{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.20.3\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import matplotlib\n",
    "\n",
    "%matplotlib inline\n",
    "\n",
    "print pd.__version__"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Axis parameter in Pandas (Vid-11)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>beer_servings</th>\n",
       "      <th>spirit_servings</th>\n",
       "      <th>wine_servings</th>\n",
       "      <th>total_litres_of_pure_alcohol</th>\n",
       "      <th>continent</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>Asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Albania</td>\n",
       "      <td>89</td>\n",
       "      <td>132</td>\n",
       "      <td>54</td>\n",
       "      <td>4.9</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Algeria</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>14</td>\n",
       "      <td>0.7</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Andorra</td>\n",
       "      <td>245</td>\n",
       "      <td>138</td>\n",
       "      <td>312</td>\n",
       "      <td>12.4</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Angola</td>\n",
       "      <td>217</td>\n",
       "      <td>57</td>\n",
       "      <td>45</td>\n",
       "      <td>5.9</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       country  beer_servings  spirit_servings  wine_servings  \\\n",
       "0  Afghanistan              0                0              0   \n",
       "1      Albania             89              132             54   \n",
       "2      Algeria             25                0             14   \n",
       "3      Andorra            245              138            312   \n",
       "4       Angola            217               57             45   \n",
       "\n",
       "   total_litres_of_pure_alcohol continent  \n",
       "0                           0.0      Asia  \n",
       "1                           4.9    Europe  \n",
       "2                           0.7    Africa  \n",
       "3                          12.4    Europe  \n",
       "4                           5.9    Africa  "
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# reading table\n",
    "# making seperator as comma\n",
    "df = pd.read_table(\n",
    "                   'http://bit.ly/drinksbycountry', \n",
    "                   sep=','\n",
    "                  )\n",
    "df.head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>beer_servings</th>\n",
       "      <th>spirit_servings</th>\n",
       "      <th>wine_servings</th>\n",
       "      <th>total_litres_of_pure_alcohol</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Albania</td>\n",
       "      <td>89</td>\n",
       "      <td>132</td>\n",
       "      <td>54</td>\n",
       "      <td>4.9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Algeria</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>14</td>\n",
       "      <td>0.7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Andorra</td>\n",
       "      <td>245</td>\n",
       "      <td>138</td>\n",
       "      <td>312</td>\n",
       "      <td>12.4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Angola</td>\n",
       "      <td>217</td>\n",
       "      <td>57</td>\n",
       "      <td>45</td>\n",
       "      <td>5.9</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       country  beer_servings  spirit_servings  wine_servings  \\\n",
       "0  Afghanistan              0                0              0   \n",
       "1      Albania             89              132             54   \n",
       "2      Algeria             25                0             14   \n",
       "3      Andorra            245              138            312   \n",
       "4       Angola            217               57             45   \n",
       "\n",
       "   total_litres_of_pure_alcohol  \n",
       "0                           0.0  \n",
       "1                           4.9  \n",
       "2                           0.7  \n",
       "3                          12.4  \n",
       "4                           5.9  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# in-context with drop() method for column\n",
    "# since inplace=T/F not used. So it is not saved for now.\n",
    "df.drop('continent', axis=1).head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>beer_servings</th>\n",
       "      <th>spirit_servings</th>\n",
       "      <th>wine_servings</th>\n",
       "      <th>total_litres_of_pure_alcohol</th>\n",
       "      <th>continent</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>Asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Albania</td>\n",
       "      <td>89</td>\n",
       "      <td>132</td>\n",
       "      <td>54</td>\n",
       "      <td>4.9</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Algeria</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>14</td>\n",
       "      <td>0.7</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Angola</td>\n",
       "      <td>217</td>\n",
       "      <td>57</td>\n",
       "      <td>45</td>\n",
       "      <td>5.9</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Antigua &amp; Barbuda</td>\n",
       "      <td>102</td>\n",
       "      <td>128</td>\n",
       "      <td>45</td>\n",
       "      <td>4.9</td>\n",
       "      <td>North America</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "             country  beer_servings  spirit_servings  wine_servings  \\\n",
       "0        Afghanistan              0                0              0   \n",
       "1            Albania             89              132             54   \n",
       "2            Algeria             25                0             14   \n",
       "4             Angola            217               57             45   \n",
       "5  Antigua & Barbuda            102              128             45   \n",
       "\n",
       "   total_litres_of_pure_alcohol      continent  \n",
       "0                           0.0           Asia  \n",
       "1                           4.9         Europe  \n",
       "2                           0.7         Africa  \n",
       "4                           5.9         Africa  \n",
       "5                           4.9  North America  "
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# in-context with drop() method for row\n",
    "# since inplace=T/F not used. So it is not saved for now.\n",
    "df.drop(3, axis=0).head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "beer_servings                   True\n",
       "spirit_servings                 True\n",
       "wine_servings                   True\n",
       "total_litres_of_pure_alcohol    True\n",
       "dtype: bool"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# mean() method bydefault takes axis=0, if not specified\n",
    "df.mean(axis=0) == df.mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Takeaways\n",
    "\n",
    "1. axis=1 (Y-axis/Column) == axis='columns'\n",
    "2. axis=0 (X-axis/Row) == axis='index'\n",
    "\n",
    "# -----------------------"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# String Method in Pandas (Vid-12)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>beer_servings</th>\n",
       "      <th>spirit_servings</th>\n",
       "      <th>wine_servings</th>\n",
       "      <th>total_litres_of_pure_alcohol</th>\n",
       "      <th>continent</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>Asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Albania</td>\n",
       "      <td>89</td>\n",
       "      <td>132</td>\n",
       "      <td>54</td>\n",
       "      <td>4.9</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Algeria</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>14</td>\n",
       "      <td>0.7</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Andorra</td>\n",
       "      <td>245</td>\n",
       "      <td>138</td>\n",
       "      <td>312</td>\n",
       "      <td>12.4</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Angola</td>\n",
       "      <td>217</td>\n",
       "      <td>57</td>\n",
       "      <td>45</td>\n",
       "      <td>5.9</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       country  beer_servings  spirit_servings  wine_servings  \\\n",
       "0  Afghanistan              0                0              0   \n",
       "1      Albania             89              132             54   \n",
       "2      Algeria             25                0             14   \n",
       "3      Andorra            245              138            312   \n",
       "4       Angola            217               57             45   \n",
       "\n",
       "   total_litres_of_pure_alcohol continent  \n",
       "0                           0.0      Asia  \n",
       "1                           4.9    Europe  \n",
       "2                           0.7    Africa  \n",
       "3                          12.4    Europe  \n",
       "4                           5.9    Africa  "
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# reading table\n",
    "# making seperator as comma\n",
    "df = pd.read_table(\n",
    "                   'http://bit.ly/drinksbycountry', \n",
    "                   sep=','\n",
    "                  )\n",
    "df.head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "# we would like to make continent to all small letters\n",
    "df['continent'] =  df['continent'].str.lower()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>beer_servings</th>\n",
       "      <th>spirit_servings</th>\n",
       "      <th>wine_servings</th>\n",
       "      <th>total_litres_of_pure_alcohol</th>\n",
       "      <th>continent</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>Bahrain</td>\n",
       "      <td>42</td>\n",
       "      <td>63</td>\n",
       "      <td>7</td>\n",
       "      <td>2.0</td>\n",
       "      <td>asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>Bangladesh</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>Bhutan</td>\n",
       "      <td>23</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.4</td>\n",
       "      <td>asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>Brunei</td>\n",
       "      <td>31</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>0.6</td>\n",
       "      <td>asia</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "        country  beer_servings  spirit_servings  wine_servings  \\\n",
       "0   Afghanistan              0                0              0   \n",
       "12      Bahrain             42               63              7   \n",
       "13   Bangladesh              0                0              0   \n",
       "19       Bhutan             23                0              0   \n",
       "24       Brunei             31                2              1   \n",
       "\n",
       "    total_litres_of_pure_alcohol continent  \n",
       "0                            0.0      asia  \n",
       "12                           2.0      asia  \n",
       "13                           0.0      asia  \n",
       "19                           0.4      asia  \n",
       "24                           0.6      asia  "
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# we would now like to filter the table where continent is asia\n",
    "df[df.continent.str.contains('asia')].head(5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Takeaways\n",
    "\n",
    "1. To apply any of the string methods on pandas series, first typecast them as string by using .str then use the relevant method\n",
    "\n",
    "# -----------------------"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Data type change (Vid-13)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>beer_servings</th>\n",
       "      <th>spirit_servings</th>\n",
       "      <th>wine_servings</th>\n",
       "      <th>total_litres_of_pure_alcohol</th>\n",
       "      <th>continent</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>Asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Albania</td>\n",
       "      <td>89</td>\n",
       "      <td>132</td>\n",
       "      <td>54</td>\n",
       "      <td>4.9</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Algeria</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>14</td>\n",
       "      <td>0.7</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Andorra</td>\n",
       "      <td>245</td>\n",
       "      <td>138</td>\n",
       "      <td>312</td>\n",
       "      <td>12.4</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Angola</td>\n",
       "      <td>217</td>\n",
       "      <td>57</td>\n",
       "      <td>45</td>\n",
       "      <td>5.9</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       country  beer_servings  spirit_servings  wine_servings  \\\n",
       "0  Afghanistan              0                0              0   \n",
       "1      Albania             89              132             54   \n",
       "2      Algeria             25                0             14   \n",
       "3      Andorra            245              138            312   \n",
       "4       Angola            217               57             45   \n",
       "\n",
       "   total_litres_of_pure_alcohol continent  \n",
       "0                           0.0      Asia  \n",
       "1                           4.9    Europe  \n",
       "2                           0.7    Africa  \n",
       "3                          12.4    Europe  \n",
       "4                           5.9    Africa  "
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# reading table\n",
    "# making seperator as comma\n",
    "df = pd.read_table(\n",
    "                   'http://bit.ly/drinksbycountry', \n",
    "                   sep=','\n",
    "                  )\n",
    "df.head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "country                          object\n",
       "beer_servings                     int64\n",
       "spirit_servings                   int64\n",
       "wine_servings                     int64\n",
       "total_litres_of_pure_alcohol    float64\n",
       "continent                        object\n",
       "dtype: object"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# country and continent are strings, rest all are numeric\n",
    "df.dtypes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df.total_litres_of_pure_alcohol = df.total_litres_of_pure_alcohol.astype('int64')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>beer_servings</th>\n",
       "      <th>spirit_servings</th>\n",
       "      <th>wine_servings</th>\n",
       "      <th>total_litres_of_pure_alcohol</th>\n",
       "      <th>continent</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>Asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Albania</td>\n",
       "      <td>89</td>\n",
       "      <td>132</td>\n",
       "      <td>54</td>\n",
       "      <td>4</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Algeria</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>14</td>\n",
       "      <td>0</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Andorra</td>\n",
       "      <td>245</td>\n",
       "      <td>138</td>\n",
       "      <td>312</td>\n",
       "      <td>12</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Angola</td>\n",
       "      <td>217</td>\n",
       "      <td>57</td>\n",
       "      <td>45</td>\n",
       "      <td>5</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       country  beer_servings  spirit_servings  wine_servings  \\\n",
       "0  Afghanistan              0                0              0   \n",
       "1      Albania             89              132             54   \n",
       "2      Algeria             25                0             14   \n",
       "3      Andorra            245              138            312   \n",
       "4       Angola            217               57             45   \n",
       "\n",
       "   total_litres_of_pure_alcohol continent  \n",
       "0                             0      Asia  \n",
       "1                             4    Europe  \n",
       "2                             0    Africa  \n",
       "3                            12    Europe  \n",
       "4                             5    Africa  "
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# notice the change under `total_litres_of_pure_alcohol` column name\n",
    "df.head(5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Takeaways\n",
    "\n",
    "1. Sometimes while importing dataset, you numbers can be of object type. There you might want to changes the types for applying mathematical operations.\n",
    "\n",
    "# -----------------------"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Using GroupBy (Vid-14)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>beer_servings</th>\n",
       "      <th>spirit_servings</th>\n",
       "      <th>wine_servings</th>\n",
       "      <th>total_litres_of_pure_alcohol</th>\n",
       "      <th>continent</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>Asia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Albania</td>\n",
       "      <td>89</td>\n",
       "      <td>132</td>\n",
       "      <td>54</td>\n",
       "      <td>4.9</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Algeria</td>\n",
       "      <td>25</td>\n",
       "      <td>0</td>\n",
       "      <td>14</td>\n",
       "      <td>0.7</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Andorra</td>\n",
       "      <td>245</td>\n",
       "      <td>138</td>\n",
       "      <td>312</td>\n",
       "      <td>12.4</td>\n",
       "      <td>Europe</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Angola</td>\n",
       "      <td>217</td>\n",
       "      <td>57</td>\n",
       "      <td>45</td>\n",
       "      <td>5.9</td>\n",
       "      <td>Africa</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       country  beer_servings  spirit_servings  wine_servings  \\\n",
       "0  Afghanistan              0                0              0   \n",
       "1      Albania             89              132             54   \n",
       "2      Algeria             25                0             14   \n",
       "3      Andorra            245              138            312   \n",
       "4       Angola            217               57             45   \n",
       "\n",
       "   total_litres_of_pure_alcohol continent  \n",
       "0                           0.0      Asia  \n",
       "1                           4.9    Europe  \n",
       "2                           0.7    Africa  \n",
       "3                          12.4    Europe  \n",
       "4                           5.9    Africa  "
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# reading table\n",
    "# making seperator as comma\n",
    "df = pd.read_table(\n",
    "                   'http://bit.ly/drinksbycountry', \n",
    "                   sep=','\n",
    "                  )\n",
    "df.head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "continent\n",
       "Africa           3.007547\n",
       "Asia             2.170455\n",
       "Europe           8.617778\n",
       "North America    5.995652\n",
       "Oceania          3.381250\n",
       "South America    6.308333\n",
       "Name: total_litres_of_pure_alcohol, dtype: float64"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# we will group by each continent to get on average total_liters_of_pure_alcohol\n",
    "df.groupby('continent')['total_litres_of_pure_alcohol'].mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2.170454545454545"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# for continent asia, what is the mean value of `total_litres_of_pure_alcohol`\n",
    "df[df.continent.str.contains('Asia')]['total_litres_of_pure_alcohol'].mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>count</th>\n",
       "      <th>min</th>\n",
       "      <th>max</th>\n",
       "      <th>mean</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>continent</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Africa</th>\n",
       "      <td>53</td>\n",
       "      <td>0.0</td>\n",
       "      <td>9.1</td>\n",
       "      <td>3.007547</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Asia</th>\n",
       "      <td>44</td>\n",
       "      <td>0.0</td>\n",
       "      <td>11.5</td>\n",
       "      <td>2.170455</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Europe</th>\n",
       "      <td>45</td>\n",
       "      <td>0.0</td>\n",
       "      <td>14.4</td>\n",
       "      <td>8.617778</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>North America</th>\n",
       "      <td>23</td>\n",
       "      <td>2.2</td>\n",
       "      <td>11.9</td>\n",
       "      <td>5.995652</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oceania</th>\n",
       "      <td>16</td>\n",
       "      <td>0.0</td>\n",
       "      <td>10.4</td>\n",
       "      <td>3.381250</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>South America</th>\n",
       "      <td>12</td>\n",
       "      <td>3.8</td>\n",
       "      <td>8.3</td>\n",
       "      <td>6.308333</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "               count  min   max      mean\n",
       "continent                                \n",
       "Africa            53  0.0   9.1  3.007547\n",
       "Asia              44  0.0  11.5  2.170455\n",
       "Europe            45  0.0  14.4  8.617778\n",
       "North America     23  2.2  11.9  5.995652\n",
       "Oceania           16  0.0  10.4  3.381250\n",
       "South America     12  3.8   8.3  6.308333"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# keeping eye to all necessary stats at once using `agg` method by passing list of necessary attributes\n",
    "df.groupby('continent')['total_litres_of_pure_alcohol'].agg(['count', 'min', 'max', 'mean'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x7fc1f5b6f7d0>"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAFJCAYAAACLh9YgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmYVdWd7vHvW0hExSEK0ipGSAdF\nDIMGiYoDQwa6TdRWNFE0QIzk3pgG7UwmaVuvl3gd0mqrN7nSEUWjMQ5R0eQmGoc4pWMKcWIwEIMG\nJwgqcQjK8Os/9i4ssIqazjn77MX7eZ566ux9pt+pRb2sWnvttRURmJlZ+TUUXYCZmVWGA93MLBEO\ndDOzRDjQzcwS4UA3M0uEA93MLBEOdDOzRDjQzcwS4UA3M0vEFrV8s169ekW/fv1q+ZZmZqU3Z86c\nv0RE77YeV9NA79evH42NjbV8SzOz0pP0XHse5yEXM7NEONDNzBLhQDczS0RNx9DNzDZl9erVLF26\nlFWrVhVdSiF69OhB37596d69e6ee70A3s7qxdOlStt12W/r164ekosupqYhgxYoVLF26lP79+3fq\nNTzkYmZ1Y9WqVey0006bXZgDSGKnnXbq0l8nDnQzqyubY5g36epnd6CbmSWiFGPo/c74eav3LTnv\n8BpWYma1tKnf/c6oh7y45JJLmDJlCltvvXXFX9s9dDOzGrrkkkt4++23q/LaDnQzs41cc801DBky\nhKFDh3LSSSexZMkSxowZw5AhQxg7dizPP/88AJMmTeLmm29e/7yePXsCcP/99zNq1CjGjx/PwIED\nmTBhAhHBpZdeyosvvsjo0aMZPXp0xesuxZCLmVmtzJs3j+nTp/PII4/Qq1cvXn31VSZOnLj+a+bM\nmUydOpXbbrttk68zd+5c5s2bx6677srIkSN5+OGHmTp1KhdddBH33XcfvXr1qnjt7qGbmTVz7733\ncuyxx64P3B133JHf/va3nHDCCQCcdNJJPPTQQ22+zogRI+jbty8NDQ0MGzaMJUuWVLNswIFuZtZp\nW2yxBevWrQNg3bp1vPvuu+vv23LLLdff7tatG2vWrKl6PQ50M7NmxowZw0033cSKFSsAePXVVzno\noIO44YYbALjuuus45JBDgGxJ8Dlz5gAwe/ZsVq9e3ebrb7vttrzxxhtVqd1j6GZWt4qYZrjPPvvw\n3e9+l8MOO4xu3bqx7777ctlllzF58mQuvPBCevfuzVVXXQXAKaecwpFHHsnQoUMZN24c22yzTZuv\nP2XKFMaNG8euu+7KfffdV9HaFREVfcFNGT58eHTmAheeh262eViwYAF777130WUUqqWfgaQ5ETG8\nree2q4cuaQnwBrAWWBMRwyXtCPwU6AcsAY6LiNc6VLmZmVVMR8bQR0fEsGb/S5wB3BMRA4B78m0z\nMytIVw6KHgnMym/PAo7qejlmZtZZ7Q30AO6SNEfSlHxfn4h4Kb/9MtCnpSdKmiKpUVLj8uXLu1iu\nmZm1pr2zXA6OiBck7QzcLWlh8zsjIiS1eHQ1ImYAMyA7KNqlas3MrFXt6qFHxAv592XArcAI4BVJ\nuwDk35dVq0gzM2tbmz10SdsADRHxRn77U8A5wGxgInBe/v32ahZqZpuhs7ev8OutrMjLzJ49m/nz\n53PGGfU1F6Q9Qy59gFvzK2lsAVwfEb+U9HvgRkknA88Bx1WvTDOz+nHEEUdwxBFHFF3G+7QZ6BHx\nLDC0hf0rgLHVKMrMrChLlixh3LhxHHDAATzyyCPsv//+TJ48mbPOOotly5Zx3XXXMX/+fBobG7n8\n8suZNGkS2223HY2Njbz88stccMEFjB8/vpDavZaLmdlGFi9ezNe+9jUWLlzIwoULuf7663nooYf4\n/ve/z7nnnvu+x7/00ks89NBD3HnnnYUOw3gtFzOzjfTv35/BgwcD2douY8eORRKDBw9ucRnco446\nioaGBgYNGsQrr7xS42rf4x66mdlGmi9929DQsH67oaGhxWVwmz++lutjbcyBbmaWCA+5mFn9qtA0\nw82FA93MrJl+/frx9NNPr9+++uqrW7xv0qRJ77sf4M0336x2ia3ykIuZWSIc6GZmiXCgm5klwoFu\nZpYIB7qZWSIc6GZmifC0RTOrW4NnDa7o6z018amKvl69cQ/dzCwR7qFbVfU74+et3rfkvMNrWIlZ\n+7Rn+VyAadOmsWrVKrbaaiuuuuoq9tprLy6++GKeeuopZs6cyVNPPcXxxx/Po48+ytZbb12T2t1D\nNzPbSFvL5w4cOJAHH3yQuXPncs455/Cd73wHyEJ+8eLF3HrrrUyePJkrrriiZmEO7qGbmb1PW8vn\nrly5kokTJ7Jo0SIksXr1aiBbjfHqq69myJAhfPnLX2bkyJE1rds9dDOzjbS1fO6ZZ57J6NGjefrp\np7njjjtYtWrV+scvWrSInj178uKLL9a8bvfQ64DHmc3KZeXKley2227AhotzrVy5kqlTp/LAAw/w\n1a9+lZtvvrmml6NzoJtZ3arXaYbf/OY3mThxItOnT+fww9/rdJ1++umceuqp7Lnnnlx55ZWMHj2a\nQw89lJ133rkmdTnQzcyaae/yuX/4wx/W758+fToAM2fOXL9v9913Z/HixVWudkMeQzczS4QD3cws\nEQ50M7NEONDNzBLhQDczS4QD3cwsEZ62aGZ1a8HAvSv6ensvXFDR16s37qGbmSXCgW5m1sySJUsY\nOHAgkyZNYs8992TChAn8+te/ZuTIkQwYMIBHH32Ut956iy9+8YuMGDGCfffdl9tvv339cw855BD2\n228/9ttvPx555BEA7r//fkaNGsX48eMZOHAgEyZMICIqXnu7h1wkdQMagRci4jOS+gM3ADsBc4CT\nIuLdildoZlZjixcv5qabbmLmzJnsv//+65fPnT17Nueeey6DBg1izJgxzJw5k9dff50RI0bwiU98\ngp133pm7776bHj16sGjRIo4//ngaGxsBmDt3LvPmzWPXXXdl5MiRPPzwwxx88MEVrbsjPfRpQPMB\nqPOBiyPiI8BrwMmVLMzMrChNy+c2NDS0uHzuXXfdxXnnncewYcMYNWoUq1at4vnnn2f16tWccsop\nDB48mGOPPZb58+evf80RI0bQt29fGhoaGDZsGEuWLKl43e3qoUvqCxwOfA/4F0kCxgAn5A+ZBZwN\n/LDiFZqZ1Vhby+d269aNW265hb322muD55199tn06dOHJ554gnXr1tGjR48WX7Nbt26sWbOm4nW3\nt4d+CfBNYF2+vRPwekQ0VbQU2K2lJ0qaIqlRUuPy5cu7VKyZWT349Kc/zWWXXbZ+HHzu3LlAtnzu\nLrvsQkNDA9deey1r166taV1t9tAlfQZYFhFzJI3q6BtExAxgBsDw4cMrfxTAzJJVr9MMzzzzTE47\n7TSGDBnCunXr6N+/P3feeSdf+cpXOOaYY7jmmmsYN24c22yzTU3ras+Qy0jgCEn/CPQAtgP+A9hB\n0hZ5L70v8EL1yjQzq432Lp97xRVXvO+5AwYM4Mknn1y/ff755wMwatQoRo0atX7/5ZdfXuGqM20O\nuUTEtyOib0T0Az4P3BsRE4D7gKZLcUwEbq9KhWZm1i5dmYf+LbIDpIvJxtSvrExJZmbWGR069T8i\n7gfuz28/C4yofElmtjmLCLKJdJufrp5s5DNFzaxu9OjRgxUrVlTlLMp6FxGsWLFig6mOHeXFucys\nbvTt25elS5eyuU5x7tGjB3379u308x3oZlY3unfvTv/+/Ysuo7Q85GJmlggHuplZIhzoZmaJcKCb\nmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzo\nZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggH\nuplZIhzoZmaJaDPQJfWQ9KikJyTNk/S/8v39Jf1O0mJJP5X0geqXa2ZmrWlPD/0dYExEDAWGAeMk\nHQCcD1wcER8BXgNOrl6ZZmbWljYDPTJv5pvd868AxgA35/tnAUdVpUIzM2uXdo2hS+om6XFgGXA3\n8Efg9YhYkz9kKbBbK8+dIqlRUuPy5csrUbOZmbWgXYEeEWsjYhjQFxgBDGzvG0TEjIgYHhHDe/fu\n3ckyzcysLR2a5RIRrwP3AQcCO0jaIr+rL/BChWszM7MOaM8sl96SdshvbwV8ElhAFuzj84dNBG6v\nVpFmZta2Ldp+CLsAsyR1I/sP4MaIuFPSfOAGSdOBucCVVazTzMza0GagR8STwL4t7H+WbDzdzMzq\ngM8UNTNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQz\ns0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPdzCwRDnQzs0Q40M3MEuFANzNLhAPd\nzCwRWxRdgFmZ9Tvj563et+S8w2tYiZl76GZmyXCgm5klwoFuZpYIB7qZWSIc6GZmiXCgm5klwoFu\nZpaINgNd0u6S7pM0X9I8SdPy/TtKulvSovz7B6tfrpmZtaY9PfQ1wNciYhBwAHCqpEHAGcA9ETEA\nuCffNjOzgrQZ6BHxUkQ8lt9+A1gA7AYcCczKHzYLOKpaRZqZWds6NIYuqR+wL/A7oE9EvJTf9TLQ\np5XnTJHUKKlx+fLlXSjVzMw2pd2BLqkncAtwWkT8tfl9ERFAtPS8iJgREcMjYnjv3r27VKyZmbWu\nXYEuqTtZmF8XET/Ld78iaZf8/l2AZdUp0czM2qM9s1wEXAksiIiLmt01G5iY354I3F758szMrL3a\ns3zuSOAk4ClJj+f7vgOcB9wo6WTgOeC46pRoZmbt0WagR8RDgFq5e2xlyzEzs87ymaJmZolwoJuZ\nJcKBbmaWCAe6mVkiHOhmZolwoJuZJcKBbmaWCAe6mVkiHOhmZolwoJuZJaI9a7mY2Waq3xk/b/W+\nJecdXsNKrD3cQzczS4QD3cwsEQ50M7NEONDNzBLhQDczS4RnuVhdGjxrcKv3PTXxqRpWYlYe7qGb\nmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCgW5mlggHuplZIhzoZmaJcKCbmSXCZ4qaFcBnwtaH1NZ7\ndw/dzCwR7qGXmHt5Ztace+hmZoloM9AlzZS0TNLTzfbtKOluSYvy7x+sbplmZtaW9vTQrwbGbbTv\nDOCeiBgA3JNvm5lZgdocQ4+IByT122j3kcCo/PYs4H7gWxWsy8xKzMd3itHZMfQ+EfFSfvtloE9r\nD5Q0RVKjpMbly5d38u3MzKwtXT4oGhEBxCbunxERwyNieO/evbv6dmZm1orOBvorknYByL8vq1xJ\nZmbWGZ0N9NnAxPz2ROD2ypRjZmad1eZBUUk/ITsA2kvSUuAs4DzgRkknA88Bx1WzyM7ygRkz25y0\nZ5bL8a3cNbbCtZiZWRf41H8rnQUD9271vr0XLqhhJWb1xYFuZtZB9Tqc67VczMwS4UA3M0uEA93M\nLBEOdDOzRDjQzcwS4UA3M0uEA93MLBGeh25mVkFFnvjmQDerMz4T1jrLQy5mZolwoJuZJcKBbmaW\nCAe6mVkiHOhmZolwoJuZJcKBbmaWCAe6mVkifGKRmVlLzt6+9fv6f6h2dXSAA93MaspnwlaPh1zM\nzBKx2fbQ3Usws9S4h25mlggHuplZIjbbIZfUtTak5OGkGirhLAkrN/fQzcwS4UA3M0uEA93MLBEO\ndDOzRHQp0CWNk/SMpMWSzqhUUWZm1nGdDnRJ3YD/C/wDMAg4XtKgShVmZmYd05Ue+ghgcUQ8GxHv\nAjcAR1amLDMz66iuBPpuwJ+bbS/N95mZWQEUEZ17ojQeGBcRX8q3TwI+HhFf3ehxU4Ap+eZewDOd\nL7fDegF/qeH71VrKny/lzwb+fGVX68+3R0T0butBXTlT9AVg92bbffN9G4iIGcCMLrxPp0lqjIjh\nRbx3LaT8+VL+bODPV3b1+vm6MuTye2CApP6SPgB8HphdmbLMzKyjOt1Dj4g1kr4K/AroBsyMiHkV\nq8zMzDqkS4tzRcQvgF9UqJZqKGSop4ZS/nwpfzbw5yu7uvx8nT4oamZm9cWn/puZJcKBbmaWCF/g\nwqxGJH2UbJmMHk37IuKa4iqyjihD+yU3hi7pg8AANvyhP1BcRZWV8ueTJGAC8OGIOEfSh4C/i4hH\nCy6tyySdBYwiC4RfkK2B9FBEjC+yLmufsrRfUoEu6UvANLKTnB4HDgB+GxFjCi2sQjaDz/dDYB0w\nJiL2zv/zuisi9i+4tC6T9BQwFJgbEUMl9QF+HBGfLLi0ipB0AHAZsDfwAbKpzG9FxHaFFlYhZWm/\n1MbQpwH7A89FxGhgX+D1YkuqqNQ/38cj4lRgFUBEvEYWDin4W0SsA9ZI2g5YxoZnWpfd5cDxwCJg\nK+BLZKuxpqIU7ZdaoK+KiFUAkraMiIVk68ekIvXPtzpfljkAJPUm67GnoFHSDsB/AnOAx4DfFltS\nZUXEYqBbRKyNiKuAcUXXVEGlaL/UDoouzX/otwF3S3oNeK7gmiop9c93KXAr0EfS94DxwL8WW1Jl\nRMRX8pv/T9Ivge0i4skia6qwt/MlQB6XdAHwEgl1GMvSfkmNoTcn6TBge+CX+XrtSUn180kaCIzN\nN++NiAVF1lMpkv6J7POszLd3AEZFxG3FVlYZkvYgG4boDpxO9m/zB3mvvfTK0n5JBXp+YGZeRLyR\nb28H7B0Rvyu2sq6RtF1E/FXSji3dHxGv1rqmapG0H3Aw2bDLwxHxWMElVYSkxyNi2Eb75kbEvkXV\nZO1XlvZLbcjlh8B+zbbfbGFfGV0PfIZs7C4ANbsvgA8XUVSlSfo34FjgFrLPeJWkmyJierGVVURL\nww+l//2TdGNEHJfPAnlf7zAihhRQVjWUov1S66G39L/okwn9o0qapGeAoc0O/G4FPB4RpT/wK2km\n2YykppkfpwI7RsSkwoqqAEm7RMRL+ZDL+0REEsd4ytJ+yRy0yD0raaqk7vnXNODZoouqFEkjJW2T\n3z5R0kX5yTepeJFmJ0wBW9LCRVNK6p+Bd4Gf5l/vkIVCqUXES/n351r6Krq+CipF+6XWQ9+ZbKbE\nGLI//+4BTouIZYUWViGSniQ7uWEIcDXwI+C4iDisyLoqRdJtZPPs7yZrv08Cj5Jdr5aImFpcdbYp\nko4Gzgd2JhsuExCpnFhUFkkFeuokPRYR++VjzS9ExJVN+4qurRIkTdzU/RExq1a1VIqkSyLiNEl3\n0PIY8xEFlFVxkhYDn01lVlKTsrVf3Q3qd4akb0bEBZIuo+Ufeio9uzckfRs4CThEUgOJtCFkgZ3P\nZd4z3/VMRKwusqYKuDb//v1Cq6i+V1IL81yp2i+VMGj6h9RYaBXV9zngBGByRLws6VBgm4JrqhhJ\no4BZwBKyP9l3lzSxzIuPRcSc/OzXKRExoeh6qqhR0k/JTnp7p2lnRPysuJK6rmztl0SgR8Qd+Q99\ncER8veh6qiUP8fuAEyT9GPgTcEnBZVXSvwOfiohnACTtCfwE+FihVXVRRKyVtIekD6R0EthGtgPe\nBj7VbF8ApQ50KFf7JRHosP6HPrLoOqohD7bj86+/kB1lV75AV0q6N4U5QET8QVL3IguqoGeBhyXN\nBt5q2hkRFxVXUuVExOSia6iyUrRfMoGeezz/gd/Ehj/0svcSFgIPAp9pOpVa0unFllQVjZJ+BPw4\n355AOsNof8y/GoBtC66l4iT1AE4G9mHDtfq/WFhRlVWK9ktqloukq1rYHWX/RyXpKODzwEjgl8AN\nwI8ion+hhVWYpC3J5vYenO96kGw9kHdaf1a5SNo6It4uuo5Kk3QTWcfjBOAcsv+MF0TEtEILq7B6\nb78kAl3S+RHxLUnHRsRNRddTLflJRUeSDb2MAa4Bbo2IuwotrALyYyDXlOHAU2dIOhC4EugZER+S\nNBT4crNV/EqtaV2TpjOz86GyByPigKJrq4SytF8qZ4r+Y375sm8XXUg1RcRbEXF9RHyW7KpFc4Fv\nFVxWRUTEWmCPfNpiii4BPg2sAIiIJ4BDC62ospqml76u7Nqb25OdZJSKUrRfKmPovwReA3pK+isb\nLl61LiK2L6as6smv5jMj/0pFKQ48dVZE/Dnrd6y3tqhaqmBGfsnAM4HZQE/g34otqbLK0H5JBHpE\nfAP4hqTbI+LIpv2SDiEbnrByKMWBp076s6SDgMiHI6bx3vkTpRcRP8pv/oZEVv/cSCnaL4kx9OYk\n7UsW4seRzdO+JSIuL7Yq29xJ6gX8B/AJsr8g7wKmRcSKQgurEGUXTT4X2DUi/kHSIODAiLiy4NIq\noiztl0SgtzJP++sR0eKSnlaf8pOmWlq6YUwB5VgHSPr/wFXAdyNiqKQtgLkRMbjg0jYrSQy5sPnM\n005d87N8ewDHAGsKqqWiJPUnW4K1H81+7+ptcacu6BURN+ZrDRERayTV3RhzZ5Wl/VIJ9KPJ5mnf\nl1/A9QY2PDBqJRARczba9bCkRwsppvJuI5v2dgewruBaquEtSTuR/4WVXw5yZbElVVQp2i+JIZcm\nKc/T3hxsdM3UBrI1XC5N5IpFv4uIjxddR7Xk14K9DPgo8DTQGxgfEU8WWliFlKX9kgr05vIpVMcC\nn4uIsW093oon6U+8d83UNWQHtc+JiIcKLawCJJ0ADCA7mNZ8NcIkLoINkI+b70XWfiksfbxeWdov\n2UA3qyeS/g/ZOvZ/5L0/2SOVA76STgWui4jX8+0PAsdHxA+KrawyytJ+DnQrXNMFSvLbGyzfIOnc\niPhOcdVVRn5Fn0H1vvxqZ7Vygfa5EbFvUTVVUlnaL5VT/63cPt/s9sbLN4yrZSFV9DSwQ9FFVFE3\nNTuNMl+bJ6VlHErRfqnMcrFyUyu3W9ouqx2AhZJ+z4ZjsHU17a0LfgX8VNIV+fb/IFuSIxWlaD8H\nutWDaOV2S9tldVbRBVTZmcApQNPqg78im+aXilK0nwPd6sHQZouqbZXfJt/u0frTyiMiftN8W9LB\nZNNrf9PyM8ohn9lyLjAZ+HO++0NkC601UIcLWHVGWdrPgW6Fi4huRddQC/k6QyeQTaf9E3BLsRVV\nxIVkC6l9OCLeAJC0Ldn1Yb9PtohVEsrQfp7lYlZFqa8zJGkRsGdsFCT5QdGFETGgmMoqo2zt5x66\nWXWlvs5QbBzm+c61klLoLZaq/Txt0ay6jgZeIltn6D8ljSWdmTsA8yV9YeOdkk4kC8OyK1X7ecjF\nrAZSXWdI0m7Az4C/AU2Lqw0HtgL+KSJeKKq2SipL+znQzWosxXWGJI0B9sk350fEPUXWU0313H4O\ndDOzRHgM3cwsEQ50M7NEONDNzBLhQDerAUlHS1okaaWkv0p6o9kSB1bnytJ+PihqVgP5etqfjYgF\nRddiHVeW9nMP3aw2Xqn3MLBNKkX7uYduVkWSjs5vHgb8HdnV45uvp/2zIuqy9ilb+znQzapI0lWb\nuDsi4os1K8Y6rGzt50A3qwFJIyPi4bb2WX0qS/s50M1qQNJjEbFfW/usPpWl/bx8rlkVSToQOAjo\nLelfmt21HbBZXNijzMrWfg50s+r6ANCT7Hdt22b7/wqML6Qi64hStZ+HXMyqLL96z40RcUzRtVjn\nSNojIp4ruo62uIduVmX51Xt2LboO65KrW7oCU0SMKaKY1jjQzWrjcUmzgZuAt5p21ts8ZmvV15vd\n7gEcA6wpqJZWecjFrAZamc9cd/OYrf0kPRoRI4quozn30M1qICImF12DdZ6kHZttNgAfA7YvqJxW\nOdDNakBSX+AyYGS+60FgWkQsLa4q64A5QJBdIHoN8Cfg5EIraoGHXMxqQNLdwPXAtfmuE4EJEfHJ\n4qqy1DjQzWpA0uMRMaytfVafJHUH/idwaL7rfuCKiFhdWFEt8PK5ZrWxQtKJkrrlXycCK4ouytrt\nh2Tj5j/Ivz6W76sr7qGb1YCkPcjG0A8kG4t9BJgaEc8XWpi1i6QnImJoW/uK5oOiZjWQn2V4RNF1\nWKetlfT3EfFHAEkfBtYWXNP7ONDNqkjSv23i7oiI/12zYqwrvgHcJ+lZspkuewB1NxXVQy5mVSTp\nay3s3oZsyttOEdGzxiVZJ0naEtgr33wmIt7Z1OOL4EA3qxFJ2wLTyML8RuDfI2JZsVXZpkjaH/hz\nRLycb3+B7LT/54CzI+LVIuvbmGe5mFWZpB0lTQeeJBvm3C8ivuUwL4UrgHcBJB0KnAdcA6wEZhRY\nV4s8hm5WRZIuBI4m++UfHBFvFlySdUy3Zr3wzwEzIuIW4BZJjxdYV4s85GJWRZLWkV0lfg3ZdMX1\nd5EdFN2ukMKsXSQ9DQyLiDWSFgJTIuKBpvsi4qPFVrgh99DNqigiPKxZbj8BfiPpL8DfyNbgQdJH\nyIZd6op76GZmmyDpAGAX4K6IeCvftyfQMyIeK7S4jTjQzcwS4T8HzcwS4UA3M0uEA902K5L6STqh\n2fZwSZdW4X2OkjSo0q9rtikOdNvc9APWB3pENEbE1Cq8z1GAA91qyoFupSLpC5KelPSEpGvzHve9\n+b57JH0of9zVki6V9IikZyWNz1/iPOAQSY9LOl3SKEl35s85W9JMSffnz5na7H1PlPRo/rwrJHXL\n978p6Xt5Pf8lqY+kg8hWVrwwf/zf1/anZJsrB7qVhqR9gH8FxuTrUE8jW2N8VkQMAa4Dmg+f7AIc\nDHyGLMgBzgAejIhhEXFxC28zEPg0MAI4S1J3SXuTnSU4Mr/C0FpgQv74bYD/yut5ADglIh4BZgPf\nyN/njxX6EZhtkk8ssjIZA9wUEX8BiIhXJR1Idmo9ZNfrvKDZ42+LiHXAfEl92vkeP89X0XtH0jKg\nDzCW7Ao1v5cEsBXQtA7Lu8Cd+e05gK8RaoVxoFvKmi9vqk48Zy3Z74jI/gr4dguPXx3vnczR9Hiz\nQnjIxcrkXuBYSTtBtooh2aXcPp/fP4H81OxNeAPYtoPvew8wXtLOTe+bX1Ku0u9j1iUOdCuNiJgH\nfI9sbY0ngIuAfwYmS3oSOIlsXH1TniS7nNgTkk5v5/vOJxu7vyt/n7vJxuc35QbgG5Lm+qCo1YpP\n/TczS4R76GZmiXCgm5klwoH31k0vAAAAJElEQVRuZpYIB7qZWSIc6GZmiXCgm5klwoFuZpYIB7qZ\nWSL+G2b+AiobqZ6pAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 600x400 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "df.groupby('continent')['total_litres_of_pure_alcohol'].agg(['count', 'min', 'max', 'mean']).plot(kind='bar')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Takeaways\n",
    "\n",
    "1. \"agg\" method can be used to generate stats in one shot\n",
    "\n",
    "# -----------------------"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}