{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.20.3\n"
     ]
    }
   ],
   "source": [
    "# Imports libraries\n",
    "import sklearn\n",
    "from sklearn.cross_validation import train_test_split\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "from sklearn.naive_bayes import GaussianNB\n",
    "import pandas as pd\n",
    "import os\n",
    "\n",
    "print pd.__version__"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Survived</th>\n",
       "      <th>Pclass</th>\n",
       "      <th>Name</th>\n",
       "      <th>Sex</th>\n",
       "      <th>Age</th>\n",
       "      <th>SibSp</th>\n",
       "      <th>Parch</th>\n",
       "      <th>Ticket</th>\n",
       "      <th>Fare</th>\n",
       "      <th>Cabin</th>\n",
       "      <th>Embarked</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>PassengerId</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>Braund, Mr. Owen Harris</td>\n",
       "      <td>male</td>\n",
       "      <td>22.0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>A/5 21171</td>\n",
       "      <td>7.2500</td>\n",
       "      <td>NaN</td>\n",
       "      <td>S</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
       "      <td>female</td>\n",
       "      <td>38.0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>PC 17599</td>\n",
       "      <td>71.2833</td>\n",
       "      <td>C85</td>\n",
       "      <td>C</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>Heikkinen, Miss. Laina</td>\n",
       "      <td>female</td>\n",
       "      <td>26.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>STON/O2. 3101282</td>\n",
       "      <td>7.9250</td>\n",
       "      <td>NaN</td>\n",
       "      <td>S</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
       "      <td>female</td>\n",
       "      <td>35.0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>113803</td>\n",
       "      <td>53.1000</td>\n",
       "      <td>C123</td>\n",
       "      <td>S</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>Allen, Mr. William Henry</td>\n",
       "      <td>male</td>\n",
       "      <td>35.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>373450</td>\n",
       "      <td>8.0500</td>\n",
       "      <td>NaN</td>\n",
       "      <td>S</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "             Survived  Pclass  \\\n",
       "PassengerId                     \n",
       "1                   0       3   \n",
       "2                   1       1   \n",
       "3                   1       3   \n",
       "4                   1       1   \n",
       "5                   0       3   \n",
       "\n",
       "                                                          Name     Sex   Age  \\\n",
       "PassengerId                                                                    \n",
       "1                                      Braund, Mr. Owen Harris    male  22.0   \n",
       "2            Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0   \n",
       "3                                       Heikkinen, Miss. Laina  female  26.0   \n",
       "4                 Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0   \n",
       "5                                     Allen, Mr. William Henry    male  35.0   \n",
       "\n",
       "             SibSp  Parch            Ticket     Fare Cabin Embarked  \n",
       "PassengerId                                                          \n",
       "1                1      0         A/5 21171   7.2500   NaN        S  \n",
       "2                1      0          PC 17599  71.2833   C85        C  \n",
       "3                0      0  STON/O2. 3101282   7.9250   NaN        S  \n",
       "4                1      0            113803  53.1000  C123        S  \n",
       "5                0      0            373450   8.0500   NaN        S  "
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# reading table as dataframe\n",
    "DATA_DIR = '../data'\n",
    "\n",
    "df = pd.read_table(\n",
    "                    os.path.abspath(os.path.join(DATA_DIR, 'day8/titanic.csv')),\n",
    "                    sep=',', \n",
    "                    index_col='PassengerId'\n",
    "                  )\n",
    "df.head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(891, 11)"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Survived      0\n",
       "Pclass        0\n",
       "Name          0\n",
       "Sex           0\n",
       "Age         177\n",
       "SibSp         0\n",
       "Parch         0\n",
       "Ticket        0\n",
       "Fare          0\n",
       "Cabin       687\n",
       "Embarked      2\n",
       "dtype: int64"
      ]
     },
     "execution_count": 40,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# identifiying the missing values across all the colums\n",
    "df.isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "# dropping name, cabin,  Fare, Embarked ticket columns\n",
    "# Name does not give any information if a person will live or not\n",
    "# cabin, Ticket, Fare are correlated to eachother and to PClass; so removing\n",
    "df.drop(['Cabin', 'Ticket',  'Name', 'Fare', 'Embarked'], axis=1, inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "# fill age mean to NaN value\n",
    "df[df['Age'].isnull()] = df['Age'].mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Survived    0\n",
       "Pclass      0\n",
       "Sex         0\n",
       "Age         0\n",
       "SibSp       0\n",
       "Parch       0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 43,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# check for any other NaN value\n",
    "df.isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Survived</th>\n",
       "      <th>Pclass</th>\n",
       "      <th>Sex</th>\n",
       "      <th>Age</th>\n",
       "      <th>SibSp</th>\n",
       "      <th>Parch</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>PassengerId</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>male</td>\n",
       "      <td>22.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>female</td>\n",
       "      <td>38.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>female</td>\n",
       "      <td>26.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>female</td>\n",
       "      <td>35.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>0.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>male</td>\n",
       "      <td>35.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "             Survived  Pclass     Sex   Age  SibSp  Parch\n",
       "PassengerId                                              \n",
       "1                 0.0     3.0    male  22.0    1.0    0.0\n",
       "2                 1.0     1.0  female  38.0    1.0    0.0\n",
       "3                 1.0     3.0  female  26.0    0.0    0.0\n",
       "4                 1.0     1.0  female  35.0    1.0    0.0\n",
       "5                 0.0     3.0    male  35.0    0.0    0.0"
      ]
     },
     "execution_count": 44,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "# converting Sex to numbers\n",
    "replacements_sex = {'male': 0, 'female': 1}\n",
    "df['Sex'].replace(replacements_sex, inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style>\n",
       "    .dataframe thead tr:only-child th {\n",
       "        text-align: right;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: left;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Survived</th>\n",
       "      <th>Pclass</th>\n",
       "      <th>Sex</th>\n",
       "      <th>Age</th>\n",
       "      <th>SibSp</th>\n",
       "      <th>Parch</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>PassengerId</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.000000</td>\n",
       "      <td>3.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>22.000000</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1.000000</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>38.000000</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1.000000</td>\n",
       "      <td>3.000000</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>26.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1.000000</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>35.000000</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>0.000000</td>\n",
       "      <td>3.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>35.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>29.699118</td>\n",
       "      <td>29.699118</td>\n",
       "      <td>29.699118</td>\n",
       "      <td>29.699118</td>\n",
       "      <td>29.699118</td>\n",
       "      <td>29.699118</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "              Survived     Pclass        Sex        Age      SibSp      Parch\n",
       "PassengerId                                                                  \n",
       "1             0.000000   3.000000   0.000000  22.000000   1.000000   0.000000\n",
       "2             1.000000   1.000000   1.000000  38.000000   1.000000   0.000000\n",
       "3             1.000000   3.000000   1.000000  26.000000   0.000000   0.000000\n",
       "4             1.000000   1.000000   1.000000  35.000000   1.000000   0.000000\n",
       "5             0.000000   3.000000   0.000000  35.000000   0.000000   0.000000\n",
       "6            29.699118  29.699118  29.699118  29.699118  29.699118  29.699118"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.head(6)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "# removing duplicates\n",
    "# redundancy does not help our model to generalize better; introduces biasness\n",
    "df.drop_duplicates(keep=False, inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.0    202\n",
       "1.0    197\n",
       "Name: Survived, dtype: int64"
      ]
     },
     "execution_count": 48,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# check if there is class imbalance ?\n",
    "df['Survived'].value_counts()\n",
    "\n",
    "# this would work; otherwise you can try stratified split instead of random data split"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "X = df.iloc[:, 1:].values\n",
    "Y = df.iloc[:, 0].values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((399, 5), (399,))"
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X.shape, Y.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "# ideal practice is to use test as 20% - 30% of training data\n",
    "# defined by test_size in train_test_split()\n",
    "# random_state is required to avoid sequential biasness in the data distribution\n",
    "def data_split(X, Y):\n",
    "    X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.3, random_state = 10)\n",
    "    return X_train, X_test, Y_train, Y_test\n",
    "\n",
    "X_train, X_test, Y_train, Y_test = data_split(X, Y)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(279, 5) (120, 5)\n"
     ]
    }
   ],
   "source": [
    "print X_train.shape, X_test.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# this class takes care for scaling the features to the scale of 0-1\n",
    "# we are doing the scaling with this cap because we use sigmoid activation fxn in logistic which \n",
    "# also has the range from 0-1\n",
    "class Normalizer:\n",
    "\n",
    "    def __init__(self):\n",
    "        self.sc = StandardScaler()\n",
    "    \n",
    "    def scale(self, X, dtype):\n",
    "        if dtype=='train':\n",
    "            XX = self.sc.fit_transform(X)\n",
    "        elif dtype=='test':\n",
    "            XX = self.sc.transform(X)\n",
    "        else:\n",
    "            return None\n",
    "        return XX"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "norm = Normalizer()\n",
    "X_train = norm.scale(X_train, 'train')\n",
    "X_test = norm.scale(X_test, 'test')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "class NaiveBayes:\n",
    "    \n",
    "    def __init__(self):\n",
    "        self.classifier = GaussianNB()\n",
    "\n",
    "    def train(self, X_train, Y_train):\n",
    "        model = self.classifier.fit(X_train, Y_train)\n",
    "        return model\n",
    "    \n",
    "    def predict(self, model, X_test):\n",
    "        return model.predict(X_test)\n",
    "    \n",
    "    def evaluate(self, Y_test, Y_pred, measure):\n",
    "        if measure=='matrix':\n",
    "            cm = sklearn.metrics.confusion_matrix(Y_test, Y_pred, labels=[0, 1])\n",
    "            return cm\n",
    "        elif measure=='accuracy':\n",
    "            return sklearn.metrics.accuracy_score(Y_test, Y_pred)*100\n",
    "        else: return None"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "71.66666666666667\n"
     ]
    }
   ],
   "source": [
    "nb = NaiveBayes()\n",
    "model = nb.train(X_train, Y_train)\n",
    "predictions = nb.predict(model, X_test)\n",
    "print nb.evaluate(Y_test, predictions, 'accuracy')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}