{ "cells": [ { "cell_type": "markdown", "id": "exceptional-atlantic", "metadata": {}, "source": [ "# Event handling and callbacks in ODE solvers\n", "\n", "The differential equation solvers in `ProbNum` are able to handle events.\n", "At the moment, an event can either be a set of grid-points that must be included in the posterior, or a state for which a condition-function\n", "\n", "$$\n", " \\text{condition}: \\mathbb{R}^d \\rightarrow \\{0, 1\\},\n", "$$\n", "\n", "evaluates to `True`.\n", "This notebook explains how this can be used with ProbNum (some examples are taken from https://diffeq.sciml.ai/stable/features/callback_functions/)\n", "\n", "\n", "## Quickstart\n", "\n", "What is the easiest way to force events into your ODE solution?\n", "Let us define a simple, linear ODE that describes exponential decay." ] }, { "cell_type": "code", "execution_count": 1, "id": "motivated-switzerland", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_57678/794108844.py:5: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`\n", " set_matplotlib_formats(\"pdf\", \"svg\")\n" ] } ], "source": [ "# Make inline plots vector graphics instead of raster graphics\n", "%matplotlib inline\n", "from IPython.display import set_matplotlib_formats\n", "\n", "set_matplotlib_formats(\"pdf\", \"svg\")\n", "\n", "# Plotting\n", "import matplotlib.pyplot as plt\n", "\n", "plt.style.use(\"../../probnum.mplstyle\")" ] }, { "cell_type": "code", "execution_count": 2, "id": "federal-document", "metadata": {}, "outputs": [], "source": [ "from probnum import diffeq, randvars, randprocs, problems\n", "import numpy as np\n", "\n", "# For easy modification of the states in the callbacks\n", "import dataclasses" ] }, { "cell_type": "code", "execution_count": 3, "id": "steady-plaintiff", "metadata": {}, "outputs": [], "source": [ "def f(t, y):\n", " return -y\n", "\n", "\n", "def df(t, y):\n", " return -1.0 * np.eye(len(y)) # np.ones((len(y), len(y)))\n", "\n", "\n", "t0 = 0.0\n", "tmax = 5.0\n", "y0 = np.array([4])" ] }, { "cell_type": "markdown", "id": "domestic-reserve", "metadata": {}, "source": [ "To show off the ability to include a set number of grid-points, let us define a dense grid in a subset of the integration domain." ] }, { "cell_type": "code", "execution_count": 4, "id": "quick-excellence", "metadata": {}, "outputs": [], "source": [ "time_stops = np.linspace(3.5, 4.0, 50)" ] }, { "cell_type": "markdown", "id": "latin-reconstruction", "metadata": {}, "source": [ "To force the ODE solver to include these time-stamps, just pass them to `probsolve_ivp`. Here, we pick a large relative tolerance because we want to see a range of samples (the ODE is so simple, it is solved very accurately on large steps)." ] }, { "cell_type": "code", "execution_count": 5, "id": "approved-password", "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovTWVkaWFCb3ggWyAwIDAgNDc3LjEyODQ4ODYyNjYgMjgwLjkxNzkwNDgyOTUgXSAvUGFyZW50IDIgMCBSCi9SZXNvdXJjZXMgOCAwIFIgL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMiAwIFIgPj4Kc3RyZWFtCniczZ3Lzi25caXn/1P8w+5B7eL9MrTabQEGPJBdQD+AWq52QXbDMmC/vtfiJZNkxvYOz44EAecsxckLGRkkvx0M/vzXf/r3f/rjn/7+97/7/l//8PXz/bc//tuX/f7t6+e/st+//tu3+f4N//uPb/v9++/dyHz/ZL7/+Svk/LKuhFL59z+vf3fFvKrN1UTo5vxrs/5/X1//gtv9inv8Hvf49evL+Vcc/7y+TG3muEuqr3rKf97k7F95Xn25yCrjbv+IF3P9xX7FDX/7ti8X8X68P6Sv4F/FVl/Lfvtb9ffdv36HR/+Pr9/98vXz39hv61815FST9TV+//KPX8G8gok2+mCC+8aDWmdc8bnW71/+79f/MP/z+5ffvv73L1/9Cb6sC69avPFhu/Uq6+9tnX3FVHKpOeX6vLk9bu5MetmQUt7uvaj6W+M+r+xdcFBsfN7anbcu+eWt8ea49yL/N25e0FM1meRCjfZ5c3/c3KfyCtnX4Lebr7L+5j7Fl4k11VJiKc+bh+PmIdRX8jkevnar/w1fC+nlnPc+OufC89bxbPTrA8E/LNl6/Am+lp/qx1vnl/sO7oW7hQgv9aJz3/ezxryKgX+E7YaLrLpjjS90szcx5CB79H3HGOCQ0dT9FRdZdUeLfinVWTgXekT05DvqmPJKKdW4v+Qiq27pDLzZBWMjHlR24OWeyb0iXM/sr7nIunvG/MoxlmwKnnT323/9nrcryaV0uW0oDhegDyJIhfBK7vsvf/r+P9//8u2+/xb/Q3h94ZPMcJBavhAWq7HovVwC/o/QZePr99+fY8waeMd72PaJ4AuxLSQmXCA6k/mNRAQefrUwRuxFCDQ2Qa4IoDXz+ug7REWXo4Ns+bUGY/ilwn2NS9G3oQPjF1wZIRvWxfmYeBGPrvMlRtjAD6rPlnf0zqEJAy5ONdlaXVPR+rXGXKjG4m0qQ6YDod+abDEsNbm8oin4bpucs0O87XKGAwzrHPFFNxl/CSW61GXTjb15eUT6oSZYNGMPLzGhThkt1h7E433x/7nc5Bhdf0XIBb4wZeN8l/0rlYpubzJaO3Y5vKLF0w7Z8N9Rji8fYh2yjwhnTcZIkoN1tcsGbdXkzJb3Q3ZoqyljyItTttb0a+PzgWe2xo42BReaWl+hpDpUm0t7R3gAhh8MQU022bbv3AeLEQ2vNGR0ehpyRZd2OdRiuwqHgut411WfTb8GGsTlOuRSvWnPAa8Mke3X5cDRg3J84YvBLbuM76BfGw0CVxhyTj6GIddgMly7yfCWLuOjRCcMGUO67y8J18FzTxnhvlvjL7x0c53AEal5QzSIGT5OOSbfZfsyxeYpW7zCkCuCo2++E9oTNpmje7FT9qm2rokIDCn5Ifuae3MjxmIUjT53OdZgm4w2cZiaDRlv2Z8kYfw0fLf2BgUdMOSSq51yaO3HMIV2mqLBqN/kQqeLvnlOsNn1d6kvj9aZqk+mPQY+cFsZXrpsTO/fhAZxxvZGNSm0uEAVgW80tXHVd9W9Usb31hzH1zrcPaE5DCLbkJMZN0RzwNmnDH9vjYdIhFa3oXkOBl28zZAr+3zIsaTWuwnNYXOcsovj+fILj5pDcyh4gsutQe6ZTJMRA1qb5sQoj/DfZLyi55MEfHiY9GFaTRkfLMIO5WtKQhWfdHu+r3/ALP5v19D+/T60/wVTfNxxzrRVw8Fffv36V4xXBv9Fg42RIGM2H5dRDe/5/cd//v7578z3X///yxqR29rk23+/f3KcxcLBEXAl4/K6bAOMETgwuMSCaFAEawQFTC5TsBaN/P1TZqgsDsHIiOYZ7xoQIQpjyk/oDYRhPDWDkGTNRw3oDnQ7Lo74zbVLSQUjrGTO+I5hzuLbi98/Wbw2nMQi/GJW9DS3CNkYR0KtlW/KCIkPBKNkFF/0xXEkR4xEtDXwsGgrZgViezt4c0gIks0WHYpJsMFESbJNGIhrdiHbbuwxtiGkydflOO4ZBvt1EVKK2HQcrIvDxbIdl41YhGCwsjpjWxBtrfLKCLl8Ep0xBne84hs3fRh3X1EZB4RZhlydrYMTed1ToNsRcZ3u/Tj74xehM84F431UPkaGg3JypTJOBd/vG497GiOeOyt9U4JxLBXzLOkbkYyD85wHqozRbAjFStuIh8hKz0BDRGuUj4yBMMekbAzMZiNn0CpjhylpehehH8bwIw5UKmNbEiZiyhdEtMVyVunOiKfQlO2MxaCDpjS2BdMUXWsgYBQbxcAsGXtY61oO84uMQK5rDM46nFd2IKaFWAt6XWN4BgKr7ECPmRQaTvdtY5ruSxIHQMEY63FvlAMKZnvV4tvSGWMUttqhClPWyMmM0hiN4ZUhBmsEmDpl0wUsLTFDUBpjCMTyUmeM/q7q7sZzYCGsi4ucrCUMWDpjh/HEOeWVHcKGlxqjvKapSX1uZFIN8CTpKRqiwGSES41mbbOJ+FxTlC5tHRZElitert94bccOxzx/tf7D1x++fwAak/FHAcf4to46cAyiQ8gHjoFFcubEMQWrjcSB8YFjED8x7z5wTMaK2ZnBUm4ewxVz5hRzBzKQ8T30tewCZChnWyd5mUCGMt3gADKUGcsPIAMZHRFOIkPZ9lXrAmSgYtXhJnmZQIay7Rh0BTJc7SbXV+YLkKFsnQ8HkMFSEO3XwPEKZChjlZkOIAO5pNjffQEylC1WmgeQgYxvqMQdyFAlqdyBDFQYp3gAGcqY2U3yMoFM5sVSf5kFyFAOdgCPm8hwuVtTX0AvRKatgjl870SGskFfH0QGMkYAM9HLJDKUHZ9pJzKQcWXjDiJDGUuYdBCZTCCI/jiIDOXYqd0CZKjaZA8eA9WQ/B08hrKfmObmMc3JU44Hj6GMaJoPHkOZIengMZBLb72FxlAM/oQxVBnJDhwDGS2Tw4FjKHvXQd7CYyCnOi6y8BjKCDBp5zFUx9d445jMBXjtYWHBMZQRNvKBYyijW8qBY3L7iLunLjiGMlaG6cAxlBGV7IFjICMonTSGanRDvmkMZdc/mAXGQOUa94QxGcHEuubsC4yBGk17wx+AxWAsMDWOkdV+gDGBk4FQBeMnjLEBvcEP7Wl8spjcCFcNNUyasJnvLCbz5zUXEGSKbL2zGMeoZjF3QONYyfxgMXw0fIDWVvHqDxaDaIxLVzeXVvuLHiwG0w98AcVIV36wGMeZeZlLicP2yWLQHhcnOy/8gDHw5Sy1hkxjOOvXGdvC35DfeJNIY6rUbjKNwWsobbE0KHPZ8cGYMCZw0qAzdkQsupbrNMZqjdH79o1jiDQmFenTkmkM5qzKFySNuRYHH409nVAKB29oDBZWSuPg0CKyN4s0BhFXaRwNHlvZGsQxUduDxDFZ63UNxyRlOxPHKL9A0hhEL+WFSWNcUTYz5ns1ZO2V2ddvYpdEY0wSo7NIY6rxTtfbjcZ4q/NQ0pjsqvLKBZc2yuDVcMzFOD8a8wWj8pkZCYrykTGRQlRUPgWXek75bZPGuFR1HUgaw3CuM8YKCO+nvDI+Viy3dCGGNAbGyqYjjTHKxiCMkScyMoxJXJWpjNHb+I/SNgTMuZX+SRajdjmymOSVj4FpfzbiY0gwBitVcR71ZDEeEaN6eV4isBiEIyx+w2r9g7AYzE0lFuPab/8Hi8GEqa2iVhbDhEHMHPKRGsNfQ3NflC8sJnIy7Afq2FgMPuDSMzA2FoMYUPsv9BuLwcy6TPVGMVhcc7p6ohjy/vxEMViRRftEMXhsl58oBgs+08HNxmIwENQYHyzGOztuubEYZvSEJ4uBr2AcfLAYwsGBaFYW4zExj08W4zAbH4hmZTH8jS1M+WYxGHT5w8bBYhwTRh8sxuXCRK+TxWDdX8yTxaBBXH+ZjcU4dHqnFxuLgbf5QUBWFuO4xnmyGHRYb+wNxWAR4npWxYZiEHxqeqIYR2ewDxTjcM0QHyjGeTPo1IZi0NJuZKqsLAYO53om0gZj4AxupszcLMbZ4EaiyspiOAnvYGljMVzRmyeLcQZLtvJgMRbralcfNMa2Je4Dx1hmfeYHjuFgbfwDx2BeVfwTx2BVOfNPVhxjc0r2gWPQMmaKF46xI8NxpzE2peHuG42xiJfmSWMs4VR40Bj+ImYnpLlpjI1ukN6NxmB1PR55pTEWK4jypDEEo73PNxyD8F8bjV1xDPwQE7ETxyTmBabmkz8AjykIRmX+Muk+8BgE0Ou3RrcPro/cmNJGufnrzGZ98hi4W8BCApEkSuYHj0E8RlQq+AyTaH3kxuA18OeS4jXj380PHgMHZZ5oLdFkwfzBY/DUpIplzqn2Fz14DKYJ+IqwWhGb+8FjDDNTqmj75DEl4MuTHkJMjgni88o4hmOAzpjJMXH+lvnRGCMG/ElnjNHdmplJ89GYUTzpjFtyTDS6Z27ZMTVLX4DMY4o1cv+JPKYo25k8xl7Y66OxRwivyhdMpWdf6oyJIIqyNchjotLrOo9RPjJxjKnKxiCOKVH6st/gGKUXtZYQo5cMY8L1U/QnY8KYovVP0hhMy3XGmIVisqPsa+bGlPhmnBBzY7zSMUwyzLtUGttSg/LTbjTGimH8DY1JVvfMLTnGKLubNAaDsy4ONBoTi/IFSWOU1yWMCdon5lovO6UxYcyVKPTR2FVEZp0bNRijDXMNxtSqfAymxmgbuWfGKB2DA2upWmP+MqIcTXpmjNaLSGNM1sWBRmOsUTazy6lyzqszRtCQx1Y5NaYgPgvGTxyDuV/EclW8tJQaA+uwh/0fBccgPAk4JlQpNSb3rTY7jnGYZLfF1YpjsEKPaIL0wDGVfyoHjsG6DquedKbGoDWY8P/cq2TQntcWpnuvEsftvkVo26tkTBv3dx5T8ArV9YX5wmMo433rwWMgY5Fizs1KlH0aW5tuHgOZYGhimsljKDNKHDwGMmcE52YlypNcLTymcEmX+0athcdQ9tWfm5UgY23ZGdXCYyiHkXNw8xioiLqDF108hmocG5sWHkOZ8+2Dx0B2sfbcjoXHULah5z4tPKZwo7Vx5eAxlOGe/uAxkNGnyR1AhjIWx+dupQLHqClPTjOBDGWsPs7dSpTxD/MBZCCXbHsGywJkKHvTgdECZCAjRsYzO4ZyqP4kMpTNIBALkYGM76nzgIXIUOaP9AeRgRxrx3ALkKGKlzzTYyjblKY8gQxkdM249A1kKAfXKcYCZChjIVQPIAPZj/1bC4+h6n3v4JvHQHUz4+gGMlSTi+4gMpTdcPiFyJQWx9wBZKhifTvzYCaQoYwrz01ME8hANtUOxnIDGcr4ItxBZCjDt+NBZAq92cczQabQtVLL31mJDF0LjWd3IlO4cTK0ZL8fgciY7K4pkv9AZBDG0/WLqt9H2EeGDEKsY6KiYP1EMoUjLmLgzBffzA8kw8EJDc8pTZWsn9uVEnlMCOK1H7uV8NRoyGTnj8Gb+XO3EgbB2r4i6T1PIgMf4fdpxeZ+EBn81c8pymErEBm8gpG6RiQy9koKOftcypDhjkWVcduvNEHZR2N8l0FqZJnI4A3kdhMzZGqU20IkMrXo3q8TGe2VmSFz7Qb5aMzMhij58xsic23n+WjsbbZJ184tQyYpO6XtVzLaZ45kWeI39YbIVKfzo4ZkrjSIj8bcsOSUj0Ek47LyMQhlUlI6ErlJdErfIJQJXuf8Dcq4onxBQpkre+qjMZw5iQH6DZQJWq8jlInK9yOTScr3a0zGKINXYzJR6aEtQyYarXEsznqdh3YmIw4nb5hMNvIYIVMZ5cc9UmR0HtqoDKdtOmNSmaLr7kZlojiJeENlijjMv6EyoSpbA7NWrAJ0kaBhmawMGw3LZK98DObIJKfsbmIZW5RN13aXB93I1pJklANbz5ERn0KiMpkrLelDETYsedtzUKVpmkBluPn0ylzyPz6V8QKUCQhQbocyWK1hiVFaHsG6Xym+OPlov2KvUMZjNRlLX3gtUMbgerH0hJAFyhjuUOnAZ4Uy5hU5YfcHlKHM6kcHlIGMBvVTnlCGcisEtkMZyvSZA8qwSE528WAyrXROJ08rk4Ec87jjwmQo0+EOJgMZb+vO/UqUnannfiXInpPcg8lQZvbHwWQgIzCac78SZVfysV8JqoVrHDkyVCdJWpiMYfvWdObIUA6jCM3CZOigrSzFzmQo4+XP/UqU8e2cOTKGj5TP7UpU4azndiV+BViInzkylFlN5EAykFMdjrYgGcoxpnO7EuWxeW0hMvxqxg6fm8dQRBOfu5UgI/abc7cSZazBzt1KlK/9UTePgYwpgzl3K1HuVcpWHkPVWHMmyEB2mEef+5Uoc9vewWMgY/pTzwQZynFcZAEylG3OR4IMKwCOlKGbx1DER3DuV6Jse/7dymPghZjLpzNDhnLw8dyvRBkx9dyvBLmMzJQVyFAe27oWHkPVmnBmyDA+9G1TC40xzNXrH+5KY+AosHJH7RiujlPPAvwxaEwjp22MCh9oTGAtnLlyDfvIetIYjGfcmTOnaJv1QWOKRTxCaLas1SeYHzSmDVAILdXO/Tm79UFjHDunchOcfPHHhiUMZ8y2d0Yyf+IYDPIITGbOzPcXPXAMIgui8VX442jvR/GYiq9mTgEP2xPHBMPNv2KDiDjG2ZmrcHa6gGPavj2VMSZIxmT5KcQMmTip0Cdj8hgzM9c/GsNbbNRdufOYLPmpzGPuTUifjJkh462unVuGDOOhyrjVjymya0g8Jl17Ej8Zk8fYqmw68pgalFcmjylvPFTOkElv4pLAY/BxK58ZwTEnp3zm9luEtlN6kozSFjNnr3U64hij9SPimKBsONIYq/wCG43xVdkWLUXGKK9MGnNV3/po3OYjUrSVcQzGZV1rdBxTdC/YUmSK0blRwzFR2SkNxyg/wEZjYtUF50Zj0puxR6IxpWofo5WPsboO7DRGOUY0GuO9suVIYy5Y8dGYG5a0vd1ozLtpkkBjkonKx2g0RtuDpDHVaY1JY6zymZkkE7VX7kkyyiszScZYyZEEHJMZRZP0cT9xjMHIE+/f+/ZpmpQkg+YLde2WHwXHWLGcb9/ocibJJNMwzc5jcumpM3v5GI/lelt9rDgmtQLT/VfpBcfEF0KD8Wc53/jiD5l9ub7gGMhY1uYzR4ZyrmluTpo4hrK/5YljKLtBKhYcE7kW931FvOAYylgX5oPHQC55LNMWHkPZjv0yC4+JLMpRx56gm8dQtiOzYuExkQTI9IXrwmNiQ0CjNs3NYyIRkB+7kG4eQxnT5ylPHhOJgGbKz8VjqM40jJvHRBbUCL3LFh5DGTF6gpfJYyC7mTGw8BjKLGt18BjK8Jhw8BjIFp1dDx5D2aZRhOYGMpGlhf1FXiaQoYyJeD2ATGRp4dJfcgEylFkq4gAylE3ocGMBMpGNM+jXQmRiQ0OdOi1MJhIN+b7BZmEylIM/kQxV/hRxIBnIqeH7HclQJk85kAxkVpDJB5OhjEaZ8mQylK3r5G9hMpEVh2fhm5vJUGbZ3IPJUDauby9cmAxkDzcOO5OhCmedqTMDykB1nEsfUIZyGh6/QJnYkNG44Q1lIGMB0UtvL1CGcqwdgC1QhjL3xx1QBjLLkpSDylCmZxxUhjImyfngMvhmEWzyWUYmksC49pYLl8GTYqb4o2AZy500YxyMn5JkEgdGJxgLSTLE6wzAgvUTy8D/U674+qpgftT0ZaFuhBCDSbFo/cAyeGh2q5lYZjd/ZMng++Gmietnrs38uW8Jnz6GgDyLXuwv+siSqVxSW7G5n9uWSjJyzzyhjGHhbOmBJSgTiymyrZgjc+1j+WRsS+ZUUGmMQUPuQRnK3CVnPhp7zC+C7sqtjEyZk7WPxq5gWFca96K+utbo25ay5ENvkmSi2pil38TP8A2UiXMn0kdjlkBIyitz25LzytYglMlG+RiEMtlrjSOWH2++KjFJpmqfmVDGKp2uQZk3n6sEZbIxUux6A2WiU3oot8+XpGyMliMTtMZYpEdty5HKKLuPTCYbncs1JnNlNnw0ZhEZozQmk7lKBn005gpBHB7eMBmvfeYGZZSd3aBM1TYd56VGHADfpMhUZYRpUKZ4nRv1FBmnNcayyCqbmUzmSgH6ZNw2LgXllVuGjC4MNCTDXf4qYyIZrwzNY9+S1hjjcFEO2wPJaI0xG3ZizBCryHBSIHmzsG8pYiGRotjdEpJxWGGkulr/KEhmHEJ2IhkrpMi4XjB3JTI8NST1xfZeRYandZ0VfZlPk6PJ57alzLce1OQmMonHytlyJsgk1tG1V97MJDKUw0gpWYgMZWPduWsJsmEllYPIUPaxrwoXIpNeqSJk2IPIUJ4VThciA5nFec5dS5T9zHm5iQxkbm6NB5Gh7MfLL0QGcprL+4XIUGYRnYPIpFZgt567lij7kd5yE5nE+roDl91EhmoYu6cWIkOZu8EOIgOZvxKfu5ZScy577lqCzPOYzl1LlLFsPXctQbaTIy1EhrIPfY/YQmQSud2on7wQGcqhDsB0ExnKJtdz11LCn1I/JmwlMpSxkD93LSVW0g313LVEGR597lqibCZkuZFMIreL8dy1RBltde5aSjz08awiQ5FHWh1AhrIdBWgXIJMI80I8Ny1R9jmem5Yom1FPaQEykOEkJ4+h6ko6Ni1BxVzHHkkyVDFsnZuWUkv9MuempcSgWU4cQzWOokkLjqHsxrlpC45Jr7al4ty0RJl7OA4cQ9lZf25aSgw0pZ6bllJL0HrgmMRqKh0jbWVk8KGH/KPwGPhLmoglfeIxBARFMhbqyBiWSrh+vN6sTx6D4SNE9B7PBxHMH2csORYqLfEqKbpbP3gMoz2Wg1cl2938UUcGE3PSyTCXQJv5M00mcVtkvCoE7i968BjLnxGgSA8iABlLVC33zXPXUsIAIzaInCYDl5Y7XSAy/jre6JMxy6nVqLwygq5JRXllpsmEIjXymzQZo3zmfsqS0125bVu6snU+GZPIlCD3iUhklKadxxSlMZNksrIt2iFL78KByGOM8sqNxygfme4ZlQ/BLUtR/PjepMio/aJtWUrKLiGNCVb5fq3Q8kx7+WTMHJlatMasI6P1DCbJOK98QeIYk5SdwjKaYrSVaQxm6coOJI+JQWfci/oqg1HjMdbomrltWQri0PaGxyj7rx+xpAwDvYqM0zVzO2LpKhr00Zhn9ildv+XIWGncfkNjQlA2HGlMUkauTmOCspm5YSkFpWcQx5Q3I6uIY64fRj4aM0VG+cgsI2OCsjHaAUvKyDyK+iobgzjmKrj+0ZgxQxxZpQwZywwZKXQJVX1rYAp2lKxFHIN71W1Y+1FwDJas0oHXDT6cO5baaVUnj/GuJyLsOIazw7Z23nFMLcF2JLHgGC6XW+GCk8ekELydJyndPAam6UyQaYCA+XonjkmzzstGY+hvPaFkozHJY1nunjTGhVLO/UqpHb9zlvSlGlKax2AvMMbUkd6xwxjMYvpieIMxkcjiwWKw2Csjl2ZlMayfMHJpVhbDrWFhyjeL4Zk69kQxiAJlFAVeUAwC2oAoK4nBZGecb7yRmMiTtuYZ2DeJQVScm35WEoOOxyfyIDFcrIydQyuJwQrHh7OgL2Vj3EyCuUkMV/ZxlpW5SUxkHYv8IDHQxpFQG4hxfpzWtYMYZpDGJ4ixM8NrBzHWzoIwG4jBHHAkqmwgZpRU3jAM1nmuM6gNwwSscXrWyAZiWDNoZK+sIAaNmof1CmICN1f4B4gJHNXrA8QE7oh3DxCD+DAuspGYkOo4SW0lMfD1kSi1kpiQnO9pPhuJYZrPqCqzkpgQ49jstaEYrN/7Q28khgmj4zFWEoPRaZxJv5GYwOAUHySGvwOOA51WEhP8KP1ykBg8qX0W9MWColeq3kiMY8Gu+oOQGGYLzTlJ/kBi8C/hLkEwFjYssQSru3533ayfJKbAGfDXq37tZv7IjMEIhBhGuC5ZC6ddJzg6XNlK5o8NS9zrEnG7+cPgZv7MjKkFwZ4bhqQXPUiM4c6R+0iMo72f9WMw2FTZ9kliHALLm44UcmNcffMQEolJ1yGin4wtC3ApL8zyMSVK/iGCGFvzGzeVOMxVT+SDccuMuRKQPhpzz+/kCZ+MW2ZMldziHYcJymfmEsyIX9abzJgrJeWTMUlMnbn2H415wFJStkYr6JukD/YNirl+Uf1kTBZTtO3cK/rqHKlX9C1KYzQGDxdUGrN8jPJDaSzmqoX80djV++i5T8ZMjYlWa8x1VVa6KFnMlZXyybidd52VvsHzrn3QXZkw5kp3+WjbDljS2bbzlZT916vHKF+vsxijfIyWGqO8cC8eo7Rl/S1tW7TaMVX5FO14JaV7dhTjdZ9U360kjsLvUIwydO0lfT8aMzPGK1sj8LxKrTFZjIvKx+ipMcoeJItxuvjSz7pWBtCWGSPOSSQSg/mOGOSEvBhWd+XuV2mCJoCYah0B7mL9w4CYIFaOycJWJUwQ2i6eY6sSxlV/Jsbg2q6tos96vjyMti+BbhLDNS3p75kZA+vSfmj581HPtzAH5jzqGnLi2uJAMZSxaJ3HLk0WQ9nXURT4ZjF8wFlU5UYxVP3ACQuKqVxLBjehy2QxlL0Ps6LMZDGQCbLSwWJqK3nqz3K+la4cRgbMDWMo+9jhwwJjIGMgrWc5X8p+VGpdYEztdUzLTmOohti3ldw0phKejOSGBcdQbj+77jiGMtx+VpSZOAYyHDwcNIYqhuh60BjIOXONt9MYyt6MIr83jalEKpPd3DSGMuHNQWMoG2fOar6QY8uN3XEMZTtOfF5wTOVHMcrRLjiGMqLJTICZOKbyYPbUfXvBMZRjHtVybxxD2c5DrW8gA9nlkQFz8xiqWPXZg8dQNpPe3DymMqEsuPO0a8ruUTymMnFsFFxZcAzlOHDRTWOo2tQzcRYaU5lONpJobhpDlfV0dhpDFRM2f9AYyFzu1IPGUA5m3PCmMZRNujJgJo6pPNnd9dZbcAxlX8ceqBvHUDZj19qCYyqPfPfjoKcbx1AmNThwDFELbmIPHAMfYv7acb4SVCw1mvf9EDgGU435e2D5gGPwcsXN31vKPryeOAYrQEufqoK1sFEJIwAX0TNlZDM/cEx6IdzxB5c6fw/frR+JMYnVM9J9yOZuvuMYdFPkh+Wvjfab9TMvxvkG/+YEZX/Pk8YgMFkmwonN/dyolK9Km4fpc6MSd2sk6f1EGAPrN10uwBhX31xYTouZSegfjT23GSofo1Xz9ZJzvMExOcotJ6bFuCr19bu0GCt5nYxjihddVMYx/qpB9MmYS8HidK3RcMyVhv7JuCXGRK0xwn/0Ot8gjrkKmn60JYsRvyiZxmAar7wyM2OulJSPxiwAWZTGrZhv0Brbu5DoJ9ueGKP0Zh6UWrWdTRhTtZ1NGKN84lY75k3kklCMzdonbrVj3o1WUl6M8otqKEZp2pJiks7f+knXyrjVSIytuu+pn3StvHArHON1Ma6jGKt8CqKYUJSNQRSTlV9qQzFWe+VWxtcpO7CX8VU2HVFMirog3lCMcvhrSTEhKPuk1Y2pSr9vdWOUYbmRmBCVz0wUY7Ky5YhiipGigHi4ElYtRrryE8Zwo1S4zxfc52fSWdexkn0v1j84jGn1cM+zrkP/6X89XImLUbRkeaTFBJ4Y9EyLCYmL+yMthidp5FGRYYExWATiloOj3DAGFynT+GYxpf32b86zrin7kRKwna3Uyr8eKIaLrDwKWmxHK2GSOwvBrEcrMf3FnWV8Kdtxx+1opRDTPGB6PVoJU53sz01KkEMaZ0lvRyvxh/txKtJ6tBLLVddzkxJlLIHOMr6QHVaBxyYlqq6OYjLL0UoI2yOBYDtaCaEjjQq869FKwVTrzzK+lMOs+LIerRRYJPMs41tY6zn30h/b0Uoeax531vGlE7Vk0h3GUG7l/HYYAxnzUHNuUqKMhj3r+FJmSZADxkBO6OHn0UqeVZ0PFgM1En0dLIZyGKc2bScr4Yo2n5V8IYfk8gljKM/zsteTlbgV5iAxFEM5QQxVOzYNbscqeV7qLONL2Y8vbDtWyXOZWA8UU1qdkN6767lK+EhG8aT1XCVvriSa9VwleOzw9u1cJW/cOKlrO1jJYV6Wzjq+lGMqZx1fys73xtsOVnKljuyk7WAlTO/zOIp7PVgJoU84Vwla2wi3H6sEL+ikaDtWadTO/VFADCuk91GqfgIxEZ48Zxp1H1ufJ117hC0/f5TcrM9jlYjJefi6n7P3zfqRFoPXdDG1g9YF6weH4Ul7CAVResknhrEIpXDG+WPxZv3EMKH9YnZl7u9veWAYzEwQiq6znY/GFo65dtfulsNW2J6EDzNKHSNuTyJ+kHtc5DD+jXsIHMZde9o/GnvufFJemVkxV4nNj8YkenJbiFkxwcutLGbFXJVaPxm3Y66D5P1vsmKS171fP1Qp6pq5Z8U4yZnfYJgrteOjsWeZSOUzMysmW2WntKwYpYe2rJiQtcaRoVnZGi0rJip9o3GYrLyy53mHVulI7aTrN0FDBDFiMHrDYYpVvh85TK5aY25QckrfZ1JMEMPtGxKTxDFFJjGmGJ2HNhRTla7RKsb4rGuNBmN4XqzO2FZTgq63O4xxOt9vW5SssjFYxVf7UbUdSq4o369tUTLKlmswJuviUT/pOulCTIcxRfkYDcYYpWs0GKNsubZDySmfop10rfwC+xYlZdBoMMZE5fsRxhTluN3PVBLnJRKMaRVmpd4WYIzBdNNfCcb7LE3IjLHcJGDWbhkwhtPv79++MQ3kzHpHJ5PU1IvSsLrLomb/wly6mnFEKib9r/r8B6t8/Av5DuJ1Tvv7Sv/lHf7w9Z/du2XsCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKOTU1NAplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoyMyAwIG9iagpbIDUyOCA4MTUgNzYxIDU5MiA2NTIgNjg2IDcwNyA3NjEgNzA3IDc2MSA3MDcgNTcxIDUyMyA1MjMgNzk1IDc5NSAyMzAgMjU3CjQ4OSA0ODkgNDg5IDQ4OSA0ODkgNjQ2IDQzNSA0NjggNzA3IDc2MSA0ODkgODQwIDk0OSA3NjEgMjMwIDMxMSA0ODkgODE1IDQ4OQo4MTUgNzQwIDI3MSAzODAgMzgwIDQ4OSA3NjEgMjcxIDMyNiAyNzEgNDg5IDQ4OSA0ODkgNDg5IDQ4OSA0ODkgNDg5IDQ4OSA0ODkKNDg5IDQ4OSAyNzEgMjcxIDMxMSA3NjEgNDYyIDQ2MiA2NTIgNjQ2IDY0OSA2MjUgNzA0IDU4MyA1NTYgNjUyIDY4NiAyNjYgNDU5CjY3NCA1MjggODQ5IDY4NiA3MjIgNjIyIDcyMiA2MzAgNTQzIDY2NyA2NjYgNjQ2IDkxOCA2NDYgNjQ2IDU5OCAyODIgNDg5IDI4Mgo0ODkgMjcxIDI3MSA0NjggNTAyIDQzNSA1MDIgNDM1IDI5OSA0ODkgNTAyIDIzMCAyNTcgNDc1IDIzMCA3NzQgNTAyIDQ4OSA1MDIKNTAyIDMzMiAzNzUgMzUzIDUwMiA0NDcgNjY1IDQ0NyA0NDcgNDI0IDQ4OSA5NzkgNDg5IDQ4OSA0ODkgXQplbmRvYmoKMjUgMCBvYmoKPDwgL0FzY2VudCA3NTggL0NhcEhlaWdodCAxMDAwIC9EZXNjZW50IC0yNTEgL0ZsYWdzIDQKL0ZvbnRCQm94IFsgLTYyIC0yNTEgOTc4IDc1OCBdIC9Gb250RmFtaWx5IChDb21wdXRlciBNb2Rlcm4pCi9Gb250RmlsZSAyNiAwIFIgL0ZvbnROYW1lIC9DTVNTMTIgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDUwCi9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCA1MDAgPj4KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE2NjYgL0xlbmd0aDEgNDI5NCAvTGVuZ3RoMiAxOTUzNAovTGVuZ3RoMyAwID4+CnN0cmVhbQp4nIy3BVTVS/c+ToMI0khzKOnulO5OKclDc6hDdwgKCNJIizTSSHc3Il3SId0dv8N973vB+37X+v8XawHPnj0zz57Z+5n9oSJTVmMUMbUzBkragcCMrEwsfAAxBTU1VjYACws7EwsLGzIVlbol2Ab4XzsylSbQ0cnSDsT3xEPMEWgEhtjEjcAQRwU7EEDW2QbAyg5g5eJj5eZjYQGwsbDw/tfRzpEPIG7kYmkKUGACyNqBgE7IVGJ29u6OluYWYMg+//0XQGNCC2Dl5eVm+Gs6QMQW6GhpYgQCKBiBLYC2kB1NjGwAanYmlkCw+x9LAGgELMBgez5mZldXVyYjWycmO0dzIVoGgKsl2AKgCnQCOroATQEPMQMUjWyBf8fGhEwFULewdPrPgJqdGdjVyBEIgBhsLE2AICfIFGeQKdARANkeoCYjD1CyB4L+4yz/HwcGwN+nA2BlYv1nub9nPyxkCfprspGJiZ2tvRHI3RJkDjCztAEClCTlmcBuYAaAEcj0wdHIxskOMt/IxcjSxsgY4vAXdSOApIgKwAgS4t/xOZk4WtqDnZicLG0eYmR+WAZyzhIgUzE7W1sgCOyEjPxAUNzSEWgCOXl35r+v1xpk5wry/C8yswSZmj3EYepsz6wBsnRwBsqI/+0DMSE/2syBYAAnCwsLDwsHAOgAALqZWDA/bKDubg/8a5D1wQwJwtvT3s4eYAaJA+htaQaE/EH2dDJyAQLAjs5Ab8+nA38iZFZWgKmlCRhgDDS3BCE/rg4xA83+gyEZ4GjpBtBlgSQgK4Dl4eef//QhOWZqB7Jxf3T/647/G+s/VlFROzeAJyMXG4CRjZMVwMvNA+Dm5AF4/zn/n8j/G/VfVmUjy79ZsTwuKAMyswPw/oc85NT+DgDA7PJ3TtD8XTG0gD+2ADAr2kFyGQigeUx9PRZOFhPIL9b/3wXw15T/K+0fVvn/zPz/oSTpbGPzlwPNfzz+18HI1tLG/W8XSDI7gyGFoWAHKQ/Q//hqAf9TzwpAU0tn2/8ZlgEbQUpEBGRu89/jBDBbOklaugFNlS3BJhb/yaK/BzQeKtDGEgRUtnOyfBAdACMrC8u/ByF1Z2INURYnyLX9NQaElNWfFysBMrEzfag/Nk4ugJGjo5E7MmR3VgjkBHhC/kJKAuj2V4IDmJlAdmDIJAAkSm+AmZ0j8sP1sgCYpYxsbY0erH8ZWAHM4kAb8KOBDcCsbgF8YmAHMMsb2RqbPlo4AMxvLP9BnABm5UfEBWBWszR/sgE3JEJ7SKlDgv6viQcyw+JxCi8EOj1CVghHJVug+ROOEJJmZo8QQtHsiT+EoJnNI+R4cH4yzPmAn4xDGJraQV4Hp6d7cv9jtHo0QniaOz6U/z8WCFUjE0jWPJ4WhKyJkeOT4NggZI0dgU9msUH42hqZ/OEE4ez4cI//GCCsTSCZZmPz5CYgzM2BjrYQYTK2cXo0QwIwerI6hLrdEwghbedkY+Rk8WiCsBaReLzPh/N9AiF8lf6cwA4h7ORsb+/4kIv/GCGUIYllY2T7aIKQdnC2AwMh/P4jAf+MQKiDnG2NH0TE/DFs9r/OHhKj46MJQt8e6Ah5bJ7MhsRgZAuxOj08LP9Yef/e7c+tOCDh2EOePJAN0OyJlfVv67+cIZEZOT0s4WT9aIREZm/j/Bgqx8Nl2D2tEg5IPBbu9hbAx1g4uP4ibmn3yJADEsufJ8kBicQD6Gj3aIAEAekeHosHwh7s+jgOEU9msIUj8InHQ7bbOT+eGOdDvls+yS9OCF0nyMvyD4aQdYIk4CNXiFgwA/84CE4IVZDlUyI8DzE/rVJO3odlbC3/tHKx/DcNTCEP7aMZwhvo4Gz0WGeQJwpyXUCnB7n705X9ceDRCInB6JEeFyQEkUcEoS/6iCDUxR4RhLf4I4JwfkxtbghXyUcEoSj1iCD0pB8RhJPMI4KQkX1EEC5yjwjCRf4RQbgoPCIIF8VHBOGi9Kh5EC7KjwjCReURQbioPiIIF7VHBOGi/oggXDQeEYSL5iOCcNF6RBAubx4RhIv2o+BCuOg8or8Ey8jEGgj+o4R42R6r+88B9n8m/FldvA91Y+lo4mxrZgN8zEdezr/EFdI/Pi1yXq6/l/9zbUgQj2XHCwnC+BFBgjB58kxAojB9Ah8y8Al8KJsnEMLZ/AmEMLV4AiEMnz5AEGpPngEWCCfrJxBC6slzAulxmB8lkfXh9QI9gRBWdk8ghJX9E/hQCk8ghJXjE/hQx08ghBX4CYSwcn4CIaxcnkAIK9cnLyaEldsTCGHl/gRCWHk8gQ9KDzJ9qmOsD+8T0PZftgdRdAaZGzk629oYOT/h9vBEgS1tTJ/cx8MzZWoJhDwplk9ienit/uelYX3QGCd7I5Mn0x/05V+Ny4PA/Nm6sD5Iy5/NC+uDsPyrfWF9UJcnDQzrg74oP8Xc/25iWB9k5t9tDOuD2jxtZFgfBOePVuZBc5zMwP96OlgfxAdk/K8QHzToX30PN8efjc+DFD1tbR7E6Glr8yBHf/Q+D4r0R/PzIEr/2/08iNP/0f6w/k//86BUfzZArA9y9WcHxPqgWX+2QKwPwvWvHoj1Qb7+aIJYHyTs310Q64OS/R9tEOuDphk97c1Y/miEWB907V+dEOuDpj1phVgfpEzpKeb4n2aI9UG+/jdHH+Trj3z+o1E3cXaE9B7gv76qIKX0X/zXVzMQ6AY0QZ6esDPhD7IqD2q4KBUhdGVcG0RYWGr68Em78z0n+NVkhqeFPGKS1E8HUUPTIrz+BOWp/OCRCS9Cur2LITe91hT/X/HS6WAoic4V0QPGL72Xx63mQBJTOwLzYe6EDysY+1EqxGiGunC61DFaEzfvuNvYN4rXs26bnDZ0eLcBtoCcM3SyeELwR5G0pm2YMG0yyiVwn7YeegSmo26is7qMxvAtTJhlxLloQzj+pfuKbsTnvvn5npSuzgT2o0y59hKuomAsfGwPWbK0/ugf02fkYSr5XrTq9s8EMu3ba1+qWJwe5rcssGprRzA6mnEw7APKJjPvcJekoiqXQ+7ZSJNJr/jbTTYmeIIZiEhLY2VM4qq2S1GOGG64znPqmaWhmKO48dE5pb4F87P/xtI+cBruLR9zVk9WnUp/y8u6/NMqUKkm/R1nuQLRYuK3PI3SEspwkpBILuk+hitYB2bLBa2I6daeLcsxU+OGDAr76czbZ5OHSuN38SSZzxTGbC4xYirohk29y2hda9gK2jtfQwu5SQZsY74iWNhBcvw9qE0RDERiB2v5oizpSPbmM6MWg+74YxaG5lC+fNu8gZkztflBAH0+Y2sYqbdhrt4nK/udgpiCUXlh3XiNxxSNoDV6823FYOFVYwA+nxaGnmILBj/xD3qWnuOoUwoGROYr5S/6+d/TnNRfJB2ESfmRoHc9l9Ehxc2gZRud8EUre8NEK6PjQn2bvVYkawCMLrnORbdJl/bYNOZcZ2g2nxygq015ex8/7rZ3xZg5/26htUf1A577QV2GrR1MzKgBr4ey9+/PuIxqINF87hjZSB2Bdp6fwx5jZmNv87utJtTX+TLbM/3Kf3ZJwjIS4oa09R0zGR/OFqLxTK8qqJtqAWFVf1QYH2+0TUWeQWfl0adrZHYVZCgV+hCljSdZifA8g6sTQ1oBe7kum+PWNvAQiCrTBfJ8v4yaM1GA234nOF6tT5/4fj5F0FL7qhKnIhRekQyacprJbPVVbzzVqdsQJoZfz1mTWFx+W622tJysP6q7zetzpNz+Ofuc9zMN/gsHzaPCYdaC2l9qgyPNZr9MXYDeKqL5un50HQmiv1COoIgR3I7CbLm6/zn0k9qijnwijzEY7dVlGHKMprEebyVznk0P+slp786QX8GQYXeHPGcCd5sQlgwhS/mQeSEB7flUChgg0oEJ4yzdudQRLzQ8aKR3ioP0SvHspuC0bN8uizVuN4O0cNSAjb7Ki6PcPV5CIYOtCppDA7E9i3R6o3t7PDHzIx1l2xx8LmtEys0F/Re2qOvX392XA9Fo6Tme1ZXtlDWNaFlixtqIv8gAX1xyUmoavMz4WKg1SKHdRG3yPTd9zA/nlWvabWyS7F4jJkODDFoErwyVmUjxCq+mTBiuohBYvw5ckstNby/IcdzNXRsI1M8GzIBch3ZzqupEP9MUC7sRmLxU+DZgJBI6fzf2cv5VnmjgUR+cSzN4RUKT+Uym0GPywoLEIWEbcyEVbxZAHWbB58SowQ/31nDVB7UbDpWjzfell1NgjPx45owJ7WT7jg7jjAe7+biSEnuUuXLVrxRPIvTe30xQLjI/TRPOuoqd66hN1l+4K5AK7oG+dlC/uCbjxN+hqwnWdwDIzA12zyMohWVsqhKd3bYshlpLjG776tlpzV/FjCXHOzI+N2qr1LEqqPg4w9zIZG5ceMlXlOh3Pv4LW/3T3RolMGSj7PBXbbJDk/sscuMMvoJfOidtrK/yO5+btIOO4zrSN2TBksplleN8gVA29b6g49P91x/o0LhQGaloOWrZ2MHpV1B81agvK5nG03RZCUtbigHR6avOre1okyOUiOgXv7edf7Pu86HH7FuV7rX09W+FLf3MY0l20gTRqTzXXg3v15fhCn9uVzvHgw4dTht/bCFH+XbD703yN/SjUeJCNOm593xxc06xWri9gNmGjgvVoRxgsGir1/bMponNsGDIQHkzc7kmFlXaD5FPzIfG3Th+M9VjbrCWgX1tb1U7mqToXaI/TyfG0RGf4LRSDr1FD1lTvasfEWxrWEtVFFt2eNmr7KRVOk86h4QnchKcXjP8AXazMidx51quFV+ZxZkcgLLjIBehvDB3a/qqLGwxLVBFQaL+a4vP66ay/Vz54RR0FgMt9wzUGyXFINocT4p9t4o7D/FNJzYRKMU2FbJ2XwvzxsQRWtLr6x/f4IVCCjSuqDwoxmrQP+js9yVe0V6MV2+j+Tn5sg6nif9qT84Xk6mvR29RQ8atH7H27JZjxPbNmC9LYC5FE32Bjb1eudXSbQNEzG4C7bh38p9ebD6blDkjL71jkFGT/D3yQ8aTwMvRBhchM+IDqzxVBBxvHyuI1bYrMfHFzRDvB5yXa2N4kqz+KM93ls0ducROM7pV0rkBbTWtBRbVbJ5Qdn1S35x1oPVkPguM0pH5D5viU39q6Q8MTPl13BtNMbskZrEKCuEjnyXLPrhw92yFS/rMZVBg3BW7FKK4ScCX5cYIR9ILkIw27GUgF2IKBAUOvZwVEuuJKSpx2DYVySseVDbsnDWOs659zqSVqp2BFDk7lYaftSTuEmR3IaxtXxZ431qJWTo8KD5lTriOGqIVX1ncbEAgckQoZ+CaJKd7JBtezNhYLrB47xCg4eh60MfCuKYIH8iORn3PFvtyj/L9Lx8x0XmONDj9sVxS5y/LaycLOr5KFLrYyTGvMwuEMfn8UR3QrfwRy+ZYOO5wo3nLuZm8GMXnqjrsMbrKYBMt5giEMlVuY90b4zdhy78cTe/NVslOzMetoSCkvs6JKZeTVIo1Efo4ymoDbcomt1L/THThXk4BliJcxOGaC6GjbGJUQ7mDsXVgX469p4eYp+IwthwBk3+MN7xmUHyHlSZiwXBjir93g9Rr2HrLsVksnK4PNaQDBbbN5WyX+7WAp3kXpTNqgaMKALFhPaxQrP4i/Qea942+jajPiIjQUWIhczAuqvpejKJG37nVWEuLIGeeMs3L1TDcvdqK9Bv5HXdcYvmF2Sy9ylGSnPtVtPyGyfQPWq8l8/mZ0GccQBYbLw+HslF8VoBB0HnOF03SzMBX7js2snrr8NzPr5DysnozqhfFneYxh46/OmNgdc7haMKkHi9TJp6Tuetecgo1C/7qYAw1vFMbDo94ndswUHQDiA7eejYjUfEhCfx9Ykiw14NLIPWr3Pbex0xVoj41t+CusV4rPQA6woKiZVnAe0lKYutzPkZtHbjck6/DQGaQEXoz2a9kdu4+NBupJk80uhBMwi8gRO3CuYn5YxyRT2nBx/fC5I4/5skN3u4Qm90NmgwkhtaK21eAgUF9FerpbnzXNtiDUsUC6BQGpsYmWOg+qWpYmqtv5Fi3FDvG+RiZ0pUcTT65OHzo+YneoY8r6cuPC/CzDHZ36Gt5+RFGfxHVWGWp2Jhp1dB112J7solvCL9MmvH0EzxywUfDNTqdZaJK1Po+dPYWqpgaBm2w33WMmxbrohFvo4rs1r1kVs2A8xm1dfJrygyeHMUG5wCUTvVTh7yUXd9ZTPdfPWl9o2+i653cUmDruHOdXZo70ygydtoKLeCAu/2c3z+Ye5feBeTRD83dy+cI7Dbw7Q3UuUApoTK+8LSCmXkrUy0Ef5+8n82FE5M0rR6Bd17Yo17tlI5Qy+DXu1DnuhcAXhyEke5FdakzQin00+0tZLg2g2VHY503YqCccZTx1ozJw4lFJDQOfPZe++KjuIUPFpIjOcGQRrC/L7OJnux4nDK03DKXnmGktESWDblbDPy3YJ0f32rTgDfZu8wV41M+1tzEupPfdszazJpnRr53zQQQR4re3olHrtso0ZtI+RwEUAfgmoWrcjUC68Gy6pyLBp/h4TWqHU70VeXFpwJIk4tKJajT8IRKLBYiqgpSE0p4dSWv5S03CXuTR+YayhmITpD8tWL42GrGJW+ncGt8b6vVwkSU36+RgtgIAFJECs7xVSz6sHn1l89ONrM3jNafSXYyJ1ZRPY+3Q+5vNKZIhuVmYvstmybrWrG59pZKj4sgA5cyqjZAGNYj7VO2WkbvGtrrHoB1xlKe7C6K5O87m+vbfS64cU/Vby9aqNS0Lr8LlnpdEYcNekqCAZ20NKnariUumQm5YayeEs1IdTyD6Eh8uXMC5XES+R9JViugZAN+EtiW6eQDZfxoSkdK6ybNOpvL0alQboksDN+N6h2+XVyhHmeauEMpWQQC4PnmvS5fDOWBfq2YZsySj3k26lQpFMO25b0bvPEKyrztf64ZzYGM0/t5LVIzzgDD/3PrTnW0FH1G0SCiINahhKRG4lmhFrJ3eQHj9sirBWnPRMnByaU6B+7Z8ks9CrdUJGalyf1vObW5oMLcKtqFqHjklYPZ+FcthDDWpdo2aAHellikv4RNuMvw8j84tr92SztOokMDYHZEAxcHZMfeRGbegaqMLFqsrJbYSz7RRgfYQ+vyJn+p5SrDDpx31SVgLgnp1AYnqQqvcngjfs2DI1fsAh5kDrRuZmH7U4d+xsmeO4n5hFYIjAszY7cxG0VI6XcJKbbMLo0N03NPa9laF6GO+GWGvljPYeLr9RkLahcxYNHcLRQ9Cran8iKgKZ9GlM4MgeMrbl4M2gvtUcTB08mNPgViqMr257ByRqsIX7Df9SB6YU3TxYPgHaUZpBvqxAiOo6o+U8svL6Qw+EiCQnUDmjNnY2qS9ciTDyp+uEax5WkxNJNWYkKzj3Ngf78tEocZRfI2maITLclX8BqRWzmxS0cLnJkNueHy1HXe5dvJZmLum67cCoEHGTj3tdNIAzVlvJU6DNEKl3jLS6Sfsc6NS8Z8OIfmlsT9jMfrkNPPuoL2Qfy+TrEjIMV3sDCtKF6ZzqiDhPJVj6VHFqVY9NEbIbngfLgYFKJe49OPRwP4BxHSKE2g9a6739tS4QODNyGKRR5ERQ63wgAGj3VDvuce95JhIVfXLURNlnoYKRIHqqOE7Wb6VYH3Xufp5YSYSXPVhWxZs6T2qcO5FiicNzE+B2HofFf0tSdKOi9Gg4RIr5ljGQqrmlHAvT8QNPVKqbtF7DIDVo1fYJDE7qSJG1d8pTVUmv6ENA39Lrt86aY10sJxzL7/Fmvabi8FfyrgZaLts+X6s2Jzn9IaYOAo/yGGgFIm59drtMNuGuQYvzt21GnVJDqDM8mLzmEqUdvfKZSIthS0h6UzMT5a+st00beJMfmemR8JkZGznMjeSyw0m74dTAsnR9EIKxk70HsD16XQb+lac5yeUyzL98rzwNMmX1utvyFXZogKhivzXrw8J466bFvChNlVfBiPlfegRw78XomhimXOTwpMRL2kBxWVRxaITCakQhQfPfRj9d38pD78xfj6N1NKDZCj4JjhDuECkkvIDkvdKcz5YJny+68Mg5+BhNmfsoMEWWRxk42TGbTW3p8HxLHsxckKGAw/P10nRx1GV/1CfP2jvJ5J9AtHo4PJJ4Y6xe/012nkxnlZJr+CO6hkFENJ4W/6HcoLaTAt0xFUstDTYIRfYU8tk/QGg2izjsXsU3LTW5E8a9IUT7F/olV9gpEOZ/iMryW70861o6PKE7ayZqTq8FohJuaVlFnO4Zob8a5tIfKmWaNqTWOBktMXHvkS1sEfVQKTeTq0oK2I76b4NONvHLTf4sRue2m8MJsURiC8UrF9vU4o/81+AuP8gnxeYlDPWGkUWSrmhFHkDbQEzlWPmGtQm2Nb2M+0i/W2jMa7utrdJAM5UXenjRLiXhVjQk717o2KpVzcIyaeZt0Qw/kYLbeAwp7i+/KrzlEk2GkuhKnw4QX+siMFHX+LOv/Lg9EB7HsMxnbUVoMmQ3zqLzpLNbHufK+7tFcEuIcvbFQnh/ELz7DFjlw5WpiXGNpR1r8PcWy1oVqqy0eWjVRPl3PV/e5b8iXf+30SqjaDJHu6+FqDWV8izuhVva/t+m51PniCPv4dXgtO/bfoXrXNwoAq2AZf3h/8KNJ0altNImTrbZpqX0sSQ37BzkLlizRc0h7pUx/d6Jmv0o1YM55/EfXgdTd1Zjn8bYD2Y6bhVSnPDEfTa9sWozjyNs8yVuvkgS+fLXfst91SBQuiy5pFM0dMcbGlucVDBnoKP8+kfkNAxXlhagud7tfozrBSHxS4RGWmd+9usOwQpSFvsiD1himl5ayqYCJzwP/0JTaJr51mSUra5waL8KRt/FZLUgt+iV/e1iVNJU0/h+HILGY1V0nkTpGePVe40Mg1HSzdwn73Zj2/grpGaq82lUzBiGFbKBHDszz23lejryRfc84nZGmKmjV6m2V1bOiN2G5av4ISulKiz1z/136uel3py2IxWtPwxXadEB+4ZAZrHroPMqvLJiaBLKdZCnu/fRGb2zj1LkGEcLl0G+MCXKipEkeuQpE7McaKdA1XrlpRLvvd9DH9DlnPZnWAWQRDY1sUh+w2O9k5ZdcZsLz28/RSgrDEZ0KVCqPUhCLEhjR2uXFyB68qDO6d5sRaRtjaTc5QaoIZPIsHYb+mp8T0sY5yYF9tO/+i8R3P+ATvjh+Zu3ZV67y1Z1tJ9Hy/VFk8eW9ZG9EcdzIFO339+D4eRVpSmeeKRry7jBVdU1v6I6d0J4INwqqEyzr3igjeHriaiJ2bjMv8VRJ0AuiGbYtAI9Q/Wui9jYlv0QA8yB13KQ5N5cKfvrexO4rjPPYbIVSPVd94c/sn0trNmm0tSZ2+j4nLNdwo/vLmSKMpY2EUiKo+oHNX73YKz7ai4aZ+a/1Lm4nQ6zopnA0J9WX1bh4SP7L+l6cuNRlezj2ivi0DsN/8PQhRtOWHpdwkwl06Qg7WMl54H+AT8hl5Hb5QaatJlvdfwgvbIyZ22xhm9WuZpNrva37d5UBIGzwt5kXPk0fM0GVmLRxfUtSgG0OMWIkHlTbRnBicyHRqkUZkPu13aIlFMzdCcBHrMiWT0N/5Iuv09aurynlaaamgtmeYXHQWY7iEAa/XeTw484JNxMQ89kXeFimq6rVQSDN1G0nnNTDLcseJtr/nT71tRKT5sbIm0nqTfs5wXW4QyT12vPvTbhhqT/23yfu0zjXY9VVueizXLZt4R9/ZmppwJ18ATHBG8VYN9jALzWzf7utek9PyrGWC5iV9BPXSkzv67xrOXgA/+qaPxubI7msH0Kkb6kcrBhhZsdj+0jJjd15Iiju4Zsfkhbivzfs9p8bu2OVJCbgjN8xTUrsrEhq2VeEMVeR4ykj1Lg72ZuL8zFgsTjPKAH4Cxfc8cLG57NoyVTutQ7PeO5gIMvFmKmbqiogv5ThxylA/o6wSxb5wNJigCX9hFXWRSM3I+H5CiMA1ZDewAqwa9sWzmTnrrehYfBkjJYdPnscEnEeFDhvb1FJWDqnm3uK6pHkY3nxKp8FLFWk6fLsVfVkFvx1/i/E5Gwr8iNgg7lH8pCQsp9ZoofQYRPX0GM9h8Y3SPGicQx6mxODdSVzPqG3SYZrsmMzMYf0U+JkcCqOXBOrH6JeJM4G88kW7kpLYMT4X2Osup2z+6Wj3YUsTluoKy0FF5OtY+5nQWKIRU5L3iz4X5A2TOb4OLyonSsJ/X9gyt73SvMazci43oRzelKtOXG/8cYTC8EGzgKzFMbFWEuXVs34wx04DCo+4NHLowVCRdgNtClvJugyTmGKRd/d44ne5QxIccF9U0mJB2dfzHWEbc12Em/ijmFxwJ80MsOeDe6uEoE1euBYUdqKh0GvJ9GVy7zidmZbJvfDfdp4Bxb75YcemYWIBQzAaPR2YxiGCekLVrIF6iylpaW1cBoy4MW23FbfyIv335Yls8ZX+4sj8dGEbyp8yhXeS0XtQt7Z2ETq3M9q5qQjtp9m7X0a/ptKh2LQK4WWsmudugv0wsiDFmAW0b2pp1kqcjrYI5xkvDDDPK3KypH27cQNHcE+1emCGauq+fqkMjR3PZITqWVj+kgXPAMGfgLBvpx/IWl+0x15+NirdsVAiUu2DEqZdCxKCTWGY8OEuLFjdpD/ufPZLYI8JV62WyPXMd9a+z1+SVEVNfLltrG3p7dt25ajyhnEmImSlmUH+5xONGF/0r7FnQn45FPHxhC8onvUPWEZFQB9FE3GgGzMgSnF8WeZ+cW+rL/Cev3FJ8LgYHnT+K2y4YmzYI2pTtP/0biXluW5GDwYvWhyleY5WbcaNIfy9cAKjViEHjTPyitl0XFPXBEly0URSs0FOScWVVDEfCr8LKKiTpISupPeN91GCxfoxyab/8BKmEuOnJYvfDbpf2d6MZBDZdKDW0Dk0Q7mLA1Qz62yShexDkGjWvgoTJPBfy9edSyH4VBjb2JdZwXPEnaqd71uu3ZVzK10UDKL6WopRMP1KxwBmzeU+395m6rgu343+jGib6N4IcDqTcOZsHc0Oq5Lwxrzwx9/zVx383moJMF7ep56Xnz4BlT7PiSn8DB61F9p4VaAFlXs6X2RsNs1WIty9m8MgjhA9UbkTVcOaHtl2LMdQM+V5M/DuXeWCZ+Exyz0Us9sGjyxqBs32x5e4eNe0tJK1DUdbsya++9l61lSfzgiMEn/GAZmWNw1NZFQ/4bKA/YNSZMbMhgNvvX31Y6+z2RK8Tcdg8yb38ewNxgluvpZxef/I4zhKHWYXIcT/ejpL4qGLb1BiuVogzB2/fD8Dy81cAmD5AV3nTeE8Da94KCFDdznkWh+29PXdjg7X1Yv7WChEjkZH6nHu94mjvP11tY0OajiZWs5X7fYYKXHBY9sXmcZvTT5Gjcv7X34/j5LURB6ccRi06z6ZfAP3JShCl/197PvfAP1+R17mJTCRsfHWu5KaYK4YLXNv6L1FJBZiQ6TX1eQV7+PysTukRZVfEvF+hPLr3bxA6Q0VSpKefg4OufiSZDNABlQ0yNx68xvxe13XhPgP3CyFmgTriGKoDQpQbAc8y56t5ZfzzAOfvclGcXU8f4ZTxZU0w8idN8dtYR6tlbeyNfd1FbICiVe/MzIb9WezXTnXALn5Swb3R0RnTVaeuIC2FuqBCP8O4piQzCgHi4A2wVftXjEYjqfnkV1qwT1Er+R3WkQqOR3zYj+ossRV/myCJqkb48+0G1bzV2Bh0vppjDVEO/aazXTm/YlU88vmzzc7OiaJR849H/EcM/QL426P1ajWYe5R0hsLZIeT7FCZt+oD4bjfhrx41jow22jlqKwUJRtKQDsFf5BRx1PXzZePoWPXRl2JBzBhziaEV4MObkp5kZkrngtDkDlmTHyFTmi9AJUDdnC64JwA4BtIw5CG0XHEHdGHztRFzCBu64wSfcvp2g703+9qOZNsZRNR+4zP/ROPoYWEpG76yCJ9aBbqzMnnXJR6wnvIxC4tAE7iPeEnZKuuM857EnJxa27ifIFKZGc4WVBjDdn70QSv/tPvjCabTL4rnjHNxeI5Gz4JfZKYeyV38mdiDpzrR4nbHAmkSG+NnYkdTM0+Qj4jWnC4SateBaGtuFQQl5mIlhD681wE/x4Vre4BMdhlvkXVqjQqovCu8lTs1PN9hX/Iua0Uqju/m8bRiOQfKnAlIUX0vKUt1PmuYrSvBwtZpH03q8SOjPgn8vGoLIcq9fsyGsMRjTd7JNE6lvE4tw3jt5tX23oW6IO4UAnJpgiCcTFxexMGCq+ZxfTJQYSZ44HbdzXzawulNcGU5rvB5lrvNfpZo6OZFGQEFBr6u1+JNVhjEIzlpsgkjexHkR3DIP0I8Yzq0R9TDf/uflMUGQq18mn8TGjOrofwWCbfhajRSIYq2v0FRbrmCcjorKneYYbM3yR26co2uqhLSmwjYa4/gdCaQ0uI0XCwgV+6+mO5L+mIJTPO4BbJ1nEerKDoWI/IBzdorE5HiX3ul21M9FA337dvqjdZGCctGBa99VKXYgi979YHYoJb834NOhKGrvp0pjF8idlzHdj/QloXUlvoKfFRB4sACzW7At12vphAZnLJImH86vk3dlwRb/lPUesRqNzJN2Nb13alTSu3XeErcg2/gBEugtwpfrBfn/XteCXMIeW/ds2OVVRURZUgYEnqtQ/O3KvhQAtrqMwQcGweQO9SYh0m6aVsmc38NgHbXFqJ2TOCqzz7LqCkEQFuyjK7P9epfBKBePwYYWHAGr9UpU1MHYdR/tOilJtJ4SchPyuU8zdibORJ6m9w89/BVc+4m3ckpxsHDn9OttGIkDnP+gr8gPBzptLpitHfoAZMB5y4KSHt76vY0u3uJHmmXsJ0svN6t1/gPCeAJDz4qxqX++pIxGsimx6KxsSM+HKbHcZnS0b09cpufuygCowzNM+MOzezMbXf8+/osmiqhku84LvsUD5dx3V+DCSEKzAN9UyfAp59294rfm+zRBndUUCLmW9RlUdas93ANoUJcmvBmK61xaha2DsYGE38apnFeqt2QO0YQtuEzEUqxI8qpYyp+sxKJ9P3VReuZLkkMUA9ntsbJ+V4hMJnB0nHIPnrWytmtYjIS78zlI7mrEFo12VPatxyPA96OyjLI2TR8/KRzlxgbmIW1wZFzGvrC6Uoi7Ejr3cMCUNLJlkfCidDa195Mg0Ndiax0CjxkxZz17ikknceoZjKZbi7vxcQorXxTgZZuQy10dJso7zd1mNDn3SchD0DBaHNrLgRUIWUGHh36hNcreutsx2evqyiCxt/12KnUizPt+CxZj1mkPAuYIj+vXYLHqVj7Vu75y/f8pC1ZZzfXskns1+x2mBp2eve1mTVfisvXW892zIn97tV7pZ2xjHrd1LI2k++3kSz/DXUtrP4qRb3XfPS9/rMkqmsz4UniaLPaqPFBHvc+inELqGGaLwHT6LMlz+7fv5ouSMmHjHGVg8neKAJzPdFQf35bYtAyKi73kChlRVxFa2rOtmF29Ve5o2umxwRab4GD81+1NbdaiyVWypvbR+4Gw86jevDQtQwf6Mr1d7G8/Ys+6vk22CfpPDI+L0c3Y8vk79luf5IVPXerCBqw/GlBKdTbKoT7EJlxlHBEnWPi361sLYinyItqCjUND3T3yNcG6KJzGXWsszJocrsQDf44SP5hecGZo9Brgiu7rRulbjVcKA6NVztpyIVP91Rk1U2x+ezhEArMigEtUH33cCYqC1Zj2SGItkTnYnLohzDt/VU+m3wg5G3/r+f2ypEf73JxEKZCl+Iz9hfVpntuxDz4cgxcAqNpE8bqNa7zbL7pH2VsnQePMm4XYTrLFyGWV26rdxCE+Twxj3qNZdPsjzmyG+RXPZE1RnGMy6foR3ijULXts8baFC5NISnZkNQehKMYgIGssUG8LDvn72oD35D5d7RnZTu1OtxjpdVI1EaP3QAHJALvwmlY/o+nfhG+l12iBNrvRZbvg9XZkG0eE7am/3s7300GV7hsSuUDl/DRKApMJxeX6v4lxSga0BhkGzafrypXwqIzBwPPs/R7rgw1KXWlMXueMveJ8bff8Yuqz0BQ3BrkVIC4o9CHP/I7LeXaCvmENvYcbf81hha9j6mHmfskyt9w0eS1S8KanfrMBb8zDrU3+NdnG4xpgKPI06wSIqOg/2eSThUYljNvhnrzz1eNpi2qHYWqXO4nC+ApzaNTGWL2ziT4mHLM1WkhRcdCmxb9M5j7OBfk1oX3/UiiH6xo0bki5rWk7LZFEjDCP4hSj5yYT/fn4UXAdCYUOCNqSFVGLkvxqfSRCRQOncUNwm4LB6+D+QK5Z1S3wzC68OV/3qVFMTvp7MqyGPjSBoUUGFlIPYVVlnCP6gkaPLSefGSJtpQiQo5H92Ph3cj1JuIPpV10gkKefnK9PA7/JyunSosGYl8wwTJS1Vx0LFlvxBzbwuKOMx2Mfld+t5xzbbOsSGl4A+t2fVWOpyYM7q1mT2nVy5Q7ibCrK1RXXgez5CDda9HiVY6gbEhvbM2GicLn+8y1YWorpegZy9y6zpg9jqeCVHG1fhz8avECyAs2roukfop5JLTZ7mp3T83EHAsUsjlsulUgFLDr4N7y265/FrI6sBNPVZaOqWeezPEV1zBytXYkI1sX44dhpz/ygbxfkqIlMvvSB6oxVPYInZEkYmJ5eEurkD5LjGQq4Acv2LF3NLk2Pum93AuKYjKuPPrgHj1234LjgJTS3W/8+VX8FFyFrhKQcRjqmOYqzc0/dSq7CWkOgQfRhNPmxaFXsIV/Oz0bUgeq8eALrpr+Sid/cF1ZZ7qsMU/rPpO+TfT52S7twuYWe2fyP1z5tL1nfXMpTGQwyn17Q+hIN+i2aXvxlVGeSR3mO/w/eeEGE+yAqBYX1d56hjJmLcoYYm+AJUeFmvv0TnJaRakLejMjNBG2+0WfyR5gY8ryLgSf97KA/0sMlgLa1Sk3epT3FWDP4L+LQ8LRv/oedMBnccS0/2LLMsb4qSsqUUSl2ZO4WsqIxjmmqssOEeXiJeUhUYCKPzG1C1JHyXHv21Md498JCMixF7uf5nsST6TvR6qPB4JXmzELgCp1pXUR2KCX2asyGl2iRlAv70fBILppLgPNT2XdxpwfOBtUZtsuaEc6rpOLoT48HQcT77/NGlatwKcgGmhE3vZoQi87z+eSL2kIPKwk+H2otp8uZpjxFWmk2bh3irz/pJnUzcCk/r6xwv7gaHq1jFjg2d6NfLPYa8x7ufQ715+Vl1pU2IuENp2w8PLzR1pxUhUfYcK33jxvj/Vl0MmDz824pknY/IBj08MF2MVZU+2cwiclLAbP887ecrajyxj+yV+Eu11hDA6VYwnvGXEd8NY2J+WpOimnb9dqxaQVomsbr81UnGTwLe1+faNf/Yri+xK9i70AstvWrxhVdkZLn8fJN3ubuYfV1NlifNyDYJbtc4/m8aSMwAJ7T4iyCcwU6KvOWnCp5CSYqCmrn5Rxzh8PfwALietUxReXHon5SUOJaWle8NqlCrSXed4FJ7YTOjmXzuMSrypGd3QMuYPU/Ah6R0ygma0Z09Ua77I5+cl861ziwthn4HOQXmzcQK2n1dSzzjZqkL3XJNWDj8y6KPUC/QS4aTdfeY6mqVRkdcm4U3Arj2Wu1w38Ro7hJbK1/qFLh6dnbzQwrmuCO/jIChM5ulavU6dC48zRF7EbX4i7/FRq5kP82LC+9R66pX+MDuNM8oXJmTmU5EBb0wYu2F9yzpdlWSCycjsq6Ev4O6LON2rMoed6aET/WDqwggmC1HQPPi7OydK4dszl49MsXWEqcDdCAKWLsrm9MHRt88CkySPEwPC08mciUkP2Izg0OXv3hk6MCGJV0cH88gYIcc6OQCLKLUUkE7bFlM+GJg6VdsM2Ch1DGPL3Y1ZZdJ02HMkF3vtL/8kwuZVL9/jfqfpSJSu9/UCq0FvKXM4we6YHh4J7VvTIaPXJVSK9WAKcnKHJwOwW6ZTqrBSkjz39zwVXiPh96k3+YdfVFtZbafc+jLD7I4+9PR4AmqvRTZkVkVhxfUC2D7kVR/LsJ9i+mG8NSLxpIhHddaAv/CcayGDpjZZrHJgaYCXng9EaNNn/BRLa7SM43Y7qnUvTjcROu6pjUk+zFE6el2MHLeglg/lvwdQerZa1JTrzY/sfWDSlXQ0nydKkItDyGnye5YLDqbaEnhpT9XzXQ+xGAk+sp+7iCQm0Jp8ssHEfYzKpJOy18Px7asiPR3siAbkkGAkYc/oFhgf9iaEj9+k4Of3smg4Zerjo/jYQvsv8k/6e+z2GbETXcvMj0mNAhz7nSBfijtVqgg/JwK9I5MMDa/7HX8krxZTNARpTXnacEJhwSfkTomUNAkvCeAjK6F19aB+MfL0tUz/1jV9Q+/1BUBGr66NdwTj39fmL8xar5rs1wVNjABnJZlLW01Ghr4UJ7XWnDQUbEoOf3WFnTASAH2ifOqsgfsm06RChUCvG6BhKKgbERtr2EwYsJyLbl+AQdxmfxUW6p+TL7AW8K2Yxm9dciEoNqk6ONeJ7wfcFcWhtAUwfdXld4Y6NUG5W++5oAlNjkLmRbYJ5Uick/fZJbFxnsWyUPNgo4JIL9J5sn/KAZx3K1niAsAoux7TcWCyXikQQ/HXIHcM2VnAfRfBMOwS/9kgLr2CzQLmz9vVWn+tWescvdRvgjm1Tmw0zTSLrMnsDGIaIaT0HeOU0+yx0yhAuOcOel/lMJsUURldtWkGkg8FgTtpTPoSiORe+6aWcEbJfB80GwgKXlZ323/R50YTX2485F4uDpBtrluIToYmQdQQblhVi5XdOEh2FZgCsZHA3rupC64CcKOfcaetZ2uATsa+B5gYf7HCUxZy05VnMmH7NiyqKJngfbXx3bMKbOapd720koFw36yCqUADgutk+oAD2qmoURo7s58WGD909+q9aV+MamEj5VB0wB4IjxJ+vzM7984XetnYC0xBGgnThtD8qYK/bRg0jR5Yyv2ZikVwsKvc7cWgUPF5v/l74k+Ww2/ipUcYfSvrgmfS2XOJdeFdj0qaCnrEi2DJt+zpZD4IevXYsFUhuw0pwTMYtcTBLAVslW7YKZv6ka0r3ifUuIvS1DrfbqGHbXZdSwLbcc7XEdBTMLcDqHAF1LR+1Lsn31csf3ynHfiVh83CS1ao/tn7bPifdpTL5TIt+ENKw5JSswtzDis2FlwW+BUB8b8IM6j82JRpuudeI0UQ88XQhkO9qWVM/9YTaKJ2QrBgkhK5i64JGFSnc8hebPHmKo5KZwJQTqcR9+229RFRWZTXOlyouKAxBlGVvNz3C+H1E5CsmHCkWnnORvvRh9Kgv3EpCpmrxW+CKu/8MHV/WC+zWOuiiCfxnIuJPs8DeBGbvEXZYcFXPNUdv25XlSaM2/Fbnq4/w6feSWix99XvoBtsrBLgxbYNf9wqgvzYnDYsjYalg4cUhyTaGSLUc434KOY15wGPZZaAsLXablkaP9L1VztQQacgDW8R5eJXBovziPkxbeTxtpdO9BGw++MCEg2ScL8Ogh2zC73KptcdfDCGwjA6iNcCL/I07vsziu9ccN05ewRgcGN+NGpbHSib1dA1cA8JnVCRXvbfU0LtOsdhMwpyytnIbQntnWzV/47D6nIkMAYM42J0YFnh8TUypyIktK2jvjdUD2ELJXF/LSPcd95EMXR2c+RKgcrBbcd5Az3Tn4ya7aqteZqqFvVGAAdvfES0pPZ1NZcGZjj7pcBByrYLz0iOxvQ1DLNdUhxfp8t7dC0haJr3t2OESuNzha++oaZFpsgs6s1c+UnAmkT3RPiIHSMsIfZStBV6OLkKYFmGfvFmhnbru8wJ2+emculD+GxPhdyHGYph5e+qffgTE1ORiHC48qA74Uy7MvdE04+0YTiD30CVr8C5tMrNJIrYF75Ta6Kmi6uA1L0WtTZS0LdlLNpqvj/6C0mH4PM3PzngVA61LtN2fAS5YkWSP+4d642ZRF8eUKU5wR4bkMjC2x0zg7Iy5Z4rQaUIHmqjwY1+X5ybKC+wxunO865XaLC2rZ6WYzr92hL09oD4h1FT2nQo7B7DNHOc2GXu8Fecn19Kr0rn+NJfHotHreVoFIfRbS2qgTvmfxZHUXdPquyLh9Jw44Rctfq59e6vvUQjNIPbvKgbZo/BlyCZgELvkCCC0jSU10aEUjg33xWy9xIc9o56kc8bfu951H9+6+HPJ4jEv/DhTvK3p3SmTzs1t+6pAucAGfCtoWGGHbgcfokurQCL/lDvbfislNcV+GfGM4/F85hF+BBx2HT+qxcDLmdRhpqK2aWfW2Jninje9iQdJpJZezAMhdzrmevO8qkmvQt9w3WVyVBEIv0ioKYOprY2/cisPRgLuki92x4wkDrxHPpDehQn2S87n43lYkC8qbQeIexxwrkNh9Bl87oIyp4glKfp3cZlo0eFJV9gN8h9hmF06dOW73JEE6twQPYbybHWcReW0VInPeTQK8frcuyDuc/0SigVaQZYzlku1ha3nCqBhZx7KO9Wzky5rTV32dP1NQK0tt1MtdtrsgF+nN5ZM8mH8xg6qPXxhb1e9iymiqciBakX0XbiSSzORB9UUref3UdUZ+lNWZsWOI6FZfpEB7gkK+yncph0R/NzAtyKpueKuhJx9GM7AX3TyCSw6MCXjohblJsNzWf7tCwfyDmpY6SXUUojvpIs6MafAeA6A7NmnKX7+elKG3yWxxdbMFw2uUTYvNOnprZlQyKTOPvPrmENtl/xyG1Ljd2wnlGhWkfL9TteaKCbqvO+OGw49hziXEvw2VQ/MJgI56wMoAz4vW0/CzTvhOL8eeXHTg9bFVitg9jJ38Y8GgoL67+5KKzO7fzaVT54L6K5Vz/TNalRRWi/lZ+Zm+I4aO53ZUxg5FJlO2lLyG91FGYj9ZqK634U5LD8ugxUhw4kL0rEtj02+4x4U/XI083VDwzMZFahVWvniO3ZPz+j10kwtudmRvmZu8/aVtL021osSYMLYJXBJyV7n/3RcCP28aDOKH4OjagbBszV90xHtwGu0fFxcn08lCQXh1DNEuXeNP0WtjJxUDUx2mXgTrr/YDvV4rJ4cwlXjsvALZLE/9XFdPp+slsZA5BfhcKpU/XdYL+WR6GLXqD9zcvU6u3QwHrGuW9BUpQFd4oHZZPGQyHgcLm039Xf28xrcnNGGXvBKLgwoPcEsEi2wfsc8xYgxOvLaRLEjEJ/v1hgC+Ny/lu6mostycDxrFWrZjubHqUhO3K3vvK064M8+RNkrjPFeXdFM/JK7cLdHVFf2rbyjPAfxzcBipbsEvqaJxpaZq5rI7udmaY/zNVQek8I3tQxeUUuZt/vG1m72dJdfiuUU3jOs/h2gdCydhT440h6uDlRZuHCiSlz+kSFI/Hz55k2a+nVTElXznGp9UPleoqfU4tOY7+2XnepxOsdD1ojHGRcydtgBHCICMC+ZKazVesStfA9eTGOo/C8aqrJAoeRT1Rj06dD8nBhwKNOlD0+65MzSzmDtMJ7u5UgWFP/ftbL8K7UeKfrvqivpVDXAPeXZgebz7a9QbJMlk0Wpu3nP/S+s0uavLOOGm7OtKbfuZzDAz0Ps8ibda+vDAtc09kchHUbjwzaBmw4JQHV+HBH+gSSEqdtb4GNFJ/ixyIdxIjIKuI4DQPfiM2rCGszcU0g49zuTah8HRU7D5sNlfVX7Lbgt9fcQ4/c1YGJaJIDJwjdCq+QVOMZqwF7g+xGQ9xXeqyIoJenfSt4WSexkwrr57c5LlJ7s7okm9ppZ+aaFu2wDbA+LWj6NXX6wP+0Xu2XwcvEFdD9sQrWfz1ir8Ha6ohmXc8hXD+IxRIjFP3iZOo1o8d1VQnsJEv0DzlcykNuk0IncUHVu6Zz2csT/13Z8a+lFTznwpzAykwbGxofWdyZ7nfyzpdstAWKRnjHUB9qHUNInsV/Wd7gA5l8ARHhsCKzaiU6UV5ZdE68P82lKRxXE+70AS0owScTBSAGfKYQoNWHfiVeOcxhGt0vRa8yWWjdEbfIYB417Inujv69bgiGcrxQDYo4cx8Kmvl0HCrCKzosNCPlmrYI9ZTXMtUJlYQzZ/LZOCHpDct4SlA5ebk7GwbSXnKTy+gnXv0t05DVzFPQfnpNFpZQBU8m0vt50wm4EKcBSgtlj/mlS+eCZcWWvG2cGBoO8SBuZQU3ANzgmXJSykiQSPYxV0Vdr8cNGMss0OdOIc5T+aVn5vvnktDxfn3u1tDEEUnB1LnX+QEa72wS+F86emnpyYhby2E8g8LZroZK/f78B3OUc1tDQbA7C5oxt6Oj1GAzYyaeStNEk1aSH3wmmOAUjz/ZTFqiOhrdCqy8b3Rg8/GNt5mVYLGTfaZe+Z6F7RFUjoZ8FoKy2HhF6wExSZRmfrT+OfUm6E4andlRZ8jeRzDKiaLA9kvYJ1QcRbb9OJL3L8hx9+JtsffXJ3Q+72TH6N/inLb6E+2/Bu8uXCMk+lF1LSvozTEoiW/WtOOQUPqSl+JlSlDejwHDmIMlFgsj23XypJRQkJuSytsi0I/srMHKP9vRkdO7qUC9dVQU0dUYqVi4yQ5BcxTg24LbQyTLZKcduXX2FPBHSrE3Nl8de7RdLYxV3W/V9aQ73FFesVT96v+1iTI8xHuRg2536OTX5n2P3pR5cynmFEfLn/F8uwRx25r0N9dt4BYfIisj4hXSAlrG8Iwi43DgL4ad/v5nJzaoqnAduLpGYSdRYqpMMWBzKLvqmcUruUzilVSMQD0WJVpWQx/Ofq6Q3xHYjUMJBidWaYQE9NDDzA1hV5MvPufrzC31FYbvtYu6VWu97lTF9rPruLOOj49wx0MO9q0LRfI0u0QBR9zIpEHrn5+zt4+dyrk4Cq8tkZfcPFvFGnPdqstGQr463hWlr9oDdHM8uzPEDoUOibcGdI61fchh7qE4dI4Rc/iCrFB/RVNvON6vVGUwktQVZ04cjaDLy1P4LtFPOF7Vzgdq7Bz3quZ31Dg+7BsOADrpaCMoIz0+rUGNl/XF4cm3LYJdmOri93meZGNvz2PjOoOe/xzJ7VgjJlobcWgAE33hwEE6LKxycREUW7KTD2rtvXJM5m+zLpqCoQx7d9AtKg8mEehTeyZnKiTy8+RzV1o2XndFUGrxMR69MO++CrFs+GDGAa4W1bOySjMJ/5CP1W2/fqyPl1r1NHbe8yAdyTG2MxmPoz4bNQ1WtUobFM2k1F/7BKXxUjsiXmchZoywZW9up1MmMSpZ3xGYgITnx0BsFv59xk1ZbZJBOYuRx/1FW2L41oBc4RCpZ/pohTKYZJf/KBsdXdQd5tokfTEhVKgvx4v6JDTeqGHwt2ri8bs4lBXR5+MHiJcBuLiAE1Rd2+cF0+nr9ya08PQX+EFktaIVOnSjTLaD3QEG5V/7U4nLeliMPrPZA20lsK08CDx/oGmKXOwr6f+WROKOYVpKWk++/El45VmnsuaO3S3UUtqSriw3g54Q4YC34I8w6s9HIdyAFIvkWePil6J7KudKBtgYmEBQnYSJbFMgWkkod/P2cul0guHCHW7tQm/hRo1hkBUBoLgFaxjNJsqUZk6dEk3Q1rsW6ZfgHRMK2DpLJ116m39QFTUwQ0UASG2YTP7Gn0ohUTtIdYIHb7AstmIxQGcwIuEannqNnM9SzkbZU7aTcgcijva0GPqdS5BHfEteXKPPnHYdrcv0GFCxjc0cFscPKF1UfAdqS/N4rhOyPvJG2l1rS+atHvlqz3v8gLatbquvsSdLAal6cKxe1b2RWHRTUyy58qbzPXIxSHEz6KgLTqxRhdtCJZLOQ6r0Zm1WLBIGbXbbkr1oVnvFU5P7791DvqsqaSzQXPGVVINXXcgqnWKagfSiTbDYjgdbCgGIx0PjAaq9tnoXw5Zz0ioJMfEBnBcz1qMJ9QGa3pr8nN3oqF3Yq/Ztx1wxE+Wf1l7o9r5HP+FPNDtboj7I+cZEp+JUOlXPh7phxk+VxDC6Bxw//3UoBqPLcj2WRJTV912KdN6d+hXcYdBGjWHpkrw7V99P6OrY2TGFmx3ZRVOCELib50HhvXECbj7r8zKv9Qs/lLlNObuW2938wtj7IcuNGEkv4N6y19MP9fyIT/P6+o4/Jkoj96TlgEzOgrCQ3zmZDJVF2tc+eYJQVEg33d+hNvoguV/ChotOtNXoVXDaaAxUGszz71f+2+3d6ARfqktkVXOCF0IavjsCs2VnOUAy1n09z93kd60bc6DfE4ci5YR7w8BdqqILe7msHKxb5hHxl4ql/Pgi/PWLI+033SJB7UIQsuQHdH2f1Ik5G501W+J7MrCCMvYbWHTZpIpLvQrjyrH68XbsyPmDzlGNPYW5s02cV4uO0Ov7BVqfvuwC59Ok9JJfrWySfHW2FOLrf1VZRzZ1Gk1JP42KRYeM8lvqLW4FmIYZbLbFYraA5YobDnAUzvNBkOxa1/YrDhnJ2w2fJBfKCjIX3qk3ofOtwMlXwB3guA8Ejq/cPQ9mQoX7BOhXqjegMGN8JRTb/VvKtu0+gr+x78K3XZU+tWeDQ0p/ooKefq5JrLf7phqEVmFhzr3TfOQb55aQMNzAt44vPFzUU7ENhV6xgQcyYSuxb8xNYLX0fs03voyYJU8VoYJVmh7ow2RbDwVLvOYsOnJjL8vuJtallH2EadPnE2OSkYGBQRgw620puteVRS21N0WgqVsYybhI1IJ9QKjVwI1GZTyvElTKxK3Qpw87rFxwMzAK78QfhptzAH6Vhm/1QnqG7E3g1B3/WFO4DpIQxjl+UJrVUXtodff6xLtfyxmiPyNV87gT/PDLVOUKbOZahYXy5ZPjBxp6/18ArxFQ7kwxNgVhbEsBGzQKHcB7HvdUji3gZJQI/3cTaMr0Ww1dwyj9HyPabEN5V6ITxyhq6lJV82i6CELLxO36/WkzCRoZUduif4DXVI0jYpCVOfi53QZ+c8YzeFc8p4xVwWH0ke7oTuBPPjds8tU3NSQwMyH7IqoJoOA0Gjm1vq+0M/nrWEwPUL6wZihnljLB6MQl3JlsWAw7VmlYUjmXUb54du4z86hDh5U52Okg8bLCQtPlfy8ycDK7ZSQpJWeYEQfLxcrK7HPP2TSLKslrrfoKUQe/gpLdhBq5zwxqeyjEQLIz/lacXxY1bkYqfoGAJ/dB7FTLQm1eBVL+Udmac8h7ErefHrTsR/1+CIqlvMY9bYYoAKsFzd0ZZsc6wLErEm3v8e6vS9l2ZdktS/D3dpNAJDERbg2MEdn4restKiq5lVjds0eq99EDp5vc27z4+rgaR2TYNXf/tQvFJBDvLuTXCRyPGTsOdedvacO6StwQASmCzSdnTP/XPLwMccPyJ9PcvS1vc4769JCwClA0wO/VtZW5Es1KbDnVyUA7Cn37ExIgVUh5wghYdwnyXrmDHQOeWIVFcsSie/eRdd7K3T9YFY8zIFscvNZS6792KZ14gVZztE/O+9U/HomvLkXfDjQGyzu8bvqg7t1O0P6MTrA6PAZsgLiZ0Z/yUjf8PnKohXGl8KYdTzPhbINz7qrHdPVYSRVYvOggjuuMtm9hMB5yZfsrNK24SGHCfgEbYSJ6PkaP9jKfVYwjssKe170+emHo/TytU39eb4HnYqegxIdbQGmksNPYpZPt618Xli0yLuZknp516UxAz6vmF0YpFoejUaHJRqB/HltFCyjA55fq6oprdOWVdCvufFQ3d4Cw/Sxj82xBTmKb5EctkbBYctvq0tZFydDOx2MGwAtY7VT1RqTOGmWjUA9OaYm1t6rFhsVN1L28vGW4iiLqQrGkyX1lB62EGtCX2y3XDSKojcsTcw7cyXdoQRboIwMH9XZUKCE1wyfuj3Us52gcB/KADzS9K6MfQWDi4dgdjijqePwQkLoodEQpzdnA+G8PXnLWg1yIVdkNqoKuoUbWve2674ivGNSw86J9ujd2N2g9v/3Bdqh4qUBbmwxWa21MHPO1tPhRrp/r8oRd4RSXngQDqLxunuJy35Uwo19UV6suzVZust9lUMcVdxkjshV2tQeharGGvCDUpmFrz+OesDpYYi1kqsKu8QFJu+4cap2t7tJPk7UQciMhn6Lc5FI0rSb4YzsOI1YyErKZwpZAmRJw/s/nXhD+R09adWxjRi/83vxmgoc26+Vx2484pRh5xNhy46dyZ4ah9THC4Y0KyTmfeTOMr+EN8K0/0P/VC9xAm7Ru82hSJoK8VknHsDtYl3cMlKSxyJsiPboDMzrwATD4T1kn50BAsKBqI3UsLzDZrWJziILB883zJwiycI1cTpyKXWYBXzKLoZXPOA+VciRFxFgXd75SYMrvuLv8pfvepNJ1o/5YMtYu7n/AP3xJJ0CMpQMouxntdhvpI06nF8ytmgq3EjvbTWp1TTTq+PuI0cKFpGpisoFslOA2qCYlYqwfIcomMr4Bed66ysVaXMBL1fe0ga4tK7peksFQ6GBtKaSqrgfa2c5CaXDs9a8mBAP9xbbGGj46Y+uS+ELKHYkg97KTqeSmfqbF7JvQxYlhozNpGs1eUdTFRbRm6yW0uR4QI4OZpMij1aCd7V99WJX+H5BDQd3sXQd5Xfzg9fDxcznbBa0OklIm9rJTlbPuPBe2mS2lmkLZzJBbbi0NiwBFOZkoQdYQ895abbGpb2c84MTjlWaPUfmNep9TdN0xI4LM8i4l1aTbwnCREpOKz5uyA52PEwBv16QpWhlsEMmz36cT6dGT8oDQ7jwxupdUft50JNMONRqYD9eSbVnQ5K54QZHaarfwUcC3a7Mj6Q3vs/ru9PdWuT/NRBhFb30WpkjVnTuIuS3r4QUhI/W4vyJKE7cq/r5lLrRHGZaFyRjEAVLpGFAPDmozoLx77tSF+1jPx5qAxLSkJaiwweHXeEQI6Ye/G5YXJwv5IaaLpUJOaNGaJ+/ZrRD2KWHN9osQgOOZ9ulGMP9odnBRufOAmkUwa2gHvjuJl6JOlsIyjuXoq9+XSaCVZxpGpNjEwmtM9/F+SvCIUajsM3i4loRouww8N53nUP6okum5cshL8CKSloj0YGmy9k62GTUR5xLu/lxBNCwPMlq9+D/2LjDL7bErM4YddhwrGud+5qGqtnJn+WDXg4QO2ykj74QYMBTfv+MSGzCH6kDpbU0dPXUQpgPBH7XC+2xAkMEl9VwKSyzA1ABu+O/v4qbz2n9e1DMq3Y1QYIOcckSxZ+hluBNbtx08I9xuISTXiCeZXTTOcao8FWH3JdM5O3URw3CVj72QzCmoJ1dg1Ytw83HgwIAYAmvlmAU3xY24RCALVtDY+w/xo1Pcjbbx1V6q3vxxtR9WV0iixyAR4xebJGk0kCf1uXTJXOZhrFgsfwv0woXOnjJTaBOrlNjGuo7anvg2rO48T0wE4UyMjJlRFvb8A7Z4doe9asLfpUm7EZYiPRIGQZ9Lk69VAoXakRibm0VLy/Ctrlhf5Ye2Pqoq9e9uKrsUeqasT5TCcZITV3lV3x1MufDXENh2kTVLPX1tUUSMaWYnNvxctr0FerJ6M9yB2/tiIH6dmJyq8gQhfpYu/Qr5ES+kk0wdO8I9WNfnKhE7m5TlJCLyp35Yh2cTS5H63VCdWCj7hRY7Li2Pq2SfnNpAz21TPQVzewG4TRzxRZKNM0pkxNWwZSNqXsnyDckkpx+mHBMDcDdNWfgh19sIkUHqkBMaB0aSUgh0MSjUfCct6LPvTzLeKq9Qtznom9pZkB2LmRUozB5+q0XaB5jAyJgzl7+HPDCL/4c/Ff4FrxbVGhNazoyV2axm5c4B+oFhPVrdh2hXRaoZc2n2NhOFmvR1O1tnww4PZNhEv+VJ8yHn/E8OYvH4zV9JZZk1dt0k1Oti7MMwAL6wFpEQho2F3TcpudoITFqfolqXz3scMxRSmbj0j4W7a7gb40tq0f3cEFET63sRTDAPgZom2TGZZgSWoiR9eRAC+pKLe0a3op3K8i64d6r5k9xV5U+6+Mp4ScDL++K3ScF2hJG60VdQVURTf2NXcYioqw5JHIcSU8w9PQjEpBZI8+gNNEtfrvhODwqqSlfQpXnzM030prwwWhO0yWAxU/AybDYzbjxVaOKkm1UoNkp4hJSZElkvq1cOyDo1foiEaLcHYV6H+mAQCyTPTcyf258YaAqBUrc/HkzdSRKzQUneTbKUmz7jcbOqTkgZhY954JsXyapdO3F2faUFOFshT1VccEZaP9s3Rk1i8gsjEazFzYgMKG8hLg4+Ybib8Aq9SA7C3AxCjRU/Ko4mfV0dYp/1ELS+HRJwbi89Hl+PRx6TTT5DegSlqHJIhJL7j0fXeMT+UKibnG0FKi2xyfn/ap07hofRQjIUbJaEw1jJYfOPZvhed25hPfEdFDqEU0WswJqX5lLcARjLJryqSQterwMfZn6eKG5fIKKkdn/1vHvlz33sAP14IwOBsKEVEdbU4JYvzWJXpChk0JnjBjjxmU2TExPy0LBHVtdwBfGUrIgco6zstJWpSVqGaPDfX60T02VBeQprg/UPFIjcM1B4ZmH09aCiP06ed6xI4CCkvuzTdn80rpJeCf0rQs7iHABsm2DOKQanIUxIVVKl8wSBEglA1vDOvWIKqT/8dyIcCHm43AVM++K6v3agW1EIJLIvO5yA0APgeCqEBTyxVTt/594fyfH2XdUg1dNflWWTqVwsf501WFHEL0XYLARr1/x6Kx6T2aWbF8e6iXL7wZgRSP6B3FI5bP9r22X5sb0nMuh1Eku10OjvtEqCBb43TKRL3oxdYOeTOSZgEk4UDjMM6qgZ4o+Yt9bPmdPcekuMHlN/7C9+3Da+KMUBvPLC2bgr6UFOpDZgfieVQURDVOylqDJf8lpCDOkyHQI2m5/LrILgDsHcRg2dzJ/NYnyTk18Rf9uLOmbURiT/gtFm3ap+LivARY9VbTA8SMbN7C6sWhf6lEG11OmqCE+L1X6y2dO+6SAMG3/He2r+JjdYBhThCbg6m+XCuxNLPD4SKBIxWpzu7W+sWQOBuwP5oq1y7JaKrWW2TOy2bhA8WQP2UXYoXU7OIv7BWLPDJM0zzK9QYLGuC2jwtcLCr7ud3Y10XqU6ZcSk9vYGZmGqr1Ig1u6v6D+aqvgxhuGnBbTWP+VpDMFQB01a/pvUUA7A84Z/P/Q4KjQfA0H5ZO6+YF8aqwQvi8BhvRlLDUncg10zypB3uwNHkbfX0tZYDthCNZ/FACZ2/DA8K+sgH/ijeD89bog0qVXBI+Y+yvWGfelHPYlxxR0VjmGmDwzmvJXW+kt+4dxzdjfZ8aha+w1jONhsOiH/d7Sc+BzTYmri1/iZ3oDYAdd+4XqlFpkXzSG+qUZiQfCg/0vdnwpVxBGoZtRvX9oNJp6XsgyZeSwnbRIEchL3gvCMgf4JLkjlQ3KKm12zjs7O7DkL0j5Lvt1MEG/CAuHqOBzC/G3nXtlHt8dw4WoLyeEiUsouF5Z6C1cpJmdYG+l+naLzml0K15RXa5kn7COFqdO2pfChOM9gF4yvwdbblrmxo6untVIC9/PfNdzhWurRh625IFC4bjlpgg70zbkXRswDJ5PiLvoUMzXYl8oyuFyUl5oh6lw0ZLAkXtGIgE9KwWhv1VKrZgBxdUR17+/u9wz+3in329705G2fkQvIEJtk+60E3UtdXJPLZmpy2BViblDh1bmUi3WWe08TtoQ6ORtappnVVClJlsRuaQKeoNZ6g6HLwnDnI3tNehnTvGxvaOzh0QFjqVsjln3zN68NVo6TR8eXZoX4lfMFSrKVgPOx4DdPKQMmoyIy8mXsg9xzN4FBwNXmVLXwfnRicyfwLpIBovJN+orY/TvQTFMen2V0k57BeDRpMUp62Vj1/siFe007VsXfgkUeEQQHScDquDliEobtsaG7iX9ExAxiDuqzNdPtEQo8KEzLRzfFauU36sajMYzUDM1zKjQQ2Z6N38tuALC/I77weCvIpOPQ511m4UIG/G/2TwcT+6tZfinDzj8WEpB7VIAf9XyA35Rg1JCDFPBFAYj3b7jRghcN7WS+5sBo4iCQGfAkyip66xLnLoSFSxWT1zkzyN580U6KBLw9WUCwvSDlVGnbWFC2HuDxuYmFLzKd7u40ZItuiHgzI/V4iuz2iCHLitIIzeJeZBZJOysobTDDmVmRmTsWmjU5hkKe/2bhwshOdsjF8b7RgR/oTRsrGuvPmqZlDdDxhHOo9KLgvwmjGfrr3k92Vt3u3P3Mzj80AvPpP4OWyO9F5bX0WTjt7wt6UK9oGLaB5CuKnCK1Um5QoT99aNsrX6sKlwxCN/aPKt1HFO+HeVV35XrGkXuHrOV/G8Gqoz/PoiwKSmqvbFXiOZlH0c/gnhujDiWwNtCmZ6YlhZMPlstFsMGwuCXmQAuNNzkZtHSuCpKoDlL8nUBqKr+W5yauw+r22nRrihlmSAuzAe1FciIF4Ac9R8XneERwTab87iIWaT6lgFkT7uw1iJDHZv5M0jJF3T2RnhEq+bDMncF28aMASFHA+zuGf8Bxhl67FToRvjr61IQ9l8+pWvunbI7a8AVkVQ4yLyFZ4XEyhMaLq28M4s51PXLPJRPhGpU0Ge3DP668kwaH0qXGKiJgzwHtgPKYcsAmogGax/5PgfJY0n/j0T6u1OF7shhU33dkG75vHwNkkb6br2zWanrmHIMUm9sWoa/nK6aTWHz9ENcuoxPNEBqMtjsbxFWfLNBxSZ/QtD+9oxbHUTN+CU9qHAzYePySsI3ZT102dIwBO3MQrBFONYo3vVMjDrPPCeUzz2WzVigEVfz5TR7EZBY/ARycqmyUtc2RBb50fWK1bnUk3LDdXZqC1+u1UhIscQPUU2S+kPi2iDWxIyhVPNX9obhU1GxGX86/6/mA1SOjMsF2LgND/3h7i6DmrDE6R6L6i1DW3L5JDQY9gr4KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvQmFzZUZvbnQgL0NNU1MxMiAvRmlyc3RDaGFyIDAgL0ZvbnREZXNjcmlwdG9yIDI1IDAgUiAvTGFzdENoYXIgMTI3Ci9TdWJ0eXBlIC9UeXBlMSAvVHlwZSAvRm9udCAvV2lkdGhzIDIzIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9NMCAxMyAwIFIgL00xIDE0IDAgUiAvTTIgMTUgMCBSIC9NMyAxNiAwIFIgL000IDE3IDAgUiAvTTUgMTggMCBSCi9NNiAxOSAwIFIgL003IDIwIDAgUiAvTTggMjEgMCBSIC9NOSAyMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9CQm94IFsgLTYuNzUgLTYuNzUgNi43NSA2Ljc1IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0JCb3ggWyAtNi43NSAtNi43NSA2Ljc1IDYuNzUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvQkJveCBbIC02Ljc1IC02Ljc1IDYuNzUgNi43NSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjE2IDAgb2JqCjw8IC9CQm94IFsgLTYuNzUgLTYuNzUgNi43NSA2Ljc1IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0JCb3ggWyAtNi43NSAtNi43NSA2Ljc1IDYuNzUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvQkJveCBbIC02Ljc1IC02Ljc1IDYuNzUgNi43NSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9CQm94IFsgLTYuNzUgLTYuNzUgNi43NSA2Ljc1IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0JCb3ggWyAtNi43NSAtNi43NSA2Ljc1IDYuNzUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvQkJveCBbIC02Ljc1IC02Ljc1IDYuNzUgNi43NSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9CQm94IFsgLTYuNzUgLTYuNzUgNi43NSA2Ljc1IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDExIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMjcgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIyMDIxMDE0MjAxMSswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjUuMSkgPj4KZW5kb2JqCnhyZWYKMCAyOAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAzNTY2MSAwMDAwMCBuIAowMDAwMDMyNjk3IDAwMDAwIG4gCjAwMDAwMzI3MjkgMDAwMDAgbiAKMDAwMDAzMjgyOCAwMDAwMCBuIAowMDAwMDMyODQ5IDAwMDAwIG4gCjAwMDAwMzI4NzAgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzUyIDAwMDAwIG4gCjAwMDAwMTAwMDIgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDA5OTgxIDAwMDAwIG4gCjAwMDAwMzMwMDEgMDAwMDAgbiAKMDAwMDAzMzI2NyAwMDAwMCBuIAowMDAwMDMzNTMzIDAwMDAwIG4gCjAwMDAwMzM3OTkgMDAwMDAgbiAKMDAwMDAzNDA2NSAwMDAwMCBuIAowMDAwMDM0MzMxIDAwMDAwIG4gCjAwMDAwMzQ1OTcgMDAwMDAgbiAKMDAwMDAzNDg2MyAwMDAwMCBuIAowMDAwMDM1MTI5IDAwMDAwIG4gCjAwMDAwMzUzOTUgMDAwMDAgbiAKMDAwMDAxMDAyMiAwMDAwMCBuIAowMDAwMDMyNTY0IDAwMDAwIG4gCjAwMDAwMTA1NTQgMDAwMDAgbiAKMDAwMDAxMDc4MyAwMDAwMCBuIAowMDAwMDM1NzIxIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMjcgMCBSIC9Sb290IDEgMCBSIC9TaXplIDI4ID4+CnN0YXJ0eHJlZgozNTg3OAolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2022-02-10T14:20:11.157645\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.5.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "probsol = diffeq.probsolve_ivp(\n", " f=f,\n", " t0=t0,\n", " tmax=tmax,\n", " y0=y0,\n", " time_stops=time_stops,\n", " rtol=0.8,\n", ")\n", "\n", "# Draw 10 samples from the posterior and plot.\n", "rng = np.random.default_rng(seed=2)\n", "samples = probsol.sample(size=10, rng=rng)\n", "for sample in samples:\n", " plt.plot(probsol.locations, sample, \"o-\", color=\"C0\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "least-attention", "metadata": {}, "source": [ "Observe how there is a dense gathering of grid-points between 3.5 and 4.0. These are our events!\n", "\n", "The same works for e.g. `perturbsolve_ivp`. Let us compute 10 perturbed solutions, so the plots look similar to the samples from the posterior of the probabilistic solver. " ] }, { "cell_type": "code", "execution_count": 6, "id": "hollywood-sheet", "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovTWVkaWFCb3ggWyAwIDAgNDc3LjEyODQ4ODYyNjYgMjgwLjkxNzkwNDgyOTUgXSAvUGFyZW50IDIgMCBSCi9SZXNvdXJjZXMgOCAwIFIgL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMiAwIFIgPj4Kc3RyZWFtCniczX3LDi07bt38fMUeJoOzW6Ko1zCOEwMGMrDdQD7AsZ002g5sA/HvZy2VVCWpqrt4Bxe4bjf6Hl6e2lV6UKQWF/m7v/yH//d//v4f/vav/uLzX//ux++uP/39v//wnz/8+N1/8Z9/+veP+/wB//2Pj//81WdVcp+f7vPPPzTnr5eipfLPf5z/LMV9q8/VRcjd/sem/b9//PgX/Nw/4Tf+Cr/xTz9+SPjG/tfr19Wmjl9J9Vt38R8XcQ7fPJ4+PWQW49f+ER8mx4f9E37wDx//lYjv4+9D9EPDt/gaall//pKG69d//AVe/T9+/MXvf/zuv/uPD9+qOdXkQ42f3//jD3VfddHHoE7lgxf14qSEXOvn9//rx39y//nz+z/8+G+//3G8wQ8v+q0luKDLT89i+2978d+YSi41p1zvP+63HxeXvl5TystvT1L7T+N3vjmICiQ+3n9a9p8u+Ru8C2777Un8C368YKZqckm0Rn//8bD9eEjlqzlUDcuPz2L7j4cUvy7WVEuJpdx/XLcfV63fFHLc1tol/QVrTdNXJIQQRUTvPx33QT83SKhf74r3yrWW79LXn85f+QT9Soo+x+hLelzd1w9WrmeHlbn84CU1/WB1Xx9yiS4m+RMr+vxBH923YBem9RMnseknsRG+zrsoMbnsn5fyZXawczJ3wPqVk9j0m+L8t5QgzmF09XEFT7+Z5Bux9rapnMS234z5i4ksOaYa07pw//Uzfq4kSelct1oED+AihJVS/Sb5/Ns/fP7n518+8vlr/Jfnh/sm/Fc+f/tX22kzW9f5E/gcWgA8MrkvdoRTfkKEeeHe5P6oMBElpQCxx9AWn7Bn8VnpG1IN3Dce9l9hEJz/FP9NKUnOPCD46cljn36waVNwTvkQifjNGnzNnxi/Huo5QRzw1Smrx1LT+M0laWzSDFsjHtMAqWIMtDRx+QYntPkU45XcEGfva6I0FMUoNik2mviCl6I4SnW1i2PAsaVNLB5GoYur+uzbo6Hrj18MGJ7o0/F6Eiu+potz8lHbTwqOX39o+y8ewXUPMT4Vv97FsfhQfBMnLDjfxRXGpLZn+xDxhyYWHG548/Zsz22oXQyr4UOg2OWox+eEgN+HVnu2U+y60sUYnZpKE+NNw/EmCh0HI4oVBasQUx5ija640MTYhal0ccGOlCbFonSHMr44O9hRinEKcn0e4lRcjO3RJeF7mxQ7G4v4eEYJ1WOAD3F0LmAPUeydqO/iehxMEOficcQ3Mc4r2FyMA8WYyaBdnAMmqj07Y3PUtqJCwcnqcFpQjB2Iv9nFUSsO7Sbmq/ourtgXtT074e/1N6lc5xjwJsZsZOninPHJheJYVNu+gRvy9TgbtT07wjuIqYsxqTG1YcVrqzvE/utc1eMZWM7H+EGqx1aFWLNi+XcxLACPe4o1c+4oli/2qIT27YpnFO3ipPVQxn4V39YIrACGw6U2rCHhABxiTYV/k2L1roYupnfj2qODh0FoUpxDBeajjaqMt+AAl3wsBVgYdYcu121JsT1YQuqLD2IcYjG3McWaTc53cXc0Ifb8h2OUYGmwmV0bUx9r6OMBM6+w221MsRtKPj4crnEsXEYUu8J1eIgxG/g3FLuCBTa0a8aZ2MbJxXK8NYxLwanenuywg5J0MWa8tgc7PrgJ61dwpAo+PNCHLF0X/oXPGTaM4li5tyHGcegkw0A2MZ6YulSbM0IhdvCxlHh0cvbbk3EWhGOZRp5JsJPaxEkk1y6GIQ2hPRmvATPWxAILgR1Rm5gmboi1ZBgginG2HD4BxdjGrrRnw6n1XTvA2Gaad4rxqpK7GI+ovr13FheOCYB595JKaM9OMH2hdnHkigtNnPXYi5DW5vxSGH23npFmOtG/o1hgQaSLMXbwR5rY4XHHiMCBzkmlPRlTn5szR3HEqLVvgSHz7QSjtMISxPaLMeQcDuUMU4sZa4+GsdFjv0CM887VNqrKlXdMWIGpxXnXRlVx4kjsYsxSPdYChtofR1isNMcwEU0sGL3UxRojDo8mhr30uYuxYRhQQBy4oNqQ4HQWeAy1jSoWZJAhho2Jvn07zEzfMgmGpcLUt2fjqI2H0YIYo8eDAWLBao1DG5YCzmUTc7kcYoGxxT5tzxaePqGLM9cihYG+XRMGmNrojrWAozRG7WL8E70EiGHT4Ed0MWxkiW1Y4T3Ise8SrAzcjjZ8eJ9ynLCJBwDM0yFm0HN8Oc9VTa6NKmbA91/E4YPRlvZoV33tj6ZfqRraqMK1rH6IFZ8V26jiHKjH1oO4wILm9myHE+eYsQTXTbEy2rfjYO5OB8SwcDA1HxjdiuPxeEb5Opwikpo0h+PIvGIeSiOPeoozXLIcPFYAxFzL7XxQz5V7jJOnv0Nj8McpeOGxAovfXuPH3yHe/+vJB/w3BPw4I3vcPct//CscVIf/+M9wC3Pm2j9dQxwo2ER//8+f3/0P9/nL/3uqO3oeKbT/fH4KwyG6tvifB2WcvkNXoYwliQOw4IByT9qwBHA2sDdhNOPnJzwBWAYcdzx884M+5gibBA5KZvz1E38901+AsZAndV4UwKJgOLEZ8HisB+6ikDElz+qYDxwqGPzEt8HfxjmQMDpP71IYWME8CDfRT3gMxdFA4MUeHo39gVeGsYHV+Ol4tsExad7V04DDu6vYItxQUHbYzEovztuUMTjYzU/v/KCcsLThhtiUFUPBc9ukDOcs8HNNyl4xJ+FpjdyVsZpS84RMyiVgiRmHzvGsSsmojG3Ih9uUYTEc1p1NGcYUZsw2KQhhEWjAgzUowyPxCMjUNHRSc8T/i+mdBbuywlV92oYPyrDhcIhM40z3V3g6mXQ9Qsicjd/n4EJE05qDy8vI7tEoPShnbG0sDpsyg0NYSZsyHDEe7TZlxhx0qEzKDLe8cf4K3CDexpmUEdYXOEi2cc405jXZRgPHYUHganwyjtAoth0oPJcZYdmU8Yd2jWRSpiWAq2dSTtUdPqJJGYvZ0UU0KSeYZ+s4J170hMdT8EEZRyxvuWzKQitjO354tsJzthlcgdec/PM5/6AMrxhur20hRcQaPhvHGc5+5F2XSVdhYXAi25R5Qccg1aSMQx4huW1OIlxYOCs2ZXhriI6Nllzhp8F22KwXrS1tgU2Z19XeNn+MCHw2LiOEUwg6jXPCG5wYxfjKiEgQbdveOdToFMG2TZnnsBp1c7PktvlD5MJValRGjKzeaLsC9p9P1tcQjrLNDRUYcgSSapsTOFO+8g7IogyfIHlxNrOPg80VjJ1NOcXk8X82Zd5bZLWZIwbSiDCNrxEQc+Bv2JSFrqhVGd6tj0ZDgK9j1GGbFBhF2AFnW3Wed6HRtjTgWNagRi8G40ZXxvhk2JicjFbDY/HD2TeOHN4aG9y2jrznrbTxwPSO0aBtsl2pOdhCO3GZlxC22UNYRzfN+GAc8QjWjcqKIXbGnQ2rTC/GNm70LKNxXTiCSWp0ShAFIvyyuQMwcRg6X0yv4SvRHLEZI2zV9HzT86CaEJZrML5xJOxoGmNfNfP6+/EWZqjiJP3ZUJuAx/rHCVH3PZXl89N/NcFrKI+LkzhXlv4fPpnoVSlVluuPv/nxN5/fJNCbG3zUgd6U6scTYMLKbqCLz+WL40i9fAqv9xDrENFN+mVYhxgppW8o7QpuwW4JQ0R6Fyt2Gz2hx3xcCp/YLaW0FH7FbiEuMYXjhvbCbiHO/JGh3bFbihH1iqzYbYNJtGPLF3ZLsfN48xW7hTiG0nHhC7uFWHFcyNDu2C3FnskhK3YLcWCG0oB0O3ZLHKfg6/2K3VLMJSErdgsxPETtzz6xW4od4ZMFuoXUaZKOFg/oNmIR45+O+/ALuqWYgJ2u0C3Rp8R7qhW7pdjRoVygW0jhdcQwEN0O3UaCE/WAli7kllJ6E2FFbiGOOWgdWGxHbin2vBtfkVtCZrEZuQW5pdj58Y0ncgtxOC7uF+QWYimYyAHRduSW4uDlGNULuYUYToKEAcYeyC2lNDN5RW4J9DUMeUVuKcbEHaj/hNxWYgED7jyR24rtUwlVrcgtxKr82hW5rQTyyoF9TcgtxKHdz6zQbcXU4M+ygbdEFpw/NuQE3mK35UzwdAVvISYgMjDdAd5WYmK1P/sCbysHJ4chHuAtZynnsoO3tEa8R9zA2/qFtUkdib7AW4ix9TqqfsG3MB5JYn/ICd9Cyjnb8VuYX1qDsuG3EMPidUzxwm8Lc1t6WsIF4EKKICMPWHcAuIVI7UB7LwAXYpgCHeIB4BZCQDztVwCX9jGWY0dOAG7h3xvvdwG4NNS1Z8tMAC52EALNEDYAF2KBMR9I7QBwiVbBkKQNwIVYqgsbgsthF87GiuBCjF+KQzwQ3NKWYt4AXEi17+oLv4UxgIfghnTgtxDD3nVE9sJvC1NlpEPDF35buH9q2PHbQlywhLLht1hZia7Rht9CLDBzuuG3+JXiqhto78BvIcaA+Q2+zTyv8pEIMcG3mRuilh2+hdhFPUZvgm/zl3fmHa284NvMSe/5LBN8i+2D9zzg+RO+hRAT4wdOO+BbDCTM93FST/BtZvJVH6cJvm3DXg6w/IJvYesxyUeCzwTf8giAMUwbfJuxEnA01A2+JdjqjuySCb2Fgajdmk3gLc0Gw8gNvIUYliru4G3+cscfOScTeAtx6PZzAm+53orfsFsIeU8oG3abuLlyc0Vm7JY5DCm2zTVht9jYxJDjr4jd+l+C3S7KT9gtDGl1wz9etBt2i0VN7wjqFSOJIwl7Nw/gY1HPdNlgGXHS5NKg2+bEeE7W07skzFyGRU9CdaFnF7FEooy7uEU9Nci+wJJqQ3qxKgMMZ2YG5uOwbEFDikIsVNWkDCuMxT0igTfliO9I/mlMHpSJJhe1vTOch5ZuYtLFWS4hPo3dg7Ig3FLbG8PHwUEanlbIgzLsl9BUmZSDwx4LtlGGgcBCelwbD8qw1DE+LtMHZdiAIiNOfVN2DXcw6eLUFGZH2JQRGsJ0GJURrMFwm14jMn8NY2GawAiPFUeT7QOJ+SEqMw1cLMwTOhHFN2UCFI9G6UEXrhb+ZHtjnAS8xDdZAcLM8BZs+y/m5rGL7Z3Jq2n+rkUZz8V0O9sHwqPS4tSoHOCCqW3+koMTBANqUo7MshBnezLMJ871ZFTG2YjwzvZ9DLjkvFV6U4a5jSXaPlBxhuI9TNYoMoEPrqZtHeGwxflt3Nrw0/FcZ3vngBiHmTU2ZYcAxdlOwIjpw1Fv+z5h8JSqUZlpxF5sygzYYzFuKp/INMq2RecVrokzLg24WAn+q02ZaX7phCrflOHEiDPuVwcX0tnGwhGgUG96rtaCUCR40+dhokP11ebtICKBoZNgVEbwHk5Y+kWZF7U52nw/xPMKNzGYjIYWZQ6czdxq8bSLphNCMz6QqYc2ZRwlkTGaSVkDfK5qfDKTZ8W2PpWsJ5gB28ilLLzTMyor71yCyQ7gJCG5zTbZ8KQydG3zFzNCgmAzzQjurQ6oMjMlFuOKg8nIosZVhDjGwW7Z5prL3rlq+7wWdDuxLTno4hurbWfDbsmVKfqmnGFvo823xfoJcMn/RBh9U2bKarQdPUrkEYG07Z3hviBAibZJIS0LXpdtbYjyjcW2W4n+Ky++TcrO85yyvYYvLtVqO3zUI54iwGpTJnHC+s7e5xLE5sLgj/i6bHOO1PEmNyejcuQlli2KwJnWLhNs69n5yCjQ9BqhVlLO1KiccQDFRydth1jJ/iAE+RiZbxArk/+J2Il/XNAbyOq/ideyOF4XB/e3C7K2m8oOspIDSpCVGfLtfpUgayQSlnj1xVFp949w6BoXSkg3CC1BsGGvvhEK4d9EPI4Jxyv0yltXZZLuCr1S7JLWjTabG8e85hV6pRjB8MHpm2iz+euxb/zQHrRZiOEGH1ftE20WYncQW2bWbOZVSeefTazZ3HJyZAVeee9afDmQkYk0C7HKoNhepFmIce7IBrxCTFihP+QizUKM07IM8SDNpm/mDb1fgdeGXxFBW5FXit24GL5Is6SqOJc25JVihtVlRV55i0yCqK7IK8UIw+POmk1E48pxez6xZrGusSY7D/ZizUKsGgaXdpBmIXWZKc4L9EroDm+6c2YJ6MH6hBV5ZW0E/Ouwc2YhTi1iWJDXVkkBOz2uyCvE+KfjEyfKLKSE4Qc5tlNmEy/3w86YTSR3urDhrhTDWp4A68BdiStIDYNI23HXSFjRDyB1wK6QMljzG+wKsSNpc4NdI/5JSycFX7ArxErK9ga7QuywmgaQOmDXiPEKx86dUFdIQ41+EGwH6gqxaynRK+qKdYUR72D2hbqSkA87OLixA3Ul/JI6KfgCXfHbiFwOWGkCXSGGNO+gK8QYkTTEHXSNhBJrpyFfoCtJ/dr30QS6ktQv9dh1E+hKVj9OyMGl7aArpFrjkZQwga6RptYfEPwEumL/0TXYMFdy+plYtGGu5PRj9w3xwFwJXoWDdzdjruT0h84FvSBXUvol6xAPyJXTLKHunFlS+qVb4AlyJaVf+hRckCsZ/dIzBCbIlYx+6StkglzJ6Jc+BRPmSko/plVX0JWMfiU+s4KutGmxg3UT6EpKf3KdF3yBrspsEX9AoBPoql8C/gOKHZgrpFp7XsOEuZLR7/U4CibMtReRGNoDcyWjP7o40NUBuvJgzt0CT6ArxHjPY4dNoCsZ/cN4TqArGf0wHINKO0BXMvqJA22gKw4FnE91YLEH6EpCv3TkfAJdSeiPHZC8MFdIsYBlILQDcyWhH87CRpkln19z//ALc9XGLzwM7YS5ks/v6zFfE+ZKQwUb4zfQVVnwIsmOupLSH3r1jgl11ba5Dxs3oa6k9EtnYU+oKyn9qRcAmGBXUvq979znC3glVMgFugGvgflnua3slTTL06btvIU0Swe3vd+vBbzKLwFeF+VH0ixP1sHYWLQP4NXTVGKTEXjFgml29lGdwKvHsUCgAG4zy69o1JgaDH1XJ0SNaJXEfnJguVNJioUT5Z+0Ma7O8zY40SXHtomI2MoF+yzaTBRMcIRwgMCY/OS+VnpLMTy9+FMw6GFZxqXQmzL8HKyPp/d4UMY3R6k2ZTiDMDf1aSYflOnhMXvEpKw0XY8j/aAsOFVKMr4z3gPuRrIow6dKqWo1vUaoKSWW3LApKwsFVeNrCHnh2fhk7IlkW0ehNGaRaf4Qv2JnFWd7Y+Zw+qCmBQoLXY66FSZlx2TBgR++KCPUhduXbfMHg8bDy6bLDAw6pyZlVk1zVmUapRNlf1FONRax7T+mGTLWs80fPKlWvcekqyThVdvAJSHNXmwzkvD/zDkwKUd6NRps7xy5ofyj3X9Q1qq5BpPlIn0LxrbY9h9eobhk3CZwyeDPZ9tsI95r91g25cRo37inGEHDo7dNCms0FjWuDeK/osn2zqQuRi+26eYZnk6s6k2ZOfkh2kYDL81I17aQEHsyOcc2dIGxQzAacmHeo0TbBzJLCR9pW0gMHFWMQ9euycR4oDC2JP5jU0aIGeujM3VXhm8v1fqBpJz58OgxPignksmS8ckYuCretpBY0TZ6o0MAnxdebrS9Bq/svfF0dXCgMdK2wXCplR0wvkUkZGVbRjCMLlvXHLlWRYz7xGHBpWqyMMJoPASbw0OeMUKyanoLrM1K18v4ZF4ROdsoY7nxKlFNxyvCJsVb2MwRDAxJe7YJZF08bFbjayBIYnKTaYEiQE+RApuyijhnO4sFLmjhvZFN2TNGFdto5Apv39vcGLxEhCuTbe8MlzVIMi6kHFmdwzjOWM4Kw298Day6GKzKnuR5mzeMqECERHSTMlxF3t/axjnl6P7ELcSDcvKxRFu8zdsw3uPaFlJCkBSSbU5wTkUGjTZlIjEnNPmiDD0+26iM0E5ZcM6kTBZ6sI1yjI2/Yfu+yMyD4GxTEnn8uMelv+O0cEARRcB3fvq+GxUWK64w1cU9rf0bTtsKR3hy8yft3y5O6yacttWzxuczQ7Nx27DEv3QV8C2F5RTDQcQUT6AzNC4sr7vbJSsLPhMSS6x5zCuHg8Wa2gX6AZ95rfmgqkzgbWoVEg74bKl5zIu1g5Yy1zyuR1LHH7eax3C5nQ7xVfO4lJDDveZxYYmfQZC9ah4XbI9O2pxrHufS/PkVvY3EmTpVcql5jH+f88B661nzOF1Y5VzzOJGZtcO3EJM9usO3kaU/U9zQW0gJlIYNvSWYluMobTzA2/jltXEdUG8HbyFlQZLBjx3gLcTie4HUCbwlQlVDL4R8gbfEZnK+gbesO50603QCb1l3WjuBcgJvIcZP573kMcRM2B2A7EBvIYZjeGBUE3wbOUkd8pjgW14Ft8zcFb6FmLlbusG38evokA2G7IBvCVLVO34bW1GCo7TrXPK4Vic3ABdiHGEH2W8peYz/9R0+nEses3LbveQxtlisO3EWYkTuvSLzXPK4sAHDveQxHJHqdwSXdaeJOmwILlGq0tncS9VjptX1j5yrHid4971U8Fz1mPmkYZQ3vqoep8ZHWhFcglSscLIhuBDzDnaIr6LHMfR6uUvNY7oAefBjr6rHSi7xKIZ8Vj3WiJW402ZZdTp2mHVCcIlSldDr+V4ILvEq3xnrF4LLqtNxoJsXgqvNCHcW5oXgYjKqjHK5F4TLwtPHNp0AXCWLUP0O4OpRpHYHcIlRlXKyYweCqw3XDXvVY2JUOeeByQ4EV1mOthuoCcFl2encCxJcCC4BHATfe9ljbfegxywuCO6gDK5Vj7EIu22eqx5XWMGzRPJV9Zj0miOVZ6l6jKUufajnqseFdefuVY+xvGu6Vz3GaVjrqGN8VT0uhKUGmfaqepxrZ6AvRY9ZHqlzR+eixzyaZYivoseZBbH8BuAGbrt0vMhS9DjBCKehfRU9ZlCgO2uWpwiL5iwALgtPl6KDHnsVPcao+w6zzkWPYQCTvxc9jq0c1gLghpbIE3YAt7VWSH4gtVfNY+yR6EYp5KvmMfM6++jNNY8VS0EGP/aqeXychyt+y7LThAk3/JZlp+l8b/htaKUV8gBqB34LscjgC1/4LfeU797Fgt9i5lzD+Ff8FseJ3moesz6y/Irobfgl6O2i/IjehrPW0KJ7YLes7SoNASWpnp0sgtcn9czz1Ffi86wxjD2aGNhrzONKcFHHYZ0wdCyRkUOrd0yCLkxyHNFF2Nx6GM+UWLartnrHOM4c7yVGFahFPVViE4FX0EfB48xi2DCG5WkIPf2qGhpWygDDI2rnOTfy48OfDV0YHmJV5afXfrrIj1cRnzddhdNW1fgWrB1cxk3Km7IPLLeqJuXAzhTV+GSWWHQnwehNGQ+mv2jSxQEMz/FpLT1d4xcpJ3b7pux9PCvgvujC76XLb5sS4a1nVdvACQtuq9oGQ5QZAMk2GLBzzAw0vgYLy6RiW6DkXCIQfDZLN+VCNLsaleEupGRcczi6SWuzTYonY1zVtjRgLXM500nelMkCOhNbXpRdwZF+1s1+U06VvoBtibI/B0N1mzKTEcT6GkJU3bgF2YEE4Z1pPSPKpi2w2VshmHBh6m/KcIwRKxifjM0dXTItfrxA4DCbphtBO86qKkblRoh4PGWfLvLhL8dkWs/CnF+pjyfsg3LicfV4Yj5d5OMEzTYrCr/LI/a2GRmsisyRti2kQmvgbQebtEDaie0DcyP72r6P7OR6VkB4U2YVEmccDEaS6rNpCwopj/C+bIuOFOl8QqEvyomJC95mNnCewCc82cxvyggkEVnYlnOKnj0zbB+YQmHNXOM7S3StWY1JmfwszTZltqXAzNgWEjNmQjSuDXjakTidTTm2siK20YiYEAQKxtdgQm+qNosbSYsXZ5tB1s9PJ6b+osw+KqLGDau0SEYfkDkRiPCibeg0IpiL1TZ0Su2zatCbMq2iy7ZxVpzx4Sym/KbsKh152wciOigNGDApM+vwLC39ptxCPOM7h0SPyuZ8SWDrNv8Ylz4oszJMNjoFrMzPrl02ZULU1RuVWd72rADyoszqdyUZ1wZRdUyLbQZhzUPKxtOYVkajzdeWtvqdcVthViRLsZkCFvwWsQVthGvgXhotEssT17OOxZsywe9SbDPoc44wSsbXYF6zbSw8WUTF2Vaz1xbtGt+YrLszv+ZNmQ3iHjfgDe11CSeKO4sK7NdCK9ob2RPUX/VC1junvfRxYeYcjdf87N8u2tvQpcHKFWmsXFejtKKMZOXCQyXPvwj5MAfjB/YIYmnlZMs30mvbIFyyYXNvCrfwb/FL+RSf/FvH+sQDlL34t65BfxuESzps6mVFJwiXdNiUj9vvCcIlHXb0oZsgXNJhi/OjP+2AcEmHZTLqBuEmVpl1e+ljiqPvPScXBi5eqNza1pIPq52ftjBweXNadwyXfNiie9faxKaOuVNZZwIuS/TWFcIlGTZ2rujCv8X+G9WTZ/6tknm0VT5ubNhRdnfh39IfKwPwvfi3gYUQ/Abhkg4bkwzxRcBluuYNwk2kGY43mRm4LGd4Vkq+GLhsjnXQsRYGLu9xD5x/YeCyDlLZEFxCBqme4gvBrQXGOKwILhmxub/1hOAy3yB4NyoiDwSXeQ9ML9sQXOYbaPZb6WOmG7ieKbBwcHPOPR1i4eAyWcsPYPfi4GZXe/3phYObcjp72V4UXF6JhUG2vSi4iUQj3QBcMmJzjaNO8sXBjRoHrjtzcCNpxmFDcJlvMKp3LxxcLMsxrDMJF1/Yl85CwqXTpxuCSySxo2UzBTfISHtYKLi8ETnb2V4UXGn8oxW/bU2u+5NnBi77jgxa7kXAxQv39s8LARd+mexda1uH606uXAi4+Mp8sJoXAi7TWHXAuhcB153Fwhf8tpaeDrDAt1zcHQOe4duKf6p7zePW4bo3CJ7h28KOgncCbgmEmG7wbWnN7Tf8tnW47vZ6JuDid8UPWu5FwMXA5LxXPW4NrnWHb1t/69BpuTP/Nmmrw7HCt62/teroTnsRcPG/+exOexFw8Q+90v9CwI1SByl0JuBGBhF3Ai4siO/1fGcCrmpn4C/8W4ZZOpQv/m2o2ivmL/zbwJuRBb1t3a3DUfphod8Gr91QLPxb9vqLe83j1uC618qe+bf4vFT3msetv3XvFb3wb1miVPeax62/9WjWO/Nv4fwNIvDMv2VZLLe3rG39rZMf5Y0v/q1j0cJRDPni3xInOrvTXvxboouHxV/wWxhc/4DfwgDXNlIb/5adS24ALq12+hUBXP0lAO6i/Ey/VV6fP2h3+i3CbtKdSL/FU5VUlAEdLerZ08dw5DFhLH9y07ADDG8y65O6tk1PGAgf9lM4yIx903kbsKsH2H7sPW59EnCJ8GisZ5Fd/bMxgzJ3S71RV8hBVKMyXigU21sEVg3Us9rbm3IqZwOkN1Uc0NE9TuODMtlEZwnoN2VHqDDbXoMIXTqT29+U4YpldbaBY3XPfGKyb8pw0Mp5g/6mzPvXExp+Uc7sWJG9behyZo3w+rT6H5RZ88jbFmho/3jiCW/KnjVSvG0GGd67swbmmzJMKGJg2zsnZqyXx839oKy8GnS2oUtMgjsLyb0pu5hLtU1gLBnPFtvIxcQ78UfT+KAcfbwaSL0ptzoUzvjOcKezetvSgFuA6Nm4BZlPQsDXppzIxbLNn7JIZHU2q6Fsp+CNC7SVO3DJNsyBizkbrUZoXq/YRi6wtl817hP6OSxEa1MWzrbaZjuwGWE1KksV9sQwKrPPkIhRGYHX1Sb5TVmFrcts0y2sEinGtSG8NMti21Wet09qVcZ5gtjTNoPcf1mMNsaTvCJGn8CHxhe06bLGp3GUHfxRpjLZlBlOn5Dzm3JLHjKeVKyKzew5m3JgnetgMzHtnrsanSlWvoPdML0Gu9L7izH8ppxZusa25hCUes63ac2xKz12iW2B8n4rZKNrybb0LJRlMgRsSw/v0vZgVjKpzuazsi09r+Ztc4J1IVmSbU6KIhp6DpcelBFG6FkH+k3Zt+plxic7NjH1NuXcHO1im+2cyayPpi1Iqw9bYHOdpSV0nymmb8rBk+Jim0FGyu6swfymTI/f2c4ItqX3xegtMvORobVtulksNorNwWVbevwpG1+D75CqbTSSIFSKtgOFbekRvhbba8DlwYFpGwxY5rOXzJsq0yeiLUxiT/qWJm5TZsK0cdgiHIJWytOkDJMfgnERsbkBi6qYlGHieE1oew0tng3RbK+hiZUf6tO6uBNqHdySi1m/Kt8ItSr4C7E+hj53Qm2rT5LPZs3624ZYG4Q5ustGQqzkI7GtEuWt3yAO6vTBs1j01bUbUhgYkh1oODKb/sUDbjs4tTHAs4gEXlLsBYov7JU3qznvbWcbehM7k22mz7LFue61jwneuF6ycaHPKr6mbG1nG3gT+zXwQp9V+AidRDrTZ2FqO9y20GcDu3Lc6bMYwqoDkq0nfZZ14uOdPisRQ7xjrwRwYhwY68WeZS5j2LrONgRHezPAhT6LR/UfnOmzpD27IT7pswSd3Z0+S6ZJ3LrONgAnuLjTZwngMElhw16J4ISDfzdBrwRwVG7QaytoWtMOvbaCpuWkyQ7otRU0LW4vftwKmg5m7gW9sqBplY6KX9ArIRyWiNmgV0I4ImHQZAf22iqa1gMTmLDXVtG09CrAE3sWwzgayc7sWabGxgHJXuxZuHAS9vLHhHC0IxkzezZKloGxXuRZDEHdkddWz3RAijN3FrtgtHqdubOKvXxrOsuLa3FldJe9uLMs1pH2prOtomkte/ljYjiSHrizwhZhe9NZYjiul+pdyLO8v097/WNWNC1RR4vaiz3ri3Qu4MKe9XEw/Gf2rMfuPazLwp71TMAZZZEv9qzjYXRnzxKP6CWN3cWeZSh7azpLCCfFvNc/Dq2Get3ZsxCz//LOn6V5ls6CnvBXiB2zrTb8FSugqPb+qBf+Srqo67D4BMAG7jGVnT/LI0Z6RdgJgMXfg6N5ijsAC2nqjacn/JVQCZbLYNUO/JU/XUbP3pk/m5jlM+oin/zZlMXnIb34s9wmZVQ6vvizaay+hT7LZmg6uste9FluaDfKIl/0WTZ3uTWdhRh/7Oj6TJ+NnsO34a9MR2Je2Ya/csuyQsWGv0LMA3ogrRd/loSfsAOw5IuGganO/NlQzma0M38Wv5T8wGVz58+SNFju/FneCeVR6jie/Fl6A+nOn+VnHfTjmUALDzX2frszgZZVijs8PBNo4SKUeifQsnRab2g7E2hxNncO/kKg9fC0eynmmUHLuiy9lezMoPUMJTYAltxX13fvQqDF5gl+tKO9AFg27DoeMgGw2IIsHRNvACz5gu2kXgDYiM9ti/XXQmDjL0FgF+XHzrMpXxnvi3bvPMtjgs+udKhia6I3Qo9FHQPCRHvPw8F/fmIkYMpJXMjy9HRtXNXEek0w7D+FgCzcSW05d3f11Bp359axCs65CLniTO1Ig0KxqJPRS/IG0zlYvJnEfNhiOKFPr/50pQz7X56e/HSjDOMZ/NOAP90oe+bgP0/l/UaZvNHH8XhQdqRTBdtrkM8lZ++cN+XM8pZqGzlYZ+6ypyl/ulFm8ksyvnPLGBHb0Hl/lDE0KSN4OxxmkzJOeDkbyL0pw7VADGJ7Z1gfWJZoG4129gVnVJb5svNN2TGvuJqmm2UMC9FjmzIPk2hbSKT6weP1pj3IMoawBmoaDfjtpOIXmy65q/7RPj5dKbfWvbYnI9qrdHFtyrkdlraRw3HVilbalJVMLePIkbyaos3UCYt9+vMq8EUZ7j2L55t2lbQOgNFmNljFMDufjcox51BsW5BnRNGYjB+IRSfGRQd3SNjG0abcqHbJtkJTYThhe3DiVj2x/DdlllozPldZhDLb1jL8d19t09GKf2eTqWX9QkRVtgOe9QtjStm2NhntVmc0GK3/u1kZXnk4G2G/KSPUto5xxJmmVkuE+INZDcYns+1yVtuTSfXAxrbNCYZNJCfb4oTTmK8+0W/KkW2Xq/HJTBCwGpdWJ0iND0aYl6v1lVnoMCXbnCDWwZRk25wEpruc6MGbMm8kbI4R+4G7bDx1gtK4GMciBN7ciG0VMWfj6hfwpkzQ88w3e1GG1wcP2+gX8Y65VJvrzlXPaNn2gULCUzYeUezzWEoyvjOvRbOzzbawypAYzRHMuDqjny+IeuRqxPuiTHKd1RsXz3s1H2yrjhiwL0aPpN37WzeKby0fgm1SWitZMa5nREhsR2l8Z16qeqOX4T0MaLaNnGP56mzcVYTwqzMeEXjhYH9yyvSMjE+O7Mxq3IJs3311DnlTJjDijY4Ui0ioe7yMeVBu5c+MdtHx5jXYXA3yiBHmPh1rO1jLPDZWH3900m5gLWJFZqHHx4V058P6koky+/nZv12wtlVEHHzY/IE1YK82bbeMMCbfowRxbqyHgxIKg/vNAau08mYuZO+OK12X8eoOnmRDQulP7izZRlrp98ITUttIK76XND6R2sZZGcoXUts4K3eWLAGP0AulTkgtAQ8iqBtSS8CjE3AnoDY0dPGo7zgBtcQ7ki+jH+0Aaol3iPejKvIAaol3MJt4A2o5Sxp6jeILqGV5TPpiG1JLwANrbifJNgZOTKMf7UBqWR+z5XuuUC0RD5y5g1PboVoiHuFgE09ILatjuo6lTEgtAY9cj6vvCakl4hHFDfFAaol4SAdCJqiWN9XOdUryBdUS8UCUWzeolohH7EzqCaol4hHufWpZIdPVvEO1RDxKPYhNE1RLxCN3itUE1RLxiB02maBaIh6sz7pBtUQ8pNfCvKBaVsikN7tBtYQ8asfKJqiWkEeRA1mboFpCHge0cQG1BDySu5U5JuARxe2Nagl4qLpBqR1QLQGP0DucTlAtAY9wFj8eSC3xDkln3eKB1BLvkIMmPyO1xDvomm9ILQEPX3SwYQdSS8DD57yTZPldvmMpE1Ib2gXxUV90QmoDC+T2hqMTUivYg9LTQyakVtgfsoYNqRVmFWgaBY0HUis0DK4j4BdSKyycW251jomJ9u14AbUQjkSNCacldpPjYVsmnFZoLdIxqBNOSwOBlbzzZCF23te9zjFsOvZd2XFaIVDh8mDEDpyWJ0Ds+QATTgsxC2PtnWqF9Gp/w2mxPNs17gLTCsHU0c/3wmmFKFgvGD7htNK6tZZBfR04LcSeO33FaYmy+F4gd8JphazVXnR8wmkh5o/sjWqFZmP84gXUSjtE9jLHwjoP0Q3kdeC0GHXYwxOQHTgtJ8P1Gu8TTgtxK5234bQQ66j0MOG0EMMTiHujWmGb5CJ7nWP5wicZNXkvnFaIBia/47T4J0JiYcFpIYTLG0ZB44HTQhyc+p0pK99WFm7HaYW2rDfjvnBaSAsrW244rbA0Qr11qmWtDefS3qmWlrE15VpxWoh9szIrTgsxL4Y3mFa+9MdGQ9qB0gpP927bJ5hW6Pv0rI4JphUeQ1X2OscQswxm3WBaNqTNRzuCGaaFLSBhTXaYVliL4dckyqZfAtMuyo9EWXKPRi7pot2JsplnR2F5YRyleLAiNHBP+qwvHCPOPhzC8Jy5hgPX41XmblWHL0ryXIksOE/glbUx4UPoqLp0Uy/Yka65Vz8LrTI7+ISRNLtoCzcny/oQ4Gg+P74c51ocoG7683FKdGzg+/SVj+mq2Z1NQ9+U2Qr9DDTflBPToMLzvN+vF+GtD2ram642MqlRuYXz6WkOn64XYW2dNw4GjrBy8n5elJllx67HNmXWwTlbaL0p88b+7D72phwLHUDja8CbZY15mzKMSTirPL4pt2eLbZxpx1gW0qbs6JM42wdK277jNvJNGWaUa8+mnBCve+M4C0vzF+Oqw+SR/2pbdUJy2omPvikzFJJgm25pGUTBNhqeFwsl256MM73VhLQpZxZjDLa1wYZKLe/WpBxDvSojvynDyjijQULcAn/GuI586z4WjK/sWZ1fbabOczG7YPs+1k2Fo2T7QIeQhhW5bcqJudDGCYQ1EkTPtg90elEU3lTh/cDnta1Pdt5jKxKbss+sGGZ8jVbZw7bkeL2I8CuZtgmiN/J+xPhklqoKapoS4ms5n6kPb8qImVOqxifjhLAajXafcFUCflMmEfHk0bwp84LAVdN2Ze8rzGGxPZl3JDHbtit7BJUarMosAZFtB7cnEZGZXkZlx6ImthmER8yqdsZ3Vk+7YVRmIGlzH3xhXUpv3FVMzqnROhiOPp1ROVdeHjyGKg/KsFw+2ZxW3zhB8U/EVzdlcsjO7u5vypG9cIxbEFbAFduxTda+8AbTpgxjdGWEvSkLr7iM2zUzK9NbR85l9dHmSyGIJvJhi32gzJSXx0jwQblg9JwtuPMw5JJKNr4Gex9avy8mjWK0t+zN6rKYTkxE+LU4m3vrSdfVYPPfEfyz0L7xjREzanqM5B+UeZV58k5flAkJ+GCLoNmz92qA+6bLLaLG74OFK9nZYkY4oKRx2K4eWKPBqVh1PQso23SVBR2cURn/iA1oW3CRXPzHxXnDaRXBMMtuPdnlG07rWSoMU/14WN5wWhZdIzC1HGq/XZw2zqRalz9e2w2xO4BaVvKthBI+OHfZO1UaSoC/98UTEw75nL/ZkyhCBDemLy+xtbZOtRrLQQ5aSLVsSnQgVAupVmPv1raQarEA6wH8LaRa3lAPSPbi1IbWAHNDaiEmB+3ekjZw2aYNqm3IZWfILJxaDNdDR1phXuEAcOtJqfWkDY/Wsxel1rdEiQ2pZZPUNLRnTq0rg962cGqPq9INqY0tkTTsPWlbDcAoQ7sjtWySmkoczWcHVMsmqYPDN0G1bJKaB9o7k2pZtrA/ZCbVsgFw2aFaiBFM9hLFM6sW66aWvSctxPiYuCG1yqXVAeaZU0uyiR+w7sWpZW8ov+G0SjRadK9mzC0nvf70Qqllgfy4wbRskToap06E2tgKUK0grbJyr9OB6F58WmVJ/72WMaeNudkrTKtsvpjL4MhOhFoXOoC+MGoDK4zoBtMqKeG9xO7CqA1sVFE2nFYb8DLw2ItQy5Y1t1rGbJEaR93ji04rjOHyBtIqcZkOwS90Wt/ulzeQFmINvfHnQqf12F4HHLPQaR2ZXHEDaQkdsLzzCtJy44jee9E2P3nHaAPh375dJoyWQFWryrCAtJDin84OtQOlZQZIVTfg2ItNCwPpzxa1F5uWvRPjjtKyQSobAW0oLcQSehrJwqbFCOjejJYNUmPuAOtMps1RpNzJtOxLfFA2VzKti73q60ymxXiMAsAzmzZhG7m9GS1NWtI82s5ObFrfMyZmMm0kKCwbSEsIjDnEG0jL/qjU30BaHr0h9kFd2LQsGjBIthebVrFS8l7NmB1Ss49DfLFp4bvKWft4YtP60GtCLGxa9hWJg2R7sWkDaRx7NWMmgJTs7t1ocaqGY35XNq1LnQ2/sGlJNR/Ybe5kWnZdqqNA8UWmZU24Y7BXMq0woXIDaQP7hPeFPZNpEVEPqu9MpsVc9DbBC5nWs7WobiAtE0A4BhtIywSQ2vMJFjKtYxGFvKG0zWL2vskLmdbxPL+3o+XNVicdzzBtrbVXeVhgWgiPZrIrm5YFMOu9nDH+9ZF6sbJpSbWLvyJMm38JTLsoP7JpCzND5UG7s2mx+OgJsCUti0ZwO5enN8GnOwTAma4m1APHleOZz/ByV09EXEnO0oNNC/8NiyIP/tWiniqbIiRGdDG0dy/Mf8VaGHeWi3r2LLtQmtvhWwdbNgoqrMtWHkdxCz0CPDz6c96k7Cvv6eTpvR+UYeLKGVu9KafWCe955m/K7HXrxagMw+bPanlvyiwhehZOelN2yrrTT5N+Vyal6aqf9qaMHVnPDP43ZRYejs72zk4bWcL4GgLP6iwi+qbMigDGoRN69+lMmnhTRmCIg9qonNiGtTxZhQflyIGLprUhrCMRglUZEV84i3S/KTuGjcU03a07TTZOCmwewnR5NGMPyvBZGBrblOEvZ+sH4lAjbdI2dAi4WhKWTZl0jaImI4OIvDn3tqHLGDpmiNmUWxnfZJtBFiVsbpRJGU5SCsm2rTJPReukwNvGXsm2JyecdoSWbMrYsHpWM31TZrHwYBw6+Dvw6myWH/EaE3Gj8QOFCIY3Phk+Z07F+GT6mdGbDk0mrUq1mgKcJ5KccW1E1mHOzrYH6TvnYvzAyHJ00Wg3Irs9n4Xy35Q9z1hnezI81/AnvKQHZWZhJOM7s0TcWSP4TRdBjASb18NC2irWk00D40HjOmKSqK/GXcXUPleNSyMgOD87j77p8l7GG6cE6yJcxXnflFlcuRhPQZa3zGcV6zdl+HRy9j18U4bVCNW4jAJdbaPtauk5arTk8DYKyfg25eKJ0th0E6+diu0MZLVWtkayKWtrKGEbOEwgq0cbB4Oc02zUReBTvRoHjjf+3ujEsKaLFpu7z3Jr1fs/EfbelBM8wGo8qHxkBxOjq8FbfgQHtt3KJrNebfPnWXpTjJPtPYxiqMZXxoyw1LRJ2dWWemobOVcYK6ltNTvyyc/aJG/KCa9tXKD0G/zZAeNNWeEKi3HkGL6yVLFNWegrZtvSd54JddZ3do4VPEw70FdCOGfr5jdlQvgum1Yzg23NthMex5ljj52nq54bqZbF7HJ4jEafSLVw5spZRH7RvoG1uSTlXebi/f1mwdqD/tXBWt58+8Z2cgeOyQrIobZy4wRrWwL8UQG5EqfitTrptqxuVz9HBeREf6h8Ih6YWzGHP27dZ0NrGbaBtZmFFcOJ4Z7dZ2GfOjyxdJ8VlkmKG1qbG0UwDxbuQGszyYBRd15tJrozCJYXWptbG1I3qLIDrYWY6Qg7sTaRsOcOcGHpPotQSPXefbbU0Cs3L91nYaDKQ/fZ4tu96ArXJsItNQ1c9mo/i10SwqiMfLWfTawAP7rSnv1nE+nnew3kRNAy+UG4vfrPst9i2tBaSMlnvbefjXhPv6O1iXV5Q7i3nyXK0Udkbj+LFTq65s7tZ5n6XUdX2qv9bGDRnJ1YmwhKpjoYtFf7WUQ6XXnuPivssXxvP0vU4carTQ3aKINB2xFbSPHpYefV0j6wsNAG2abW1i1viC2kiKt6veSp+ywChp6eoHP3WZybTgc0e3WfrSy0O0ojX91neasQdmItxEE6y1rn9rO5lgOKXLrP5qQXkHt1n2X3hzy0r+6z9FI7VXbuPsvbDTeg3Kv7bOJlc9ow23jYtAHOXt1ncTh5P5rSXt1nYwidqb20n43Yg26Iz/6zOC2cG+js1X+WJZfPtrRX/1l10XXy5QXaxi/3Xbw1oMVc53LvQEubXHZqLbfgqGk8d6BlxaYOB88daKUZthWyxRzxlnDURb4a0PoYO6dwwmwj6YAS9w60Ebtbe0H3CbONhK3y2Wp2YLaR7bpyHlBux2wjV3D1o9Tx1YEWrr/4HbPlX4sp7sxaiH0a6OfUgZYbugzp1YG2xEbEW0FbbQ3Db8xaVkx3fe8uLWjZJNAPLPdqQcuWGGWn1kLs9Sg8sbaghX81APy5BS3GoFfOnTvQwqT7wbe9GtAmBtx+g2wx6llHN9e5Ay2MsI87ZMssEQ73BtmyZHpPVZk60CorpO28WuaIlFEEeO5Aq0RhRr/aqwMtez7vkC1TRFjlfYNsWS+dW2qDbCGmn3HvQMvL4f4icwdaFl46El6WDrTCooFDfHWghe/b62wvHWh52RvvHWh9xCm9F0DmftDegH6CbJtrmY45XzrQnof61oE2Mw7eIVumM6RfswBy+SWQ7aL8yKxl4dBRgm/RbpBt4VFLtvHPCp8CL8LaOIPCtqhjQGgD4Y6waTULILOGsCaWQX5Sx9fDDaOlxkppkC3WP6kuIwN8Ucc0wV2Ay6NMmfgp8P5SYYrmIOgs2hnDinOfDDO4PT9rS8DCmZn807Nv4QcsOeu3PH7mgzJcFpgesSm33KIRuL0oIz7GIVlsT3YstXtCOm/KikOjiPE14McmqcYnE8Jw/mlW7ngmFhdLxJuezKxO+LFqVMYilJNQ96ZMMqIWozJvRLKaJiUUJj1VtY0GDhw6+EZlhUfoHrf5gzJrJGbjgxHFupOv/qKMzYvz1TjM9BRa1qpJWdngzNuGmVx+xio2ZceKLWJ7cuvBHfXJgj0oZyGtwagc2bfHtqtgseH6Ves7e9jhMxvjRRmBEEIk4xaE74MYPhmV6RRlZ1sb8BfcVa3uTVkQqhdvsl7w2XG4nySBF2WchAjJbacEPGblafV8LN+UI7tNGHcKa13Hs1bqm7L4KieI/qbs6LoZrRd8g2je3YHdCU5+4ZsynN7qjGsjYK/UWG3bikk9CC1skxJYol6SbTTY7UfORJY3ZUY3J93kTTmy/7FxIbU6s89uz4OyuFSN+1Uc2xEYdxVv0Ji+YVPOLJRg1G2lcKJtLLyy37xtKDxrj5wXv2/KDie3RNvCcJVtH6ptMTumWJ/362/K7E9s3KzYfSTg2b6Pw8GS8zZlJuYWqzILJZ5tH/+8slReOmUxTbawcjt9Apsy4njvTAtfELGVsw/7my4vGbSapoRVySRpMC18aaUXis0k8h7DIXgzKuNgLUb3TwpbI3pnmmwh9ws+ufEDmV2Ro22c2Sa25Z9blDMvisV2ajMFqVzVwt+UEzN0HgPYB2VEmaHYvi8jUEpqO1rZIRnLLhrfgveBSWxPJn8Z8bxtaaTCEpnVNswJG5t5KTZltoE+s/XelBWhWjRaGFKHmUlmU/YHIG1TdtETCzYpRzLZzoIRb8q5VKaB25RhNUI1GiTW9j9rL7zpEpezXYFgwfEP7umN7x1r2Qq+oYyPl0IrXluKj5np4k9zcu9Yyy5QQiBl0v7N4rW53XmOIsghNrwWZ6dvzTR9rmSK8ka4+G+o/Y5aiAiwUUT6JP9Nyj4CGy5bvoSl6mhBO3DZwsp03m0k2kLMqKSdRIt/D9t+3NVOuGxpV81nw9qByxZelqdeZvjCZXn3PihYEy7LmzzXexFOuCxRQOyTIR64bPniw3sZ3wuWLWwueLChJlQWUtcKEKyobCFfY5B8L1SWQ5PDAfJNqGxh/85RxfdCZQuR6gEbX6hs+bKsw47KQspCaaOw8UBlC5Gf0eL1QmVL67gWB/46YNn8rUwt3+sdZ5II3cBwByrL6SfusKGyELOj9aiCPFBZYihu9NO9UNn8bV3U84bKZjaVzTr62A5UNn+ZVRw3UDaTundwpyZQNvP2VjpQeIGyEJMo7jdQlvTx3BnVFyibiW/0GqMTKAsxkw+H8gBl8/csiD2BssxZqJ0Be2KyzFgY7VMvSJYZC1nOosYDkmXGQuokvwmSZcYCjOtOomXGgqa0k2iZsYC3HuWLBybLjIWdQst0hVBvgCzTFdTfKh0zXUHjgftPgCzTFeJog3sBskxXiJ28OgGyzSD10q8TIMt0hdw3xgTIMl2hdlL8BchCimlzo/nsAGSZriDpBsgyXUFH8eIBxzawMIet0HFq5XTP9rUDjoUYp0RHDi84lskK2jGnCY9lskL2aZBlBx6baD869XcCZJmsgN/aKx0zWSHVE3kdgGzCanK3QsfMVVA9WbEDj02tqKzbObRMVmBbqxWPZa5CqjcOLcTM5xvigcfycGStzQ2PTQQhRmnlE49lsgKvDTc8Fust+17DYMJjma2Q+o6Z8FhmK5wc3wuPZbZCET9g2oHHxnbWpYGwDjw2EtSVPGoaDzz2+K5e9frCY5muEA7Yf8Jjma1Qkw6YdgCyzFZoPvcKyDJbgVZhA2QJXLrYscMLkGW2Qi5+QK8DkGW2Qhzg5kBkmasgdxIt+7u70Tb2QmSZrNAqlKyILJMVUj6OqQuRjc2xOHHagcgyWSFo2CsdM1lBXMdvL0SW7d1d72E/IbLMVmhI0orIMluBXUQ3RJbpCrn3EJ4QWaYr9DbdEyAb28rXHZBltkKKsnekZbZC6t3gJ0CWAL9Ut3NoWVEbFmnj0PqWp5F/RTy2/hI8dlF+xGM9rMejdq90jJEgrZh4rLYiKtkPlGRRz3I0Sc7MNWCdYxIpieXFp/fOrRcDMynpDP70lWcHllQ5L1xW9ZZIwoiQK/OnF2ZRwP2UcYNf/2zAwD4dpRk1k7LQe3se7V234I/urAv2ppxbA7OnwX5QVh7ezvbKpVn7aBsMltcP55XLizKLx+DRtnfOiHny2efvTVlYebDaxjm7VvTPpkyumjvJPW/KMV/Vlt90aeuq2gYj8dg78/RflNmnp4Rgew1YoNSK95iUcejlaByMSNsa1fZkGO12v2xThiWH8X/a3A/K8H70vPV8U2ZTVYnG12A6SfC21+BdPzwGozJvc856kG/KoV1F23RJJQmPZvGuzGIZvF62KcMZrtloj9i3MkmxLWfyokIyTiDiY+I7tg9EKIeTfZTQe1NGyMt1alNmYdhstHRwKzzrwdmUHVv9GUcDK58MXtvaoEOTarJNCtODazSujdatMXrjaxAAyc6kjJXPlFXbRiFvj60WTJMCJ46k7WB8DWkNpE1mI1TWnMi2JRoKASnNpiUKDxw2xnbKh9Log7aBg0cA02x9Ccd7PdvepsfG8NQ2FhlnD6JG45O1peMalWHqMOHG1/C85bK5abRbMEliVM6k8GbbAk0IDInp2ZQR9ZSzFeWbMg4f4iU2ZUf6unG7RkJ/IdiejHii2jweJjlNeQVvysIQyGgGMMYY6WRb+vAy4C4aJxsOriux2gZO2Qqr2gx5UG0FX43KIqwoYDMaCAtiSdE2dLBdyrROm3JmHR7becIiK6xZanvn0G4djCYmkEYVkm0GA0ttqdGQI5gRlp21KWdCAba1L4QebD4M828QFFtfQoh5GKdEHHEW27jR7bqyrd6Uc8OjbEvOww/2Z872mzIcLx+MewrBF9ezba5JwFKbP8cEnNqqPpqUWU3AG7+vedhSbCOHqFjj2eb5TTmwNYf1A3kfHx8dqRu+iu2ksC+Pm3XDV4mLSIUViI+n2g1fhYcWE2GwSbnDq5+/xl/5w4c375//+KxA6cBe64m7xs8/z9LMe/JOL/vxdz801YFzzH9hFm9/4/kXHp+z619P+rO/8Dc//j8iI5NQCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTcxNjUKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMjMgMCBvYmoKWyA1MjggODE1IDc2MSA1OTIgNjUyIDY4NiA3MDcgNzYxIDcwNyA3NjEgNzA3IDU3MSA1MjMgNTIzIDc5NSA3OTUgMjMwIDI1Nwo0ODkgNDg5IDQ4OSA0ODkgNDg5IDY0NiA0MzUgNDY4IDcwNyA3NjEgNDg5IDg0MCA5NDkgNzYxIDIzMCAzMTEgNDg5IDgxNSA0ODkKODE1IDc0MCAyNzEgMzgwIDM4MCA0ODkgNzYxIDI3MSAzMjYgMjcxIDQ4OSA0ODkgNDg5IDQ4OSA0ODkgNDg5IDQ4OSA0ODkgNDg5CjQ4OSA0ODkgMjcxIDI3MSAzMTEgNzYxIDQ2MiA0NjIgNjUyIDY0NiA2NDkgNjI1IDcwNCA1ODMgNTU2IDY1MiA2ODYgMjY2IDQ1OQo2NzQgNTI4IDg0OSA2ODYgNzIyIDYyMiA3MjIgNjMwIDU0MyA2NjcgNjY2IDY0NiA5MTggNjQ2IDY0NiA1OTggMjgyIDQ4OSAyODIKNDg5IDI3MSAyNzEgNDY4IDUwMiA0MzUgNTAyIDQzNSAyOTkgNDg5IDUwMiAyMzAgMjU3IDQ3NSAyMzAgNzc0IDUwMiA0ODkgNTAyCjUwMiAzMzIgMzc1IDM1MyA1MDIgNDQ3IDY2NSA0NDcgNDQ3IDQyNCA0ODkgOTc5IDQ4OSA0ODkgNDg5IF0KZW5kb2JqCjI1IDAgb2JqCjw8IC9Bc2NlbnQgNzU4IC9DYXBIZWlnaHQgMTAwMCAvRGVzY2VudCAtMjUxIC9GbGFncyA0Ci9Gb250QkJveCBbIC02MiAtMjUxIDk3OCA3NTggXSAvRm9udEZhbWlseSAoQ29tcHV0ZXIgTW9kZXJuKQovRm9udEZpbGUgMjYgMCBSIC9Gb250TmFtZSAvQ01TUzEyIC9JdGFsaWNBbmdsZSAwIC9TdGVtViA1MAovVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgNTAwID4+CmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNjY2IC9MZW5ndGgxIDQyOTQgL0xlbmd0aDIgMTk1MzQKL0xlbmd0aDMgMCA+PgpzdHJlYW0KeJyMtwVU1Uv3Pk6DCNJIcyjp7pTuTinJQ3OoQ3cICgjSSIs00kh3NyJd0iHdHb/Dfe97wft+1/r/F2sBz549M8+e2fuZ/aEiU1ZjFDG1MwZK2oHAjKxMLHwAMQU1NVY2AAsLOxMLCxsyFZW6JdgG+F87MpUm0NHJ0g7E98RDzBFoBIbYxI3AEEcFOxBA1tkGwMoOYOXiY+XmY2EBsLGw8P7X0c6RDyBu5GJpClBgAsjagYBOyFRidvbujpbmFmDIPv/9F0BjQgtg5eXlZvhrOkDEFuhoaWIEAigYgS2AtpAdTYxsAGp2JpZAsPsfSwBoBCzAYHs+ZmZXV1cmI1snJjtHcyFaBoCrJdgCoAp0Ajq6AE0BDzEDFI1sgX/HxoRMBVC3sHT6z4CanRnY1cgRCIAYbCxNgCAnyBRnkCnQEQDZHqAmIw9QsgeC/uMs/x8HBsDfpwNgZWL9Z7m/Zz8sZAn6a7KRiYmdrb0RyN0SZA4ws7QBApQk5ZnAbmAGgBHI9MHRyMbJDjLfyMXI0sbIGOLwF3UjgKSICsAIEuLf8TmZOFrag52YnCxtHmJkflgGcs4SIFMxO1tbIAjshIz8QFDc0hFoAjl5d+a/r9caZOcK8vwvMrMEmZo9xGHqbM+sAbJ0cAbKiP/tAzEhP9rMgWAAJwsLCw8LBwDoAAC6mVgwP2yg7m4P/GuQ9cEMCcLb097OHmAGiQPobWkGhPxB9nQycgECwI7OQG/PpwN/ImRWVoCppQkYYAw0twQhP64OMQPN/oMhGeBo6QbQZYEkICuA5eHnn//0ITlmageycX90/+uO/xvrP1ZRUTs3gCcjFxuAkY2TFcDLzQPg5uQBeP85/5/I/xv1X1ZlI8u/WbE8LigDMrMD8P6HPOTU/g4AwOzyd07Q/F0xtIA/tgAwK9pBchkIoHlMfT0WThYTyC/W/98F8NeU/yvtH1b5/8z8/6Ek6Wxj85cDzX88/tfByNbSxv1vF0gyO4MhhaFgBykP0P/4agH/U88KQFNLZ9v/GZYBG0FKRARkbvPf4wQwWzpJWroBTZUtwSYW/8mivwc0HirQxhIEVLZzsnwQHQAjKwvLvwchdWdiDVEWJ8i1/TUGhJTVnxcrATKxM32oPzZOLoCRo6OROzJkd1YI5AR4Qv5CSgLo9leCA5iZQHZgyCQAJEpvgJmdI/LD9bIAmKWMbG2NHqx/GVgBzOJAG/CjgQ3ArG4BfGJgBzDLG9kamz5aOADMbyz/QZwAZuVHxAVgVrM0f7IBNyRCe0ipQ4L+r4kHMsPicQovBDo9QlYIRyVboPkTjhCSZmaPEELR7Ik/hKCZzSPkeHB+Msz5gJ+MQxia2kFeB6ene3L/Y7R6NEJ4mjs+lP8/FghVIxNI1jyeFoSsiZHjk+DYIGSNHYFPZrFB+NoamfzhBOHs+HCP/xggrE0gmWZj8+QmIMzNgY62EGEytnF6NEMCMHqyOoS63RMIIW3nZGPkZPFogrAWkXi8z4fzfQIhfJX+nMAOIezkbG/v+JCL/xghlCGJZWNk+2iCkHZwtgMDIfz+IwH/jECog5xtjR9ExPwxbPa/zh4So+OjCULfHugIeWyezIbEYGQLsTo9PCz/WHn/3u3PrTgg4dhDnjyQDdDsiZX1b+u/nCGRGTk9LOFk/WiERGZv4/wYKsfDZdg9rRIOSDwW7vYWwMdYOLj+Im5p98iQAxLLnyfJAYnEA+ho92iABAHpHh6LB8Ie7Po4DhFPZrCFI/CJx0O22zk/nhjnQ75bPskvTghdJ8jL8g+GkHWCJOAjV4hYMAP/OAhOCFWQ5VMiPA8xP61STt6HZWwt/7Rysfw3DUwhD+2jGcIb6OBs9FhnkCcKcl1Apwe5+9OV/XHg0QiJweiRHhckBJFHBKEv+ogg1MUeEYS3+COCcH5MbW4IV8lHBKEo9Ygg9KQfEYSTzCOCkJF9RBAuco8IwkX+EUG4KDwiCBfFRwThovSoeRAuyo8IwkXlEUG4qD4iCBe1RwThov6IIFw0HhGEi+YjgnDRekQQLm8eEYSL9qPgQrjoPKK/BMvIxBoI/qOEeNkeq/vPAfZ/JvxZXbwPdWPpaOJsa2YDfMxHXs6/xBXSPz4tcl6uv5f/c21IEI9lxwsJwvgRQYIwefJMQKIwfQIfMvAJfCibJxDC2fwJhDC1eAIhDJ8+QBBqT54BFggn6ycQQurJcwLpcZgfJZH14fUCPYEQVnZPIISV/RP4UApPIISV4xP4UMdPIIQV+AmEsHJ+AiGsXJ5ACCvXJy8mhJXbEwhh5f4EQlh5PIEPSg8yfapjrA/vE9D2X7YHUXQGmRs5OtvaGDk/4fbwRIEtbUyf3MfDM2VqCYQ8KZZPYnp4rf7npWF90BgneyOTJ9Mf9OVfjcuDwPzZurA+SMufzQvrg7D8q31hfVCXJw0M64O+KD/F3P9uYlgfZObfbQzrg9o8bWRYHwTnj1bmQXOczMD/ejpYH8QHZPyvEB806F99DzfHn43PgxQ9bW0exOhpa/MgR3/0Pg+K9Efz8yBK/9v9PIjT/9H+sP5P//OgVH82QKwPcvVnB8T6oFl/tkCsD8L1rx6I9UG+/miCWB8k7N9dEOuDkv0fbRDrg6YZPe3NWP5ohFgfdO1fnRDrg6Y9aYVYH6RM6Snm+J9miPVBvv43Rx/k6498/qNRN3F2hPQe4L++qiCl9F/811czEOgGNEGenrAz4Q+yKg9quCgVIXRlXBtEWFhq+vBJu/M9J/jVZIanhTxiktRPB1FD0yK8/gTlqfzgkQkvQrq9iyE3vdYU/1/x0ulgKInOFdEDxi+9l8et5kASUzsC82HuhA8rGPtRKsRohrpwutQxWhM377jb2DeK17Num5w2dHi3AbaAnDN0snhC8EeRtKZtmDBtMsolcJ+2HnoEpqNuorO6jMbwLUyYZcS5aEM4/qX7im7E5775+Z6Urs4E9qNMufYSrqJgLHxsD1mytP7oH9Nn5GEq+V606vbPBDLt22tfqlicHua3LLBqa0cwOppxMOwDyiYz73CXpKIql0Pu2UiTSa/42002JniCGYhIS2NlTOKqtktRjhhuuM5z6pmloZijuPHROaW+BfOz/8bSPnAa7i0fc1ZPVp1Kf8vLuvzTKlCpJv0dZ7kC0WLitzyN0hLKcJKQSC7pPoYrWAdmywWtiOnWni3LMVPjhgwK++nM22eTh0rjd/Ekmc8UxmwuMWIq6IZNvctoXWvYCto7X0MLuUkGbGO+IljYQXL8PahNEQxEYgdr+aIs6Uj25jOjFoPu+GMWhuZQvnzbvIGZM7X5QQB9PmNrGKm3Ya7eJyv7nYKYglF5Yd14jccUjaA1evNtxWDhVWMAPp8Whp5iCwY/8Q96lp7jqFMKBkTmK+Uv+vnf05zUXyQdhEn5kaB3PZfRIcXNoGUbnfBFK3vDRCuj40J9m71WJGsAjC65zkW3SZf22DTmXGdoNp8coKtNeXsfP+62d8WYOf9uobVH9QOe+0Fdhq0dTMyoAa+Hsvfvz7iMaiDRfO4Y2UgdgXaen8MeY2Zjb/O7rSbU1/ky2zP9yn92ScIyEuKGtPUdMxkfzhai8UyvKqibagFhVX9UGB9vtE1FnkFn5dGna2R2FWQoFfoQpY0nWYnwPIOrE0NaAXu5Lpvj1jbwEIgq0wXyfL+MmjNRgNt+JzherU+f+H4+RdBS+6oSpyIUXpEMmnKayWz1VW881anbECaGX89Zk1hcfluttrScrD+qu83rc6Tc/jn7nPczDf4LB82jwmHWgtpfaoMjzWa/TF2A3iqi+bp+dB0Jor9QjqCIEdyOwmy5uv859JPaoo58Io8xGO3VZRhyjKaxHm8lc55ND/rJae/OkF/BkGF3hzxnAnebEJYMIUv5kHkhAe35VAoYINKBCeMs3bnUES80PGikd4qD9Erx7KbgtGzfLos1bjeDtHDUgI2+youj3D1eQiGDrQqaQwOxPYt0eqN7ezwx8yMdZdscfC5rRMrNBf0Xtqjr19/dlwPRaOk5ntWV7ZQ1jWhZYsbaiL/IAF9cclJqGrzM+FioNUih3URt8j03fcwP55Vr2m1skuxeIyZDgwxaBK8MlZlI8QqvpkwYrqIQWL8OXJLLTW8vyHHczV0bCNTPBsyAXId2c6rqRD/TFAu7EZi8VPg2YCQSOn839nL+VZ5o4FEfnEszeEVCk/lMptBj8sKCxCFhG3MhFW8WQB1mwefEqMEP99Zw1Qe1Gw6Vo833pZdTYIz8eOaMCe1k+44O44wHu/m4khJ7lLly1a8UTyL03t9MUC4yP00TzrqKneuoTdZfuCuQCu6BvnZQv7gm48TfoasJ1ncAyMwNds8jKIVlbKoSnd22LIZaS4xu++rZac1fxYwlxzsyPjdqq9SxKqj4OMPcyGRuXHjJV5Todz7+C1v9090aJTBko+zwV22yQ5P7LHLjDL6CXzonbayv8jufm7SDjuM60jdkwZLKZZXjfIFQNvW+oOPT/dcf6NC4UBmpaDlq2djB6VdQfNWoLyuZxtN0WQlLW4oB0emrzq3taJMjlIjoF7+3nX+z7vOhx+xble619PVvhS39zGNJdtIE0ak8114N79eX4Qp/blc7x4MOHU4bf2whR/l2w+9N8jf0o1HiQjTpufd8cXNOsVq4vYDZho4L1aEcYLBoq9f2zKaJzbBgyEB5M3O5JhZV2g+RT8yHxt04fjPVY26wloF9bW9VO5qk6F2iP08nxtERn+C0Ug69RQ9ZU72rHxFsa1hLVRRbdnjZq+ykVTpPOoeEJ3ISnF4z/AF2szIncedarhVfmcWZHICy4yAXobwwd2v6qixsMS1QRUGi/muLz+umsv1c+eEUdBYDLfcM1BslxSDaHE+KfbeKOw/xTSc2ESjFNhWydl8L88bEEVrS6+sf3+CFQgo0rqg8KMZq0D/o7PclXtFejFdvo/k5+bIOp4n/ak/OF5Opr0dvUUPGrR+x9uyWY8T2zZgvS2AuRRN9gY29XrnV0m0DRMxuAu24d/KfXmw+m5Q5Iy+9Y5BRk/w98kPGk8DL0QYXITPiA6s8VQQcbx8riNW2KzHxxc0Q7wecl2tjeJKs/ijPd5bNHbnETjO6VdK5AW01rQUW1WyeUHZ9Ut+cdaD1ZD4LjNKR+Q+b4lN/aukPDEz5ddwbTTG7JGaxCgrhI58lyz64cPdshUv6zGVQYNwVuxSiuEnAl+XGCEfSC5CMNuxlIBdiCgQFDr2cFRLriSkqcdg2FckrHlQ27Jw1jrOufc6klaqdgRQ5O5WGn7Uk7hJkdyGsbV8WeN9aiVk6PCg+ZU64jhqiFV9Z3GxAIHJEKGfgmiSneyQbXszYWC6weO8QoOHoetDHwrimCB/IjkZ9zxb7co/y/S8fMdF5jjQ4/bFcUucvy2snCzq+ShS62MkxrzMLhDH5/FEd0K38EcvmWDjucKN5y7mZvBjF56o67DG6ymATLeYIhDJVbmPdG+M3Ycu/HE3vzVbJTszHraEgpL7OiSmXk1SKNRH6OMpqA23KJrdS/0x04V5OAZYiXMThmguho2xiVEO5g7F1YF+OvaeHmKfiMLYcAZN/jDe8ZlB8h5UmYsFwY4q/d4PUa9h6y7FZLJyuDzWkAwW2zeVsl/u1gKd5F6UzaoGjCgCxYT2sUKz+Iv0HmveNvo2oz4iI0FFiIXMwLqr6XoyiRt+51VhLiyBnnjLNy9Uw3L3aivQb+R13XGL5hdksvcpRkpz7VbT8hsn0D1qvJfP5mdBnHEAWGy8Ph7JRfFaAQdB5zhdN0szAV+47NrJ66/Dcz6+Q8rJ6M6oXxZ3mMYeOvzpjYHXO4WjCpB4vUyaek7nrXnIKNQv+6mAMNbxTGw6PeJ3bMFB0A4gO3no2I1HxIQn8fWJIsNeDSyD1q9z23sdMVaI+NbfgrrFeKz0AOsKComVZwHtJSmLrcz5GbR243JOvw0BmkBF6M9mvZHbuPjQbqSZPNLoQTMIvIETtwrmJ+WMckU9pwcf3wuSOP+bJDd7uEJvdDZoMJIbWittXgIFBfRXq6W581zbYg1LFAugUBqbGJljoPqlqWJqrb+RYtxQ7xvkYmdKVHE0+uTh86PmJ3qGPK+nLjwvwswx2d+hrefkRRn8R1VhlqdiYadXQdddie7KJbwi/TJrx9BM8csFHwzU6nWWiStT6PnT2FqqYGgZtsN91jJsW66IRb6OK7Na9ZFbNgPMZtXXya8oMnhzFBucAlE71U4e8lF3fWUz3Xz1pfaNvouud3FJg67hznV2aO9MoMnbaCi3ggLv9nN8/mHuX3gXk0Q/N3cvnCOw28O0N1LlAKaEyvvC0gpl5K1MtBH+fvJ/NhROTNK0egXde2KNe7ZSOUMvg17tQ57oXAF4chJHuRXWpM0Ip9NPtLWS4NoNlR2OdN2KgnHGU8daMycOJRSQ0Dnz2Xvvio7iFDxaSIznBkEawvy+ziZ7seJwytNwyl55hpLRElg25Wwz8t2CdH99q04A32bvMFeNTPtbcxLqT33bM2syaZ0a+d80EEEeK3t6JR67bKNGbSPkcBFAH4JqFq3I1AuvBsuqciwaf4eE1qh1O9FXlxacCSJOLSiWo0/CESiwWIqoKUhNKeHUlr+UtNwl7k0fmGsoZiE6Q/LVi+NhqxiVvp3BrfG+r1cJElN+vkYLYCABSRArO8VUs+rB59ZfPTjazN4zWn0l2MidWUT2Pt0PubzSmSIblZmL7LZsm61qxufaWSo+LIAOXMqo2QBjWI+1TtlpG7xra6x6AdcZSnuwuiuTvO5vr230uuHFP1W8vWqjUtC6/C5Z6XRGHDXpKggGdtDSp2q4lLpkJuWGsnhLNSHU8g+hIfLlzAuVxEvkfSVYroGQDfhLYlunkA2X8aEpHSusmzTqby9GpUG6JLAzfjeodvl1coR5nmrhDKVkEAuD55r0uXwzlgX6tmGbMko95NupUKRTDtuW9G7zxCsq87X+uGc2BjNP7eS1SM84Aw/9z6051tBR9RtEgoiDWoYSkRuJZoRayd3kB4/bIqwVpz0TJwcmlOgfu2fJLPQq3VCRmpcn9bzm1uaDC3Crahah45JWD2fhXLYQw1qXaNmgB3pZYpL+ETbjL8PI/OLa/dks7TqJDA2B2RAMXB2TH3kRm3oGqjCxarKyW2Es+0UYH2EPr8iZ/qeUqww6cd9UlYC4J6dQGJ6kKr3J4I37NgyNX7AIeZA60bmZh+1OHfsbJnjuJ+YRWCIwLM2O3MRtFSOl3CSm2zC6NDdNzT2vZWhehjvhlhr5Yz2Hi6/UZC2oXMWDR3C0UPQq2p/IioCmfRpTODIHjK25eDNoL7VHEwdPJjT4FYqjK9uewckarCF+w3/UgemFN08WD4B2lGaQb6sQIjqOqPlPLLy+kMPhIgkJ1A5ozZ2NqkvXIkw8qfrhGseVpMTSTVmJCs49zYH+/LRKHGUXyNpmiEy3JV/AakVs5sUtHC5yZDbnh8tR13uXbyWZi7puu3AqBBxk497XTSAM1ZbyVOgzRCpd4y0ukn7HOjUvGfDiH5pbE/YzH65DTz7qC9kH8vk6xIyDFd7AwrShemc6og4TyVY+lRxalWPTRGyG54Hy4GBSiXuPTj0cD+AcR0ihNoPWuu9/bUuEDgzchikUeREUOt8IABo91Q77nHveSYSFX1y1ETZZ6GCkSB6qjhO1m+lWB917n6eWEmElz1YVsWbOk9qnDuRYonDcxPgdh6HxX9LUnSjovRoOESK+ZYxkKq5pRwL0/EDT1Sqm7RewyA1aNX2CQxO6kiRtXfKU1VJr+hDQN/S67fOmmNdLCccy+/xZr2m4vBX8q4GWi7bPl+rNic5/SGmDgKP8hhoBSJufXa7TDbhrkGL87dtRp1SQ6gzPJi85hKlHb3ymUiLYUtIelMzE+WvrLdNG3iTH5npkfCZGRs5zI3kssNJu+HUwLJ0fRCCsZO9B7A9el0G/pWnOcnlMsy/fK88DTJl9brb8hV2aICoYr8168PCeOumxbwoTZVXwYj5X3oEcO/F6JoYplzk8KTES9pAcVlUcWiEwmpEIUHz30Y/Xd/KQ+/MX4+jdTSg2Qo+CY4Q7hApJLyA5L3SnM+WCZ8vuvDIOfgYTZn7KDBFlkcZONkxm01t6fB8Sx7MXJChgMPz9dJ0cdRlf9Qnz9o7yeSfQLR6ODySeGOsXv9Ndp5MZ5WSa/gjuoZBRDSeFv+h3KC2kwLdMRVLLQ02CEX2FPLZP0BoNos47F7FNy01uRPGvSFE+xf6JVfYKRDmf4jK8lu9POtaOjyhO2smak6vBaISbmlZRZzuGaG/GubSHyplmjak1jgZLTFx75EtbBH1UCk3k6tKCtiO+m+DTjbxy03+LEbntpvDCbFEYgvFKxfb1OKP/NfgLj/IJ8XmJQz1hpFFkq5oRR5A20BM5Vj5hrUJtjW9jPtIv1tozGu7ra3SQDOVF3p40S4l4VY0JO9e6NiqVc3CMmnmbdEMP5GC23gMKe4vvyq85RJNhpLoSp8OEF/rIjBR1/izr/y4PRAex7DMZ21FaDJkN86i86SzWx7nyvu7RXBLiHL2xUJ4fxC8+wxY5cOVqYlxjaUda/D3FstaFaqstHlo1UT5dz1f3uW/Il3/t9Eqo2gyR7uvhag1lfIs7oVb2v7fpudT54gj7+HV4LTv236F61zcKAKtgGX94f/CjSdGpbTSJk622aal9LEkN+wc5C5Ys0XNIe6VMf3eiZr9KNWDOefxH14HU3dWY5/G2A9mOm4VUpzwxH02vbFqM48jbPMlbr5IEvny137LfdUgULosuaRTNHTHGxpbnFQwZ6Cj/PpH5DQMV5YWoLne7X6M6wUh8UuERlpnfvbrDsEKUhb7Ig9YYppeWsqmAic8D/9CU2ia+dZklK2ucGi/CkbfxWS1ILfolf3tYlTSVNP4fhyCxmNVdJ5E6Rnj1XuNDINR0s3cJ+92Y9v4K6RmqvNpVMwYhhWygRw7M89t5Xo68kX3POJ2Rpipo1eptldWzojdhuWr+CErpSos9c/9d+rnpd6ctiMVrT8MV2nRAfuGQGax66DzKryyYmgSynWQp7v30Rm9s49S5BhHC5dBvjAlyoqRJHrkKROzHGinQNV65aUS773fQx/Q5Zz2Z1gFkEQ2NbFIfsNjvZOWXXGbC89vP0UoKwxGdClQqj1IQixIY0drlxcgevKgzunebEWkbY2k3OUGqCGTyLB2G/pqfE9LGOcmBfbTv/ovEdz/gE744fmbt2Veu8tWdbSfR8v1RZPHlvWRvRHHcyBTt9/fg+HkVaUpnnika8u4wVXVNb+iOndCeCDcKqhMs694oI3h64moidm4zL/FUSdALohm2LQCPUP1rovY2Jb9EAPMgddykOTeXCn763sTuK4zz2GyFUj1XfeHP7J9LazZptLUmdvo+JyzXcKP7y5kijKWNhFIiqPqBzV+92Cs+2ouGmfmv9S5uJ0Os6KZwNCfVl9W4eEj+y/penLjUZXs49or4tA7Df/D0IUbTlh6XcJMJdOkIO1jJeeB/gE/IZeR2+UGmrSZb3X8IL2yMmdtsYZvVrmaTa72t+3eVASBs8LeZFz5NHzNBlZi0cX1LUoBtDjFiJB5U20ZwYnMh0apFGZD7td2iJRTM3QnAR6zIlk9Df+SLr9PWrq8p5WmmpoLZnmFx0FmO4hAGv13k8OPOCTcTEPPZF3hYpquq1UEgzdRtJ5zUwy3LHiba/50+9bUSk+bGyJtJ6k37OcF1uEMk9drz7024Yak/9t8n7tM412PVVbnos1y2beEff2ZqacCdfAExwRvFWDfYwC81s3+7rXpPT8qxlguYlfQT10pM7+u8azl4AP/qmj8bmyO5rB9CpG+pHKwYYWbHY/tIyY3deSIo7uGbH5IW4r837PafG7tjlSQm4IzfMU1K7KxIatlXhDFXkeMpI9S4O9mbi/MxYLE4zygB+AsX3PHCxuezaMlU7rUOz3juYCDLxZipm6oqIL+U4ccpQP6OsEsW+cDSYoAl/YRV1kUjNyPh+QojANWQ3sAKsGvbFs5k5663oWHwZIyWHT57HBJxHhQ4b29RSVg6p5t7iuqR5GN58SqfBSxVpOny7FX1ZBb8df4vxORsK/IjYIO5R/KQkLKfWaKH0GET19BjPYfGN0jxonEMepsTg3Ulcz6ht0mGa7JjMzGH9FPiZHAqjlwTqx+iXiTOBvPJFu5KS2DE+F9jrLqds/ulo92FLE5bqCstBReTrWPuZ0FiiEVOS94s+F+QNkzm+Di8qJ0rCf1/YMre90rzGs3IuN6Ec3pSrTlxv/HGEwvBBs4CsxTGxVhLl1bN+MMdOAwqPuDRy6MFQkXYDbQpbyboMk5hikXf3eOJ3uUMSHHBfVNJiQdnX8x1hG3NdhJv4o5hccCfNDLDng3urhKBNXrgWFHaiodBryfRlcu84nZmWyb3w33aeAcW++WHHpmFiAUMwGj0dmMYhgnpC1ayBeospaWltXAaMuDFttxW38iL99+WJbPGV/uLI/HRhG8qfMoV3ktF7ULe2dhE6tzPauakI7afZu19Gv6bSodi0CuFlrJrnboL9MLIgxZgFtG9qadZKnI62COcZLwwwzytysqR9u3EDR3BPtXpghmrqvn6pDI0dz2SE6llY/pIFzwDBn4Cwb6cfyFpftMdefjYq3bFQIlLtgxKmXQsSgk1hmPDhLixY3aQ/7nz2S2CPCVetlsj1zHfWvs9fklRFTXy5baxt6e3bduWo8oZxJiJkpZlB/ucTjRhf9K+xZ0J+ORTx8YQvKJ71D1hGRUAfRRNxoBszIEpxfFnmfnFvqy/wnr9xSfC4GB50/itsuGJs2CNqU7T/9G4l5bluRg8GL1ocpXmOVm3GjSH8vXACo1YhB40z8orZdFxT1wRJctFEUrNBTknFlVQxHwq/Cyiok6SErqT3jfdRgsX6Mcmm//ASphLjpyWL3w26X9nejGQQ2XSg1tA5NEO5iwNUM+tskoXsQ5Bo1r4KEyTwX8vXnUsh+FQY29iXWcFzxJ2qne9brt2VcytdFAyi+lqKUTD9SscAZs3lPt/eZuq4Lt+N/oxom+jeCHA6k3DmbB3NDquS8Ma88Mff81cd/N5qCTBe3qeel58+AZU+z4kp/AwetRfaeFWgBZV7Ol9kbDbNViLcvZvDII4QPVG5E1XDmh7ZdizHUDPleTPw7l3lgmfhMcs9FLPbBo8sagbN9seXuHjXtLSStQ1HW7MmvvvZetZUn84IjBJ/xgGZljcNTWRUP+GygP2DUmTGzIYDb7199WOvs9kSvE3HYPMm9/HsDcYJbr6WcXn/yOM4Sh1mFyHE/3o6S+Khi29QYrlaIMwdv3w/A8vNXAJg+QFd503hPA2veCghQ3c55FoftvT13Y4O19WL+1goRI5GR+px7veJo7z9dbWNDmo4mVrOV+32GClxwWPbF5nGb00+Ro3L+19+P4+S1EQenHEYtOs+mXwD9yUoQpf9fez73wD9fkde5iUwkbHx1ruSmmCuGC1zb+i9RSQWYkOk19XkFe/j8rE7pEWVXxLxfoTy6928QOkNFUqSnn4ODrn4kmQzQAZUNMjcevMb8Xtd14T4D9wshZoE64hiqA0KUGwHPMuereWX88wDn73JRnF1PH+GU8WVNMPInTfHbWEerZW3sjX3dRWyAolXvzMyG/Vns1051wC5+UsG90dEZ01WnriAthbqgQj/DuKYkMwoB4uANsFX7V4xGI6n55FdasE9RK/kd1pEKjkd82I/qLLEVf5sgiapG+PPtBtW81dgYdL6aYw1RDv2ms105v2JVPPL5s83OzomiUfOPR/xHDP0C+Nuj9Wo1mHuUdIbC2SHk+xQmbfqA+G434a8eNY6MNto5aisFCUbSkA7BX+QUcdT182Xj6Fj10ZdiQcwYc4mhFeDDm5KeZGZK54LQ5A5Zkx8hU5ovQCVA3ZwuuCcAOAbSMOQhtFxxB3Rh87URcwgbuuMEn3L6doO9N/vajmTbGUTUfuMz/0Tj6GFhKRu+sgifWgW6szJ51yUesJ7yMQuLQBO4j3hJ2SrrjPOexJycWtu4nyBSmRnOFlQYw3Z+9EEr/7T74wmm0y+K54xzcXiORs+CX2SmHsld/JnYg6c60eJ2xwJpEhvjZ2JHUzNPkI+I1pwuEmrXgWhrbhUEJeZiJYQ+vNcBP8eFa3uATHYZb5F1ao0KqLwrvJU7NTzfYV/yLmtFKo7v5vG0YjkHypwJSFF9LylLdT5rmK0rwcLWaR9N6vEjoz4J/LxqCyHKvX7MhrDEY03eyTROpbxOLcN47ebV9t6FuiDuFAJyaYIgnExcXsTBgqvmcX0yUGEmeOB23c182sLpTXBlOa7weZa7zX6WaOjmRRkBBQa+rtfiTVYYxCM5abIJI3sR5EdwyD9CPGM6tEfUw3/7n5TFBkKtfJp/Exozq6H8Fgm34Wo0UiGKtr9BUW65gnI6Kyp3mGGzN8kdunKNrqoS0psI2GuP4HQmkNLiNFwsIFfuvpjuS/piCUzzuAWydZxHqyg6FiPyAc3aKxOR4l97pdtTPRQN9+3b6o3WRgnLRgWvfVSl2IIve/WB2KCW/N+DToShq76dKYxfInZcx3Y/0JaF1Jb6CnxUQeLAAs1uwLddr6YQGZyySJh/Or5N3ZcEW/5T1HrEajcyTdjW9d2pU0rt13hK3INv4ARLoLcKX6wX5/17XglzCHlv3bNjlVUVEWVIGBJ6rUPztyr4UALa6jMEHBsHkDvUmIdJumlbJnN/DYB21xaidkzgqs8+y6gpBEBbsoyuz/XqXwSgXj8GGFhwBq/VKVNTB2HUf7TopSbSeEnIT8rlPM3YmzkSepvcPPfwVXPuJt3JKcbBw5/TrbRiJA5z/oK/IDwc6bS6YrR36AGTAecuCkh7e+r2NLt7iR5pl7CdLLzerdf4DwngCQ8+Ksal/vqSMRrIpseisbEjPhymx3GZ0tG9PXKbn7soAqMMzTPjDs3szG13/Pv6LJoqoZLvOC77FA+Xcd1fgwkhCswDfVMnwKefdveK35vs0QZ3VFAi5lvUZVHWrPdwDaFCXJrwZiutcWoWtg7GBhN/GqZxXqrdkDtGELbhMxFKsSPKqWMqfrMSifT91UXrmS5JDFAPZ7bGyfleITCZwdJxyD561srZrWIyEu/M5SO5qxBaNdlT2rccjwPejsoyyNk0fPykc5cYG5iFtcGRcxr6wulKIuxI693DAlDSyZZHwonQ2tfeTINDXYmsdAo8ZMWc9e4pJJ3HqGYymW4u78XEKK18U4GWbkMtdHSbKO83dZjQ590nIQ9AwWhzay4EVCFlBh4d+oTXK3rrbMdnr6sogsbf9dip1Isz7fgsWY9ZpDwLmCI/r12Cx6lY+1bu+cv3/KQtWWc317JJ7Nfsdpgadnr3tZk1X4rL11vPdsyJ/e7Ve6WdsYx63dSyNpPvt5Es/w11Laz+KkW913z0vf6zJKprM+FJ4miz2qjxQR73PopxC6hhmi8B0+izJc/u37+aLkjJh4xxlYPJ3igCcz3RUH9+W2LQMiou95AoZUVcRWtqzrZhdvVXuaNrpscEWm+Bg/NftTW3WoslVsqb20fuBsPOo3rw0LUMH+jK9XexvP2LPur5Ntgn6TwyPi9HN2PL5O/Zbn+SFT13qwgasPxpQSnU2yqE+xCZcZRwRJ1j4t+tbC2Ip8iLago1DQ9098jXBuiicxl1rLMyaHK7EA3+OEj+YXnBmaPQa4Iru60bpW41XCgOjVc7aciFT/dUZNVNsfns4RAKzIoBLVB993AmKgtWY9khiLZE52Jy6Icw7f1VPpt8IORt/6/n9sqRH+9ycRCmQpfiM/YX1aZ7bsQ8+HIMXAKjaRPG6jWu82y+6R9lbJ0HjzJuF2E6yxchllduq3cQhPk8MY96jWXT7I85shvkVz2RNUZxjMun6Ed4o1C17bPG2hQuTSEp2ZDUHoSjGICBrLFBvCw75+9qA9+Q+Xe0Z2U7tTrcY6XVSNRGj90AByQC78JpWP6Pp34RvpddogTa70WW74PV2ZBtHhO2pv97O99NBle4bErlA5fw0SgKTCcXl+r+JcUoGtAYZBs2n68qV8KiMwcDz7P0e64MNSl1pTF7njL3ifG33/GLqs9AUNwa5FSAuKPQhz/yOy3l2gr5hDb2HG3/NYYWvY+ph5n7JMrfcNHktUvCmp36zAW/Mw61N/jXZxuMaYCjyNOsEiKjoP9nkk4VGJYzb4Z6889XjaYtqh2FqlzuJwvgKc2jUxli9s4k+JhyzNVpIUXHQpsW/TOY+zgX5NaF9/1Ioh+saNG5Iua1pOy2RRIwwj+IUo+cmE/35+FFwHQmFDgjakhVRi5L8an0kQkUDp3FDcJuCwevg/kCuWdUt8MwuvDlf96lRTE76ezKshj40gaFFBhZSD2FVZZwj+oJGjy0nnxkibaUIkKOR/dj4d3I9SbiD6VddIJCnn5yvTwO/ycrp0qLBmJfMMEyUtVcdCxZb8Qc28LijjMdjH5Xfrecc22zrEhpeAPrdn1VjqcmDO6tZk9p1cuUO4mwqytUV14Hs+Qg3WvR4lWOoGxIb2zNhonC5/vMtWFqK6XoGcvcus6YPY6nglRxtX4c/GrxAsgLNq6LpH6KeSS02e5qd0/NxBwLFLI5bLpVIBSw6+De8tuufxayOrATT1WWjqlnnszxFdcwcrV2JCNbF+OHYac/8oG8X5KiJTL70geqMVT2CJ2RJGJieXhLq5A+S4xkKuAHL9ixdzS5Nj7pvdwLimIyrjz64B49dt+C44CU0t1v/PlV/BRcha4SkHEY6pjmKs3NP3UquwlpDoEH0YTT5sWhV7CFfzs9G1IHqvHgC66a/konf3BdWWe6rDFP6z6Tvk30+dku7cLmFntn8j9c+bS9Z31zKUxkMMp9e0PoSDfotml78ZVRnkkd5jv8P3nhBhPsgKgWF9XeeoYyZi3KGGJvgCVHhZr79E5yWkWpC3ozIzQRtvtFn8keYGPK8i4En/eygP9LDJYC2tUpN3qU9xVgz+C/i0PC0b/6HnTAZ3HEtP9iyzLG+KkrKlFEpdmTuFrKiMY5pqrLDhHl4iXlIVGAij8xtQtSR8lx79tTHePfCQjIsRe7n+Z7Ek+k70eqjweCV5sxC4AqdaV1Edigl9mrMhpdokZQL+9HwSC6aS4DzU9l3cacHzgbVGbbLmhHOq6Ti6E+PB0HE++/zRpWrcCnIBpoRN72aEIvO8/nki9pCDysJPh9qLafLmaY8RVppNm4d4q8/6SZ1M3ApP6+scL+4Gh6tYxY4NnejXyz2GvMe7n0O9eflZdaVNiLhDadsPDy80dacVIVH2HCt948b4/1ZdDJg8/NuKZJ2PyAY9PDBdjFWVPtnMInJSwGz/PO3nK2o8sY/slfhLtdYQwOlWMJ7xlxHfDWNiflqTopp2/XasWkFaJrG6/NVJxk8C3tfn2jX/2K4vsSvYu9ALLb1q8YVXZGS5/HyTd7m7mH1dTZYnzcg2CW7XOP5vGkjMACe0+IsgnMFOirzlpwqeQkmKgpq5+Ucc4fD38AC4nrVMUXlx6J+UlDiWlpXvDapQq0l3neBSe2Ezo5l87jEq8qRnd0DLmD1PwIekdMoJmtGdPVGu+yOfnJfOtc4sLYZ+BzkF5s3ECtp9XUs842apC91yTVg4/Muij1Av0EuGk3X3mOpqlUZHXJuFNwK49lrtcN/EaO4SWytf6hS4enZ280MK5rgjv4yAoTObpWr1OnQuPM0RexG1+Iu/xUauZD/NiwvvUeuqV/jA7jTPKFyZk5lORAW9MGLthfcs6XZVkgsnI7KuhL+DuizjdqzKHnemhE/1g6sIIJgtR0Dz4uzsnSuHbM5ePTLF1hKnA3QgCli7K5vTB0bfPApMkjxMDwtPJnIlJD9iM4NDl794ZOjAhiVdHB/PIGCHHOjkAiyi1FJBO2xZTPhiYOlXbDNgodQxjy92NWWXSdNhzJBd77S//JMLmVS/f436n6UiUrvf1AqtBbylzOMHumB4eCe1b0yGj1yVUivVgCnJyhycDsFumU6qwUpI89/c8FV4j4fepN/mHX1RbWW2n3Poyw+yOPvT0eAJqr0U2ZFZFYcX1Atg+5FUfy7CfYvphvDUi8aSIR3XWgL/wnGshg6Y2WaxyYGmAl54PRGjTZ/wUS2u0jON2O6p1L043ETruqY1JPsxROnpdjBy3oJYP5b8HUHq2WtSU682P7H1g0pV0NJ8nSpCLQ8hp8nuWCw6m2hJ4aU/V810PsRgJPrKfu4gkJtCafLLBxH2MyqSTstfD8e2rIj0d7IgG5JBgJGHP6BYYH/YmhI/fpODn97JoOGXq46P42EL7L/JP+nvs9hmxE13LzI9JjQIc+50gX4o7VaoIPycCvSOTDA2v+x1/JK8WUzQEaU152nBCYcEn5E6JlDQJLwngIyuhdfWgfjHy9LVM/9Y1fUPv9QVARq+ujXcE49/X5i/MWq+a7NcFTYwAZyWZS1tNRoa+FCe11pw0FGxKDn91hZ0wEgB9onzqrIH7JtOkQoVArxugYSioGxEba9hMGLCci25fgEHcZn8VFuqfky+wFvCtmMZvXXIhKDapOjjXie8H3BXFobQFMH3V5XeGOjVBuVvvuaAJTY5C5kW2CeVInJP32SWxcZ7FslDzYKOCSC/SebJ/ygGcdytZ4gLAKLse03Fgsl4pEEPx1yB3DNlZwH0XwTDsEv/ZIC69gs0C5s/b1Vp/rVnrHL3Ub4I5tU5sNM00i6zJ7AxiGiGk9B3jlNPssdMoQLjnDnpf5TCbFFEZXbVpBpIPBYE7aUz6EojkXvumlnBGyXwfNBsICl5Wd9t/0edGE19uPOReLg6Qba5biE6GJkHUEG5YVYuV3ThIdhWYArGRwN67qQuuAnCjn3GnrWdrgE7GvgeYGH+xwlMWctOVZzJh+zYsqiiZ4H218d2zCmzmqXe9tJKBcN+sgqlAA4LrZPqAA9qpqFEaO7OfFhg/dPfqvWlfjGphI+VQdMAeCI8Sfr8zO/fOF3rZ2AtMQRoJ04bQ/KmCv20YNI0eWMr9mYpFcLCr3O3FoFDxeb/5e+JPlsNv4qVHGH0r64Jn0tlziXXhXY9Kmgp6xItgybfs6WQ+CHr12LBVIbsNKcEzGLXEwSwFbJVu2Cmb+pGtK94n1LiL0tQ6326hh212XUsC23HO1xHQUzC3A6hwBdS0ftS7J99XLH98px34lYfNwktWqP7Z+2z4n3aUy+UyLfhDSsOSUrMLcw4rNhZcFvgVAfG/CDOo/NiUabrnXiNFEPPF0IZDvallTP/WE2iidkKwYJISuYuuCRhUp3PIXmzx5iqOSmcCUE6nEffttvURUVmU1zpcqLigMQZRlbzc9wvh9ROQrJhwpFp5zkb70YfSoL9xKQqZq8Vvgirv/DB1f1gvs1jroogn8ZyLiT7PA3gRm7xF2WHBVzzVHb9uV5UmjNvxW56uP8On3klosffV76AbbKwS4MW2DX/cKoL82Jw2LI2GpYOHFIck2hki1HON+CjmNecBj2WWgLC12m5ZGj/S9Vc7UEGnIA1vEeXiVwaL84j5MW3k8baXTvQRsPvjAhINknC/DoIdswu9yqbXHXwwhsIwOojXAi/yNO77M4rvXHDdOXsEYHBjfjRqWx0om9XQNXAPCZ1QkV7231NC7TrHYTMKcsrZyG0J7Z1s1f+Ow+pyJDAGDONidGBZ4fE1MqciJLSto743VA9hCyVxfy0j3HfeRDF0dnPkSoHKwW3HeQM905+Mmu2qrXmaqhb1RgAHb3xEtKT2dTWXBmY4+6XAQcq2C89Ijsb0NQyzXVIcX6fLe3QtIWia97djhErjc4WvvqGmRabILOrNXPlJwJpE90T4iB0jLCH2UrQVeji5CmBZhn7xZoZ267vMCdvnpnLpQ/hsT4XchxmKYeXvqn34ExNTkYhwuPKgO+FMuzL3RNOPtGE4g99Ala/AubTKzSSK2Be+U2uipourgNS9FrU2UtC3ZSzaar4/+gtJh+DzNz854FQOtS7TdnwEuWJFkj/uHeuNmURfHlClOcEeG5DIwtsdM4OyMuWeK0GlCB5qo8GNfl+cmygvsMbpzvOuV2iwtq2elmM6/doS9PaA+IdRU9p0KOwewzRznNhl7vBXnJ9fSq9K5/jSXx6LR63laBSH0W0tqoE75n8WR1F3T6rsi4fScOOEXLX6ufXur71EIzSD27yoG2aPwZcgmYBC75AggtI0lNdGhFI4N98VsvcSHPaOepHPG37vedR/fuvhzyeIxL/w4U7yt6d0pk87NbfuqQLnABnwraFhhh24HH6JLq0Ai/5Q7234rJTXFfhnxjOPxfOYRfgQcdh0/qsXAy5nUYaaitmln1tiZ4p43vYkHSaSWXswDIXc65nrzvKpJr0LfcN1lclQRCL9IqCmDqa2Nv3IrD0YC7pIvdseMJA68Rz6Q3oUJ9kvO5+N5WJAvKm0HiHsccK5DYfQZfO6CMqeIJSn6d3GZaNHhSVfYDfIfYZhdOnTlu9yRBOrcED2G8mx1nEXltFSJz3k0CvH63Lsg7nP9EooFWkGWM5ZLtYWt5wqgYWceyjvVs5Mua01d9nT9TUCtLbdTLXba7IBfpzeWTPJh/MYOqj18YW9XvYspoqnIgWpF9F24kkszkQfVFK3n91HVGfpTVmbFjiOhWX6RAe4JCvsp3KYdEfzcwLciqbniroScfRjOwF908gksOjAl46IW5SbDc1n+7QsH8g5qWOkl1FKI76SLOjGnwHgOgOzZpyl+/npSht8lscXWzBcNrlE2LzTp6a2ZUMikzj7z65hDbZf8chtS43dsJ5RoVpHy/U7Xmigm6rzvjhsOPYc4lxL8NlUPzCYCOesDKAM+L1tPws074Ti/Hnlx04PWxVYrYPYyd/GPBoKC+u/uSiszu382lU+eC+iuVc/0zWpUUVov5WfmZviOGjud2VMYORSZTtpS8hvdRRmI/Waiut+FOSw/LoMVIcOJC9KxLY9NvuMeFP1yNPN1Q8MzGRWoVVr54jt2T8/o9dJMLbnZkb5mbvP2lbS9NtaLEmDC2CVwScle5/90XAj9vGgzih+Do2oGwbM1fdMR7cBrtHxcXJ9PJQkF4dQzRLl3jT9FrYycVA1Mdpl4E66/2A71eKyeHMJV47LwC2SxP/VxXT6frJbGQOQX4XCqVP13WC/lkehi16g/c3L1Ort0MB6xrlvQVKUBXeKB2WTxkMh4HC5tN/V39vMa3JzRhl7wSi4MKD3BLBItsH7HPMWIMTry2kSxIxCf79YYAvjcv5bupqLLcnA8axVq2Y7mx6lITtyt77ytOuDPPkTZK4zxXl3RTPySu3C3R1RX9q28ozwH8c3AYqW7BL6micaWmauayO7nZmmP8zVUHpPCN7UMXlFLmbf7xtZu9nSXX4rlFN4zrP4doHQsnYU+ONIerg5UWbhwokpc/pEhSPx8+eZNmvp1UxJV85xqfVD5XqKn1OLTmO/tl53qcTrHQ9aIxxkXMnbYARwiAjAvmSms1XrErXwPXkxjqPwvGqqyQKHkU9UY9OnQ/JwYcCjTpQ9PuuTM0s5g7TCe7uVIFhT/37Wy/Cu1Hin676or6VQ1wD3l2YHm8+2vUGyTJZNFqbt5z/0vrNLmryzjhpuzrSm37mcwwM9D7PIm3WvrwwLXNPZHIR1G48M2gZsOCUB1fhwR/oEkhKnbW+BjRSf4sciHcSIyCriOA0D34jNqwhrM3FNIOPc7k2ofB0VOw+bDZX1V+y24LfX3EOP3NWBiWiSAycI3QqvkFTjGasBe4PsRkPcV3qsiKCXp30reFknsZMK6+e3OS5Se7O6JJvaaWfmmhbtsA2wPi1o+jV1+sD/tF7tl8HLxBXQ/bEK1n89Yq/B2uqIZl3PIVw/iMUSIxT94mTqNaPHdVUJ7CRL9A85XMpDbpNCJ3FB1bumc9nLE/9d2fGvpRU858KcwMpMGxsaH1ncme538s6XbLQFikZ4x1Afah1DSJ7Ff1ne4AOZfAER4bAis2olOlFeWXROvD/NpSkcVxPu9AEtKMEnEwUgBnymEKDVh34lXjnMYRrdL0WvMllo3RG3yGAeNeyJ7o7+vW4IhnK8UA2KOHMfCpr5dBwqwis6LDQj5Zq2CPWU1zLVCZWEM2fy2Tgh6Q3LeEpQOXm5OxsG0l5yk8voJ179LdOQ1cxT0H56TRaWUAVPJtL7edMJuBCnAUoLZY/5pUvngmXFlrxtnBgaDvEgbmUFNwDc4JlyUspIkEj2MVdFXa/HDRjLLNDnTiHOU/mlZ+b755LQ8X597tbQxBFJwdS51/kBGu9sEvhfOnpp6cmIW8thPIPC2a6GSv3+/AdzlHNbQ0GwOwuaMbejo9RgM2MmnkrTRJNWkh98JpjgFI8/2Uxaojoa3QqsvG90YPPxjbeZlWCxk32mXvmehe0RVI6GfBaCsth4ResBMUmUZn60/jn1JuhOGp3ZUWfI3kcwyomiwPZL2CdUHEW2/TiS9y/IcffibbH31yd0Pu9kx+jf4py2+hPtvwbvLlwjJPpRdS0r6M0xKIlv1rTjkFD6kpfiZUpQ3o8Bw5iDJRYLI9t18qSUUJCbksrbItCP7KzByj/b0ZHTu6lAvXVUFNHVGKlYuMkOQXMU4NuC20Mky2SnHbl19hTwR0qxNzZfHXu0XS2MVd1v1fWkO9xRXrFU/er/tYkyPMR7kYNud+jk1+Z9j96UeXMp5hRHy5/xfLsEcdua9DfXbeAWHyIrI+IV0gJaxvCMIuNw4C+Gnf7+Zyc2qKpwHbi6RmEnUWKqTDFgcyi76pnFK7lM4pVUjEA9FiVaVkMfzn6ukN8R2I1DCQYnVmmEBPTQw8wNYVeTLz7n68wt9RWG77WLulVrve5Uxfaz67izjo+PcMdDDvatC0XyNLtEAUfcyKRB65+fs7ePncq5OAqvLZGX3DxbxRpz3arLRkK+Ot4Vpa/aA3RzPLszxA6FDom3BnSOtX3IYe6hOHSOEXP4gqxQf0VTbzjer1RlMJLUFWdOHI2gy8tT+C7RTzhe1c4Hauwc96rmd9Q4PuwbDgA66WgjKCM9Pq1BjZf1xeHJty2CXZjq4vd5nmRjb89j4zqDnv8cye1YIyZaG3FoABN94cBBOiyscnERFFuykw9q7b1yTOZvsy6agqEMe3fQLSoPJhHoU3smZyok8vPkc1daNl53RVBq8TEevTDvvgqxbPhgxgGuFtWzskozCf+Qj9Vtv36sj5da9TR23vMgHckxtjMZj6M+GzUNVrVKGxTNpNRf+wSl8VI7Il5nIWaMsGVvbqdTJjEqWd8RmICE58dAbBb+fcZNWW2SQTmLkcf9RVti+NaAXOEQqWf6aIUymGSX/ygbHV3UHebaJH0xIVSoL8eL+iQ03qhh8Ldq4vG7OJQV0efjB4iXAbi4gBNUXdvnBdPp6/cmtPD0F/hBZLWiFTp0o0y2g90BBuVf+1OJy3pYjD6z2QNtJbCtPAg8f6BpilzsK+n/lkTijmFaSlpPvvxJeOVZp7Lmjt0t1FLakq4sN4OeEOGAt+CPMOrPRyHcgBSL5Fnj4peieyrnSgbYGJhAUJ2EiWxTIFpJKHfz9nLpdILhwh1u7UJv4UaNYZAVAaC4BWsYzSbKlGZOnRJN0Na7FumX4B0TCtg6Syddept/UBU1MENFAEhtmEz+xp9KIVE7SHWCB2+wLLZiMUBnMCLhGp56jZzPUs5G2VO2k3IHIo72tBj6nUuQR3xLXlyjz5x2Ha3L9BhQsY3NHBbHDyhdVHwHakvzeK4Tsj7yRtpda0vmrR75as97/IC2rW6rr7EnSwGpenCsXtW9kVh0U1MsufKm8z1yMUhxM+ioC06sUYXbQiWSzkOq9GZtViwSBm1225K9aFZ7xVOT++/dQ76rKmks0FzxlVSDV13IKp1imoH0ok2w2I4HWwoBiMdD4wGqvbZ6F8OWc9IqCTHxAZwXM9ajCfUBmt6a/Jzd6Khd2Kv2bcdcMRPln9Ze6Pa+Rz/hTzQ7W6I+yPnGRKfiVDpVz4e6YcZPlcQwugccP/91KAajy3I9lkSU1fddinTenfoV3GHQRo1h6ZK8O1ffT+jq2NkxhZsd2UVTghC4m+dB4b1xAm4+6/Myr/ULP5S5TTm7ltvd/MLY+yHLjRhJL+DestfTD/X8iE/z+vqOPyZKI/ek5YBMzoKwkN85mQyVRdrXPnmCUFRIN93foTb6ILlfwoaLTrTV6FVw2mgMVBrM8+9X/tvt3egEX6pLZFVzghdCGr47ArNlZzlAMtZ9Pc/d5HetG3Og3xOHIuWEe8PAXaqiC3u5rBysW+YR8ZeKpfz4Ivz1iyPtN90iQe1CELLkB3R9n9SJORudNVviezKwgjL2G1h02aSKS70K48qx+vF27Mj5g85RjT2FubNNnFeLjtDr+wVan77sAufTpPSSX61sknx1thTi639VWUc2dRpNST+NikWHjPJb6i1uBZiGGWy2xWK2gOWKGw5wFM7zQZDsWtf2Kw4ZydsNnyQXygoyF96pN6HzrcDJV8Ad4LgPBI6v3D0PZkKF+wToV6o3oDBjfCUU2/1byrbtPoK/se/Ct12VPrVng0NKf6KCnn6uSay3+6YahFZhYc6903zkG+eWkDDcwLeOLzxc1FOxDYVesYEHMmErsW/MTWC19H7NN76MmCVPFaGCVZoe6MNkWw8FS7zmLDpyYy/L7ibWpZR9hGnT5xNjkpGBgUEYMOttKbrXlUUttTdFoKlbGMm4SNSCfUCo1cCNRmU8rxJUysSt0KcPO6xccDMwCu/EH4abcwB+lYZv9UJ6huxN4NQd/1hTuA6SEMY5flCa1VF7aHX3+sS7X8sZoj8jVfO4E/zwy1TlCmzmWoWF8uWT4wcaev9fAK8RUO5MMTYFYWxLARs0Ch3Aex73VI4t4GSUCP93E2jK9FsNXcMo/R8j2mxDeVeiE8coaupSVfNoughCy8Tt+v1pMwkaGVHbon+A11SNI2KQlTn4ud0GfnPGM3hXPKeMVcFh9JHu6E7gTz43bPLVNzUkMDMh+yKqCaDgNBo5tb6vtDP561hMD1C+sGYoZ5YywejEJdyZbFgMO1ZpWFI5l1G+eHbuM/OoQ4eVOdjpIPGywkLT5X8vMnAyu2UkKSVnmBEHy8XKyuxzz9k0iyrJa636ClEHv4KS3YQauc8MansoxECyM/5WnF8WNW5GKn6BgCf3QexUy0JtXgVS/lHZmnPIexK3nx607Ef9fgiKpbzGPW2GKACrBc3dGWbHOsCxKxJt7/Hur0vZdmXZLUvw93aTQCQxEW4NjBHZ+K3rLSoquZVY3bNHqvfRA6eb3Nu8+Pq4Gkdk2DV3/7ULxSQQ7y7k1wkcjxk7DnXnb2nDukrcEAEpgs0nZ0z/1zy8DHHD8ifT3L0tb3OO+vSQsApQNMDv1bWVuRLNSmw51clAOwp9+xMSIFVIecIIWHcJ8l65gx0DnliFRXLEonv3kXXeyt0/WBWPMyBbHLzWUuu/dimdeIFWc7RPzvvVPx6Jry5F3w40Bss7vG76oO7dTtD+jE6wOjwGbIC4mdGf8lI3/D5yqIVxpfCmHU8z4WyDc+6qx3T1WEkVWLzoII7rjLZvYTAecmX7KzStuEhhwn4BG2Eiej5Gj/Yyn1WMI7LCnte9Pnph6P08rVN/Xm+B52KnoMSHW0BppLDT2KWT7etfF5YtMi7mZJ6edelMQM+r5hdGKRaHo1GhyUagfx5bRQsowOeX6uqKa3TllXQr7nxUN3eAsP0sY/NsQU5im+RHLZGwWHLb6tLWRcnQzsdjBsALWO1U9Uakzhplo1APTmmJtbeqxYbFTdS9vLxluIoi6kKxpMl9ZQethBrQl9st1w0iqI3LE3MO3Ml3aEEW6CMDB/V2VCghNcMn7o91LOdoHAfygA80vSujH0Fg4uHYHY4o6nj8EJC6KHREKc3ZwPhvD15y1oNciFXZDaqCrqFG1r3tuu+IrxjUsPOifbo3djdoPb/9wXaoeKlAW5sMVmttTBzztbT4Ua6f6/KEXeEUl54EA6i8bp7ict+VMKNfVFerLs1WbrLfZVDHFXcZI7IVdrUHoWqxhrwg1KZha8/jnrA6WGItZKrCrvEBSbvuHGqdre7ST5O1EHIjIZ+i3ORSNK0m+GM7DiNWMhKymcKWQJkScP7P514Q/kdPWnVsY0Yv/N78ZoKHNuvlcduPOKUYecTYcuOncmeGofUxwuGNCsk5n3kzjK/hDfCtP9D/1QvcQJu0bvNoUiaCvFZJx7A7WJd3DJSkscibIj26AzM68AEw+E9ZJ+dAQLCgaiN1LC8w2a1ic4iCwfPN8ycIsnCNXE6cil1mAV8yi6GVzzgPlXIkRcRYF3e+UmDK77i7/KX73qTSdaP+WDLWLu5/wD98SSdAjKUDKLsZ7XYb6SNOpxfMrZoKtxI7201qdU006vj7iNHChaRqYrKBbJTgNqgmJWKsHyHKJjK+AXneusrFWlzAS9X3tIGuLSu6XpLBUOhgbSmkqq4H2tnOQmlw7PWvJgQD/cW2xho+OmPrkvhCyh2JIPeyk6nkpn6mxeyb0MWJYaMzaRrNXlHUxUW0ZusltLkeECODmaTIo9Wgne1ffViV/h+QQ0Hd7F0HeV384PXw8XM52wWtDpJSJvayU5Wz7jwXtpktpZpC2cyQW24tDYsARTmZKEHWEPPeWm2xqW9nPODE45Vmj1H5jXqfU3TdMSOCzPIuJdWk28JwkRKTis+bsgOdjxMAb9ekKVoZbBDJs9+nE+nRk/KA0O48MbqXVH7edCTTDjUamA/Xkm1Z0OSueEGR2mq38FHAt2uzI+kN77P67vT3Vrk/zUQYRW99FqZI1Z07iLkt6+EFISP1uL8iShO3Kv6+ZS60RxmWhckYxAFS6RhQDw5qM6C8e+7UhftYz8eagMS0pCWosMHh13hECOmHvxuWFycL+SGmi6VCTmjRmifv2a0Q9ilhzfaLEIDjmfbpRjD/aHZwUbnzgJpFMGtoB747iZeiTpbCMo7l6Kvfl0mglWcaRqTYxMJrTPfxfkrwiFGo7DN4uJaEaLsMPDed51D+qJLpuXLIS/AikpaI9GBpsvZOthk1EecS7v5cQTQsDzJavfg/9i4wy+2xKzOGHXYcKxrnfuahqrZyZ/lg14OEDtspI++EGDAU37/jEhswh+pA6W1NHT11EKYDwR+1wvtsQJDBJfVcCksswNQAbvjv7+Km89p/XtQzKt2NUGCDnHJEsWfoZbgTW7cdPCPcbiEk14gnmV00znGqPBVh9yXTOTt1EcNwlY+9kMwpqCdXYNWLcPNx4MCAGAJr5ZgFN8WNuEQgC1bQ2PsP8aNT3I228dVeqt78cbUfVldIoscgEeMXmyRpNJAn9bl0yVzmYaxYLH8L9MKFzp4yU2gTq5TYxrqO2p74NqzuPE9MBOFMjIyZURb2/AO2eHaHvWrC36VJuxGWIj0SBkGfS5OvVQKF2pEYm5tFS8vwra5YX+WHtj6qKvXvbiq7FHqmrE+UwnGSE1d5Vd8dTLnw1xDYdpE1Sz19bVFEjGlmJzb8XLa9BXqyejPcgdv7YiB+nZicqvIEIX6WLv0K+REvpJNMHTvCPVjX5yoRO5uU5SQi8qd+WIdnE0uR+t1QnVgo+4UWOy4tj6tkn5zaQM9tUz0Fc3sBuE0c8UWSjTNKZMTVsGUjal7J8g3JJKcfphwTA3A3TVn4IdfbCJFB6pATGgdGklIIdDEo1HwnLeiz708y3iqvULc56JvaWZAdi5kVKMwefqtF2geYwMiYM5e/hzwwi/+HPxX+Ba8W1RoTWs6MldmsZuXOAfqBYT1a3YdoV0WqGXNp9jYThZr0dTtbZ8MOD2TYRL/lSfMh5/xPDmLx+M1fSWWZNXbdJNTrYuzDMAC+sBaREIaNhd03KbnaCExan6Jal897HDMUUpm49I+Fu2u4G+NLatH93BBRE+t7EUwwD4GaJtkxmWYElqIkfXkQAvqSi3tGt6KdyvIuuHeq+ZPcVeVPuvjKeEnAy/vit0nBdoSRutFXUFVEU39jV3GIqKsOSRyHElPMPT0IxKQWSPPoDTRLX674Tg8KqkpX0KV58zNN9Ka8MFoTtMlgMVPwMmw2M248VWjipJtVKDZKeISUmRJZL6tXDsg6NX6IhGi3B2Feh/pgEAskz03Mn9ufGGgKgVK3Px5M3UkSs0FJ3k2ylJs+43Gzqk5IGYWPeeCbF8mqXTtxdn2lBThbIU9VXHBGWj/bN0ZNYvILIxGsxc2IDChvIS4OPmG4m/AKvUgOwtwMQo0VPyqOJn1dHWKf9RC0vh0ScG4vPR5fj0cek00+Q3oEpahySISS+49H13jE/lCom5xtBSotscn5/2qdO4aH0UIyFGyWhMNYyWHzj2b4XnduYT3xHRQ6hFNFrMCal+ZS3AEYyya8qkkLXq8DH2Z+nihuXyCipHZ/9bx75c997AD9eCMDgbChFRHW1OCWL81iV6QoZNCZ4wY48ZlNkxMT8tCwR1bXcAXxlKyIHKOs7LSVqUlahmjw31+tE9NlQXkKa4P1DxSI3DNQeGZh9PWgoj9OnnesSOAgpL7s03Z/NK6SXgn9K0LO4hwAbJtgzikGpyFMSFVSpfMEgRIJQNbwzr1iCqk//HciHAh5uNwFTPviur92oFtRCCSyLzucgNAD4HgqhAU8sVU7f+feH8nx9l3VINXTX5Vlk6lcLH+dNVhRxC9F2CwEa9f8eisek9mlmxfHuoly+8GYEUj+gdxSOWz/a9tl+bG9JzLodRJLtdDo77RKggW+N0ykS96MXWDnkzkmYBJOFA4zDOqoGeKPmLfWz5nT3HpLjB5Tf+wvftw2vijFAbzywtm4K+lBTqQ2YH4nlUFEQ1TspagyX/JaQgzpMh0CNpufy6yC4A7B3EYNncyfzWJ8k5NfEX/bizpm1EYk/4LRZt2qfi4rwEWPVW0wPEjGzewurFoX+pRBtdTpqghPi9V+stnTvukgDBt/x3tq/iY3WAYU4Qm4OpvlwrsTSzw+EigSMVqc7u1vrFkDgbsD+aKtcuyWiq1ltkzstm4QPFkD9lF2KF1OziL+wVizwyTNM8yvUGCxrgto8LXCwq+7nd2NdF6lOmXEpPb2BmZhqq9SINbur+g/mqr4MYbhpwW01j/laQzBUAdNWv6b1FAOwPOGfz/0OCo0HwNB+WTuvmBfGqsEL4vAYb0ZSw1J3INdM8qQd7sDR5G319LWWA7YQjWfxQAmdvwwPCvrIB/4o3g/PW6INKlVwSPmPsr1hn3pRz2JccUdFY5hpg8M5ryV1vpLfuHcc3Y32fGoWvsNYzjYbDoh/3e0nPgc02Jq4tf4md6A2AHXfuF6pRaZF80hvqlGYkHwoP9L3Z8KVcQRqGbUb1/aDSael7IMmXksJ20SBHIS94LwjIH+CS5I5UNyiptds47Ozuw5C9I+S77dTBBvwgLh6jgcwvxt517ZR7fHcOFqC8nhIlLKLheWegtXKSZnWBvpfp2i85pdCteUV2uZJ+wjhanTtqXwoTjPYBeMr8HW25a5saOrp7VSAvfz3zXc4Vrq0YetuSBQuG45aYIO9M25F0bMAyeT4i76FDM12JfKMrhclJeaIepcNGSwJF7RiIBPSsFob9VSq2YAcXVEde/v7vcM/t4p99ve9ORtn5ELyBCbZPutBN1LXVyTy2ZqctgVYm5Q4dW5lIt1lntPE7aEOjkbWqaZ1VQpSZbEbmkCnqDWeoOhy8Jw5yN7TXoZ07xsb2js4dEBY6lbI5Z98zevDVaOk0fHl2aF+JXzBUqylYDzseA3TykDJqMiMvJl7IPcczeBQcDV5lS18H50YnMn8C6SAaLyTfqK2P070ExTHp9ldJOewXg0aTFKetlY9f7IhXtNO1bF34JFHhEEB0nA6rg5YhKG7bGhu4l/RMQMYg7qszXT7REKPChMy0c3xWrlN+rGozGM1AzNcyo0ENmejd/LbgCwvyO+8HgryKTj0OddZuFCBvxv9k8HE/urWX4pw84/FhKQe1SAH/V8gN+UYNSQgxTwRQGI92+40YIXDe1kvubAaOIgkBnwJMoqeusS5y6EhUsVk9c5M8jefNFOigS8PVlAsL0g5VRp21hQth7g8bmJhS8yne7uNGSLboh4MyP1eIrs9oghy4rSCM3iXmQWSTsrKG0ww5lZkZk7Fpo1OYZCnv9m4cLITnbIxfG+0YEf6E0bKxrrz5qmZQ3Q8YRzqPSi4L8Joxn6695Pdlbd7tz9zM4/NALz6T+DlsjvReW19Fk47e8LelCvaBi2geQripwitVJuUKE/fWjbK1+rCpcMQjf2jyrdRxTvh3lVd+V6xpF7h6zlfxvBqqM/z6IsCkpqr2xV4jmZR9HP4J4bow4lsDbQpmemJYWTD5bLRbDBsLgl5kALjTc5GbR0rgqSqA5S/J1Aaiq/lucmrsPq9tp0a4oZZkgLswHtRXIiBeAHPUfF53hEcE2m/O4iFmk+pYBZE+7sNYiQx2b+TNIyRd09kZ4RKvmwzJ3BdvGjAEhRwPs7hn/AcYZeuxU6Eb46+tSEPZfPqVr7p2yO2vAFZFUOMi8hWeFxMoTGi6tvDOLOdT1yzyUT4RqVNBntwz+uvJMGh9KlxioiYM8B7YDymHLAJqIBmsf+T4HyWNJ/49E+rtThe7IYVN93ZBu+bx8DZJG+m69s1mp65hyDFJvbFqGv5yumk1h8/RDXLqMTzRAajLY7G8RVnyzQcUmf0LQ/vaMWx1EzfglPahwM2Hj8krCN2U9dNnSMATtzEKwRTjWKN71TIw6zzwnlM89ls1YoBFX8+U0exGQWPwEcnKpslLXNkQW+dH1itW51JNyw3V2agtfrtVISLHED1FNkvpD4tog1sSMoVTzV/aG4VNRsRl/Ov+v5gNUjozLBdi4DQ/94e4ug5qwxOkei+otQ1ty+SQ0GPYK+CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0Jhc2VGb250IC9DTVNTMTIgL0ZpcnN0Q2hhciAwIC9Gb250RGVzY3JpcHRvciAyNSAwIFIgL0xhc3RDaGFyIDEyNwovU3VidHlwZSAvVHlwZTEgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMyAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDI0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvTTAgMTMgMCBSIC9NMSAxNCAwIFIgL00yIDE1IDAgUiAvTTMgMTYgMCBSIC9NNCAxNyAwIFIgL001IDE4IDAgUgovTTYgMTkgMCBSIC9NNyAyMCAwIFIgL004IDIxIDAgUiAvTTkgMjIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQkJveCBbIC02Ljc1IC02Ljc1IDYuNzUgNi43NSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CQm94IFsgLTYuNzUgLTYuNzUgNi43NSA2Ljc1IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL0JCb3ggWyAtNi43NSAtNi43NSA2Ljc1IDYuNzUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvQkJveCBbIC02Ljc1IC02Ljc1IDYuNzUgNi43NSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9CQm94IFsgLTYuNzUgLTYuNzUgNi43NSA2Ljc1IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0JCb3ggWyAtNi43NSAtNi43NSA2Ljc1IDYuNzUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvQkJveCBbIC02Ljc1IC02Ljc1IDYuNzUgNi43NSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9CQm94IFsgLTYuNzUgLTYuNzUgNi43NSA2Ljc1IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0JCb3ggWyAtNi43NSAtNi43NSA2Ljc1IDYuNzUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQkJveCBbIC02Ljc1IC02Ljc1IDYuNzUgNi43NSBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nG2QQQ6EIAxF9z1FL/BJS0Vl69JruJlM4v23A3FATN000L48flH+kvBOpcD4JAlLTrPketOQ0rpMjBjm1bIox6BRLdbOdTioz9BwY3SLsRSm1NboeKOb6Tbekz/6sFkhRj8cDq+EexZDJlwpMQaH3wsv28P/EZ5e1MAfoo1+Y1pD/QplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMSAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjI3IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMjAyMTAxNDIwMTErMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My41LjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My41LjEpID4+CmVuZG9iagp4cmVmCjAgMjgKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwNDMyNzMgMDAwMDAgbiAKMDAwMDA0MDMwOSAwMDAwMCBuIAowMDAwMDQwMzQxIDAwMDAwIG4gCjAwMDAwNDA0NDAgMDAwMDAgbiAKMDAwMDA0MDQ2MSAwMDAwMCBuIAowMDAwMDQwNDgyIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM1MiAwMDAwMCBuIAowMDAwMDE3NjE0IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxNzU5MiAwMDAwMCBuIAowMDAwMDQwNjEzIDAwMDAwIG4gCjAwMDAwNDA4NzkgMDAwMDAgbiAKMDAwMDA0MTE0NSAwMDAwMCBuIAowMDAwMDQxNDExIDAwMDAwIG4gCjAwMDAwNDE2NzcgMDAwMDAgbiAKMDAwMDA0MTk0MyAwMDAwMCBuIAowMDAwMDQyMjA5IDAwMDAwIG4gCjAwMDAwNDI0NzUgMDAwMDAgbiAKMDAwMDA0Mjc0MSAwMDAwMCBuIAowMDAwMDQzMDA3IDAwMDAwIG4gCjAwMDAwMTc2MzQgMDAwMDAgbiAKMDAwMDA0MDE3NiAwMDAwMCBuIAowMDAwMDE4MTY2IDAwMDAwIG4gCjAwMDAwMTgzOTUgMDAwMDAgbiAKMDAwMDA0MzMzMyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDI3IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAyOCA+PgpzdGFydHhyZWYKNDM0OTAKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2022-02-10T14:20:11.897765\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.5.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# every solve is random\n", "rng = np.random.default_rng()\n", "\n", "\n", "time_stops = np.linspace(3.5, 4.0, 100)\n", "perturbsols = [\n", " diffeq.perturbsolve_ivp(\n", " f=f,\n", " t0=t0,\n", " tmax=tmax,\n", " y0=y0,\n", " rng=rng,\n", " noise_scale=0.05,\n", " time_stops=time_stops,\n", " )\n", " for _ in range(10)\n", "]\n", "\n", "for perturbsol in perturbsols:\n", " plt.plot(perturbsol.locations, perturbsol.states.mean, \"o-\", color=\"C1\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "blocked-coating", "metadata": {}, "source": [ "Again, observe how there are many locations between 3.5 and 4.0." ] }, { "cell_type": "markdown", "id": "binding-showcase", "metadata": {}, "source": [ "## Discrete callback events\n", "\n", "It is also possible to modify the solver states whenever an event happens.\n", "This is not possible via the top-level interface functions (e.g. `probsolve_ivp`) - we have to build an ODE solver from scratch (see the respective notebook for an explanation thereof)." ] }, { "cell_type": "code", "execution_count": 7, "id": "motivated-auction", "metadata": {}, "outputs": [], "source": [ "# Construct IVP, prior, linearization, diffusion, and initialization\n", "ivp = problems.InitialValueProblem(t0=t0, tmax=tmax, y0=y0, f=f, df=df)\n", "prior_process = randprocs.markov.integrator.IntegratedWienerProcess(\n", " initarg=ivp.t0,\n", " num_derivatives=1,\n", " wiener_process_dimension=ivp.dimension,\n", " forward_implementation=\"sqrt\",\n", " backward_implementation=\"sqrt\",\n", ")\n", "firststep = diffeq.stepsize.propose_firststep(ivp)\n", "steprule = diffeq.stepsize.AdaptiveSteps(firststep=firststep, atol=1e-1, rtol=1e-1)\n", "\n", "solver = diffeq.odefilter.ODEFilter(\n", " steprule=steprule,\n", " prior_process=prior_process,\n", " with_smoothing=False,\n", ")" ] }, { "cell_type": "markdown", "id": "obvious-lending", "metadata": {}, "source": [ "To describe a discrete event, we define a condition function that checks whether the current time-point is either 2.0 or 4.0. At both locations, we reset the current state to $y=6.$ (careful! The state of a filter-based solver consists of $[y, \\dot y, \\ddot y, ...]$).\n", "\n", "Let us construct both functions and pass them to a `DiscreteEventHandler`.\n", "Since the solver is unlikely to stop at exactly 2.0 or 4.0, let us force these locations into the ODE solver posterior.\n" ] }, { "cell_type": "code", "execution_count": 8, "id": "certain-bearing", "metadata": {}, "outputs": [], "source": [ "def condition(state: diffeq.ODESolverState) -> bool:\n", " return state.t in [2.0, 4.0]\n", "\n", "\n", "def replace(state: diffeq.ODESolverState) -> diffeq.ODESolverState:\n", " \"\"\"Replace an ODE solver state whenever a condition is True.\"\"\"\n", " new_mean = np.array([6.0, -6])\n", " new_rv = randvars.Normal(\n", " new_mean, cov=0 * state.rv.cov, cov_cholesky=0 * state.rv.cov_cholesky\n", " )\n", " return dataclasses.replace(state, rv=new_rv)\n", "\n", "\n", "callback = diffeq.callbacks.DiscreteCallback(condition=condition, replace=replace)\n", "odesol = solver.solve(ivp=ivp, stop_at=[2.0, 4.0], callbacks=callback)" ] }, { "cell_type": "code", "execution_count": 9, "id": "special-whale", "metadata": { "tags": [ "nbsphinx-thumbnail" ] }, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovTWVkaWFCb3ggWyAwIDAgNDc3LjEyODQ4ODYyNjYgMjgwLjkxNzkwNDgyOTUgXSAvUGFyZW50IDIgMCBSCi9SZXNvdXJjZXMgOCAwIFIgL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMiAwIFIgPj4Kc3RyZWFtCniclZhRb1y5DYXf76/QY/swikhKovS46bYBFuhDdg30B6RZd4Nki2SB7t/vRzn2zNjyrgPDBobmFSnynEPeefX9+//98u79j29ep7/9dLw6f3r32yHpw/HqO0m3v6WSPvD7e5L0Jl07lXQq6dNR3bPoqGPG54+Xn3WUPMVnadjL44/L+z/H8Svhbonxhhi3x6GW29fHZy5zuROlzzwfmz9emd2y359+ccilmWg/czG9u9gtAT8kydq4X8THdFTLQ6bNcR3+bLVz9OM1qf9+vL45Xv1Dklie1fvsYrOlm5+PWnItTZrVUjWRqGjRYT5nuvn38Zfy13Tz4fj7zXGXwSFa8xxWrF6FvjS/PLao5NaHj+nd59Pg8ii4lp6l9u5XsS+sLw9NnOymVbFIexpaH4cenk2KlUexL8zfEHzQqdlL1zqbPA1uj4JbH7m6zWpXwS/NLw9uveXSZp9jtDGeBq+Pgtc6czdvj7B2tn4D1mrPqmbWVLU+Dd0eF/2BIM1zn2RsgTV/av3T0J41Nc2j9Vl5tO3x9RBvjgwie59X8c7WF8WbdNm6g4/WdI+qh4A8l3ubtbWriBfmF4UUq2hAb+IKpbdguoiJ1HWbkOA65tn8spjeMlWB/OChbjF0oXRQvsuk61cxL8wviqnSs3svdNJa+xPwaNfcgInU65hn88tiAjdvbTgYan3F7PcxP6f7cKNr7w9UqUM5IHCPMNaau6Yv79O/0q9J0w/8IukZGfDayhwHUjyLIAw+Kv+od+ZiM/34eK5diP1VGyNGCFKlLeQggHWueZena694u3KwliGYG0kj/mZJKIYGZqLpvWQnsLUk0HxMZsMycyCiZRxinYkmFB+zj6zC8xzCFJDupIUZZZy9+QQgojw4LBKBQqpe0EspJaBaVkQpI7wLnZtcvPexrFqywFeTNITLFMKE2QRn1M9TXIb6eNBDuLs1URS1Vzpbi0QeQttq92IhF02N+4bVJVd6yWWaZDGAENbRw2XWmWrLNlRJ9OMaFtMiOaYl0JuzL+vD3LlEEkXMzQRxBBONK0pbZULxch2unKLgizRqGWsLsNzpTE8ylfKNcnd6JaZzPh2zrN2aLzMiVhuH0+DWAVklXthJQarxH3pW6Gptvk73qH2Tgr/2bBWKrmwG/W6UhfPJpk6zxXclB3jVFHuRPBR8xK1gN+DtADxNCGZuPdIxYe6jN/jQIZLUBTcjlJcak9WjdKYrGUPNygiXNYOqeVSXh7j2BM3RoanTI0HOz5TORosGVWgw78znmXdZdY7KzsnAWgEnTdeFcKOjQHNUWVVvBe6uoLPFPantKntHvkpciF0ol7p2gqi7txhWYeeirTAx+6p766VYnFMD8oMAuuo+DcWPfCpCXOAkoI+6OztgW0QEpGx7xWXVnQN99fU8T6Uw1ehSZH/8xAr6w6VGpOc14gv7KQnfr4kv0pUvt8dnhK/wI+leUpxVtJ1lBY4WSe8+pVf/LOn7/z64B32B+fpJJ7oPtKsC9rFxNqAnXdaqmU4UEE0UGgCKnjoHgbQOuAycTwLnAoVTYjw89UabS/UCHanZCa0xWm/xWTfeA40ooyj3H8s7SFanshJtvCdIolSV6L68aYyHZnGLnXf0rU/gMJc3j0Yo3WYS9+qswLVCRtxjbqEYjqrWvTtqVWRUXTUxkhapaO7OmcMUBWyTnqfTDM1AAsHgrt54M+yQA/YGWsmWU6JVM2R/402FYwgCFChz8gw1J9rgcGnjbUFjjwVRwrkwWRir7N5758nLV2FUqQZMCARVoO+uOQgt0hZF6HD91IKt7iDQt5dkBpegOZKyvGU922P53OEVna9KDSS2k7iyfP3ZNj5S7Ogg3TgF3xF6etu2eTPqGnsEwoX+nXQJrsSUQ5m2EEQirKLhMIeJyL5rvLtK25GSTOAUWiYWMCEUk0AmerlrDrggb+o7NCjsocOGTKjuKohCDZcx0N+gJSwdMYYRk703+IQOgx7iXUOTCwOqbW8pMelRGple6+LOQEy4hz/HnUYjUatYdYI7sTJQGX/m8IHCs99MkUUeZJe7zBjGe/LwSloQ+zvy9BATNHnueh/kCREXdqMR5AkpYtbIlg0AyTmWrbUvOsTLL2uNbkEYa8KIezEULbwhe2fj6Hs6xNLaWu8aoxLy1LWFkMmuPSTSBr1gBWNd5RLsY7w0AJu9DqIOTDwLiQXftTKaLeR5B282xrFma13wZq9DzlHvXSeBNwOEBaFHQQLezEwUej7jDfAFYPDnK7xZGzlA9t4sfmybINrv4M0qIqx9fU8d3tVQX+B8B++OBHgo0E5h4+W1lOZrP1jwnhJfofS9+ADvwbkg2r/CG/6zCtl+/i1WkWZbKgiHWId0XGL77fE2fV5vEeX8/dD1O8L+S6pnvnVi1dh+ffXp2a+veOKbvga79j+f9IcR3h7/B9LqBpgKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoxODI4CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE0IDAgb2JqClsgNTI4IDgxNSA3NjEgNTkyIDY1MiA2ODYgNzA3IDc2MSA3MDcgNzYxIDcwNyA1NzEgNTIzIDUyMyA3OTUgNzk1IDIzMCAyNTcKNDg5IDQ4OSA0ODkgNDg5IDQ4OSA2NDYgNDM1IDQ2OCA3MDcgNzYxIDQ4OSA4NDAgOTQ5IDc2MSAyMzAgMzExIDQ4OSA4MTUgNDg5CjgxNSA3NDAgMjcxIDM4MCAzODAgNDg5IDc2MSAyNzEgMzI2IDI3MSA0ODkgNDg5IDQ4OSA0ODkgNDg5IDQ4OSA0ODkgNDg5IDQ4OQo0ODkgNDg5IDI3MSAyNzEgMzExIDc2MSA0NjIgNDYyIDY1MiA2NDYgNjQ5IDYyNSA3MDQgNTgzIDU1NiA2NTIgNjg2IDI2NiA0NTkKNjc0IDUyOCA4NDkgNjg2IDcyMiA2MjIgNzIyIDYzMCA1NDMgNjY3IDY2NiA2NDYgOTE4IDY0NiA2NDYgNTk4IDI4MiA0ODkgMjgyCjQ4OSAyNzEgMjcxIDQ2OCA1MDIgNDM1IDUwMiA0MzUgMjk5IDQ4OSA1MDIgMjMwIDI1NyA0NzUgMjMwIDc3NCA1MDIgNDg5IDUwMgo1MDIgMzMyIDM3NSAzNTMgNTAyIDQ0NyA2NjUgNDQ3IDQ0NyA0MjQgNDg5IDk3OSA0ODkgNDg5IDQ4OSBdCmVuZG9iagoxNiAwIG9iago8PCAvQXNjZW50IDc1OCAvQ2FwSGVpZ2h0IDEwMDAgL0Rlc2NlbnQgLTI1MSAvRmxhZ3MgNAovRm9udEJCb3ggWyAtNjIgLTI1MSA5NzggNzU4IF0gL0ZvbnRGYW1pbHkgKENvbXB1dGVyIE1vZGVybikKL0ZvbnRGaWxlIDE3IDAgUiAvRm9udE5hbWUgL0NNU1MxMiAvSXRhbGljQW5nbGUgMCAvU3RlbVYgNTAKL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDUwMCA+PgplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTY2NiAvTGVuZ3RoMSA0Mjk0IC9MZW5ndGgyIDE5NTM0Ci9MZW5ndGgzIDAgPj4Kc3RyZWFtCnicjLcFVNVL9z5OgwjSSHMo6e6U7k4pyUNzqEN3CAoI0kiLNNJIdzciXdIh3R2/w33ve8H7ftf6/xdrAc+ePTPPntn7mf2hIlNWYxQxtTMGStqBwIysTCx8ADEFNTVWNgALCzsTCwsbMhWVuiXYBvhfOzKVJtDRydIOxPfEQ8wRaASG2MSNwBBHBTsQQNbZBsDKDmDl4mPl5mNhAbCxsPD+19HOkQ8gbuRiaQpQYALI2oGATshUYnb27o6W5hZgyD7//RdAY0ILYOXl5Wb4azpAxBboaGliBAIoGIEtgLaQHU2MbABqdiaWQLD7H0sAaAQswGB7PmZmV1dXJiNbJyY7R3MhWgaAqyXYAqAKdAI6ugBNAQ8xAxSNbIF/x8aETAVQt7B0+s+Amp0Z2NXIEQiAGGwsTYAgJ8gUZ5Ap0BEA2R6gJiMPULIHgv7jLP8fBwbA36cDYGVi/We5v2c/LGQJ+muykYmJna29EcjdEmQOMLO0AQKUJOWZwG5gBoARyPTB0cjGyQ4y38jFyNLGyBji8Bd1I4CkiArACBLi3/E5mTha2oOdmJwsbR5iZH5YBnLOEiBTMTtbWyAI7ISM/EBQ3NIRaAI5eXfmv6/XGmTnCvL8LzKzBJmaPcRh6mzPrAGydHAGyoj/7QMxIT/azIFgACcLCwsPCwcA6AAAuplYMD9soO5uD/xrkPXBDAnC29Pezh5gBokD6G1pBoT8QfZ0MnIBAsCOzkBvz6cDfyJkVlaAqaUJGGAMNLcEIT+uDjEDzf6DIRngaOkG0GWBJCArgOXh55//9CE5ZmoHsnF/dP/rjv8b6z9WUVE7N4AnIxcbgJGNkxXAy80D4ObkAXj/Of+fyP8b9V9WZSPLv1mxPC4oAzKzA/D+hzzk1P4OAMDs8ndO0PxdMbSAP7YAMCvaQXIZCKB5TH09Fk4WE8gv1v/fBfDXlP8r7R9W+f/M/P+hJOlsY/OXA81/PP7XwcjW0sb9bxdIMjuDIYWhYAcpD9D/+GoB/1PPCkBTS2fb/xmWARtBSkQEZG7z3+MEMFs6SVq6AU2VLcEmFv/Jor8HNB4q0MYSBFS2c7J8EB0AIysLy78HIXVnYg1RFifItf01BoSU1Z8XKwEysTN9qD82Ti6AkaOjkTsyZHdWCOQEeEL+QkoC6PZXggOYmUB2YMgkACRKb4CZnSPyw/WyAJiljGxtjR6sfxlYAcziQBvwo4ENwKxuAXxiYAcwyxvZGps+WjgAzG8s/0GcAGblR8QFYFazNH+yATckQntIqUOC/q+JBzLD4nEKLwQ6PUJWCEclW6D5E44QkmZmjxBC0eyJP4Sgmc0j5HhwfjLM+YCfjEMYmtpBXgenp3ty/2O0ejRCeJo7PpT/PxYIVSMTSNY8nhaErImR45Pg2CBkjR2BT2axQfjaGpn84QTh7Phwj/8YIKxNIJlmY/PkJiDMzYGOthBhMrZxejRDAjB6sjqEut0TCCFt52Rj5GTxaIKwFpF4vM+H830CIXyV/pzADiHs5Gxv7/iQi/8YIZQhiWVjZPtogpB2cLYDAyH8/iMB/4xAqIOcbY0fRMT8MWz2v84eEqPjowlC3x7oCHlsnsyGxGBkC7E6PTws/1h5/97tz604IOHYQ548kA3Q7ImV9W/rv5whkRk5PSzhZP1ohERmb+P8GCrHw2XYPa0SDkg8Fu72FsDHWDi4/iJuaffIkAMSy58nyQGJxAPoaPdogAQB6R4eiwfCHuz6OA4RT2awhSPwicdDtts5P54Y50O+Wz7JL04IXSfIy/IPhpB1giTgI1eIWDAD/zgITghVkOVTIjwPMT+tUk7eh2VsLf+0crH8Nw1MIQ/toxnCG+jgbPRYZ5AnCnJdQKcHufvTlf1x4NEIicHokR4XJASRRwShL/qIINTFHhGEt/gjgnB+TG1uCFfJRwShKPWIIPSkHxGEk8wjgpCRfUQQLnKPCMJF/hFBuCg8IggXxUcE4aL0qHkQLsqPCMJF5RFBuKg+IggXtUcE4aL+iCBcNB4RhIvmI4Jw0XpEEC5vHhGEi/aj4EK46DyivwTLyMQaCP6jhHjZHqv7zwH2fyb8WV28D3Vj6WjibGtmA3zMR17Ov8QV0j8+LXJerr+X/3NtSBCPZccLCcL4EUGCMHnyTECiMH0CHzLwCXwomycQwtn8CYQwtXgCIQyfPkAQak+eARYIJ+snEELqyXMC6XGYHyWR9eH1Aj2BEFZ2TyCElf0T+FAKTyCEleMT+FDHTyCEFfgJhLByfgIhrFyeQAgr1ycvJoSV2xMIYeX+BEJYeTyBD0oPMn2qY6wP7xPQ9l+2B1F0BpkbOTrb2hg5P+H28ESBLW1Mn9zHwzNlagmEPCmWT2J6eK3+56VhfdAYJ3sjkyfTH/TlX43Lg8D82bqwPkjLn80L64Ow/Kt9YX1QlycNDOuDvig/xdz/bmJYH2Tm320M64PaPG1kWB8E549W5kFznMzA/3o6WB/EB2T8rxAfNOhffQ83x5+Nz4MUPW1tHsToaWvzIEd/9D4PivRH8/MgSv/b/TyI0//R/rD+T//zoFR/NkCsD3L1ZwfE+qBZf7ZArA/C9a8eiPVBvv5oglgfJOzfXRDrg5L9H20Q64OmGT3tzVj+aIRYH3TtX50Q64OmPWmFWB+kTOkp5vifZoj1Qb7+N0cf5OuPfP6jUTdxdoT0HuC/vqogpfRf/NdXMxDoBjRBnp6wM+EPsioPargoFSF0ZVwbRFhYavrwSbvzPSf41WSGp4U8YpLUTwdRQ9MivP4E5an84JEJL0K6vYshN73WFP9f8dLpYCiJzhXRA8YvvZfHreZAElM7AvNh7oQPKxj7USrEaIa6cLrUMVoTN++429g3itezbpucNnR4twG2gJwzdLJ4QvBHkbSmbZgwbTLKJXCfth56BKajbqKzuozG8C1MmGXEuWhDOP6l+4puxOe++fmelK7OBPajTLn2Eq6iYCx8bA9ZsrT+6B/TZ+RhKvletOr2zwQy7dtrX6pYnB7mtyywamtHMDqacTDsA8omM+9wl6SiKpdD7tlIk0mv+NtNNiZ4ghmISEtjZUziqrZLUY4YbrjOc+qZpaGYo7jx0TmlvgXzs//G0j5wGu4tH3NWT1adSn/Ly7r80ypQqSb9HWe5AtFi4rc8jdISynCSkEgu6T6GK1gHZssFrYjp1p4tyzFT44YMCvvpzNtnk4dK43fxJJnPFMZsLjFiKuiGTb3LaF1r2AraO19DC7lJBmxjviJY2EFy/D2oTREMRGIHa/miLOlI9uYzoxaD7vhjFobmUL5827yBmTO1+UEAfT5jaxipt2Gu3icr+52CmIJReWHdeI3HFI2gNXrzbcVg4VVjAD6fFoaeYgsGP/EPepae46hTCgZE5ivlL/r539Oc1F8kHYRJ+ZGgdz2X0SHFzaBlG53wRSt7w0Qro+NCfZu9ViRrAIwuuc5Ft0mX9tg05lxnaDafHKCrTXl7Hz/utnfFmDn/bqG1R/UDnvtBXYatHUzMqAGvh7L378+4jGog0XzuGNlIHYF2np/DHmNmY2/zu60m1Nf5Mtsz/cp/dknCMhLihrT1HTMZH84WovFMryqom2oBYVV/VBgfb7RNRZ5BZ+XRp2tkdhVkKBX6EKWNJ1mJ8DyDqxNDWgF7uS6b49Y28BCIKtMF8ny/jJozUYDbfic4Xq1Pn/h+PkXQUvuqEqciFF6RDJpymsls9VVvPNWp2xAmhl/PWZNYXH5brba0nKw/qrvN63Ok3P45+5z3Mw3+CwfNo8Jh1oLaX2qDI81mv0xdgN4qovm6fnQdCaK/UI6giBHcjsJsubr/OfST2qKOfCKPMRjt1WUYcoymsR5vJXOeTQ/6yWnvzpBfwZBhd4c8ZwJ3mxCWDCFL+ZB5IQHt+VQKGCDSgQnjLN251BEvNDxopHeKg/RK8eym4LRs3y6LNW43g7Rw1ICNvsqLo9w9XkIhg60KmkMDsT2LdHqje3s8MfMjHWXbHHwua0TKzQX9F7ao69ff3ZcD0WjpOZ7Vle2UNY1oWWLG2oi/yABfXHJSahq8zPhYqDVIod1EbfI9N33MD+eVa9ptbJLsXiMmQ4MMWgSvDJWZSPEKr6ZMGK6iEFi/DlySy01vL8hx3M1dGwjUzwbMgFyHdnOq6kQ/0xQLuxGYvFT4NmAkEjp/N/Zy/lWeaOBRH5xLM3hFQpP5TKbQY/LCgsQhYRtzIRVvFkAdZsHnxKjBD/fWcNUHtRsOlaPN96WXU2CM/HjmjAntZPuODuOMB7v5uJISe5S5ctWvFE8i9N7fTFAuMj9NE866ip3rqE3WX7grkArugb52UL+4JuPE36GrCdZ3AMjMDXbPIyiFZWyqEp3dtiyGWkuMbvvq2WnNX8WMJcc7Mj43aqvUsSqo+DjD3Mhkblx4yVeU6Hc+/gtb/dPdGiUwZKPs8FdtskOT+yxy4wy+gl86J22sr/I7n5u0g47jOtI3ZMGSymWV43yBUDb1vqDj0/3XH+jQuFAZqWg5atnYwelXUHzVqC8rmcbTdFkJS1uKAdHpq86t7WiTI5SI6Be/t51/s+7zocfsW5XutfT1b4Ut/cxjSXbSBNGpPNdeDe/Xl+EKf25XO8eDDh1OG39sIUf5dsPvTfI39KNR4kI06bn3fHFzTrFauL2A2YaOC9WhHGCwaKvX9symic2wYMhAeTNzuSYWVdoPkU/Mh8bdOH4z1WNusJaBfW1vVTuapOhdoj9PJ8bREZ/gtFIOvUUPWVO9qx8RbGtYS1UUW3Z42avspFU6TzqHhCdyEpxeM/wBdrMyJ3HnWq4VX5nFmRyAsuMgF6G8MHdr+qosbDEtUEVBov5ri8/rprL9XPnhFHQWAy33DNQbJcUg2hxPin23ijsP8U0nNhEoxTYVsnZfC/PGxBFa0uvrH9/ghUIKNK6oPCjGatA/6Oz3JV7RXoxXb6P5OfmyDqeJ/2pPzheTqa9Hb1FDxq0fsfbslmPE9s2YL0tgLkUTfYGNvV651dJtA0TMbgLtuHfyn15sPpuUOSMvvWOQUZP8PfJDxpPAy9EGFyEz4gOrPFUEHG8fK4jVtisx8cXNEO8HnJdrY3iSrP4oz3eWzR25xE4zulXSuQFtNa0FFtVsnlB2fVLfnHWg9WQ+C4zSkfkPm+JTf2rpDwxM+XXcG00xuyRmsQoK4SOfJcs+uHD3bIVL+sxlUGDcFbsUorhJwJflxghH0guQjDbsZSAXYgoEBQ69nBUS64kpKnHYNhXJKx5UNuycNY6zrn3OpJWqnYEUOTuVhp+1JO4SZHchrG1fFnjfWolZOjwoPmVOuI4aohVfWdxsQCByRChn4Jokp3skG17M2FgusHjvEKDh6HrQx8K4pggfyI5Gfc8W+3KP8v0vHzHReY40OP2xXFLnL8trJws6vkoUutjJMa8zC4Qx+fxRHdCt/BHL5lg47nCjecu5mbwYxeeqOuwxuspgEy3mCIQyVW5j3RvjN2HLvxxN781WyU7Mx62hIKS+zokpl5NUijUR+jjKagNtyia3Uv9MdOFeTgGWIlzE4ZoLoaNsYlRDuYOxdWBfjr2nh5in4jC2HAGTf4w3vGZQfIeVJmLBcGOKv3eD1GvYesuxWSycrg81pAMFts3lbJf7tYCneRelM2qBowoAsWE9rFCs/iL9B5r3jb6NqM+IiNBRYiFzMC6q+l6MokbfudVYS4sgZ54yzcvVMNy92or0G/kdd1xi+YXZLL3KUZKc+1W0/IbJ9A9aryXz+ZnQZxxAFhsvD4eyUXxWgEHQec4XTdLMwFfuOzayeuvw3M+vkPKyejOqF8Wd5jGHjr86Y2B1zuFowqQeL1MmnpO5615yCjUL/upgDDW8UxsOj3id2zBQdAOIDt56NiNR8SEJ/H1iSLDXg0sg9avc9t7HTFWiPjW34K6xXis9ADrCgqJlWcB7SUpi63M+Rm0duNyTr8NAZpARejPZr2R27j40G6kmTzS6EEzCLyBE7cK5ifljHJFPacHH98Lkjj/myQ3e7hCb3Q2aDCSG1orbV4CBQX0V6ulufNc22INSxQLoFAamxiZY6D6paliaq2/kWLcUO8b5GJnSlRxNPrk4fOj5id6hjyvpy48L8LMMdnfoa3n5EUZ/EdVYZanYmGnV0HXXYnuyiW8Iv0ya8fQTPHLBR8M1Op1lokrU+j509haqmBoGbbDfdYybFuuiEW+jiuzWvWRWzYDzGbV18mvKDJ4cxQbnAJRO9VOHvJRd31lM9189aX2jb6LrndxSYOu4c51dmjvTKDJ22got4IC7/ZzfP5h7l94F5NEPzd3L5wjsNvDtDdS5QCmhMr7wtIKZeStTLQR/n7yfzYUTkzStHoF3XtijXu2UjlDL4Ne7UOe6FwBeHISR7kV1qTNCKfTT7S1kuDaDZUdjnTdioJxxlPHWjMnDiUUkNA589l774qO4hQ8WkiM5wZBGsL8vs4me7HicMrTcMpeeYaS0RJYNuVsM/LdgnR/fatOAN9m7zBXjUz7W3MS6k992zNrMmmdGvnfNBBBHit7eiUeu2yjRm0j5HARQB+CahatyNQLrwbLqnIsGn+HhNaodTvRV5cWnAkiTi0olqNPwhEosFiKqClITSnh1Ja/lLTcJe5NH5hrKGYhOkPy1YvjYasYlb6dwa3xvq9XCRJTfr5GC2AgAUkQKzvFVLPqwefWXz042szeM1p9JdjInVlE9j7dD7m80pkiG5WZi+y2bJutasbn2lkqPiyADlzKqNkAY1iPtU7ZaRu8a2usegHXGUp7sLork7zub69t9LrhxT9VvL1qo1LQuvwuWel0Rhw16SoIBnbQ0qdquJS6ZCblhrJ4SzUh1PIPoSHy5cwLlcRL5H0lWK6BkA34S2Jbp5ANl/GhKR0rrJs06m8vRqVBuiSwM343qHb5dXKEeZ5q4QylZBALg+ea9Ll8M5YF+rZhmzJKPeTbqVCkUw7blvRu88QrKvO1/rhnNgYzT+3ktUjPOAMP/c+tOdbQUfUbRIKIg1qGEpEbiWaEWsnd5AeP2yKsFac9EycHJpToH7tnySz0Kt1QkZqXJ/W85tbmgwtwq2oWoeOSVg9n4Vy2EMNal2jZoAd6WWKS/hE24y/DyPzi2v3ZLO06iQwNgdkQDFwdkx95EZt6BqowsWqyslthLPtFGB9hD6/Imf6nlKsMOnHfVJWAuCenUBiepCq9yeCN+zYMjV+wCHmQOtG5mYftTh37GyZ47ifmEVgiMCzNjtzEbRUjpdwkptswujQ3Tc09r2VoXoY74ZYa+WM9h4uv1GQtqFzFg0dwtFD0KtqfyIqApn0aUzgyB4ytuXgzaC+1RxMHTyY0+BWKoyvbnsHJGqwhfsN/1IHphTdPFg+AdpRmkG+rECI6jqj5Tyy8vpDD4SIJCdQOaM2djapL1yJMPKn64RrHlaTE0k1ZiQrOPc2B/vy0ShxlF8jaZohMtyVfwGpFbObFLRwucmQ254fLUdd7l28lmYu6brtwKgQcZOPe100gDNWW8lToM0QqXeMtLpJ+xzo1Lxnw4h+aWxP2Mx+uQ08+6gvZB/L5OsSMgxXewMK0oXpnOqIOE8lWPpUcWpVj00RshueB8uBgUol7j049HA/gHEdIoTaD1rrvf21LhA4M3IYpFHkRFDrfCAAaPdUO+5x73kmEhV9ctRE2WehgpEgeqo4TtZvpVgfde5+nlhJhJc9WFbFmzpPapw7kWKJw3MT4HYeh8V/S1J0o6L0aDhEivmWMZCquaUcC9PxA09Uqpu0XsMgNWjV9gkMTupIkbV3ylNVSa/oQ0Df0uu3zppjXSwnHMvv8Wa9puLwV/KuBlou2z5fqzYnOf0hpg4Cj/IYaAUibn12u0w24a5Bi/O3bUadUkOoMzyYvOYSpR298plIi2FLSHpTMxPlr6y3TRt4kx+Z6ZHwmRkbOcyN5LLDSbvh1MCydH0QgrGTvQewPXpdBv6VpznJ5TLMv3yvPA0yZfW62/IVdmiAqGK/NevDwnjrpsW8KE2VV8GI+V96BHDvxeiaGKZc5PCkxEvaQHFZVHFohMJqRCFB899GP13fykPvzF+Po3U0oNkKPgmOEO4QKSS8gOS90pzPlgmfL7rwyDn4GE2Z+ygwRZZHGTjZMZtNbenwfEsezFyQoYDD8/XSdHHUZX/UJ8/aO8nkn0C0ejg8knhjrF7/TXaeTGeVkmv4I7qGQUQ0nhb/odygtpMC3TEVSy0NNghF9hTy2T9AaDaLOOxexTctNbkTxr0hRPsX+iVX2CkQ5n+IyvJbvTzrWjo8oTtrJmpOrwWiEm5pWUWc7hmhvxrm0h8qZZo2pNY4GS0xce+RLWwR9VApN5OrSgrYjvpvg0428ctN/ixG57abwwmxRGILxSsX29Tij/zX4C4/yCfF5iUM9YaRRZKuaEUeQNtATOVY+Ya1CbY1vYz7SL9baMxru62t0kAzlRd6eNEuJeFWNCTvXujYqlXNwjJp5m3RDD+Rgtt4DCnuL78qvOUSTYaS6EqfDhBf6yIwUdf4s6/8uD0QHsewzGdtRWgyZDfOovOks1se58r7u0VwS4hy9sVCeH8QvPsMWOXDlamJcY2lHWvw9xbLWhWqrLR5aNVE+Xc9X97lvyJd/7fRKqNoMke7r4WoNZXyLO6FW9r+36bnU+eII+/h1eC079t+hetc3CgCrYBl/eH/wo0nRqW00iZOttmmpfSxJDfsHOQuWLNFzSHulTH93oma/SjVgznn8R9eB1N3VmOfxtgPZjpuFVKc8MR9Nr2xajOPI2zzJW6+SBL58td+y33VIFC6LLmkUzR0xxsaW5xUMGego/z6R+Q0DFeWFqC53u1+jOsFIfFLhEZaZ3726w7BClIW+yIPWGKaXlrKpgInPA//QlNomvnWZJStrnBovwpG38VktSC36JX97WJU0lTT+H4cgsZjVXSeROkZ49V7jQyDUdLN3CfvdmPb+CukZqrzaVTMGIYVsoEcOzPPbeV6OvJF9zzidkaYqaNXqbZXVs6I3Yblq/ghK6UqLPXP/Xfq56XenLYjFa0/DFdp0QH7hkBmseug8yq8smJoEsp1kKe799EZvbOPUuQYRwuXQb4wJcqKkSR65CkTsxxop0DVeuWlEu+930Mf0OWc9mdYBZBENjWxSH7DY72Tll1xmwvPbz9FKCsMRnQpUKo9SEIsSGNHa5cXIHryoM7p3mxFpG2NpNzlBqghk8iwdhv6anxPSxjnJgX207/6LxHc/4BO+OH5m7dlXrvLVnW0n0fL9UWTx5b1kb0Rx3MgU7ff34Ph5FWlKZ54pGvLuMFV1TW/ojp3Qngg3CqoTLOveKCN4euJqInZuMy/xVEnQC6IZti0Aj1D9a6L2NiW/RADzIHXcpDk3lwp++t7E7iuM89hshVI9V33hz+yfS2s2abS1Jnb6Pics13Cj+8uZIoyljYRSIqj6gc1fvdgrPtqLhpn5r/UubidDrOimcDQn1ZfVuHhI/sv6Xpy41GV7OPaK+LQOw3/w9CFG05Yel3CTCXTpCDtYyXngf4BPyGXkdvlBpq0mW91/CC9sjJnbbGGb1a5mk2u9rft3lQEgbPC3mRc+TR8zQZWYtHF9S1KAbQ4xYiQeVNtGcGJzIdGqRRmQ+7XdoiUUzN0JwEesyJZPQ3/ki6/T1q6vKeVppqaC2Z5hcdBZjuIQBr9d5PDjzgk3ExDz2Rd4WKarqtVBIM3UbSec1MMtyx4m2v+dPvW1EpPmxsibSepN+znBdbhDJPXa8+9NuGGpP/bfJ+7TONdj1VW56LNctm3hH39mamnAnXwBMcEbxVg32MAvNbN/u616T0/KsZYLmJX0E9dKTO/rvGs5eAD/6po/G5sjuawfQqRvqRysGGFmx2P7SMmN3XkiKO7hmx+SFuK/N+z2nxu7Y5UkJuCM3zFNSuysSGrZV4QxV5HjKSPUuDvZm4vzMWCxOM8oAfgLF9zxwsbns2jJVO61Ds947mAgy8WYqZuqKiC/lOHHKUD+jrBLFvnA0mKAJf2EVdZFIzcj4fkKIwDVkN7ACrBr2xbOZOeut6Fh8GSMlh0+exwScR4UOG9vUUlYOqebe4rqkeRjefEqnwUsVaTp8uxV9WQW/HX+L8TkbCvyI2CDuUfykJCyn1mih9BhE9fQYz2HxjdI8aJxDHqbE4N1JXM+obdJhmuyYzMxh/RT4mRwKo5cE6sfol4kzgbzyRbuSktgxPhfY6y6nbP7paPdhSxOW6grLQUXk61j7mdBYohFTkveLPhfkDZM5vg4vKidKwn9f2DK3vdK8xrNyLjehHN6Uq05cb/xxhMLwQbOArMUxsVYS5dWzfjDHTgMKj7g0cujBUJF2A20KW8m6DJOYYpF393jid7lDEhxwX1TSYkHZ1/MdYRtzXYSb+KOYXHAnzQyw54N7q4SgTV64FhR2oqHQa8n0ZXLvOJ2Zlsm98N92ngHFvvlhx6ZhYgFDMBo9HZjGIYJ6QtWsgXqLKWlpbVwGjLgxbbcVt/Ii/ffliWzxlf7iyPx0YRvKnzKFd5LRe1C3tnYROrcz2rmpCO2n2btfRr+m0qHYtArhZaya526C/TCyIMWYBbRvamnWSpyOtgjnGS8MMM8rcrKkfbtxA0dwT7V6YIZq6r5+qQyNHc9khOpZWP6SBc8AwZ+AsG+nH8haX7THXn42Kt2xUCJS7YMSpl0LEoJNYZjw4S4sWN2kP+589ktgjwlXrZbI9cx31r7PX5JURU18uW2sbent23blqPKGcSYiZKWZQf7nE40YX/SvsWdCfjkU8fGELyie9Q9YRkVAH0UTcaAbMyBKcXxZ5n5xb6sv8J6/cUnwuBgedP4rbLhibNgjalO0//RuJeW5bkYPBi9aHKV5jlZtxo0h/L1wAqNWIQeNM/KK2XRcU9cESXLRRFKzQU5JxZVUMR8KvwsoqJOkhK6k9433UYLF+jHJpv/wEqYS46cli98Nul/Z3oxkENl0oNbQOTRDuYsDVDPrbJKF7EOQaNa+ChMk8F/L151LIfhUGNvYl1nBc8Sdqp3vW67dlXMrXRQMovpailEw/UrHAGbN5T7f3mbquC7fjf6MaJvo3ghwOpNw5mwdzQ6rkvDGvPDH3/NXHfzeagkwXt6nnpefPgGVPs+JKfwMHrUX2nhVoAWVezpfZGw2zVYi3L2bwyCOED1RuRNVw5oe2XYsx1Az5Xkz8O5d5YJn4THLPRSz2waPLGoGzfbHl7h417S0krUNR1uzJr772XrWVJ/OCIwSf8YBmZY3DU1kVD/hsoD9g1JkxsyGA2+9ffVjr7PZErxNx2DzJvfx7A3GCW6+lnF5/8jjOEodZhchxP96OkvioYtvUGK5WiDMHb98PwPLzVwCYPkBXedN4TwNr3goIUN3OeRaH7b09d2ODtfVi/tYKESORkfqce73iaO8/XW1jQ5qOJlazlft9hgpccFj2xeZxm9NPkaNy/tffj+PktREHpxxGLTrPpl8A/clKEKX/X3s+98A/X5HXuYlMJGx8da7kppgrhgtc2/ovUUkFmJDpNfV5BXv4/KxO6RFlV8S8X6E8uvdvEDpDRVKkp5+Dg65+JJkM0AGVDTI3HrzG/F7XdeE+A/cLIWaBOuIYqgNClBsBzzLnq3ll/PMA5+9yUZxdTx/hlPFlTTDyJ03x21hHq2Vt7I193UVsgKJV78zMhv1Z7NdOdcAuflLBvdHRGdNVp64gLYW6oEI/w7imJDMKAeLgDbBV+1eMRiOp+eRXWrBPUSv5HdaRCo5HfNiP6iyxFX+bIImqRvjz7QbVvNXYGHS+mmMNUQ79prNdOb9iVTzy+bPNzs6JolHzj0f8Rwz9Avjbo/VqNZh7lHSGwtkh5PsUJm36gPhuN+GvHjWOjDbaOWorBQlG0pAOwV/kFHHU9fNl4+hY9dGXYkHMGHOJoRXgw5uSnmRmSueC0OQOWZMfIVOaL0AlQN2cLrgnADgG0jDkIbRccQd0YfO1EXMIG7rjBJ9y+naDvTf72o5k2xlE1H7jM/9E4+hhYSkbvrIIn1oFurMyedclHrCe8jELi0ATuI94Sdkq64zznsScnFrbuJ8gUpkZzhZUGMN2fvRBK/+0++MJptMviueMc3F4jkbPgl9kph7JXfyZ2IOnOtHidscCaRIb42diR1MzT5CPiNacLhJq14Foa24VBCXmYiWEPrzXAT/HhWt7gEx2GW+RdWqNCqi8K7yVOzU832Ff8i5rRSqO7+bxtGI5B8qcCUhRfS8pS3U+a5itK8HC1mkfTerxI6M+Cfy8agshyr1+zIawxGNN3sk0TqW8Ti3DeO3m1fbehbog7hQCcmmCIJxMXF7EwYKr5nF9MlBhJnjgdt3NfNrC6U1wZTmu8HmWu81+lmjo5kUZAQUGvq7X4k1WGMQjOWmyCSN7EeRHcMg/QjxjOrRH1MN/+5+UxQZCrXyafxMaM6uh/BYJt+FqNFIhira/QVFuuYJyOisqd5hhszfJHbpyja6qEtKbCNhrj+B0JpDS4jRcLCBX7r6Y7kv6YglM87gFsnWcR6soOhYj8gHN2isTkeJfe6XbUz0UDfft2+qN1kYJy0YFr31UpdiCL3v1gdiglvzfg06Eoau+nSmMXyJ2XMd2P9CWhdSW+gp8VEHiwALNbsC3Xa+mEBmcskiYfzq+Td2XBFv+U9R6xGo3Mk3Y1vXdqVNK7dd4StyDb+AES6C3Cl+sF+f9e14Jcwh5b92zY5VVFRFlSBgSeq1D87cq+FAC2uozBBwbB5A71JiHSbppWyZzfw2AdtcWonZM4KrPPsuoKQRAW7KMrs/16l8EoF4/BhhYcAav1SlTUwdh1H+06KUm0nhJyE/K5TzN2Js5Enqb3Dz38FVz7ibdySnGwcOf0620YiQOc/6CvyA8HOm0umK0d+gBkwHnLgpIe3vq9jS7e4keaZewnSy83q3X+A8J4AkPPirGpf76kjEayKbHorGxIz4cpsdxmdLRvT1ym5+7KAKjDM0z4w7N7Mxtd/z7+iyaKqGS7zgu+xQPl3HdX4MJIQrMA31TJ8Cnn3b3it+b7NEGd1RQIuZb1GVR1qz3cA2hQlya8GYrrXFqFrYOxgYTfxqmcV6q3ZA7RhC24TMRSrEjyqljKn6zEon0/dVF65kuSQxQD2e2xsn5XiEwmcHSccg+etbK2a1iMhLvzOUjuasQWjXZU9q3HI8D3o7KMsjZNHz8pHOXGBuYhbXBkXMa+sLpSiLsSOvdwwJQ0smWR8KJ0NrX3kyDQ12JrHQKPGTFnPXuKSSdx6hmMpluLu/FxCitfFOBlm5DLXR0myjvN3WY0OfdJyEPQMFoc2suBFQhZQYeHfqE1yt662zHZ6+rKILG3/XYqdSLM+34LFmPWaQ8C5giP69dgsepWPtW7vnL9/ykLVlnN9eySezX7HaYGnZ697WZNV+Ky9dbz3bMif3u1XulnbGMet3UsjaT77eRLP8NdS2s/ipFvdd89L3+sySqazPhSeJos9qo8UEe9z6KcQuoYZovAdPosyXP7t+/mi5IyYeMcZWDyd4oAnM90VB/flti0DIqLveQKGVFXEVras62YXb1V7mja6bHBFpvgYPzX7U1t1qLJVbKm9tH7gbDzqN68NC1DB/oyvV3sbz9iz7q+TbYJ+k8Mj4vRzdjy+Tv2W5/khU9d6sIGrD8aUEp1NsqhPsQmXGUcESdY+LfrWwtiKfIi2oKNQ0PdPfI1wboonMZdayzMmhyuxAN/jhI/mF5wZmj0GuCK7utG6VuNVwoDo1XO2nIhU/3VGTVTbH57OEQCsyKAS1QffdwJioLVmPZIYi2ROdicuiHMO39VT6bfCDkbf+v5/bKkR/vcnEQpkKX4jP2F9Wme27EPPhyDFwCo2kTxuo1rvNsvukfZWydB48ybhdhOssXIZZXbqt3EIT5PDGPeo1l0+yPObIb5Fc9kTVGcYzLp+hHeKNQte2zxtoULk0hKdmQ1B6EoxiAgayxQbwsO+fvagPfkPl3tGdlO7U63GOl1UjURo/dAAckAu/CaVj+j6d+Eb6XXaIE2u9Flu+D1dmQbR4Ttqb/ezvfTQZXuGxK5QOX8NEoCkwnF5fq/iXFKBrQGGQbNp+vKlfCojMHA8+z9HuuDDUpdaUxe54y94nxt9/xi6rPQFDcGuRUgLij0Ic/8jst5doK+YQ29hxt/zWGFr2PqYeZ+yTK33DR5LVLwpqd+swFvzMOtTf412cbjGmAo8jTrBIio6D/Z5JOFRiWM2+GevPPV42mLaodhapc7icL4CnNo1MZYvbOJPiYcszVaSFFx0KbFv0zmPs4F+TWhff9SKIfrGjRuSLmtaTstkUSMMI/iFKPnJhP9+fhRcB0JhQ4I2pIVUYuS/Gp9JEJFA6dxQ3CbgsHr4P5ArlnVLfDMLrw5X/epUUxO+nsyrIY+NIGhRQYWUg9hVWWcI/qCRo8tJ58ZIm2lCJCjkf3Y+HdyPUm4g+lXXSCQp5+cr08Dv8nK6dKiwZiXzDBMlLVXHQsWW/EHNvC4o4zHYx+V363nHNts6xIaXgD63Z9VY6nJgzurWZPadXLlDuJsKsrVFdeB7PkIN1r0eJVjqBsSG9szYaJwuf7zLVhaiul6BnL3LrOmD2Op4JUcbV+HPxq8QLICzaui6R+inkktNnuandPzcQcCxSyOWy6VSAUsOvg3vLbrn8WsjqwE09Vlo6pZ57M8RXXMHK1diQjWxfjh2GnP/KBvF+SoiUy+9IHqjFU9gidkSRiYnl4S6uQPkuMZCrgBy/YsXc0uTY+6b3cC4piMq48+uAePXbfguOAlNLdb/z5VfwUXIWuEpBxGOqY5irNzT91KrsJaQ6BB9GE0+bFoVewhX87PRtSB6rx4Auumv5KJ39wXVlnuqwxT+s+k75N9PnZLu3C5hZ7Z/I/XPm0vWd9cylMZDDKfXtD6Eg36LZpe/GVUZ5JHeY7/D954QYT7ICoFhfV3nqGMmYtyhhib4AlR4Wa+/ROclpFqQt6MyM0Ebb7RZ/JHmBjyvIuBJ/3soD/SwyWAtrVKTd6lPcVYM/gv4tDwtG/+h50wGdxxLT/YssyxvipKypRRKXZk7hayojGOaaqyw4R5eIl5SFRgIo/MbULUkfJce/bUx3j3wkIyLEXu5/mexJPpO9Hqo8HglebMQuAKnWldRHYoJfZqzIaXaJGUC/vR8EgumkuA81PZd3GnB84G1Rm2y5oRzquk4uhPjwdBxPvv80aVq3ApyAaaETe9mhCLzvP55IvaQg8rCT4fai2ny5mmPEVaaTZuHeKvP+kmdTNwKT+vrHC/uBoerWMWODZ3o18s9hrzHu59DvXn5WXWlTYi4Q2nbDw8vNHWnFSFR9hwrfePG+P9WXQyYPPzbimSdj8gGPTwwXYxVlT7ZzCJyUsBs/zzt5ytqPLGP7JX4S7XWEMDpVjCe8ZcR3w1jYn5ak6Kadv12rFpBWiaxuvzVScZPAt7X59o1/9iuL7Er2LvQCy29avGFV2Rkufx8k3e5u5h9XU2WJ83INglu1zj+bxpIzAAntPiLIJzBToq85acKnkJJioKauflHHOHw9/AAuJ61TFF5ceiflJQ4lpaV7w2qUKtJd53gUnthM6OZfO4xKvKkZ3dAy5g9T8CHpHTKCZrRnT1Rrvsjn5yXzrXOLC2Gfgc5BebNxArafV1LPONmqQvdck1YOPzLoo9QL9BLhpN195jqapVGR1ybhTcCuPZa7XDfxGjuElsrX+oUuHp2dvNDCua4I7+MgKEzm6Vq9Tp0LjzNEXsRtfiLv8VGrmQ/zYsL71Hrqlf4wO40zyhcmZOZTkQFvTBi7YX3LOl2VZILJyOyroS/g7os43asyh53poRP9YOrCCCYLUdA8+Ls7J0rh2zOXj0yxdYSpwN0IApYuyub0wdG3zwKTJI8TA8LTyZyJSQ/YjODQ5e/eGTowIYlXRwfzyBghxzo5AIsotRSQTtsWUz4YmDpV2wzYKHUMY8vdjVll0nTYcyQXe+0v/yTC5lUv3+N+p+lIlK739QKrQW8pczjB7pgeHgntW9Mho9clVIr1YApycocnA7BbplOqsFKSPPf3PBVeI+H3qTf5h19UW1ltp9z6MsPsjj709HgCaq9FNmRWRWHF9QLYPuRVH8uwn2L6Ybw1IvGkiEd11oC/8JxrIYOmNlmscmBpgJeeD0Ro02f8FEtrtIzjdjuqdS9ONxE67qmNST7MUTp6XYwct6CWD+W/B1B6tlrUlOvNj+x9YNKVdDSfJ0qQi0PIafJ7lgsOptoSeGlP1fNdD7EYCT6yn7uIJCbQmnyywcR9jMqkk7LXw/HtqyI9HeyIBuSQYCRhz+gWGB/2JoSP36Tg5/eyaDhl6uOj+NhC+y/yT/p77PYZsRNdy8yPSY0CHPudIF+KO1WqCD8nAr0jkwwNr/sdfySvFlM0BGlNedpwQmHBJ+ROiZQ0CS8J4CMroXX1oH4x8vS1TP/WNX1D7/UFQEavro13BOPf1+YvzFqvmuzXBU2MAGclmUtbTUaGvhQntdacNBRsSg5/dYWdMBIAfaJ86qyB+ybTpEKFQK8boGEoqBsRG2vYTBiwnItuX4BB3GZ/FRbqn5MvsBbwrZjGb11yISg2qTo414nvB9wVxaG0BTB91eV3hjo1Qblb77mgCU2OQuZFtgnlSJyT99klsXGexbJQ82Cjgkgv0nmyf8oBnHcrWeICwCi7HtNxYLJeKRBD8dcgdwzZWcB9F8Ew7BL/2SAuvYLNAubP29Vaf61Z6xy91G+CObVObDTNNIusyewMYhohpPQd45TT7LHTKEC45w56X+UwmxRRGV21aQaSDwWBO2lM+hKI5F77ppZwRsl8HzQbCApeVnfbf9HnRhNfbjzkXi4OkG2uW4hOhiZB1BBuWFWLld04SHYVmAKxkcDeu6kLrgJwo59xp61na4BOxr4HmBh/scJTFnLTlWcyYfs2LKoomeB9tfHdswps5ql3vbSSgXDfrIKpQAOC62T6gAPaqahRGjuznxYYP3T36r1pX4xqYSPlUHTAHgiPEn6/Mzv3zhd62dgLTEEaCdOG0Pypgr9tGDSNHljK/ZmKRXCwq9ztxaBQ8Xm/+XviT5bDb+KlRxh9K+uCZ9LZc4l14V2PSpoKesSLYMm37OlkPgh69diwVSG7DSnBMxi1xMEsBWyVbtgpm/qRrSveJ9S4i9LUOt9uoYdtdl1LAttxztcR0FMwtwOocAXUtH7UuyffVyx/fKcd+JWHzcJLVqj+2fts+J92lMvlMi34Q0rDklKzC3MOKzYWXBb4FQHxvwgzqPzYlGm6514jRRDzxdCGQ72pZUz/1hNoonZCsGCSErmLrgkYVKdzyF5s8eYqjkpnAlBOpxH37bb1EVFZlNc6XKi4oDEGUZW83PcL4fUTkKyYcKRaec5G+9GH0qC/cSkKmavFb4Iq7/wwdX9YL7NY66KIJ/Gci4k+zwN4EZu8RdlhwVc81R2/bleVJozb8Vuerj/Dp95JaLH31e+gG2ysEuDFtg1/3CqC/NicNiyNhqWDhxSHJNoZItRzjfgo5jXnAY9lloCwtdpuWRo/0vVXO1BBpyANbxHl4lcGi/OI+TFt5PG2l070EbD74wISDZJwvw6CHbMLvcqm1x18MIbCMDqI1wIv8jTu+zOK71xw3Tl7BGBwY340alsdKJvV0DVwDwmdUJFe9t9TQu06x2EzCnLK2chtCe2dbNX/jsPqciQwBgzjYnRgWeHxNTKnIiS0raO+N1QPYQslcX8tI9x33kQxdHZz5EqBysFtx3kDPdOfjJrtqq15mqoW9UYAB298RLSk9nU1lwZmOPulwEHKtgvPSI7G9DUMs11SHF+ny3t0LSFomve3Y4RK43OFr76hpkWmyCzqzVz5ScCaRPdE+IgdIywh9lK0FXo4uQpgWYZ+8WaGduu7zAnb56Zy6UP4bE+F3IcZimHl76p9+BMTU5GIcLjyoDvhTLsy90TTj7RhOIPfQJWvwLm0ys0kitgXvlNroqaLq4DUvRa1NlLQt2Us2mq+P/oLSYfg8zc/OeBUDrUu03Z8BLliRZI/7h3rjZlEXx5QpTnBHhuQyMLbHTODsjLlnitBpQgeaqPBjX5fnJsoL7DG6c7zrldosLatnpZjOv3aEvT2gPiHUVPadCjsHsM0c5zYZe7wV5yfX0qvSuf40l8ei0et5WgUh9FtLaqBO+Z/FkdRd0+q7IuH0nDjhFy1+rn17q+9RCM0g9u8qBtmj8GXIJmAQu+QIILSNJTXRoRSODffFbL3Ehz2jnqRzxt+73nUf37r4c8niMS/8OFO8rendKZPOzW37qkC5wAZ8K2hYYYduBx+iS6tAIv+UO9t+KyU1xX4Z8Yzj8XzmEX4EHHYdP6rFwMuZ1GGmorZpZ9bYmeKeN72JB0mkll7MAyF3OuZ687yqSa9C33DdZXJUEQi/SKgpg6mtjb9yKw9GAu6SL3bHjCQOvEc+kN6FCfZLzufjeViQLyptB4h7HHCuQ2H0GXzugjKniCUp+ndxmWjR4UlX2A3yH2GYXTp05bvckQTq3BA9hvJsdZxF5bRUic95NArx+ty7IO5z/RKKBVpBljOWS7WFrecKoGFnHso71bOTLmtNXfZ0/U1ArS23Uy122uyAX6c3lkzyYfzGDqo9fGFvV72LKaKpyIFqRfRduJJLM5EH1RSt5/dR1Rn6U1ZmxY4joVl+kQHuCQr7KdymHRH83MC3Iqm54q6EnH0YzsBfdPIJLDowJeOiFuUmw3NZ/u0LB/IOaljpJdRSiO+kizoxp8B4DoDs2acpfv56UobfJbHF1swXDa5RNi806emtmVDIpM4+8+uYQ22X/HIbUuN3bCeUaFaR8v1O15ooJuq8744bDj2HOJcS/DZVD8wmAjnrAygDPi9bT8LNO+E4vx55cdOD1sVWK2D2MnfxjwaCgvrv7korM7t/NpVPngvorlXP9M1qVFFaL+Vn5mb4jho7ndlTGDkUmU7aUvIb3UUZiP1morrfhTksPy6DFSHDiQvSsS2PTb7jHhT9cjTzdUPDMxkVqFVa+eI7dk/P6PXSTC252ZG+Zm7z9pW0vTbWixJgwtglcEnJXuf/dFwI/bxoM4ofg6NqBsGzNX3TEe3Aa7R8XFyfTyUJBeHUM0S5d40/Ra2MnFQNTHaZeBOuv9gO9XisnhzCVeOy8AtksT/1cV0+n6yWxkDkF+FwqlT9d1gv5ZHoYteoP3Ny9Tq7dDAesa5b0FSlAV3igdlk8ZDIeBwubTf1d/bzGtyc0YZe8EouDCg9wSwSLbB+xzzFiDE68tpEsSMQn+/WGAL43L+W7qaiy3JwPGsVatmO5sepSE7cre+8rTrgzz5E2SuM8V5d0Uz8krtwt0dUV/atvKM8B/HNwGKluwS+ponGlpmrmsju52Zpj/M1VB6Twje1DF5RS5m3+8bWbvZ0l1+K5RTeM6z+HaB0LJ2FPjjSHq4OVFm4cKJKXP6RIUj8fPnmTZr6dVMSVfOcan1Q+V6ip9Ti05jv7Zed6nE6x0PWiMcZFzJ22AEcIgIwL5kprNV6xK18D15MY6j8LxqqskCh5FPVGPTp0PycGHAo06UPT7rkzNLOYO0wnu7lSBYU/9+1svwrtR4p+u+qK+lUNcA95dmB5vPtr1BskyWTRam7ec/9L6zS5q8s44abs60pt+5nMMDPQ+zyJt1r68MC1zT2RyEdRuPDNoGbDglAdX4cEf6BJISp21vgY0Un+LHIh3EiMgq4jgNA9+IzasIazNxTSDj3O5NqHwdFTsPmw2V9VfstuC319xDj9zVgYlokgMnCN0Kr5BU4xmrAXuD7EZD3Fd6rIigl6d9K3hZJ7GTCuvntzkuUnuzuiSb2mln5poW7bANsD4taPo1dfrA/7Re7ZfBy8QV0P2xCtZ/PWKvwdrqiGZdzyFcP4jFEiMU/eJk6jWjx3VVCewkS/QPOVzKQ26TQidxQdW7pnPZyxP/Xdnxr6UVPOfCnMDKTBsbGh9Z3Jnud/LOl2y0BYpGeMdQH2odQ0iexX9Z3uADmXwBEeGwIrNqJTpRXll0Trw/zaUpHFcT7vQBLSjBJxMFIAZ8phCg1Yd+JV45zGEa3S9FrzJZaN0Rt8hgHjXsie6O/r1uCIZyvFANijhzHwqa+XQcKsIrOiw0I+Watgj1lNcy1QmVhDNn8tk4IekNy3hKUDl5uTsbBtJecpPL6Cde/S3TkNXMU9B+ek0WllAFTybS+3nTCbgQpwFKC2WP+aVL54JlxZa8bZwYGg7xIG5lBTcA3OCZclLKSJBI9jFXRV2vxw0YyyzQ504hzlP5pWfm++eS0PF+fe7W0MQRScHUudf5ARrvbBL4Xzp6aenJiFvLYTyDwtmuhkr9/vwHc5RzW0NBsDsLmjG3o6PUYDNjJp5K00STVpIffCaY4BSPP9lMWqI6Gt0KrLxvdGDz8Y23mZVgsZN9pl75noXtEVSOhnwWgrLYeEXrATFJlGZ+tP459SboThqd2VFnyN5HMMqJosD2S9gnVBxFtv04kvcvyHH34m2x99cndD7vZMfo3+KctvoT7b8G7y5cIyT6UXUtK+jNMSiJb9a045BQ+pKX4mVKUN6PAcOYgyUWCyPbdfKklFCQm5LK2yLQj+yswco/29GR07upQL11VBTR1RipWLjJDkFzFODbgttDJMtkpx25dfYU8EdKsTc2Xx17tF0tjFXdb9X1pDvcUV6xVP3q/7WJMjzEe5GDbnfo5NfmfY/elHlzKeYUR8uf8Xy7BHHbmvQ3123gFh8iKyPiFdICWsbwjCLjcOAvhp3+/mcnNqiqcB24ukZhJ1FiqkwxYHMou+qZxSu5TOKVVIxAPRYlWlZDH85+rpDfEdiNQwkGJ1ZphAT00MPMDWFXky8+5+vMLfUVhu+1i7pVa73uVMX2s+u4s46Pj3DHQw72rQtF8jS7RAFH3MikQeufn7O3j53KuTgKry2Rl9w8W8Uac92qy0ZCvjreFaWv2gN0czy7M8QOhQ6JtwZ0jrV9yGHuoTh0jhFz+IKsUH9FU2843q9UZTCS1BVnThyNoMvLU/gu0U84XtXOB2rsHPeq5nfUOD7sGw4AOuloIygjPT6tQY2X9cXhybctgl2Y6uL3eZ5kY2/PY+M6g57/HMntWCMmWhtxaAATfeHAQTosrHJxERRbspMPau29ckzmb7MumoKhDHt30C0qDyYR6FN7JmcqJPLz5HNXWjZed0VQavExHr0w774KsWz4YMYBrhbVs7JKMwn/kI/Vbb9+rI+XWvU0dt7zIB3JMbYzGY+jPhs1DVa1ShsUzaTUX/sEpfFSOyJeZyFmjLBlb26nUyYxKlnfEZiAhOfHQGwW/n3GTVltkkE5i5HH/UVbYvjWgFzhEKln+miFMphkl/8oGx1d1B3m2iR9MSFUqC/Hi/okNN6oYfC3auLxuziUFdHn4weIlwG4uIATVF3b5wXT6ev3JrTw9Bf4QWS1ohU6dKNMtoPdAQblX/tTict6WIw+s9kDbSWwrTwIPH+gaYpc7Cvp/5ZE4o5hWkpaT778SXjlWaey5o7dLdRS2pKuLDeDnhDhgLfgjzDqz0ch3IAUi+RZ4+KXonsq50oG2BiYQFCdhIlsUyBaSSh38/Zy6XSC4cIdbu1Cb+FGjWGQFQGguAVrGM0mypRmTp0STdDWuxbpl+AdEwrYOksnXXqbf1AVNTBDRQBIbZhM/safSiFRO0h1ggdvsCy2YjFAZzAi4Rqeeo2cz1LORtlTtpNyByKO9rQY+p1LkEd8S15co8+cdh2ty/QYULGNzRwWxw8oXVR8B2pL83iuE7I+8kbaXWtL5q0e+WrPe/yAtq1uq6+xJ0sBqXpwrF7VvZFYdFNTLLnypvM9cjFIcTPoqAtOrFGF20Ilks5DqvRmbVYsEgZtdtuSvWhWe8VTk/vv3UO+qyppLNBc8ZVUg1ddyCqdYpqB9KJNsNiOB1sKAYjHQ+MBqr22ehfDlnPSKgkx8QGcFzPWown1AZremvyc3eioXdir9m3HXDET5Z/WXuj2vkc/4U80O1uiPsj5xkSn4lQ6Vc+HumHGT5XEMLoHHD//dSgGo8tyPZZElNX3XYp03p36Fdxh0EaNYemSvDtX30/o6tjZMYWbHdlFU4IQuJvnQeG9cQJuPuvzMq/1Cz+UuU05u5bb3fzC2Pshy40YSS/g3rLX0w/1/IhP8/r6jj8mSiP3pOWATM6CsJDfOZkMlUXa1z55glBUSDfd36E2+iC5X8KGi0601ehVcNpoDFQazPPvV/7b7d3oBF+qS2RVc4IXQhq+OwKzZWc5QDLWfT3P3eR3rRtzoN8ThyLlhHvDwF2qogt7uawcrFvmEfGXiqX8+CL89Ysj7TfdIkHtQhCy5Ad0fZ/UiTkbnTVb4nsysIIy9htYdNmkiku9CuPKsfrxduzI+YPOUY09hbmzTZxXi47Q6/sFWp++7ALn06T0kl+tbJJ8dbYU4ut/VVlHNnUaTUk/jYpFh4zyW+otbgWYhhlstsVitoDlihsOcBTO80GQ7FrX9isOGcnbDZ8kF8oKMhfeqTeh863AyVfAHeC4DwSOr9w9D2ZChfsE6FeqN6AwY3wlFNv9W8q27T6Cv7HvwrddlT61Z4NDSn+igp5+rkmst/umGoRWYWHOvdN85BvnlpAw3MC3ji88XNRTsQ2FXrGBBzJhK7FvzE1gtfR+zTe+jJglTxWhglWaHujDZFsPBUu85iw6cmMvy+4m1qWUfYRp0+cTY5KRgYFBGDDrbSm615VFLbU3RaCpWxjJuEjUgn1AqNXAjUZlPK8SVMrErdCnDzusXHAzMArvxB+Gm3MAfpWGb/VCeobsTeDUHf9YU7gOkhDGOX5QmtVRe2h19/rEu1/LGaI/I1XzuBP88MtU5Qps5lqFhfLlk+MHGnr/XwCvEVDuTDE2BWFsSwEbNAodwHse91SOLeBklAj/dxNoyvRbDV3DKP0fI9psQ3lXohPHKGrqUlXzaLoIQsvE7fr9aTMJGhlR26J/gNdUjSNikJU5+LndBn5zxjN4VzynjFXBYfSR7uhO4E8+N2zy1Tc1JDAzIfsiqgmg4DQaObW+r7Qz+etYTA9QvrBmKGeWMsHoxCXcmWxYDDtWaVhSOZdRvnh27jPzqEOHlTnY6SDxssJC0+V/LzJwMrtlJCklZ5gRB8vFysrsc8/ZNIsqyWut+gpRB7+Ckt2EGrnPDGp7KMRAsjP+VpxfFjVuRip+gYAn90HsVMtCbV4FUv5R2ZpzyHsSt58etOxH/X4IiqW8xj1thigAqwXN3RlmxzrAsSsSbe/x7q9L2XZl2S1L8Pd2k0AkMRFuDYwR2fit6y0qKrmVWN2zR6r30QOnm9zbvPj6uBpHZNg1d/+1C8UkEO8u5NcJHI8ZOw51529pw7pK3BABKYLNJ2dM/9c8vAxxw/In09y9LW9zjvr0kLAKUDTA79W1lbkSzUpsOdXJQDsKffsTEiBVSHnCCFh3CfJeuYMdA55YhUVyxKJ795F13srdP1gVjzMgWxy81lLrv3YpnXiBVnO0T8771T8eia8uRd8ONAbLO7xu+qDu3U7Q/oxOsDo8BmyAuJnRn/JSN/w+cqiFcaXwph1PM+Fsg3Puqsd09VhJFVi86CCO64y2b2EwHnJl+ys0rbhIYcJ+ARthIno+Ro/2Mp9VjCOywp7XvT56Yej9PK1Tf15vgedip6DEh1tAaaSw09ilk+3rXxeWLTIu5mSennXpTEDPq+YXRikWh6NRoclGoH8eW0ULKMDnl+rqimt05ZV0K+58VDd3gLD9LGPzbEFOYpvkRy2RsFhy2+rS1kXJ0M7HYwbAC1jtVPVGpM4aZaNQD05pibW3qsWGxU3Uvby8ZbiKIupCsaTJfWUHrYQa0JfbLdcNIqiNyxNzDtzJd2hBFugjAwf1dlQoITXDJ+6PdSznaBwH8oAPNL0rox9BYOLh2B2OKOp4/BCQuih0RCnN2cD4bw9ectaDXIhV2Q2qgq6hRta97brviK8Y1LDzon26N3Y3aD2//cF2qHipQFubDFZrbUwc87W0+FGun+vyhF3hFJeeBAOovG6e4nLflTCjX1RXqy7NVm6y32VQxxV3GSOyFXa1B6FqsYa8INSmYWvP456wOlhiLWSqwq7xAUm77hxqna3u0k+TtRByIyGfotzkUjStJvhjOw4jVjISspnClkCZEnD+z+deEP5HT1p1bGNGL/ze/GaChzbr5XHbjzilGHnE2HLjp3JnhqH1McLhjQrJOZ95M4yv4Q3wrT/Q/9UL3ECbtG7zaFImgrxWScewO1iXdwyUpLHImyI9ugMzOvABMPhPWSfnQECwoGojdSwvMNmtYnOIgsHzzfMnCLJwjVxOnIpdZgFfMouhlc84D5VyJEXEWBd3vlJgyu+4u/yl+96k0nWj/lgy1i7uf8A/fEknQIylAyi7Ge12G+kjTqcXzK2aCrcSO9tNanVNNOr4+4jRwoWkamKygWyU4DaoJiVirB8hyiYyvgF53rrKxVpcwEvV97SBri0rul6SwVDoYG0ppKquB9rZzkJpcOz1ryYEA/3FtsYaPjpj65L4QsodiSD3spOp5KZ+psXsm9DFiWGjM2kazV5R1MVFtGbrJbS5HhAjg5mkyKPVoJ3tX31Ylf4fkENB3exdB3ld/OD18PFzOdsFrQ6SUib2slOVs+48F7aZLaWaQtnMkFtuLQ2LAEU5mShB1hDz3lptsalvZzzgxOOVZo9R+Y16n1N03TEjgszyLiXVpNvCcJESk4rPm7IDnY8TAG/XpClaGWwQybPfpxPp0ZPygNDuPDG6l1R+3nQk0w41GpgP15JtWdDkrnhBkdpqt/BRwLdrsyPpDe+z+u7091a5P81EGEVvfRamSNWdO4i5LevhBSEj9bi/IkoTtyr+vmUutEcZloXJGMQBUukYUA8OajOgvHvu1IX7WM/HmoDEtKQlqLDB4dd4RAjph78blhcnC/khpoulQk5o0Zon79mtEPYpYc32ixCA45n26UYw/2h2cFG584CaRTBraAe+O4mXok6WwjKO5eir35dJoJVnGkak2MTCa0z38X5K8IhRqOwzeLiWhGi7DDw3nedQ/qiS6blyyEvwIpKWiPRgabL2TrYZNRHnEu7+XEE0LA8yWr34P/YuMMvtsSszhh12HCsa537moaq2cmf5YNeDhA7bKSPvhBgwFN+/4xIbMIfqQOltTR09dRCmA8EftcL7bECQwSX1XApLLMDUAG747+/ipvPaf17UMyrdjVBgg5xyRLFn6GW4E1u3HTwj3G4hJNeIJ5ldNM5xqjwVYfcl0zk7dRHDcJWPvZDMKagnV2DVi3DzceDAgBgCa+WYBTfFjbhEIAtW0Nj7D/GjU9yNtvHVXqre/HG1H1ZXSKLHIBHjF5skaTSQJ/W5dMlc5mGsWCx/C/TChc6eMlNoE6uU2Ma6jtqe+Das7jxPTAThTIyMmVEW9vwDtnh2h71qwt+lSbsRliI9EgZBn0uTr1UChdqRGJubRUvL8K2uWF/lh7Y+qir1724quxR6pqxPlMJxkhNXeVXfHUy58NcQ2HaRNUs9fW1RRIxpZic2/Fy2vQV6snoz3IHb+2Igfp2YnKryBCF+li79CvkRL6STTB07wj1Y1+cqETublOUkIvKnfliHZxNLkfrdUJ1YKPuFFjsuLY+rZJ+c2kDPbVM9BXN7AbhNHPFFko0zSmTE1bBlI2peyfINySSnH6YcEwNwN01Z+CHX2wiRQeqQExoHRpJSCHQxKNR8Jy3os+9PMt4qr1C3Oeib2lmQHYuZFSjMHn6rRdoHmMDImDOXv4c8MIv/hz8V/gWvFtUaE1rOjJXZrGblzgH6gWE9Wt2HaFdFqhlzafY2E4Wa9HU7W2fDDg9k2ES/5UnzIef8Tw5i8fjNX0llmTV23STU62LswzAAvrAWkRCGjYXdNym52ghMWp+iWpfPexwzFFKZuPSPhbtruBvjS2rR/dwQURPrexFMMA+BmibZMZlmBJaiJH15EAL6kot7RreincryLrh3qvmT3FXlT7r4ynhJwMv74rdJwXaEkbrRV1BVRFN/Y1dxiKirDkkchxJTzD09CMSkFkjz6A00S1+u+E4PCqpKV9ClefMzTfSmvDBaE7TJYDFT8DJsNjNuPFVo4qSbVSg2SniElJkSWS+rVw7IOjV+iIRotwdhXof6YBALJM9NzJ/bnxhoCoFStz8eTN1JErNBSd5NspSbPuNxs6pOSBmFj3ngmxfJql07cXZ9pQU4WyFPVVxwRlo/2zdGTWLyCyMRrMXNiAwobyEuDj5huJvwCr1IDsLcDEKNFT8qjiZ9XR1in/UQtL4dEnBuLz0eX49HHpNNPkN6BKWockiEkvuPR9d4xP5QqJucbQUqLbHJ+f9qnTuGh9FCMhRsloTDWMlh849m+F53bmE98R0UOoRTRazAmpfmUtwBGMsmvKpJC16vAx9mfp4obl8goqR2f/W8e+XPfewA/XgjA4GwoRUR1tTgli/NYlekKGTQmeMGOPGZTZMTE/LQsEdW13AF8ZSsiByjrOy0lalJWoZo8N9frRPTZUF5CmuD9Q8UiNwzUHhmYfT1oKI/Tp53rEjgIKS+7NN2fzSukl4J/StCzuIcAGybYM4pBqchTEhVUqXzBIESCUDW8M69YgqpP/x3IhwIebjcBUz74rq/dqBbUQgksi87nIDQA+B4KoQFPLFVO3/n3h/J8fZd1SDV01+VZZOpXCx/nTVYUcQvRdgsBGvX/HorHpPZpZsXx7qJcvvBmBFI/oHcUjls/2vbZfmxvScy6HUSS7XQ6O+0SoIFvjdMpEvejF1g55M5JmASThQOMwzqqBnij5i31s+Z09x6S4weU3/sL37cNr4oxQG88sLZuCvpQU6kNmB+J5VBRENU7KWoMl/yWkIM6TIdAjabn8usguAOwdxGDZ3Mn81ifJOTXxF/24s6ZtRGJP+C0Wbdqn4uK8BFj1VtMDxIxs3sLqxaF/qUQbXU6aoIT4vVfrLZ077pIAwbf8d7av4mN1gGFOEJuDqb5cK7E0s8PhIoEjFanO7tb6xZA4G7A/mirXLsloqtZbZM7LZuEDxZA/ZRdihdTs4i/sFYs8MkzTPMr1Bgsa4LaPC1wsKvu53djXRepTplxKT29gZmYaqvUiDW7q/oP5qq+DGG4acFtNY/5WkMwVAHTVr+m9RQDsDzhn8/9DgqNB8DQflk7r5gXxqrBC+LwGG9GUsNSdyDXTPKkHe7A0eRt9fS1lgO2EI1n8UAJnb8MDwr6yAf+KN4Pz1uiDSpVcEj5j7K9YZ96Uc9iXHFHRWOYaYPDOa8ldb6S37h3HN2N9nxqFr7DWM42Gw6If93tJz4HNNiauLX+JnegNgB137heqUWmRfNIb6pRmJB8KD/S92fClXEEahm1G9f2g0mnpeyDJl5LCdtEgRyEveC8IyB/gkuSOVDcoqbXbOOzs7sOQvSPku+3UwQb8IC4eo4HML8bede2Ue3x3DhagvJ4SJSyi4XlnoLVykmZ1gb6X6dovOaXQrXlFdrmSfsI4Wp07al8KE4z2AXjK/B1tuWubGjq6e1UgL389813OFa6tGHrbkgULhuOWmCDvTNuRdGzAMnk+Iu+hQzNdiXyjK4XJSXmiHqXDRksCRe0YiAT0rBaG/VUqtmAHF1RHXv7+73DP7eKffb3vTkbZ+RC8gQm2T7rQTdS11ck8tmanLYFWJuUOHVuZSLdZZ7TxO2hDo5G1qmmdVUKUmWxG5pAp6g1nqDocvCcOcje016GdO8bG9o7OHRAWOpWyOWffM3rw1WjpNHx5dmhfiV8wVKspWA87HgN08pAyajIjLyZeyD3HM3gUHA1eZUtfB+dGJzJ/AukgGi8k36itj9O9BMUx6fZXSTnsF4NGkxSnrZWPX+yIV7TTtWxd+CRR4RBAdJwOq4OWIShu2xobuJf0TEDGIO6rM10+0RCjwoTMtHN8Vq5TfqxqMxjNQMzXMqNBDZno3fy24AsL8jvvB4K8ik49DnXWbhQgb8b/ZPBxP7q1l+KcPOPxYSkHtUgB/1fIDflGDUkIMU8EUBiPdvuNGCFw3tZL7mwGjiIJAZ8CTKKnrrEucuhIVLFZPXOTPI3nzRTooEvD1ZQLC9IOVUadtYULYe4PG5iYUvMp3u7jRki26IeDMj9XiK7PaIIcuK0gjN4l5kFkk7KyhtMMOZWZGZOxaaNTmGQp7/ZuHCyE52yMXxvtGBH+hNGysa68+apmUN0PGEc6j0ouC/CaMZ+uveT3ZW3e7c/czOPzQC8+k/g5bI70XltfRZOO3vC3pQr2gYtoHkK4qcIrVSblChP31o2ytfqwqXDEI39o8q3UcU74d5VXflesaRe4es5X8bwaqjP8+iLApKaq9sVeI5mUfRz+CeG6MOJbA20KZnpiWFkw+Wy0WwwbC4JeZAC403ORm0dK4KkqgOUvydQGoqv5bnJq7D6vbadGuKGWZIC7MB7UVyIgXgBz1Hxed4RHBNpvzuIhZpPqWAWRPu7DWIkMdm/kzSMkXdPZGeESr5sMydwXbxowBIUcD7O4Z/wHGGXrsVOhG+OvrUhD2Xz6la+6dsjtrwBWRVDjIvIVnhcTKExourbwziznU9cs8lE+EalTQZ7cM/rryTBofSpcYqImDPAe2A8phywCaiAZrH/k+B8ljSf+PRPq7U4XuyGFTfd2Qbvm8fA2SRvpuvbNZqeuYcgxSb2xahr+crppNYfP0Q1y6jE80QGoy2OxvEVZ8s0HFJn9C0P72jFsdRM34JT2ocDNh4/JKwjdlPXTZ0jAE7cxCsEU41ije9UyMOs88J5TPPZbNWKARV/PlNHsRkFj8BHJyqbJS1zZEFvnR9YrVudSTcsN1dmoLX67VSEixxA9RTZL6Q+LaINbEjKFU81f2huFTUbEZfzr/r+YDVI6MywXYuA0P/eHuLoOasMTpHovqLUNbcvkkNBj2CvgplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9CYXNlRm9udCAvQ01TUzEyIC9GaXJzdENoYXIgMCAvRm9udERlc2NyaXB0b3IgMTYgMCBSIC9MYXN0Q2hhciAxMjcKL1N1YnR5cGUgL1R5cGUxIC9UeXBlIC9Gb250IC9XaWR0aHMgMTQgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL00wIDEzIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0JCb3ggWyAtNi43NSAtNi43NSA2Ljc1IDYuNzUgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTEgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagoxOCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjIwMjEwMTQyMDEyKzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNS4xLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNS4xKSA+PgplbmRvYmoKeHJlZgowIDE5CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDI1NDQyIDAwMDAwIG4gCjAwMDAwMjQ5NzEgMDAwMDAgbiAKMDAwMDAyNTAwMyAwMDAwMCBuIAowMDAwMDI1MTAyIDAwMDAwIG4gCjAwMDAwMjUxMjMgMDAwMDAgbiAKMDAwMDAyNTE0NCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNTIgMDAwMDAgbiAKMDAwMDAwMjI3NiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDIyNTUgMDAwMDAgbiAKMDAwMDAyNTE3NiAwMDAwMCBuIAowMDAwMDAyMjk2IDAwMDAwIG4gCjAwMDAwMjQ4MzggMDAwMDAgbiAKMDAwMDAwMjgyOCAwMDAwMCBuIAowMDAwMDAzMDU3IDAwMDAwIG4gCjAwMDAwMjU1MDIgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAxOCAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMTkgPj4Kc3RhcnR4cmVmCjI1NjU5CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2022-02-10T14:20:12.367346\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.5.1, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(odesol.locations, odesol.states.mean, \"o-\")\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }