 25" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "point_probs = [p for p in np.arange(0, 1+1/PROBS, 1/PROBS)]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "hold_probs = [float(prob_hold(p)) for p in point_probs]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAFNCAYAAAA+SQoQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8HMX5+PHPnqpVbZ3chLGNwV7bkjHdmBIMoVcD1jiBEEKAQEIJ4UcK+aaQhG/gS0IKCZDQEkIJjG2MaaZjuunFcll3G1tuOvVebn5/zAoOIclnW6eTTs/79dJLd7ftmd29u+dmZmcdYwxCCCGEEKJ3BOIdgBBCCCHEQCLJlxBCCCFEL5LkSwghhBCiF0nyJYQQQgjRiyT5EkIIIYToRZJ8CSGEEEL0Ikm+RI9wXXe967om4q/Vdd0Nruv+0XXdzD1Y779d1527B8vf4Lru+91M/47rumX+4xl+7Fn+8/Wu617pP85yXffi3Y2jP9nZPtvT5V3XvdJ13fW7u/7+bk/3byz55//pUc471HXd83pgm5+/B/uCjp8Du7H8WH/5om7m+Xw/d/ic+dK54bru2a7r7r07cYi+TZIv0ZN+Doz0/8YA3wW+Bfw1nkHtxKPA5C6mHQrc5z/+f8D3eyUikej+CJwU7yC6MBJ4Icp5bwHO6YFtdvceTFRd7efPzw3XdccAjwG5vRiX6CXJ8Q5AJJQaz/O2Rjzf7LruX4GfApfEKaZueZ7XADR0MW1HxFOndyISic7zvFqgNt5xdKbD+3dneuQ90d17MFF1tZ87nBvymZPAJPkSsdYKNIGtUgemYWtcDweuBv4DXAVcCYwGVgA/9zzvmYh1ZLiu+xD2V/ZW4Kee52l/ncnAb4Dzgb2AcuAR4FrP89r85QN+Evhd7AfbTZ7n3eYv/x3gj57n5XcM3G8a+6O/zK/914xfhneA8Z7nrfZfHwRsB870PO+VDuvJBv4BnAykA68DV3met8qfPg34E3Aw8Blwtx9T2I/vamAZcCZwK3ADMNXzvE8j9sEW4Iee5z28i+u7xfO8GzuWHUhyXfcW4GLs58QjfszN/jZPBH4HFAFlwN/9bXzllhmu6x4K/A3YH3gPeKvD9F8C3wOGAsuxx39hJ+t5AMj0PO+ciNeuAX7ged4E13WP9vfPFKACeBC4PuI86JLruoV+GQ7FJgILsPuzzp/+beAXwCjsOfpLz/Oe9qf9299H4/2/6/19M7J9267rHgB8iD3HLwFO9zzvEH/ascDvganY43iz53l3+9MmALcBXwN2YGuJful5XlMnZRgLrAPOA/7X35/PAZd5nhfy5xmJrbE6CXsuPuuXc4s/3QBneJ73lOu6i4BX/bhOxJ5Lf/A87x7/vXxh+zKe530pUXBd9y/ARM/zTvafFwMaOMLzvLf911b4sYTx34MRZSj29+He2HPmcs/zvF0tc8T0XwI/At7xPO9U13UP8bd9KPb9/R/gF57ntUSs/iLXda8HsoGHgB/5iSKu656E/dyZChhgMfY8XBGx/Kmu6z4BjACe9mMq77ifO5TnBr44N9b5Ly9xXfc3gALmeZ73y4j57wOSPM+7sOO+EX2bNDuKmHBdN+C67mHYxOrxiEknA69hk69nsE2VvwF+hf1yfhx4wnXdqRHLnAKEgAOBPwP/dV33KH/aj4ELsF8E4/3nVwAzI5Y/EFvNPw24DrjZdd3zd6E4j2K/1D/x1/MBsBL4RsQ8ZwFV2C+rjm4ExgEzgIOwXzb3AbiuOwz7ZfEsNmm42o//Jx3ir/GX/RfwLvaDuN3xwCBgwW6s7z9dlPkAIA97nC4ALvL/cF33a9hj96S/rp9jv9x+0HElruvm+bF8ErG9H0VMPxu4Bts8PRH7JTXHdd2cTmJ6GDjFT2bbfQN4yHXdJOy58xQwCfg2cCnwnS7K19m6Pew5eAbwdeBnfownYROgX2H36T+Bua7rTo9Y/nzgTuA47H7JAY7tEOernudtityo67oTsfvndew+/wXwd9d1T3BdNx17LNdi9/MF2PfPzprxb8I2kc8A9gHm+NtKAV7CJoCn+rHuBTzuum5XtSw/xTaPHQi8CNzpuu4I7I8Sjd3fIztZbiFwlL9N/H1hgKP9WEYDE/z5OnMDcJm/3Eh/e7tc5ginA9OBH/sJ7avYHyCHYs+TC7AJcKTvYX/wnYp9j7X/YBsDPOFvYzJ2P+YBf+iw/FV+GY4CxmI/R3bFYf7/GdjyP0jEZ47ruml+fA/t4npFHyDJl+hJt7quW+u6bi22tusNbKLw04h5GrA1T8uxNSbXAP/red4jnuet9DzvBuyHfWSy4GF/na/wa6ye4Iv+V0uB73ie96rnees9z/sPtvYksg9JBXCR53nLPM97CPvl+ZVEoSv+r91aoNXzvK1+bcZDfDn5Og/4r+d54U5WMRab7Kzzf71fErFPrgDe8zzvd57nrfJrfK7HJomRfuN53mrP8zb6245MvmYDC/xamt1ZX2cqsLUNqzzPewKbMLcnxFcDz3qed6N/zB7C1jr8vJP1zMaeC1f6x+9e4N8d9k0TsMHzvPXAb7FfKC181QtANTY5av8SPAybOOVivwC3+OfBi9jamhe7KF9HY7E1Sxs8z1uMrRV80J/2c2yNzyOe563xPO+fwAPYfoDtPM/z/u153see55Vik9PIY6T8ODu6GFjqed5P/H35X75ITr/p74crPOs14HLg0i6S03a/9DzvOc/zPvDXf6zrupOwtV37Ad/0PO99z/Pexx6fg7DJRWcWeZ53u3/eXo+t4dvfbx5rAJq6aEJ7FdtsNs1/fiw2UTvaf34S8FF7jVsnbvQ87zXP894D7sDW4nanqzK3+4u/f5dik6q12JrcFX7t04+AH3a4OOgyz/MWe573OvZYX+hPTwau8zzvVs/z1vnnywN8td/aTz3Pe8HzvA+x7/njXdcdv5NyRGrv9hDy9/dDwL5+rR3AaUAjNqEW/Yw0O4qedBNffGE1A9s6aR5ZF5GgDAPygbc7zPMGttmh3TsdmrPew/9i8zzvCdd1j/WbyCZgay7GAkkR8y9pbz6KWP6iXSlYJx4EfuNf0VSK/TL5VRfz3oSt0dnhuu6r2BqaB/xphcAMP2FtFwAGua4b9J/Xd/iCexT4k9+UtQxby9dek7c76+vMBs/zWiOeV2Jr19q38WCH+d/A1igO7vB6EXb/RyZT72JrcPDXcyGw1nXdD7CJ9b/am3cieZ7X6rruHL5IZL4BvO990Xx7E3CX33TzDDYZfm8n5Wz3U+B24Puu6z4HzPE8r73GthCY5jdBtUvB1n62W9NhfQ9ja4l+gE0c9gI6u2p3MvClKx89z7vDL88fsTWmNa7rtk92sMdzPLYGtjOvRzz+BJvcFvnr2uAnh+3b2uQ3rxfSeQfwlRHzVvtxpHQy35d4ntfoN1se57ruaux78vvAfL+W7STse6Irkfu2OoptdlXm9uMfeXwKgcUdPlPe8LfRnhyFsedpu/fap3ue97Hruo+5rvtTf10T+aLJOFLk59qn2M/EQmDVTsrSKc/zNriu+zr+eY/9wfeIF0Wzuuh7pOZL9KQyvzZlted5GztJvODLHWu76mTb/gXTruOHSwD7QdbeR+IxbLI1D9tE+UmH+btcfnd5nrcW23dpNnAusNrzvI+7mHcx9svnYuyv2d8Db/vNSsl+3AdE/O2P/RKo8lfR0GF927C/dhU2iWkFnvcn7/L6utDZB3p701Rny7dP6+wzpWOT1uf73rMXNRyMLcdb2GbCT7u5TP8h4GS/6XE2EbVJnuf9HHCBv2BreF5wXbez2riv8DzvH9grdH8DDAa067p3+5OTsbU+kfu0ENuU1a7jPnkK+2V9nB/nQs/zKjrZdDO2Oa4zydgv8MjtTsUey2XdFKe1w3MHezyjfb91jK+z+aOxEFv+Gdg+km8CqdhyHIdNkLvScbs722ZXZW63s8+djuev6bB8++vN/rm5Alur9wG2VvkXnayzs/fQHn3uYH+sKL/m8zSkybHfkuRLxI3nedXYWqPpHSYdgf1wa7d/h+mH88WXzxXA//M87/95nvcAsB77JRr5YT3Z7xPU2fLR6uwL8kFsE9gZdPMh6NeYTPM872HP8y7wtz8FW67l2I7J7UnramyfpV9hf3135WFs09g5gI6opdrd9e2K5XR+zLZjmysjfQpM9funtDuo/YHruudgm3ee9zzvh9jkqQbbz+YrPNtZuxTbl2Z/7IUAuK472nXdO7E1O3/wPO9Y4P+wfcm65bpujuu6fweM53l/8zzvNOwFIO21icuBMR32qcI2C3bK87xGYD72GJ1N1+fHysj94cdzt+u6t/rbHQ9sithuHnAzNonpSuT6DvTn/aS9HH6n+/ZtFWDfLyvYdV0lje0WYs+TE7H93VqwCfaPsYnJu90su6u6KnNnlgOHd+jndgS2ibe9hiwJm2C3OxzbxLcWW1P7ked553ie91e/OXgfvpogRn5uHezHtDzqEnW+f+dgWwyuAz7bhZpd0cdIs6OIt5uB37quuwn7K3I2tkliRsQ8B7quezO2r9Dp/vQD/Wkh4DTXdV/DdnK+ARgCRH7ZDwXu9ZsmD8P2v4jskB+NWmCE67rjgI1+svMotpZlArYfVFdGARe4rnsJtmniO9imlJXYpq6rXde9zX+8N7ZP2gLPXp3Y1Tofw3bwHsMXTXjswfp2xR+A913X/QV2HxyErRn6o+d5psM2HsFeKXq367q/9+e9BHtVKtgvuT+4rrsN25RyOPbqsO4GIX3YX+crEc2nO4BZAH7ikgOcgN/s5NqrUXOBHR2bafzmtBlAgV8msOdH+xfbLdiLPFZgm+aOw9aQXdD9buIhbAJmsDVhnbkD29fod8D92A7gF2CTz3ewSfP9/vRs4B7s+VfVxfrA9r0sxza9/RN4yvO8Na7rrsUmJI+4rnutP++fsOdhtH3jItUCRa7rjvE8b0PHif42N2CT2FP8lxdhr2J8yOu8f+Tu6qrMYzuZ93bs+/VvftK9D/aCmvs9z6vyz18D/MtvNs7Cdnj/q9+cGgImuvbq2s3Yi20uxX4WRfqL67o1QD1wF/Co53nriF5714EDXNf9zPO8Ks/zKl3XfQqbwN68C+sSfYzUfIl4+zv2y+0WYAn2g+x0v5NruwexNSIfYzvLFnueV+JP+w72w3MJti/VeuBevtxB9wXsr9r3sB/8V3ue9+wuxjkXWyOzDD/x8+xl488BH3q2s3hXfoJtcpmP/eV7HHCq53mVnr367STgEOwX4wPYhOaa7oLxPK8Ge1VdiIihG3Z3fbvCb149B9svrwTbjPo7vnq1GH6ScDw2SfwI+4v9zxHT52ATqT9gk4AbsZ3zX+4mhIewX4iRTY4N2MR8CvY8edGPrT0pno1NfLsaLfwcIAO7L9/B1nKc5697PvbKtWuxx//H2GEFHukmRoCXsefM/M76sPnr3oCtOT0Ne/HIDcAlnue97PdTPBH7Y+Jd7PF+rz2ubvwL+C92H3wSUQ6DTSp3YJOgl7C1iF/3/CFEdtG/sYnycv8KyM60X83Y3v+pvSN+d02Ou6PTMnfG7/N2MvaHwCfYhPY/2Fr0dvXY8j2Dfd8+wRd9Om/zt/Mk9gfj6dgLIYa5rjsqYh1/wH52vYI9tpftSoE8OzzIvX58v4mY9DB2mJDOLuAQ/YRjzM5qjoUQXXFd9z3gHs9eASdE3LhfjGk1JeLHSUIboGW+AviW53kdm/5FPyLNjkLsBtd1T8H2E9kP+4tbCCFixu/ovz926JOfxTkcsYck+RJi91yF33/Mv3BACCFiaSr2bhXzkKsc+z1pdhRCCCGE6EXS4V4IIYQQohdJ8iWEEEII0Yv6U58vaR8VQgghRH/S6d0Z+lPyRWlp6c5n2gMFBQUx30ZvkbL0TYlSlkQpB0hZ+qpEKUuilAOkLLuzja5Is6MQQgghRC+S5EsIIYQQohdJ8iWEEEII0Ysk+RJCCCGE6EWSfAkhhBBC9CJJvoQQQgghepEkX0IIIYQQvSim43wppaYB/6e1ntHh9TOAXwGtwH1a67tjGYcQQgghRF8Rs5ovpdRPgHuA9A6vpwB/Bk4EjgG+p5QaEas4hBBCCCH6kljWfK0BzgEe6PD6JGC11roCQCn1BnA0MCeGsQghhBAiSsYYaG2F1hZoaYbWFlpMK6Z08xevtbTYeVqaMa0t/vMWaGsFY8CEIWwAY5+H/deMifgL25sHfv56F8v0kAqTwiJGcMIJ08nJz+2x9e6qmCVfWut5SqmxnUzKAaointcAUe2B7obq7ym9sY3eImXpmxKlLIlSDpCy9FWJUpbeLocxBtNQR7i6inBNFW1VlYRr7OOw/7itutKfXolpbMC0NGNaWjDNTZgWP7nqYGuvlqJnlaXl8vjex/DiyINpTkrBvLGEq3+g4hZPPO7tWA1kRzzPBiqjWVDu7Rg9KUvflChlSZRygJSlr0qUsvRUOUxbG5Rtg+1bMDWVUFsNtTVQV4OJePz5622t0a04bRCkp0NyCqQPgqxcSEmB5GRISbWvp6TgJKeQkZNLfUvr5699/v/zx3Z+JykJAgHAgYADTgCc9v9EPHciXo+YF+zykct0fn/qr3K+PN+2BsO8z1p5eVuYVgND0+Dc0SlccOrZcb23YzySr+XAeKVUHlALfA34YxziEEIIIfoUU1cDWzdjtm7y/2+GbZth+5adJ1QZWZCVDXlDISsHJysbMnPsa+3Ps3IgM9u+lpmDk5ISdWx5BQU09pOEeHN1M3OXhli0roqwgZHZKcwqDDJjn1ySAw6pqdGXOxZ6LflSSp0HZGmt71JKXQs8h+3wf5/WenNvxSGEEELEk2lttbVYWzdhtm3+UrJFbfVXF8jIhNHjcEbsBcP3gtwhEYmVn1xlZNkapwFuY2UTc0pCvLGxmrCBvXNTKS4MctSYHJICUdae9YKYJl9a6/XA4f7jhyNefxJ4MpbbFkIIIeLJNDfRtOwTwiUff5FgbdsMO7ZCW9uXZ3YCMHQ47DMBZ+QoGL6XTbZG7AXZg3GcvpM49EVryxvRJSHe/qwGgH2GpFFcFGT63tkE+uC+i0ezoxBCCJFwTLgNNqzBLPsYs+JTWL2c7a0tX54pIwvG7IczYhSM2AtnuJ9gDR25S02AwlpZ1oAuKeO9zXUAjA+mo4qCHLpXVp9OWCX5EkIIIXaDMQa2lWKWf4JZ/jF4S6C+7osZRo8j68Bp1OUGbZI1cpTte9WHk4L+Ytn2eh4tCfHxFru/Jw8dhJqSzwEjMvrF/pXkSwghhIiSqa7ALP8Uln+MWf4JlJd9MTE4DOfgI2HSATgTp+Bk5zKkoICGftJJva8zxvDptnr0kjJKtjcAsP/wDNSUIEXD+kfS1U6SLyGEEKILprEeVi7FLP/U1m5t3vDFxMxsm2xNnooz6QCcoXKzllgwxvBBaR26JIRXZpOugwsyKS4KMmloRpyj2z2SfAkhhBA+09oK61diln1ia7bWeV90jk9JhckH4EyyyRZ774MTiNld+ga8sDG8u6kWXRJiTXkjANNGZVFcFGR8cFCco9szknwJIYQY0Iwx4C3BvPosZskH0GRrV3Ac2zl+0lScSVNhv0k4KanxDXYAaAsb3tpYw5ylITZUNuEAR47ORhUFGTskfafL9weSfAkhhBiQTF0t5u2XMK8+a8fYAhg2EmfyDJtsufvjZGbFN8gBpC1seG19NXOXhthU3UzAgRn75FBcGGRUblq8w+tRknwJIYQYUMy6VZhXn8G89zo0N0NyMs60Y3BmnAL7TupXHbcTQUub4ZV1VcxbGmJrbQtJDhy/by6zCoOMzE7MmkZJvoQQQiQ809SEefdVW8u1YbV9cegInK+dhHPk8TjZufENcABqbgvzwuoqHlsWoqy+leSAwynjB3NuYZChmYk95pkkX0IIIRKW2fKZ7cv11svQUGdHkj9gGoFjTobJB0qH+ThobA3z3KpK5i8vp6KhldQkhzMnDmHmpDyCGYmddLWT5EsIIURCMa0tmI/ewby60A58CvZ+iF8/HefoE3HyhsY3wAGqvqWNZ1ZW8sTycqqa2khPDnDO5DzOmpTH4PSBlY4MrNIKIYRIWCa0A/Pac5g3nofqSvvixP0JzDgFpk7DSZavvHiobWrjKa+CJ71yapvDZKYEmD0lyOluHjlpA/Nm4HImCiGE6LdMuA2Wfkz41YXw6ftgwpCRiXP8mTjHnGzvoSjiorqxlQUrKnhmZQX1LWGy05I4f2o+p00YQmbqwEy62knyJYQQot8xTU2YRU9jXnkGQtvti2PH48w4BeeQo3HSEmtogv6koqGVx5eXs3BlBU1thsHpSaiioZw8fgiDUqSPHUjyJYQQoh8xxmDefxMz919QvgNSU3GOOsEmXWP2i3d4A9qOuhbmLy/nhdWVNLcZgoOSuWByHifuN5i0ZEm6IknyJYQQol8wG9cSfvRuWLnUjs118rk4p5yLkyEDocbTttpm5i0t56W1lbSGYVhmMucWBvn6uFxSkiTp6owkX0IIIfo0U1OFefwhzOvP2z5dUw8joL6LM6wg3qENaJurm5m7tIxF66oJGxiZncKswiAz9sklOSAD1XYnZsmXUioA3AFMBZqAS7TWqyOm/xT4JlAN3KK1fipWsQghhOh/TGsrZtEzmCf/C/V1MHJvArMvwSk8MN6hDWgbKpuYWxLijY026do7N5XiwiBHjckhSZKuqMSy5msmkK61nq6UOhy4FTgLQCk1BTgPmObP+5ZS6mWtdX0M4xFCCNFPNH64mPAd/wdbPrNXL37jUpxjTpHhIuLI21bD7a9t4u3PagHYZ0gaxUVBpu+dTUBuybRLYnkWHwU8C6C1XqyUOiRi2iRgkda6EUAptQrYH1gcw3iEEEL0cWZbKeE597Hjk3fBCdjhIs46X27/E0deWQNzSsp4b3MdAOOD6aiiIIfulSX3wdxNsUy+coCqiOdtSqlkrXUrsAS4XimVDaQCRwB37WyFBQWxb9/vjW30FilL35QoZUmUcoCUpS8I19dS/ch91Cx4GFpbSZtyEIO/dx2p4ybEO7Q91l+PyUebKrn3rXW8s6ECgAP2yuXi6WOZNjYvIZKueB6XWCZf1UB2xPOAn3ihtV6ulPo7sBBYDbwDlO1shaWlpbGI83MFBQUx30ZvkbL0TYlSlkQpB0hZ4s2Ew5i3X8HM/w9UVUBwGIHiixh6+iy2bNkC/aw8HfW3Y2KM4ZOt9eiSMpZubwBg/xEZqKIgJx6wH1u2bLHHpZ/rjePSXXIXy+TrTeAMQPt9vpa0T1BKDQXytdZHKaVygeeBkhjGIoQQoo8xa1YQfuRuWL/Kjtd11nk4J56Nk5qWEDUr/Ykxhg9K69AlZXhljQAcXJCJKspn4tBBAHJMelAsk6/5wAlKqbcAB7hIKXUttqbrSWCcUuo9oBn4sda6LYaxCCGE6CNMZQgz737M4kUAOId9DefcC+WG13EQNoZ3NtUyp6SMNeVNAEwblYUqyme/YHqco0tcMUu+tNZh4PIOL6+IeHxZrLYthBCi7zEtzZjnH8csnAtNjTB6XwLfuBRn/OR4hzbgtIUNb26sYW5JiA1VTTjAkaOzUUVBxg6RpCvW5JpdIYQQMWe8JYT/fRuUbYPsXJzZl+Ac+XWcwMC+wXJvawsbXl1fzZySEKU1zQQcmLFPDsWFQUblyv0we4skX0IIIWLGhMOYhXMxCx6GgINz4kyc02bjZGTGO7QBpaXN8Mq6KuYuDbGttoXkAJywby7nFgYZmZ0a7/AGHEm+hBBCxISprSZ8319gyfswJJ/A936Ms9+keIc1oDS1hnlxTRXzloUI1beSEnA4Zfxgzi0MMjQzJd7hDViSfAkhhOhxZq1H+J+3QPkOKDyQwMX/Dyc7J95hDRiNrWGeXVXB48vKqWhsIzXJ4cyJQ5g5KY9ghiRd8SbJlxBCiB5jjMG8/BRmzr8g3GaHjzhV4QQC8Q5tQKhvaeMZr5IFK8qpbmojPTnAuZPzOHNSHoPT5Su/r5AjIYQQokeYhnrM/X/DfPAmZOcSuPQ6nElT4x3WgFDb1MaTXjlPehXUNYfJTAkwe0qQM9w8stPkooa+RpIvIYQQe8x8to7wP26G7Vtg/GTbv2twMN5hJbyqxlYWLC/nmZWVNLSGyU5L4ltT8zl1whAyUyXp6qsk+RJCCLFHwm+8gHn4n9DSjHPyuTgzv4WTJF/8sVTe0Mrjy0I8u6qSpjbD4PQkvrH/UE7abwiDUqSJt6+T5EsIIcRuMU1NmIf/gXnrJcjIJHDZT3CmHhbvsBLajroWHlsW4oXVVbSEDcFByXy7MI8T9h1MWrIkXf2FJF9CCCF2mdm6ifA//g82b4Ax+9nEa+iIeIeVsLbWNDNvWYiX11bRGoZhmSnMKgxy3LgcUpIk6epvJPkSQgixS8LvvY65/+/Q1IAz41QcdTFOigxfEAubqpuYWxLi1fXVhA0UZNuk65h9ckkOyI2u+ytJvoQQQkTFtLRg5tyLeeUZSEvHufQ6Aod9Ld5hJaQNlU3okjLe3FCDAUbnplJclM+Ro7NJkqSr35PkSwghxE6Zsm120NT1q2CvMQQu+ynOyFHxDivhrClvRJeUsfizWgDGDUlDFeUzbe8sAo4kXYlCki8hhBDdMp+8R/i+P0N9Lc7043DO/z5OmtyEuSd5ZQ08uqSMD0rrAJgQTGf2lHwOLsjEkaQr4UjyJYQQolOmrQ3z+IOYZ+dBSirOt6/EOeoESQZ6UMm2eh4tKePTrfUATB46iNlT8pk6IkP2cwKT5EsIIcRXmMpywnf/AVYuhWEjCVz+M5y994l3WAnBGMMnW+t5dEkZy3Y0ADB1RAazi/IpHJ4R5+hEb4hZ8qWUCgB3AFOBJuASrfXqiOnXAd8EwsDvtdbzYxWLEEKI6Jmtmwn/+ZdQXgYHHUHgwqtwMjLjHVa/Z4zh/c116JIyVoYaATikIJPionwmDh0U5+hEb4plzddMIF1rPV0pdThwK3AWgFJqMHA1sB+QCXwMSPIlhBBxZjauJfyXX0NNlR2p/tRiaf7aQ2FjWPxZDbokxLqKJgAO3zsLVZTPvnnpcY5OxEMsk6+jgGcBtNaLlVKHREyrAzZgE69MbO3dj0U+AAAgAElEQVSXEEKIODKrlxG+7XfQWI9z/uUEZpwa75D6tbaw4bnlW7nr9XVsrGrGAY4ek82swiBjh0jSNZDFMvnKAaoinrcppZK11q3+88+AZUAScFMM4xBCCLETpuRDwnf+HlpbcS6+lsC0Y+IdUr/VGja8uq6KuUtDlNa0EHDguHE5nFsYZFSOXCUqYpt8VQPZEc8DEYnXKcBIoL335nNKqTe11u92t8KCgoKejzIO2+gtUpa+KVHKkijlAClL/RsvErr9RpxAEsFf3sqgw46OQWS7rr8dl+bWME8t3cL972ygtKqR5IDDzP0LuHDaGEYNTow+Xf3tmHQnnmWJZfL1JnAGoP0+X0siplUADUCT1toopSqBwTtbYWlpaUwCbVdQUBDzbfQWKUvflChlSZRygJQl/MYLmP/cDqlpOFf9gopR+1LRB/ZHfzouTa1hXlhTyWPLygnVt5IScDhtwmDOnhxk6vgxlJaWUlpfEe8w91h/OiY70xtl6S65i2XyNR84QSn1FuAAFymlrgVWa62fUEodDyxWSoWBN4AXYhiLEEKIDsIvLMDoeyEzm8APb8DZZ3y8Q+pXGlrCPLuqgseXl1PZ2EZaksNZE4cwc3KQvEEykpPoWszODq11GLi8w8srIqb/Gvh1rLYvhBCic8YYzBMPY556FAbnEbjmtzh7jY53WP1GfUsbT3sVLFhRQU1TG4OSA8wqDHLmxCHkpkvSJXZOzhIhhBhATDiMefQezMtPwdARBH70W5yhI+IdVr9Q09TGk145T3kV1DWHyUwN8M0p+ZzmDiE7LSne4Yl+RJIvIYQYIExbG+b+2zBvv2Jvjn3Nb3AG58U7rD6vsrGVJ5aX88zKShpaw+SkJXHB1KGc6g4mI0WSLrHrJPkSQogBwLQ0E77rj/DxYthnAoEf/honM3vnCw5g5Q2tzF8W4tlVlTS3GYakJ/HN/Ydx0vjBpCcH4h2e6Mck+RJCiARnGhsI3/F7WP4JTNyfwBU/x0mXewh2ZUddC48tC/HC6ipawob8jGTOmRzk+H1zSZOkS/QASb6EECKBmboawn/9DaxbCQdMI/C9H+OkpMY7rD5pa00zc5eGeGVdFa1hGJ6VwqzCIMfuk0tKktxiSfQcSb6EECJBmaoKwn/+FWzegHP4sTjfuRonSfoodbSpuom5JSFeXV9N2EBBdirFRUG+NjaH5IAkXaLnSfIlhBAJyJRtI/ynX8KOrTjHnobzjUtxAtJkFml9RSNzloZ4c0MNBhiTm8asoiBHjs4mSZIuEUOSfAkhRIIxWz4j/KdfQWUI5zSFc9b5OI4kE+1WhxrRJWW8s6kWgHFD0lBT8pk2KouA7CfRCyT5EkKIBGLWryL81xugtgan+CICJ54d75D6jBU7GtAlZXxQWgfAhGA6s6fkc3BBpiSnoldJ8iWEEAmicckHhG/9BTQ14Xz7SgJHnxjvkPqEkm31PFpSxqdb6wEoHDYIVZTP1BEZknSJuJDkSwghEoD59D3K/nkLtLUR+N51OIccFe+Q4soYw8db69FLyli2owGAA0ZkoIryKRwuw2yI+JLkSwgh+jlT8iHhO27CSU4icOX/4BQdHO+Q4sYYw/ub69AlZawMNQJwSEEmako+bv6gOEcnhCXJlxBC9GNmzQrCd94EjkP+DX+lPL8g3iHFRdgYFn9Wgy4Jsa6iCYDpe2ehivIZl5ce5+iE+LKdJl9KqQ+BO4CHtdb1sQ9JCCFENMzmDYRv+y20thD4/vWk738IlJbGO6xe1RY2vLmxhjklZWysasYBjh6TTXFRPmMGp8U7PCE6FU3N11XA94DfKaXmAf/QWpfENiwhhBDdMTu2Ev7zr6G+Fueia3AOmBbvkHpVa9jw6roq5i4NUVrTQsCB48blcG5hkFE5knSJvm2nyZfW+k3gTaXUYOA8YIFSqhS4TWs9J9YBCiGE+DJTXUH4L7+GqnIcdTGBI46Ld0i9pqUtzEtrq5i3tJztdS0kB+DE/XI5d3KQEdly2yTRP0TV58tPvC4ALgaqAA1coJQ6UWt9aQzjE0IIEcHU1xH+yw2wfQvOqcUETjgr3iH1iqbWMC+sqeSxZeWE6ltJCTicNmEwZ08OMjQzJd7hCbFLounz9SBwGvAU8H2t9dv+63cC24FOky+lVADbV2wq0ARcorVe7U87APhLxOyHAzO11s/uflGEECKxmeYmwn//HXy2DudrJ+PM/Fa8Q4q5hpYwz66q4PHl5VQ2tpGW5DBzUh5nTcojb5BcMyb6p2jO3GXAj7TWOyJf1Fq3KqWO7Ga5mUC61nq6Uupw4FbgLH/Zj4EZAEqpYqBUEi8hhOiaaW0l/M9bYNUynEOOwjn/soQeILS2qZU5JWUsWFFBTVMbg5IDzCoMcubEIeSmS9Il+rdo7rJ6dMfESym1GEBrvbyb5Y4CnvXnWwwc0nEGpVQm8Bvg6mgDFkKIgcaEw5j7b4NP34PJB+Jc/COcQFK8w4qJmqY2Hv50B2f+8y0e/KSMsDF8c0o+98zclwsOGCqJl0gIXZ7FSqm5wARgX6XUpxGTUrDNiDuTg+0f1q5NKZWstW6NeO1iYI7WuiyaYAsKYj9+TW9so7dIWfqmRClLopQD+nZZjDFU3v0nahcvItUtYuhv/0pgUNcjtPflsnSnvK6Zh97fyNyPNlPf0sbgQSlc8bVxzDpgFFlp/Tvh6q/HpDNSlp7R3Rl9HTAWuBs73ES7VmxT5M5UA9kRzwMdEi+A84FZUawLgNIYj19TUFAQ8230FilL35QoZUmUckDfL0v4qUcxC/4LI/em9fKfsbWiEioqO523r5elM6H6Fh5fXs6zqyppbjMMSU/iG1OG8Z2jJ1FRto3q0Haq4x3kHuiPx6QrUpZd30ZXuky+tNbrgfVKqQlaa7Mb230TOAPQfp+vJZETlVK5QJrW+rPdWLcQQiS88KJnMAseguAwAj/6LU5WTrxD6jHba1t4bFmIF9dU0RI25Gckc87kICfsl0tqUoBBqUlUxDtIIWKku2bHN7TWRwHVSqnI5MsBjNZ6Z58C84ETlFJv+ctcpJS6FlittX4C26S5fo+iF0KIBBV+9zXMw/+E7FybeA0JxjukHrGlppm5S0O8sraKNgPDs1KYVRjk2H1ySUlK3AsIhIjUXbNjsf+/aHdWrLUOA5d3eHlFxPT3sFdECiGEiGBKPsDc92dIH0Tgmhtwhvf/fjabqpqYszTEa+urCRvYKyeVWYVBjhmbQ1JAki4xsHSXfE1XSnW37IYejkUIIQY8s3o54TtvhkASgSt/gTN633iHtEfWVzSiS0K8tbEGA4zJTaO4KMgRo7Ml6RIDVnfJ11XdTDPAYz0cixBCDGhm03rCf/NvlP2Dn+NM2K2Ghz5hdagRXVLGO5tqAdg3L43ionymjcoikMDjkwkRje463B/bm4EIIcRAZnZstbcNqq+zN8qeeli8Q9oty3fUM6ckxAeldQC4+emoonwOLshM6EFhhdgV3XW4/4vW+hql1JPYmq4v0VqfGdPIhBBigDBVFYT//Ct7o+zZ/e9G2cYYSrbXo5eE+HRbPQBFwwahpuSz//AMSbqE6KC7ZseX/P9zeyMQIYQYiEx9ra3x2rEV5zRF4Pj+c6NsYwwfbaljTkmIZTsaADhgZCaqKEjhsK4HghVioOuu2fFJ///9SqkgMB1oAd7RWnc+wp8QQoiomaYmwn+7ETatwznmZJyzzo93SFExxvDe5lp0SYhVoUYADt0rk+KifNz8QXGOToi+b6f3bFBKnQbcDywFkrC3G5qttX4t1sEJIUSisjfK/j9YvQzn0KNxzuv7N8oOG8Pbn9UwpyTEugp7l7npe2ejioKMy0uPc3RC9B/R3DDrd8AxWuulAEqpg4C76ORG2UIIIXbu8xtlL3nf3ij7u9f06Rtlt4UNr2+oZk5JiE3VzQQc+NqYHIqLgowenBbv8ITod6JJvkx74gWgtf5QKRWIYUxCCJHQzOMPYBYvgnEugR9cj5OcEu+QOtUaNixaV8XcpSG21LQQcOC4cbnMKgyyV05qvMMTot/q7mrHPP/he0qp64B/AGHgO8DLsQ9NCCEST/jNFzEL58GwAgJX/RInre8117W0hXlxTRWPLQuxva6V5ACctN9gzi3MY3iWJF1C7Knuar7KsENMtHdCuCVimgGui1VQQgiRiIxXgnngDsjIsolXH7tRdlNrmOdXV/LYsnLKG1pJTXI4zR3COZPzyM/om7VzQvRH3V3tKE2LQgjRQ8y2UsJ33gQYAt//Gc6IveId0ucaWsIsXFXB48vLqWpsIz3ZYeakPGZOymPIoGh6pwghdkU0VzumAqcBWdhasCRgP631/8Q4NiGESAimrobwbb+FuhqcC6/Cmbh/vEMCoK65jae9Cp5YUU5Nc5hByQFmFQY5a+IQctIl6RIiVqJ5dz0KjANGAh8B04BFMYxJCCEShmltsTfK3l6Kc9I5BI46Id4hUd3UxpMrynnaq6CuJUxWaoBv7p/P6ROGkJXWd6+6FCJRRJN8HQCMB+4E/gQE/MdCCCG6YYzBPHgneEvgwMNxzvl2XOOpbGxlwfJynllZSWNrmNy0JL59wFBOmTCYjBRJuoToLdH069qitW4FVgJF/rATubENSwgh+j/z/HzMmy/C6H0JXHwtTiA+XWlD9S3c8/42Ln18DY8tK2dQSoDvHjSMu2buy7mFQUm8hOhl0dR81SqlzgM+AS5VSq3A9v8SQgjRBfPRYsy8+2FwkMBVv4jLkBLba1uYtyzEi2uqaA0b8jOSObcwyPH75pKaJNdUCREv0SRfVwCXAj8FLgZeA67f2UL+QKx3AFOBJuASrfXqiOmnAL/2n34IXKG1NrsUvRBC9EFmwxrC99wKKak28Roc7NXtb6lpZu7SEK+sraLNwIisFGYVBpmxTy4pSX37FkZCDAQ7Tb601quAnyilsoELtdaNUa57JpCutZ6ulDocuBU4C8Bf1x+AGVrrMqXUT4B8YMfuFEIIIfoKUxEi/PffQUszgR/8HGf0vr227XWhOm5/s5TXN1QTNrBXTirFhUG+NjaHpIAkXUL0FdEMNTEeeAB7L8ewUup14Dta6892suhRwLMAWuvFSqnIe0EeASwBblVKjQPu0VpL4iWE6NdMY4NNvCrLcYovwjlgWq9sd11FI3NKQry1cQUGGDM4DVUUZPre2ZJ0CdEHRdPs+E/gXuBo7DhflwH3ACftZLkcoCrieZtSKtnvvJ8PHIu9krIWeF0p9bbWemV3KywoKIgi3D3TG9voLVKWvilRypIo5YCeKYtpayP0+5/QsHEtmSfNZMiFP8BxYpv4LNtazb1vr+e11WUATBqezcXTx3L0fvkEYrzt3pAo51iilAOkLD0lmuRriNb67ojnf1NKXRzFctVAdsTzgJ94AYSA97TWWwGUUq9hE7Fuk6/S0tIoNrv7CgoKYr6N3iJl6ZsSpSyJUg7oubKE5/wLs/hVmLg/DTO/TeOWLT0QXeeWb69Hl4T4cEsdAG7+IGYXBTn9kPFs2bKFrTHcdm9JlHMsUcoBUpbd2UZXokm+Viulpmmt3wFQSu0PrIliuTeBMwDt9/laEjHtA6BIKZUPVAKHA3d/dRVCCNH3hV9/HvP8fBixF4HLf4aT3POjwxtjWLLNJl1LttUDUDQ8g9lFQaYMz8BxnJjXtAkhekaXnxBKqSXYG2hnA28opT4F2rA1VMuiWPd84ASl1FvY5sqLlFLXAqu11k8opa4HnvPn1Vrrkj0ohxBCxIVZ/gnmoTshM9veLDuzZ0fiMcbw0ZY6dEmI5TsaADhwZCaqKMjkYRk9ui0hRO/o7ufZlXuyYq11GLi8w8srIqY/AjyyJ9sQQoh4Mls3Ef7HzYBD4AfX4wzruT4kxhje3VyLXhJidbm9yPywUVkUFwaZkD+ox7YjhOh9XSZfWutX2x8rpaYBJwMpwAuR04QQYiAytdX2Ztn1dTgXXYMzoahH1hs2hrc31qBLQqyvbMIBjhidTXFhkHF5vT9QqxCi50Uz1MQFwO+BedjbET2slLqhQyd8IYQYMExLC+E7b4IdW3FOLSZwxHF7vM62sOH1DdXMKQmxqbqZgAPHjM1hVlGQ0blpPRC1EKKviKZX6LXAYVrrLQBKqZuB55EO8kKIAcgYg3ngdli5FA4+Aues8/dofa1hw6J1VcxdGmJLTQtJDnx9XC6zCoMU5KT2UNRCiL4kmuQr0J54AWitS5VSbTGMSQgh+iyzcC7m7Zdh7HgCF/1ot2+W3dIW5sU1VTy2LMT2ulaSAw4njx/MOZPzGJ4lSZcQiSya5CuklDpLa70AQCk1E6iIbVhCCNH3mA/exMx/APLyCVzxPzhpu94c2NQa5vnVlcxfVk6ooZXUJIfT3SGcPTmP/IyUGEQthOhrokm+rgSeUEr9HTv0RAv2vo1CCDFgmHWrCN/3Z0gbRODKX+IMztul5etb2nh2ZSWPryinqrGN9GSHsyflMXNSHoMH9fy4YEKIviuad/x4wAUmAEnAioiR6oUQIuGZ8h2Eb78RWloJXPFTnL33iXrZuuY2nvYqeGJFOTXNYTJSAhQXBjlz4hBy0iXpEmIgiuad/3u/yXF5rIMRQoi+xjQ1Ev77jVBVgTP7Ypyph0a1XHVTG0+uKOdpr4K6ljDZqQHO2z+f09whZKUmxThqIURfFk3ytUQp9T/A69ibYAOgtf4wZlEJIUQfYMJhwv/6C3y2DufoE3G+fuZOl6lsaGXBinKeWVlJY2uY3LQkLjxgKCdPGExGiiRdQojokq9p/t8lEa8ZYFxMIhJCiD7CPK3hg7dgQiHOeZd1e+/EUH0L85eV89zqSprbDEMGJXP+1HxO2m8wacm7d0WkECIx7TT50lpH37lBCCEShPngLcwTD0NwmH+z7M6vRNxe28K8ZSFeXFNFa9gwNCOZcwuDfH3fXFKTJOkSQnxVNCPcZwG/Ak7C3lj7CeAmrXVTjGMTQoi4MBvX+lc2phO48n9wsnO/Ms+WmmbmLg3xytoq2gyMyEphVmGQGfvkkpLUdQ2ZEEJE0+x4Dzbp+hH29kKXArcBl8UwLiGEiAtTXUn49v+F5iYC378eZ9SXK/8/q2piTkmI1zdUEzawV04qxYVBvjY2h6SAJF1CiJ2LJvk6UGvttj9RSr0MLI1dSEIIER+mtYXwnTdD+Q6cs87HOWj659PWVTSiS0K8vbEGA4wZnIYqCjJ972xJuoQQuySa5GuLUipfa13mP88EyrpbQAgh+htjDOahf8DqZTiHHo1zmgJgVagBXRLi3U32Yu9989KZXRTk0FFZBLrpgC+EEF2JJvn6DPhAKTUHaAXOArYppW4D0FpfHcP4hBCiV5iXnsS88QKM3hfnwqtZsaOBR0tCfLSlDgA3fxCzi4IcVJDZ7VWPQgixM9EkX6v9v3aPxCgWIYSIC7P0I4y+D5MzmKXf+DH69W2UbKsHoGh4BrOLgkwZniFJlxCiR0Qz1MRvdmfFSqkAcAcwFWgCLtFar46YfhtwJFDjv3SW1rpqd7YlhBC7q2XzBtruuoWPgi5zD7+IFe9WA3DgyExUUZDJwzLiHKEQItHE8sZiM4F0rfV0pdThwK3YJst2BwEnRfQlE0KIXtVWV8NTd97NoxO/y5qcvaEWDhuVRXFhkAn5g+IdnhAiQcUy+ToKeBZAa71YKXVI+wS/Vmw8cJdSajhwr9b6vhjGIoQQn2sLG97aWMWcV5ezYeSpOBiOGJ1NcWGQcXnp8Q5PCJHgkm644YaYrHjOnDnFwEfFxcWr/efXzJkz52/FxcXhOXPmZAEO8GPgYeD2OXPmLC4uLt7WzSpvyM7OJpZ/ixYtYt68eYwdO5aFCxfyxhtvcPDBB3PXXXfR3NxMZWUlCxYsYMKECTz22GN88MEHTJ48mXvvvReALVu28NRTTzFlyhQeeOABli9fztixY7n//vtJTU1l7dq1LFy48PN1rl+/nuHDh/Pggw+SnZ3NkiVLeP755z+fXlpaSk5ODv/9738JBoO8++67vPTSS59PD4VCJCUlobWmoKCARYsW8eqrr3LwwQdz6623UlNTQ3Nzc78v01NPPfX59P5epvbzrP049dcyrV+/vstzry+XKTMrmz/OeYlHNwR4YW0tNU4aRzdtYGzTaqZm1ZOfldbvyhR5nF566aWoPyP6epnuuuuuXf7c64tluvXWW/fos7wvlWnevHk98v3UF8oEMGXKlJjmFL5Ou245xphOMx2l1K+6SYTQWv+2u+lKqT8Bi7XW2n++SWs9yn+cBGRorWv857cAS7TWD3SzSlNaWtrdJvdYQUEBsd5Gb5Gy9E2JUpb+Vo6WNsOidVXMXRpia20LSRhmbHmPs+uXc+itt7O1qjreIfaI/nZcupMoZUmUcoCUZXe2ga1o+orumh2H+v8nAi4wny+Gmvg0iu2+CZwBaL/P15KIaROAR5RSB2FHzT8KuD+KdQohRNSa28K8tKaKeUtD7KhvJTngcPIww8yn/8Aw00Dg57cSyMyCBEm+hBD9Q5fJl9b6Kvh8RPuD2jvGK6VuBBZEse75wAlKqbewmd9FSqlrgdVa6yeUUg8Bi4EW4D9aaxk1XwjRI5pawzy3upL5y8opb2glNcnhDHcIZ4005P3pJ9BQTeCHv8YZXhDvUIUQA1A0He5HdrgisRIYtrOFtNZh4PIOL6+ImH4LcEs0QQohRDTqW9pYuLKSBcvLqWpqIz3Z4exJecyclEduoI3wLT+D6kqcb1yKM/nAeIcrhBigokm+PlVK/Qv4D7YG62LgnZhGJYQQu6C2uY2nvQqeXFFOTXOYjJQAqijIGRPzyElLsrcOuutPsHENztEn4hx3erxDFkIMYNEkX5cAvwX+6j9fCNwQq4CEECJa1Y2tPLGigqdXVlDfEiY7NcD5++dzqjuErNSkz+czTz+Kef8N2G8yznmXyUj1Qoi4imaE+xrgR70QixBCRKWioZXHl5fz7KoKGlsNuelJXFg4lJMnDCYjJelL85oP38YseBjyhhL4/s9wklPiFLUQQlhdJl9KqRqgs3EoHMBorXNiFpUQQnSirL6F+cvKeX51Jc1thrxByXxrah4n7jeYtOTAV+Y3m9YRvu/PkJZO4Mpf4OQMjkPUQgjxZd3VfBX1WhRCCNGNbbXNzFtazktrq2gNG4ZmJHNuYZCv75tLatJXky4AU11J+O//C02NtsZr7316OWohhOhcd0NNbGh/rJRSwClACvC81vo/vRCbEGKAK61uZu7SEIvWVdFmYERWCsVFQY4Zm0tKUtf9tkxrC+F/3Ayh7Thnnodz0BG9GLUQQnRvp32+lFLXAd8C/o0dEPVapdRorfWNMY5NCDFAbaxsYs7SEG9sqCZsYFROKsVFQY4ek0NSoPvO8sYYzMP/hFXLcA4+Euf02b0UtRBCRCeaqx2/DRylta4GUErdix0cVZIvIUSPWlveiC4J8fZnNQCMHZyGKgoyfXQ2gSivUDQvLMC8/jyMHodz0Q/lykYhRJ8TTfJFe+LlP65SSrXELiQhxECzsqwBXRLivc21AOyXl46aEuTQvbKiTroAzMfvYOb+CwbnEbjiFzhp6bEKWQghdls0ydd6pdQPgTv851cAG2MXkhBioFi2vZ5HS0J8vKUOgIn5g5g9JciBIzN3ucbKbFxL+J5bISXVXtmYlx+LkIUQYo9Fk3x9H3gI+KP/fDG2D5gQQuwyYwyfbqtHLymjZHsDAFOGZ6CKgkwZnrFbzYSmMkT4b7+D5iYCl/8MZ8x+PR22EEL0mGgGWd0MzFBKZQABrXVt7MMSQiQaYwwflNahS0J4ZTbpOmhkJqooyKRhGbu/3qZGO6REZQjn3AtxDpreUyELIURMRHO1owtch72ZtmNHnQCt9ZmxDU0IkQjCxvDuplp0SYg15Y0ATBuVRXFRkPHBQXu0bhMO20FUN6zGOfJ4nJPO6YmQhRAipqJpdnwYeB2YT+cj3gshxFe0hQ1vf1aDLgmxobIJBzhydDbFRUH2GdIzHeHN4w/Ah2+DOwXnW9+XKxuFEP1CNMlXitb6mphHIoRICG1hw2vrq5m7NMSm6mYCDswYm8OsoiB756b12HbCb76IWTgPhhXIPRuFEP1KNMnXRqXUPlrrdTGPRgjRb7W0GRatq2Lu0hBba1tIcuD4fXOZVRhkZHZqj27LeCWYB+6AjCwCV/8KJzO7R9cvhBCx1N2NtZ/ENjOOAN5XSr0LfD6+1876fCmlAtjhKaYCTcAlWuvVnczzNLBAa/2P3S2EECJ+mtvCvLimiseWhthR30pywOGU8YM5Z3KQYVk9XxtltpUSvvMmAAI/uB5neEGPb0MIIWKpu5qvuXu47plAutZ6ulLqcOBW4KwO89wI5O3hdoQQcdDUGubZVZXMX15ORUMrqUkOZ0wcwtmT8ghmxKYJ0NTVEL7tt1BXg/Odq3HcKTHZjhBCxFJ3N9a+fw/XfRTwrL+uxUqpQyInKqVmAWFg4R5uRwjRi+pb2rj/nQ088M56qpraSE8OcM7kPM6amMfgQVHdNGO3mNYWwnfeDNtLcU4+l8CRx8dsW0L8//buOz6qKm3g+O9Oeu+AoSlSQyAogoAgiIgVQYEjYsWGL4qLrGJ5XXvDxXVVFlFcRcFX94AgoBJFUKQILCpICCAdJLQkpNeZue8fd4gBSRgwUxKe7+eTD5O57XnmDjNPzj33HCE8yXOflBAN5Ff73aGUCtRa25VSqcBIYBjwpAdjEELUkaIKB59vOcKCzbkUVTiJCLKhUhMY1D6e6JAAjx7bNE3MmW/Blg1wfk+M627x6PGEEMKTPFl8FQDVe8HatNZ21+NbgabAEuBsoEIptUtrnV7bDpOTPd+3wxvH8BbJxT/Vt1zySir4+Me9/Oen3yiucBATGsi9vVtyw/nNiQzx5EfI7wo+/ZD8Fd8Q1LoDjf7379hC63bOxvp2TmojufifhpIHSLPKIQgAACAASURBVC51xZ1BVu/TWv/rNPa9AhgEaFefrw1HF2itJ1Tb/9PAgZMVXgBZWVmnEYb7kpOTPX4Mb5Fc/FN9yuVIqZ3PNuWSvvUIZXaTmNAAbjsviSvbxHFuy2ZkZWVR4IU4zJ9X4Xz/TYhNwDF6Agdyc+t0//XpnJyM5OJ/GkoeILmczjFq4u7cjqdTfM0FLlNKrQQMYJRSajywTWs9/zT2J4TwguySSuZk5rJoWx4VDpOEsEBuTotnYOtYQgJtXo3F3L3998myxz6BEZvg1eMLIYQnuFN8bVFKTcMa5b5qXket9ZzaNtJaO4F7j3t68wnWe9qNGIQQHnawqIJPN+ayeEc+dqdJo4hArk9JYMC5MQQFeLfoAjCP5OCc/BxUVmAb8zhGi3O9HoMQQniCO8VXvOundbXnTKDW4ksIUT9kFVQwa2MO3+3Mx2nCWVFBDOuYQL9zYgi0+Wa6HrOs1Cq88nIxho/C6HKhT+IQQghPOGnxpbW+xBuBCCG8a09eObMycli+pwCnCc2igxmemkCfltEE+KjoAjCdDpz//gfs2YHRZyDGZUN8FosQQniCOx3umwD/Btpgjd01A7hNa33Aw7EJITxgR24ZOiOHH/YWAnBOXAjDUxPo2TwKmx9MTG1++iGsWw0d0jBG3iuTZQshGhx3LjtOAT4D7geOAOuwirGrPRiXEKKO/Zpdis7I5r/7igFoHR+K6pRA96aRflPgOJd9jfn1XGjSFNvoRzACvTOUhRBCeJM7n2xna62nKaXGaK0rgUeUUhtOupUQwi9kHirhPxk5rNtvFV0dksJQqQmcd1aE3xRdAOam9ZgfvQWRUdjGPokREenrkIQQwiPcKb6crgmwAVBKRQHev/VJCOE20zT55WAJekM2GYdKAejUOByVmkCnxuF+VXQBmAd+wzn1ZcDA9j+PYzQ6y9chCSGEx7hTfM0BPgJilFKjgbsA7dGohBCnxTRNfswqRmdksyW7DIDzz4pApSbQoVG4j6M7MbMwH+ebz0FJMcaocRhtO/o6JCGE8Ch37nZ8USl1C1Zr12XAO8C7ng5MCOE+p2my+rciZmVksz23HIALm0UyPDWBNglhPo6uZmZpCc7Xn4FD+zGuUth69fd1SEII4XHu3O04Gvg/rfUML8QjhDgFDqfJyj2FzMrIYXd+OQZwUYsoVGoCZ8fV7fyHdc2srMD5rxdg9zaM3pdhDLnJ1yEJIYRXuHPZ8RLgeaXUfGCa1nqVh2MSQpyEw2mydFcBszfmsK+gApsB/c6OZlhqAs1jQnwd3kmZDgfOdybBlg1wfk+Mm8f4XT80IYTwFHcuO45QSsUBNwJvKKXCsYqw1z0enRDiGJUOk2935vPpxhwOFFUSYMCAc2MY1jGBs6KCfR2eW0zTxJwxGdatgg5p2O56CCMgwNdhCSGE17g1iI7W+ohS6h1gP/AI8CggxZcQXlLhcLJoWz5zMnPILrETaDO4sk0s16ck0CgyyNfhuc00TczZ0zFXLIaz22Ab8xhGUP2JXwgh6oI7fb7OA+4AhgM/Aa8A8z0clxACKLM7+WprHnMzczhS5iA4wGBQ+ziu6xBPQnj9K1rM9DmuQVSbYXvgKYxQ/7wDUwghPMmdlq95WCPad9da7/FwPEIIoKTSwZe/5jFvUy4F5Q5CA21cnxLP4A7xxIbWz1Hfnd9/hTnnA4hPxPbgMxhR0b4OSQghfMKdT/HlWutnPB6JEIKicgefbznCgi25FFU4iQiyoVITGNQ+nuiQ+tsvyvxxBebMtyAyGtuDz2LEJ/k6JCGE8Bl3iq+OSilDa216PBohzlAFZXbmbT7CF1uOUGp3EhUSwE1piVzdNo6I4PpbdAGYmetwvvsqhIRgG/c0RpNmvg5JCCF8yp3iaz+wUSm1Cig6+qTW+gGPRSXEGeJIqZ3PNuWy8NcjlDtMYkIDUJ2SuLJNHGFB9X8WL3PnrzinvAgY2O5/AqNla1+HJIQQPudO8fWD6+eUuOaDnAKkAeXAXVrrbdWW3wfcDpjAs1rrz0/1GELUV4eLK5mbmcPX2/KpdJokhAVyS0o8A1vHEhJY/4suADNrjzV6fUUFtv95FKNdJ1+HJIQQfsGdcb6eUUqFAa2BjUCo1rrEjX0Pca3bUynVA3gVGAyglEoExgBdgFAgUyn1hVzaFA3dvrxS3lp9gMU78rA7oVFEEEM7xnNpqxiCAhpG0QVg5hzC+dpTUFyIcfsDGOf18HVIQgjhN076aa+UuhDYDnwBJAN7lVK93Nh3byAdwDUq/gVHF2its4E0rXUl0ATIk8JLNGT7Cip4/Ycshr67iq+25dEoIogHejThrWtbcUWbuIZVeBXkWYVXXg7G8FHYLhrg65CEEMKvuHPZcRIwAPhIa/2ba5Lt14FuJ9kuGsiv9rtDKRWotbYDaK3tSqn7gWeAN9wJNjk52Z3V/hRvHMNbJBff23a4iOmrd7No80GcJpyTEMEdPVoyoH0jAm31u+A60TlxlhRx6OUJOA/uI2r47cTefp8PIjt19fX9dSKSi/9pKHmA5FJX3Cm+wrXWmUopALTWXyqlXnBjuwIgqtrvtqOF11Fa68mukfMXKqUu0Vp/W9sOs7Ky3Djs6UtOTvb4MbxFcvGtHbll6Ixsfthr3aNyTlwIKjWB6y9sx4H9+zl04ICPI/xzTnROzMoKnP98GrZvxugzkOLLrqOkHpy3+vj+qonk4n8aSh4guZzOMWriTvFV6Zrb0QRQSrVz87grgEGAdvX52nB0gWsfLwFDgUqsDvlON/crhN/akl2K3pDN2qxiANokhKJSE+jWNBLDMLA10MmjTYcD59uvwK8Z0LUXxs3/IxNlCyFEDdwpvp4HlgJNlFIfAwOBe9zYbi5wmVJqJWAAo5RS44FtWuv5Sqn1WHdRmsBCrfXS08pACD+w8WAJOiObdQese1FSksJQnRLp0iS8wRchptOJ+cGbsH6NNVH2nX/FsNXvscmEEMKT3Lnb8XOl1GbgMiAAa1iITW5s5wTuPe7pzdWWP4PV30uIesk0TdYfsIqujYdKAejcJByVmkBqo4ZfdMHRibLfx/xhCZzTFtuYx2WibCGEOAl3e/w6tdZvAbuAYUqpGM+FJIR/M02TtfuKeOTr3Ty1ZC8bD5XSNTmCiQNb8tylLejUOOKMKLwAzIWzMRfNg7OaY3vgSYzQMF+HJIQQfu+kLV9Kqbdd//4TeAf4CngPq7+WEGcMp2myem8ROiObHUfKAbiwWSQqNZHWCaE+js77nEvTMefOgPgkbOOewYiUibKFEMId7vT56gp0Bx4FPtBaP6aUWuvZsITwHw6nyYo9hczOyGF3fjkG0LtlFMM7JnB23JlXdAGULPsG86O3ICrGNVF2oq9DEkKIesOd4sumtXYqpS4DXnQ9F+7BmITwC3anyfe7CpiVkUNWYQU2A/qdE83wjgk0iwnxdXg+Y25YS86UFyEkFNtfnsZo0tTXIQkhRL3iTvG1TSn1JdAK+E4p9RGw3rNhCeE7lQ4nS3YU8GlmDgeLKgm0wWXnxjC0YwJnRQX7Ojyfcv53Gea//4ERGIhx/xMYLc/1dUhCCFHvuFN8jQKuA5ZrrSuVUsuADz0blhDeV2538s32fD7NzCGnxE6QzeCqtrFcn5JAUoTcwef8/ivMmVMgNIykp18nJ76xr0MSQoh6yZ2hJoqBmdV+n+rRiITwsjK7k/StR/gsM5cjZQ6CAwyubR/HkA7xJIRL0QXg/GoO5uzpEBmNbdwzhKSeBw1kpGshhPA2d1q+hGiQSiodfLklj3mbcykodxAaaGNoSjzXdognNlT+a4BrHK/PZmJ+OQviEq3O9Wc183VYQghRr8k3jDjjFJU7WLAllwVbjlBc4SQi2MaITglc0y6eqBAZmf0o0+nE/PgdzO++hEbJ2MY/i5HQyNdhCSFEvSfFlzhj5JfZmbcply9/zaPU7iQqJICb0xK5qm0cEcFSdFVn2u2Y01/HXL0Ump2N7cFnMKLjfB2WEEI0CFJ8iQYvt9TOZ5k5pG/No9xhEhsawIjOSVzeOo6wIHcneThzmJUV1iTZ69fAue2xjX0SIyLS12EJIUSDIcWXaLAOF1cyJzOHRdvyqXSaJIQHcltKAgPOjSEkUIquEzHLSnBOfgG2bICULtZcjSFn5kCyQgjhKVJ8iQbnQGEFn2bmsGRHPnYnNIoIYljHBPq3iiYoQIqumphFBThffwZ2bYXze2K76yGZJFsIITxAii/RYPxWUM7sjByW7irAaUJyVDDDUxO4+OxoAm1nxkTXp8vMy8H52lOQtQej16UYt96PESD94IQQwhOk+BL13u68cmZlZLN8dyEm0CImmOGpiVzUIooAKbpOyjx8AOc//gbZBzEuHYSh7sSwSQuhEEJ4ihRfot7anluGzshm1d4iAFrFhaBSE7mweSQ2Q4oud5j79uB87UnIz8UYdCPGoBEY8toJIYRHSfEl6p0t2aXoDdmszSoGoG1CKDd0SqRrcoQUDqfA3Pmr1ceruBDjhruwDbjW1yEJIcQZwWPFl1LKBkwB0oBy4C6t9bZqyx8ERrh+/VJr/YynYhENw8aDJfwnI5v1B0oASEkK44ZOiaQ1CZei6xSZm3+x7mqsKMe4/S/YLrrU1yEJIcQZw5MtX0OAUK11T6VUD+BVYDCAUqoVcBNwIWACy5RSc7XWv3gwHlEPmabJ6l25TPluN5mHSwFIaxLODamJdGwc7uPo6idz/RqcUycCJrZ7J2Cc38vXIQkhxBnFk8VXbyAdQGu9Sil1QbVle4ErtNYOAKVUEFDmwVhEPWOaJj9mFaMzstmSbb01LkiOQHVKpF1imI+jq7+cq77DfP+fEBiE7b7HMVLO83VIQghxxjFM0/TIjpVS7wKfaq0Xun7fA7TSWturrWMAfweitNajT7JLzwQq/IrTNPlu62He+2EXWw5ZHen7tUnizp5n075xlG+Dq+cKP59F3tRXMMIjSXrmdUI6dPZ1SEII0dCdsE+MJ1u+CoDq35a24wqvUOA9oBAY484Os7Ky6jTA4yUnJ3v8GN5S33JxOE1W7ClkdkYOu/PLMYA+LaMYnppIz5RzyMrKIiur0Ndh/mm+OC+maWIunI05dwZExWA8+Cw5MYnwJ+Kob++v2kgu/qmh5NJQ8gDJ5XSOURNPFl8rgEGAdvX52nB0gavFax6wRGs90YMxCD9nd5p8v6uAWRk5ZBVWYDOgf6tohnZMoFl0iK/Dq/dMux1z9vuYixdAfBK28c9hNK75A0EIIYTnebL4mgtcppRaidXsNkopNR7YBgQAfYEQpdSVrvUf01r/4MF4hB+pdDhZsqOATzNzOFhUSaANBraOYWhKAk2ign0dXoNgHsnB+c4rsG0TnNUc27inMeKTfB2WEEKc8TxWfGmtncC9xz29udpjma33DFRud/LN9nw+zcwhp8ROkM3gqraxXJ+SQFKEzCNYV8zMn3FOexWKCjC69cG49T6MULk7VAgh/IEMsiq8oszuJH3rET7LzOVImYOQAIPB7eMYkpJAfJi8DeuK6XRgfv4fzM//A7YAjJGjMfpdJeOgCSGEH5FvPeFRJZUOvtySx7zNuRSUOwgLtDGsYwLXto8jJlTefnXJLMjD+e6rsGk9JDTCNvoRjHPa+DosIYQQx5FvP+ERheUOPt+Sy4ItRyiucBIRbGNEpwSuaRdPVEiAr8NrcMytmVb/rrxc6NwN2x3jMCJkaA4hhPBHUnyJOpVfZmfeply+/DWPUruT6JAAbklL4qp2sYQHSdFV10zTxPz6M8w5HwBgDL0NY+B1GDabjyMTQghREym+RJ3ILbXzWWYO6VvzKHeYxIYGMKJzEle0iSM0UAoBTzBLinC+/zqsWw0x8djueQijbaqvwxJCCHESUnyJP+VwcSVzMnNYtC2fSqdJQnggt6UkMODcGEKk6PIYc/c2a37G7IPQvjO2u/+KER3n67CEEEK4QYovcVoOFFYwe2MO3+7Mx+6ERhFBDOuYQP9W0QQFSNHlKaZpYi5diPmfd8HhwLjmBoxBIzBscklXCCHqCym+xCn5Lb+c2RtzWLqrAKcJyVHBDE9N4OKzowm0yXAGnmSWlWLOmIK5ZilERmG7czxGaldfhyWEEOIUSfEl3LLrSBmzNuawYnchJtAiJpjhqYlc1CKKACm6PM7M2mNdZty/F85tj+2eh2W0eiGEqKek+BK12pZThs7IZvVvRQC0igtBpSZyYfNIbDJwp1c4V32LOWMKVJRjDBiMMfRWjECZDUAIIeorKb7ECW0+XIrOyObHrGIA2iaEckOnRLomR8ho6V5iVlZgfjIN8/uvICwc272PYnTt5euwhBBC/ElSfIljZBws4T8Z2fxyoASAjo3CUKmJpDUJl6LLi8xD+3FOfRn27oTm52C79xGMRsm+DksIIUQdkOJLYJom6w6UoDdkk3m4FIC0JuHckJpIx8YyGbO3mT+uxPnBG1BagtFnIMaIuzGCQ3wdlhBCiDoixdcZzDRN1u4rRmdk82tOGQAXJEegOiXSLjHMx9GdecwD+3Dqf8OGtRAcgnHHg9h6XuLrsIQQQtQxKb7OQE7TZNXeQnRGDjuPlAPQo3kkKjWRc+NDfRzdmccsKcb8QmMuXgAOO7TrhO2mezHOau7r0IQQQniAFF9nEIfTZPnuAmZtzGFvfgUG0KdlFMNTE2kZK5e1vM10OjFXfIM5dwYU5kNiY2zD74Dzekj/OiGEaMA8VnwppWzAFCANKAfu0lpvO26dJGAl0ElrXeapWM50dqfJ0p35zN6YQ1ZhJTYD+reKZmjHBJpFS9HlC+a2TJyfvAu7t1mXGIfcjDFwCEZQsK9DE0II4WGebPkaAoRqrXsqpXoArwKDjy5USl0OvAw09mAMZ7RKh5PFO/L5dGMuh4orCbTBwNYxDE1JoEmUfMn7gj37IM5pr1qj1ANGj34Y19+GEZfg48iEEEJ4iyeLr95AOoDWepVS6oLjljuBAcCPHozhjFRud/LJj3uZ/sNOckrtBNkMrm4by3UpCSRFyOCcvmBWlGN+PZcD6XMwy8ugZWtsN96DcW57X4cmhBDCyzxZfEUD+dV+dyilArXWdgCt9SIApZQHQzizlFY6Sd96hM825ZJX5iAkwGBIh3gGd4gnPky69/mCaZrw00qcs96HnEPYYhPgxtEYPS/BsMkE5EIIcSby5DdyARBV7Xfb0cLrdCUne36QSW8co64VldvRP/3G//24l/zSSiKCA7j9wpaMvKA5ceEN4/JifTwvFTu3kvf2JMo3/AiBgUQNvZXoEXdgC4/0dWh1oj6ek5pILv6poeTSUPIAyaWueLL4WgEMArSrz9eGP7vDrKysPx1UbZKTkz1+jLpUWO5g/uZcvthyhOJKJxHBNm7slMg17eJoe05zsrKyKM3zdZR/Xn07L2ZhAea8mZjffw2mE9K6Yxt+ByWNk4kNj6xXudSkvp2T2kgu/qmh5NJQ8gDJ5XSOURNPFl9zgcuUUisBAxillBoPbNNaz/fgcRu8vDI78zbl8uWveZTZnUSHBHBLlySuahtLeFCAr8M7Y5l2O+bShZjz/w9KiqFJM2w33IWRer6vQxNCCOFHPFZ8aa2dwL3HPb35BOud7akYGpqckkrmbsrlq615VDhM4kIDGNm5EZe3iSU0UPoP+ZKZ+bM1dMT+vRAWgXHDXRj9rsIIlL52QgghjiXfDPXAoaJK5mTmsGh7PnanSWJ4INenJHBZ6xiCA6To8hXTNGHHFpwLZ8P6NWAYGBdfgTHkJoyoGF+HJ4QQwk/JN7cf219YwZur9nPv/O0s3JpHYngg913YhKnXnsvV7eKk8PIRs6wU5/fpOJ8bh/PlCVbh1SYF2xOvYbtljBReQgivGzduHHv27HFr3Zdffpk1a9Yc81xFRQUjRoyos3imT5/O/Pnu9TBKT0/nnXfe+cPzzz77LJWVlVXxrlmzhgULFgCwYMEC7PY/dQ+fT0nLlx/6Lb+cWRk5fL+7AKcJTaODGdYxgb5nRxNgk2lnfMXctwdz6ZeYq76D0hKw2eD8ntj6Xgkd0mRKICGEqENPPvnkMb9379696vFHH33E5Zdf7u2Q6owUX35k15EydEYOK/cUYgItY0IYnppArxZRUnT5iFlZifnTSsylC2FrpvVkbALGgMEYfQbKyPRC+CnnrPcxf1xRp/s0ul6EbfioGpfv3buXiRMnEhAQQEBAAI899hjJyclMmzaN9evXY5omw4cPp1+/fowbN47Y2FgKCwsJDw9n6NChdOnShc2bNzNjxgyeeeYZ/vGPf7Bv3z6cTid33nknXbp0YdSoUTRv3pygoCD+9re/HXP8Dz74gCNHjlBaWsrf/vY3kpOTmTJlChs2WIMNXHrppQwbNqxq/dLSUp5//nmKiopqvDNv5MiRdOjQgaysLFJSUrjvvvv48MMP2bhxI6WlpTz88MOsXr2aJUuWEBAQQOfOnRk9ejQAy5Yt47vvvqOsrIyxY8fSoUMH5s6dy7Jly7Db7URERPDss88CsHHjRsaPH09JSQm33XYbPXv2ZMSIEXz44YdVsaSnp7Nnzx6aNm1Kbm4uzz77LC1btiQxMZHrrruOwsJC/vrXv56wFc3fSPHlB7bllKEzsln9WxEA58aHoFIT6d4sEpu0pviEmX0Q8/t0zOXfWJNeA6R0sVq50rpjBMhdpUKIY61du5a2bdsyZswYfvnlF4qKili6dCn79+9n8uTJVFRUMGbMGC64wJrw5dJLL6VPnz6sXr2ar776ii5dupCens4111zDF198QUxMDBMmTCA/P5+//OUvTJ8+ndLSUm655RbatGnzh+P36NGDyy67jOnTp7N06VLOPvtsDhw4wJQpU3A4HIwdO5bzz//97uv09HTOOecc7rrrLjIzM/n555//sM/Dhw/z97//naZNmzJx4kSWL18OQIsWLRg7diw7duzg22+/ZfLkyQQEBPDUU0/xww8/AHDWWWcxfvx4du7cyUsvvcTUqVMpKChg0qRJ2Gw2Hn74YTZvtu7DCwsL46WXXiIvL48xY8Zw4YUX1vg6X3311cyYMYMnn3yS7OxsnnvuOa677jq++eYbBgwYcPon0Iuk+PKhTYdLmJWRw49ZxQC0SwxFpSbSNTlCLmH5gOl0wIafcC5dCBk/gmlCRJQ14fXFV2A0bjiDCwrR0NmGj4JaWqk84eqrr+bjjz9mwoQJREZGVhU1v/76K+PGjQPAbrdz4MABAJo3bw5At27dqgqTDRs2MHbsWN544w02bNjApk2bAHA6neTn5x+z3fHatm0LQHx8PLm5uezevZtOnTphGAaBgYGkpKSwa9euqvV37dpFt27dAEhJSSHwBHdnN2rUiKZNmwJw3nnnsXfv3mNi2LNnzzHbdurUqeoYnTt3BuCcc84hNzcXm81GYGAgzz33HGFhYRw+fBiHwwFAamoqhmEQFxdHREQEBQUFbr3mycnJhIeHs2vXLhYvXswLL7zg1na+JsWXl5mmyYaDVtH1y8ESAFIbhaE6JdK5cbgUXT5gFhzBXLYIc9nXkHPIerJVO4y+V2JccBFGcIhvAxRC1AvLly+nU6dO3HbbbSxevJiPP/6Ya6+9li5duvDQQw/hdDqZMWNG1SU+m2uKMZvNRr9+/Xjttde46KKLCAgIoEWLFiQlJXHzzTdTXl7OzJkziYqKOma74x3//dGyZUsWLlzI8OHDsdvtbNy4kcsvv7yqs33z5s3JzMykd+/ebN269YQd2LOzs8nNzSU+Pp6ffvqJPn36sHXr1qoYWrRogdYah8OBzWbjl19+YeDAgWzfvp3NmzczYMAAduzYQaNGjdi+fTvLly/nrbfeoqysjNGjR1t3jQNbtmwBIDc3l9LSUmJiar9xyWaz4XQ6gd9bwhITE0+6nb+Q4stLTNPk5/3F6IwcNh0uBaDLWRGo1AQ6Ngr3cXRnHtM04deN1qCoP/0ADjuEhGJcfLlVdLVo5esQhRD1TLt27XjxxReZPn06hmFw33330bdvX5YsWcIDDzxAaWkpvXv3Jjz8j5/5V155JSNHjmTmzJkADBo0iEmTJvGXv/yFkpISBg8eXGPRVZOePXuybt067rvvPiorK7nkkkuqWscArrvuOiZOnMjYsWNp0aIFwcF/nI4uKCiI119/nUOHDtGtWzd69erF1q1bq5a3atWKfv36cf/992OaJp06daJ3795s376d/fv3M378eCoqKhg/fjxNmzYlLCyM0aNHExQUREJCAtnZ2QCUl5czfvx4SktLGT9+/EkbIjp16sSjjz7Ka6+9Rp8+fXjjjTd4/PHHT+n18SXjaNVZD5j1cXoh0zRZs6+IWRk5bM0pA6Bb0wiGpybSLjGsTo9VnUwDcWJmQR7mf5dbHej3W83nNG1pFVw9+mGEebYQbijnpaHkAZKLv2ooudT3PK6//nrmzJkD+G8uZWVljBs3jilTprhdoHpxeqETVpHS8uUhTtPkh72FzMrIYeeRcgB6No9CpSbQKj7Ux9GdOcyyUtiaiblpHeam9fDbLmtBYCBG974Y/a6E1h3kcq8QQtRDGRkZ/OMf/+DOO+885ZZBX5Liq445nCbLdhcwKyOH3woqsBlwcctohqcm0CJW+g55mulwwK6tvxdb27dYlxQBgoKt8bhSz8focQlGdKxvgxVCCD93tNXLX6WmpvLee+/5OoxTJsVXHbE7Tb7bmc/sjTnsL6zEZkD/VjEM65hA0+g/XkcXdcM0TTjwG2bmesxN62DLBiiz+tRhGNCyNUaHNIwOaVYLV5CcCyGEEL4lxdefVOlw8s32fOZk5nCo2E6gDS5vHcvQjvE0jpQvek8wj+RYrVqb1mNuXg95ub8vbJRs9d3qkAbtOmFERPkuUCGEEOIEpPg6TeV2J19vy2NOZi65pXaCAwyubhfH9SnxJIYH+Tq8BsVZXIS5bjXmpvVW0XW0ozxAVAxGawTrTgAAGCRJREFU94uty4kd0jASGvkuUCGEEMINUnydotJKJwu3HuGzTbnklzkIDTQY0iGeIR3iiQuTl/PPMMvL4OA+zAP74MA+1+Pf2PfbbnBaA/ERHAKpXa1CKyUNklti1KNOlkIIIYRUC24qrnDwxa9HmL/5CIXlDsKDbAzvmMC17eOIDpWX0V2m0wlHcuDgb1VFlnngNzi4D3Kz/7hBUDDBbTtS2bqDdSmxVTuMQGlZFEI0bGvWrOHgwYMMGjTI48eaPHkyw4cPp3Hjxidcvn79eiIjI2uc//FEnnzyyap5Gz3l6NyPJxqf7Hjjxo1j/PjxtGjRouq5bdu2sWLFCm677baqITWOvhZhYWGsWbPGY9MVSdVwEoXlDuZvzuWLLUcornQSGWzjxs6JXNMujshgmd+vJmZZKRzM+r2wqiqysqCi/I8bxCZA+84YTZpBk6YYjZtCk6YQn0TjZs38cmwZIYTwlO7du3vtWPfff3+tyxcuXEj//v1PaZ+eLrzqQuvWrWnduvUxzx19LdatW8fKlSvrX/GllLIBU4A0oBy4S2u9rdryu4HRgB14Xmv9uadiOR15ZXbmbcrly1/zKLM7iQkJ4NYuSVzZNpbwoDOv6DJNE0pLoLgQigqgqBCzuKDqMcWFUFiAWVQAh/bDkRO0YgUHQ6OmGGc1A1dxZTRpBo2TMUI9N+CsEOLM8/5Ph1i5x735Ad3Vq0U0o86vuV/p3r17mThxIgEBAQQEBPDYY4+RnJzMtGnTWL9+PaZpMnz4cPr168e4ceOIjY2lsLCQ8PBwhg4dSpcuXdi8eTMzZsygT58+7Nmzh3vuuYcZM2awfPlyHA4H1157Lddeey1z5sxh8eLFGIbBJZdcwtChQ4+J5fbbb6+aZzE6OponnniCoKAgXnnlFbKysnA4HAwfPpz+/ftXtQotWbKE/fv3k5eXx8GDBxkzZgwxMTGsWbOGrVu3HlMQPvHEE9xyyy20a9eOW2+9lbvvvps+ffrw8MMPM2HCBEaPHs2cOXMYN24crVu3ZufOnZSUlPDUU0/RpEmTqv2kp6ezYsUKiouLyc/P59Zbb6Vv376MGjWK5s2bExQUxIMPPsgLL7xASUkJDoeDO+64o2qC8FdffZUDBw4QFxfHY489ht1u5+9//3vV/q6++moGDx4MwHvvvUdBQUHVqP3r1q1j/vz5PPnkk1XxHH0tZs6cyfbt21mwYAGffPIJb731FtHR0cybN4/S0lJGjBjxp95Lnmz5GgKEaq17KqV6AK8CgwGUUk2AB4ALgFBguVJqkdb6BE0i3pVTUsncTbl8tTWPCodJXFggN6UlMrB1LKGB9bNvkelwQGUF2CuhstL6115pPVdR7iqkCq0iqqgAigutIqp6YVVcCK4JUE8qPtHqAN+kKTRuhnGW9S9xCdI/SwjRYK1du5a2bdsyZswYfvnlF4qKili6dCn79+9n8uTJVFRUMGbMGC644AIALr30Uvr06cPq1av56quv6NKlC+np6VxzzTVVk2hv3bqV1atXM2XKFCorK5k2bRo7d+7k22+/5Y033sAwDB566CG6det2zCW1srIyBgwYQFpaGlOnTmXBggUEBQURExPD448/TklJCffccw9du3Y9JoegoCAmTpzI2rVr0Vrzyiuv0L17d/r373/MqPBH446OjiYoKIi1a9dy3nnnUVFRQVJS0jH7bN++Pffffz/vvvsuS5YsYeTIkccsLy0tZdKkSeTl5TFmzBh69+5NaWkpt9xyC23atOGtt96ia9euDBs2jMOHD/PAAw/w0UcfATB48GBSUlKYOnUqn3/+OZ06daJ///5cfPHFZGdnM27cuKri6+KLL6Z///589tlnvP3226SlpdV4Lm+++Wbmz5/PoEGDyM7OZsmSJQwZMoRFixbVSaueJ4uv3kA6gNZ6lVLqgmrLugMrXMVWuVJqG9AZ+K8H46lVWXExz0/7nC/yQrFjI9Go4Pqww1wanEvwdhO2g/Poym5PyWSCCZjOav+a1r9O07XctB6brr07q61jmtV+XNs4HZjHF1B2+x+Kq30OB86KMqi0/77vU2UYEB4JEVGQ1AQioqyhG6KireciozEioyAiGiKjITIKIiKlT5YQwudGnd+o1lYqT7j66qv5+OOPmTBhApGRkdx1111kZmby66+/Mm7cOADsdjsHDhwArImtAbp168bUqVMpKChgw4YNjB07lkWLFgFWa1qHDh2qWtPGjh3Lt99+y8GDB/nrX/8KQGFhIfv27Tum+AoMDKwqLlJTU1m9ejUBAQFVxVZ4eDgtW7Zk3759x+TQpk0bABo1akRFRUWNufbq1YsnnniCmJgYbrzxRmbNmsWaNWvo2bPnH9atvs/c3Nw/LE9LS8NmsxEfH09kZCR5eXnHvD67d++uuvyXlJREeHg4eXl5BAUFkZKSUpXj2rVr6du3L7Nnz2bZsmWEh4cfM1l4586dq9adOXNmrcVXdVdddRXPPvssaWlpxMfHEx8f79Z2tfFk8RUN5Ff73aGUCtRa20+wrBA46VTkp9LZ71Qt+ep75uWF07g0h6G7l9D34E8EmVZLj9/PfhkUjBEcjBEUjBEUhBERhREURMAxz/++nOAQa73gEIzgEGxR0diiYwmIisEWHYstOgZbVCy2yCiMAP+4xOrJc+9tDSWXhpIHSC7+qr7l8uWXX9KvXz8ee+wxPv/8c+bNm8eAAQO46KKLeO6553A6nUyZMoXzzz+fkJAQGjduXJXjoEGDmDp1KldccQXNmzcnNjaW3NxcunbtSnp6Ok2aNMHhcHDPPffwyCOP0K5dO959910Mw2D69On07NnzD69XQUEB7du3Z+fOnVUFzo4dO7jhhhsoKipiz549nHfeeYSEhJCUlERUVBSxsbEkJydTWlpKSEgIycnJREREEBcXBxx7TqKjo1m5ciVvvvkma9asYf78+UyaNInk5GQCAgJITk4mJCSERo0akZycTExMDJWVlcfsIzY2lh9//JHk5GSys7MpLy8nJSWFwMBAmjZtSkhICB07dmT37t307duXgwcPUlpaSvv27TFNk/z8fDp06MCOHTvo0qULX3zxBb169WLkyJGsWrWKtWvXVsVx6NAhOnfuzOLFi2nTpg0JCQmEhYX9Id6kpCQCAgKq8k9OTiYhIYFPP/2Um2++uU7el54svgqA6iNc2lyF14mWRQF5J9uhJztdt005h/ejDxFdVEpAr2uAa06yhZtzARqG68dm/WtzPQaw2aot4/d1jv+9+jYBAdY0OYFBrp/AP8xLaAJn/dlJQ4tLrB8/4K+TuZ6OhpJLQ8kDJBd/VR9zSUpK4sUXXyQgIADDMLjvvvvo27cvS5YsYdiwYZSWltK7d28KCgooLy/n8OHDhIVZ/V179+7NlClTmDlzJllZWeTl5VFUVERMTAxpaWkMHToUp9PJ4MGDiY6OpmPHjgwdOpTKykrat2/PpZdeeszrZbfbef311zl06BCNGjXihhtuwDAMJk2axNChQykvL+emm26ivLy8KpbCwkKCgoLIysri8OHDlJeXk5WVRcuWLXn55Zdp1qxZVbwAF1xwAenp6ZSUlJCamsq8efMIDAys6lOWlZV1TJ75+fkUFhYeE2deXh5ZWVmMGDGC4uJixo4dy8GDB7Hb7ezfv5/g4GAGDx7MK6+8woIFCygvL2fcuHEcOnQIm83G22+/zb59+2jcuDEjR44kJiaG1157jU8//ZTo6GgAdu3aRXl5OfPnz+edd94hIiKCf/7zn6xYsYLS0tIa483MzOSNN95g2LBhDBgwgDfffJMHH3zQ7fdlbUWaYbp9Ce3UKKWGAoO01re7+nw9pbW+0rWsCbAI6AaEAKuBLlrrslp2aXpjBvL69p+9JpKLf2oouTSUPEBy8VcNJRdf5XEqwzC4yxO5pKenV91Y4E2nmsu3337Lzp07ueOOO07pGNTQUuPJlq+5wGVKqZWug49SSo0Htmmt5yul3gCWATbgf09SeAkhhBBCeN20adPYsGEDzz//fJ3t02PFl9baCdx73NObqy2fBkzz1PGFEEKIM9Unn3zi6xDccsUVV/g6hJO6++6763yfct+/EEIIIYQXSfElhBBCCOFFUnwJIYQQQniRFF9CCCGEEF4kxZcQQgghhBdJ8SWEEEII4UVSfAkhhBBCeJEUX0IIIYQQXuSx6YU8oN4EKoQQQgiBD6YXqmtuzmQthBBCCOG/5LKjEEIIIYQXSfElhBBCCOFFUnwJIYQQQniRFF9CCCGEEF4kxZcQQgghhBfVp7sd64xSygZMAdKAcuAurfW2asvvBkYDduB5rfXnPgnUDSfLxbVOErAS6KS1LvN+lCfnxjl5EBjh+vVLrfUz3o/SPW7kch9wO9bwKc82gPeXDfgCmKe1nur9KN3jxnl5A7gIKHQ9NVhrne/1QE/CjTyuBJ5y/foTcJ/W2i+H6qktF6VUF+Cf1VbvAQzRWqd7PVA3uHFeHgJuBJzAi1rruT4J1A1u5PIIVi4FwCv+/BkGoJS6EJiote533PODgCexvuvf01pP81ZMZ2rL1xAgVGvdE3gUePXoAqVUE+ABrA/hy4GXlFIhPonSPTXmAqCUuhz4Gmjsg9hORW3npBVwE9AL6AkMVEp19kmU7qktl0RgDFYulwJvKaX8eRiVWt9fLs8D8V6N6vScLJfzgcu11v1cP35XeLnU9v6KAv4OXKO17gHsAhJ9EaSbasxFa73u6LkA/gXM8dfCy6W28xKL9b3SExjIsUWlP6otl07ASKxieCDwrFIq3CdRukEpNQF4Fwg97vkg4DWsHPoC97i+/73iTC2+egPpAFrrVcAF1ZZ1B1ZorctdH77bAH/+oq8tF7D+yhoA5Ho5rlNVWx57gSu01g6ttRMIAvyyBc+lxly01tlAmta6EmgC5Plrq4RLre8vpdQwrPfYQu+HdspqzMX1l34b4B2l1Aql1B2+CdEttZ2TXsAG4FWl1DLgoNb6sPdDdNvJPr9QSkUAz2AVL/6stlyKgd1AhOvH6fXoTk1tuXQAvtNal7mupGzFv78jtwPXn+D5DsA2rfURrXUFsBzo462gztTiKxqo/letQykVWMOyQiDGW4GdhtpyQWu9SGud4/2wTlmNeWitK7XW2UopQyk1CfhZa/2rT6J0z8nOiV0pdT+wCpjt7eBOUY25KKVSsf4CftIXgZ2G2s5LBPAmcDNwBTDGj1tXa8sjEbgEeAS4EhinlGrr5fhORa3/V1zuBGa5/nDxZyfLZS+QiXUp+A1vBnYaastlA3CxUipKKZWAVfBHeDtAd2mtPwUqT7DIp9/1Z2rxVQBEVfvdprW217AsCsjzVmCnobZc6pNa81BKhQIfudYZ4+XYTtVJz4nWejJwFtaH2CXeDO4U1ZbLrUBTYAlWH7bxSqkrvBveKaktlxLgda11ida6ECunNG8H6Kba8sgB/qu1PqC1LgK+B7p4O8BT4M7n101Yl438XW25XIn1//0coAUwRCnV3cvxnYoac9FabwImY7V2vwqsBvy9MD4Rn37Xn5Ed7oEVwCBAK6V6YFXyR60BXnB92YdgNU1meD9Et9WWS31SYx6uPlHzgCVa64k+iu9U1JZLO+AlYCjWX2Pl+PcliBpz0VpPOPpYKfU0cMDP++TU9n+lLfCJUup8rD9KewMfeD9Et9SWx49AqqtvYR5WvxyvdSI+DbV+fimlYoAQrfVeXwR3imrL5QhQCpRrrU2lVB4Q64MY3VXbZ1gSkKi17u06P1/j39+RNdkEtFFKxQNFwMXAJG8dvD5NrF1nqt3J0RlrzshRwFVY13/nu+52vAfrQ/hFV7OlXzpZLtXW2wW0rwd3O/4hDyAA+BjrMt1Rj2mtf/B2nO5w4/31FNZfwiawUGv9rM+CPYlTeH89jVV81Ye7HWs6LxOA4VhF8Yf+mosbeYwAHnatrv35DxY3cukG/K/WeogPw3SLG7k8g3VJ24nVv2iCv/b3PMnn8QJgKtYNKhVYn8Xf+yhUtyilzgY+0Vr3UEqNBCK11u9Uu9vRhnW347+8FdMZWXwJIYQQQvjKmdrnSwghhBDCJ6T4EkIIIYTwIim+hBBCCCG8SIovIYQQQggvkuJLCCGEEMKLpPgSQpw2pdS9SqlH/f34SqmvXWNfnc4xvlRKpZzOtn+GUso81ZiVUt+5pnw6/vlkpdRK1+OnlVKTXY/vUkr5+6DFQjQ4Z+ogq0KIOuDrsbBO4fiX/YljXHW62/oLrXUW1jQwx+tN/RwgU4h6Tcb5EqKBU0pFAu9jTRztxBoFfbTW2ukaZPAJIBhrip2HtNY/uAZN7QkkY3059waGaK1/dO3zP8B3QGOs0a7vd80h+DbQyHWc57XW/1FKNcWajqQF1qTon2itXzxBnN9hzXvXG2uOwhla66dcy4YAT2G11hcC47XWa1xxHj3+LmA6cKnrWB9qrf+mlHofa/qjDOCqo6Olu+al2w001loXK6XexhqIuK9r+VbgWqxpVIYBkcALwA4g1ZXLaK31iuPy6AdMdO27PdbI5rdrrTcppaYD8cC5wOfAi8C/sKYAMl3Hetw1/6cJvAN0c+X9hNb6c9dE02+5zmeC6/UYqbXe4noN9wHtgHDgI631C65BJjO01pFHXzNgMfBvV3wvYk1cfb/WepErj3eBDVrr148/V0KIP0cuOwrR8F0HRGmtu2B9kQO0Ukq1wfrSvUprfR7WrA5zXF/uAC2B87TWNwLvYY1yjVIqDhgA/N9xx/kEawLkjlijYb+olIoGZmCNHt0V6A4MUEqpGmJtB1yENXr2DUqpa5RS7bFG1B6qtU7DGpF6nmvfx4vUWvfBauV5SCl1jtZ6lGvZJdWnqXFNOL8GayJqgH5AO6VUpOsyY6VrHrvqLgRedb1e77tevxO5AHhTa93Ztd6MasvCtdYdtdaPYE2wnAN0cm2TBjxUbd0dWuvzsSb8/sA1tcuVQJ7WuqfWui3wX+D+attEY00r1AO4WSl15YkC1FrPBeYDr7lG9n4LuBtAKRWFVXj66xRLQtRrUnwJ0fAtBzq6WkUeBf6ptd6GdSnuLGCxUmod1sTlTqC1a7tV1SYGfg9QSqlg4EZgvtY6/+gBXPOjpeGaAFlrvVdrfS7gAPoCz7mOsQqrVaqmyZ7f1lpXaq3zgFnA5UB/YLHWeodr30uAQ0DXE2w/z7XOPtc68Sd5beYCVyqlOmC1GK1wxTsYONG0Yru11utcj3+qZf/rtdbLXI/fA85ztbSBdT6OuhKYrLU2tdblWEVm9WJpqiufDCAT6Km1ng1MV0qNVUq9jlU0Rlbb5l2ttV1rXQDMxv1LrtOBy1wF3s3A567zIISoY1J8CdHAaa13YhVUL2G1inzjutwYgFXUdDn6g9VacrQPUFG1fezGKjauwWoBe/e4wxwt0qr6MbgmEQ/Emhuu13HHqKnFyF7tsQ2reAuovt9qy4JOsH1ptcem69i1mYtV7AwEFrl+BmK1+sz+E/uvnsfRdRyuf4uqLbNxbG7H5+U4blmlUup/sC4XlmC1Pn58XBx/2KaGGI9RreC9GbgDV+EnhKh7UnwJ0cC5vqzfB752Xer6Cuuy3mJgoOuyHkqpq4BfgLAadjUNeASIOL6fk6uV5UfgNte+mmO1IoVhtXaNdz0f63p+cA3HuFkpZXNd2lRYk/guBi5XSrVy7aM/0BxYfQovg4MTFGta69+AbOBe4Gus12YokKC1Xn8K+z9eF6VUZ9fje4CVNbQifQXcr5QylFIhrnUXVVt+O4BS6nysAno1VmvgdK31v4EtwNFC+qhbXfs7+hqm1xKnnWNfl39h9f2yaa3XuJWpEOKUSfElRMP3IdaXc6ZS6kcgBnhDa52J9WX/iVJqPfAccK3WuqiG/cwHzuaPrV5HjcS6NLkeq2i6S2t9wPV8D6XUBqzi4WOt9Uc17CMMqx/WKmCK1nqxK84xWP3RMoCXgUHVL3u6YRawVCmVeoJlc4Ek4GdXK2Gp67k/4wDwgivnIcAtNaz3ANYNChtcP1uwOvUf1Uop9TPWaz5Ca50LTAJGK6V+AZZhtUi2rrZNPlYhvBKr39m3tcS5ELhXKfUYgKvgPIK0egnhUXK3oxDCL7j6pE129Wmqt1x3O07WWp+o0PNrSqlzse5ibae1LvFxOEI0WNLyJYQQAqXUs1iXhMdK4SWEZ0nLlxBCCCGEF0nLlxBCCCGEF0nxJYQQQgjhRVJ8CSGEEEJ4kRRfQgghhBBeJMWXEEIIIYQXSfElhBBCCOFF/w9TNnALYGdkpAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1a10efa198>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(10,5))\n", "ax.plot(point_probs, hold_probs, label='server hold probability')\n", "ax.plot(point_probs, point_probs, label='service point win probability')\n", "ax.hlines(0.5, 0, 1, linestyles='dashed', linewidth=0.5, color='k')\n", "TICKS = 10\n", "ax.set_xticks(np.arange(0, 1+1/TICKS, 1/TICKS))\n", "ax.set_yticks(np.arange(0, 1+1/TICKS, 1/TICKS))\n", "ax.set_xlabel('service point win probabilty')\n", "ax.set_ylabel('server hold probability')\n", "ax.set_title(f'Probability server holds vs. service point win probability')\n", "ax.legend(loc='lower right')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The red line is the probability that the server holds. The blue line is the service point win probability. You see that the game win probability (in red) is much higher than the point win probability if the point win probability is only slightly above 50%.\n", "\n", "Let's check the the simple model using Roger Federer's career service point win percentage (obtained from [the ATP World Tour site here](http://www.atpworldtour.com/en/players/roger-federer/f324/player-stats)." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.8884338858106955" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prob_hold(0.69)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the same source, Federer's career service game win percentage is 89%. That's pretty close to the value predicted by the simple model!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:sports_py36]", "language": "python", "name": "conda-env-sports_py36-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }