{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "DenseDepth_training",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"
"
]
},
{
"cell_type": "code",
"metadata": {
"id": "uKwAx1CLhUBi",
"colab_type": "code",
"colab": {}
},
"source": [
"# Cloning the Repository \n",
"\n",
"!git clone https://github.com/pranjaldatta/DenseDepth-Pytorch.git"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Arc9mPZwh2N6",
"colab_type": "code",
"colab": {}
},
"source": [
"# Getting the data \n",
"!python DenseDepth-Pytorch/densedepth/download_data.py"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ZVpEiIs5hBpM",
"colab_type": "code",
"colab": {}
},
"source": [
"# Mounting drive\n",
"from google.colab import drive\n",
"drive.mount('/gdrive')\n",
"\n",
"\n",
"!mkdir /gdrive/My\\ Drive/colabdrive/work/densedepth\n",
"!mkdir /gdrive/My\\ Drive/colabdrive/work/densedepth/checkpoints\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "-vR1s2EJk4-u",
"colab_type": "code",
"colab": {}
},
"source": [
"!pip install tensorboardX"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "7bIenkWV3zc8",
"colab_type": "code",
"colab": {}
},
"source": [
"# Prefer using Nvidia T4's or P100 for favourable training times\n",
"\n",
"\n",
"# memory footprint support libraries/code\n",
"!ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi\n",
"!pip install gputil\n",
"!pip install psutil\n",
"!pip install humanize\n",
"import psutil\n",
"import humanize\n",
"import os\n",
"import GPUtil as GPU\n",
"GPUs = GPU.getGPUs()\n",
"# XXX: only one GPU on Colab and isn’t guaranteed\n",
"gpu = GPUs[0]\n",
"def printm():\n",
" process = psutil.Process(os.getpid())\n",
" print(\"Gen RAM Free: \" + humanize.naturalsize( psutil.virtual_memory().available ), \" | Proc size: \" + humanize.naturalsize( process.memory_info().rss))\n",
" print(\"GPU RAM Free: {0:.0f}MB | Used: {1:.0f}MB | Util {2:3.0f}% | Total {3:.0f}MB\".format(gpu.memoryFree, gpu.memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal))\n",
"printm()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "8tcQU5Nj517I",
"colab_type": "code",
"colab": {}
},
"source": [
"!nvidia-smi"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "O_iy8bYQj8lW",
"colab_type": "code",
"colab": {}
},
"source": [
"!python DenseDepth-Pytorch/densedepth/train.py --epochs 10 \\\n",
" --data \"data/nyu_depth.zip\" \\\n",
" --batch 4 \\\n",
" --save \"\"\n",
"\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "9qyUbGhia5d6",
"colab_type": "code",
"colab": {}
},
"source": [
"!python DenseDepth-Pytorch/densedepth/test.py --checkpoint \"