{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Imports" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import sklearn\n", "import os\n", "from sklearn import preprocessing\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.cross_validation import train_test_split" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
| \n", " | feat1 | \n", "feat2 | \n", "feat3 | \n", "feat4 | \n", "class | \n", "
|---|---|---|---|---|---|
| 0 | \n", "5.1 | \n", "3.5 | \n", "1.4 | \n", "0.2 | \n", "Iris-setosa | \n", "
| 1 | \n", "4.9 | \n", "3.0 | \n", "1.4 | \n", "0.2 | \n", "Iris-setosa | \n", "
| 2 | \n", "4.7 | \n", "3.2 | \n", "1.3 | \n", "0.2 | \n", "Iris-setosa | \n", "
| 3 | \n", "4.6 | \n", "3.1 | \n", "1.5 | \n", "0.2 | \n", "Iris-setosa | \n", "
| 4 | \n", "5.0 | \n", "3.6 | \n", "1.4 | \n", "0.2 | \n", "Iris-setosa | \n", "