{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# ProbNum Quickstart\n", "\n", "Follow the steps below to get started with ProbNum and learn about its basic functionality." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "# Make inline plots vector graphics instead of raster graphics\n", "%matplotlib inline\n", "from IPython.display import set_matplotlib_formats\n", "set_matplotlib_formats('pdf', 'svg')\n", "\n", "# Plotting\n", "import matplotlib.pyplot as plt\n", "from matplotlib.colors import TwoSlopeNorm \n", "plt.style.use('../probnum.mplstyle')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Linear solvers: a numerical method\n", "\n", "ProbNum provides tools for solving numerical problems. In this tutorial, we look at the specific example of a solver for a *linear system*. The linear system is defined as $A x_* = b$, where $A\\in\\mathbb{R}^{d\\times d}$ is a known square matrix, $b\\in\\mathbb{R}^d$ is a known vector, and $x_*\\in\\mathbb{R}^d$ is the unknown solution of the linear system. A linear solver attempts to estimate the unknown $x_*$ while being provided $A$ and $b$.\n", "\n", "We will first see, how this is done with the `numpy.linalg.solve` solver, and later compare it to the ProbNum solver." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-0.12366738 1.28358209 -0.63965885]\n" ] } ], "source": [ "import numpy as np\n", "\n", "# Define the linear system Ax=b by defining the matrix A and vector b.\n", "A = np.array([[7.5, 2.0, 1.0],\n", " [2.0, 2.0, 0.5],\n", " [1.0, 0.5, 5.5]])\n", "b = np.array([1., 2., -3.])\n", "\n", "# Solve for x using NumPy\n", "x = np.linalg.solve(A, b)\n", "print(x)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we can do the exact same procedure with ProbNum, by using the `probnum.linalg.problinsolve` solver." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-0.12366738 1.28358209 -0.63965885]\n" ] } ], "source": [ "import probnum as pn\n", "\n", "# Solve for x using ProbNum\n", "x_rv, _, _, _ = pn.linalg.problinsolve(A, b)\n", "print(x_rv.mean)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We observe, that the NumPy solver and the ProbNum solver return the exact same solution. That is encouraging! But what's the point of the ProbNum solver then? You may have noticed, that we called the return object `x_rv` instead of `x` for the ProbNum solver. This indicates that the ProbNum solver returns a *random variable* over the solution rather than simply a point estimate. In this particular case, the solution `x_rv` is a [multivariate Gaussian random variable](https://en.wikipedia.org/wiki/Multivariate_normal_distribution) of dimension $d=3$ (Gaussian distributions are also called \"Normal\")." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_rv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The mean of the normal distribution equals the best guess for the solution of the linear system, and the covariance matrix provides a measure for how certain the solver is about the solution. We can see below, that the algorithm is very certain about the solution as the covariance matrix is virtually zero. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([-0.12366738, 1.28358209, -0.63965885])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# mean defines best guess for the solution x\n", "x_rv.mean" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 2.25574545e-32, 1.39629921e-33, 8.45001763e-33],\n", " [-9.53335322e-33, 4.65112082e-32, 3.57952136e-33],\n", " [ 1.94650580e-32, 3.57952136e-33, -1.84681917e-33]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# covariance matrix provied a measure of uncertainty\n", "x_rv.cov.todense()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So what's the deal? In the above instance, we ran the ProbNum solver to full convergence which is why it returned the exact same solution as the NumPy solver. But what if we cannot afford to run the algorithm to full convergence? Many applications in practice use linear systems which are so large, that running to convergence simply takes too long even on large-scale hardware. Here, the ProbNum solver provides *additional functionality* that we will have a closer look at now." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Trading-off precision with computational cost\n", "\n", "Instead of running all iterations of the solver, we will now attempt to run the solver for only 2 steps. This is indicated by the flag `maxiter=2`." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Solve with limited computational budget\n", "x_rv, _, _, _ = pn.linalg.problinsolve(A, b, maxiter=2)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([-0.20110737, 1.54434494, -0.64216837])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# mean defines best guess for the solution x\n", "x_rv.mean" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 2.23355410e-01, -7.52102244e-01, 7.23806730e-03],\n", " [-7.52102244e-01, 2.53254571e+00, -2.43726653e-02],\n", " [ 7.23806730e-03, -2.43726653e-02, 2.34557194e-04]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# covariance matrix provies a measure of uncertainty\n", "x_rv.cov.todense()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can already observe that the best guess for the solution (mean) has slightly changed as we did not compute the exact solution anymore. Therefore, the covariance matrix contains larger values than before, accounting for the uncertainty arising from the limited number of iterations we performed. In order to interpret the numbers in the covariance matrix properly, we will now sample from the normal distribution provided through `x_rv`. " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[-0.96878098 4.12932395 -0.66704564]\n", " [ 0.30598287 -0.16317454 -0.62573557]\n", " [-1.02571399 4.32103387 -0.66889062]\n", " [-0.08325372 1.14749757 -0.63834919]\n", " [-0.04873141 1.03125104 -0.63723048]\n", " [ 0.31870665 -0.20601917 -0.62532325]\n", " [-0.2210578 1.61152379 -0.64281488]\n", " [-0.74210944 3.36605529 -0.65970011]\n", " [-0.62685632 2.97796477 -0.65596522]\n", " [ 0.24114187 0.05516389 -0.62783682]]\n" ] } ], "source": [ "# Sample from solution distribution \n", "np.random.seed(1)\n", "n_samples = 10\n", "x_samples = x_rv.sample(n_samples)\n", "print(x_samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each sample (row) can be seen as a potential solution to the linear system. We observe that the last entry (third column) of the solution does not vary much across samples, which indicates that the solver is fairly certain about its value, while the second entry (middle column) varies more, indicating that the solver is less certain about its value. This is valuable information in case the solution for $x$ is used in a downstream operation.\n", "\n", "Instead of using samples, we can also use the covariance matrix directly to get a numerical representation of the uncertainty. For this we retrieve the *marginal standard deviation* `x_rv.std` of the best guess for the solution. \n", "The marginal standard deviations correspond to the classic standard error of the random variable; though the standard error does not capture the off diagonal element of the covariance matrix it is a convenient way to summarize the variability of each individual element of the random variable." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "true solution: [-0.12366738 1.28358209 -0.63965885].\n", "best guess for solution: [-0.20110737 1.54434494 -0.64216837].\n", "marginal standard deviations: [0.47260492 1.59139741 0.01531526].\n", "\n", "The marginal solution of element 0 is -0.20 with a 95% credible interval pm 0.95.\n", "The marginal solution of element 1 is 1.54 with a 95% credible interval pm 3.18.\n", "The marginal solution of element 2 is -0.64 with a 95% credible interval pm 0.03.\n" ] } ], "source": [ "print(f\"true solution: {x}.\")\n", "print(f\"best guess for solution: {x_rv.mean}.\")\n", "print(f\"marginal standard deviations: {x_rv.std}.\\n\")\n", "\n", "for i in range(3):\n", " print(f\"The marginal solution of element {i} is {x_rv.mean[i]:.2f} with a 95% credible interval pm {2 * x_rv.std[i]:.2f}.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We again observe that the algorithm is most certain about the last component (indexed 2), and less certain about the others. For completeness, we attempt a visual representation of the best guess, the credible intervals as well as the first 4 samples:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDU3MS4zMjI0NjQ3OTI1IDE2MC44MTc4MjE3Njg3IF0gL1BhcmVudCAyIDAgUgovUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTIgMCBSID4+CnN0cmVhbQp4nNWYTW8cNwyGC/Q2v0LH5FCtSH0fYyQx2pvbBXrJzXGcGt4Uros2P7+vtN4daVaarALDQA8GPLRIiq8eUZJJ3E2bNyRuH4USd/j5V5C4FJu3N//8cX3z6+WFuH6cFOy7yXqSmtk4i8/78pOckoF8YIZd1Z+fp+nLhPjwuUTo22kiLVmQkeTzEASGQTFFXVjvS6uGORijknnvXVqQ4dP0IKqw5F3wwiipcggdHAni9OlsUGSDEX/diN/FF7F5w6l4QvGE4tW0LP4hhdEskggpBJtWquud2PxM4u2f4mq6Eg+HsCx+ESTZpsgnsp4IcVrb9FtTnV1PHYw/U97jyNl9LapCIQqreNQJK3mxnTbvoauXUbO3UAKO208TO0mRg0Mgckiq9pFg8yS2H6dXX1+LLbB7j+wsreXg4Rop+XrpjVL4VHD9iaULMUSD9QrZ88fs+W57YHYP1p7bI2CRpXZGW7sQN5mdNbHSoTSXNRdBTmBLC3z8O6brv5u7adbzDO7WcmYAeQzAtlCdyjMwDQl3XQnhMbQU9fiSy5UMXTD1KZjRymijN1FbH1tgvnsC05z6EsHXUgyWNSFLGv7h1dcPr88hktArM+ZU6cAIarWKylQ6lOaq9RVRmkweByiwZr4PyqlshudAuZo0U6kH22JbrF71YKCp466rYyJ5aEEWDiWZKzlGWia5KG3wIUQ2wbTQfPz7Yx9O1lKxdxwt9s4onGyVdFEr52otYjJbdjWbs7Ust4zRRHMekA6YF0JzNWlG04yh2ZOqU31Cs6HirqdiGj+yGIvxFZfdDF0sW1w5Lb1FhMjO0NpRboePcjqHTc1RBusN11ca7ZI5OrKVHqW5rLqM0qTzOABXVw4vROdq0kynHaOzJ1anerDQ1HHX1TF5DC3IwqEEdCXHCKHasIxkvTLOmfC8hPI5hBoV0XtRsa8EMSaZdfSVHoW1rLmM0eRzHqCUti/E52rSzKcb47MnVad6kNBScddTMY0fWYzF+BLOfoYRNsG8xKVIubQe9nnZ1Gex6dOUAi4F9YMwzdQor+vTpDRXdBZR2nQeBrDz8aW652rSTKcfpLMtVq/69DJv6bjr6ph4G1qQhUP1UO/nGCIUt4QYXWA0aHrm7mnOIRRXZ9RhDS3/ZeGS2RuqCS3MZdVllCah8wDFZnkRdCBS4ZjCmzquP9bxJ9r/g2xl5qXZGYf35nKGuFORdbia9Wfer7SwV3FKwYq039SxMEOui3K7rO1HJ7HMeTsSXi6cFXb51eRsvQ3Dfhs+xcxkHrbg7WImHg9855OK6VRfmu/T9DCfPc1JMIzxDlcIHW0C0hrMKnthOUXEvQDLHTR4zUD+MKO89CQlgS1rXHV1fHo/He+n++mWU9Ve4slHhuupzuZ6qo2E9VQ1S5PeKDqkMCm56ie3EUIbywudZvNgcmtkhj24iC7zjcpDOtHw3Fgkn82DydHe2DjtQrC4CFaXrtPkpAze2kaFJSKzfTB9hGiRCG1QBVefq430jF/xRD8hdLYPpidcEEjbyJHQcequybmN3x02S73//tfd53M6pa6m/wCubAWTCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTE3NAplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoyMSAwIG9iagpbIDUyOCA4MTUgNzYxIDU5MiA2NTIgNjg2IDcwNyA3NjEgNzA3IDc2MSA3MDcgNTcxIDUyMyA1MjMgNzk1IDc5NSAyMzAgMjU3CjQ4OSA0ODkgNDg5IDQ4OSA0ODkgNjQ2IDQzNSA0NjggNzA3IDc2MSA0ODkgODQwIDk0OSA3NjEgMjMwIDMxMSA0ODkgODE1IDQ4OQo4MTUgNzQwIDI3MSAzODAgMzgwIDQ4OSA3NjEgMjcxIDMyNiAyNzEgNDg5IDQ4OSA0ODkgNDg5IDQ4OSA0ODkgNDg5IDQ4OSA0ODkKNDg5IDQ4OSAyNzEgMjcxIDMxMSA3NjEgNDYyIDQ2MiA2NTIgNjQ2IDY0OSA2MjUgNzA0IDU4MyA1NTYgNjUyIDY4NiAyNjYgNDU5CjY3NCA1MjggODQ5IDY4NiA3MjIgNjIyIDcyMiA2MzAgNTQzIDY2NyA2NjYgNjQ2IDkxOCA2NDYgNjQ2IDU5OCAyODIgNDg5IDI4Mgo0ODkgMjcxIDI3MSA0NjggNTAyIDQzNSA1MDIgNDM1IDI5OSA0ODkgNTAyIDIzMCAyNTcgNDc1IDIzMCA3NzQgNTAyIDQ4OSA1MDIKNTAyIDMzMiAzNzUgMzUzIDUwMiA0NDcgNjY1IDQ0NyA0NDcgNDI0IDQ4OSA5NzkgNDg5IDQ4OSA0ODkgXQplbmRvYmoKMjMgMCBvYmoKPDwgL0FzY2VudCA3NTggL0NhcEhlaWdodCAxMDAwIC9EZXNjZW50IC0yNTEgL0ZsYWdzIDQKL0ZvbnRCQm94IFsgLTYyIC0yNTEgOTc4IDc1OCBdIC9Gb250RmFtaWx5IChDTVNTMTIpIC9Gb250RmlsZSAyNCAwIFIKL0ZvbnROYW1lIC9DTVNTMTIgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDUwIC9UeXBlIC9Gb250RGVzY3JpcHRvcgovWEhlaWdodCA1MDAgPj4KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE2NjYgL0xlbmd0aDEgNDI5NCAvTGVuZ3RoMiAxOTUzNAovTGVuZ3RoMyAwID4+CnN0cmVhbQp4nIy3BVTVS/c+ToMI0khzKOnulO5OKclDc6hDdwgKCNJIizTSSHc3Il3SId0dv8N973vB+37X+v8XawHPnj0zz57Z+5n9oSJTVmMUMbUzBkragcCMrEwsfAAxBTU1VjYACws7EwsLGzIVlbol2Ab4XzsylSbQ0cnSDsT3xEPMEWgEhtjEjcAQRwU7EEDW2QbAyg5g5eJj5eZjYQGwsbDw/tfRzpEPIG7kYmkKUGACyNqBgE7IVGJ29u6OluYWYMg+//0XQGNCC2Dl5eVm+Gs6QMQW6GhpYgQCKBiBLYC2kB1NjGwAanYmlkCw+x9LAGgELMBgez5mZldXVyYjWycmO0dzIVoGgKsl2AKgCnQCOroATQEPMQMUjWyBf8fGhEwFULewdPrPgJqdGdjVyBEIgBhsLE2AICfIFGeQKdARANkeoCYjD1CyB4L+4yz/HwcGwN+nA2BlYv1nub9nPyxkCfprspGJiZ2tvRHI3RJkDjCztAEClCTlmcBuYAaAEcj0wdHIxskOMt/IxcjSxsgY4vAXdSOApIgKwAgS4t/xOZk4WtqDnZicLG0eYmR+WAZyzhIgUzE7W1sgCOyEjPxAUNzSEWgCOXl35r+v1xpk5wry/C8yswSZmj3EYepsz6wBsnRwBsqI/+0DMSE/2syBYAAnCwsLDwsHAOgAALqZWDA/bKDubg/8a5D1wQwJwtvT3s4eYAaJA+htaQaE/EH2dDJyAQLAjs5Ab8+nA38iZFZWgKmlCRhgDDS3BCE/rg4xA83+gyEZ4GjpBtBlgSQgK4Dl4eef//QhOWZqB7Jxf3T/647/G+s/VlFROzeAJyMXG4CRjZMVwMvNA+Dm5AF4/zn/n8j/G/VfVmUjy79ZsTwuKAMyswPw/oc85NT+DgDA7PJ3TtD8XTG0gD+2ADAr2kFyGQigeUx9PRZOFhPIL9b/3wXw15T/K+0fVvn/zPz/oSTpbGPzlwPNfzz+18HI1tLG/W8XSDI7gyGFoWAHKQ/Q//hqAf9TzwpAU0tn2/8ZlgEbQUpEBGRu89/jBDBbOklaugFNlS3BJhb/yaK/BzQeKtDGEgRUtnOyfBAdACMrC8u/ByF1Z2INURYnyLX9NQaElNWfFysBMrEzfag/Nk4ugJGjo5E7MmR3VgjkBHhC/kJKAuj2V4IDmJlAdmDIJAAkSm+AmZ0j8sP1sgCYpYxsbY0erH8ZWAHM4kAb8KOBDcCsbgF8YmAHMMsb2RqbPlo4AMxvLP9BnABm5UfEBWBWszR/sgE3JEJ7SKlDgv6viQcyw+JxCi8EOj1CVghHJVug+ROOEJJmZo8QQtHsiT+EoJnNI+R4cH4yzPmAn4xDGJraQV4Hp6d7cv9jtHo0QniaOz6U/z8WCFUjE0jWPJ4WhKyJkeOT4NggZI0dgU9msUH42hqZ/OEE4ez4cI//GCCsTSCZZmPz5CYgzM2BjrYQYTK2cXo0QwIwerI6hLrdEwghbedkY+Rk8WiCsBaReLzPh/N9AiF8lf6cwA4h7ORsb+/4kIv/GCGUIYllY2T7aIKQdnC2AwMh/P4jAf+MQKiDnG2NH0TE/DFs9r/OHhKj46MJQt8e6Ah5bJ7MhsRgZAuxOj08LP9Yef/e7c+tOCDh2EOePJAN0OyJlfVv67+cIZEZOT0s4WT9aIREZm/j/Bgqx8Nl2D2tEg5IPBbu9hbAx1g4uP4ibmn3yJADEsufJ8kBicQD6Gj3aIAEAekeHosHwh7s+jgOEU9msIUj8InHQ7bbOT+eGOdDvls+yS9OCF0nyMvyD4aQdYIk4CNXiFgwA/84CE4IVZDlUyI8DzE/rVJO3odlbC3/tHKx/DcNTCEP7aMZwhvo4Gz0WGeQJwpyXUCnB7n705X9ceDRCInB6JEeFyQEkUcEoS/6iCDUxR4RhLf4I4JwfkxtbghXyUcEoSj1iCD0pB8RhJPMI4KQkX1EEC5yjwjCRf4RQbgoPCIIF8VHBOGi9Kh5EC7KjwjCReURQbioPiIIF7VHBOGi/oggXDQeEYSL5iOCcNF6RBAubx4RhIv2o+BCuOg8or8Ey8jEGgj+o4R42R6r+88B9n8m/FldvA91Y+lo4mxrZgN8zEdezr/EFdI/Pi1yXq6/l/9zbUgQj2XHCwnC+BFBgjB58kxAojB9Ah8y8Al8KJsnEMLZ/AmEMLV4AiEMnz5AEGpPngEWCCfrJxBC6slzAulxmB8lkfXh9QI9gRBWdk8ghJX9E/hQCk8ghJXjE/hQx08ghBX4CYSwcn4CIaxcnkAIK9cnLyaEldsTCGHl/gRCWHk8gQ9KDzJ9qmOsD+8T0PZftgdRdAaZGzk629oYOT/h9vBEgS1tTJ/cx8MzZWoJhDwplk9ienit/uelYX3QGCd7I5Mn0x/05V+Ny4PA/Nm6sD5Iy5/NC+uDsPyrfWF9UJcnDQzrg74oP8Xc/25iWB9k5t9tDOuD2jxtZFgfBOePVuZBc5zMwP96OlgfxAdk/K8QHzToX30PN8efjc+DFD1tbR7E6Glr8yBHf/Q+D4r0R/PzIEr/2/08iNP/0f6w/k//86BUfzZArA9y9WcHxPqgWX+2QKwPwvWvHoj1Qb7+aIJYHyTs310Q64OS/R9tEOuDphk97c1Y/miEWB907V+dEOuDpj1phVgfpEzpKeb4n2aI9UG+/jdHH+Trj3z+o1E3cXaE9B7gv76qIKX0X/zXVzMQ6AY0QZ6esDPhD7IqD2q4KBUhdGVcG0RYWGr68Em78z0n+NVkhqeFPGKS1E8HUUPTIrz+BOWp/OCRCS9Cur2LITe91hT/X/HS6WAoic4V0QPGL72Xx63mQBJTOwLzYe6EDysY+1EqxGiGunC61DFaEzfvuNvYN4rXs26bnDZ0eLcBtoCcM3SyeELwR5G0pm2YMG0yyiVwn7YeegSmo26is7qMxvAtTJhlxLloQzj+pfuKbsTnvvn5npSuzgT2o0y59hKuomAsfGwPWbK0/ugf02fkYSr5XrTq9s8EMu3ba1+qWJwe5rcssGprRzA6mnEw7APKJjPvcJekoiqXQ+7ZSJNJr/jbTTYmeIIZiEhLY2VM4qq2S1GOGG64znPqmaWhmKO48dE5pb4F87P/xtI+cBruLR9zVk9WnUp/y8u6/NMqUKkm/R1nuQLRYuK3PI3SEspwkpBILuk+hitYB2bLBa2I6daeLcsxU+OGDAr76czbZ5OHSuN38SSZzxTGbC4xYirohk29y2hda9gK2jtfQwu5SQZsY74iWNhBcvw9qE0RDERiB2v5oizpSPbmM6MWg+74YxaG5lC+fNu8gZkztflBAH0+Y2sYqbdhrt4nK/udgpiCUXlh3XiNxxSNoDV6823FYOFVYwA+nxaGnmILBj/xD3qWnuOoUwoGROYr5S/6+d/TnNRfJB2ESfmRoHc9l9Ehxc2gZRud8EUre8NEK6PjQn2bvVYkawCMLrnORbdJl/bYNOZcZ2g2nxygq015ex8/7rZ3xZg5/26htUf1A577QV2GrR1MzKgBr4ey9+/PuIxqINF87hjZSB2Bdp6fwx5jZmNv87utJtTX+TLbM/3Kf3ZJwjIS4oa09R0zGR/OFqLxTK8qqJtqAWFVf1QYH2+0TUWeQWfl0adrZHYVZCgV+hCljSdZifA8g6sTQ1oBe7kum+PWNvAQiCrTBfJ8v4yaM1GA234nOF6tT5/4fj5F0FL7qhKnIhRekQyacprJbPVVbzzVqdsQJoZfz1mTWFx+W622tJysP6q7zetzpNz+Ofuc9zMN/gsHzaPCYdaC2l9qgyPNZr9MXYDeKqL5un50HQmiv1COoIgR3I7CbLm6/zn0k9qijnwijzEY7dVlGHKMprEebyVznk0P+slp786QX8GQYXeHPGcCd5sQlgwhS/mQeSEB7flUChgg0oEJ4yzdudQRLzQ8aKR3ioP0SvHspuC0bN8uizVuN4O0cNSAjb7Ki6PcPV5CIYOtCppDA7E9i3R6o3t7PDHzIx1l2xx8LmtEys0F/Re2qOvX392XA9Fo6Tme1ZXtlDWNaFlixtqIv8gAX1xyUmoavMz4WKg1SKHdRG3yPTd9zA/nlWvabWyS7F4jJkODDFoErwyVmUjxCq+mTBiuohBYvw5ckstNby/IcdzNXRsI1M8GzIBch3ZzqupEP9MUC7sRmLxU+DZgJBI6fzf2cv5VnmjgUR+cSzN4RUKT+Uym0GPywoLEIWEbcyEVbxZAHWbB58SowQ/31nDVB7UbDpWjzfell1NgjPx45owJ7WT7jg7jjAe7+biSEnuUuXLVrxRPIvTe30xQLjI/TRPOuoqd66hN1l+4K5AK7oG+dlC/uCbjxN+hqwnWdwDIzA12zyMohWVsqhKd3bYshlpLjG776tlpzV/FjCXHOzI+N2qr1LEqqPg4w9zIZG5ceMlXlOh3Pv4LW/3T3RolMGSj7PBXbbJDk/sscuMMvoJfOidtrK/yO5+btIOO4zrSN2TBksplleN8gVA29b6g49P91x/o0LhQGaloOWrZ2MHpV1B81agvK5nG03RZCUtbigHR6avOre1okyOUiOgXv7edf7Pu86HH7FuV7rX09W+FLf3MY0l20gTRqTzXXg3v15fhCn9uVzvHgw4dTht/bCFH+XbD703yN/SjUeJCNOm593xxc06xWri9gNmGjgvVoRxgsGir1/bMponNsGDIQHkzc7kmFlXaD5FPzIfG3Th+M9VjbrCWgX1tb1U7mqToXaI/TyfG0RGf4LRSDr1FD1lTvasfEWxrWEtVFFt2eNmr7KRVOk86h4QnchKcXjP8AXazMidx51quFV+ZxZkcgLLjIBehvDB3a/qqLGwxLVBFQaL+a4vP66ay/Vz54RR0FgMt9wzUGyXFINocT4p9t4o7D/FNJzYRKMU2FbJ2XwvzxsQRWtLr6x/f4IVCCjSuqDwoxmrQP+js9yVe0V6MV2+j+Tn5sg6nif9qT84Xk6mvR29RQ8atH7H27JZjxPbNmC9LYC5FE32Bjb1eudXSbQNEzG4C7bh38p9ebD6blDkjL71jkFGT/D3yQ8aTwMvRBhchM+IDqzxVBBxvHyuI1bYrMfHFzRDvB5yXa2N4kqz+KM93ls0ducROM7pV0rkBbTWtBRbVbJ5Qdn1S35x1oPVkPguM0pH5D5viU39q6Q8MTPl13BtNMbskZrEKCuEjnyXLPrhw92yFS/rMZVBg3BW7FKK4ScCX5cYIR9ILkIw27GUgF2IKBAUOvZwVEuuJKSpx2DYVySseVDbsnDWOs659zqSVqp2BFDk7lYaftSTuEmR3IaxtXxZ431qJWTo8KD5lTriOGqIVX1ncbEAgckQoZ+CaJKd7JBtezNhYLrB47xCg4eh60MfCuKYIH8iORn3PFvtyj/L9Lx8x0XmONDj9sVxS5y/LaycLOr5KFLrYyTGvMwuEMfn8UR3QrfwRy+ZYOO5wo3nLuZm8GMXnqjrsMbrKYBMt5giEMlVuY90b4zdhy78cTe/NVslOzMetoSCkvs6JKZeTVIo1Efo4ymoDbcomt1L/THThXk4BliJcxOGaC6GjbGJUQ7mDsXVgX469p4eYp+IwthwBk3+MN7xmUHyHlSZiwXBjir93g9Rr2HrLsVksnK4PNaQDBbbN5WyX+7WAp3kXpTNqgaMKALFhPaxQrP4i/Qea942+jajPiIjQUWIhczAuqvpejKJG37nVWEuLIGeeMs3L1TDcvdqK9Bv5HXdcYvmF2Sy9ylGSnPtVtPyGyfQPWq8l8/mZ0GccQBYbLw+HslF8VoBB0HnOF03SzMBX7js2snrr8NzPr5DysnozqhfFneYxh46/OmNgdc7haMKkHi9TJp6Tuetecgo1C/7qYAw1vFMbDo94ndswUHQDiA7eejYjUfEhCfx9Ykiw14NLIPWr3Pbex0xVoj41t+CusV4rPQA6woKiZVnAe0lKYutzPkZtHbjck6/DQGaQEXoz2a9kdu4+NBupJk80uhBMwi8gRO3CuYn5YxyRT2nBx/fC5I4/5skN3u4Qm90NmgwkhtaK21eAgUF9FerpbnzXNtiDUsUC6BQGpsYmWOg+qWpYmqtv5Fi3FDvG+RiZ0pUcTT65OHzo+YneoY8r6cuPC/CzDHZ36Gt5+RFGfxHVWGWp2Jhp1dB112J7solvCL9MmvH0EzxywUfDNTqdZaJK1Po+dPYWqpgaBm2w33WMmxbrohFvo4rs1r1kVs2A8xm1dfJrygyeHMUG5wCUTvVTh7yUXd9ZTPdfPWl9o2+i653cUmDruHOdXZo70ygydtoKLeCAu/2c3z+Ye5feBeTRD83dy+cI7Dbw7Q3UuUApoTK+8LSCmXkrUy0Ef5+8n82FE5M0rR6Bd17Yo17tlI5Qy+DXu1DnuhcAXhyEke5FdakzQin00+0tZLg2g2VHY503YqCccZTx1ozJw4lFJDQOfPZe++KjuIUPFpIjOcGQRrC/L7OJnux4nDK03DKXnmGktESWDblbDPy3YJ0f32rTgDfZu8wV41M+1tzEupPfdszazJpnRr53zQQQR4re3olHrtso0ZtI+RwEUAfgmoWrcjUC68Gy6pyLBp/h4TWqHU70VeXFpwJIk4tKJajT8IRKLBYiqgpSE0p4dSWv5S03CXuTR+YayhmITpD8tWL42GrGJW+ncGt8b6vVwkSU36+RgtgIAFJECs7xVSz6sHn1l89ONrM3jNafSXYyJ1ZRPY+3Q+5vNKZIhuVmYvstmybrWrG59pZKj4sgA5cyqjZAGNYj7VO2WkbvGtrrHoB1xlKe7C6K5O87m+vbfS64cU/Vby9aqNS0Lr8LlnpdEYcNekqCAZ20NKnariUumQm5YayeEs1IdTyD6Eh8uXMC5XES+R9JViugZAN+EtiW6eQDZfxoSkdK6ybNOpvL0alQboksDN+N6h2+XVyhHmeauEMpWQQC4PnmvS5fDOWBfq2YZsySj3k26lQpFMO25b0bvPEKyrztf64ZzYGM0/t5LVIzzgDD/3PrTnW0FH1G0SCiINahhKRG4lmhFrJ3eQHj9sirBWnPRMnByaU6B+7Z8ks9CrdUJGalyf1vObW5oMLcKtqFqHjklYPZ+FcthDDWpdo2aAHellikv4RNuMvw8j84tr92SztOokMDYHZEAxcHZMfeRGbegaqMLFqsrJbYSz7RRgfYQ+vyJn+p5SrDDpx31SVgLgnp1AYnqQqvcngjfs2DI1fsAh5kDrRuZmH7U4d+xsmeO4n5hFYIjAszY7cxG0VI6XcJKbbMLo0N03NPa9laF6GO+GWGvljPYeLr9RkLahcxYNHcLRQ9Cran8iKgKZ9GlM4MgeMrbl4M2gvtUcTB08mNPgViqMr257ByRqsIX7Df9SB6YU3TxYPgHaUZpBvqxAiOo6o+U8svL6Qw+EiCQnUDmjNnY2qS9ciTDyp+uEax5WkxNJNWYkKzj3Ngf78tEocZRfI2maITLclX8BqRWzmxS0cLnJkNueHy1HXe5dvJZmLum67cCoEHGTj3tdNIAzVlvJU6DNEKl3jLS6Sfsc6NS8Z8OIfmlsT9jMfrkNPPuoL2Qfy+TrEjIMV3sDCtKF6ZzqiDhPJVj6VHFqVY9NEbIbngfLgYFKJe49OPRwP4BxHSKE2g9a6739tS4QODNyGKRR5ERQ63wgAGj3VDvuce95JhIVfXLURNlnoYKRIHqqOE7Wb6VYH3Xufp5YSYSXPVhWxZs6T2qcO5FiicNzE+B2HofFf0tSdKOi9Gg4RIr5ljGQqrmlHAvT8QNPVKqbtF7DIDVo1fYJDE7qSJG1d8pTVUmv6ENA39Lrt86aY10sJxzL7/Fmvabi8FfyrgZaLts+X6s2Jzn9IaYOAo/yGGgFIm59drtMNuGuQYvzt21GnVJDqDM8mLzmEqUdvfKZSIthS0h6UzMT5a+st00beJMfmemR8JkZGznMjeSyw0m74dTAsnR9EIKxk70HsD16XQb+lac5yeUyzL98rzwNMmX1utvyFXZogKhivzXrw8J466bFvChNlVfBiPlfegRw78XomhimXOTwpMRL2kBxWVRxaITCakQhQfPfRj9d38pD78xfj6N1NKDZCj4JjhDuECkkvIDkvdKcz5YJny+68Mg5+BhNmfsoMEWWRxk42TGbTW3p8HxLHsxckKGAw/P10nRx1GV/1CfP2jvJ5J9AtHo4PJJ4Y6xe/012nkxnlZJr+CO6hkFENJ4W/6HcoLaTAt0xFUstDTYIRfYU8tk/QGg2izjsXsU3LTW5E8a9IUT7F/olV9gpEOZ/iMryW70861o6PKE7ayZqTq8FohJuaVlFnO4Zob8a5tIfKmWaNqTWOBktMXHvkS1sEfVQKTeTq0oK2I76b4NONvHLTf4sRue2m8MJsURiC8UrF9vU4o/81+AuP8gnxeYlDPWGkUWSrmhFHkDbQEzlWPmGtQm2Nb2M+0i/W2jMa7utrdJAM5UXenjRLiXhVjQk717o2KpVzcIyaeZt0Qw/kYLbeAwp7i+/KrzlEk2GkuhKnw4QX+siMFHX+LOv/Lg9EB7HsMxnbUVoMmQ3zqLzpLNbHufK+7tFcEuIcvbFQnh/ELz7DFjlw5WpiXGNpR1r8PcWy1oVqqy0eWjVRPl3PV/e5b8iXf+30SqjaDJHu6+FqDWV8izuhVva/t+m51PniCPv4dXgtO/bfoXrXNwoAq2AZf3h/8KNJ0altNImTrbZpqX0sSQ37BzkLlizRc0h7pUx/d6Jmv0o1YM55/EfXgdTd1Zjn8bYD2Y6bhVSnPDEfTa9sWozjyNs8yVuvkgS+fLXfst91SBQuiy5pFM0dMcbGlucVDBnoKP8+kfkNAxXlhagud7tfozrBSHxS4RGWmd+9usOwQpSFvsiD1himl5ayqYCJzwP/0JTaJr51mSUra5waL8KRt/FZLUgt+iV/e1iVNJU0/h+HILGY1V0nkTpGePVe40Mg1HSzdwn73Zj2/grpGaq82lUzBiGFbKBHDszz23lejryRfc84nZGmKmjV6m2V1bOiN2G5av4ISulKiz1z/136uel3py2IxWtPwxXadEB+4ZAZrHroPMqvLJiaBLKdZCnu/fRGb2zj1LkGEcLl0G+MCXKipEkeuQpE7McaKdA1XrlpRLvvd9DH9DlnPZnWAWQRDY1sUh+w2O9k5ZdcZsLz28/RSgrDEZ0KVCqPUhCLEhjR2uXFyB68qDO6d5sRaRtjaTc5QaoIZPIsHYb+mp8T0sY5yYF9tO/+i8R3P+ATvjh+Zu3ZV67y1Z1tJ9Hy/VFk8eW9ZG9EcdzIFO339+D4eRVpSmeeKRry7jBVdU1v6I6d0J4INwqqEyzr3igjeHriaiJ2bjMv8VRJ0AuiGbYtAI9Q/Wui9jYlv0QA8yB13KQ5N5cKfvrexO4rjPPYbIVSPVd94c/sn0trNmm0tSZ2+j4nLNdwo/vLmSKMpY2EUiKo+oHNX73YKz7ai4aZ+a/1Lm4nQ6zopnA0J9WX1bh4SP7L+l6cuNRlezj2ivi0DsN/8PQhRtOWHpdwkwl06Qg7WMl54H+AT8hl5Hb5QaatJlvdfwgvbIyZ22xhm9WuZpNrva37d5UBIGzwt5kXPk0fM0GVmLRxfUtSgG0OMWIkHlTbRnBicyHRqkUZkPu13aIlFMzdCcBHrMiWT0N/5Iuv09aurynlaaamgtmeYXHQWY7iEAa/XeTw484JNxMQ89kXeFimq6rVQSDN1G0nnNTDLcseJtr/nT71tRKT5sbIm0nqTfs5wXW4QyT12vPvTbhhqT/23yfu0zjXY9VVueizXLZt4R9/ZmppwJ18ATHBG8VYN9jALzWzf7utek9PyrGWC5iV9BPXSkzv67xrOXgA/+qaPxubI7msH0Kkb6kcrBhhZsdj+0jJjd15Iiju4Zsfkhbivzfs9p8bu2OVJCbgjN8xTUrsrEhq2VeEMVeR4ykj1Lg72ZuL8zFgsTjPKAH4Cxfc8cLG57NoyVTutQ7PeO5gIMvFmKmbqiogv5ThxylA/o6wSxb5wNJigCX9hFXWRSM3I+H5CiMA1ZDewAqwa9sWzmTnrrehYfBkjJYdPnscEnEeFDhvb1FJWDqnm3uK6pHkY3nxKp8FLFWk6fLsVfVkFvx1/i/E5Gwr8iNgg7lH8pCQsp9ZoofQYRPX0GM9h8Y3SPGicQx6mxODdSVzPqG3SYZrsmMzMYf0U+JkcCqOXBOrH6JeJM4G88kW7kpLYMT4X2Osup2z+6Wj3YUsTluoKy0FF5OtY+5nQWKIRU5L3iz4X5A2TOb4OLyonSsJ/X9gyt73SvMazci43oRzelKtOXG/8cYTC8EGzgKzFMbFWEuXVs34wx04DCo+4NHLowVCRdgNtClvJugyTmGKRd/d44ne5QxIccF9U0mJB2dfzHWEbc12Em/ijmFxwJ80MsOeDe6uEoE1euBYUdqKh0GvJ9GVy7zidmZbJvfDfdp4Bxb75YcemYWIBQzAaPR2YxiGCekLVrIF6iylpaW1cBoy4MW23FbfyIv335Yls8ZX+4sj8dGEbyp8yhXeS0XtQt7Z2ETq3M9q5qQjtp9m7X0a/ptKh2LQK4WWsmudugv0wsiDFmAW0b2pp1kqcjrYI5xkvDDDPK3KypH27cQNHcE+1emCGauq+fqkMjR3PZITqWVj+kgXPAMGfgLBvpx/IWl+0x15+NirdsVAiUu2DEqZdCxKCTWGY8OEuLFjdpD/ufPZLYI8JV62WyPXMd9a+z1+SVEVNfLltrG3p7dt25ajyhnEmImSlmUH+5xONGF/0r7FnQn45FPHxhC8onvUPWEZFQB9FE3GgGzMgSnF8WeZ+cW+rL/Cev3FJ8LgYHnT+K2y4YmzYI2pTtP/0biXluW5GDwYvWhyleY5WbcaNIfy9cAKjViEHjTPyitl0XFPXBEly0URSs0FOScWVVDEfCr8LKKiTpISupPeN91GCxfoxyab/8BKmEuOnJYvfDbpf2d6MZBDZdKDW0Dk0Q7mLA1Qz62yShexDkGjWvgoTJPBfy9edSyH4VBjb2JdZwXPEnaqd71uu3ZVzK10UDKL6WopRMP1KxwBmzeU+395m6rgu343+jGib6N4IcDqTcOZsHc0Oq5Lwxrzwx9/zVx383moJMF7ep56Xnz4BlT7PiSn8DB61F9p4VaAFlXs6X2RsNs1WIty9m8MgjhA9UbkTVcOaHtl2LMdQM+V5M/DuXeWCZ+Exyz0Us9sGjyxqBs32x5e4eNe0tJK1DUdbsya++9l61lSfzgiMEn/GAZmWNw1NZFQ/4bKA/YNSZMbMhgNvvX31Y6+z2RK8Tcdg8yb38ewNxgluvpZxef/I4zhKHWYXIcT/ejpL4qGLb1BiuVogzB2/fD8Dy81cAmD5AV3nTeE8Da94KCFDdznkWh+29PXdjg7X1Yv7WChEjkZH6nHu94mjvP11tY0OajiZWs5X7fYYKXHBY9sXmcZvTT5Gjcv7X34/j5LURB6ccRi06z6ZfAP3JShCl/197PvfAP1+R17mJTCRsfHWu5KaYK4YLXNv6L1FJBZiQ6TX1eQV7+PysTukRZVfEvF+hPLr3bxA6Q0VSpKefg4OufiSZDNABlQ0yNx68xvxe13XhPgP3CyFmgTriGKoDQpQbAc8y56t5ZfzzAOfvclGcXU8f4ZTxZU0w8idN8dtYR6tlbeyNfd1FbICiVe/MzIb9WezXTnXALn5Swb3R0RnTVaeuIC2FuqBCP8O4piQzCgHi4A2wVftXjEYjqfnkV1qwT1Er+R3WkQqOR3zYj+ossRV/myCJqkb48+0G1bzV2Bh0vppjDVEO/aazXTm/YlU88vmzzc7OiaJR849H/EcM/QL426P1ajWYe5R0hsLZIeT7FCZt+oD4bjfhrx41jow22jlqKwUJRtKQDsFf5BRx1PXzZePoWPXRl2JBzBhziaEV4MObkp5kZkrngtDkDlmTHyFTmi9AJUDdnC64JwA4BtIw5CG0XHEHdGHztRFzCBu64wSfcvp2g703+9qOZNsZRNR+4zP/ROPoYWEpG76yCJ9aBbqzMnnXJR6wnvIxC4tAE7iPeEnZKuuM857EnJxa27ifIFKZGc4WVBjDdn70QSv/tPvjCabTL4rnjHNxeI5Gz4JfZKYeyV38mdiDpzrR4nbHAmkSG+NnYkdTM0+Qj4jWnC4SateBaGtuFQQl5mIlhD681wE/x4Vre4BMdhlvkXVqjQqovCu8lTs1PN9hX/Iua0Uqju/m8bRiOQfKnAlIUX0vKUt1PmuYrSvBwtZpH03q8SOjPgn8vGoLIcq9fsyGsMRjTd7JNE6lvE4tw3jt5tX23oW6IO4UAnJpgiCcTFxexMGCq+ZxfTJQYSZ44HbdzXzawulNcGU5rvB5lrvNfpZo6OZFGQEFBr6u1+JNVhjEIzlpsgkjexHkR3DIP0I8Yzq0R9TDf/uflMUGQq18mn8TGjOrofwWCbfhajRSIYq2v0FRbrmCcjorKneYYbM3yR26co2uqhLSmwjYa4/gdCaQ0uI0XCwgV+6+mO5L+mIJTPO4BbJ1nEerKDoWI/IBzdorE5HiX3ul21M9FA337dvqjdZGCctGBa99VKXYgi979YHYoJb834NOhKGrvp0pjF8idlzHdj/QloXUlvoKfFRB4sACzW7At12vphAZnLJImH86vk3dlwRb/lPUesRqNzJN2Nb13alTSu3XeErcg2/gBEugtwpfrBfn/XteCXMIeW/ds2OVVRURZUgYEnqtQ/O3KvhQAtrqMwQcGweQO9SYh0m6aVsmc38NgHbXFqJ2TOCqzz7LqCkEQFuyjK7P9epfBKBePwYYWHAGr9UpU1MHYdR/tOilJtJ4SchPyuU8zdibORJ6m9w89/BVc+4m3ckpxsHDn9OttGIkDnP+gr8gPBzptLpitHfoAZMB5y4KSHt76vY0u3uJHmmXsJ0svN6t1/gPCeAJDz4qxqX++pIxGsimx6KxsSM+HKbHcZnS0b09cpufuygCowzNM+MOzezMbXf8+/osmiqhku84LvsUD5dx3V+DCSEKzAN9UyfAp59294rfm+zRBndUUCLmW9RlUdas93ANoUJcmvBmK61xaha2DsYGE38apnFeqt2QO0YQtuEzEUqxI8qpYyp+sxKJ9P3VReuZLkkMUA9ntsbJ+V4hMJnB0nHIPnrWytmtYjIS78zlI7mrEFo12VPatxyPA96OyjLI2TR8/KRzlxgbmIW1wZFzGvrC6Uoi7Ejr3cMCUNLJlkfCidDa195Mg0Ndiax0CjxkxZz17ikknceoZjKZbi7vxcQorXxTgZZuQy10dJso7zd1mNDn3SchD0DBaHNrLgRUIWUGHh36hNcreutsx2evqyiCxt/12KnUizPt+CxZj1mkPAuYIj+vXYLHqVj7Vu75y/f8pC1ZZzfXskns1+x2mBp2eve1mTVfisvXW892zIn97tV7pZ2xjHrd1LI2k++3kSz/DXUtrP4qRb3XfPS9/rMkqmsz4UniaLPaqPFBHvc+inELqGGaLwHT6LMlz+7fv5ouSMmHjHGVg8neKAJzPdFQf35bYtAyKi73kChlRVxFa2rOtmF29Ve5o2umxwRab4GD81+1NbdaiyVWypvbR+4Gw86jevDQtQwf6Mr1d7G8/Ys+6vk22CfpPDI+L0c3Y8vk79luf5IVPXerCBqw/GlBKdTbKoT7EJlxlHBEnWPi361sLYinyItqCjUND3T3yNcG6KJzGXWsszJocrsQDf44SP5hecGZo9Brgiu7rRulbjVcKA6NVztpyIVP91Rk1U2x+ezhEArMigEtUH33cCYqC1Zj2SGItkTnYnLohzDt/VU+m3wg5G3/r+f2ypEf73JxEKZCl+Iz9hfVpntuxDz4cgxcAqNpE8bqNa7zbL7pH2VsnQePMm4XYTrLFyGWV26rdxCE+Twxj3qNZdPsjzmyG+RXPZE1RnGMy6foR3ijULXts8baFC5NISnZkNQehKMYgIGssUG8LDvn72oD35D5d7RnZTu1OtxjpdVI1EaP3QAHJALvwmlY/o+nfhG+l12iBNrvRZbvg9XZkG0eE7am/3s7300GV7hsSuUDl/DRKApMJxeX6v4lxSga0BhkGzafrypXwqIzBwPPs/R7rgw1KXWlMXueMveJ8bff8Yuqz0BQ3BrkVIC4o9CHP/I7LeXaCvmENvYcbf81hha9j6mHmfskyt9w0eS1S8KanfrMBb8zDrU3+NdnG4xpgKPI06wSIqOg/2eSThUYljNvhnrzz1eNpi2qHYWqXO4nC+ApzaNTGWL2ziT4mHLM1WkhRcdCmxb9M5j7OBfk1oX3/UiiH6xo0bki5rWk7LZFEjDCP4hSj5yYT/fn4UXAdCYUOCNqSFVGLkvxqfSRCRQOncUNwm4LB6+D+QK5Z1S3wzC68OV/3qVFMTvp7MqyGPjSBoUUGFlIPYVVlnCP6gkaPLSefGSJtpQiQo5H92Ph3cj1JuIPpV10gkKefnK9PA7/JyunSosGYl8wwTJS1Vx0LFlvxBzbwuKOMx2Mfld+t5xzbbOsSGl4A+t2fVWOpyYM7q1mT2nVy5Q7ibCrK1RXXgez5CDda9HiVY6gbEhvbM2GicLn+8y1YWorpegZy9y6zpg9jqeCVHG1fhz8avECyAs2roukfop5JLTZ7mp3T83EHAsUsjlsulUgFLDr4N7y265/FrI6sBNPVZaOqWeezPEV1zBytXYkI1sX44dhpz/ygbxfkqIlMvvSB6oxVPYInZEkYmJ5eEurkD5LjGQq4Acv2LF3NLk2Pum93AuKYjKuPPrgHj1234LjgJTS3W/8+VX8FFyFrhKQcRjqmOYqzc0/dSq7CWkOgQfRhNPmxaFXsIV/Oz0bUgeq8eALrpr+Sid/cF1ZZ7qsMU/rPpO+TfT52S7twuYWe2fyP1z5tL1nfXMpTGQwyn17Q+hIN+i2aXvxlVGeSR3mO/w/eeEGE+yAqBYX1d56hjJmLcoYYm+AJUeFmvv0TnJaRakLejMjNBG2+0WfyR5gY8ryLgSf97KA/0sMlgLa1Sk3epT3FWDP4L+LQ8LRv/oedMBnccS0/2LLMsb4qSsqUUSl2ZO4WsqIxjmmqssOEeXiJeUhUYCKPzG1C1JHyXHv21Md498JCMixF7uf5nsST6TvR6qPB4JXmzELgCp1pXUR2KCX2asyGl2iRlAv70fBILppLgPNT2XdxpwfOBtUZtsuaEc6rpOLoT48HQcT77/NGlatwKcgGmhE3vZoQi87z+eSL2kIPKwk+H2otp8uZpjxFWmk2bh3irz/pJnUzcCk/r6xwv7gaHq1jFjg2d6NfLPYa8x7ufQ715+Vl1pU2IuENp2w8PLzR1pxUhUfYcK33jxvj/Vl0MmDz824pknY/IBj08MF2MVZU+2cwiclLAbP887ecrajyxj+yV+Eu11hDA6VYwnvGXEd8NY2J+WpOimnb9dqxaQVomsbr81UnGTwLe1+faNf/Yri+xK9i70AstvWrxhVdkZLn8fJN3ubuYfV1NlifNyDYJbtc4/m8aSMwAJ7T4iyCcwU6KvOWnCp5CSYqCmrn5Rxzh8PfwALietUxReXHon5SUOJaWle8NqlCrSXed4FJ7YTOjmXzuMSrypGd3QMuYPU/Ah6R0ygma0Z09Ua77I5+cl861ziwthn4HOQXmzcQK2n1dSzzjZqkL3XJNWDj8y6KPUC/QS4aTdfeY6mqVRkdcm4U3Arj2Wu1w38Ro7hJbK1/qFLh6dnbzQwrmuCO/jIChM5ulavU6dC48zRF7EbX4i7/FRq5kP82LC+9R66pX+MDuNM8oXJmTmU5EBb0wYu2F9yzpdlWSCycjsq6Ev4O6LON2rMoed6aET/WDqwggmC1HQPPi7OydK4dszl49MsXWEqcDdCAKWLsrm9MHRt88CkySPEwPC08mciUkP2Izg0OXv3hk6MCGJV0cH88gYIcc6OQCLKLUUkE7bFlM+GJg6VdsM2Ch1DGPL3Y1ZZdJ02HMkF3vtL/8kwuZVL9/jfqfpSJSu9/UCq0FvKXM4we6YHh4J7VvTIaPXJVSK9WAKcnKHJwOwW6ZTqrBSkjz39zwVXiPh96k3+YdfVFtZbafc+jLD7I4+9PR4AmqvRTZkVkVhxfUC2D7kVR/LsJ9i+mG8NSLxpIhHddaAv/CcayGDpjZZrHJgaYCXng9EaNNn/BRLa7SM43Y7qnUvTjcROu6pjUk+zFE6el2MHLeglg/lvwdQerZa1JTrzY/sfWDSlXQ0nydKkItDyGnye5YLDqbaEnhpT9XzXQ+xGAk+sp+7iCQm0Jp8ssHEfYzKpJOy18Px7asiPR3siAbkkGAkYc/oFhgf9iaEj9+k4Of3smg4Zerjo/jYQvsv8k/6e+z2GbETXcvMj0mNAhz7nSBfijtVqgg/JwK9I5MMDa/7HX8krxZTNARpTXnacEJhwSfkTomUNAkvCeAjK6F19aB+MfL0tUz/1jV9Q+/1BUBGr66NdwTj39fmL8xar5rs1wVNjABnJZlLW01Ghr4UJ7XWnDQUbEoOf3WFnTASAH2ifOqsgfsm06RChUCvG6BhKKgbERtr2EwYsJyLbl+AQdxmfxUW6p+TL7AW8K2Yxm9dciEoNqk6ONeJ7wfcFcWhtAUwfdXld4Y6NUG5W++5oAlNjkLmRbYJ5Uick/fZJbFxnsWyUPNgo4JIL9J5sn/KAZx3K1niAsAoux7TcWCyXikQQ/HXIHcM2VnAfRfBMOwS/9kgLr2CzQLmz9vVWn+tWescvdRvgjm1Tmw0zTSLrMnsDGIaIaT0HeOU0+yx0yhAuOcOel/lMJsUURldtWkGkg8FgTtpTPoSiORe+6aWcEbJfB80GwgKXlZ323/R50YTX2485F4uDpBtrluIToYmQdQQblhVi5XdOEh2FZgCsZHA3rupC64CcKOfcaetZ2uATsa+B5gYf7HCUxZy05VnMmH7NiyqKJngfbXx3bMKbOapd720koFw36yCqUADgutk+oAD2qmoURo7s58WGD909+q9aV+MamEj5VB0wB4IjxJ+vzM7984XetnYC0xBGgnThtD8qYK/bRg0jR5Yyv2ZikVwsKvc7cWgUPF5v/l74k+Ww2/ipUcYfSvrgmfS2XOJdeFdj0qaCnrEi2DJt+zpZD4IevXYsFUhuw0pwTMYtcTBLAVslW7YKZv6ka0r3ifUuIvS1DrfbqGHbXZdSwLbcc7XEdBTMLcDqHAF1LR+1Lsn31csf3ynHfiVh83CS1ao/tn7bPifdpTL5TIt+ENKw5JSswtzDis2FlwW+BUB8b8IM6j82JRpuudeI0UQ88XQhkO9qWVM/9YTaKJ2QrBgkhK5i64JGFSnc8hebPHmKo5KZwJQTqcR9+229RFRWZTXOlyouKAxBlGVvNz3C+H1E5CsmHCkWnnORvvRh9Kgv3EpCpmrxW+CKu/8MHV/WC+zWOuiiCfxnIuJPs8DeBGbvEXZYcFXPNUdv25XlSaM2/Fbnq4/w6feSWix99XvoBtsrBLgxbYNf9wqgvzYnDYsjYalg4cUhyTaGSLUc434KOY15wGPZZaAsLXablkaP9L1VztQQacgDW8R5eJXBovziPkxbeTxtpdO9BGw++MCEg2ScL8Ogh2zC73KptcdfDCGwjA6iNcCL/I07vsziu9ccN05ewRgcGN+NGpbHSib1dA1cA8JnVCRXvbfU0LtOsdhMwpyytnIbQntnWzV/47D6nIkMAYM42J0YFnh8TUypyIktK2jvjdUD2ELJXF/LSPcd95EMXR2c+RKgcrBbcd5Az3Tn4ya7aqteZqqFvVGAAdvfES0pPZ1NZcGZjj7pcBByrYLz0iOxvQ1DLNdUhxfp8t7dC0haJr3t2OESuNzha++oaZFpsgs6s1c+UnAmkT3RPiIHSMsIfZStBV6OLkKYFmGfvFmhnbru8wJ2+emculD+GxPhdyHGYph5e+qffgTE1ORiHC48qA74Uy7MvdE04+0YTiD30CVr8C5tMrNJIrYF75Ta6Kmi6uA1L0WtTZS0LdlLNpqvj/6C0mH4PM3PzngVA61LtN2fAS5YkWSP+4d642ZRF8eUKU5wR4bkMjC2x0zg7Iy5Z4rQaUIHmqjwY1+X5ybKC+wxunO865XaLC2rZ6WYzr92hL09oD4h1FT2nQo7B7DNHOc2GXu8Fecn19Kr0rn+NJfHotHreVoFIfRbS2qgTvmfxZHUXdPquyLh9Jw44Rctfq59e6vvUQjNIPbvKgbZo/BlyCZgELvkCCC0jSU10aEUjg33xWy9xIc9o56kc8bfu951H9+6+HPJ4jEv/DhTvK3p3SmTzs1t+6pAucAGfCtoWGGHbgcfokurQCL/lDvbfislNcV+GfGM4/F85hF+BBx2HT+qxcDLmdRhpqK2aWfW2Jninje9iQdJpJZezAMhdzrmevO8qkmvQt9w3WVyVBEIv0ioKYOprY2/cisPRgLuki92x4wkDrxHPpDehQn2S87n43lYkC8qbQeIexxwrkNh9Bl87oIyp4glKfp3cZlo0eFJV9gN8h9hmF06dOW73JEE6twQPYbybHWcReW0VInPeTQK8frcuyDuc/0SigVaQZYzlku1ha3nCqBhZx7KO9Wzky5rTV32dP1NQK0tt1MtdtrsgF+nN5ZM8mH8xg6qPXxhb1e9iymiqciBakX0XbiSSzORB9UUref3UdUZ+lNWZsWOI6FZfpEB7gkK+yncph0R/NzAtyKpueKuhJx9GM7AX3TyCSw6MCXjohblJsNzWf7tCwfyDmpY6SXUUojvpIs6MafAeA6A7NmnKX7+elKG3yWxxdbMFw2uUTYvNOnprZlQyKTOPvPrmENtl/xyG1Ljd2wnlGhWkfL9TteaKCbqvO+OGw49hziXEvw2VQ/MJgI56wMoAz4vW0/CzTvhOL8eeXHTg9bFVitg9jJ38Y8GgoL67+5KKzO7fzaVT54L6K5Vz/TNalRRWi/lZ+Zm+I4aO53ZUxg5FJlO2lLyG91FGYj9ZqK634U5LD8ugxUhw4kL0rEtj02+4x4U/XI083VDwzMZFahVWvniO3ZPz+j10kwtudmRvmZu8/aVtL021osSYMLYJXBJyV7n/3RcCP28aDOKH4OjagbBszV90xHtwGu0fFxcn08lCQXh1DNEuXeNP0WtjJxUDUx2mXgTrr/YDvV4rJ4cwlXjsvALZLE/9XFdPp+slsZA5BfhcKpU/XdYL+WR6GLXqD9zcvU6u3QwHrGuW9BUpQFd4oHZZPGQyHgcLm039Xf28xrcnNGGXvBKLgwoPcEsEi2wfsc8xYgxOvLaRLEjEJ/v1hgC+Ny/lu6mostycDxrFWrZjubHqUhO3K3vvK064M8+RNkrjPFeXdFM/JK7cLdHVFf2rbyjPAfxzcBipbsEvqaJxpaZq5rI7udmaY/zNVQek8I3tQxeUUuZt/vG1m72dJdfiuUU3jOs/h2gdCydhT440h6uDlRZuHCiSlz+kSFI/Hz55k2a+nVTElXznGp9UPleoqfU4tOY7+2XnepxOsdD1ojHGRcydtgBHCICMC+ZKazVesStfA9eTGOo/C8aqrJAoeRT1Rj06dD8nBhwKNOlD0+65MzSzmDtMJ7u5UgWFP/ftbL8K7UeKfrvqivpVDXAPeXZgebz7a9QbJMlk0Wpu3nP/S+s0uavLOOGm7OtKbfuZzDAz0Ps8ibda+vDAtc09kchHUbjwzaBmw4JQHV+HBH+gSSEqdtb4GNFJ/ixyIdxIjIKuI4DQPfiM2rCGszcU0g49zuTah8HRU7D5sNlfVX7Lbgt9fcQ4/c1YGJaJIDJwjdCq+QVOMZqwF7g+xGQ9xXeqyIoJenfSt4WSexkwrr57c5LlJ7s7okm9ppZ+aaFu2wDbA+LWj6NXX6wP+0Xu2XwcvEFdD9sQrWfz1ir8Ha6ohmXc8hXD+IxRIjFP3iZOo1o8d1VQnsJEv0DzlcykNuk0IncUHVu6Zz2csT/13Z8a+lFTznwpzAykwbGxofWdyZ7nfyzpdstAWKRnjHUB9qHUNInsV/Wd7gA5l8ARHhsCKzaiU6UV5ZdE68P82lKRxXE+70AS0owScTBSAGfKYQoNWHfiVeOcxhGt0vRa8yWWjdEbfIYB417Inujv69bgiGcrxQDYo4cx8Kmvl0HCrCKzosNCPlmrYI9ZTXMtUJlYQzZ/LZOCHpDct4SlA5ebk7GwbSXnKTy+gnXv0t05DVzFPQfnpNFpZQBU8m0vt50wm4EKcBSgtlj/mlS+eCZcWWvG2cGBoO8SBuZQU3ANzgmXJSykiQSPYxV0Vdr8cNGMss0OdOIc5T+aVn5vvnktDxfn3u1tDEEUnB1LnX+QEa72wS+F86emnpyYhby2E8g8LZroZK/f78B3OUc1tDQbA7C5oxt6Oj1GAzYyaeStNEk1aSH3wmmOAUjz/ZTFqiOhrdCqy8b3Rg8/GNt5mVYLGTfaZe+Z6F7RFUjoZ8FoKy2HhF6wExSZRmfrT+OfUm6E4andlRZ8jeRzDKiaLA9kvYJ1QcRbb9OJL3L8hx9+JtsffXJ3Q+72TH6N/inLb6E+2/Bu8uXCMk+lF1LSvozTEoiW/WtOOQUPqSl+JlSlDejwHDmIMlFgsj23XypJRQkJuSytsi0I/srMHKP9vRkdO7qUC9dVQU0dUYqVi4yQ5BcxTg24LbQyTLZKcduXX2FPBHSrE3Nl8de7RdLYxV3W/V9aQ73FFesVT96v+1iTI8xHuRg2536OTX5n2P3pR5cynmFEfLn/F8uwRx25r0N9dt4BYfIisj4hXSAlrG8Iwi43DgL4ad/v5nJzaoqnAduLpGYSdRYqpMMWBzKLvqmcUruUzilVSMQD0WJVpWQx/Ofq6Q3xHYjUMJBidWaYQE9NDDzA1hV5MvPufrzC31FYbvtYu6VWu97lTF9rPruLOOj49wx0MO9q0LRfI0u0QBR9zIpEHrn5+zt4+dyrk4Cq8tkZfcPFvFGnPdqstGQr463hWlr9oDdHM8uzPEDoUOibcGdI61fchh7qE4dI4Rc/iCrFB/RVNvON6vVGUwktQVZ04cjaDLy1P4LtFPOF7Vzgdq7Bz3quZ31Dg+7BsOADrpaCMoIz0+rUGNl/XF4cm3LYJdmOri93meZGNvz2PjOoOe/xzJ7VgjJlobcWgAE33hwEE6LKxycREUW7KTD2rtvXJM5m+zLpqCoQx7d9AtKg8mEehTeyZnKiTy8+RzV1o2XndFUGrxMR69MO++CrFs+GDGAa4W1bOySjMJ/5CP1W2/fqyPl1r1NHbe8yAdyTG2MxmPoz4bNQ1WtUobFM2k1F/7BKXxUjsiXmchZoywZW9up1MmMSpZ3xGYgITnx0BsFv59xk1ZbZJBOYuRx/1FW2L41oBc4RCpZ/pohTKYZJf/KBsdXdQd5tokfTEhVKgvx4v6JDTeqGHwt2ri8bs4lBXR5+MHiJcBuLiAE1Rd2+cF0+nr9ya08PQX+EFktaIVOnSjTLaD3QEG5V/7U4nLeliMPrPZA20lsK08CDx/oGmKXOwr6f+WROKOYVpKWk++/El45VmnsuaO3S3UUtqSriw3g54Q4YC34I8w6s9HIdyAFIvkWePil6J7KudKBtgYmEBQnYSJbFMgWkkod/P2cul0guHCHW7tQm/hRo1hkBUBoLgFaxjNJsqUZk6dEk3Q1rsW6ZfgHRMK2DpLJ116m39QFTUwQ0UASG2YTP7Gn0ohUTtIdYIHb7AstmIxQGcwIuEannqNnM9SzkbZU7aTcgcijva0GPqdS5BHfEteXKPPnHYdrcv0GFCxjc0cFscPKF1UfAdqS/N4rhOyPvJG2l1rS+atHvlqz3v8gLatbquvsSdLAal6cKxe1b2RWHRTUyy58qbzPXIxSHEz6KgLTqxRhdtCJZLOQ6r0Zm1WLBIGbXbbkr1oVnvFU5P7791DvqsqaSzQXPGVVINXXcgqnWKagfSiTbDYjgdbCgGIx0PjAaq9tnoXw5Zz0ioJMfEBnBcz1qMJ9QGa3pr8nN3oqF3Yq/Ztx1wxE+Wf1l7o9r5HP+FPNDtboj7I+cZEp+JUOlXPh7phxk+VxDC6Bxw//3UoBqPLcj2WRJTV912KdN6d+hXcYdBGjWHpkrw7V99P6OrY2TGFmx3ZRVOCELib50HhvXECbj7r8zKv9Qs/lLlNObuW2938wtj7IcuNGEkv4N6y19MP9fyIT/P6+o4/Jkoj96TlgEzOgrCQ3zmZDJVF2tc+eYJQVEg33d+hNvoguV/ChotOtNXoVXDaaAxUGszz71f+2+3d6ARfqktkVXOCF0IavjsCs2VnOUAy1n09z93kd60bc6DfE4ci5YR7w8BdqqILe7msHKxb5hHxl4ql/Pgi/PWLI+033SJB7UIQsuQHdH2f1Ik5G501W+J7MrCCMvYbWHTZpIpLvQrjyrH68XbsyPmDzlGNPYW5s02cV4uO0Ov7BVqfvuwC59Ok9JJfrWySfHW2FOLrf1VZRzZ1Gk1JP42KRYeM8lvqLW4FmIYZbLbFYraA5YobDnAUzvNBkOxa1/YrDhnJ2w2fJBfKCjIX3qk3ofOtwMlXwB3guA8Ejq/cPQ9mQoX7BOhXqjegMGN8JRTb/VvKtu0+gr+x78K3XZU+tWeDQ0p/ooKefq5JrLf7phqEVmFhzr3TfOQb55aQMNzAt44vPFzUU7ENhV6xgQcyYSuxb8xNYLX0fs03voyYJU8VoYJVmh7ow2RbDwVLvOYsOnJjL8vuJtallH2EadPnE2OSkYGBQRgw620puteVRS21N0WgqVsYybhI1IJ9QKjVwI1GZTyvElTKxK3Qpw87rFxwMzAK78QfhptzAH6Vhm/1QnqG7E3g1B3/WFO4DpIQxjl+UJrVUXtodff6xLtfyxmiPyNV87gT/PDLVOUKbOZahYXy5ZPjBxp6/18ArxFQ7kwxNgVhbEsBGzQKHcB7HvdUji3gZJQI/3cTaMr0Ww1dwyj9HyPabEN5V6ITxyhq6lJV82i6CELLxO36/WkzCRoZUduif4DXVI0jYpCVOfi53QZ+c8YzeFc8p4xVwWH0ke7oTuBPPjds8tU3NSQwMyH7IqoJoOA0Gjm1vq+0M/nrWEwPUL6wZihnljLB6MQl3JlsWAw7VmlYUjmXUb54du4z86hDh5U52Okg8bLCQtPlfy8ycDK7ZSQpJWeYEQfLxcrK7HPP2TSLKslrrfoKUQe/gpLdhBq5zwxqeyjEQLIz/lacXxY1bkYqfoGAJ/dB7FTLQm1eBVL+Udmac8h7ErefHrTsR/1+CIqlvMY9bYYoAKsFzd0ZZsc6wLErEm3v8e6vS9l2ZdktS/D3dpNAJDERbg2MEdn4restKiq5lVjds0eq99EDp5vc27z4+rgaR2TYNXf/tQvFJBDvLuTXCRyPGTsOdedvacO6StwQASmCzSdnTP/XPLwMccPyJ9PcvS1vc4769JCwClA0wO/VtZW5Es1KbDnVyUA7Cn37ExIgVUh5wghYdwnyXrmDHQOeWIVFcsSie/eRdd7K3T9YFY8zIFscvNZS6792KZ14gVZztE/O+9U/HomvLkXfDjQGyzu8bvqg7t1O0P6MTrA6PAZsgLiZ0Z/yUjf8PnKohXGl8KYdTzPhbINz7qrHdPVYSRVYvOggjuuMtm9hMB5yZfsrNK24SGHCfgEbYSJ6PkaP9jKfVYwjssKe170+emHo/TytU39eb4HnYqegxIdbQGmksNPYpZPt618Xli0yLuZknp516UxAz6vmF0YpFoejUaHJRqB/HltFCyjA55fq6oprdOWVdCvufFQ3d4Cw/Sxj82xBTmKb5EctkbBYctvq0tZFydDOx2MGwAtY7VT1RqTOGmWjUA9OaYm1t6rFhsVN1L28vGW4iiLqQrGkyX1lB62EGtCX2y3XDSKojcsTcw7cyXdoQRboIwMH9XZUKCE1wyfuj3Us52gcB/KADzS9K6MfQWDi4dgdjijqePwQkLoodEQpzdnA+G8PXnLWg1yIVdkNqoKuoUbWve2674ivGNSw86J9ujd2N2g9v/3Bdqh4qUBbmwxWa21MHPO1tPhRrp/r8oRd4RSXngQDqLxunuJy35Uwo19UV6suzVZust9lUMcVdxkjshV2tQeharGGvCDUpmFrz+OesDpYYi1kqsKu8QFJu+4cap2t7tJPk7UQciMhn6Lc5FI0rSb4YzsOI1YyErKZwpZAmRJw/s/nXhD+R09adWxjRi/83vxmgoc26+Vx2484pRh5xNhy46dyZ4ah9THC4Y0KyTmfeTOMr+EN8K0/0P/VC9xAm7Ru82hSJoK8VknHsDtYl3cMlKSxyJsiPboDMzrwATD4T1kn50BAsKBqI3UsLzDZrWJziILB883zJwiycI1cTpyKXWYBXzKLoZXPOA+VciRFxFgXd75SYMrvuLv8pfvepNJ1o/5YMtYu7n/AP3xJJ0CMpQMouxntdhvpI06nF8ytmgq3EjvbTWp1TTTq+PuI0cKFpGpisoFslOA2qCYlYqwfIcomMr4Bed66ysVaXMBL1fe0ga4tK7peksFQ6GBtKaSqrgfa2c5CaXDs9a8mBAP9xbbGGj46Y+uS+ELKHYkg97KTqeSmfqbF7JvQxYlhozNpGs1eUdTFRbRm6yW0uR4QI4OZpMij1aCd7V99WJX+H5BDQd3sXQd5Xfzg9fDxcznbBa0OklIm9rJTlbPuPBe2mS2lmkLZzJBbbi0NiwBFOZkoQdYQ895abbGpb2c84MTjlWaPUfmNep9TdN0xI4LM8i4l1aTbwnCREpOKz5uyA52PEwBv16QpWhlsEMmz36cT6dGT8oDQ7jwxupdUft50JNMONRqYD9eSbVnQ5K54QZHaarfwUcC3a7Mj6Q3vs/ru9PdWuT/NRBhFb30WpkjVnTuIuS3r4QUhI/W4vyJKE7cq/r5lLrRHGZaFyRjEAVLpGFAPDmozoLx77tSF+1jPx5qAxLSkJaiwweHXeEQI6Ye/G5YXJwv5IaaLpUJOaNGaJ+/ZrRD2KWHN9osQgOOZ9ulGMP9odnBRufOAmkUwa2gHvjuJl6JOlsIyjuXoq9+XSaCVZxpGpNjEwmtM9/F+SvCIUajsM3i4loRouww8N53nUP6okum5cshL8CKSloj0YGmy9k62GTUR5xLu/lxBNCwPMlq9+D/2LjDL7bErM4YddhwrGud+5qGqtnJn+WDXg4QO2ykj74QYMBTfv+MSGzCH6kDpbU0dPXUQpgPBH7XC+2xAkMEl9VwKSyzA1ABu+O/v4qbz2n9e1DMq3Y1QYIOcckSxZ+hluBNbtx08I9xuISTXiCeZXTTOcao8FWH3JdM5O3URw3CVj72QzCmoJ1dg1Ytw83HgwIAYAmvlmAU3xY24RCALVtDY+w/xo1Pcjbbx1V6q3vxxtR9WV0iixyAR4xebJGk0kCf1uXTJXOZhrFgsfwv0woXOnjJTaBOrlNjGuo7anvg2rO48T0wE4UyMjJlRFvb8A7Z4doe9asLfpUm7EZYiPRIGQZ9Lk69VAoXakRibm0VLy/Ctrlhf5Ye2Pqoq9e9uKrsUeqasT5TCcZITV3lV3x1MufDXENh2kTVLPX1tUUSMaWYnNvxctr0FerJ6M9yB2/tiIH6dmJyq8gQhfpYu/Qr5ES+kk0wdO8I9WNfnKhE7m5TlJCLyp35Yh2cTS5H63VCdWCj7hRY7Li2Pq2SfnNpAz21TPQVzewG4TRzxRZKNM0pkxNWwZSNqXsnyDckkpx+mHBMDcDdNWfgh19sIkUHqkBMaB0aSUgh0MSjUfCct6LPvTzLeKq9Qtznom9pZkB2LmRUozB5+q0XaB5jAyJgzl7+HPDCL/4c/Ff4FrxbVGhNazoyV2axm5c4B+oFhPVrdh2hXRaoZc2n2NhOFmvR1O1tnww4PZNhEv+VJ8yHn/E8OYvH4zV9JZZk1dt0k1Oti7MMwAL6wFpEQho2F3TcpudoITFqfolqXz3scMxRSmbj0j4W7a7gb40tq0f3cEFET63sRTDAPgZom2TGZZgSWoiR9eRAC+pKLe0a3op3K8i64d6r5k9xV5U+6+Mp4ScDL++K3ScF2hJG60VdQVURTf2NXcYioqw5JHIcSU8w9PQjEpBZI8+gNNEtfrvhODwqqSlfQpXnzM030prwwWhO0yWAxU/AybDYzbjxVaOKkm1UoNkp4hJSZElkvq1cOyDo1foiEaLcHYV6H+mAQCyTPTcyf258YaAqBUrc/HkzdSRKzQUneTbKUmz7jcbOqTkgZhY954JsXyapdO3F2faUFOFshT1VccEZaP9s3Rk1i8gsjEazFzYgMKG8hLg4+Ybib8Aq9SA7C3AxCjRU/Ko4mfV0dYp/1ELS+HRJwbi89Hl+PRx6TTT5DegSlqHJIhJL7j0fXeMT+UKibnG0FKi2xyfn/ap07hofRQjIUbJaEw1jJYfOPZvhed25hPfEdFDqEU0WswJqX5lLcARjLJryqSQterwMfZn6eKG5fIKKkdn/1vHvlz33sAP14IwOBsKEVEdbU4JYvzWJXpChk0JnjBjjxmU2TExPy0LBHVtdwBfGUrIgco6zstJWpSVqGaPDfX60T02VBeQprg/UPFIjcM1B4ZmH09aCiP06ed6xI4CCkvuzTdn80rpJeCf0rQs7iHABsm2DOKQanIUxIVVKl8wSBEglA1vDOvWIKqT/8dyIcCHm43AVM++K6v3agW1EIJLIvO5yA0APgeCqEBTyxVTt/594fyfH2XdUg1dNflWWTqVwsf501WFHEL0XYLARr1/x6Kx6T2aWbF8e6iXL7wZgRSP6B3FI5bP9r22X5sb0nMuh1Eku10OjvtEqCBb43TKRL3oxdYOeTOSZgEk4UDjMM6qgZ4o+Yt9bPmdPcekuMHlN/7C9+3Da+KMUBvPLC2bgr6UFOpDZgfieVQURDVOylqDJf8lpCDOkyHQI2m5/LrILgDsHcRg2dzJ/NYnyTk18Rf9uLOmbURiT/gtFm3ap+LivARY9VbTA8SMbN7C6sWhf6lEG11OmqCE+L1X6y2dO+6SAMG3/He2r+JjdYBhThCbg6m+XCuxNLPD4SKBIxWpzu7W+sWQOBuwP5oq1y7JaKrWW2TOy2bhA8WQP2UXYoXU7OIv7BWLPDJM0zzK9QYLGuC2jwtcLCr7ud3Y10XqU6ZcSk9vYGZmGqr1Ig1u6v6D+aqvgxhuGnBbTWP+VpDMFQB01a/pvUUA7A84Z/P/Q4KjQfA0H5ZO6+YF8aqwQvi8BhvRlLDUncg10zypB3uwNHkbfX0tZYDthCNZ/FACZ2/DA8K+sgH/ijeD89bog0qVXBI+Y+yvWGfelHPYlxxR0VjmGmDwzmvJXW+kt+4dxzdjfZ8aha+w1jONhsOiH/d7Sc+BzTYmri1/iZ3oDYAdd+4XqlFpkXzSG+qUZiQfCg/0vdnwpVxBGoZtRvX9oNJp6XsgyZeSwnbRIEchL3gvCMgf4JLkjlQ3KKm12zjs7O7DkL0j5Lvt1MEG/CAuHqOBzC/G3nXtlHt8dw4WoLyeEiUsouF5Z6C1cpJmdYG+l+naLzml0K15RXa5kn7COFqdO2pfChOM9gF4yvwdbblrmxo6untVIC9/PfNdzhWurRh625IFC4bjlpgg70zbkXRswDJ5PiLvoUMzXYl8oyuFyUl5oh6lw0ZLAkXtGIgE9KwWhv1VKrZgBxdUR17+/u9wz+3in329705G2fkQvIEJtk+60E3UtdXJPLZmpy2BViblDh1bmUi3WWe08TtoQ6ORtappnVVClJlsRuaQKeoNZ6g6HLwnDnI3tNehnTvGxvaOzh0QFjqVsjln3zN68NVo6TR8eXZoX4lfMFSrKVgPOx4DdPKQMmoyIy8mXsg9xzN4FBwNXmVLXwfnRicyfwLpIBovJN+orY/TvQTFMen2V0k57BeDRpMUp62Vj1/siFe007VsXfgkUeEQQHScDquDliEobtsaG7iX9ExAxiDuqzNdPtEQo8KEzLRzfFauU36sajMYzUDM1zKjQQ2Z6N38tuALC/I77weCvIpOPQ511m4UIG/G/2TwcT+6tZfinDzj8WEpB7VIAf9XyA35Rg1JCDFPBFAYj3b7jRghcN7WS+5sBo4iCQGfAkyip66xLnLoSFSxWT1zkzyN580U6KBLw9WUCwvSDlVGnbWFC2HuDxuYmFLzKd7u40ZItuiHgzI/V4iuz2iCHLitIIzeJeZBZJOysobTDDmVmRmTsWmjU5hkKe/2bhwshOdsjF8b7RgR/oTRsrGuvPmqZlDdDxhHOo9KLgvwmjGfrr3k92Vt3u3P3Mzj80AvPpP4OWyO9F5bX0WTjt7wt6UK9oGLaB5CuKnCK1Um5QoT99aNsrX6sKlwxCN/aPKt1HFO+HeVV35XrGkXuHrOV/G8Gqoz/PoiwKSmqvbFXiOZlH0c/gnhujDiWwNtCmZ6YlhZMPlstFsMGwuCXmQAuNNzkZtHSuCpKoDlL8nUBqKr+W5yauw+r22nRrihlmSAuzAe1FciIF4Ac9R8XneERwTab87iIWaT6lgFkT7uw1iJDHZv5M0jJF3T2RnhEq+bDMncF28aMASFHA+zuGf8Bxhl67FToRvjr61IQ9l8+pWvunbI7a8AVkVQ4yLyFZ4XEyhMaLq28M4s51PXLPJRPhGpU0Ge3DP668kwaH0qXGKiJgzwHtgPKYcsAmogGax/5PgfJY0n/j0T6u1OF7shhU33dkG75vHwNkkb6br2zWanrmHIMUm9sWoa/nK6aTWHz9ENcuoxPNEBqMtjsbxFWfLNBxSZ/QtD+9oxbHUTN+CU9qHAzYePySsI3ZT102dIwBO3MQrBFONYo3vVMjDrPPCeUzz2WzVigEVfz5TR7EZBY/ARycqmyUtc2RBb50fWK1bnUk3LDdXZqC1+u1UhIscQPUU2S+kPi2iDWxIyhVPNX9obhU1GxGX86/6/mA1SOjMsF2LgND/3h7i6DmrDE6R6L6i1DW3L5JDQY9gr4KZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQmFzZUZvbnQgL0NNU1MxMiAvRmlyc3RDaGFyIDAgL0ZvbnREZXNjcmlwdG9yIDIzIDAgUiAvTGFzdENoYXIgMTI3Ci9TdWJ0eXBlIC9UeXBlMSAvVHlwZSAvRm9udCAvV2lkdGhzIDIxIDAgUiA+PgplbmRvYmoKMjUgMCBvYmoKWyA1MDggNzgzIDczMSA1NzIgNjI2IDY2MyA2NzkgNzMxIDY3OSA3MzEgNjc5IDU0OCA1MDMgNTAzIDc2NCA3NjQgMjIyIDI0OAo0NzAgNDcwIDQ3MCA0NzAgNDcwIDYyNCA0MTcgNDUwIDY3OSA3MzEgNDcwIDgwOCA5MTMgNzMxIDIyMiAyOTkgNDcwIDc4MyA0NzAKNzgzIDcxMiAyNjEgMzY1IDM2NSA0NzAgNzMxIDI2MSAzMTMgMjYxIDQ3MCA0NzAgNDcwIDQ3MCA0NzAgNDcwIDQ3MCA0NzAgNDcwCjQ3MCA0NzAgMjYxIDI2MSAyOTkgNzMxIDQ0NCA0NDQgNjI2IDYyNCA2MjUgNjAwIDY3NyA1NjEgNTM0IDYyNiA2NjMgMjU4IDQ0Mgo2NTAgNTA4IDgxOSA2NjMgNjkyIDU5OSA2OTIgNjA2IDUyMiA2NDAgNjQzIDYyNCA4ODUgNjI0IDYyNCA1NzQgMjcyIDQ3MCAyNzIKNDcwIDI2MSAyNjEgNDUwIDQ4MyA0MTcgNDgzIDQxNyAyODcgNDcwIDQ4MyAyMjIgMjQ4IDQ1NyAyMjIgNzQ1IDQ4MyA0NzAgNDgzCjQ4MyAzMjAgMzYwIDMzOSA0ODMgNDMxIDY0MCA0MzEgNDMxIDQwOCA0NzAgOTQwIDQ3MCA0NzAgNDcwIF0KZW5kb2JqCjI3IDAgb2JqCjw8IC9Bc2NlbnQgNzU4IC9DYXBIZWlnaHQgMTAwMCAvRGVzY2VudCAtMjUwIC9GbGFncyA0Ci9Gb250QkJveCBbIC01OCAtMjUwIDkzOSA3NTggXSAvRm9udEZhbWlseSAoQ01TUzE3KSAvRm9udEZpbGUgMjggMCBSCi9Gb250TmFtZSAvQ01TUzE3IC9JdGFsaWNBbmdsZSAwIC9TdGVtViA1MCAvVHlwZSAvRm9udERlc2NyaXB0b3IKL1hIZWlnaHQgNTAwID4+CmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNjkwIC9MZW5ndGgxIDQyOTQgL0xlbmd0aDIgMTk1NTcKL0xlbmd0aDMgMCA+PgpzdHJlYW0KeJyMtwVU1VvzPk6DdHccpKU7RVq6WxoOcKhDN9IliHSXdEpKgzTSCEiX0g2CdPwO973vBe/7Xev/X64lPLNn788ze888M9BQKqsxi5qBTYBSYDtnZnYWNgGAuIKaGjsvgI2Nk4WNjQOZhkYd5GwD/K8dmUYT6OgEAtsJPPEQdwQaO0NsEsbOEEcFsB1A1sUGwM4JYOcRYOcVYGMDcLCx8f/XEewoAJAwdgWZARRYALJgO6ATMo042N7DEWRh6Qz5zn9/BdCbMgDY+fl5mf7aDhC1BTqCTI3tAArGzpZAW8gXTY1tAGpgUxDQ2eOPIwD0QpbOzvYCrKxubm4sxrZOLGBHC2EGJoAbyNkSoAp0Ajq6As0ADzEDFI1tgX/HxoJMA1C3BDn9Z0ENbO7sZuwIBEAMNiBToJ0TZIuLnRnQEQD5PEBNRh6gZA+0+4+z/H8cmAB/3w6AnYX9n+P+3v1wEMjur83GpqZgW3tjOw+QnQXAHGQDBChJybM4uzszAYztzB4cjW2cwJD9xq7GIBtjE4jDX9SNAVKiKgBjSIh/x+dk6giyd3ZicQLZPMTI+nAM5J4l7czEwba2QDtnJ2TkB4ISIEegKeTmPVj/fl5rO7Cbndd/kTnIzsz8IQ4zF3tWDTuQgwtQRuJvH4gJ+dFmAXQGcLOxsfGxcQOADgCgu6kl68MH1D3sgX8tsj+YIUH4eNmD7QHmkDiAPiBzIOQHspeTsSsQ4OzoAvTxerrwJ0JmZweYgUydASZAC5Ad8uPpEDPQ/D8YkgGOIHfAGzZIArID2B7+/fObPiTHzMB2Nh6P7n+98X9j/ccqJgZ2B3gxc/MBmDm42QD8nPwAXgjw+XP/P5H/N+q/rMrGoL9ZsT0eKGNnDgbw/4c85Nb+DgDA6vp3TtD/XTEMgD8+AWBVBENyGQigf0x9PTZuNlPIf+z/vwvgry3/V9o/nPL/mfn/Q0nKxcbmLwf6/3j8r4OxLcjG428XSDK7OEMKQwEMKQ+7//HVAv6nnhWAZiAX2/9ZlnE2hpSIqJ2FzX+vE8AKcpICuQPNlEHOppb/yaK/FzQeKtAGZAdUBjuBHkQHwMzOxvbvRUjdmVpDlMUJ8mx/rQEhZfXnw0ramYLNHuqPg5sHYOzoaOyBDPk6OwRyA7wgPyElAXT/K8EBrCx2YGfIJgAkSh+AOdgR+eF52QCsr41tbY0frH8Z2AGsEkAb50cDB4BV3RL4xMAJYJU3tjUxe7RwAVi1Qf8gbgCr8iPiAbCqgSyefIAXEqE9pNQhQf/XxAfZYfm4hR8CnR4hO4Sjki3Q4glHCElz80cIoWj+xB9C0NzmEXI9OD9Z5n7AT9YhDM3AkO7g9PSbvP8YrR6NEJ4Wjg/l/48FQtXYFJI1j7cFIWtq7PgkOA4IWRNH4JNdHBC+tsamfzhBODs+vOM/BghrU0im2dg8eQkIcwugoy1EmExsnB7NkACMn5wOoQ5+AiGkwU42xk6WjyYIa1HJx/d8uN8nEMJX6c8NnBDCTi729o4PufiPEUIZklg2xraPJghpBxewMxDC7z8S8M8KhLqdi63Jg4hYPIbN+dfdQ2J0fDRB6NsDHSHN5sluSAzGthCr00Nj+cfK//fX/vwUFyQce0jLs7MBmj+xsv9t/ZczJDJjp4cjnKwfjZDI7G1cHkPlengM8NMq4YLEY+lhbwl8jIWL5y/iIPAjQy5ILH/eJBckEk+gI/jRAAkCMj08Fg+EvbPb4zpEPFmdLR2BTzwesh3s8nhj3A/5DnqSX9wQuk6QzvIPhpB1giTgI1eIWLAC/7gIbghVO9BTInwPMT+tUm7+h2NsQX9aedj+mwZmkEb7aIbwBjq4GD/WGQ/Hw3MBnR7k7k9XzseFRyMkBuNHejyQEEQfEYS+2COCUBd/RBDeEo8IwvkxtXkhXKUeEYTi60cEoSf9iCCcZB4RhIzsI4JwkXtEEC7yjwjCReERQbgoPiIIF6VHzYNwUX5EEC4qjwjCRfURQbioPSIIF/VHBOGi8YggXDQfEYSL1iOCcNF+RBAuOo+CC+Gi+4j+EixjU2ug8x8lxM/xWN1/LnD+s+HP6uJ/qBuQo6mLrbkN8DEf+bn/ElfI/Pi0yPl5/j7+z7MhQTyWHT8kCJNHBAnC9EmbgERh9gQ+ZOAT+FA2TyCEs8UTCGFq+QRCGD5tQBBqT9oAG4ST9RMIIfWknUBmHNZHSWR/6F52TyCEFfgJhLCyfwIfSuEJhLByfAIf6vgJhLByfgIhrFyeQAgr1ycQwsrtSceEsHJ/AiGsPJ5ACCvPJ/BB6e3MnuoY+0N/Atr+y/Ygii52FsaOLrY2xi5PuD20KGeQjdmT93hoU2YgIKSlgJ7E9NCt/qfTsD9ojJO9semT7Q/68q/B5UFg/hxd2B+k5c/hhf1BWP41vrA/qMuTAYb9QV+Un2Lefw8x7A8y8+8xhv1BbZ4OMuwPgvPHKPOgOU7mzv9qHewP4mNn8q8QHzToX3MPL9efg8+DFD0dbR7E6Olo8yBHf8w+D4r0x/DzIEr/O/08iNP/Mf6w/8/886BUfw5A7A9y9ecExP6gWX+OQOwPwvWvGYj9Qb7+GILYHyTs31MQ+4OS/R9jEPuDphk/nc3Y/hiE2B907V+TEPuDpj0ZhdgfpEzpKeb6n2GI/UG+/jdHH+Trj3z+Y1A3dXGEzB7Of/1VBSml/+K//moGAt2BpsizU2BTwSCr6qCWi0pREjfm9WGE5R9t4dE6PWHczrTT2V6W8oipr8cdxIzMygkHk5RnikO+TXmTvDi4GHHX60j3X0qUznKGkuxZFTti/th/edJhASQ3AxNbjPImha9iHcaokGEYvYF7QxenNXUTzNvJuflpI++2zWlTl38XYAsoOMOkTCRxfi+a2bYLE6FDSf3DeUBHDzMK2/FNsou6jMboLUwEKOpcrCWS6NJj9U1UysDi4tf03p4kzl85cl0VPOUhOES4nrKUmYOxY7NnzyNUir0Z1O2fCeXYd+4qkrYs+usPJWiJtik2sNdPDwZ3jKsjVkMPEai/cUd/b6qanT1ZsL7kAWY9Jcg1QWmxPYoalJpX5TWf/0xaPN5/vLr0ATMQwO3ePBTwuhU+dbv/M5C+ZT1KQU57XvQMGCAn18vOgJAFwpbG9xQXywedqJNt8bFJs46/mXDNZjXszP0AVDHzpow+/J0kWfod7MyML5dbMeVONrTnHUPA2o8dA9r9uoJUt02NUs+XJhAceDAnSLM5czcL6ybKZ3BznXe4KmSp89JLVwQtzYs3IeOUtgcW/detTUtfYri8DD7zMpuMxxJgpJwhBeP6AivHfZaPAUWTmahi8sJOhKOt0+dFCvu16xAmQ1Z9lZEu8VvrSNQtH451toXnFrMziQ49lYrRjPrlfANvLYV+BotSRV+o7o25w3ynqhkZjfWrvH6/EGASQBn/ok8sT+AdnZZquaI11gfiPi992JdWpzR52Ky10jcn97DGg6uwDFbbqCgzRBreWRfuCrZvf8eGKcKSVwxadu+cGE7A9GJf/qxMImyuIH7H1/xywO0bFCXIWs5fsuOLm91PNaNnkQFBzhqhn1DDKGjH/OMD78kJaaFe0HIpf2FXHfF8UcisXtynTS8KZzsWnxWXV61kbRK0o7ikvTPze81F5V1I6IHUy9mYQhtlaapPS4R+VCzH+yxBnKznv95j4S1x1qt/3ZngTJj3bbuYH6MsYuJ5nmm/naKP55/roLkkPymmemSJw9u0jKLJ2/SZucun+1d2z8pzbfXicgOj8aspgsAodLO22D3EZII2BuLR71OVX+7YfjEkjq01IVrqG9wAOgO9z+o6OscQP7iHjiiNh+aj3uVjXmIkXsQTIa8voF9R08fuzDbM6iqx4voLXfSxqMR0pZKFRX2TwS6NXKuS45xzpCIjaz2+2jfI0ySsZ4aeqmwxYtBkk+3mWO9GqFR+VUSpgwiP3TkiyzmP/oWO8fn3YadWphRX/kA3tWZr1Gc25XxCV2koAbL5SfKCm4TPBftTbYSSR9YQXJJHSxnibHC/0SUYG1MS79NHSoqO/J678MlBD6QyBuBy7Vi+OhOeHE1VGhgWSB/DXDbMxXjt+dOqPhzu6PsrKEKlXlEu2TvWnHK1fVrKppfpSV8AQ/AEjGONmNKSxMhliCAe5ZAKESrNpm6Wn19l0WIns/DIKNF2mW742PIwg8lIGXsqzwzYT6DMYNi4pBCYkLiX7Ih4iARTtD5X3SX8Fiv4fIgrknJf3Indgx9MqoYnO+z+HY3JeL95zFyfK09XIYwof/WH4CV3RXhRkxMgjszkg9e2jKwN0g7LbRL65iuNTJfTEkluIe+AuUPDrck4BtMyDvIqX9umKx+OwbGsrPWqQfYxe6g2lJhhM3r14pieIcdPTmWNa6j4i44akqdZUOYEyyoF72R6Q22mZAkkiELarOcl93uY1lb1fo7wk9XHedLNZa9+j2p+hay+jR3BR79YaC+kN+mNSmfS2ELTttWsGtpnaPMLx/CArYbSfwp86lmgFXg0NAgS2NedFaImAOpUbSR0SXHqNC4AkzLkO+AVzKE5YNR3MyavgMfEke+AHELvYxLYREFXFCRJz7LlELdHB886oBlfYaMf6kP5LF6+6lCJ78LlxFOl8wlbM7dU2Bkr++Ie1FGUbryD0lk3SNQsJR/skdVqQ+BzNIEBzR9MpzRnZzCtVFtmpyh9PzPLMjvQ0+fK3uxU8TLc0gR6hJi/qxuQturM+Gwkb85SKNpPQvBZi2+0RunauXUAmGyqDJvtyhONkgJNLOurghj6r5TUu0O4w2eZIm+zCq7fL726TsNQiQe5g2UBkgLLzlC/2siGhMODbffL+Qioei0kEt+uM56MaPZBL5mSoi1qWr4yjPGFO4/UTVu4IBlAyzVgNICuNZt8ISZv2fvl9/0pYxblr3yPsOqBDZPWc6ay2/adX2bd6iWqCk0iyj0/VkOttCbaWBnq6iJ6Q3Z1K1dCCXvz56SbenxPUFF/c5NPVXWFjeUcf4qAl68pWVf6Es4pNgw3fnI2NojSRKbT6sow5ojduFnZgjrM09idGAwXgCZh0/Bs6cdraR82eGVvy3mlOes3LVActfcKSUtiZOYhJAwyxAgzZ7d+7PisuvB19IRIHrhN61W6q5whdGvC4yuTo8uCvQdnAE0sAI4Hw9BzModiyW2P9QFJZOwXwWULdjG5gTA4yqcz2DE/4O79vwF8CSXr092PBftSGR3YDg5xCqh2ZVKAjNwiYj6aFhvGXP0kNEznd4BTfp3SSmsTdDUVmBhyGXL+13bOa6HrpF+qpIvp+V0+sf+8+opesiDm2hhOWkM4hHdMOxmWFNGZKHM0ccda4to/dD8HDdPK71TQmnIdvW3rAvI1ClTtrPCE6giZ4ew7bO5Xzj1ay7EPvolrnivhMd6vTMaeNlP2BdRy1794ni4arID1Bp65G15h+Rptv+Q49nYQBIukpvULTeX50tSZQimO5MYdAa5bzaGPwo9Yv4+sxryVJm7M6p/98Ct8Vz5mcagydPw2cm0ON77Z+XopVJKl4ZgXazVLdYWz9cGxVYSR20gmPcSOPVwN19x1+N41Iz68ipm8l6Nedp4ki9xc59KqmTxRp6Y2PTP8O3FP1++gcn44CZoeks4hGrRKm2rlLexvV54BUKuRY8oiK3N+jJGfDAQnmorGUFJb9PPpxmeRIw2/XBasJCxENdZ/SUNNUwfNKF9N4GWqOC6HRt6ykt7qngrXpytRHHobrb+U3S8J1r2zs5dtlbE4+c7Tmvb5/aniUIi5BhT9UR9UUWEzvZpqOvv1NtLaLGMTcnkfb2XCT+7C8wChjDDFtlBNeLAH7cbzOQqFj/uJpKmMWfBx/HVytbjuoiuHtR7xqTDgm+s0PMYdchQX71/oWN0Lv8W6Hck4bV3ixoG7h8FjDmcDWz2IZjINd9/98pqgmQmIEhkjcSJhR0Xahl9CcWRo3C7wtsChbju9gaqS2BLJ/zCV1DWMUpZhTADeMtgDBOvw50HLIFn1mR1l1GF/KZvy2ttjmpNu8Gpe8j2P+76dQ/SR7Sv+nf7m0sDi3rEmu5wMgTnrj9wZcZuJ+S6EII/QFVTMssBC+UWTZdLzA7tqgZcxGLWRYBZ1kEjhLJ5seOiNbZ2BPdez5n28d+TphmPPD/phRcBGSWPn1WNy7eN1jv3WP2fijoS5YKDqWeKUB3CHSTld8KrSIt9x7s623+3UdK1lGdSojLVavn8bJL26tRTsLOwXEP3sWr5VwbZhlK/G5CQOLbBmT+jFmOlbm5qP9Ez0ZPn+cauGscotaF2e6+LqWtPb80dqUc4rso4XI3EitKkv89eCifcjkRG9maTFp9FOq4sszD4eIcdb3ubw1//6LpGL3rSSVdf/1gP5eSVlIXoE+QeWiSTY4wWtiNsv7XNLd0jZmWSTSNr0ZJK3YeJ0e0nLUsxmYgMV+IaWdsYdeiVOvxiOc/J3oiRfET//Fo9jYdUp2LJX0S/sPX++2tJLvKLSu6D2AzjQEX6mTytnA2OH36i1guTryVUx1axJuJ+FMPEWhfl39n2USGdzw7YPVho36D26ArLaAIjHGr8AmzP1hA1VPZsnQYbSgltV2EG4886k/WYtFmVYcJaCCt1oxmhTVRscrM+a53ZEWxsYPntCi+2ykhXbu6XyEWgT6IgUjF4+iZLfv/tqY/ZIJgAJk7H8+fe8BXptXNMMN94Ew4gsKvatVgd4tjnuRimtY06y48BvhOOUxpgCn9TSTAQkS7zoVcXxAtQzNH4iFBg2kB/uqQc22ftwPJuAMlUafrkJV1XPl/cD9bjjJdf7EsLU9+REsFVSz43M1b1ZND6pVZSqM76ZG6Si6a8XDz6+lc3KVVzUDaHM0kEPcVCHs7WUJi/4HpiREYAkUFydfuo1FEAMi/psolfqGTo92epVr/zN0a06/yGU0GEuo02VYyR/LbKij07k14a1eZda03xsdk3fHvQM3bGX2e7qGXY2Kqgft2N6Dx2cVKK849cJ26vkh6/6IpYUbRdwzanI5LIxZMJgY7YzrPhMTdSiuk7U8JftefGKHGcZCzInueLPjpkV/Qk/mkE1SGn0KU0Amf2D7xtp3r10IUgJoA24KD/6ckzLBX+rdTFCmDRPSwC1Bi/F8XGZyFsJKSovqX46Uh2Eofw6opvmjgPH8iVdhQzlr8HQLIGeRPQP6rYgzxD55IlVP9gQVOt5V75aVC7Z9tuVVmj2dnXCGPINT8cjfl4Ds5GaJhNgsWLDMZRl2YlsO5yQTvs9sofcNy+dgmpVpKWgg5SVnWJ49ujLxDL9GAt3pdHOgoZ3XO+p2hz04yQ+L/EXS0Y1i0n7juBQ6QcevAdLg088+Q2zfIpQk9NonGh+eGsHYqKXl9zjqwqFoWJijzruSx3Y+Fil0/qiIwgy9A60q2iL5/ETKdA1URFlJaOi6eHE4DoLZa35qmFgwHOi0GcAg6JANHawnUJqisauvz7CMt96WWjtXpTHuEsdLWUbpEbcmltyPntGIpEc6p/L+RzYI4e/4cdwESV0Tz3jDJ+hEDUTvEA+Z/z8kptCDOub4QfzdQO003jJL6m5aGhlUMFFyiy1MJ8WYFx9dQ2OQ2v4MU4u638wXA+CLJdGll/0NQm8Vhcyehus8nYWm/VL28t8zUVY+27aZBdBuV4hCa3LRLWd/pvcj5GDZLdI/Ml5YhYRBwsGyZJ6dAUbFK3vJnT63VzBFRHh8aToZxHP/fpnzE3KLvCSK9EFHKxtyyuxABYMznNMkjtKlo3zusaZu0qhdhNL0nGp602N2AT1nNmXpxQ/6uvcg4l1wE16W3tRhN8cfcmpGhMPduNYAcTP+O6ai/iC6+Cot3LS001mTbv5Pr5tdeKLvus4tb+5NPksTYoFRPeHupyZ/mCOd7I50paPUeXUbXW4nCpkgyZVb9fb7tCM5UJ9CcJzuGySX/hectuY9/ykblG0WeiiGfw62vY83imKTqaG7Qoh22qHHocx+P4bNF/7EsdztcrMtq8FCQKVL4I4zKXD3ks4ptI+H0N6bjpbQHu374SV3yruS/gZasT1Htlm6z0n3HsZ7PBlqXYVc5xxywKgRdRb4gEqa/vySA2HaBszcLWunxDcx9f4iIEbKuWtynbCV15JJdR1nfeMnMj43wulHGud9klsQG4Xb0j5rFN+/uRWAgRnWmwQzoRM8k5Lrtf1S115H1akMU+z6VcGus8YNp5QLBJBfa07NziC9y7VZejOm1PqoTnpUChLDSk3nod+SyuexleZAWv17oPdCmVrrjSNL3rGTQI5refvpAq+/A8r8/Wcx2sObsljL7ynYokVcCs2a2MHyaIz5EVSJU5E8cKUXKoiqdK2vWURQem9JH7ux/gkrB67PU623bVtlcM6p933WiNRcp8Ghx0/3yesYYeoeOfE5E8NXqzV4vxWtXA/ovgJBzbDBEKnX0w7v/DIHPbz0N5Vxn8Hzn1+w/6JmYXfjLluKrUhsL/35VYUkp246/Swk7F2uIzD+u9kbCyhaYURP9yU9F9G1twLzHe99lIuqmgidEI8b4ddSbUkzRtFFNwrlGiucFChUIbEdNUv0N9R1o4x7hHX5V3mKmD6hqZTEhKE6gDHXasZBMhGHMDTtT9m5HW52MHPbEZfbvUlVobwxjZRu6DUHIrkW5rt7ibOTVia9TSEe6dNeQ67PEvAn5+190A8Cdo0QxYJy/MTe3E0LNol4USGk2xMNRP0A6rV3/SOn/L3VbwleS0CMqtBoD3mlxDVc2LMdIrZ4Fb0NZzQdWJTrdJz7pGGuiLG2tPuVSYOBEvHvsV524FbWYZ9aYbniw4hXsxaQEMJqRBu2xh49Ty/JFJWSoD93WvD43Acdu5toQa0CXNHMWpa7m89OjmL9b8cOMMcBfPe0p8lmLy1xmpWKtMUHITNSasbr+4W7xYxse4Gfd4WPpbNEdVExp7FUMw8VLuHEdt2g7JZGWSacr1el10yYVGKyrxd8Lm/vd3Wnlrb91ZDp94jmtrGC9wuvOKN9lIYr5BAcDWWYJC16QAuSHxlKaDwWltgh6U9LEtDS0fR3Wt6U6Jn+sPLRMT2PdrLILBlz8GEGUbQhma5Mxz2F+HT3+arlZwRfQYp/pSy0T8+pzh9Bo7PIRWkYWz1YgmSaCpvzPGFBUMRVnMy79UAmNsae+DH0uMkqt9GKKyLi5/mhH+K/802GRHEAX90vxAi3LRINIvb/TqEJtxVKVH9pFaDGBm6915z5sqhEfErkidqR2fdRCi732I08fNa+oZ2ICeJG0wKEneL9/fGt+4vzgkUUI5KX7Baar420REbKlsYeP8tInArZjUV4fyueAL6ttJnWmVUpULnlCBCdYd0xEXY2ES0SuzSNuIZ3VF2XHqx4WVkcEOI62l7K87ZQKGhh/i+ccoqx6YhceocYpzpZtP5AJMGuyRlFIZx9OHulr1lu1G0QnBnO3ERmw0joUSP5+aJQDCGsBMXrDQFZl1xCoKI5G0489SSY97gmJm9S9TzpCNwkGoVwsaAfuf9XRUFRfvrmAJjfOUjJ1qhOZJq5p5aWfWVUVe+5Tgy+T2z2g/hY/eDtEOdRSW+v6tU1p9TEiQ28BEXwGCcUJXYHVyuef/4Zf+dtEbBSfBSVdMVT2+8M6r126hKLkbvdAWIQqfDMud7t0laGN1rMqlGP2bCKHjbmpLsC5h4TrqN/U9tm6yd9O5ii7UrYot8W0EtfSBfKR8c8ubAmx06a//sRUMKfKevH4X3nhfHhXggfNNoEoLL99c5EHPYm/kWjbQid9jDuzFAOOgw8B7pdm5Di1R0BBZeOKElVcPRUQg0kp1J2XZQn73DIR4rJEPXqHQWcP/LB4n3md9P/ximYij05JKeilPg8CURguKHxv2eQIwpGQJVuaEzGNHodm6LBT2mjPD1rJNfdVpLwpuB0GMW9V3RyNGNb5z1QgwX0b3VsIiPvNSSb/XeXg/UK2lp1qN60pEoSIjLjUkz1L7HnUY7kewe0EZ3LYK+/zqKMFArr3cFu+BdtEe6xVbvzrQdWgHDIYPf00R0RKRVmP3Dlz1HUJomPquUgbIv0gJtnu3HfqX1MFbzothyp1R8q3XB2Wvz0oLh3ICDurwJ6fPBKLVTEz0G0ND4stFiCX19lmpDPIo7HCaeHEy2EfL8hUL89MnQYUeEWpBzW/ZwjdKV2gZhY7+vpoccLx6h9hU6H6tdvgejvaCaNbTyGuwZNvN83LqpW7TsZSz8vFr7vkzPdcW7gE3WS4cu4As40TIKnXfa4t8G1NQOtRI+iA17tYcWXanbVuXnfGF3CgmRwZ2eIdXUGtCP1SUB8qMQFW/4BYh5PFul2q9N8E2ly7qWpYBNVQq//rl6cBNprzwmXhlnuSa0q1hbViopb1OvhK4mPuLGGgyzmBAeSrwSCpthTY6rpwsi8vYWnLA83VtOmmeeRnte9H62H/wqb+9ynITEUyK76tJ30RcBIWRvpxwQzQSDewuNe7L0lWYgXSVAR45uQxy91ld4Ugk8kukOc4CwKo28m1C4ICJxhjIec8m4VmAtbvtByaeo9tPBLLOUKP0kN775JWpHdag+PwK3xIFvKAqrUqgZ2DrvRQ9M0/RkQ3Cpr/43eT5O1fPfN4kDjfWlai6mvB31X9qrGMBblosSSU6tBJdkrBbP+5TznP08VdOC2MSB2uafxAehs8af67mY/c6fwi3zG277UD+Npoul0/XM6ndGt3zZR+xFEoKijfKylD7atx0zRC4wKbQuOuuGTLJWUlDPmmEi/AzeBBg+v2DRmEYKOwfwsP/w3NZUMQrX89hyj7WdJF1jf+F5nLHH7kXkkchLIf9LIpzd9HYgDD05VlwufX/UaxwIJVSF28NP133uXChC1DrVAf9a2YqNO8jJDbfnHh+f6902AnhbAlT2u9yWByhMMC8d7dCYGPJhRc07grIXJPzynZwHTNKgsiha/xf1qCva2K9mIGlgzuf3kRiT1lpb4OGALQMBFUSME0TNSi//U/xXzVKmSxKzR28GZly/KCygv0795VdWu23zfV/FnHFublEBgYmXbhgdZqI1JKHmlh4jPfu1fOI9GWcFOr/p4eKPa+W+lN0wvNJb12rzI0mfPaG9INypnR/0xCoqL5aUx0nb5dTIPDz1lBLkA8NTfhcg7CCg6d5MifJxTJllubCN4ujLCrRHSq1IcKaBEZEKj5bTxCns67qr0KZ0bcbVSNAaDEtTTczN19suJVeKasaaXhrU0nDs1zvc5o5GSGcRrFEwldITwsJcH/lZ+wwxFZxQDhl3F6S8/DmVpo4mN4Jrj9Hzc0SFQgV1eDV50B2/msPbGgHmwD3tjpINiiq1tyWm8E6urDBfWZPxw94OHAMGlqKlILMOs8LOAKezsaV5AWyucPd5OpABNWJuUmEsyDGGtvQGr+QC9cLLxVuFKQBnoaZg7Z3HXFuiMhVPZKNAIcFodTlsrK6ATuJODeXcSmZ27WLvWvyX4usYZRqmZYbJTwvxhIlIilGSzeSboRXl07GxfJkarmsv+36mJveLBR/QKh8ZT5Iv5oTTqnF+uqlD3BI79QFuafvFnbfc+ZjlyEVBfQhz1WaSvuhVcKKhrz5QdXfCLR1va8kfGOOdKErnsvop+fXOqNQLhfAdcWqSAt7PdZq+RTWzu0NNipkAhnFu7DJJ+vZd5pwvJ3J2rjpWG0LX0sOA+F4WoghqbaUVblxS5iai8YLvS7tFtrtiNtmkJ4xxM+mzfrCNl5p1v/nVMsabpP1ghMisLI3crD2j2rvSijxJ1e6LlpPnrmWbtDcVYS7RfC+0hKi13pmgvTqamXpn5hvd0HNfgz05aqQdG9xiiKihQVSmSntlF0/yKzma2jp/KdfpGonv+23E9FhXmnoK7ZGJ8pivSi9zyEXD5u2tV3/O607OhZbzhttzHvMSBe8+Ax1TSspjTD+RNtvMdViSzCPNHfhywwNLNp2yqpa537A2NfLHHbpz1m9iB8VWvzQv8pXY6Fjzl5z1FwWOl+8ZXygSZBF/tNY4I6mntWMo3ZCEtd9Qrj71JfjUbxOODOf6e5dk8Cq99rK5+zgOhkdHTUzPs/JO/dLcSq1k5nouX+CrfX6aYK0ILtglY7L5e5qbZRmjDHalw6bXUCMwSmOrSYbRAsdbT7bHSfmjk058RMtFtEP/7pvdRI+zmtBYGuE1ZkQFchREMu9S5/F9LK03dYwI+PbIXZSvJ6hTVhGYC53426iFfQMkToePlqBWKDJ232ZSowMs9I+OTFDky2RR99N+Vd6fRqYl6ePLpw2CR99WC/Ts1HTNSSZ1DNhTm+5WewoWvZ46Z2E6Du7QQcK5cWPaJ6N8c5axgYPbWZ+DX40Z8/lDwrAHmu3c+BBvbObLWLPkIt7heceT2AxaKJ/2WtPIDna7kdyFVumjaJIKqW/USKcfvBKclWss5fMmh7Y/d3C/ctjhPAhZnqHYcEXjUtG7oY5eWYdd2qrX1L8W/HQx4DCt33OrmjWEyd83qvuV8ZsM9SRoezFzKbVD8fogbDRiEpGkQ4S43A1VcHfi+Scc/q63+v0/gFk8+cIs9fivjHx/ynuOs9w/b452chlY1jmP2RRPpPV8/aqDiNC8zcqJbriNmZEuU6FLosgcK39nDTs8RWCrvKb80/BRN3SIdquSWbhEfxo09V2g0h7/T1I6gZM8JcJUgpKEfLj4whb3DyY3LHWAlM9D68MizX4mnPk0o+pwTYULG64nFd9TsrlE5KvvEP3mVEJ+02Zk3+l+gtmVS//EBtcjk5tnkBzPXXoQAK3sEjnSj1lbOLJPyTghgqrj3KNvJZgQPVT3KgbxyPUVltqnYCNTuRDgGd1rcun13y2Im5c05Tg8FmSZ7z8rclf1tqCnL9xlYKkJIktU91VPlbuyTifUm8S8oTYM9W+VD5Sui5AOTISOp6yWJXA3VuBlhOMdGTeP2ds73lRnq85c0LoLKK0jvPtQcQ9g5CVNyJTEFIbLqf6JoZshSeKxMLXnM58euDmUr7YejYmYi/0lrrXcCFPaUoujKU+b5RX9mq5vDs0oNc5FItVlldZ300ndFBpVb8u1zAoRzCgvCX6hu8Vho0VHsXayWvL3jN+wz8h+GY+gS2NG71Kn4nZ5qffIe1R+LUir0jAMClq1bHNSVbU/Em9qn1TI/PU2FJSNBEYJfV4x2Rgc0krCR1tKrVeV0KHv6+HpeIc0bj0pzzBU5i/ilBE6F0nBfLnLggR36rcsjacWQX2AlYT9y9843WNWQOHmCv+I55ruBZVw5tV3T9qZklc2FdXv6OEl59QhWv6sCovQUDPPgjk9Ymw7cwVRvt6yp0NyGE6ZMKhjZUyhzp59QoliGwcnBkjWP6kxIL2KkSHIj+1sxde92SyLjmBmKFeq7Cl3b5ZaTBiEzIvL37D+s+UwIKCMwiqryyVqQdJzMNUF1GyMZMZiyIjdTjMg6mn0YoIo3MtbUKxL93eFUvMi4BBFUY8M73a5UDQSlYfMOHFZJxOqxBH0w1DVDw1jkeVtchrBMaHDVH09d4qnW4rj+e/v01CRG79fffLJ8rmyAZnn8mFYtAdNb3/8huqCnsCFTa/yumu+cuidtQo0roMY+jPsxtyKFlzSwaHU14x+n/wG3tRNMpXN56KjMS/LpbIjCEPbY+EezCZ7pS8VvMuFK0VqvsQ1nuicmWywqE5LZ0DoUme//JSMMJoe44VolSKIYT51vY34XEI6qM16vGn7Myk/U8t8lWfnlXCdw/WwBIWNap9BX4PubCdvr36rU9/O23F7A/uylLr9HDymX1wuMmsUdBf8wLXF+aAC04YD5J0NR+gyvKCpXF5mjbYquJypTxXjypVeOgkb0hKu3qdOw+RloEos/2JCxlsVv3ODQ+O27H6MUoaTFYSZr2FG2+XC1+GRqsCTBHjIyDOeK3qM2oUacQ6jqrbc2Bn0+ybtYGXgpKN1ImOlSkLKaa3YCb/G6AvtK7ESk7jPFrCO7C9jemzTJmg0KG948+iYz5f5meMDw6+0SN4TlIXxWXlYpyDOBVChvr0VtksUiHi+ly8SCN/IhebXzzXGUXsg2HEl5pr8oj/G0ZhpZrJjxXotAsv2+WhvbbZzPPZ8W7CGScHS5iQni2mNnjnSa7MiP/HqsZ+MnoFqpxQJlQsc7XE5SLyikaTyjNJUXC33uarwuzxsXSMtozjJMCN6Nzdibyzl8ZgLT1owNoMQya2FKaF5Ub+HajzzQLKF5xr8QKveom11ut07RTB+5D/nsna5w1m+crmyQMn6K1no1RV6dOM3i/b82IVQgag3sXzUNDWxuVFvdd+87XeMREEokQ/yxYOmbDmnxamLGIme+fnr2fSLO7uzCGvZ1jN/JcTbtIk3bmmNwY5qONU7IUUsWjDhdLbKhWPfQxyXyvO99ait7DpYnr8oXi5T2kQ9QcGvgtGu7NSvxZT8HCBZL9qhItrfRVFpLAK289c3WKN0p5PFZd794O6sC7MkZeZMW6VLD2qjlYsEpTFfLvskOU9UZGQC+q9Kptx8iWDkUOGCkcOriKDUvleC0GPRBSX3OhFffT+FoTrBLEAV4/5MrVZfpJJgTxFLboeVUxrSiBezYu6bN7tjXmo2mSwJk535UupzkNk+HonVK//PHg7NCi+VwDJvK1MT2bIRRMd12T/Ecd2//arK3w+PMMx9PtXssACuPSV9O6/2Mo4crLe8uhFeNmzrlFDDMrlCJU5QDTRyU15WUfhBRNYPz/g8Z8niw0cBrpyoKvZ3yLXLqx+/3GhrstqYKPdaAqBy3G9i4dumcxrRQ+TNbz5LktEh3C4jHbyaHJJa5UkoiC+4CnPWpLQ6L96vVt+H6yjhMrK3NDXrFvIrVVbuUx58rcjdwtTwgjVw0dDgOxrsUVz07BiZCZ/xVJlO0BBS5rsc1QJ8ua46ie1cVatPr9RfbBrEzct6bSzpisNpBrdyCWGjpo/L0UzG+qEL2Awu/tgxybYUnvtdLJYXfZfFrJgiqc42qTP8Up1I/FqBCCu4AD7cufjdBYT+GZ2ozWbwgqoZd51uJl4KnjXddBF1OjIXjZxbkxb8EkPQbAOCb5CXuxGTw33ntU10SwtHmVsz1QpDcG7D9ME3RvoB+dMTlYlPzXE/XsBx24XlqB2hzZrfAQXcIgI5aUf8l3U+oxKydNSo8Bos5oiMS7eVYWEu49aobGtfmxjerca+YB/n/YVG0xDS/3Vjc+1nXweVfzU1m+dR0Ldvn/jt7AgI4ONzCYSGnH8oNPfEkePFhYkqNr4MbHVxzBEc8qccEsT0lOt8hxNUymLo4VxOgMLtYBYa+Y5udl7/gMXvUNgnUj+ow2RQLpB0WYjpa8zSOaMaE5w4R25BAytxY6jkYYCIxGtzi1VXnJhdTIJJR8VnYDaqEQuijzjPK9zL70YRwlGgZ1Soj211D9Uuh4c9sD1VvTfcqgYyHXWt7s2rj39l9n/bOQt3+gVn+u7GNlNyMspo5d5cPoCo26ufYfFGhbdDPL6iPA3ccudm4e14ebiHpo/6qmw3w6c0rev2S5kWDarex6HFmUso29M0Detd/cNBmDhVHIUq+58suVsYlB5WMh/7LxcV7gYojtobTbAEGdI5Fb+PmUkVTuE24zvQI/YfaONHxQ/MPMepRGXl1yA1DW4zGvUQY/+IdkxBjVh6NQvnZq37Oi0CI6qeRekjZ6J+rYml6TcosEEI9t7dNUCuq4AN7kdEQX/oHXOedldzOh8hsWQBgiSVY2jubq/ptekHxc0uzNeD0ctmVb6hLY2/9aram1NRG8Vo/fqbKRNewFVLbLH68B9e4Q99vlu5nnKWJSU7LUrcX1ey2q19KcUbfVrY04ovZNLUTwEvLDefF4kUvBSdhS5hFgCgZmrn3L4iF6rTPfLu/i0fC5b2Hz0H+jWaBS529fC9KHEMSgz12rjNDIeemgrXzvdv3BS1V+hHbP1MdODvcUtXSoLpHxXFA3+5kw6IZGLDxJCWEMwLdpyPEWm+TiK2Aqmp091RylzieNWRY5AOtCSdBGRIe7PCOh6wyIwvvK6owrmJVeJspEZsG0zWvDqF+zKVzkFkULTyuYHZmooT4w48BIXGZxZdlO/GJpUVG3PGJnXzvgtlhtdZpEu8FmdnppN//U1dnHE0bXxb/5S3F68/tvRUD7vkL0y04U/pgfRbt1iX6BrEF4uw5t808NF0K3qveyvfD73Dbp8JI2nbj2u4yQyj6yaXV0+VDJFqphztDyhp0HJ9JblWdZ7njXlaR4/01cKENMOngLJBTLXmSrfOy8SOs4ndfsod3pD1BQ/RVbUWir82BrnI/Ay5wbPO0i/fnv2eICL5WJoekp7KGSN8oiqQBVI993EEWd1T34iK8RcS2+FSsF7k2usm4Tp02HvCKOlcCxFhqayA94Ivi+kk3oOKdl9zOCCW8wxVHOM3qZKs4n7GHcKwYPzkwyigxatLTHalGXPgKb+Q9MVG5miCF4nQQ+JApbk0sSOWGraqhKnH16oYtHzm+fHma5Hhj10q0eh5YwHjIkI4oVARfBI6XC296h4c+RTeH11xxvAoNj8cCFRl7bVRk8iOxY2UcSPDWrTDbvKNBt57wFN9z+ruJwjAUhylWefMyanp98UbPJblycIVHlJVEyROsrH7GA3ITZ/nrH7Fr8UnnrxbDitiYVH9JVpyHVs+9203zIJ0+bKDw6tM0q/v/fo+BSp/kFVw10vVrXgZXIw98/PsTCzl/fVQvswRdJK/LKaszasz7pYdidznSQL0g/hYl+uCW4QlGDmkWmo8yxZN00jSds9si5Uy9OE9cA9rqCqdTazQd9I81O8G4uxFRlDZYKBdQ/EjTn3nht7SXWi2IfZgzHc3ElUwMKjv2xTWeaZgIUR0uaaAs0INv1JEu+nNb36zi2RPbvbl4PQsLYuw3ACsligoavovzK08JxmXijUZU/sVQDeiRPYawQAcie38SYaCQL1PPN+MgZA3V/nLgZE72Tvo20kzsBhvGPWoH4egXqH+jHfVvD/WXucx5qU4kdivEuvvfcgDnInNNJSBowMY7lEj18K2nUieE8J03lIl2VG+GZRNpPmTyxyjWT9W5V6l591r2Ucji+2Mco4yuWEIstXgPhvF+/gNi0RfFEHR8AcF91CWAwG+q5NIZs/VoarwpsnSMwlRLJEiToxrByEfeXGwlRFt+v0gKUVF3/sgtkKcEqBaFI3odyhdPagz5i76ZjqJVZKYwXupTCKULSYvXvGvkldvlJfjYwa5faBc/ROaqrDlEBSdrDVViUem3hH7OXuRiM18WqUmIZ1hxqZJbTgn+4G/LHYnCnW8uLlpj/kFq9bmiIcgJp0BKpued/T7yef9TXqnK430jU49QZj3zwoxdNTKFYkUzTyqKDXaxYU7f2XhqYfxb2V+Sohm6OPKwLYUsjWeDGpZWUGNL65DAZgleN7jmKLOhZh6vY8KOrwYaS/rEznI0GYW7CDJIOJkP4mUOiepSfJZyJokr2c3++A6bwg9IUBJOlZBFhupaZNEBe/IkGgin/xandBXx7lqGb2Vt8PACyjbtQRqqAJjHHYrcP7+xPfWVBJqXx/DjWrBgukto5fdnGhO4OWt39yujmbsF5qQsF8p2zDcyMYfv73SjGj61KqICUN2G3uYZrXb5rV+coHZnaxsT5wPdeTvWBlKN+3mDZZJ09Mc2FTeYSN0zBEq+AnMb22WW8pZCGbar3nrksiwTaoX3Fevx7F40riA4EynPchYmD/c6tudPD9ZJRHsCqXcQcxCPQGa0ZBinr5HtflwSfMzNjRyS7iGrdPQMbXk/kTnle6dYdlKBO/Ym/e5XLSJg1kGC7I0r75y52Sk2ATKG9J+vb5jJ26mI8ZsSbvEDtfdNsEM4aLLsD0jmZ6JpCYPWLD33oOerULGBOcKDtvxxsnibaQTNNKsWqEIHNrM2y/XJeM6sG5lIjXXqb4aHjXAxobDWZupjoZlrF3wJt6BJdaEpifl0sngZlc3N4t/rSuu8QaJXetq9GY900kgHlaS7/272Lqd0uRV8c7rqoZ7/aOfVdSuiREToyw3hHq5r+UbSWuphjm2qnJkxHBrL7UXfrUT+XMccme9o+1+aYY44G0y2WmMlwS8swEgFMMggt21KCcYa4XkEHVXP6N8Efscef3mGzeDl2xDY4fPyGXfD+UfbOvWiH5rCme6eSOyAcKZuLeznLG+MkLr9AfteHTF1QPzYDP9VgG/OaeEjL3umvDqt3Ep9IYSKf4/VAwQNW903bubRF3zqPs/REXrpctzas3LBHrGcnq6E2jcbiaf1QcSYKiBAndMSkyWd9psF1mxX6EdmYgMQyZ7OzaCenhzoyQUNwrHaYSye4zfsnftg1J62SR0XyLmAz+/PHx9JrNrT0wp8KXfnASPrJs4WYXqG32G8QdkQFeEFu7G+rtpm3rCq0mtvhyLTOOomftQVO67UgIElZ1gtPGJce/t9lBcbIIfwPZ0c4XDnqgmSl9x82zVZFX3MvHFlyChCZFaaI43P700vgea5FZh/LLZGlinJ/YIdVSj/NlDJlY4mMMG9fPZBVA7NzeJjDT3FFrQtNqVWSBKzZjtw3YQVOt9J9oVzILz6T2qmHHKj+bDHpbV76vmJ/1cPp+V/Ff0K6wBdnXZxexvXZXs31e17zaALaOjKEEdWpgBDJrvb5zHjconMl2ruBVXEDqQjTqUBXT3NtPWXaRaxBIbfGEGl9CIDAzSSwFwii0vXlfqUPP7qN/AC4lied4LgjOF7xyceJKkTrI42JaZympRrouvtQpPr282iFvXx6yvMHwIQnJRVAG6ckIvVhY5++gWSJzh8gGMVj1M76d+ZrfQhxX8FPd8kRbJP4n1quLENCyKSUp3Gir6LOluxAsULyxtCZa/aDxjvXZBdc/0JCsYmknFY7xx3/86z1a0X06qQ/hzJLdWu3jnBCr5ZCiti0Ry37xpp03Yd1Y7zdhSe0ZEjW0UM7NL6kuRrMpnZlQuz65t0qNvLpuyjr+BQs/fwJ90pCKl2Jry0bDDQyOPCm1jTne92MUhy/NGGHI2kJ8z65oQXwd7OgDoLYLnu7NnyKuZ+xdxiS/eJRcujEIXP2NjjUDaPB5p8LICqxeGmUvdSNpxADg9Eae+T5Xy8hqEGewkBEsMzZh3x2DMpi4IYSY3b/ayjt0NZJcJuUCja4jlhu+Ev/i0DmX+BisvtpQYEe9iQ+ZtmFTBcjzKRaZnD48pY9u3mffmhum9pln5p/nErfo64zqE2LtycsITrSkfkrKaaVVg1wwrFn/8opxK4PkspaLUWYaYxG14ZE9PEZ/1w/B35tpdkZTnZkrBmAuVwBwlnNwrx8UgUKbdlyHysF+cro06sIzmB6se7yLixFIZNqPUiIrQ4iF979TjGOWjNn/w4If+47DAji1S+EgX5VBHakvW6Wo6cvXJzwsCTttZe6OXG71IE2TE9ZvDCynZH/XDqJ5hoaO/XxIx4PNOqjh7zfFOBet3P8932z4MYj6iK8wvWS13fp++phW86hZClwOztsCP2h2CVrcnOHfT9nNpTCmwXuUmutScp38U04thOT5H7QrfCJTIO9xdCi34rC/9gp8lNHIZsYzToGgvuUyUqCDLBeGiyFYrxEFYLh2vaEVZQpLLcMYsJqeBW4GRcyJ3aZ+xAqaLlwEV9QI0f+RWFdyJC5fMYAYzkvh2XoJfzAU9fllMDcagUOkYD2werWKdFNNx5Yf8fryi7e5tPtst6TLudZyC2J59BvhV+t2RpPcr+BZzy/qGcmmFGqM61r1JMv3ImuP64omjdJpjsXROeZI1RpKvvv0+wJDnv46WbnqNBzzvNULKtdviz960kpfKXj9bmDfVNsha/IpRki8Pn0uSUPO65ODClV6HW1gc30unXn6S1eZC3Dng/WGtpAnY7yRSfEXkbvUtddQO83mDUD0esfjlL+CP7nr+m3RA/2iMeQfTS+Pp5cMZdM7EiZGqYeniY5nO00nKDZMdDzTMlWfQUdKmTPU3oV1QHyrohrdEXDD1Drt/Z8Sr5RXv0r6ljHKS9p2UOZUzQmCiEu1cFU+4BIYSglC5bSu5lzsa23vGY59xpD93O/zZnoALFzCPL98D11/ssdhUTIUqyMT3LVAKqzE21ETZ1Mm4pDKP9qX/WU0tpRjwg93Xzd8w5IPZ6EVXxDPaDkoMfFcHCYgN9GjPc9b5biLV3DO6vx/Clc9i+76zB0KH7t+9vonrjidGZ/MoP7IUh2vX1fdgIKY68vf+Tjj10a+39XjSbJc0+1lNPoKDTZC1kU1HbOjriCpofCTnnXhhRWtMJU66rleyGW4yQllI1Jm2XdwhOJ48Kd9GR3KjxCkNoNQj3Hoi0BE/ach+HjUUZ+EdsRsgmS2zjMTPj7zUgqapgi2skEtiTArJjnT0Laz62Iv+gplnDF5XqUFhYACr+sor5huS9edct/dNmwwBRoQ/N515oje5UXu1vWBCtsWzVYj90V43TzQkDDzrNPZiSegGo7fgrhNKSTmjTEejSDWwVQ7XuWskFq/H5JWiuDtZF7zjma4iRKxe8dVLq5ULtBlF68wbig5P9gp6EfPTEhOJ+pnvqqfa8vHeyDrPF3VxKM7g1k4fGuhCt3DqpIvx3y4s7rokxoybMH44L2g+RFUhUqEqZf4q/sRBVf/rov52CwHLUbJPAaOjljJnrdXI1U8kmZenp1BqwW95YoQ4xBUd0WEjbbUaB42iSoPt9G0JW5rhiy3U/czWr7Z20H2FSYy0WZ+mABK2aB2c8IrhSlg11B10cD24zKlUIT7LMHeSP6Mxl3hmta7W2q0oms2wp2XEPw1zX+rjfTuyDm8e2uiWLtP7zguYPq8fxmLxIF/NH+/NF3jrdSh3LZYob2DOgnVbFPB5sG/uVtyNyVIsaotaPx41fBmxEW/aUDzB9bQwkKqy75Zlo7PmiF8t/Vl6kqSZEx0qfHVD56HMxzP9NE2cpvW681YX4lpodyW6lXXZTFiKrgg8OZdWSt7DI6jVD+qSEjjwKXFESC7AZYM16gvA5nndJHsNYdSvKY1LbUqcQdimQqVF/RDRzaZvi3mBdvLZ/DN5xRNXrhdCFXap8n71vzH9u0rx2KYTpV+qTO8Fnj13Dstt7aVDUubKXPDx6H1x0ar9kXxhihs4mFdSxjyxWJJY+G7vwxqFbYFs9RgGY2n91enIbdD2mYYRikU1fCDIzXprss8Bz3oZmZ7VXdFdq9OZ7DaJ0yrdyB/mtaMbh82rUQ9cWaRqcFEuLHaYqRxWRfV1ysoBfsu9dLUfCg+1VZqAk1xgJMi5ez2HSnoQBdWze+0t5ogZ/U23yZip+ZIOASO5zzWSR06YEq6rqumHOimzWKP3m0mdAt5kbd9bW7KAVlhwROb6UF0yWA76zdj6B+8//Ho9ycnmkVmboHM5sbMupNpmyOTui2FdpzlFFfLm/YQ9aaBUwLuLWhuFzRG6YSKX9GeGqfeXuiiVqGB52VKXcfcXxARrUTwOhRygnliSXEFiqUqe4eI3VKE5M9wVBsSXhiRH9SkZ4nXOS01bNzvSbNSVptBIKedCtFwlQ35KJVXd7dV6PJ/CXuDTOt7IHcgth1AcWe04EjPge+x51igrNwcKosUUOV++8Uty+i3NP4KvoSgOkMgU7PWGKqQhH3dz+gpKrQms+KF+8qVzxdGAmsD04lss1dnb0uktkY8Efgdw3TSHt9df7+01LWB8v4BdzerbLyINNTrN9J0TZT4HtJs2ytlYvBz46ffiID4Dy82ikUscm7ZZgHqeVwSFWzSjQ2KoAIF4cMtVL4C6yEczx8EJvtx/KRM2613ih6MQ1nGhBHtvKseYFGgWp0yt7LScc27TTeYmRTGmnk6i8UzVYCfu6IAoc6mAZSW/RRngJXmwC1LbYre0MDxVcLVopPzcJ7QVX39rBQuqgV7jQmpXVMcMxfjSvv65hDloQXI1eS1GKr9xx6rdqCS6RLWNoO3pCEx7q6Rf5T+nP/o5/6TQSElC2ooc4pe/FYxFtSe+EDm5MX4DyGJ5sW67sug2yVyLJRvmK/HFxjH7fvk8nzjZmZEGW56LHlpPjTyXmKOJe0Mb+w66epNXE1592KyyDllZQ/3V55SiC7fEJpPYZ69i3ykgxYsmup4yjZd/6oAi4y+ybvN5V2mtGb6pjMqkeyzmkKQl1Tiqv9UnF+REAGArKF7i8HMlKZ9v9q/euhh3U8vFijhOUCyTYs3mag6egu1Ik2H8gEdwnR2kyKuw5MIqVXmCW4CDNuuINdtSpIBa7Jmx3t4XvTUStVe9s0VwH3QUpoXgx/lZgKtwTi0XRrN3e0wuI4Fp22o36WDFuD5F7wcmw7OITrE2o2GP1829PMRhydczNDCcSYVebVv8zUD8EaWXFEih+qeo3pxWr9+nYcY1o9LNV6FViHUCSSw+ziDKtVPw2sNpmMC7iF72LOwneiKENxFq93TrJp32xr0UrPfyRkgWlVG9TNS7j51GkwuaRWXEVQahpxqU9dedGuZEWb/sPQzE6SZQrN7LYPGS2R/4jUSs0mtFYlZYZ+17jKJZUe+0tsWHbg/MT4u7E+I5T4pBziI7WZ9XatkhvQ4kK04UVltVRg8r2VOjJi79JuyH4/NsJL5gVDA48PQnAu1kieRpNL6SvMC3uaHaurpnKVRM5GVsajA1HnA5e2PusvqWPbNVX4TgxMEJZUkArkSuE6Lvyrl5DVIVlBOeaMJ5zw21v1FMy3FDdX8phC+deUP2wlWpth4kt44uIP6Z/u0n1MqSPbJGZy5F6FwEZWuhH4o0XXh73aWihXSS75/1LOkWZEGjs67xH815YVur9Z1osCa+z95AdEHLAImRJfJLs8vINgdOd1AQNHhhAosltP9fAMERPu7NLXa+m3loxxzF+DClj7SUAJmVx5SQYfE2jp6jo1SGMhqb2+QUQev6XRxVXkrfpamztYHageyVoGgumRfD4Px1Q0N2+YsElW7Cl0tcuJ3TzmE4qvQhpQkyF7s4C4dorozSLr3Jsf3Pb/aQFDAIzrEINjz4g/dGXmwN3WztE2n3Ahlv6dS014AM39iXn4iezAtch2jMuL8YiaRo32httx6Ycu9TEDyysNI97eebV4cHw1C4emzfX0k5JfTuMXn8wwkOaq5l9YIZGBPsIFmJ5+hRp/aGf4I0JfI0jzwOoxMJJ9OxQrSwY2Z628y7yO9H3lbZjd8sirsHLxB4ufNShP6OrPlwzc7jbvqtrKQNJOiM2bTvuhF791kLzlPAFf/hQmQNq7lf6mlHGwvRTji5ZugaazoQordv7mirS7ziThC7yrXJAjlZuDjudcqr7hCy9XR9hc6Xq22KY1DDBggBlMduOdgVdvV9up/mVmMr2yER6nKmiX9WlsGZ+BqJQT26TIXRh+q/VvoN8l0HGQ5ct1hAUbSreQjuaeCwbeCkxE5pg9XrQpGhv3Y6xeSReVlf0SN8+ygfUjXnZ2giYVE1+TeMSJ6IoNfN8amhNNqdxyhahZkbvUEKErKlxs/diZHdyhRmUr7n+ChgRN3iXx4X/TvGTPajnyUNxiRtXv8U2/H1ytjUNbtPqIuKdQqJLdrvUI5sdlanP7UiVwsnsysJclH6pEzXURmnML2IQWnQKXkQBdVWUiX7fqC87Ztvv7agA0syIg+uuoRF3x0uNaDr2k+C5PVKNiJfqZsoMqp8ZvJgjH1Bn3naBWUUhmZDZwKhaTpEJGlkO1yEAC0zit53vuZW6xQ0NnXIv28ErYRoOVWaL9mBOM7xE1Ul1L9G+EVV1b2ZkYqy0wtF/IZ8JilOcETJlaD/jRGavsCxkkzKZQspdUE0LRqs/SL5oux5AA/b2gsw1GDcLXaUkQ6qfdmRKkQ2anM5OLLy7mggBf8CVzxw395KyngfPEfApPmPNue3iwEdIl1Wu34OwF1bm2KmuVgQR8qIeDxqLvEcNiR3AmFZ0nIEbzBjr347qqZzO0lXugBoSy1ALOpQqy/cskdGPUTKWaPwqwLkuUCpa4DYgy52ZlxotL+2iGs10Nb3o+eA92/MmQUlPo1NkRgYi04JVjVVs79Ggdf2jSp1LEVE0HsDSD7UMiH2v2LAbFwwVr4LAaM95m5KFMknSldo23loJJ8ogverPEu22oXQMlmfwuq0sj/MiLxnpVqbKZ5rU9apWAESLor35z5M+9pUdaU/nY+hSY4X38X/UHpTLcnRDxp5xhCt5Oyxq1DWbGB7B4p9XusmGLwyGa61CA+iNJ4uCmTlUKlWGSc9uQjFtHRO6wJ6PxT9ct4JE1IvHLKDopXd/KQdIWHbaLZD+xKgA44UeeievnwIA4VKj7qZUntySwm2yuLZGxS+Eo1vT6bPDT0GC5jGrbC74HD1jJiQrxTyU2/BUcuovGA8RRcAi5wUUidc9RIBO63uLBkoHnuh24NY0wLWJaNxpfgDP3zatJBYzWrd84pgx32aipLHUXmgC1oYcDEFQMCDvBbN6XAwaccKImHsyqIl3n5qlXLL2riKt98oRzo8x+a/suJcjqJSl9znUDdO7oKKzk1rFa8XOAEnXse1+zykFy+DbsrPm8+zKi5qD11coLFklE25LGXe97Tn5671YbXauU2urUyUZyZJHCNRZldqHA1irZ+30OU3g8hMvUjSCxqbMmXK9rxlk56PEvSQpnMoD1evAzXbKjMMpcUAX/pbdIEFDtk3OEKmZ2H3gOEAt8MUblc4cDmN3AGk314OV+ieos4/Akw/TwLBz0rBolI7+douUwjCGWzJ2V+ygB2kisC6aDACMalS/c7jk2btZrxaDxKImRf8KIWgVeYWu2yN+wCznPnuxv7GSLPK1f6I/3gOdcK+cm1heU2CEAfijfrBAVaERu5EnibYtApCNRDuxDL2vDFlw0hjye3Us0KA0iX6dN53OV4ugtxGMWGDiT+Vtw12VZaNUkRuodur08/ttywrORU7pyuechuVcfgbGeYyLfjlrOTXGGbuQuTvmSiWKhCunFlIHEBD4h9GmI3EsLEr6CTFA3/RHHYnrgnjSVLZx88sBF49vXNJhHKRVgaEuQz1YmqZJOUwj4VWOpgAbrjogtQjv4TdfSTHy/uNaruVMMob3uPZ6fKTvRmViIIp2ylyeWrn85pNQOmSOxy5/4SjAfVFTHgl15wpAMORLiivA/XDpWlgd62SO1aaIz5tKe1TIwe3b6i/kEGBG/lF1DOnT2ujtopqa59arxTCrs5YGav2yhTGpHM5grzUZiMNlltxfzFtaAPRVqYo8UOYatgOAbjvQuvwjN4EQ6O+msOK/XlP0pBWE6H+CGoZKPLVdiZZBsn5ct/KuNgo6DvACk6xMt9y85u90zzcDOda1pG4iNzvo2o+Ic6jUH2wuIxtv6bPWwVrnuENGfI3biIRLY+M33vfZMuzX1DeP48tcK/PQx+baatATVCxTzNXRzDJ3l6mUfm9QPrgypF/U4IIGVMLicT3yibH76AG01xP6oD3PT36Gce663kWIpJKY03tCNDyvhOhBV7nAe3gMtEkFigixAMTu6dD7VkygBhqWK/+J6rivWqRWWOaZqnVaUhPPBcSrLw7GpZ7x+TQpPJNTVHN5A3LMJfjZ3lpZ777aq3nhVRFHmjn91UAE5pMDGlTk9t6iTPjgBF7FlMN2xZ9a8qvekN6Bj30f3lEnPyLA0LGLNZ0uxiBccnj8HdzUL6SUUNFu99ov3tgHhk9wPdabMnxEuoOSfdyI6p2wiKQNVe3iX/ovs4KlJBOV+v5UmCkq60jvJLhu1/811uSAsHWGXSSjUmOh6SMxLqfnQqwnOxxOjgVdPwiztvfMvEEl5yp3c2L6GKxvIaTnRLT5MzxSws7lgYDdI7spfCCC53Uew9VDXdpwLF4m6Aayhs02SEgWRPv+PzH57Oim7Kd+aFJuiSwXGN9aGw5a7y/qkZjSxYHV8+llJF4YrpTAb+upCgcYsD6uErGkRI5lPVVncj0GGxIreX4UgnquUVb/82QaGReXuOqUyTZnEnqfw0ttkWUA4IQr13mj38BxXqoJ8ETQdLwHzQm53BvM9RSAUlLvAyF51bKTs7z9A+6LBr+svIOhBm7NnJ9w1NHZGRKQmgPFE3LnRYPHCbWZVJDCqjwF2qx7Hm+Sn4GbTDN1Dx/m8kL7LPhsF9/Nsy2csGTrtZyanPCLcOTQXuBYfhhpNlMH6OmE5ZUG13n4jOAHpJyxPozW4a5/xApZnvbK3mmyXuP1SALxkqHw7gvjc9NO4gzP6UN0LSVdwl+jI4KR3FbDAK6Z0OOIRO6yK1Zs/ZjSrN2VvxbXUn9b9RGxoLJyDcO8Ew1qRGCypSujdx0ZBJ7JchYXIAd7eHwZVMQLRpMc9NAdID1mb0FcifwiKn/5HO1RMGC9hHmi4LCBu1V1p3JISFBqoNdBYZMfpm9/AsJTKOgcK4dC9MZXQOHhpZQuKF1mRcO57vVBGZE8TFeWceqIhhHFWTTkO5oHxB+YA/dnkKrqDi7ERZTKtZ67+Cr0ZEsJAgOpQxUpQCPmq+Oh51m2nsMXdSq3A8MaCFuW/Lu4pBDrhFNR6rRzNTq9IPOGnu8gpOYhlwis9nPW4qMniHQN86yEmmZRgOqB465lmObUANNMZF7gKfq4VsvUsM4LtRXRU4bCqq8IyScvTbLuHoW+SaE92gzWVDVtPGWTZJQV2BrCcNdeucdB+7ojPoKmmTJM/W4eg0Bazq54HjjxbQr9wD0+HD1w7OP9JXrpuQp6oY+qNbE0iOjpdZYDg4/+emi3R1gDEEQGqI4K+dGb06/I3YOv6zmICEq4kL1CtGe20jqp8scNLcKZbwjJ6LJ8UGR9xWkJT1U30hUrHAXjjJFTNARHicF2b7G0BKERt5A/R/kucQpUucE6d9xcly6RFqWlLaDd+vJLQUOqvoTERfeYdPrQIwWa8bU8HnvGFI8gsSdUUMCevgHLmtF0LMyfewbQOwG5vtgVbBuk47lapJ4kG+qSU21O1XI0nTzWcqj0snG+xfo0UYDbfqAf9z1UYVed1F09TYoUbR2lN3O0Q00gc+q6iPJALykuQxz5Pi2ubFc3alI7eDgkfP5962+02OB5g39KfBvxyeyJtr56/ES8wwmEtXyEf82atp40qKlYiX6zB5K0cejyhz6dsrrxVUM1CYUFBBZ1f0z6yMmTYj6uyF2H658bJzZlc4A41L7PXhffha4DNmtMtV2XoiS5KL9Q0PJBBBdc8vLc1elMYYRQrMO8ZDIuO6M+ZDzfekDF5Ok5wIZtos+xgDbwxrX54Z8P2OZZ0Ei+9wa9jPPJMfXKwd+b04IBFX0CGFqBFA9Ff+qckp3kIypoUvsJpVUDFyBqM9TrcqStJgywgjLK1tMkERCm5mbQpR1843KwvjkXFiZAxrF2ooIPpOh7T9kCcrYVBXIIfr7tVkCGdYF2YwYv+d/lAbEZoEd2V5nrAwlaY/HPSKYLOvB6K1zofV43vECyz0bNBzJNed7IX0kY228sz5bz1Fl6kTjdOhmNyHCt20EmxdzbNl1b4d4TWdbl0hC60yKDLbjRzd7EuzZKc/Ls2TwI4r5JkjBid1mzsBczaQABFJ7W7VYa6MfVBwnBvUeDpZ505nk9Ip8VjJvYGJD5WMIeoiBWYjLTvaaloxS3mOgaxt2wQDAYpJv4N+rXim8H5/YcOyOn9mmnIOXmPZnBVFmcUn1kT/O/xobP6c8An8FZPKCxLgLK/i2nk7MKCFh1u86VTbs2J+o2qHCNpseUDgjigOiqP8srWQjy8Puj8BexKvcfuPZv3Sp1/i7Vc+GuHlOqT8gVaom1esbw3r0rZrrmHbEOSkUe1Z4E69nessi0OGZma2RfrB0nWzMHUD3iijsWtF1++pLr8MnEX6qHpk+80pVNKxMQN+ar3iGNIWry1IHoR2tg0pYBqxbuuWgoiK97MuZK4j45izKZakFk2NzpJobVOijyI6HLYePWD1DyxAfG7u1segwXdPpDBTArh7ott2W2dw+qXecv/uPsKUtW2eCP2n6lJx0jUHzLBajfXJBun95ZrkAseCIMjK6y/CfaoerKCwmdjvy177yOt43nCRrPbJImyFJjktavcNzWwjZmSr9hQXRzsB4iR+arsDVw8aKQzELjwCRdG1yRNW9MuRbb0UArdGPkGGMuUKwk7l3X6stDOAWn5Mv/4iHTwr82TidNU84qX2oVwvpgMIlcWa5cYRQcdAGykp1mlDGaBjtGwvhJnYISP15vOu8wlQriv5VJgTT4bMuJh+LrkZl4vd2xCWSiTx98xLcwFjju5Gor2OguxuRtQ/Ia2x1pRD+t3TU8xJGij8J7GQ0fsnGE0+aeozb9fnnhV/vgiVsij/PuTARSe9+f8pBI2novhwOSqDqEjSbbB4AoOKYxxrIZ0sswu3yr3AtmD+VCWfhSaNH4rW+XLux1km9MFfWORRdKhK6t/WuUZweFps4TCrHuziYthsv9NFNb1om0ueuiMTvRzB8CDP5MroL0vdQgD1YhmHbkamS6uBWcHdlS8EF0aJI4Av1UjMx7g02ibwLFpCcUlofwdEhoZ253BdEsYAHLswZqACLck0K2BGUzqC9bzYVtjJWXG7ulNT9kTBW6AL3+WpylwpiiBRlNfvatbb+0H5W3/0DbIS8s9orcVE5Q9KdH5UdS5EspT420D3on/3HYcuedsRZ2ZCU2MIfUkbmm4tL6+CZbSOY9niaGOC4VIvx9CK5CRNLJRQmcBIpIC5Zy9dznb699cQHJjHdfB43ln9oTUHoLjO42BJv6Yf39NIapolSP1eqQl+By4Xh3GhdSDJOd+Kvw/YefT6GG1FhqNkQnGsXJuR+svAVgVCikv6+hZG8reqkP5xPnQmAzAXHOoO/EUSsA8c0Z4SErp4DeWZi/VOc4vE9kurRGHp1DyYAdFZCShgDzdr01B9ukRGC4hbKjdwHwO7LYML8MoAEJWtQG+WHsf0asuichUUcCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0Jhc2VGb250IC9DTVNTMTcgL0ZpcnN0Q2hhciAwIC9Gb250RGVzY3JpcHRvciAyNyAwIFIgL0xhc3RDaGFyIDEyNwovU3VidHlwZSAvVHlwZTEgL1R5cGUgL0ZvbnQgL1dpZHRocyAyNSAwIFIgPj4KZW5kb2JqCjI5IDAgb2JqClsgNTA4IDc4MyA3MzEgNTcyIDYyNiA2NjMgNjc5IDczMSA2NzkgNzMxIDY3OSA1NDggNTAzIDUwMyA3NjQgNzY0IDIyMiAyNDgKNDcwIDQ3MCA0NzAgNDcwIDQ3MCA2OTkgNDE3IDQ1MCA2NzkgNzMxIDQ3MCA4MDggOTEzIDczMSAyMjIgMjk5IDQ3MCA3ODMgNDcwCjc4MyA3MTIgMjYxIDM2NSAzNjUgNDcwIDczMSAyNjEgMzEzIDI2MSA0NzAgNDcwIDQ3MCA0NzAgNDcwIDQ3MCA0NzAgNDcwIDQ3MAo0NzAgNDcwIDI2MSAyNjEgMjk5IDczMSA0NDQgNDQ0IDYyNiA2MjQgNjI1IDYwMCA2NzcgNTYxIDUzNCA2MjYgNjYzIDI1OCA0NDIKNjUwIDUwOCA4MTkgNjYzIDY5MiA1OTkgNjkyIDYwNiA1MjIgNjQwIDY0MyA2MjQgODg1IDYyNCA2MjQgNTc0IDI3MiA0NzAgMjcyCjQ3MCAyNjEgMjYxIDQ1MCA0ODMgNDE3IDQ4MyA0MTcgMjg3IDQ3MCA0ODMgMjIyIDI0OCA0NTcgMjIyIDc0NSA0ODMgNDcwIDQ4Mwo0ODMgMzIwIDM2MCAzMzkgNDgzIDQzMSA2NDAgNDMxIDQzMSA0MDggNDcwIDk0MCA0NzAgNDcwIDQ3MCBdCmVuZG9iagozMSAwIG9iago8PCAvQXNjZW50IDc1OCAvQ2FwSGVpZ2h0IDEwMDAgL0Rlc2NlbnQgLTI1MCAvRmxhZ3MgNjgKL0ZvbnRCQm94IFsgLTk0IC0yNTAgMTAxOSA3NTggXSAvRm9udEZhbWlseSAoQ01TU0kxNykgL0ZvbnRGaWxlIDMyIDAgUgovRm9udE5hbWUgL0NNU1NJMTcgL0l0YWxpY0FuZ2xlIC0xMiAvU3RlbVYgNTAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yCi9YSGVpZ2h0IDUwMCA+PgplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjIzNyAvTGVuZ3RoMSA0MzA1IC9MZW5ndGgyIDIwMTA3Ci9MZW5ndGgzIDAgPj4Kc3RyZWFtCnicjLgHNBxa9z6sEwQhoiQY0XvvovfeexsMRhu9E9EF0Wu06L236L1Ei06iRu+iE+E/7nvfS+77W+v7lrWYZ599znn2OXs/Zw8KUiVVBmFTiDFIAmLrxMDCyMwLEJVXVZVm4QIwM7MxMjOzolJQqIGdrEH/DKBSaIAcHMEQW95HLqIOIKAT1CYGdIJ6ykNsATLO1gAWNgALJy8LFy8zM4CVmZnnv44QB16AGNAFbAqQZwTIQGxBjqgUohA7dwewuYUTdKP/fgRQm9AAWHh4uOj/mg4QtgE5gE2AtgB5oJMFyAa6ownQGqAKMQGDnNz/WAJAzW/h5GTHy8Tk6urKCLRxZIQ4mAvQ0ANcwU4WABWQI8jBBWQKuI8aoAC0Af03OEZUCoCaBdjxPyOqEDMnV6ADCAA1WINNQLaO0DnOtqYgBwB0f4CqtBxA0Q5k+x9nuf840AP+Ph4ACyPLP8v9Pft+IbDtX5OBJiYQGzugrTvY1hxgBrYGARQl5Bid3JzoAUBb03tHoLUjBDof6AIEWwONoQ5/cQcCJISVAUBojH8H6GjiALZzcmR0BFvfB8l0vwz0oMVtTUUhNjYgWydHVNR7gmJgB5AJ9Ojdmf57w1a2EFdbz3+gGdjW1Ow+ElNnOyZ1W7C9M0ha7G8nqAn1wWYOcgJwMDMzc7OwAkD2AJCbiQXT/RZq7nagvwZZ7s3QMLw97SB2ADNoJCBvsBkI+gfV0xHoAgI4OTiDvD0fD/yJUFlYAKZgEyeAMcgcbIv6sDrUDDL7D4YmgQPYDaDLDM1BFgDz/c8/n/ShaWYKsbV2f3D/65r/CfYfs4gIxA3gycDDDmBg5WAGsDCz8AC4OLgB3n+u8E/s/437L6sSEPw3L+aHFaVtzSAAnv/Qh57b3yEAmFz+zgvqv8uGBvDHFgAmBQg0oUEA6of812PmYDaB/mL5/10Ff035v3L/fpX/7/T/H04SztbWf3lQ/+3yvx5AG7C1+98+0JR2doKWhzwEWiS2/+OrCfpPWcuDTMHONv8zLO0EhBaKsK05NNkZ/j5jABPYUQLsBjJVAjuZWPwnl/4eUL+vRGuwLUgJ4gi+Vx/oJGbmfw9C68/ECioxjtCr+2sMBC2vPy9X3NYEYnpfh6wcnACggwPQHRV6oSxQyAHwhP6FFgbI7a80BzAx2kKcoJMA0Di9AWYQB9T7K2YGMEkCbWyA99a/DCwAJjGQtdODgRXApGYBemRgAzDJAW2MTR8s7AAmLfA/iAPApPSAOAFMqmDzRxtwQSO0g5Y8NOj/mrihMywepvBAoeMDZIFyVLQBmT/iCCVpZvYAoRTNHvlDCZpZP0D2e+dHwxz3+NE4lKEpBPpOOD7ek+sfo+WDEcrT3OFeBP6xQKkCTaB583BaULImQIdHwbFCyRo7gB7NYoXytQGa/OEE5exwf4//GKCsTaC5Zm396CagzM1BDjZQeTK2dnwwQwMAPlodSh3yCEJJQxytgY4WDyYoa2Hxh/u8P99HEMpX8c8JbFDCjs52dg73ufiPEUoZmljWQJsHE5S0vTPECQTl9x8Z+GcESt3W2cb4XkjMH8Jm++vsoTE6PJig9O1ADtBH59FsaAxAG6jV8f6B+cfK8/duf27FDg3HDvr02VqDzB5ZWf62/ssZGhnQ8X4JR6sHIzQyO2vnh1DZ7y8D8rhK2KHxWLjbWYAeYmHn/Is4GPLAkB0ay58nyQ6NxAPkAHkwQIOAthEPxQNl7+T6MA4VUCYnCwfQI4/7bIc4P5wYx32+gx/lFweUriP0ffkHQ8k6QhPwgStULJhAfxwEB5SqLfgxEe77mB9XKQfP/TI24D+tnMz/TQNT6HP7YIbyBtk7Ax/qjJP1/rpAjvdy96cr28PAgxEaA/CBHic0BOEHBKUv8oCg1EUfEJS32AOCcn5IbS4oV4kHBKUo+YCg9KQeEJST9AOCkpF5QFAusg8IykXuAUG5yD8gKBeFBwTlovigeVAuSg8IykX5AUG5qDwgKBfVBwTlovaAoFzUHxCUi8YDgnLRfEBQLloPCMpF+0FwoVx0HtBfggU0sQI5/VFCPKwP1f3nANs/E/6sLp77ugE7mDjbmFmDHvKRh+MvcYX2kY+LnIfz7+X/XBsaxEPZ8UCDMH5A0CBMHj0T0ChMH8H7DHwE78vmEYRyNn8EoUwtHkEow8cPEJTao2eAGcrJ6hGEknr0nED7HKYHSWS5f71sH0EoK8gjCGVl9wjel8IjCGXl8Aje1/EjCGXl9AhCWTk/glBWLo8glJXroxcTysrtEYSycn8Eoaw8HsF7pbc1faxjLPfvE8jmX7Z7UXS2NQc6ONtYA50fcbt/opzA1qaP7uP+mTIFg6BPCvhRTPev1f+8NCz3GuNoBzR5NP1eX/7VuNwLzJ+tC8u9tPzZvLDcC8u/2heWe3V51MCw3OuL0mPM9e8mhuVeZv7dxrDcq83jRoblXnD+aGXuNcfRzOlfTwfLvfjYGv8rxHsN+lffw8X+Z+NzL0WPW5t7MXrc2tzL0R+9z70i/dH83IvS/3Y/9+L0f7Q/LP/T/9wr1Z8NEMu9XP3ZAbHca9afLRDLvXD9qwdiuZevP5oglnsJ+3cXxHKvZP9HG8Ryr2nAx70Z8x+NEMu9rv2rE2K517RHrRDLvZQpPsbs/9MMsdzL1//m6L18/ZHPfzTqJs4O0N7D6a9vVtBS+i/+69szCOQGMkGdm4aY8AVYVgU0X1YIv3RlWB/hRzxMutRiZRjJMUBx6hEfN1yJUU1L/SZbJDHXzSJhYNmmIGJ/mb44c+K5Vk1S485+zkAisWVOYhw1fXcOOxnrefHq9TRmA8wnzQQRYt58hx4YJaIwrPYngqbmPaoUmF5UVV2zsa6UzwskuGQCmxVa2ysKUuVevOLR2Puh4vTZuF9tneMUnyrjh02k/2q4XmiiQsprWf7WK9QY13Ks5b4v/fPPuok6wt7JuPitH5EHOT0T5+t/JcaOXC5c/t6fMDAfZrTXgIag1Seh2TRPemcBp0DndemiDG1B+ceW+s+I8gEy0ggUo/0KPN88p5EoOL+kKlt6zp6ZSvf3ydBMfEAWCERC5ziIYlrmsOEtniOl5w1TByEMvEeKbahBRzCjcMVym54aEZJZU21+uYnEKBcwaK5Qk2blj4u1cAApRAjs8wMMJ/Pjrp4a0I8A4zuEZ7fuao49qRisvN0+H65T7VenOzsG0AvoBmuq8o8iCOYLVmKhyqx4ldwomSKnKKFkHYW3f2dUEbZrZlKrTuXAVVOaYM/jqZyK1bj++Eq69LXOhyhLld81mYerH2naGztUgKg2maxGHuJOL+Mlmk2JBhRWdn3uLL76l7Lt/25rSlKNNjMTLxQb/L1KKxIe/WY55OXWegUBhafLYW+3jvwMZ/lgxWlEVGOciWMioRyPP3Cev2fX+dhRwnlym5BQkHaXvkCGabxuj/h52yqa2YKk5XEiYhwd9kcxa/v2dp9+hKGy0vC+ubF6wp+eYzTRhI4yW3oM355aKNvH37ahmpphHiwxV4ME26S5ZWM0HEqq2rhXkmhxskr0qzGfXOLGMa+5DFd6jDdM7tOo+g5jKdCnMeAqaUqUBmr/XvrhY/8OnqzSg3URE4kF3dNvre78iHjt+FDiy3FTDtyHxq5kJh0cIsmlwlE+l34tsjKRGW9uJbXZtewfJWNvat69klloReAmjXzBbklLdJCngEdifqrqkmkGs7IkJXhAlOtosvSKvAa1o4waIdq6EsHMoXhurmVtPuTUQQ5Zm8S6RF5OVaISaXP4W93YiVYc13vuing2HsOJKZqCSJpTnpKZ8GosOgZ7AZ/QNKaDauXqo85JId2gpLumS/+I/FjJxXT5wiETYmkx1aO3DfZsJ8CPYUMBn/AgxvkdlJWs2GrkXNO+JAn6wV6armEtnmJj3ppPlcrodmkx6QXOovuQXFQ9txj0v1SmnJEzGLLnff36tadyJFHozZMV8rLb1DfxJYo9nzhLJVvxevqqRGyHEcskgOV53Z68VPg6W+d0IK5v/qhK+lF1r6gE8ZVApu9rETZHfcyDo+wMwZ5Dac9NTQd4uaXWo2h98vSIV2f5whBuDnvlscR67frFZysKnsfa/lobS/VnQBr65U2bZIjGHJb6O0uvKo8X1sqybEGnK3HYHfR636Vl9TICkBcbsz7Sm5qoHZbniCJj25fXN4d2rRQUcuae6W8MCJ4PJE9nCO8jytCx63DgIqZNqzLv7re4Q8354Je5sUu7yo/woXq11O9F7SW+h2EVinf7PChNu7Xm7pPkcNI1XCSPtHBaNSNuPeqAgNghV6kEtZm5Pl6N3xkBa8vyWywji67YFuMe8A3kPGRQfCsy8jIpYYqsoUYWe8iWMGQt4qQJvg7ilFr+aVJxHvILfcM3EGXsOUqABKB74+qYKu7AoCIrsTxJKLQEt7Vfsv/rRcybVcff4cE074FPN3zFdaXaRvic6Knwugp82w6lXgk3TBiz241dFwB4hcntsJNZJNNGT+clx8KPO8/foXdArtubPiD7gXlevZZQp6tIxLCyJ3jhEQIZqk26miyokMHOD87eXuYVDWryzowtmlY2/iFpJQE3TytUkuKN15/mFoPGJhaqJW/Vf86aVGH4fAchQzxAtBjEKH7hx/SSb4V9s8JMMPStJCFMm9BnopGWfe8jJzL7JutRegckdtV69KliUxLE6Q7khqssvgMNw0YJOvrLWzp0ZTRFBLpnqyhdbzS+1K5FR58Yu3NrJL30uA5702Em0FDAAfyZ+qtB0251E1jxa+l9crUXhggTrwOIdB57+ocirdLeu1KVokLHwZ5GARh6VPjPW8/ozHuGruR/fH95tU82KaSXbPARuekZBOI/Wpwas6AP7FDHnYLT7ZzUSYOYhzNI5SfmcnJTXVhPY8IxI3d5E2RQimf/vqSY7bqokhOZoORgWSdv7vkSHVTlHHqC2XOFn9vjR+WhsMPtTRoX932fcqsCd3KLxQcpSiaEOAZvjfi09pf95sVcgOcGToiMa0uvNSn/4XT1TVmFKf5dtVBVu9zKp/i+jUyGYMnowWHGbZfd2QrGpujYNdbaEeatKosDCZ0M6URikivvyoxSh95JfNiVjeZIOSMUt3xzqNAsGfAHfcio6Cmjr6vStJhKGiLOFoURiwt87x+A8+lWqgNOw6FGwvTOlCN75jv2wnC/smNw1NqTlKkxknyz97RG5Td29OKoT5hHkGS0dZZJUcTjQ2cyjAUwrF9693o028+qbU+NHuEZMD15Ts+bw8DIUicNnG5+UZIgovQTfFX7pj5xsycrwEyb7S79rSIuLprSbteB3jLl4RBqkZP6NXs+xlVa6/eMyW24HOP+N4EUYSg4aBo+2U+aFzJp240HM7LTI45FF2mr33fs2PfMSn0KgvsJLLkWdIGJR2EqPLFOeJ0wR0MbvVwXnGeeYD40Kpmj3VqkMe8XUT6awfCe/KS1pF/lImti5aNquNszK5jnONe32f7JCyUSVFvbTC9+19lpccdxdoAmJZkuZwlUDfHKUE/SKmYG88Jg8FFa1HI+CvCnnqFA0IR+XFGPFiql6szvyYS6UD57S2DSPTPEbDUdp/f0bnjLbS0iA0an8ds5kZCRKwMTTTtXVIRip4TrXPfbMATjuPXdjM+Cz4ySC6iRyUCyM7DhlD93qXPmdCteP2uxKIHFFH926N5RSHL6+cQqH42CtCPSW9bXJXSHZ+tarjNk4kaGlst21Xr1O0sX9W9Hktx0vkbDkbAf3zv1+DnSyE9MpSKftExviXAyKeTvu8QOSMmQvN9Kr+kThUFOhXV1eIfTx02p85o+wFSvwdHGoDxb6nv5zTDhuevICz/Znxiy9shPEfRbIsP1OyOZTBulp0sOINyf4L4yLL3rz9wok/UkDH3b63eTG9CWkz9D8EviWyimgWNApiWBnlQDXloRfrJCRRYdf+MBsvqBWGXwTHaEbUXehEHTMje/QNX8h7FbaoJFzzC8FcLLGPRxEYyeo17UnCtR8duSpBb9z64yzKqk13DYIgEtEnGeYs2fHYAUx+ttPwLpUfWqMRn9ttz9JygGbkMM4AZONGsycpC/6FO1it41klBItlxhWsZ8p3cp6fWNs05uj+/Wv9wQbFUVcAWbTxuM8MSmzMH0EVO5yCVLvphznjJMPPzWXO5EL76SnqNzxR2dlIdCWlQ5kum1/IQUUe/mFmf7aaVbcxhRH+o3u5MowTjS/XHQWUthAU13HgX+rqR7/C1mhiZaoKjv2AvWFZw5EfOkkPXRrkxWcp+iwR+IF0HjJfBG16tdJFX2dJS8FORxVC/aFJDlSZixcUiC4tpADBArGKvqDjIYFPCx8vCeYsjdSe1W8kCAcq8rGqor2ZK47o1VyoeDNNBtk+rcrDVScfQJ/OtwyclxUlparwlw6USNzWwROPbZ4s0SnYw/mgxrc02JPqlQzTjzuwP0HdH1XyXAsk4Sms8dhrZ+hvqvwghMRbMLniu43+Jdvg/AZInmr92oVfiSmLF/RpJFmweLH6o90J+291keP52t3gCgexvxy08z4czfmZi53SMmVFhpNynuhV2XVfw8o6BEdEAkAtdr2DdwfhUKxavLNr75VIxqFMVdG4lod0aaikpqG6KDzvpJJEhznHKZ6YdrKmpp+vrTE/tu5aafp+1vpBVh3L8PTjlIwOgEiXibG+yUOuEUVhWH0+fKIuo1NGxsalDyNgWbvUwfWlkK0/old8UalvdD0CdIK5l17ejJG80KyJThuu+udnQONbL7ob1KAGxmjvi+9YIXRhUTCYGJ6v5R3gi7LsdztyRpTAeM8lVKbn3fcLYXk5Xvhg7RZ25LA38npFV9rruDLQYNH80yWzSgkiHbSCkOvpYMV5nHZ2VNjdq/1vyasugbuodC4TATZYsbSHu5C6qajGdzMmToSk2swsU5SeSYuvTkoSPbw6wzQZATnjB1SpfGp+yK2e03kA2XddBLVfPKsk3QBU80+998uqOU4Y9uJk2CqDQZSZ8zRWHWP9GVPF/Tzb5Z92NIOf3C9mRA51SNOvlXEAdnwV5OrI7sJKkM9cRyjHoJ/zObw6P467jZAe58f/xEzWnmqePtBE3D96wHBAhFs0kppfBikRjB5JefXT0QXsBTjUapR1DFyeVwarBZcKpcqR4UTWmdQ4rLGoVQ1KTlce94s92UaBQnMZgbWcWkujhr2HT9h9ybMHsbGH2vjkYihtpkI56zLtMctTdvFUkXv/p1+oxD9B1br2hPezProFSavGVxmyYof/yFcr6tNkIG0ignFkpQ/MlrbGotnNb8iMzzfeV5942j7X2aEFqSBBiO57rVk5RE0+b1bDkhp99UGytDX3xGptseLsT1PUdcumDto5OZwjW2KC9XGnxXzFLvXBPLZ/tJZywr8Vzq64mAPVuw1bShbgR3fqFWM9vXUHO7IDDV98FW3bdfYIURadfg1UQsXb8DXYyQ5K6rsO7Yqwc6+NUtMV5gFafwxUh3Vi2V9OIavx5lIQ6nUSpenqMnDYK/Sw3xT7pBqWuRHozNspdi2f7SeEzLRrunHcWV2LgZYombs1H8Yvbww1LsKQRx661IBkJyYQMk0UywAVNVnWiOXgO5Oty3yexU7yppSCfHTrwRrRyevH6KxJizz8PCwToWvxn2O506+vqe1PONLKw3tb+74Zt4XIft+zjDkFLYWpPVFV/yKUyynCWKxI7uOOmyx8w4RLYBuJy9Ln+NiT6zOu4O532f8HqojHjHFtcv8XteeSKcVWacoKNBUfz4sIZnfcVAges3V3fDpR/XSaxPaG1FzMm5M1i4KZUvx3RfqhU5uE7/kOR/sxdrfw059iLtzB20sexQzKAIfBKAPukTEeryAd6XLdEdpkplhsFqDgM162JrqrKlBtFE1voAtyVSvBFW9JuXueebbE6hnUk9Nvd5SS8F1UVt4uO3oED58z2NrkpvzsJAFIdZbi44m93t29XS0DMkUf2+8nw6fpHqp9MU/tu3XjejnUk/OeXwbVG0sfkvRMnsJRwp2tEZpI0O++hfw+peXlc21Q3/jEQKXaQod052aDluUnaMReX7pVOD7NJSV9aFGuZFULJmTuckMhwzhzClSU0fKrC+j7Dxsw9MSz1ozPT1qByjyXWg0Jou5kZZiCDNaXBHpfPoglFdpGnJfOMH69jptnDKqM8QOZbpCdyrCfjsGhTzufzKY3eQ53ngs5FfT47kIE1wm0pj+DMVX36l3onNcLELJdaM+CsTfTp5mitublibg5hoJ1G/k8xdRGV4S/X9Y9An9vDdGtNYYmLil9Ie5JrppB6VsgoqzRZboxk9sbZkoku34yqnxcEX4V8768coMrvi07Qjry5Qw3fR5Ap/1Z0gfNjwN03PCJynpdTw8ghMDqQ0HoeQ0AlhxBAI4Mwb+MlqL8+Ag1qM9S4QIVT+/oovmyPYlwfzD0gJ2Sl51AzJombDh8WRWzZhJ7IPEjo+cMAFcF1UpOE7SOvPZ7cFicE2dP5sGh+o2VYeX6Zpl33zizJgnUfZTxrGy/16yP2iWmIRtQJmVmsrAWzVUGilzz+rVUjM0XmWT/zThd08w+03Rki98aiH+fPamAFBgj7hPHNeApbinjcsv/uSxV482RMnWtgvXFJRA1yrvQFUSgdTOomz6vJc9ETs+EpJWyEYEfZ7INlXCr+1Juz0wqtEKtk2VTty7rBo33sWrVzjWT1U8q0lfBVO6am7x+yi0Uk9p7qEp42KU1AD49EaiY226eK+4bDhkbBLkoW7UwYG2Wu6uBwRDj8dB5K1Ma64tGAlz7ljFHeu0BB7c7QfKc83RUT9B9GmVJKOxROZBtp+4s+U12NJGDdK/bx2oFcL7xIWC7l7NX5E7janHtwAenUn6mXRhxzvmLhzYEVD9qzJj10p8JSWx7/Gm8JA073rubZNsS+p0zusG5F3WcfuISrbIpKYO7QVDruBwyk140lFMCsdxHJwpkQeLrGfB+xXtGO5+/jJVLuwTD7sU01/PHELQHuiUt0eOhVpzZRW5luPo/JzRIVotVlNajgjNHhAQ8eq1DVtwEsTcWFwZgHNXtAmluX9eOWzHNcKRcM4VZY2fe8TvFj7NZmpY5avOdyIyqxfep7r/PgWEsLMpDdBwkrH8N3yyTERJ3tza8JLaZ5e7ySD1u9JTzOLDHoK90rHZDB/kWmGxfafSfgvk4MzrgrPzziTVMorUhD705BJIZBlZfkLW812W9sUzkLtKIoSZ7MwN/8xqoWScxytmzi3iskqdcMg4koNFdPiyDniwGvL1deYQDxeGY4QqhbRTIhw14pFLbw/Iu7c1x9vWNkdSnzzkVIGoklIUIywBJxX0z4m0raaTMR35jvhOQuWnwY1TIkZ1FyY+swg9bMnqH7qfUp2uarRfaWKlzWZejJldRqBKHzRZ3ytKOzxmUtklqKhc4EnOKn0wAqmkKRFFwezrS5gB8VBhc2iaGYKdg/5OpdaG7bQIp2NdVBnLt2e5q5bQMKHADQe2JT6sY/jpnPfZucksLekySbKAGuXP1ZD8ZWZFaRk0H/rlxle1K1vvqRquUDT6xOCJw4du/wH7A3Gi3PSm+gW5azfNflPlAbXsG7lGoFojFv2Y5kYdTQi/bUZEn3Sjootb94NgOg/kMNrz391bploBIxt7B1o/0TwwWTtSHn3i4pLWPfkdZHxFI+HGS9o/JIX1x8S3iP5evBcnTFgmZxGVZMsOQ3ZJUrrkNY9IvBirMWOLwDHU2OdSRCOHgkuIor3W/62IHv44Y/sGHQ+ioS1NPqL6CVT19rwlRw9nGpGH9Wg+ov3RPGSZ6nHZG+WJQXlg2sn0YhPMUKUu285nW2GPbxFRPF5Oiw0GxO7wgXg0ZXkNn98CoDhfjr4iQ+XsZG6ODHX9jxdeeiYF+OMXSyYLIHbLoVr+1nPxHNMiuVfg79xMo1WyvqS1H5LsqYWkuS4YuAjaelgVDRf4jWp47j1OF0tXcO83cDRsP9CsEaKaTFbNvvF6lRJRPLIWf829YJt/sOgh/DE0As1rAHf1CuZa3Z4uyM1U4vOW21wQ1PH4EZmOT1LAsFgHAwn4YUhsbbQ5+DSb2tPt8ap2zRPly07yp1yJvBujCLxXu0lOvF0S3Q5zdrBO+BIJ740inbbYSxQEHyrx34LzJZvU8P8yNUn+3IY0UWEUT1z1qv4+dR0m/4AjU8+/PHqh2zQj28p8OWzNImJWqOX2UaEGbLtxLX+KGHoCLWncK8TVqREfOmnc+lCTXvCKxo/F9B9Y2xvS8UWMMHnEsZQAOHx/CxmxChfeQfDd0V8bgFKIrLGSkuTucD8rf2WLii+P+712Igmw/EEONYQia6LAncFedWMgz6fxuJV8+kJFreIsrDdx6DjJ24ReZ0NSWnathClm3G5G5G31b3H+ckHuJ3oldqMJF1IoSmntiXvwAOq5MU+PxbV3jpHv9KNuuYkNkH00yfAhfckEHK13vhxgqYYrmBqGDV23YETCsuDg1KsuIGtXE8SYyUam9nBisLyjPCOcF3MXxV9yYqrTJqkrzpivXFYhJZqSAX2BhPnfG6SlA3MZ6A8pvNRC1VfNHXakdy8LXRrJ0LO+C6eWUFvpMmoGPNHlv6+CONThrOWleOv6Y6vrJnSGz4alTNZboHsk/cd7YfJwJPB6c9Y+9adsbbMcl+a7wh9SWILsV+FH9c8NCkqfbkP/ILB/gNTFo6tY7TP/PeIf3+wlEBWwGa4tU07gYCf+DGZo9AAoXa/RJYr2+gryurS2VZC93hqiYrSdBTalkL5uacK/ZxEb87CghmUEnjUnoTWmiwxH9mCF9VzZIw7Uw2r/RN4WQGMpDFzn43ksWvFMGiI8Zkk86sEu20FvqP81mtDzRBo78DH1T9ByKcOauu2STXbh21QZyfA49fM9hSVCrE8JZnhBj/5lADvLwl3xyHCvq38QndjEAf/vX6vRLHRV9/pFxkKF2l8eC/NJn9g7i3Bjb2qyYPTiZQ3yOafxI3Kygz2QSpX5hqyY9PS22IJjl/0NWIoNUfZLVchkCKdwvAONpHLflavjDS/znjKG7sBZkUKMacbGhYxOoI9RfD6aBFeUF7J3+oIhwJzaIIfts8WGSBYwF5McOvlMYUF8EhbO9deS87UPlGpCexs2sjpbllA+Zmf7Nr5LVxiqglEVJ+x3MASq1v36Upe4huscnQ/WXIXcudMZMozJ2u5D82oCpaidlpjONpx47nUJmA+YbQE+2xJNuXir8+Hudc0KdBLHSUt5paoTW9IjLtd0VT3YfDUMFEugqbUMRB//8ibNuCdVCXpb0b+8azWhsuIGE7gZCG42p2Xwth3W8wDB/zDZptL05+87NY5gMoAFccX/O7kNTusdpx034aV1Ngm8qtcjpSwiUmMlIT4uPcTJTRTwaAirgMbW5hnggpSbNpXdryghY5dDHqluxGh8jETBM+82n2yS6as4Kc/ZqpAffuqNZsdMZpEE0N938VnGD9nf3fk2GdsEx3KXpnRlbp2fpUBvvyKwrpRHCWKrnn8EdGEx8qaigTxWT0m2s1I/VgSoBMPPX4yfXPYzPQivrzkSx06bcYX4JSo3Uf0VHJwUOCrW2f/d7TeI4b5K1VKX3WG6nU1laLS1wtNKpbJnGKMObtIm4TiUb4cYaKxyC8faDOA9zjcacrP3rIzzocnTvVPIvBsXsBjGsfG6jj7AXVxwEeBp+s5HWDpsk7fzLbP4k9Snn2cAVcaMNO/t2DFCwtSts+nlRzfMue4mLmSM29vrNw5y+55FRYnynhVaG4HwxA1R76S86FM8Ae+Q3klJgFCMyopcYrICy7pYW3ecM2f5fSri/6nEMoq4zrKr8mJEb4NlR5ftEr8T5c6IyDrw/NrBBJR4s4Hl9XM+tO0Rrr1a1tz+DcnlzT+uly27FnUMjOsNldzHrcOBBNvDF+24W13ZVqoGLcVvXG9U7+MXxNakQRGhS7bwBc5nBF7iNzmCq8+982jeKsqB1O7JLf64dtUHa1AjXTZB57blvh51Tc19F5LJhyHvrsYEhUd32sVQSUO2RzxmvENtUcur4R/i50JlZUtbvLH2PJTHPu6yCf4Fq/0nVJiN/QEpikimofnWD4pL48n2njyclMrOvllgvTGIoUk+gZFQUUoekl984CeYzd64gjdj2IsEkrPGjwzoUSK9ZrK+ucRgymBeRpHkvLcqN/ZcBOlz5nRl0kz2Z1eaFioaQHrJ8OZdILo+NnrLlz2tvfWn+evmgTuP8/Ly+UtXgx6U6AEr4WkzSZ3ljFDVmgTKUDzezHeNGBMX53LQPBDsc7OTPGTV7pT9fJPcQ5lvVptFvt5SmlXqWoJaN8kfDIZ15ndSPBiXl8Ag3DP1SPKihxbznqs6eDPG+Uu5T7/MrCrk1vKa3t2S7WQ9PubXSWpUyugQ5tTHzWqW0Gwi399FL6DaCXsui83T63Y81CrIt2inl1eosDnQ2shZNKUIjyOpOrwhb1GB88lPoWhkk9s11wG83JvyfWnlfWPKWE9tm6Su8NMThqqlh9rks3VSM4qHYcYh6YyL8oMO5ikvPUkHTHlfuY5yBzDMW0qfZFeDLzhWusIZgklLvMPlh2ou/VeDPDc7b/Le3Ya4cj12puOZCApiN9SfnUS6HMRUVcQo7NCLT1W2DQ/YuzpVj9X1tN9N90OuS63xO0hZKq5snAUsPL9LH4UvS6iFV3zPMqkeH9mWt09WnQYx8F8MvVGjFIM4bDq48e7+WnY/vzcdktluAJdiMlt9wyN7WgzG+lzBxTPLyarRL+Vi9RlkYzCY+Pizz5tJd0OaRth4PCCzDqET+i/eo5/Ts1GwZKBa+K6WNI0+ELIJzG6H6x8csMSAvT86MXMbtz1OvX8yqXurZAXl6kusdCuogrr62pMC/3AucbzCokP38IIhHeuBp8EwGoKhiMjaB5+ab8qGyddGPHCTpPCbDRQEACSp/7Asia9c4mDKZhcHu0fI8ZJIa8Xv6mXszsyNb5d9x2DiRWl0x31jqVvAglFHGhnoPiFHfEYiTKm4+YtH5MxvR4C3bB9bgc/e52SubTjoIW4n9vTBX/po8cNO+yUuSDcpol79KTcqBPBp9YF93PH3ogLnk6c1fIVvy6Ary9pKS6miiy377U50qh+FcdWei36Pjc90RlwORaJUHjxhbioPqctz2D/yloJ7M+6gQBuaXRZRHElPvqQFKpv/OqtCALkY95roQ4BVXdXDTv95lxkP9lWdJSUQVdR46n8/HNuehqZ3a3xks+AZJ9BiEMX6cX5GOWXRHoipNHuJs2bLJ7ebzHIuaukqBDj8itk7bDrXU0QfiFi0yiIoOXFZJq9SvVZX7TB5UK2hcWMLX7dxM5+0VA07ordO6nNMyCid/I82bKDJSEF8aX+B4w+wwXhH3BjJwZAogjXH9URa7s3LrkoWTnG77QxBc1p+vTyKQwIKS8dxUUshpvOI0B3KYxHCxOQ4Ql9VwApfxXXC1kuJ5EaNNga4QUIvWxJRuXgnO2Y311wJcG6JMJbUTTXviHfH8uLcTW/NdIdeGYb4RyvdF1HPvpbWvXu7UfvcJhzaGsiKGGkmSTxJkbMMep5imzXEjqBazaruXpq+DQO4+eSo9jXvJ3uams2NEI0u3OJjrIE9OgACSTvfx/VfT/qzGWzpXz/yecQ+quSowSt8dXxRDXYJZFVSm08ZqXlVDMnW1k+Mq97jFghWdshXa73ZCHR4vTwkATUKlqWgms1VhB1Bxulf7PXfHPc4UfY7uCFzGLeFdluM7KXH0epydcg5/8uCHlv6awf3773u2/Lr9esJz+9kekQa3KHM56+wUXGPoarBmlmzfsqHwi94hwjMGJ9rbE//Iw5KsCW6v0nEkExXXovNOFVQjogNYGNNmDmPdU2jF4anVU+30Fzx/dI4+8ilMFAlAJp/qNOYD9ql7VBEXPmtmy3bVDiOZhB3y6JVhTeW6UZdXRwXHqW/fVC7ZaCzuH7cpslxbsZSH9zDnsupYLp3SuZkp3K+IAsu6bXSj9sGg7TRIWOR9yNTSM+M7Xkch5aFl4co3f0UcbAd6vb6l6CIn41q4hdes76IZZWxO2WV5CoDHEn6OlqigTAPNXucSfaq9BdrvSfDlZ3DdmaVNpumyeatxieSRChLg1ax/+qWXrk+gxve4JTQamlB5JbXnphvNck4+hNJpWYh9ZMTYv3FIg6RBCftxn+EV42+mv0otWWXDAPDJfZL4I3dGQm9sSsfOfYaA3sTWYVKiQ8LWcVHOM+35cFNZEqy1k8hr44LJ8MFHliTWkPmOrn9+tmv5RFPnruTgNtG/Ut0rg756XjfGBUbWkSpRainKfNjxxn3tTjfVgTgy2zT6+GZxLG/ubNCqkvEsaS+WI+yhaGG8vJkm54Q9W7K7nXrrKbW9jsWqwg/w2Rm3BYT7PbKuL8Kmouyda5l4W5C6G3GFZPskg5i1a3urzy5OJ3YCKEOT5lOPkEJa/eOJwN9mTKOwS94asc2fc5Zxqe5y1W39+aHj997a9+UcY+F2uCK70MegMjKHPhQQ8er0+I5ES5UDSOzY1OBg5V+eJkG03bQb8XNtC4moBoMrhcbL4MqXWLtc51HXqIkKKOF9mqsbzybQzwPniKqFTPRqGz+fOIm7FkKw0+Ob+ij5Y3wYlRNrQULBozNxqPF+zl74XXZeUytHjLmTX5yhPfhuHb0YjRtTtGBLOJrHT15dLdaW0ubvnSZ3l1ZaEQCT6n4pJtTyu/4wmECezR1z/NILJaDUSq3TcqlaclVwvyKoxXcHei0ch7ngfExXAaXGBnwp+zyGUNC8MWcgrsA/lydNYYakG/XTMnf2II+l0SDjkxENP8YhQGj3MBAW4zhxciVId3DP5sEt8a1O5G0XGx7TjEN0Y3hbanpzWE1UeW6zNfKmNE53HGgrgL7VaIAmgns5PYkF4xlbcTND5BbgYe0zIJYBHwsVqOytaH+9I2J84MvRDrW3Pob5iX856gD7RqpQqroXn1zf4VUo0jD9lkGT4aaPImEmRPp5ZXt/Xdopm8b/Yj7j6jyRcn/Sc0+rusnIIjfb6FVcG5uUvXzay0tILGHqYIucYvhynoCzwkBz7tvmtYl35vO/kdFaaLtBsm5fdozlO9MLWYZqaB0nLvW5+Zkl/PyZVbmeQ3aj37HRk+rNeXGrdZtEVFR9Y9TbfaOtMbrHzjtVbhKugwOvsm6HtD14Rv0RqWoynayFE4Eh3pz6bOhZRm1XAncjW1gVebzB1SG4W7odPeM6E/6VvYQJx2JvDI0zbav0sL0D2c6ZOclBIPGs/AL6/OYye1O/TFSUiiM1GHyKdTk/sU6zIIM4WRkasMJq2fTXzHUofFDE4uqhdPfjruzUdQ5n8x9AmZSSPlpihPVUvImi7BInkaDskyRL/TqRpsDcxc0TlymfxazwFuy87w0h8uEh6tIyUeEQnjGZfEfBPG4fc0TsCT6jw78VWzMiKNMvKTjmDpwgjsTgrTubovEfCy1eAOWuygsvHBq7VkoUuEo6FXoUl8qbnegjXDRsGUKF4xi+dL5+pL+hf7Wz0JuNNCh+DPFj4inVzEzSjdu/KGFy5ph9jiZN/bSb5ItpMqGcvFW6fmLb4SI1AE/fJrca57qy2mbu44B2lpNed8n0NMJ+1QlR+86u9ZjW7GY2BmBGr7bhM+cuSyIIomzrS09XHERvd6DyBkxXdbXJ3GWhDQB+l4Azv6wvOpZxNtFRBeWcAz0JyNwWOWaLKaHH7JE6aFHj6sP75gLD1AZIHDsuW08qSjUiWNlXtE4siuLQVXZsAMDJA5ckYOBizbbgYm7podUBkazPhL7wngvOqz0JD7Hpk0FVBPiNHfTCqIvV3e0c5KgbF/2IRFZ6Hs+9r1ZoYCr9FurGrG/J0Dblru04jW/U6MBkKTV3Z9AYSDP83oBuudOrJ3+O1DTP3Y6YcFtBf8CFb9U+ccmq965cq+tAW9KI2HpXAoslranPywAeJLfCdNIXeWeQazVv3me+tduwkx6EJJNw3SzsMwHVCxGrBXRG4eeRkcpzspJ/+Znc/pXdAHAa2NmfNqsCPTz+aWVPQ+51LrU0cV86bU6RuJL9JXgcdLtOSLwouNyB0CSDduVFl0HjnFDCOUm0ftWNQFco0cWVbwnj/pq6uXaMv0RK32LCN/u1in+xvA8FTSw698w7bH+PCW1Af5A81KFSZ7PMU8Ly24J1d7zHfDn5g7rRGO5W4VY1hjU84S0KzWQ41kSndlNaEgGIMN0HKWEWlaHVBveL/h8rtrOGl46CXpxdcoMpRZXkPr4PSS84Pn3xGpGjGGlw5D5DCvDuGJhOzFAyqofXairsLm+59eFZN9hUk4qMrJphKtqkCt5HDOxg6Ndq+r8RS0fX9H5A92zXdLtXKJFVCVA2svftadJe2iV36lYOlqjwr/Uu8WbBC08i5s/nqcOFmH6t2n0Gs7vuR9Pun3P+ljZrgFkZHCvusjCM2gXo5hPtUHgjadeKotevCzm+spXPLbJZcdVb8hvgSXdrU2tAtqcBoE69UiZU8pLl5z9r5o6dW76uDbKlD4bewU0WDK4Bt21UHzcV4SndBY8BU/0msXkRqnkbeCKi1PHfVrWDZYnBcTEMc7siwgYK6+4M8jxmtNNQ6KRvlYr1MbmQlKJ9CUxAqaVgqO4AxRcS5Jo9bhsY4k8TM9vrTid3bYsV6ryIFrW+F5gdovCVqkiVklrKSDIVR2ZCZVJ2CrICQgxjHH2AIe8B25OkpbRER0/nR6K0+aZ+OFrKNpFSczz2J9EIcHPWCbWziBKBu517kzOOoDLgEnm5vgeHxT6NOaUj/8/fSPPErtFfRLZbGSaIcS0y+t2fZuGZfXMoMtPqsEfpPmjRg1SQMCont12VkHuo6PHXRohCiASOR7RSR+BFQknTkb3vYIMqIcPWHv+L2ltwMSreeOEsfn6qN5lZ5jazL0dRIZ6g6qTVY9RzrvhLiVrYx6+Wdqz2pvw5tAiHtqzYzXkDNFzQgiQI4mg9JU8RNKvg1tXi3VeGhC30xUx7d/ocrMTZs7CzKvs7XzbZP0Y/H2Lu3EtvBJbePsWPTftKfYSuztRs2IfquoicLMwoF0E71gdpDREffpcipJGj5dfkvzaxN9QWrAxf7FV9jfY5r23+p8xD9IfPIJ3wqe//Eh/7t0XWa7qRezpWgp1u5Ska7CFhjWYlC2cWtDLyqOxs+pyxDhAmmgYvVVrg7toKCabyZ/5K6z1Pjh4pF3J6NQdgYcw4tKyV8NOxBUrD1ZvtxKZqu890JaN9mp2O+5ii2bCa5nCThGPkx0431sPkZ0zl6Yqfntk3jKvKQQzW5yQjf0a/hXqe4cn2qU+URk1ZCBz7si2esfGpdqGtMJBwkY5wDi4oa317LeILb1KQl+OaGBpea9kVP88ML3b7P69HmolCf6EovTTuPo3sEOo7z3oOxc7lulwqgtUFtOnZMm5YQ/iF+HU+fmaIMTnkjEtBbrbZv7MLLaj9pIpfW0xur9MadR/6lCK8lBdhnq26ADdqSz0Gn2lnYst7Xk+W1S7g8Xxa4I4vkNfQM0uk+8X5SR4IdevLmbXIFIRT9lmF0ZnkPUQbSntxoyl5HLjp+mY/fWAgx+OBx+uWNoLW3lNnmnm7GbjMAd9zrS1uRXXDf/hamqt816hlyWie10awy8Gy4vJ7Dt6MzZ8EWncGYGsrs80is1n0g8U0tu99Qzq1y+L1aoZFED9hj8MRu0Iq5G/u5jVU8jB0NmkejSO4aQdjcCN4WFGU5J5D652cf6vcziHAo01YQz1pBD+HnRK2d4Ezk1zwwX+u1TebUVNo3Xxu4syVefuEbC6cb+X9Fp1bVrtBa9FeqwK50EbtvMGjx2dQ3evwZK4hWpgg9C3BiLWvY6CZaNMykHXbBaS2lUfEwJTZYrSo58qQeQBxQg5cVUm0qVE1kwz4p1SQgJ1kDaR0suTyWrXt7seCXBsjjuG8Q/7yt/stIvfPKzotFNZ369e0+zWXpAGUUoGQhamJPzqMg3MVNT0nLFElmXG7SHWJdQvB9HbxzV39h1S5kMY5oq6pBGDlbnONazx7WTjOnq/YQW5OveT2DUBadHvPxj25n4/aQcvLTqXdgkQX7qTEwAuPysEPxJeJZGJgL7uLICqQj1DY+66OZmxvXlsIfvCN/El45QHlofHSSekFdKG5Tb4ySBop4TNSwTSOKzJkWvDuB/3hjv0dlIunb4Mt2q3oiK4YaOLDQ44JvXSX8LhK1+drWUYWrI62uijJbYNa/ZygpIX3rr4KqiqsotyH4nIAB/lTVsZmIfmWxtA6CN+FjHn+/mTtlqLT6GXiGNPZkezHmFsi9mPGeHg6rLJ9E0habSnWxi4oaDnk39PtCfKM+0LNueI9sY1EBnFJOY8R0mx5tM32+lrx/MVSMO2xtKgsIs1MmNeY4O9wQY1rv6ZuUrbEiZeozzm7Sz/TeVTuqo6nWDMiwWa5+2GoJikX43Hm/AFrzB3BLVEA+JxxNO1ebmm92zxphAl5ejfFu0Udep7Cg1+u2nhGHMWfiJZKCpLSpc7iJLa6/fLy+s33KE1oADaXBNHQ3O5rhzkcJ6nXTEgvM5jKaQOQYFGeW2sbQkldJxH3U2yERGpcG7hIJwtXF/UAbvc+jxQncE0vWnr0Rov8JOddjBXPPWNGf9594XxtHHfZIfQJMu4g35+KA3J44abRI/cPQH2q8YQUaRFM3UKJnJF/audHczRkHO6k9Zl1gZCRdtnCLnxEX49LSFRUxOWV5Iue3LN/V4WUxPLFZ5Ro4qJDawPVXmuN09gPem/35opJEo4vGx6P1CjtYPKfaIg8WRj3tZwG2tgRyEiLuOKk0xjzxT8V3fIwT8/qpZEaIARLmrKnV73ikfFqQRg/NmLMiWvR2Z4nPlTIfK28Lrgv3DJUadFEaEwa59xuH8mA8cMGEBGfgL3b3xNImsjHw6RWLZZg2ptWYU82jPa2abjchL6a6/oiUqmQx2PothYLDfg0/eDoAcYjbVvX/H4/Rp45V1qsetCzx5wVw6wk8is8YYg4GtjvQejbCvdU1uq0tmMtJf1ckp5yrRvTqejB/RZQlVRfwSdKYf1t3dXL95YTukR/FEka177duuCoA05/L9TAep8M/19NKZfjaRU5LOD69HJlCHeNIVCgWmEy2DA9RM+fZ0opzqbfth4mS4xYq/sq+Ei/M/rYA0NCYo5N8+tYy5ZKnoHTfAHpr+yMMT8lxp8VQ//gu3W/n+Trt7SgN+z1xTkb7j+7fYclwG1Bn2iX6+vc7M4kg/cdUiLSU0emG2K9cH1R3HPXHk9K9FmUfqZip+ep4ICcXqaAEj8wUtBHjC0VxlnzOHExPV9ld/6nW31KAen5GyqsE8bMb/mby4reKVt9SQ0E1L5EPc2Tistmze72HZ6ejWIAYWM+qzNcEd7emXUjlZiIgoopo+k/kV6K9iN3uRTa1wIv6br3vjJSa/jP5sbRQJwqjJvqHWhPp6rBme5AJKAIXoOR79Fjrf/ORIRX00hHRfc5ecNo8K8diM3eaU0H9pN6h9IKYD8tXWHmyv2wahxGtGzJgbVTQZYDjOahhQuBgBZsixtr9MQnCdLC12ufvp6NzHzYA29ymkplqkUqootuDtJn5nwYIW+ujXRaufOV+kGDMJHGN/bH8tTXitdNZBTsa47Jemphfav0hQRUf8aUl4c2VKT1q0PCjP9Jr/BaWTzy5YinenwZXRqNtjW7Loq1CWHH9ADc/V9oZby04w7p7VUGQEgmJS40B//pTXVYtj+YhDkxLlVrmjUq7tkkcwRoOhG9r8ovCUjzEviiQe5GKp1hZXVf3K2FuVMPZT4u5FO3XyVtj2aBEhtmuQN3ZCCNumCeUlvhNEJ3cVM+ZYJwv+KbznKHuvafR3dauE4y6ZWmADCyJ4+B1DU1t2jfpyql8VG3c4Fykh5jKCYgPTnl0d1W9/IJ9igNOg12jw6R1fJ4IG1UFZXIWFTaHFTaIY7DYVLVeifGutyEr8C2CONcJUhqCmcjzzd8zhDuOXLVvWDbX6NDovL2JvOKun3XRr6D4Ndgr5uxFFm23hEcoGb8fpb3DqqB8yKE4dFL1HtpaFcxKx31fRVPkG/1VYVCj1dLVtbw93h+kAhADnRxqNUEWauIPQPi/Hq80khnIzHtHHPc/NSfSTsGnWSy9d7fkw/uihwE4upeDaFLx5Mf2guX0T+HDnN6sWndIhPioW85nuev6d6tVzA+KPRGYMLF9EE9zDhC5bV4ipxcJMhc2UF+VpkNgyzSUlehXEJlq2UX+dlH6kt8RnTpk/3o0VZCsvbQUQ1vP1IzH5xSu3tSlT3GrRkNrzMAZRNHBJ58l8Kjt5vt7TZNeIS+/3AqtcHZC/ZmnBxG4Pur4lZwr22SJol5KVIJH+Gs8V19Kq3iVaX4HjITmN4ngeNgf2HLP/ukmkKuYKJkxKP5GfCk3tH3Q7Dira1ROlxSLNM4PYWbP7Pvm8OMe3MDAYTgUBZdqCVKmsYs4VCVyzv/QOstHR+8yYVU2rn6nu0fBU7sYWawoalzUP5UKCVmGjlHOo0f0NWEAhUqIYzXcotyV8TT55WKkTRr6xvZobQ0mlbIfMahDiATbBLxrNvzy+EA1Pw7IZb9ObMWIaQwKPJTZutApIG/eeRe89FQxUmIPXn9i8nXrhRnnGurroUTsaOgHqXThmLIZBPMAR/SRTZgVs060F2rPGFeoO8BrA568Gqa7h2dIVPK0h+oRnpcPMKBDtmizn6cbX2xxZQNnoloX7iy/5sJ7UU94kqMXGdRubtvxldZ9h7HBEPOhbynu+pLjx/eUz80M/HJZNGBgUuG3ewuLY2MPvJYmutxl8RXHUkhISXpjnmU4nfqf5ZH5LTDCByTOkxCE76RHwRyZSJsBPAxd4svm3BfilNEGLHzTyJwq/JbRzcfV+yI9FUtMvE2n8FElSrzKnj1rEwcm3UuiFY3HMg21ufxsV2tSTy0hKcDERnyNQ5uHb4Lfwzapv9hOnULCVK855xLpVtuv3n+w9ybC7XWAiPC/bNLwwPG5UBtMvEpwfCW5mqp1tjbB7NHRmv+VGL+8qZHBcYSvwR+1JI6ZgXLgrvriJQCUcC2QTXMHjZrd+2YBFAdCc39PcdREMHyggLDVpL5w4mnIPZ5Qhtx8fbeBY1MhwZXGd/ZqP996tCJ2wVUX0rf7vM+MUlndoVxIvdZEMzQ9JM4xTMNU5Wk9eiPz+PZplb+ng9g0j1sCITjqQ+TQvJyBmYoR1oqga0q5NSezdXu0Q3uGhVR+4y7JQl0w0L+2KyF+gpfIFue6qiSW17615ndpPn5RL/+WTcxl+4gtmtBenVixbiv14MD3xY0N4L3LK2n6gXdhsMYzhfNWKE7C/y2xW7otfVniW9pwmSpf8pvF8FGdK1f6CZCWqJte3jriJOY/VBbuJ6az2WZ/LTrgaTiSBUhCZB3z66wo5goF0CRo6QgPctE8imGoQ+V4EgoaKq1Uke1F1oAU4FEWhzTnvLKa5PNP+5LfLetOQ6XR4FmGqm3A3I36K1wetAEVHoc9mmtUQgxcDnqBjVvlIGUtHbAQ5RcfUcEe0aSZ0IlsMlachdjkfQke4F+odcQW+LyaIKRdDLJek3+cKNGuOHBmf1Ywa5vZtCBZRib9rzrdV7lIvCmkle6G/AIsROyCdFDyQfYdGVeg3GqScP4utYqu2sJlFtutgrf7TpJ/E+D3LVv4090x601DttflXCB282D//4NWDzeEtcGL7ql5lMIUgOPk5hmefIv0wdv7ifJP3qqm+L96ywqnZF1IpKuwBy7LGKjmGsiimzlFTUiRi12P5e+J8l5hp/ZcpOVKuhSCy60AYm37L+HDDxdp1+fHhZ+v+txcRUWbJg6nd5n5z1G4Cs1INIUPjErzj2ivB8uPhLXHU0nH1Jfixe71l5EmC9AcFcFIh3EKC9LKL3/1Iy1Ej6iO/DHTAM15bjXO931bWc/zhthk6VfYOv38yCrYsSMyYZIuwuIBgQGrq87BQl9u5ok2ckLPAwja1tz68IX1b97PzTpQsGY2nFiI7KWPfMvwCL2oZWL0b1eheI+zUwMadunJEllOVw1R6hnnxt5ECtBBqI499FAIGvcQK6IzJqHaYERbSRdLvvJwYB/D2GoPZPErpEav2pHnYn45lrdh9o9jR2HqStfkr56u+4IZoi/ShhMYOa6rsO37Km7y+PJTyNRxi1IJtJwjW+kvT5Ylqio7CfGNjiNPeLQbz3fpcX7xygF9BouYXu2RgrRipqdQe4gGqMHYx6na2R8YXjWEfdLo7cRt8nfP1KbiMu0xhBZonoYU5lOMZDvvIW+TZsck/LBwVblX2dIj7rdL3h0c1bpC6vgaEYX/6PUCbE9gWK+DfFqSlSd6rJqZ3fqZ+7PxJaEtRjQYNRKrOocEknqjN3nvCZtq5j+VNbtYvvNwp4/eWm2+dPalPrNjpXYmKoWYmPyQn/Hl4++3QudgHq3DYqEjql1tLN1U7oycdewy0fRsu0U5txqqlmd+ezauddMVyD7/tBeYJBhquE/s8O9GMmTf9zL5gwGkdaq6es1d63O0HDoRjQoubs0MMZXt6E3qBupGk2PF2tjOsjJPgnDzN+B0ekeG6rHy+ovoTiYAFZFyZMBe1PrL+H7hnoQpl3PWIllE0tG5wFYetbEDJYf2SrQ/jWUW41AlfDnVMU4LYNEj5SbTyvx2mkVDZcPodO/G1tgRWycEdZnWKNRTIqrVqWbK9y4ns59ihWS6qewOv1C2GncofEFb+0TLRJpikbdWm+CNbEAl2/2TwJdlG02HeOd1BkFm1OC2Vw8cEzuuPcC9Q5U3a8L3fx97aS35UTvi5KN2TDsrQo5ioAm4UUrFb8sz9vwDkExvsJqrlwCgXbfRTksUw1lt8VwbOZqmQAP+nCWap/AT1Bfl+nXbBcG/ree2vrI91Z1fcFeqUBYbKktAbAeGHfsZF3XFiqMghJJnljs/uv27bgCma3aY7a5BxqLwfK67CNbyGNoi0Pq2ZjzI3/87UuWoreRdvlwYl33+ULMEu3AZwKGcW7HxZx4FsaMOMbBTz8IJpSCG064Q+BxS77M91aBy41yBxT2ACtMKR9/HXBdTdAuwA5vlMYyGiyJ1GTZ8n4LWTWy+xqLr2kK3VyqAjAilxvZwt/PfdBcigWu2qZzcc1S+U/loCeFzIY/KRLC5oqKhFJcFWbkzzQ8xLfAb71xo0ueSZOUF7yH6++LNFr7LPnT5Wgfr2Dk+74HFvQiqk38cnvYuKyP9c7qqwixDcFeaN1YJ3De0rYzuQ9tecNudb40iExEYXOSVg1z1d2eWM/ETMyxYaeWRxczcEam9zwPGMOfnNjIPBjt0HEm2JCBtEq+jg8/8vb1QieFE5W3seN+LCONfh2gvFysXQ2eFhWx1kDHNI6Ya0nhBtJlfw3nOdlBy6WQIH+aJvwy+QIaixbWi2eJd6Y036S/VYtHrPgxO7VbhNbVZ1iuN2RtiFDb14VtywXYL7R44pQCsuaQxSh32yEFu9PZM3c/mWKt+2vd/vuL117XD4lNsusXI30PHBGuRoo3wjukyJPlnuG9pOMOR020TXtQN3w+yJIO/hb+Uo9X0y238r7RbBwaAMoVfaZXWBtpg3wz67D8xGl+l0wUDPDgEUrUyUaPeFH1dL+Lmt3FU1olqKX9RHhtb3GHqtQV5x+cuCAz9no/pf7XzoxVyF9ygxkz1rHlz9ggSMuoj6TePOqyuXtgZr6qDX5M4m6zVf6XOZ5vFypM3dN/WEXnkNJbweawgf7krR5++3hwjzracrMIKjDBAwCJo7TlKksoj/6dj9fY5E9fjZQC1zsef0bNtFciqZGmyJ30hlCFnwy6CsVpo0lG8Fw1ch4eF+DcrBe4dAIVQJPD2c/DJxuV3Ahp7oXQ4xUMaBe7ctlsHLMYBYiF8zEZMRuYiNC+mWw2AxsArkx2iSkzYiTxNPCPCwtWv5mgYnP6NrcL03NQTJMrXplXWPKrsPubbuwG0yay1zYBoIvhgYCxozB8NIFyxYHIZkElwbpOBsPUmKdSmlqXP687/nt9z/c0Q23Hr8CEM6N5w3wGTajznAQxeuyObhZvAafyMn9Q3pZQHY11SsDqV2m7o1BOnADZ097tgeJyi0YrN6BRLbPpnyAtW+7Gaz7ezCK/GP+Q087V/8AZuvUB/NWUsFvdli6zK65oih64U4ne6eQZtLBV07sAI52ljxdAfhxruJwnflfLJofYKrUdfdczJXlB6Lfb4WbJyueaYKypN9TZCId5VEcAoes3mWcSD7kra1OAzX6Oa7dEVoQ1pnmLBEAcuZjQj8vy12z6gdUBDUKK2GWd+ClsGfQE+3S5qSNwe9SaPAKHD+GmanGUO+lWeZ0KOldwnG4thZOyxBQitIckZJMnk5LfFt3wbOXSYkMo2Zqw3phrc61W9VCsb7Gz5xnX09EAG0AMU1JcaFHDWrpBVws8Mx6q6g2dNqhr7Tm1TYZjIIdzRt6csWXzRGdJKn76EawScuvJbN8AiU3Ws6qhmGINLvcZ1IZ7wmQIIMOk8H8DEziiS/4K+5CkYCldO2oaAfrRZkTtDnl8JPqXMTQ3KXCsm/fwig05Pfg+JYvozbOJwpR/jpqa3oRJiheP2Ubb1RDHIowdVVSkZkAPCNmhb2Y/zsgbF8+Wc2MPpO7dcvIcksFY/jjx20bCOksLp3ujAXLQTR/vHcieRok3fB7yZ9v2iQAcnUgL4UiaBzq+4kJ/D4c4/hzsMVJWXRDLIVlYdSbiXlW7j6ogxATqVhETQpRIsr9DsvW/21ZB695q+QxlFwvnD+34UX7rkWUOnUHWORnCItNexfNdWtB4yuxSMdSiZUobsxzzu90p9LPD+Rdh+8n/XIiraAOKcRm2Eyszrs5br4uS/2snGFGDw8+PUVbtx94z0b3iHQqQLyHF9QAMvYf6gWiJZpJgthbSMaWHjCy31h0Q0eOgVCN49XLRdowQUdzxX4zjEv9ejiiIGsbCSSxMgJpAG07Wb5LzkY4ylIdL63yS48ChUE8Hd5CGa+S+h1dLMhjt7s+s83dd97SL6XbiQ+YYZ8Rf4RgWATxfvpmHdTvKsnvwOJKz+S7M04RjNNoMXw3w/dI0rls+QLHpsKpVrweeqrKqqT5wun8olh8MpixRhJrUtmDW6H529XB+ou0IYSjRziCSOwMR6ZeLm8ZQ3HczOHMWd7LNn3NgVRJTi1GYgKwqu2hYxNpxPt+R0LyyEWze9F4upajT5KoVLlP1mrcXOMFx052pobCEBMr2IDLFQXlYKQUTonEjXU5efDYvcPnimLO7SCu2N9hSwRq+ODvFqle1fq9MC7hvPm8XdAKyrPdmyiCHO1RKyKYjqSBQYFy5npJw62zetc2lGgzghlWhtAi+lkWhunKSBRhfzDb8UcZaeaU0s2/sAaWT8RDTB9ag0aH0EzM+VukoIfA8y/9nURkE1kAGA/hmzi3W0Ymsc72Y3dXqiL6FCbncDCUT1EoHcNOEQaSGx76d4T4QCzbPRYfL/+SSsmSJPeuxkMR0AHsEISj+tDBGVzGG7zKX8V6ExmDh03WBJ9rxmXS8UEFcayFIcnGd33rEvGwbuOBrVCJhuwe11WbFbNASbe2oq6XzTMgCY1EHCVP2IMjinfKec51u5nDFu4E6EgDesMNEA3TZMn4I5uNxnEhXmBMrEf8yBpwEIEC6wHvY0qJY011MuUJ7HcXPrR9IbJxUxswrxfZeHgDjTXupagn4uir+z9FRAqYJ4Ozab74c1TX07UnBk0b5Hz5J8W9Af25f8B3rPdHKNKK08y0er2YN/uBPaynVba9JeyJUmqjNVwRNBfGLcQegXQvTF564yssm3L5lpuZKqDoAjgO2uNvoCU1o1cZqv0asDWhVzuwEOJnhm6f6nX+d8ObrBubSYvb2E+GTimKvKwW/jSVK5+HcQjmb6fdiPzCWDzBfaGtAtBWyFmLCaOcpgyTkUq83gqbkzphpWKbAPTFRwWN1/4E76vYfArscpoUw3JVbTX0umb6+ixokVpxJWpAwhl5fmwY+UY/bUKd8n8ocIguCzlVGo+yMKDwI6MlxlRgh7e8r4R0HBHZJFFk7sUqfRh0DVJPkZYNfEir4abPRKQB3gpZT2cjFfBjKH9t1/2YNRaFANoRT3moW0klhgGyMuInQ8dQ7WaPJSg3r2zKMOKTkHAIO0y/OWhDuhkj1AnyAMKbmhXt/pEi22YhDJyuc/HRKcb33Dayqfj2XSpuTbxJ/hIfGMidp8y+VuwIlP5uOID8w22W1Qw5t+lVwpoHADrJ4Dovj5PNNRK/vFMIe5nuoLfhP+qZ5w6Klpj8lnIEvNvPQsgXqmMWfOS4Ilj3ZrsIj5y2zXoZxFpkWtnABt24AzWx7xPTLhULgKemTV3ynOBJy4c08HoAVbaO8qmB3f0SJ58P9eP1VJtQ+8RARASwerVDlNSKt1oA/IRFlgVW9aRYRmopVqOsEt1r57kolZfJWyF6vOa4qFJcLhFws6PPGpgavpCx4kDIPfS1WYpb+kMLoNqwQdi/5qgkpCv8nJJZlIf0hq5lnbWFuvZZwU4PApJT1ifFlJWAcqUV3+bAnwHQoxJnJePcRurH968VzyRustnbL6lBZha+TvF1y7TWwY4wzkabYfJfynA11FGHyZDupO2ZQUR6dpFoui7gk8uA8781COuP6rnrwo6I087tw3GNPg0LNPDBZ8UBVr4AL9YKhHccZg93EQ6GAmqpjzzK0u+c67z52z3JEaLCs2v87156W/Ynv5chJh0LmquBy+wFd/Hgp7CEv3Ctyg1sX5NckXvZPLvlG4IQYzQwmSH9NZrnovZkH+uWGvZyCouZ/DtuxbAbvFibiRIBE+Mv2AvsQgcYtd3TqqVzS+5xjYqBasy/nrBm3phh3sPZHzzVMZnIZW6up8DCM1H5S/ctxCYPPx1WdbBI8pswyz2NtjBi9Ve8y45Uka7tcchgqFS+NhYY87BtsWEp34JAaV9E1Z49RdrLteGaPY8Lb+l5mqP8r6o79kHefLI5zwJiS4+Zev2F52J0EnMKWoT25PcWXplSCvUG6AQwk8zLysf+FdjzcQnpb/IB9DTWm5vijc+F5iCM32+0Hq5XwueiXvq4S2ebt8N+0BvK4PuejOfXXAvakdX1xW9V0eWXrnp1iqcYK1oZJO04nLTRO2BjR7qji1Vfu/G/5B1Y8oOWs7o1QnonXPanmZOsruca34iE8a7XX1wDeImyxZKZpsvBiQakNzmqwSm8YeIrNk4H/hcAjUaSR1cdaAJ1ZXOmIs9QHatEg53ALgLtyAfI4/G0NckfMwCQ+FD1/As2d5NldUzHQZAr9k4uPgz6sTEwREff+h3d0b8CSmrCx/FSPtCE0+5U+rEeqXeS+qi+PUXf25qfC1ChoVVl9flVwb7b3OLR8uyyGDSq8K00XxoESYRETM4IuB8kc3dqqg8Ao8mYGZBaSpJ2lOxYoyT+47My2loJk7P4gPzp9u4GqxgktwnQ6YcAmMWSwpWa9OczYz4RpB4E8fSoGd9ng86N6iTe5eET8JYbERT7yBpU4gHEtsBhR4oQK7PHrucWpgjC0j9rDu8snsni4DVNoHQRlSRCu05dHxTrSuPiUl7fbKehxXFERXcSSC0VkTmEKPALa8Co5z2rA9JA6P8wZQww47WjwVxKycpy5dxUp0/6cCE28oW42sECUqBJ6AvI2w+88cWGQNgfVFolfObiC4UR+Lyed929doVoZLTfARz5rHF0x2rR2yXDZrWHxzAlZrr4bdYqreKaSrVku+wDYgnis2Jr0Q7cRXM/3tBDlOX4MIvDRgWxvje7IV+2v+mW8JD3cz0f57+c9A9t/BUNFIUkP7O0XagTcPgDcxTp7qwUyJ5qJ1E5lA6dmC2R/W64JLoFvdHA9JomTmf+R9PH0870Dsp2A0BM7TLXGXzdpmAC4D0g3fSO0gp3m6TrMoc+fB9/WBf1Sh3i8OsUAClxatMEczatadTYdet8b7gcVTCG5FBMFq40bVtTT0giELSKv6IJsqzJgPoCsM05kFBVihWYngAr6XQ5SdxlJtt3Vko4+LtN+1fFZYtfb6+XIQJEaX6FvNny3vm+ERPatPRjL75MjYjQaRAp+/Mrkz5GQ6YzEt8dFqs1JmxXIbqw+I031m9iU0uzo++Ub3mxpyl6jy4hxQQACL1usTBK0mo3TJC9+K+wO4d8qzDEcdQQrjeeXDwkFZj4Xy87qcaDdzhSedaxbgyHZMjsQRarrSGMGqJn2f7SRMd5WPcTh5oKrmJtw29GVsPWCO+C5yCqdQYzRRXSG2EORaeI1JUY5mZsS+i6gsG0HiU4Cxd+XGTlIKF6MjjSPTeyvbQ/3gXmBmdVCUCz8yTs8XJ72SKsENFeCoXlUYmFPxr5gVPFk2YUWOwAJ+JZn8EXyw1/9gcfaE+6fGl9CS333GWXcfOLaZchfwysD8JRXhZ7a/W5ggKtzL053S/sYtKZAhLxJX/ClocNkuuLgcDFTQulMUFqye1HAVVzR406magyZ6L7j4JS3va/lB3NzWoi97qZFmH8RfIVGWGfLgXLdfnkbJIATt+yM5PyTnyvwcS8tzvy6npJ9Scc5qcjBzl0I23EywebIQR11lumjSB7M41X0bJH1Xtc3+lE1H8ViNXUWEIa0IhP9bxY/GRZkBABMtev22nKm1/+xG5kufjnxluHlQ/DN7FGtSheaBw7fLFd49RNcD7pG74dh0Zpen2JnV1AXV1GiSjNUgU/a7m5YCyDOJO2W5+ZG7VBasRKX+8RfqsW5lSfGdUXwBhw8Y+b7RbTlt3C9A9QJvTU/ou8j3Kp1RC/CuBX4nYjYDI6Z4ViDUs9IVyJ767MQg8s4o2h2U/tUj/V1kLksopqRWHvAVAwR+0HgOv5h7RcqGGGYm4zwY2TBjQseoTTN6TUbk98y3pHXNqwTleOiDoRZ3kBlSoWcI+ebrU+26SyZiqYXIHBLatZzcOOrYyE9ABWrBxG7UWWUexXvvAmc5ZNT4KiBn9K34Co8R9kyopP6nSiHq/udd09TnViBD0nKbQlNXo6wHpFp4lW/20QYnwTMbGaeIGGj0Qcd5IxVbUL7Ysi9eFHMMj9yfcpyn9hx1F9l4/VpfvbwKeZTtXjShxrhrqwB1hIQDIjkPMchy/a2JMoPKzkLhjDaYaFBs/wNEj8zBOVtYcIStjefvc/nbm/rSJ3XDK/qhSdiMEqrKwMXQZwEUBxCiWSrfWS0qfSGEMkkmymTZetY11R1I5LF+16F7C8JSrBtTbSY+YYT0WsB5iDn85LfdjsgPoDkkgnQMSTOFs5AMt6SqhA4tvibUmU5jZWgVplNojDACcuSoYfTlF5uc2+j4m9/2zi4Ulak3V/TbT0H+l4i3dQy+XWUDyRvfHa6CTQ2D46/IO7DnDgFkxI86JaZdBPfv1feD8K0jxAjqABRr20jShtO/p+YgXv/jFEUAOiclCjW10sFA7m49sb4mG7T7jmkiy2uKULi4l63I0NrQBkavCa3MG0CpGIF7DuoFcN928+9w4atIOhQV7eUsnntr+oAwU+5+Qd1O2k6SPax8TZv/XOVyrVf53AXYFTV5a52z1AgS+gXoe08tyyqJHqbnAmKER3dSxt+32/VKRPv66gw3D+GAj9tPzVr9NJxxaOVgpFPFJiFsKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvQmFzZUZvbnQgL0NNU1NJMTcgL0ZpcnN0Q2hhciAwIC9Gb250RGVzY3JpcHRvciAzMSAwIFIgL0xhc3RDaGFyIDEyNwovU3VidHlwZSAvVHlwZTEgL1R5cGUgL0ZvbnQgL1dpZHRocyAyOSAwIFIgPj4KZW5kb2JqCjMzIDAgb2JqClsgNzc3IDI3NyA3NzcgNTAwIDc3NyA1MDAgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDEwMDAgNTAwIDUwMCA3NzcgNzc3Cjc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyAxMDAwIDEwMDAgNzc3IDc3NyAxMDAwIDEwMDAgNTAwIDUwMAoxMDAwIDEwMDAgMTAwMCA3NzcgMTAwMCAxMDAwIDYxMSA2MTEgMTAwMCAxMDAwIDEwMDAgNzc3IDI3NCAxMDAwIDY2NiA2NjYKODg4IDg4OCAwIDAgNTU1IDU1NSA2NjYgNTAwIDcyMiA3MjIgNzc3IDc3NyA2MTEgNzk4IDY1NiA1MjYgNzcxIDUyNyA3MTggNTk0Cjg0NCA1NDQgNjc3IDc2MSA2ODkgMTIwMCA4MjAgNzk2IDY5NSA4MTYgODQ3IDYwNSA1NDQgNjI1IDYxMiA5ODcgNzEzIDY2OAo3MjQgNjY2IDY2NiA2NjYgNjY2IDY2NiA2MTEgNjExIDQ0NCA0NDQgNDQ0IDQ0NCA1MDAgNTAwIDM4OCAzODggMjc3IDUwMCA1MDAKNjExIDUwMCAyNzcgODMzIDc1MCA4MzMgNDE2IDY2NiA2NjYgNzc3IDc3NyA0NDQgNDQ0IDQ0NCA2MTEgNzc3IDc3NyA3NzcgNzc3Cl0KZW5kb2JqCjM1IDAgb2JqCjw8IC9Bc2NlbnQgNzc1IC9DYXBIZWlnaHQgMTAwMCAvRGVzY2VudCAtOTYwIC9GbGFncyA2OAovRm9udEJCb3ggWyAtMjkgLTk2MCAxMTE2IDc3NSBdIC9Gb250RmFtaWx5IChDTVNZMTApIC9Gb250RmlsZSAzNiAwIFIKL0ZvbnROYW1lIC9DTVNZMTAgL0l0YWxpY0FuZ2xlIC0xNC4wNCAvU3RlbVYgNTAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yCi9YSGVpZ2h0IDUwMCA+PgplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyOTMzNSAvTGVuZ3RoMSA0OTczIC9MZW5ndGgyIDI3MDMxCi9MZW5ndGgzIDAgPj4Kc3RyZWFtCnicjLgFWJXp9wVKd4NSAkcJaTh0SJd0d8cBDt0N0t3dHQKCICklISkh3Y2UNEgK3MP8Zgadmf+99/F5lL32fr9vr+/dsZDyuYIyg5CJrRFI3NbGiQHIyMwDEJFV1gQyA5iZWRmZmVlQKClVwE5WoL9wFEo1kIMj2NaG55cIEQeQoRMEEzV0ggTK2toApJytAEBWAJCDB8jJw8wMYGFm5v4r0NaBByBq6AI2AcgyAqRsbUCOKJQitnbuDmAzcyfIe/76EUBtTAMAcnNz0v9xHCBkDXIAGxvaAGQNncxB1pA3GhtaAZRtjcEgJ/ffHgGgfmXu5GTHw8Tk6urKaGjtyGjrYMZPQw9wBTuZA5RAjiAHF5AJ4IEzQM7QGvQnN0YUSoCKOdjxfw5lW1MnV0MHEAACWIGNQTaOkCPONiYgBwDk9QBlSRmAvB3I5n/BMv8LoAf8+XUAQEbg34/78/TDg8A2fxw2NDa2tbYztHEH25gBTMFWIIC8uAyjk5sTPcDQxuQh0NDK0RZy3tDFEGxlaAQJ+CN1Q4C4kCLAEELxT36Oxg5gOydHRkew1QNHpofHQL6zmI2JiK21NcjGyREF5SFBUbADyBjy5d2Z/rxeSxtbVxvPvyxTsI2J6QMPE2c7JlUbsL0zSFL0zxgIhPKImYGcAOzM3Bwc7EAAyB4AcjM2Z3p4gYq7HegP5x8whIS3p52tHcAUwgPkDTYFQf5B8XQ0dAEBnBycQd6evzp+t1CAQIAJ2NgJYAQyA9ugPD4dAoNM/2dDKsAB7AbQZoYUIBDA/PDn7590ITVmYmtj5f4Y/scd/8X1b1RY2NYN4MnAwg1g4OZgBgCBQA4AJyc7wPv3B/xN/S/af6AKhuA/0/rliZI2prYA7v9lD/lsfzIAMLn8WRTUf7YMDeC3VwCY5GwhxQwCUD/Wvg4zO7Mx5C/g/+8O+OPIf9X9w1P+P0v/XymJO1tZ/RFA/b+IfwcYWoOt3P8MgVSzsxOkM2RtIf1h869YddD/GloWZAJ2tv6XW9LJENIjQjZmkDpnALIxMrP96QA7ioPdQCYKYCdj8//V0p8O1Yc+tALbgBRsHcEPowdyjpn5n05I9xlbQuaLI+Tu/vCBIM31++2K2Rjbmjx0IQs7B8DQwcHQHQVyo0CIyQ7whPwLaQyQ2x9lDmBitLF1ghwCQKh6A0xtHVAe7pgZwGQNtnF2fED/AIAAJjvINdmaQJoe8kkgH/svDwsk1NnKCWwHeflfGCuAydAREgZ2tITcp/nfOBuAyQQMmZGgvxH2B8TQ2tbG5LdADsjrrJwdf8+B88+kHjx/g1wAJmOwg7EV6DeU+y/0HyyY/8b/mTKkP/90/SNDIMvfDlunR5T1L9T4obp/cUA42kImqBGk0kC/wBCi/4QgJEH2zmAXQ0d3azunh2Z59HH+5bMC2Rj/kgyErgPI1Ark5uhs5Pjrw7gfHZCL+tXFAiFtBSkXyPMgffU3CuFr9rC4IJf5uwPC1w4yV0EmoH8egXA2tbWysnX9pwPC2REMaRxDh0cMQtjQzs7B1u0fsQ9X62D7kOPvDFg4Hx3/ZMD1PwbWzsaPJQKZcH8R+A1nZX7M/xEE/p36IwYhCukNW1crkOnju1hZ/0T/N7H+htn+hCE//42x/4mZQDbKI8rxJ2pk+0tBs3L+idrYOkCmHKQ7Hl1cf7ocbZ3/6eL++8P+/hXZmP96tZHVb+mzAR8dvzNgY3n0/EKCjfUR/o0HG9uj4zcqbOy/UnEF/ZIvG8evVH53/Xm9kDOQwfYrFa4HB9j6scjZIKzBNpDtDXZ67E/IrGMCQfoWMn4eMQhZSBqgx6pjh5CELFHDP4bu3yDrIwi2cXnEIQxtQGZ/iDxHK0PHR4qQMclkbWjn6GT7CEGoOduAH5beL8mzP/SpGxgy62ycwL/iDxVra/awyWx+mRrsEGYgSK+7/1rdkC3NpGTqYGjs5PxIhANCTfJfIISdlaHTw1Z1sn28Qg7WP4YzZOhAdrTzr03I8XCHkNH4y2CFMBN6tCCkhB8tCBmRRwtCQfTRgmQu9jiJISmLP1qQXCUeLUiSrx8tSG6SjxYkH6lHC5KL9KMFyUXm0YLkIvtoQXKRe7Qgucg/LgBILgqPFiQXxUcLkovSowXJRfnRguSi8mhBclF9tCC5qD1akFzUHy1ILhqPFiQXzce1A8lF69EC/lEyto89xc3yUNlOD9PN2Ok3B+ufoX/spUeY7e8yelDQf8Psf8O2j5fNDUkaUi02jk4Q6f3bUODm/MXz+1TghrAxtbK1dfj9APef6O/BD2KEyRgEhqgQs9/igczAvx3/PAKhbASpY9A/DrD+Cf8z/KFibcweXJYgp3+cYf/V98+DEPZGv5Q+kJnzDwAyvX7BuH6ZzS6/4Ny/z7pfXA+SwQjywt8HBPBBLrg+bB9zyFAzcTb+JZMHweBgaPKHin0EH/SC7b9jH0YQ5Dchw18g9v/ViJnDb+c5/iwQR/tfQM7fy+k3H4Tq/zaso/3vuwP4oBX+2rH/cj6ohX9WJ/BBLJgYmpn9MmmBDzrhf9hvn/hBJNgZOhhC0v9l7AAfJIKxlbPRL8ij9PsFhNCErMBf9dSDLnC0M/xNkXH91+YGPgxSSOSvculhjP5DAj4M0f9DygIfJum/leEfU/S/5CyQg/1fghb4MFP/S9ICH8brv0Ut8GHO/lvWAjm4/1PYAjmZ/w9py8n6f2vbh7n73+L2YQb/h7p9GMb/LW8fBvN/6duHEf0vjPv/ReE+zO3/lrjA/0vjPozz/0PkAh+G+79VLvBhyv+nzAU+TPz/1rnAh/H/n0IX+LAK/ql0gQ8b4b+kLvBhOfyn1gVyM/+fYhf4sDb+pXaBD6vjv+Qu8GF1/EvvAh82xz8FL5Cb/T/75mFxPHbYb79JGjs7OEC65I/f/SHy4i/7j//cAYHcQMYos1O2xryBFh8CWy6rhIhdGb4NISyvtoXFanaHsjtRTed6mssgpkuM2QsbmFQQfElRmCkNHp3yIqY9uBx20+nI9FtKfp3jBCXWvS58xJDXf3XaYQYiNbElMhvhTAlbxz6MUyTBNNCG036ZoD71M4izk3WrcrPwts1xS4v7O8AaUHyO9TyZ2ClKKLvtO0yE5nOKVacBTR2saBwH7VRnFUnVkVuYCHD0hXBLJOGV+7p2dNrA4mJfZk93CutJvnTXe46KYFxCPA+p59lf4r/Onr+IUCz1olGxg/rZV+TXpsLneHw3wYfUzZGA6wvbTkry3JJA0X01yIYWvszKtKzZvGFDMPZ5XFlWtIx+85zqcbNlj/tuE0JbStJ8PIqxyHCCNNy07slKF2rM2IbzHbrpRBnIn8Ckd9GiPyEdDlluN4CxgnXeA/sgSlO/6pvI12104GTgRzf3mt7atzo97OFCbAx2FagpHULkwmTbJaPAG3TYWFRupjmUpp+UO+JjlGRPMLqTttVHPTYo5l1qgRwGwaeuH3IPbrmR16/ZvxEE/wSGhXUcAup/pGGScHc+f3lU6NknTsZze+mdMSdtRfLs1hn3eL1rPKHtwqQsAJnjqdwCvUuKt4s+sqLpHUkGXOpAbYW5EdkCNeFwMDtW1Zsuj2H7YiHRyGE2ZRhajK8d77fm6fYMEKrJ5NJegQKVWwlhwAv6yMRfFVRTeeSDM7xOw+/Trkawk9/XtKOaIH5zpB7pqpD9xtxXgJKKf/qegqs+gyLNuhBLSp5+uJMtApf6e6BIFHoPr4sPZ38cP+3G4hS4dU/YByw0MPxFycGzgY2EBxckED88NpdTWp0jtcOL4KpQ3kBmj6hBBPUkN6rhybpWdGzd6Mlyc4slryifGcAqx0ThmIIGwyOerpa/jFffD3r3atLOJi775scJ5nrgW+wSci/GH7mpipdKWggwuY0JH1J24FbbL40kcSdZ+tIJamFXEZCmU2CNjfrSQvDpgN5L5Of7JcGtErChpvtDdTMB9ixPlM6laACCL2y/8e6GJIiU07PvUUdez6z3oLJ3+DQH3eL1C27TQQN1ZzbD1tODnBjiWWHnCotO8a8cM8eTHCsbmeBebqeKZHBlh5WkLU6Ods3aIwe5Mi1eIeUGHe/npxzjGDXACpyE9hnvws/wv7+KK4fH4QJjjg2SGNXv+AVpjSxhX6C0TlKpJNmNXqTGjwFGU9DIMS/dp6fwZoBQV1TrVNcaZfice5Vx0p6ft0Ot/HsOPg+Hems1sV/YKbENZD+HC/yylE1bpOniiiT5MSlOnlw+Uqj1Q93BR/nyQvwXvnP5jItw2XxeUmW9OlUeBXaCxdHvXUrTyjCHftyujSKkwHWyIgRJ3QgIu8fui74R9sYHvTZQV//29DvIntMgghAxox71PeMTszfdr82uI9lV998s9GTS55k12f8kD3JcXlPwlmViriVBIT8IeInlvWNZ9hK9HQxeu7+EKRjWvBMiJsTgl/yExybUmK1UDpMPXBYGS/e4wFl7spShsOSpsQ9XWXv5tq2twaWWi2FA32ZukbwNgM4i+Rxl9GFWtfZnOvzO7S65iu7nnkv/ly5XbLSa6kjOoztQe1smZydctxRtDqBA4sMb0hPUwV1TagOtu9UXhwJKNiwxz6eJXKt4GoWm/Kg9IiM4sGFN8Py2bHzYtS01TloztcF4O8aqrZp8h36BRK3Llqkk2AYefhmCUOd+p5RNmD/YCaW7J8/vZkoUoD9jJXDZLSUWMrVhiK2C8EeXnL7myA8In3K+hsMIlmpAbDWibsKfXAF4cN6k2XE4P6/RqiS5a3Aha0rYbbFHMNKXyzJCBy8T+yKCX5V9RcEr7Y5bebKJyX5dzYKKFRB2gMO1PgVCu8yv7rnjLQ4eEVz0VCetzAPfhwjr5mKLfHDIumob0m+Ci027b2HYnP8eTCrg4gzrpSI7hMplqni5PNpN5rrpedi4imZ30ZC5pybsK4xW1XkXgGpA0zB+QQt4R4LQjolUeKdagYwPNteRUEzlwnVeIMsVVfWRjijongovSf1Jop+Yzdxj/HxJimG43OvKbYk8B+f0iFHL0+Pgo/vmyvTWl+5iGcwAd3aHXtP5dSXQyt60qrJgF7zFi8uu8jTi5xWkgs7WJJrajeXoemfY60WhYVKw0D9r1Im7SmQ+Pb2RZqpmpe5z0RAJQR0QTb7yJp17YjQwS5E6QNz2rZ/0aRdJnoDKzvjYKfvrGbned6m3gYi27LOKsPJyPghxr6ouxVCz+RqTXXvbcxIk330lIlXQEX5GyW1866K3RvY1JojYysDBPIvHl5XtgnVvh2VGLtQaKSlJE0MjtrBns+1OQqlt74I5RShE4AmWkPC3QSlx1QpOkCCahfjKKdIcezQsaxWtENA/BfHynZ5dW1p2pq1Y2m5WFTwSFcvqjP5FMMrdx4IWdkaspXTkNOXwqYy24yg+Ri6crvvWova0oR4ys+Ig0sCB+09hRCmJ++FXAx/s1nsjk56pANop7wqk0TVrmUNeTGGZZj+HAhRp3lpZfaI/UJ6MFn9hlf+VSIqP248un5WCSwuVDkG95T5b+fL1p/rzZvx19592fhM8XPeCPZ9p2ArUvnuwY6cuGEvwjUt/0aWLI1bGRZUzhhIUS2/c5dz00G57p/ny59n0uQDHBQGW83SL7UHWlzzqdS01L2/tEj0tWUAxjYW5e7600X59qpJ7cEzu2mBqaun7vQY1CnVT0obPIRsCDe08qs+zhaR+HpssX/Oz8A7DpAe305Haj5pgbyy+kL/p9KWi0nIHPVMr+oHlGflayTsy9PXqmZeRjBcU3waRjvLaTIUvHSWJ6arA23IU4HBEhxQtgtJOKqg0s6CacVyRC5AzEdmJrneSIjBdNe6jg3o471x4lMVrOOigT/MCoJ6hcK0Lf25rupJh3NpBJeZlClSJfuNsThaNSji5TMlI1yS2EVIugEy6iTjwMlLTdORqQO7VDO5wAGlOBfDpTHmzhWc8WsHCFRtvoXOoTWJTbG5zd0uak5m6aP9Ths5+nJnVjA+nrQXHXi5BjK8OUYcybmpa3OMZlAg7hkbyD/ylpQ4jNo/07y5byxR/FDF18Eg9CfaC7jQSDHnG+eFeSVk0HeZu1rcONEVvhY7aIVmgBi3dpJDycpjknPbsJIj9xxdss8EgJKQU8Nc3ivbv3S9ePg+mRbVq0VxwN9TVuwtruOsmO7wjaQSPfi2gGUv2sdOyF+E42tINROXMY4yHrcOSPKJQwjDlfC9dLjuiUGPO4HlBBpLuNiV8oWojNuhzOEBoyQ6uBs/LQdflKR0rpxPWdNb7ums3w/lbzr0KsteAyXnHiLqUuKezJLa+cN7uP39qzTfuiatli8ixTsm0sEbwXbfRlZ/h/S1JhbIZac0Mz0tdaOIfk9D5DIIeK/HqQ89pPA194ERu5vJTxt+YvhOxbogQwnDPhSHnQfcuJhwsnZPAY9FS/ILall0/XKDUTITCdMmB9SHPh/A1RnzQqjraz8Y9HxIwkYMhCav1tx4jCxIShlPjvGm/+U0c9uNRX53Otz12UPqBt+J+ZpcmqDjxmacSyhGJ3znnuGNlJYxn+Z091mp7nWejyZtS+dnTaGlo4VJAonvi9MVq3/Y4D6I3LI+7qmr7cZbhK5+wD4IEoaosh/p1My31OS5vwzFqiGA6G42XPsXst6hPXvFRwbGQFRvYjcrvG4iSIqdlxBbd2CtLaPCwA0X8VAWBLRubWzzjP5sN99FloDWMsTNJEvVSiU5PI/2+87Cj2BXzVxkSJuvETn8vBrPnfFl+6yX7EXB5OpvpmLvsgzX+GQtsbZb5qTKAlD/t7ryd6xzcHU1af475I+THntpTmkPhFLYvoRZXeO/4Ldvln08LEMjkMfjA8jI/IyB5gkWUavlRkWWubcW/GF8J7UqvHyExLZcJkc+7TcjBUvEnfClbmLKktsxSFEpMJNxXj7aaJigXHt+T9TpfSYnN2HkeT96ez+FmPyb0dUAxe/fU7qh2CUFjsjA/edFy0qvknka8czsK8M6YgOkovw7Ei5l5QgGNNKRIqnATbXICpXGgsrEvRkA02+zqfcAK+zmN9HJPrb7Tbdj4vPM+njmc8uP7ebGgt0jlArAzeVqA+/W0pQ2afs3LmuVlP5FXQsPvQkTd87vJcirLJhs+sDB/TCK/oTRPfqsV+bpdvQR9S+xCuZaAp8w2sPZdOTIm6yA9kMCaJByGoESOMGTGMpMDpolGZiznYFgoROnVD+xbRLX46nbfovwXfk1lciXQ0+p8SPxMNksFEzm79/SfUlNgt7moN3vXKVTDbxzXuWJQMSxS9ve1kpQXWeebm07wpdRo1xoL67dG+WPvM7xBMMAvVwev5+ehKtdW7j5FmbkdZ7Y0uligDGYMU2m6El+nDHu+xS4o7vtyEJbK/Y1yjnHo3Go2Z3gWpgyLIX4o/WWicpPTYSTaKT12IU6uzjU9gRvrZdCp5sIu2wHFDuYbLA/y2QOqzCfFEnG2al2UIhX6frNogY3Metp3x6c1asPftd+plEEtZNrC1r4f8SgcJzThdKYsNrxpEBlPM5F4/8ml7zpE+kuNUxW9cngPFZRc3+oOLLrB59yUofcdIo5MDSJYSCPU5XtiNGfmKYCJQw0El4Eg/bvFHksvkiPvxuydSPT66yJVoiVZM2nFjfVraYqCecXklWdWecu6pumvMLu9O364dDbhTS5Ri+O9Z3FZz3uS+SlKUNjCYLt7UdgWF/EFQ1l4ScSBaqcPFTQQcKNi/4V1QL5euLorGDp6fUJYphD7LHMSPPSujuhjs57p6ir/5GUbRhxdxytP8lU0OHrWOUKQkcm0BK8cGl/5qnxOohg6Nm5f9B7ByIEJinW64Fzm8NSeHmMOMbt3MXtXfnc+l9NGcqP5LYzBOCa+b0h4LGqssQcOZw9fAKuWwESxCcszuIiTlwKZUutPSckQNnf1BZ6M7Iv0vFiZXhPbvwk2Tl0+2UsTd3LxfMM3ozzAbsGB2PspJtM87HuacPkG+DCUI0T4RkfoqyHlGBzjrpA0m1QvwV1lDRIzkxpiu7lSAdqF2xjHXuwAVoKMUc5kaiy+kcn8VUdlDY8B9cdD5CrLLwQMRdGDZXKMZM24wZGpw/U45Dug6E9QPD1OCRoeT2xutvj7IocmdTKxhn4qXZR8cJoCztdN0ZwR9bkgCiXxWMb27GyM9abAdGfvLYBmEgPwp9yQRlr9knjGqTkLGZs3YlynakLWHIL0VN6NM7C6rqZQ1DRzotj3sHYVEsGT/3yefauM9f1V3c+Eo6vNT9VP8Nc+QkNbbS+KfnqribH0NkaJ5n4+YAMaVsbfFjZKoyNbxU5KjpGjwTGm5xL9bIZWKSjoleSVeYIxNyVHVxNlO6pb0NYCt+JO3RgFXv9OvkmSzOD1ZcsW2v3EBRUVf1uz3SStRs1UK0yOqpYxurmXjz1sX+NJDX8hPsvUzZvStMFcAi3cvlbffBfaj3GZ/DntzmpNkfaStYPaGvPbwinr22M1YnGzP9+BMjFXn5xKNfl6z4pivY9RpiDgYry8SMV4klrqYRhv6Zszbf/BXQe8WX2sf3QwTnPjLlBwfaSBAVmGVasteNC7ClRh7rEjyFfOMObv/RjD5lRJO6TF3DiGuL6127sXHKC08gT1JLx7S1O0EX8rT3z8klJFvsXvOh9KInCewz4QqGPetnNTPRUT1/81lriCd07+vhO2k+WlhaTe8YdGJo47Dnsz1qOdhOpERCcZBEeK1rFJE0LX6jyC+UZRLJGUK+MBRuiGJzqN0vXCP4E6MDEbCuTsF4ali20XFavl297A94HhSkGtAdT7/OG0BkGxc9jJ4W/bZ6BhaUpXHco6e78iEOPtV2AL37XyLWCMQZGPIDTjWQpoFOelLOZ9oWT9wHF94q8XdWfXkI7MNZ1s0jFmKYpzi9VrRvPlBTdjmEsyStvXXD79xd7uzp4XxHnXSDCoobfpucMR+mPWGsXurOm0m46I4o1CvDbwHPiqN8dknwpTZDrec+Caw877+5f8EE542ej89fYFNXtvuT9cZmtxBT7w/KvFWD7USxedcyYf6R0lPFBJ1475/EjSSQ9jjX/m5vK22AFgezdswEq8Ce9bKWBmLVwQqRPrQsKIdp1MP5ajF7OI7v4oXLqcTy//0CZY7TJW4wySyXvmnTwTs0njD24vzNfUQs3PXUEoTmdPqDOb2peGLqlfK5i+Q2zHNuLbMeFb4g5EJXLMYN3n74Xv4LshxHNItdP8Bm0HM+b2NELJ95qRqmfyWbFxTeCPkbNiciZ989UgctJd8jQ4YDYBZtxcajEv16oNbhTDl5HDotNv72y3TApKT78bPcc3pb2lyqNIeFW9IlWuHM/zY3YxhZLjc6zUUxg4eLHSCkm4GbOOr+Wx3o78C4R7yKxxvBg7NkFuSm/GRwFSlKlU7IO5RBlYRIECVpw8n/vWs7mbcSstMPLs6tJCXgf6jYciTNDswPiSZa7p7X83wBnMbkLk8Mf07xEcivQOYsi+37wAT9+uLhqFGt4bRbQ3RR+/pLrkezNsM+Om2/INZhHevsQ6tOG6Y22eYj6FW5IzbxcfFsvtAPErqqp0Zhi9eT3FeCyM6XYQTAgF74Y89qVN0gLUdqaOxA/H9pLjIbQhKskAtt5xD54zMa+38KIWTmxiKVGRfJQ3+ewoIdHkS6CJ7Gx9v8TABeKgfbrlK/LnVlhkM2fYHaI80y0/djAXLcdS0/psavb6qFnunIuya67BtlTJhQprClISQPK3Y5Jq5Ydacz9qmtXviziE8d5hZFPojIiQ3IR7KMK1pkx+w5IpzVV3+vqzdA9Oo9UhzF3+OOcrBgM8kjFHLCXejxE/IWYvWB9dRuZ6hmfhWi7+LYlEKmIzeW/U7FSlJiopvicpyXw/0czShapcWqtTfhOcLv4JmSW5903wvppG1yLPx04NBSMp5XN1HsXeihyR7wGA5QKyNxort9c554Lz2qo3OnLQUpEKK0bHfOqvApWAV5FLTnitoigTw9lQN9wtCV2jfT/uepR+UldkX+INJcsedvtxUVcVhFettNm8moLRbCzCTPoC891cdwkuynEeziBVr9q6RHKJf9VI0X+/W+kY7pvEGKORAkmWXHl7EnBTzNOj+vV9U2+8I8FlW9rut3fZFttYfmscBF4MXFLxkrKbrWQL3SWJuAY5wToGZt8NGnlJ0SXHBj6FnihxuoYoC3JWlkgF0p8QqeKdvk2HOijgTJhiFtxjxAG2C1I1Lm/6YKCKY/D2bGLalz+DP0k6x/ePV21umoqy9tE6wJmbYS9OKDasSCNvBvX6fURSExwvAnoBGcZ7nmQ+mZkrKIrvP6stN4l4iiHNO7a+KKHqqI6pt4pVqT3wSjIJF4EMwNBg86UOaPv8SChJOvveWcooepDOHNFrCpHeGO1j4vMmPnSSfJn2jCjh7b06xqbcVetVAUxGcqX4XAT+8djZt5tBT6HZdoBXFKMKXdXrTwb7bGk7s2C+zkZ9D1juVcamXilXrbsYNSyUXXkiwbWEoGYqiiE+K/P53fPPTBwML2h1vsvvXLeH0TblxvDwNFi8GHFcF2ma0wlj1/J/ZlZM1X5tGyKMH5FkpMKBeG0Sk9Oegs/2MVvChmMHx4nwxAm8yFucN0Pl+0RbHHZ00XzwRlebKHbYy9IN9dMdjgPPiNe+uOTC1BRJN1NjArOuTPWsWu1bbj7aoQthiSOwTorb5CrcIM3Wdut3XPjFcnJ8jVahpdQ3Uny0MWtYQ75WtUziSUSKJ2JUZxsCq+E+xCJUStDHeCcaX7LORaIQZMZUyO4QGyW6bUy7oZ3Db/t7RAe1ryKt0aUW5YXFFmbaWiaTT40vxbNay35guyUTHkmvk+1oHidLTvvGCJdVqm0OJ/Sf1owOeRGZrfwM2quofR2cxcZKfJ2ZjiTYcDe6QIciiEinJJoBXU5fpg7qLAXXE5eJHAUu3ZNGXxPK27RFPpPQD03qWZzNHIiRLfK+hSmANUE0I+MrIdwmzB8z8zPbxR/WG1C4Iy3QLHI2E5/fNOy/PDOLcGHa9mToD99W3hrJpM0rkOdTg3ndHYKgPCXmqOGapiQWcKSxNbmQ5bvVApt7bWpHq7UxmN2pNyHCK+KJeCPLCW3Oh1blHbuWEeGBWX7BgKS0t/0j4rZLp4SO40sN2xjpmEtgAEmtANukfNBxOh1LL7VTmXX6p5Bwm1u1ZrmjVXQmKD+aEFpYVknC5Z0rMAOtc6NdIT9hGDrWKl9xlgDxKOYCStgB834YStTLKFz68EtUPEAw+W4fu6Tjt5LO9y/l7qu5UyzR4q65EmNekflwq4z729IRdrmnBHZwL1Rn0pOO6Rgt+fa5HC3esrrlGl7S8FTFu6acifFdD1kjtHdne8XzLu8Ke3iFiIkskwrDxicf7apl9A1YOuYr2shK6r5OfEpjJBwRp2X94wBRY3RM6ntKfGnl+OvsYnY8JK++6kCZBr3FT2xcJZ/GGEFolgDhqRcgW/skzMY9Zaj8JBGi+YCOlAHYs2NUKuede6dv4mmkLHQou1yXgggmathEzLK16UjvVvbQOmDIVCQY+wULdVrfz0/0Y6TkFSvlf4tmCYvttZGjrlYXgZVpdmeOcuJAFPM9iZzS5bOP/JaoeIB/+ZMbxEuQBu3KDh4wbZgWQ41CWEpKeUEYTqdQholalBDubxN1HXrseKj93Rl+3O3a2o2vz335w24mBr5cPgni5+nmAvVb59UQGz5ss4hM5XGrl2ZPunw7eKSqUtlDPkeVBp65GVCo4AeQfLjEXNcdLFcN801eRIE9EHGr2DFR30L9USoqELDylOV2irs8mQ7qznmrR0jTRiyGEMc+jz4ae9Uw8q7IsWLHUxvoC79mfEyogSPfDt93/vLNWZ0ivKqIx253o09kuS3bVlHsu9Va9V3mZHh+PZwLFtAZ15s+ZWyHIR+2uJmyWgpeAPdtiT/1/RuuQOo5WriQt15relZCutIi/OB1T/5loLfXZAxx5rzJnNNqMOpBY8J1nKWwXTLvAYOxfupL02al528oHSXFi/oPmq+88anGKVuF32ikNYBG8oLrlAtG68gAatFvME5MLrRLEoa/FAosIJ+hBiETppC/CD1+bTGi1+7ys38N9qMZ3ip6SAtsOp6Q7qdpLHr1UDwGqoYgeVdP1rSDUSZA8RlL2Fxz5Eu3yqzagMCnz/knCPPRpl190n/gmH9vw/4C2387snTHN3NAGg4nO8jGx4Vkx9JyOLXVhe2D2iT7jedScQAGodZa5y21pWOAwY8Y5IODzivOiBsurKNOZNezjm0vKR3mTIdP05tJi/Kh1OhjL7P2WGKe5U8sACX2jNfxkYPl23fG43mYoycVD2sBcvg6JILIF2YrClXYK0j1LVmFb1JP9y7qTPyD7VYaP4hWXY83+bzuZGOGOdKgoHjlzaH6jLbqbPLwLrUxJ69qHZ7ILTEw99Vsx4xmjXiQL9j3s9NP6pun3eDVW3pUaTkbOc6wcfF4yonhgnf9/Y7odZZ5unh2q6PtmL3MySDH2EuiYfx8+EvL2+OA/H3/Uf1BgTk9VYwzyWTCT4b4PDcp56nFVTMrw+z4ecwkzVUTH0YURIRBJGGe5F2pIDymiUMgtf6a1nMfU5C+xJL3SSFv18yu45wEy81VOcvLLVy9KX2i8qzz5cBi3JhSYz8kqn7AkbRA7VA+WmCdo+yiKX4AMCHsrbBDhN2VPNC/7t2gpKog/dqYWb0A/jgZA4sHxvwGZqC4QmvuKV4J2uLAbkYobmWve+hHwNIaPInH3Jv7gjX6bSK2lgDjIaptydGG9RjCvF2bjE+scU11H8qaeF0Ob5K1Syt7WMOSu4EK6qKemtHFsWdnqWVQiv3zea/wTfjhUquuz1PTYDrU3vAZMOOpDdPMWBAoUM62en+vsH3pwhCNFB+X+qMuz2K9aYBVsy0vePeJyZy6rXNEd3W2ubFxXODheNqdr7rd0YInWC5ujUS/wpouF0apX3YF9X2o7adJzLnuyQoe7xC6ERUEDPajJRO+lz8valzn1XhUTF4beoVBOwIrz5+PYUev3OeWJWvaHhR8jZld+/yuNzKF/JnxLJ7CVt1ZgK1KNTXK7DL9e2bUlmUraye6ZBf+9n3L+DupPqtDEg7+5rQZvg1o2SU/MAWmjyHdBSz6q0axupbT1+v4gtPJaSyFbpYlmm1qFE1f2KOfLupzDsbIgyMc4AI5Q3qipTmhY8/0g4XhS013/TffyyXeo+s6pcmjYfQBC7OKyjJhj+Lmb1/al6vpc9LMulv5u0fI1h4uwYqUvNPfe0qaeAEoLdRO0vhE8wzQ68S8qofp8Xn4mGeLbGMY/+BnsRaipcTbAIuQRjrjbzvQPWXJa1BVYbI/zF/z8RF0jNrz2YQ4nH1/jUmiPBvL0+q5mS1TH4Xnj+y34/3sY/H9zlPVLEw1pkYYPq1wSrMe/94MhbUJrS702VzrqprJH3YN/JpZcjOR27UowzBPn3iik76JGvCzpT8vUSwznLkRqBm3s0rlSV49y2ahUPHtx0sW4Qyfsq8/st+vrg8DRAtL8fF1emK7c9zeAeJUBGNomRTFnntYKp58vYAuJfiypAOg3DOlDEEqoNMmHflY5pmDIWcV4z9KJ2uuyqwPb6Igvvud8FRKw0xy6dzZvF5Xp5inBR8XyATl2GJEzomMaJ3wWuDEhQvX7Iefint/zmeGzmz7Jiv7SL8qlvvCLyt0RuUGFRVfKpSDvHCwcPxo1+kkaVt3BW1eAj6R3GAzo9bDHX1PbUg+Vbz8drmQBuBPWTZQOjRhb0GT0jVp8TkNk7N479EBrkak1ItnLsc+Pgzmdp8vGiEfWs3KYgT2EuDNvKNX2jlgojbJ7jZ9y49SnBPg+epjMarzdkziqEdtxGjMyfNcD+GKmCd2DiTasld6WHxPNAfUofX2rsXUhZUWiW2nml4VtqFNWb7Qzn7+KYnUKgHFOkh8O5tXw8pELCrhAD68iq3Wgxw4QMX2Y8tqiGHENpd3A/vUoEKbZZjervIch9R+3ShkIzOxy+Zj2And7SciK8yk17d8ImNzyXXFfMnVZz7JZoknr0tRnAtZ8UgEjcssdKyAP+b28Zg23dE1h5ppkwsxo7bAdaiRFG6v+hwOGSjVU5XU5I5IPpvYN4z2d3EaWFO+IjddHbQVHJOEakp/HTDwtMX20CopqY3XRNz/s6WrgmlrFnrAvl1irQcGJidQwV4autH8DX/efqVqJpyOOAHo7GdGXD6a73nD7BMC19dPM0flUzYRWvNRBkxTGoPrJohmsin40jSUMuolc5CQPTBZz6OMyHleR89G802BJGLGEuVoSy1Ilje/+7cOP3Xkw2XVy+L0PS/ncg0RNZV6Gju9WmJOtL7T4XUM4+9rkcgEsjw11TT/+EYOowj7rVoXgVrzJYYCKRvuK+QcBuI3WrG6S2n1n+kQr7u8pauZzcXCfZztM3AruRkl94MOVge/gtfhjqKjmuEDTpYAIs2l1+GqUtAJ0B8F2wSbf3hsTTwFBL3CJ8Ox6YvaKU+8i/iece8TaAvlaecqZkXAwGksuJtWuWZvmj3geipKzDOHfvDZ7llilKbtYYAlLHk8Ud7mFFXqV490/zba4unOVL9nafHwgRWNzTAfNvNCgzXl20pikzTn5LX8699xnBiieOfMl878bJZCbaOO9FfQxkgg/Wz8oRM+qtuKnnxMvxnKrdsn7dkQYZwb9XFGdQxKYncb4ppQ71Mf/VT6HE2a+miWA6eoItGfKnqvBoNKOSd7S56+/az6NOILNrkX6CpzT3dViaK0OirQZck1BEfLoJJPZEU8bnfV1olHPhZ/S+LU48mOcCazxDh+ZmTmi9WaU5yTgv71RVcR38EoRzO8AlWH6cnpuuRdZmEbCX01isZqk9MVhOGC0um1ba77fi5jEZ0kAh+pn6iAmetwy/AlAagKS8UvYzE67+E4Q/ZtXnqwlU6zDjeWNPOkv+V9KZdwk/hzxVOU+fMeldAmP3SrNXWI3mbH6CnOUBjNZ5nuKUMMPxdDkdm65ynYBBNl92lLelGompxmn+rZBzlMleiXEy+6BHXqRrmV4Auc5JZ++jUzp6h3f726j1IdylNtmj9gUhiiUd1kqKpHk4DT/p7lVbT0tlGywpLOWVOmzRPtGeYzFacv+9stCQH+XtYX1zh5RonLfV4IS9QubqFjpEGXZ8eS+NZlGNDOzUU0Pokj6UMozhqc8U/0+FQpEXXJYc64SihbgJ1UAyQENy8YmZ2zRV2Fo5thGmjvmh3MLQqTW+ffhpl6uoucbvqsJpJFh8pRKEmu4Yyxf/FqRG2uxaoI7s2YndV08XaGJ8dDok0oe+12QccgyWi77t8P854ouOdV4SHXh/p1rohsHihK6tdWby/HebfbvoRTZggrH6dVEG7BHh7b9CTVZjW4DFX0j/C9IlpkEq6wJqmIeF7vzdTM/vHV4I5N8jDfS8/gL2kguxU+nVBWbWW7DJCeRWK710oho7hoRAmZfKdh6uYz9zbn/dqZmuTBlQT6OhatmKWikKPx4Q6lV9Ide29Esza20RF4pGS7YSKLRwkkRz1DJ6CgOEQvkth8kXHJZiJjiE3gqo7VWz242gy0+wm8v6ytqVni5W3W4nzqUldVuXMvnDW51KDy1siG00EVHU0cQ6rHdlYyb9AfcemHjqLGpiYJNLNcVFKkiGtzy4Znwg9dw0WafSZf7JCeFPYNOdMvhlzE1kLb5yT/Zevr7e+p6XxP4eOX3KVKahe3GcjuG+qkGO5Mmaa10qg73rPRHDZ9UFVf0mGIwqdSO4Imomx2clzdUyv4VkADzuyuxpci8Fq4sudqF/JXmyg6naQ42d5KvUjKyrdU16Sy6FOhrFpEx0Fbe76JZ50vWVEcMYG8e27JiPGcyol4hLzaZ8tyg5YnlTLIfL/V1x7WB09oo+deMicLh3ESfgx+VE7+oy0mmPDCbQsdNKxsnpMC2/1imHVst/1rz9xbz35jlkTbfN8Bu/3uhE2/0gAGgRu4HHzyryx2N7nDUVTlg/LISqnl298C6zq5o6IE72G1apAXkdPshHpwbvnjsu7DZoXtSSvEK0I/Xv4oWc4tMslW5VIlnjelsHCa4UnoJF/IoffHGg0xyc3GOZOJhppgqtodmSYeYntzpx/RehQMxu0TGXJQCEDPSMgyygg6w8XPHTS5vGKxnonx1CcOOjU12U1PmJXNF9AqZj0SiMCxRG1RaX1/d5586dUhDiTo2d4zJOwTQyz7pLz8IZlCrL3d7jOU9IeU0C8+voJ08jiZo+C+tzY0zAvPYwWd0cL6SwOQWxnRnfuZI0SHD2uQQIwXUkRt7bT3Y4RnrpixcDk0fcEwXH1pwiDPQjaZ/uaSBeUXYd7N0RPQeM858l76UCbXCWSO2rcKbV9d6a68T5lejjwRR2RYjnGvGpe5M/YZtMy6Ns2icUw6ALOXBUAHHiXFSbS/GfRS+e40jw56/27dwV6SNTmK+0mlwIH74MlwvWWTCycYUQduZzfC1XQPdImGs4TlR255k3flKIN0hxo463Y6KSs7TMFUrE3BK/yxlHO/4dSW9MqxOp95oSmKLk6mgh9pQK0E7AVno83eunQ0BgVAwn67g1rJFHK9Vo3Q+h3VRLlKDJ8jz5ZWSpAtxIR63lFZaF8ziAG8Q09M9tUublfCJrTY9KhZPt/uY7vW0CnJeBTGTZ5vZETELuaXlZvzD4CINeh7HOdXw7ZsDcKqC7R5y7CmDTjYY1krVAzn+R+f3gYg9Llw5KIXSPPBOJx6czXt0eKd8pmGqdCq8gtTanZokE3zRhmPxMzvS78ayeSuDGhfpPbWJc8R5auYNYgvrC0h7xL6lHJX4HZnJE20r5UPDd0V2K3wxZGbH1lMNF15v4i6EDQiX8YLg4LBDn//RDIJYIWOQfUhfR9HJIEB5YjC0dRnxlItRM8vPHJ5yywQ1DJy4EZgpONxFdIqgjHXdSrtNt02PHfUJl2YK8RAqKFA+WVAPikANBS1PV+FlLAWMlqNXujZMBTttncKFuwDIWfwsfWtGH/NerEUN5VFedTEthuUAWxQqLw+zqJK4sNCVvyqiSu0EfEdqykK+7Ns3ehuXxu+ZQtqSMSbRD3wlyKqhhUbkytWlByrxs/ZyGv5FlL057mV4ILXRmKD9+EFP3oZ7bFhvV8FYz+N49scvOxuVvnUSSHQp2wmadkr5hW0/WxSrXjNF8ZXb/X+WRPpW3aokTMiZQ9sLfWv7tfUN4F6UiNwJVg1eeyRUOzS7ZWS2BOJaLouWNKf2qd8EWtXt4ZZPgSkKFwUndbfscV8OiVnroHSfaqNq4lANj3V3YJwfOHhmO0hHVfYY0MaLJlGw1Rl15JIFEHdBM+gJbkRfygboWU4TN780ak6YJ91tT1iwxqjFY44SX+Jl/QKDnMv8Fn4oPT6vMDpu30up+dyBmtdTZ+N2n2nFkMHPj2532u44LXPlHpTBc/lTmycfD9cP1nv3ZEE3y2izQnIUX8Cy+vhPFg4HhGNisUBoJxdJV4IwPbHaHLwvZ5v1Qt7Z8tA5h9dkuNr3acxIPyd/VvWqEtKkziLY09uHY2ul0Z5Fq1mg12LhfXEDPnta8p6IGJn1dQIYqwzpdAII9b1O5bBqss71Gbml3flEQigJ1QIGXB7vLcqarxvT6nItpKZCqS4+8R6GNOmMI5uHTLdX18wGxHWcNdFt3+9p88MdegIaH3Gr86wofxhBvElCZa9Nn5rNlOvhkDAyiunYtmTNhaiDcYdsU8+Th+fMsWFx2CPz5IXDoyXRvzgwdfhp0Kypkh7p+aJmvjGyXXrhIJPoi/soCC2ZsGz5XafLdH20+fRwC9sH1npEJIEsuYW45w0mSzfdfmc+QArBlmyKphVOeUm4D7P4IwvHZbtGFH5Svq+g14JQUujQhImSdPtV2mT0ShbRjEoWwh/WaQHH1KrLfNZZ6nlXNRWnBZvVazcQUZOx/xQK7hbHk9PpPyL2O2gCqp9+B49qwO8+D4tA1IyGbQaA/wKHohBtf/as2FcimyvzIPe9nrMGOh2/uEzqRT0Rh6qZ2rSRTsYgcGFjhRachWKZO/o3b1sslHLKzLa1epGg7cyFWyCYhNN3itQSy+q2P31TQuIyt4PbOZe+S1wC6gdkNANGizIn8SILlzX9+tq3Qraf9I+zv4Zbs3OGsMmwlcIcylBeAo14vhMWnV+64JdDoohaGEWZ6KsiQ7mfAbp1Ye+K3q6eGxsNXs+9Wx3K6FuJGVjsfIyvZ8FWaZyeGzN1uhom0WBK0Bz31UbK0MlcaxXowuVYR4ByTdWaK3kargrqI1DdEzZabxE0O/8MjJtzdKpJ1gDNdaIj9G8hDjWougQMMHSGbB9HM6FxU/3lN2hlZCIPKXxFRKfVWN7ToKLWPafSS5IXvPlTjUx77yqLSHC+4CPO3fJNPsqfWOSh2mTtJiuy5urUwGjoS5/o/Z1GpNwlHN8+OXenFU6p6UrfkeaJ3vXbAoJiWRbRrQ41XoSp+JRz3RgLcITtlB4/rmaCA7n4Qj4dmbWZylCJkjBNGuljW4IHIFBPJwnqPclM0BEcCGnUx3Jces9dzGg223UfRzHT1CMB3WrzOWCBMvKQsOEicjmFvbbd5wGOQL5Z5jDuFKhViZ66kbNrp9zeY/KPBO2XUyxU4SMTstj4ji3tvN8bEp0nMc2b3wZzrP3Ero3Ne53AbrXd6GU8+7WctHkjFA4DOolyEUrKnzQe6SUL/aZD1+LsHa+SMqISLXHTIrOpFWvFeYUdsJiySTSux9fXe2gfMVDyeWp81TJATaGECTAEmoSemzRReajbvxyE2HoFJ8KTw0nbqtJSL6VyFkDSTZzAumw4V6nm8us5mfyZlki4Z3sbHg6gkyP+wQ1TXdmMjIT7oV3djGLpMsLO2gfOeDq4lqOesXJflkcwiBe/Ft8fPxKDOFSbKu4gY/SbP1w+X4EscueSm2C7QTio8C+5cGbZba9rCF9uW/+2xqn6l1BPK/DkEODMgD0nW9HzLQva9pFxFMLC2SjajQ2aLleIDld+r5Y6nz/0WxEAm0DmXDnKM8nlgBhktPg2i+VT85cAk/wUxTx0Zthng++6z+LytFvM5qdTlOUEjKcp+hFiv3SBcWFwk4Kc3BqxpTAjUNkt+eRLu/8/J9dF5ufrHVOOqJhAkimsRiPTA/OAOwaCNUvhyzhq7pNBB2GzkSFGcqf+U8e13U87dWw9x6PJCSsSvu8wK+7Uy9CfJ2Y8zUDuoF84TuupsElbhSgC/iZOGPdZY7ywuDMwKE37QIvUodSVMf8qgh45LVbRA56S4MFPfOB+6PVlCKmfefJ4dQSD9PMU266VQFu6JGscbQ1WMWbTEFJOlHJbnzz3C6Z1nJ8/a+eZc2okv3sbXTDoJfvKutdlyf575Tb1Rdj5I3YZ/nmRpu/yeq5sSBkMeaMbJfrKOL8MDFFehrAch5XDs8m+KamYNz6FSH/S8NbWBnzjHGdXlatGQMMdzUoAbX988Prepa4DncLolCaKfqnywGiTW8NtJQjWTAjJkjZX6P37I4hB49u2k+a05O4TvcRM6by6tKounhoCh6QFWFr3ii6IBPfA5jVZxOOCfu81cB7Unn7xFivV8alRNKxcvlNNr8ow0NxsVB66QxGKRNao6q/8y9a9ug/uX1CfVP8jm0JW212ZWB6vHo1UYu3V3+WFNMFSQ++KnmVG9diGW6g/ojqsw2wW3QtwjusoOwbBUGw+tYZxqncGZ2nsYUYNEZW3kSedI4Z/xhroUVEc78So+4TvMAoRVNpt2JEbtTSCXZRk9OSUqIQK5Iw5ngsVfUB3LVCAyPU6K+ckTnFL58nf7vIn+KZdaRXn3BTScUpJy1jdNT/tPIBauqN+tMn+FV19FgHuDIIyQsz19ErcDWI/kKh4qnCawbTEhp+r58KYdAtkzesIeofh5BrsnN0JqjLkVXufUnVhlm/NZK/g/XdBHYZperuiMJi5uAKe4zreYbY6W0ZtnJbxhcttFurUTFIaiaGwRAc43fBSPm9SuRBQNqDHViZSK5Tv3jdIZ48zE2Ehz75jSKc+Fs4vgmizXgRBxGlcTPOq9fA5VKlqZkQWoxXiHh0vYnmtInFNnYiCCKfka3sz4vZ1poaK/dZ0tv9sOpjhyfQahyYK2Nx2ujri/fz12BovfLM7Ita6WyLNZslBumFfWQAWdB++iixnsgGQXUSSlx8PTdw6Xg+1v0zDM1hXXJ10EgTdwPeneTuL+I3X0OLCnjsv1glR/QoYqpMn0i/DRdgRSsJ36wKbQ72c0dh9xTfCjaga+MJrHLDY+1vJcpNTeRTcOJdZ2rpL9DfJvqQRJnKZ5VQwVjVY4HufIgZdFnqVfRNvuhwdo3LrsO7W2TbY7fawswz0IZMUyVexgCECSuEKuOzkiakbfD8W98pv9/1rnr9Ik+zWJt3y8nYq++iyTpsGxj1Pm+74dpiMZcmfUTTLZvoVf3JPhgq23HAIgHH+N+voAJxy/l7XZcH2T3L7m9BKoah4W/xxGnWcwJWwVziQR1gwpf3oelmtbxvAs3juIarrCwORWHqwLwr4uBEU529U3mtKbUB5Ijn6iruUjZqXnWxnUf4SR8SiMttHXtdW9oUdJ8Nh8BYrS8JPWFq+bwqgeloeKcQyIc5z+iA/GFwubt3FusTi0sFt774nI0yuQiWjPT9Hq/Rm7DmEroRu9DcCjUZeKqndstr1WvRkYaKmTc/EjwmpTlLqnld7fqZUzjk9YOSm3h/rEjgo12dB4+Gf2rolEZ94Yxu8SGcTOKwasWyciwxurIPa2302bWTYjNr/nXs9QGhCtKzgYSC1RDJkSIUJmflMmMoFFrCu/gKNHRJp3snPlYhAv2wp70Bhaaddj1hXJkpZtQZRFCjOFTl/KSxO8jOoSsdcjP7zRf4AEYd3co0IB0p12u3jfo0EqyFHUraiBhUJoalyivaEJoMuvGc0dfh6kO9b1YlYJPm0GW9t9fSsaZz3SR7Y6B4BGjCRvevvUpQMcNm4YoWhlpo6FZzvxXoMNlqz5Ue5npzbYZpLqHoQN9h6F+0XovXjurDYwwbOBu3KdVgyZa7wdeeOABH2ku4TeEHaa1FMjmQYZGsRrEZzcicNrZufQFoRV/695DedPbrlyil4G6wsLv40MDqos5tWclKt1cQfF+lXXCPNbVG2r0KEnN800Z1TLpaS6tUbXfq+TzMhhWQnlGYyxJUpGObes2bLEl9yefGXMp111uPKSZdLaLghDheTWc1hiw7W+aY4ofx4VnJhlcXnCpQlPrHd6jMOLX85LyXyZX9inX1b9fyQsdPu9v5V/EsyBKXo03JgijqCUX41t+lVvO1ceNqN4m0B9CI3sxjWSMkj2DLXn+V052uL+lmiAvEk3QllB6TOXELV/v+47Q/vgeVScozHPym/J3aZy5RtmO0VEySeW33pXHJoLUpNinido4hhfnWxmYopuS3IbCWEaXbBAnzuVq3Cl1QFq1aTv4W7UE9l4rmK6mD3cdvOLjwxX9y9rAzLfGFKzDjGTCuuc31ojzdTx761vyuiTaFnMleEDVC5lZGlIBV7PSpjmyg3fsUZF+rkHchIyOW1cPGpuf8aCaGht8Od9gGn+uu8jKmJ/gydXWUlU9p0KJ9uCmAu9FTUJSOYvqmvaqiCysP8EheNqz0KX+GMGZxlvCNWCKDtyT6ae/ddHp2V/QzydDWtwUu8afZlolyW+/HaS5fVkZrTE+JUWPnvlM43de3blftHfBWunOyJd+1PGL4ECC86ti8Z+LDdbiwIeaf9EMhs4nCw2XX31yvfDvQxhOxvMKBWR+hNATfN3U0nbOsXFY5NRJ864wLLccwlM7RAVNylv5CjYjlStY1tmTCeMok/Q06t9rLL7STcGLFMF/PO1ebcfdOuYpgg3LF5CqEa0SfzQdYWh0i4U/fJXIR2Ik1DQVmn7JFv9Xc8kLfUnReXUo5cbFioDwboGMSJc3ZvqxMupoZcLQoqvAIj5L5CGtPFbNBZMR7N1cl//39zfm14SIRf6eqq8xkZLzHZzIKlxzABB/aCu4kkRNbKrYrDpGrihdNeMvNUWVAsByKPjz9HnTDeBrh/Q1fHyFzLTkU6+sme5F7jfPYUFiwrl3eCyQi16YYd68+Pe6Z8jPC9yEsEownKc85K1kQ3OwlVVF/bnPzUhHTvncUcnKsNROXHwwMoGnhLxq4l3Az+sk+rn34LQha2ZEvtLmIYfRgam7bg7Q91VVI3QXkJLJILybNF95s78KEbgw2fqvaRvlFaar+eXv280Jv9H3KHSYlTvTduEE5AexIJIYDYxURDXr16SfECVJ1KTpZwXFf76iJDmY6kqts3byndc5zpc95XmWEFhjCVkcOLbR8wD2x26Cm5xXc+khUxF7fHUGeOb1EcckCYzEiG7Lfx1MuwgdbZsyLLFXPRPe2nUo7m3sU8YV/OwWdOoKhDFvnySIntZejovaQazOtlHAo94X5K9nIABYpP/VJS/97xZiuWdhL3WozmwZcpQ1bYkHQs8EfAt7xAES3/NNGIakrV/cm6NXFb4ml3RtaRLzam7juGHFUDrxJ67tUehZgtVjZekPMNC/XFSb77P2Mzyhbpl3et50aRCRWRrp3iXg23AsimgETTw4OONGTyExR0MLZKpj53mJMGWlMiFuYuLNrYARPk8+SD/G2PUFVDS9MQPt4UFs4VuQpj+TkmJ9R44JKXmmojVUXiDNsWWhMF1c/7dxu6l6JxMWEzNZsiS5zIK+d+q5nelL8mUW2vwe2AV9e0IZiP3wgJyss3ovnQdxVz7Z83YMbTc81XUg+RjYm0uUlpX905IJNvICNr6gPuYsPtTaK0HCE17mXx1JayEOpV8+TIIghFa72Ndd2YAXODLK/5MeWZ5FV7l/aCjwzoJpzsBxLCOWznDeYyCeMDuskeLq+hT1xO9ZROuVcQtyDrK+UE0y5/eSScaQPRFP0HswY3uLyUXA0i2LqIwhq3bbn/wlTL6zQYtWTf2TBcRwdJloskN1WrPbXzDPHYz2ze/1Df1w9eJc+YaJXw3n6EJWAdXnuJRSuFa9bNBtDiC8/4ZI2pZ6SZR7GSWHmLk/7eo+AC4s8Ul5xjH5+2S6gfAT/6f5coFnS+wW5WADvyEw6fGuBbYISJfup0+OayAUtnzeCghiiIaAx3avsYr8DYBGD5oyD6L5xOixZ6TBuj0IYCr+i74O/LecH/DW0b7am7XKLVpzAe9aAyiVmHi+f2JQovc5FjpZXj3JdIQtgrybdqvs4K8jjEWnVvFv+fUjpKVjuooI+PaXj7uemrWRPADkVuSJGX9+Fg4muaojPeSTcu5bv2F8SR4tMPTMLxsX8QSCR88VMnxpr4XlzwCX0g0LVZsliIOZtlcsER3wFR1mjxt6z+rWz9lCsxtwaV+0LmFnJJWxr9JAcaDgv2yWqzUfenfWTZiNsPEu+XVBGXbrxOfT0ni1uXLqfR9VYusBt+5gTG7/o/uaB1eSnNwIeSxdbHLlu0LWwEbzWOcl1b4wwr626UWKkjY9QkMRpqOHv+D5WE0l8jde9e1k840QMRgJ/BWGxh/dfnDsMgpkjMQNU5akD+phGwZmkBZYKwHMRiMhjtGC1H7wStAf1DUAmquvB0hR0oJFatCs2ivK69liQLTso4UPGsrHhtBS7OZ72o5tayy6vQ4zAs4+0TxyptBdJJrWFv14of4tCdYq+lHap5Ni5udNBgBSy0aKFDGLUcy0gJNQmL8xC6qraO5DKOeA2dKwZRDxbXElsSoMyT4ImkrgjviKfkBqwzCr5jEOw4TF51pMfGqKNjcKxz2xKCVlgKoTlqx0Fdd/fcONHqaY4nqdzbTU9DlJZp2hrUIh4g7PJrCMrDbo96lxrWdUweyBfGn1e2RfPs6Lp5mCAv+Wza6AS0Fxz9oZMHlnQXKB2FH2t94Tv9VOQtBL0ukSPk1IPLUG7w81SUU2MEr3MadTFAVs0YrIzAEaCg5kCn2J5qBCQNLLYpa/M8bDPIDeKQRhjFI3+nfe1umIZ/qAh2awQskL8VagpsFDuQMfIITwXX4gs9o+O36gMsaa+BTszmnCxzJIZHRXC0+FuzV8UWur9uDzOiElQinDD/aIolJBw6RA6iBaX/M8qr2miE7aAjydpRDOrzK9QKosLbwdfdFne7Kv7gn92DIJA2I71KfQoS0y6uU6GUb2UUWAF9yJowTuWKGfvi3k54bB3JDR4+DlR+ZW4xpdQjpc0fl7Jb/10WcF8nHxfvjulzxXsDdKHKmDDFzb5w5SDcbEKkD32Kp/DYJM3RvIICcLAkXMC/go5f2aC9RzutQn0oHBUbHQi329CG4AdBrPLb30I3uPlOiHaW0FmeBcHae2R4nw0QQvOvo//2UstayLoj9N33BC6Ijx/MFxtfNvNokylstiguD1jmezuR75EIalea6/rflOdpj3PMo5V9COe2v5/5yK8ayssT9iWIwI8juOtaC20VpaDMs/nFFxzkvYJsOa1208+VpLzuA4HBcxecSUH1rheM3KlSREzatwXsoNetORwerEC/Ct2Wi7w4OrzlrJ8BNxhQedpR1AJ9XhK+EmN/HDpP1/pbqQ2SzWF3yf+FlwlaJyM+Nis87tHBbRivv8lWaTkO3oRGOYRzGS7oE8qyHkDiA+P6Usq0nwduYnp82nac7/aOivW5rpe0DwTJQXiK33s+ncAUNainAnjKj9hC3HlxmqWQU/hgDD3nGUtVlGEcjdxw/fmdWAnxou48DYgI8IrkLGmt0LT1lKXiFrnIm96qmAwn6DgifMHMeMPTDZ11KLJqhXMP49Ur8Tvxr2rHP3T+mxixY4dRvD4SVF4pyZatrlu5+9Rz/GiTsUiMWYjn4kr63suWEi10HS+A+yIiTesNi2eDrxRudacM8G8PLsu2Xzv+wu2yki3hhH4B3UyNw9xp4PkFK3pwqjiEgvZhJ9ShyxlpOv/VE4to/J0d6E0V0lfQi3KvYxCuE4+LSjOm4rOUEVsDWfXu0cCpR0SOpKQ11MWEe3X0CL2kD1rP5V0w1Nsa6+1SwBwL53B69S+XC6LET+SCBw6fy75LgTwpT5nwaDfJ91lvYyA8gAmCqqdZ6eKZG8GmFDFbekr4vxP/OlvCkGS5+i/8XQT8eDAH7ku+XBHe0TwE7PArd2Fbvbn2d37KohpJ2DefOQ7pgUo7kzj5laDn3SBK9dY+JAfPg4meCgV8obwHojsuQ0rlbWhGDg21qmYsu9X6ZhhhakcM6CjXK59kluNqJF1NfG2As+KXWsYglAhskC6lmI2lqj25mjF0jPVN1kfWHerLMt+lUwFcBBwbuJpAdZLL7odrZzyoOescEqWo8T11suV942hHtn5jTa+SGk+rjDNG/4838R/tGq659ZyZ93fCjGe+FyRj8r25ldLViEhjQT+GGT3VOItriAA7hNbl142MAZAeKff4IfsgbhjVwCPCXMQ1F98EKJTqQ1xOnkPaws91vrPqZqhUTq/z7Af02PxgUJ1CjP/KDVDN35z0cAG2L6v7xvqTsjFa0brX9BrheojTuXLhEdlwinwhN+NO8pgjDR0K8aoNi9aeZSrEdhWAMW6snKbid/g47R6v40CNntTnCf8dyg42AbJkcawO5xq8QZ3H290WPavpKPbyr1/nkX+wipoHz4DmkcTyn2boeCRz3JE8NouU+oTI+AwUOYcct34xlH0w0CzX6NBuIJ2p0GQDJ38wPf/hmz7NI+rvryrGHs/iq4gIldPKHMkz5FauLIwGEiYnoB1Z8a+op1qy5zYDWtUko+MpDA8a1Gdfj6X7pLsn/xK/+TYQsl53JI0ebIRNq0S2NoSfPsSBT4LKTo10BUtByHqlteHK6TORHl4vhzcsv2sDRL/Jjlq4CZtR8IXCkRFgO+/V5HhSQqXihUUFSb7HHYnLedhFnxGcXjxC9m5SaRFKtG+LnmiKQw1asy9BVaj5oqI6qxC8WbCY/N6J0mCewn3fFvbuBPH7mL2JbaL+/PyZbHRHX4Zyh4dMb1s4csSNxwsYPL41W0MEiA0wuKJlf0MsEc/zSiTiSIZvMeZojPeGAnuxif951pmx0dbxXgNfzsTMOSWB1kTs2nKjFCRhza8MRkijZPiwjFqxEGK0yt0FmX4H+Zn0Wl9j1lZSIJCTwEiKNtVfW/byZeYvYHEDYnFg7qA3lHeOkWNNQv/vjVHKxVx941ZAhbIEu7KKFxqtAWaNja4I9DwvC2THn6Q4rYgN0CZpDuMk9zWrJ7JhuhKL2kjxJyS4Bb1jFQPGtSyr42HjVkhxyX9o0hcBY2focpnJBHv8x7eIrrzQLYtWmlBuEjqn1bGUdxk1Rk2MeiManC7eGBqm37JzjVOtBClhhIGF5tlMhEmPLSdUSsg7yN7zeC7j4miAT0IrX9062kJhuYJcGKQK0xSOzTnmKcCkonGxD3hJxjG6O0TpLmHxEofsltp4SG7NSvZOGleZJgdzdu5neCpjSE4Wil5LZeSlJs4XMlS8ufIdKddQ9MxCRtIlMF2pC6wqPPSxWqpXU/YgTvVbw9Bugx2lRa8yx+jKEqelzxUFDAFlpJ9aFCVkuIkFy7N+OkNmWK8Qic1aTJXTZUfag7u+u+vdxpbyKB0gMQkpVvFPP+7bk7eD2+PtQa1gkCG2MvQw6HCDQZ6ER3uETUju3xpDT3JHyMN9wcyUMd51tOx6sBEadMseH6UJcJ9nO0/UUxZYoVNi+O9mwiZaF0WSORqFISn1rggz4OCA04F7jvj5cQSILaMfw195pCxp/KgRy0Rw0z/YvPTVfsuI3c4dz3BZCCHalOemgTPXLI4nc/WBPJYMXVz5fRiZbtNkJZjk0W3brzS4CkHITQq33X/Vv/ADTAtzXV2zwESyfDjDklDyBEIHRtUhTd3t7oknnCE9sXXzzxhRvSj+INk2qCT+jDSSBM9xBAF5mwbVsGR5oWOzaXT2GY2NdeWrZ01SAh9h1O8q+NNLMtwZs8j7+GJZ1CdTz9twzGPeCfAGtGU8lsg3CqdCOSHjcbEpCkCzhXS3w6R1Hfcu1ug0i7bRx8HfhuKBPQRHuoE4bKSA4OcGWEMFLL+3MHW2rNWvg/lZsvhhAgviefCxw6vKlEjBkqBGJGaRlXE5rx+U1Oq+0OX/imAWIpniit1RdHNPvgApkUSod8jojJJNEJ4FQoCgE5UZwv7RAKl/UAkFVmOFHAZb8cPkNQ9+4P5hEorkdkUv+6RZL3PH4gRfxM3znjPoHxdN/X0zdNc5shlPPIHNpn8XPhIl44XPCe1Re013ojTvUX4V4Ll5RqcIhPC22Ws2450J097qICh2nIF+rB+hqZQSZuLJZWcHfREOgA/JhamgmbHuhY2dn/dvz9Q1DJijlIZveRljdrJhOrbYvnbhjVx5Np00kAkwkkXJUJ1CUafUyXkJLSJk3Bwcew8RQBvGYboedNZYGAnUQ1Tg+IXjQFrQCoYuRQkfgCV+bf5Be2XOGeAsRINOQmTq6s9GKNqLrm7i6wvCEYC+LrZy3VP7I8/SiY/SCY8Jw7GGec8DR6ReM/3OWcKVc5rH8jsLbgnla/rITVESAE3iGK7H+QYjBwCeEDro55DGk0z8dtmV/HaidLPMcm/xkmjbB2oso6ZO06jsAdCUi+v5SifHHNta6bclevKjdRa4fpAU0Ec6axfdo4/IOLgt5kXO10LH8OT6nyG2NdbURukmyKrzPxD2esFuSt3Nyj50sFPCs8b58VR/CuK0CWKs0jZlysZOfmQe2E1vhCw1fv697+FdxHdWHTJBFROEtZZijDkJtS9WtqC8Yqlp45a8n4pwrCEpZ3S/Y38iDsoKW/uHpwUNyNmfKo0aXMN6D8nZqC39nAl6UHmAKPPVLvQbXrr2VuApvBbwdT/5Q5/7ZNR+jZLKCtKfSUvF8LG/VC+Gn3ojsaelDb4uyvutgcGaM4KVa9Rry6auI3DgJ79O8v6QHeAVO3ObuTV6JAYfDQNIqe9qma30fugyC8bMVlmmSlLot+0yo3Qi7Wx2v1MuBBJwYan6RyoW/PNclCEyr4q0UvaZblHwQf5PY+7wQoCQ/nKGLmGjWu3CWOSKzDWGbr+b2MgI8Viga+jk3b4OO43itHG1ylt9K554NkysNwCcWTvKqOM1UP7gdpI2ITwVj9TootZoqmgVGgF9VpgstquXKkJiFCPnI5RCf4/bIv4typejZKG5nMhZpbYD73kzSr/MaV13XvW/EVVbjABJzF90N8HSyVZTuB92/Qx9ePSRo92HbAqheztgA+s6lITmhdA2IkUBRITFuTTANX1toOBGpeO7yidD3jRzADCXFOdLoKAlaXFXwEHcfaU6q+OXIlSBKy0XJAvBH2hnVGJeFKMBzh4KKl3qahFoGou4YwerOZVw+b3MKq8Q+BMk59z7rv/exurkZEtPak+Rkqr/aAzXccDcBWsFyFdfQoCqkhsPHvqmBbBHwJ7V3NBvPoQBjx6tWcSK4N62FxfR2Mf1U2CMTzAThsiM/ku6ESm3AGX55epNs3RDFi7NcE4x8X4QYGp72ckboFdSzVYd1ZKB/dOjCQO/9dX3kdL79TGaj1Qy6W321947fKhd2azj12KtLkNoJD3X6wxHkSiesOlRmvGvjr6CLiy6zHZmKRRCKd7et4ulYNRA97U/CbcPKcPWinXYpJHWHZWPF5bfhKy2603L62Ox+a870/MfgFGnjmrRsWzz836YN1VB3a5dIqlWBlX8tiEBj/hkgeQ6tyiv4OH/JIydm2P5yu6mzJkRYEwUrKNG5dPYiE0bRtgw1Z4ojuc7wuHUiIz/ldcHEn18GBtdksCteqIu8OO97fZa0Hr4m3mS127aa3zvCy3OgRrIMOiyh91ANH4I2Kq5575ihrph5ds+t97BB+C+1grX8a/zWkYe4OcsrwY/KyYgdsZSoKCvyNqihof43xMXJZQVwWy0puwG3AxPILEnVFiAR26dGAZ0THti5TiAOHrKnLlmlfH2VhLRpkVFPL7rZBFu7/wdWtjgXdnarCkpxfKnMtFTS4VfZChVoiqHUs/5DzW8lA0vuRRWOyOyU2DYwJ+DU4Y0Txqd9nZew5VrWstzA57d9apQve/s/JjKKza4dTe3hxugxBUDKOODUqb0snbYdpnRxbzvK/DpDv15jtOcjz0UyQQCeHohT31b7i2HpaUYaR59OuGCqez3KInZiOmiBd8Dj9NNea6OAKXPNXBWve7b9MKT2MNMNbZ+XYpHbugVafipmVDSSGsAPIRFHuhRteMyeANLhlWwVqVqk3Kpm3GpzrK34KDhf3xywR8ah1kq8VXVFjv96iwUY9Fm8DM6i9b5sF8ay/12dZnHNtNHrzc7eMR69vEb/5M5ZJRdPtoZ72Hgvu134mj4JsOOhNRzO35W5GfUIl5P4L+tXvGoQP4zm64SvUGxK3WCogpWwrOr+oD1BdmT5jEILL6vlndhYN9f1SATFqgSst4wh9jOJiTNSAOVyPr4rYfGv43N0vRKB22frs4zXtv9JVQh9kdtuUFJ6w10oneEIY7nK8vGKJLSXoug3uS4Y3LKY6VpVMVKpSgoNoqJYm4b7Kh/52coOhILy7ZIqGAXHplAsHsDODefdk9nQMM3BQldjAI9XNar9O+ur6h725h4IFRPFlV94dlDTgaBdC4BtL7RzFLli5xfDgo3tRlO93aNt/iExqmdYO9ldcIctGRLIY1xdGItC3SXxXlb9C3yNpJAVcAe22CQaP/o8jjsQXiM/b6H6Q2ClbkptHefb8V+amymBVBKdQ/qbggjEClGVabTHg7J4eEiTDdqcVmxYkz87uplLrZxXPQEw+BjK/u+e9rIcwF2hzhOS+PKdVVA4XS94S2VwXtgqHtde9GU389M26R/l+hhDuENAPekn+ogM2sDuyvAx0F5/KT0GRK/mIzWDIwoNgx4ihbEMs/JfuMtwGabAvwVKX6OpfLarif3ZIOUbPdisvJZaGT/w8J2pDAeRx0dCIYjakOLp/fznzqJSz6+vJhZVn+eIbC5cKzmfAakr8AgQERFVHYSVhpspYgvr8B/Qkcv4Ek349DPtfhH2H7bT77uDOMjJqa2F/r64FX8z45nPsGoHSHoo6glGKFZnvkMtRBlRkvDKskYOUijwJzYpuXGKCWVq1oewsJeRkUerAECoiC5d9gZ6/O5e0N8lkUk/Ad6xBtK/skL4IqTkeKPFh72p4/UhiY0N0wIMMMmZchpOLdqnL/YA7YSB562JxeCjpUhEKl4RfIAFv7ghbtu4XcEgYyDZA4Vbz+Uu5IC/JRR2HV5wrNJ+w2KUuO6DFmdpsbeRHUxqbnaKgrqca7EU/4A8UyWQsb+Q6R/tmLLPeDeK5AjVATcxVHxUjr1ivurcMrtBeWvBPCojAIJ8X3F9SsU7Md8+GCStHF1GONoN4UsdmtvNrKRc0CTxQnLPP/e/KX7Gu6oGVm9ZmIL0LBSv77y+nw8Clqn6/MDdBOJKtxEY7uH4BRdV0/mhreAVN01abHRzqiMYmjXDnO5AIsV0bFfboiCCiaEX2vSNuXm6g126WeT1N4sAKD9JqCtSEu4wziuwN/YouczdBen0BarTZPdjK1wDOGOLZ49/+WEcnnqlmlDij1zjWCVQRTr1s4N5jgO8dVqFwx7+n/f3qFUQOxb8ykFop9R9CweSvFLetWqwyI8eTBuGyDgrXoJfHQINdCKbJeQLd0oc9u4CophEfC5dpbSAFBbjonVC7gWDv/ayzpDabakbaBTVhGABXmpvbd06gEcl44xObopdgQB13GFPr1TeBMmcsJLje0/sVa+Rd7LTKlcPGNDl/FVuO/23x++VAD6yXBgD/PQNldJ2LbS6Qo2tT4dPCOKFLf6anSLty4qKga602wABAGlKB3XDJod+O6hANzLGQLgv85Rxfv1IQDVQpwAKmCpOS1O/AcD7aj93Vu+kYu+gblYacsf/sks97oJ6w14eswLN5ndihZRoJu2s/J+llcfXIt4Fmm/xe2oXdPtFVjmIgRCNI5SR+krYVSN6hUeqVZBtvkgvW5eXnIhbtl4y44lJBS4v2ecU1yGRYdqU7Nv8WRvW7wpYxM9csTwZRTgR/7gdRP0s2BmX8+qJuPDuN5hh7hx9GGZ+YqfjY83ZVrjnypvYV5SxVOxe6p0/25YOJyF4BD9PDaFj+t+yr6m+ojum47/Bou18y/AUuW5Yui4HzFjDOEs4/I5M14cyEXZQyPftV2JYe8FmO9Rq1FieF7kz79VTGEORuh0UiB7dcwGUhdiA4bEJTnILMOUexTZehsNs8rBSTIhHfA1x4sBeiwOIusrYvB/WYztBoYpTzcqobSp98bCxAyazmOII7t2z6+gFFgkft8Ru/48I7Epy3Yo/ysd5iVwUYisUE0jHaVvSuGHjKzHz5xot8SsKetuW7AyMRzhvuQbDRgMEPuTv6st7YQr9qk8ZFHUyshk97Rl5txydElWQ54xRcsUnmI3t5nNB4wZTjNaoNwERMNti2oe7pCEcyH9oFZFKsBh7C5R9UP3jFidIYkWCnh6lqUWZ8ObtDbeFOtrpXX5s2CVCoUlBwgf5eUySJOjfzUNN7tHkPnwLhsr3D3rmczBYlL6wozqEDEl9NCSwl9EGXFfZyspDYcL+rXGTts78GhDyay3zBRVdmjklw2BQXCnEAHQ3mykc2GI1ViVyZrqtaOIZ/Z8kMF+WHl1gF5eBc6XrF34XBX21d/3PY/sNLUW+fWPwvCBefS9MF0nMnesk5zDxt0IKd5Y5I3dWypUWFw7qB+YH6z1WJ0Z/ZfXbSc1D/G1KOrLq099nA+vmE+zf32S3ybKbCK61gt2iX5RBZ9Nn9Zl7gCNWRhfFF4c//thszXCVZdv2kPn8IuOKfmGXGMnOfDmZlbsBR46zq0lvHX4Qev5ifHfMKUTbmO4pGb5XwURIBAD+U5cEA/Tw389pymgjXwATCYQcqmRE696LjtChsEnGLle5f/jiMHVzvaq4kT0iC2io1VHi5mU/axT+v4dVRAR0Aas2apAKWNocN7pmJS7xh0s5l08OMQhrsglh0TmsfVe48vjo7WWfCmjOxZjDUje4IKSC1iTdXGKDOZRqDcaKi/wuZg4H8RkW6VGsgs5F1+TTHS+l89XNgh9zAOu4tWt+SlLc9kGlsmelPeC9Ais/kowa7citPzr/IOxeSlreNaXx4yIBSi+50Z99QvmUweS+pFLiWgkOWSl7EO+vU3otWE2Gz5APmGwusTlguAvI0TPS5GggESrZkhSZ/KFhfchKqu7EA93KuIN+tpokyIQHQ3/BVlNag0wp/Abe5pX+FzTc6JG+/YE4aKwu03oJqcKb4UPAUq4jjagCxbkx0yXrQAf6FVSvlt5qOCzPnNQFNoswIJ2PSvhVcW8KeDeNGkFS0QpeMZjVeR/Bx9Sua80Vuuu+5TYM8deD7HsVtD+Twg3Am2oBa7URvA20xP3B/0QolEfaNMxTD8wZiL3pIQUFzgcZa18i/8QA2VFTeXg4ffJXVigz/n52zdBdrD/TfyGEM6rZwu3ZD980a5J1T9oesWRMiXXxrCcddfRCgQwWOitSeBtyuvItIa131B94MlyhkMu+8nFzugIhSGrK9JNdKWb8NOYdTpWhXUC4BgVG+Z1kAjcaRhZHarmEPGfxWy4Mea/wFKjRFcUh/idXK5+zngwFcQiGb4BnmBaRRm4T9orI1sNfkKNHtRDwow3gm5jfQSn57CQ1t/nmJZCbMFBTshrMi30DysK0K+XofW7kOS6AJ+RTg+m9Yr8QX6+aMODJGrHzxVy1GZXXzbJ7iUBAK2e5uynRtZVcgzOGP3EyOGN6QqO4pWvps7jCHZzAThh76v7aVvMTXcTPE4Z+3ES7JTcGX7z2zFtGduOn0DMbY2DHIpGj2elYSg5CQS0kzWUtLQphrh+tuswnWABDhTGCPjE4Pzv3WtLHennYfGjmP7Or7pfXw7id8pIU5hO4LpaK8E5KAWOY/exV8/Xc/1PuTI9QqXn5R6lInYeLe8bG2OPYuiIPRCRx+7278g9rVCp2a4WzYnTH9ZIy6GuJvFSRK2Z4h/hk/hS2VdYAZ05wx6j4GtL7knAdOEjh1Ly8jQ9OMXrpnW8jQ3QB4A96ReO6ihDNo3rKVFcfFqT6m6Rp9xrBOV03ZB6YOoRs994I6vkerxtQy5qerbrW1yZ5n3C32OmTDKD2C16VrXTehLnPDLqLV2fBK2K4den5bNCsU3JWIUyTY6lLwJH8DotF+snxVHyaKOKfhG7YghUwq1iY2f3wpY1QbiyLtw9kC+uCGtSTsvVErKc1hM+r5nXUVwbp72z47Ohnwdt553Dg4ADzDmRmFGlYHbOdqcz5eDhlv2Rs/dV17V5bDT85hmXQduoZv4gMNDJTuKhvolCWTUXaTaBWrON9c+ydnFPA5hzpbajGwSvDo7vEDdS5V5HkOiYrq+geYBJgdsejSa/KuRLA0NOzdxrtlPW6kLmWS3RTvHtiiqQ4AHJDim56x8QNXFry4HLrhksw/r95cOg1dPNR+48QaVrWZGQ2WVOOYiZlJWd7/bnlkAPXmFWquS51IIfxOOecXSLGl3BD+r7e4vJBoMeFyEe8+bSPttHFUtYAcv3tHVNyd1F++pRWabFsoyuLLYtIMmjdy28Ao/Q92W9oTfIRBnkqsdAA+a1l6FzxuRRn49RHD1tAVB9pMiah7L+EZ9b6uMipnSZ2BkMFfMl3uS/S7lK+UVKqOZYbwhcNI7kLxtebs+E74zYugQM6CrX5kCNDsOQlT1zu6p072QuPPRd48syMWx6sxlosRqSfs9vKsHqPmgf09noUfpYM5kPaD7RR7o4wFYogg/SiUhtQk4O8/JZOzeuWgPHUtcVBFPhAJ86gZPvVOn8boxhSa8SjOIn+VXEtdJa0YXw/7T7VNXoLTbF9Fi3wWnASVghzdf2WdEQDbzdqeZzSjvWr9ybmGuREGCZh20baF7mVzNrgshI9HMFj0t3zpC28/ZUby5rnCfljIB1Y5cjOcBvfLGERzrg/bXwufHATFRaYMS5tL/Fhfc5vJHX2whu8g/CG5nxT52c1yC497KjsdFjERXSMJOJ5pgkM94vBmrr8aIVO4tXsLm9Nrr835pSOHsq6KGB46M7p/+1Z8JN6TmLRsIM6fNwWUWzrLO8VCtCK91lR66j8AYI76qIyMnCJuZADmZHjE4RRu5crVZrFASQZwtY2LBalQPakC0TMEtNZQ7oHeZUEj+XyuB19hdHqHoRnLkPjMzJSieeIj/PJx+ZTBW5xIBZJtwg0+x2qZ/PQHCyNB7X2MI5hwHbZ99zfYE1lKupW1dUHpNcngxpf45SNpHIWPGIfg8iyh4/YuWq84os82DycLgioQhr1JHym6aiCjHjQkgb4BSIB+XDUhdohWLboHCSDSzGo9PKuz7iZgnJ9qrNPKhzYAW9ZXHHdGaeWPNkjlf/M8khZkRh1TNhBRUi5ffGLnP/UkWOmffF6zgYUshgzOYPDcWs69nfsmee6sJsha5oVJ6zN0Tf1Dg037WNJELoVzwSY74tt4/G4Ru2xPiLLVUVvtbkyKzlUcLXzfAFNZXKjw/8QshKICvrHZzlbszJePFUaIa9XK7+7EYyVlKWswjwLNSPkP6atcrKKN6gvqrmDYAz/Ysy0oEkV3jketacYP/Xk8+TVipYOSaK50jdOxtpQToVKG2j1wpJa9fhHgB59L6LBKG6l8FX7fSIqYVNx0Z0z4mvVN+DjIwY9AcH/5jGQ0dTbbV9FKYztfal/HOYIGZBr3b+8W2edJYDLUCGPDjro/W0G/a+HEEJqMkYRI8RQsUegEICHNRHaROld51a+DmFXF2q0O95annRZE14GPc1aCm93ec5z4JopAqLwQM3WLgsDOns9SKHMOMadIZ/EToDWHB3cbj9VMWiROYDtL/OFi+bDgsW/0egjQwWI3hdJ98IQgUN6GRpU25gNAorTDW3rymUjQcD25LIR/jJH/KGTOAFVyVEzhv7gWz+DNj3yBdfRCVAwEcxWn15i9Eun0ezi3UUz8b9BV/s0bYvzigdIWIdBdk/FDn7UDntYrt7ozpbX8J+uFRwYwAYzCztv8S0VKuUNI8GX9GHeo+S/Xq9sPvcA/Mvfc4rxsuTCixpRS8GaOqWt7BgEbXUJLC6p3HDG2Y0uwlzQI1JTSA/q2/QWAyKWmV9elJgqh07glSc0jjHvhPISJPXwUx+FSGp3/tvMYFOaJ69hnKqyPiaZdYUpsVfH8rqnUSOhxa8vOaKcQbfnetC7DRKQUBzfBVVZVYPQTkR+dQE5FcRZRo6DeOW2FGrVRRrMDpAurI7Yd9oOa+WO2JvvQ6hw4cFV8I+M8pmLSU5diHoeCnCFzBkXfr78YgbTcmqhFI6TBvNktySvfVJjus/w6XfTmcy1jsZTz4HxJZieyB8iJKNjhHcJ5quV/v7wU3Fh02zi8fNhQ/DdaxOZsxwC7869hpNZVgveZ7IV/IjPMHroHznXk0RsPzqS+B5B5MSsYnDtCn1MaXAvtMbKyofLFULcdt09co1/8l2/HUkfEhsnqjWzkpbUjoXX6uFkUr/x2bTiEen77VZ8mELR8VA+x1d3sB9P7bTxmcr+HFWUexfQh6vc8Oe1g1r3yCw9mkrcNo14orHUayM3wM/Hqfj9OofGgwDCse6vbqHtDfNfDU3ZLAH3blC4TIee5NEVEKAhHBmnfiaA5OsulzUT64t3ZFUf8TmhAoJnz7JAYzO/HJ0TKGx+qQLidWIW6xQ1GJ0/wJVMz8lwRAd19tEGVh7DSydQrN5TA9JdpQ4p/KfjrXgyLtJqz+9XrMJD52SLsWjJkly1tX4uvEjw6GBJdCFf0DlY7pXKjyUXLMjJmSsO6Urz43902HyT7RTZbBX/p4gkatbnO84ugkJAXF+9PQH4q2FzMq9SXdRIuoMnpiYNLSo4EzGPRtdiDvH5rFOay9pJ3znhe4MDoitXXl6Lj/6ti33b2n+cKSMCeazuBdJXBOIwyDfAn1v2H7p6/si0SMdqg+gN7zlhlL184CdMM0YCPfmTAmh89iRwR4gVH4/teSRjvchxLqdNp5cQ2vXgWdGnK/421uHWiHhdquTMHl1hZxM+K+VKpWfWFJrAYTnrH3BcKRV/j1pkMc5bVzdL9owdVjc7hxFHIurpgvfpg3xS39W71oExGxtoqOeAUKlr0Uo3QoD1QXeHePdlMtf59/ox9BrlyBk9QAno7yhflvRmh5ego2qS1scASrno03TKv0ypnQcoB6t6Km8Te3obHcoZlROPQy8YxIjSDkwpaCPnISIQHtP8+dWtFsSpEalR5Z8uHsthtqLJhE5XGGLqwJp5ApefnmcKtaR+QQf6/DawslyFsQnJiEf3gRlg0+BAip37SMIcLk9UDzFMYiUGfwua4/UH1jfD8FPqFUUplSye55Cu+r11yaD/ABoCGjnFiQbf9zlSquKIFtmZlVxEbuW4JFXk2sUlZWq0GoVxORkrcgVyifAt1uI0Lz3h5d6+zIFTLhBr0GrpfbcujzNcf9YzWnuWR9OLgxSyh0Ko1s/WwDeRPKPxC3ewEzxnyRMMqHMv/zZu+J0/V8Ijwoy2IqyVZFMHG4XAaNEx6YHtu5vqZz1Ll5fqBb+nj3+7/XFTU/rFAABVu3qw5fiCKUE2EiWxGeTyDxCKSi13Qgv7/Y23o8LgU8SSW/8nz83vIj5z3QLVX27YM3kat0p53o0W+h9uVsteEoSx4kFN63qgILTtiuRL9u5uQz6CoNYSPYcdyxTbB/RjHmnxpw49x6YeQ0wEaPqwI4FzK+srlYpqrLsxzFNH8ZaKhjzGwXYmAJsUfD99J2T0b4lHYDJSb9Cx2ISYGvDcJwjRp8e7ZUjtqQ18Z72TslajbUl1vJyed02T0tEj24QCOvLvoi9/iSNYLUQ0pq/cmNgxu76J8Qfiv28ui/sxTCD9hmD6UO8BvISJgSBI+K2Ce7DAouY0NcSI3qoXjdt11NdrYM+V0H3oX1dktUhPN3eI9JrdJUWouLuByxHlKxlkV347NPNQWyredr5RKg683tENNd2yUQs3KrccpxrcCFcBx6Wsf0f/LsEZEuxu9TqN9OL4I6ZkeVlOcOFNeLK+YQivTQd2UMX+A8yxesBJUpd/ZouIfJxCbC7eSQ4oIR2ANMcibRKKG5GyBjH1BRQ6sVN7NxcJrbfXgSY4QWSTpKLrwn2syFAeg2d9fK7AXn/IzaLRf7utFv/cRwNUeK6EynLF9kS+sJBNIyWWi56AZey+w3Jp5tm/o8qXXNBsGfHyOwc9WOBhUf8R7NcfIERcKmkAq5zVTUyNOEXG/qCA5C91ghTcABJ1gvam2yCVjaTczzRStazgUUlpJ87HzvQsAmjJUX3KTRRr4LSwDX5RBzfyiuFAeZjQldiTVL+jJzjxE/pN/RzCj8Fhd/FKqO+DUMw1eT4B53/cJpljig0mnsqOshyU0FYy47Q/wzrlf1+AjABZ8i8fu8qITvkddE5UqNttUeqfCD2JoFccXn2F25S6hVCCjnWmGWdCczBjiOt7vrj2m+ID6ckCfqNcmMSjtWIqEfQ0IEuqAI876FJITHph196BxXUujGAMjbiW5gi8i9raN2fc86atoyxIK4y+F7QWeDqwGCQ/3vW8uEoilJVN9dH0k3oXaZsDm5aUogY338iq2SYXPZNWUvYmaWrLY9jNirNsqySZ9Eo/6nipm7O/FvpS6iZ2ctqXfPLVr8HkmWfcBKJuGoSf4g2Ca+9mKc1txWjuh9TrPcnMKR2CmvElGuYiCrYOfXUOi997xjXGnJRlbmOK+52mpd3YU3d/JrC2FntMrKCOywuuhAaLJOHuqHT+WDoQ+3zl5YF5EjVCd4TA4b8YxYS/XyMwr8IcJumL/xMFRi4Oj9AtE60Q0zAx1gkkQzWDOApIuXZWnBgrtjbpjTn5lm24UwWL4Cq8fpeMfC9F2PDadU9RyzRUoly+6CT86XgtB3uMxnhG+zPL58f2ThOuWH5Altd5fVFAHTCbBtWofhRnElt+s8nkMVz2xgsx/nZyh8ZpuwvK8lzw4tIuqwDfgu25Dr/GuPFklYK0ROYzen+iySX2d7SugpJqYP650w+V7aWbhsBlgYTySCqfCdpFO4jSVqJHn/A9gDNoEgClBdQ7Gp5hq3EmLuPH7LUfpi1gRqnzVZagVD3sguJFJQjw2obF72qhBdEP0fJ2lQGk/PSYYcvqZpa8t2qOPoTbL0PaahcFPp+yy0Wat+qRqA4gkyOG2fOt2iPS5KHPXWunO0d4JKvha6ReZB80EEcIEp2JY6XZcgktNgvGwWpT38dhV/In5x7GIbyeHJ2gdJAcTCiHAlZqXIY5w5FE7jRhWHFtfNlHOXQrlElt4duCUzc0L3zdbeaL21RwirnklpUDGwffk2bD7Qrts1vWBROiSas41rxERyY4oXtTf4nmvx3TZwl6/k2lgJ+dkBPVr9jJKiz6bgQPKKvX4KDVa/l+7DXM2NIS5adysz0VElRvTDXcHKTMZmsBtbj6n1F85AnybTcQxRn2jkEeR67Wm4AA/z35VZQ6DL1uqxJKa8FXre+GJtirn2kQsY6VBhkUbIQodxPE8+ajMRp9EKFfOWdg9D9r/BRPdMDTJGyPnj/r3OlgNrasQxYIXNy3Ln/lLXMrg9ZfSOXSO25elI5a4r1Whq3++j/UYBsJa/vwTUkkOEt2T+NNKcXmFinbWVa4o/fDJte40sAeu6bYdVV7rRNLQipZH7Y29vsyUXmhVI3Bg/yUy+kkvjeaV3n+Kt3p1lLXhADNxnfvDNwIqFv69QIrypBUvQtJ2k3bd8qfbSyXpBRXMdSNgiCJ5odIHf9xHirWFCjbyiLG2u0pJFDp1rzgC3n8PrAnaDNS2nogCUjwaylG5C+NyI/CLUPSLkUnxMDMQVOihdeDOcLJ0w98Gp0BSYa8qtPtbbQdZsmBobC0YPdDmgbC8xmi8uskz2SF5rRkR/kIu0cwh1CQcAczzCLF4CY+U+gP5Whi/TNtJjJFwtQzxfSrqqeoGyQn+ayFlUmBQMuEYYk9fRMRB130ItzqI6tx8S3IkJoKt4chmXchSDbQhdRWoFOhk1YcJqXU3C3zuZ4O00qfvWiJd+7R0Y7/jo1hdijbkCmI0bMGamL6EjwmI1Nooht51oAiJIZkyTwkG8erJPq60ivwsKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvQmFzZUZvbnQgL0NNU1kxMCAvRmlyc3RDaGFyIDAgL0ZvbnREZXNjcmlwdG9yIDM1IDAgUiAvTGFzdENoYXIgMTI3Ci9TdWJ0eXBlIC9UeXBlMSAvVHlwZSAvRm9udCAvV2lkdGhzIDMzIDAgUiA+PgplbmRvYmoKMzcgMCBvYmoKWyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3Nwo3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA4ODggODg4IDc3NyA3NzcgNzc3IDc3NyA3NzcKNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDUwMCAyNzcgMjIyIDM4OCA2MTEgNzIyIDYxMSA3MjIgNzc3IDc3NyA3NzcgNzc3CjEwMDAgMTAwMCAxMDAwIDEwMDAgMTAwMCAxMDAwIDc3NyA3NzcgNTU1IDcyMiA2NjYgNzIyIDcyMiA2NjYgNjExIDc3NyA3NzcKMzg4IDUwMCA3NzcgNjY2IDk0NCA3MjIgNzc3IDYxMSA3NzcgNzIyIDU1NSA2NjYgNzIyIDcyMiAxMDAwIDcyMiA3MjIgNjY2CjE4ODggMjMzMyAxODg4IDIzMzMgMCA1NTUgNjM4IDAgMCAwIDAgNzIyIDU1NSA3NzcgNjY2IDQ0NCA2NjYgNzc3IDc3NyA3NzcKNzc3IDIyMiAzODggNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgMTAwMCAxMDAwIDc3NyA2NjYgNTU1IDU0MCA1NDAgNDI5IF0KZW5kb2JqCjM5IDAgb2JqCjw8IC9Bc2NlbnQgOTIwIC9DYXBIZWlnaHQgMTAwMCAvRGVzY2VudCAtNDIwIC9GbGFncyA0Ci9Gb250QkJveCBbIC01NSAtNDIwIDIzNDMgOTIwIF0gL0ZvbnRGYW1pbHkgKE1TQk0xMCkgL0ZvbnRGaWxlIDQwIDAgUgovRm9udE5hbWUgL01TQk0xMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgNTAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yCi9YSGVpZ2h0IDUwMCA+PgplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTEwMSAvTGVuZ3RoMSA1MTg1IC9MZW5ndGgyIDI4OTQ0Ci9MZW5ndGgzIDAgPj4Kc3RyZWFtCnicjLgFVBVa8z5Mg6S0IHGkGw4NEtIg0ildh+7ulu7ukEa6pKRLukO6u1tA/kdvqPfe9/d9i7XgzDwze8/Mnr3nOZC/kFWgFzCw0gOJWlna0wMZmLgBUgqCUkAmABMTCwMTEzMiObmiib056C89IrkyyNbOxMqS+xcLIVuQrj1YJ6xr/93QyhLw2sEcAGQBANm5gRzcTEwAZiYmrr8MrWy5AcK6jiYGACkGwGsrS5AdIrmQlbWLrYmRsT034O+PACp9agCQi4uD7oc7QMACZGuir2sJkNK1NwZZgHfU1zUHKFjpm4DsXX5bAkDFY2xvb83NyOjk5MSga2HHYGVrxEdNB3AysTcGyIPsQLaOIAPA95wB0roWoD9zY0AkBygam9j9AShYGdo76dqCAGCFuYk+yNIO7OJgaQCyBYC3ByhIvAHIWIMs/zB+84cBHeDP6gCADMC/l/vT+/tCJpY/nHX19a0srHUtXUwsjQCGJuYggIzoGwZ7Z3s6gK6lwXdDXXM7K7C/rqOuibmuHtjgR+i6AFEBOYAuOMU/87PTtzWxtrdjsDMx/54j4/dlwHUWsTQQsrKwAFna2yEifg9Q2MQWpA+uvAvjn8drZmnlZOn2l2RoYmlg+D0PAwdrRiVLExsHkITwnzZgFeJPnRHIHsDGxALk4mQGgGwAIGd9Y8bvGyi6WIN+gMDvanASHm7WVtYAQ3AeIA8TQxD4D6Kbna4jCGBv6wDycPsV+F1CBAIBBib69gA9kJGJJeLP1cFqkOEfMrgDbE2cAepM4AYEApi+//z9SRPcYwZWluYuP81/nPFfuf6tFRS0cga40bOxAehZmcEtysLKAuACf/D4fYG/U/8r7R9aWV2TP8P6ZUUJS0MrAMcf0YPL9mcGAEbHP5uC6s8rQw34bQsAo7QVuJlBAKqfva/BxMakD/4F/P99A364/Ffff1/l/7P1/xWSqIO5+Q8Dqj8s/m2ga2Fi7vKHiYiDOcj2XxYqoD+usRTIwMTB4l+whL0u+GYIWBqZ/1VEAKOJnaiJM8hA1sRe3/iP5vkBgMCX4vdTEbHUtzL4fnuY2dgBura2ui6I4EWAYJEN4Ab+C25okPOP9gQwMlha2YOdANYO9h4AQytbxO9nwwRgNAfZ2VnZgkGQjQO4jmD4BwIEMBp9f6dAtv8BMgMYwbrvnr/rWX7o//T7HWL92+VvFduv1n9r2X9orcE3FWQA+mnM8UNtaGVubuX0U8v5S/wG4AfC5ueGXL8n8A8UfAX+isfK1s7c0v43EPhrZP+BM/+x7b+LxvL3pv/GWH9LzMr2txXZfk3vHxi4In96/XkUjuB4fsLgyvzh95/orxWyMwE3q+7PUgP/UaN/4sw/i/SjfL+1wG81+jfM/HfQ3xf+RwGZWf6K+b9A1l9df6zs+BNk+8Xznxj738fy73g4fj2Zf8OcP7L5VwG4fqh1ra1trZz/0erg2jhY25lbgR+/v3XgmhiAI/uH9o/bYuegZwey//1oWVj+hKzBb+O/QNbf/P7RwCxs/3D9Jw4uxl+u/25/Fo7v6F+u/4Fz/ub9G8T1D9dfQVamv/z+CQB/ev0T+rU+vwG/V+c36M/LpGura24O+kX/R1X0fjlD1j8eFDtjK9vf9Rw/9f9e549+sHewtbSz/85M/ga4/ryotvq/PE5sf1wUO/AssjM0+RUA/mIOcra31f0J/ZE2eITrWhqBc/tj4v2NsvyOmoMMfwFZfwHBYf+Gsf2G/WPVP2oBnhRWTr97cfwE/uHyRyXA/fEfXly/Yb87sjP9BupZgSfv3xjw53a/A+CiGJiAWTHIwsHc3sQaPOj+hsAVAVlY27uAW+Gn8o9KgJxN7OzBPM/klwvKDi6EwE8JnLngTwmcrtBPCZyi8E8JnJTIz7EDzkL0pwSOW+ynBA5W/KcEjk/ipwQO7PVPCRyL5E8JHMubnxI4FqmfEjgW6Z8SOBaZn8MOHIvsTwkci9xPCRyL/E8JHIvCTwkci+JPCRyL0k8JHIvyTwkci8pPCRyL6k8JHMvbn9MVHIvaTwkci7GuvRP43H7qmP/W/bx0XODAwPfJAPS7Kesv2l+MwbGJmlj+fOC5wOGJWZj8MsCYwJvIWICMdH81AzJ9b5VfugrIBN7gx/MNnuX/nIFM4Hro/W4N3tfIxAL0K1sA72yga/672Z+j1cDql3HL9HOk/qb/zjd+tLS+uZXd7zcW+J1u/MR+v0XA71wD/Gz9eKZ+0YIz/OvR+icEzhXMykFG4Ah+3KRfIHCq/8r/O734rwEH/E4s/gCsbP8Jcf41he3+jXH9Pb7/DX5nFLq2+sbfC/B9Uv6CAP9AfqT/DwhcAmETI10LC91flOAKmIHD+1UFztzsFxGcrbW5rqW+mRX4qweztckvEPs/IOAvGDhtkDX4q6SV5W9N9RdF+I8xDvz+1tlZ6+r/UuvvT9z/otbfX7n/Ta6B7Cz/g14D/3zu/pNgA9nZ/k2xgezs/0mygewc/02zgeyc/0m0gd+fxf9FtYHfX8n/i2xz/MzoP9g0x29Z/ZcB2//i29+f0v9JuDl+z/EfZ8bxW6L/BLn+b879/Sn+v0g38P9i3ZzM/zftBnL+LNe/mCqQ87dq/QfO9n8xb+D3B/9/Um/g9wHwP7k3kJPzf5NvICfX/2bfQC6m/5N+A7mA/8m/gVzM/5OAA7/Pkn8ycOD3UfJvCg7kYvvfl/f7mPnHhf/tW7a+g60tmFv8+H8G+Cv4X/KPf1iBQM4gfcS5aSv9l/6mVf7NNxUCz53oN4eZWVF6zkIuEFQ2RPAct+V8hXhuz1lyQmcF2ia3Qm9XMPaZCx8/mqniMJlpLbsnh3LjzNU0wxrqrdO5j2Lwft23e+PAvCXZ2qqmw2JpYIRzXC/f53TxaoIal87mdHMqbVeMh6K+7LrU+Biesu6AARlqODwU/hknJwsylP8ngbRPZYKVAhOTLRJkdmevhg9jCUV3b5O7B5jZ1nq+FNNBmqwmP9/bQ7GWvEjb40va6WDHl9QZBUyQb3SIoL0ceUsChB5HqYvji86sWSdDOzp0PtKHc/p6nlKlyPusLYQ2qcFebkhwwDn2SwDkIJpIvvrevcGxrZJQ/BdvgrPd9Qp+0OmnpJvumz24GRFnQSYefB9PDxPfZ/DMIRcUDYvNz0Jc8q2aMnRja3IOvwHZe1Qk097ErQ3kfnNJvJVooi9BYU6jmd14oj4WAu36+drNRaYzeHNIefANkv20TMUoXUx9sGB7qEWh1JsL3y/nWUTeLeLcPYdlSZfnG6m9esdmRRxTVNtyc6qhiES+x4hvq+gxPBEvk+v1GLEPYh7MDk0mqZ4w8eDIMqrgLW4e4PbP+rRjCxQvnXMmqbFVEYX1q193vM+zS2cnJZ/0yh/nzuSZwjOuXKswUSLhTe++5YFuGHPSDIBxqjtJp3w+vUm0+20ni1w1sJ8/tx6zxcpZKPeMfNeADfIsgGFY6aKU3as44WWWpkln6Jnq0xon3hNGoTOvddTHudpynMdXWR9ZXf3P6xwWHnj6Xeg4eTCaVJ029OLxhanlGGT7jkQEBOt3xnDvbgfbc/U0kC/THpYKBcsNmg6ZzwXT4Onrn6s/Hip0ScmMzvGd7OogRc07jJXrickVG1Xi4ug9KZ419E2pSVGnQXkFKuVBJ5qS2UIe6lyIfjYtUTodeqrPsX/7IWJNiBTREzNjca93RF9lsLZw6GA8gS0m9QKBVn9clFHnKb5eYxCjKOt2JNPEQFFUXoIqY/iBRbEu6uLtsrmCURohq0ru2DJgeSuaBSkJjtc3YvfecV42KBsuBOWhw3CnlT2vS4yBZwJByVCGw+krNkkXK2ICYwVThql6tOiOAs2l0IaZKgpBplPgRCDRh+cnvJ0sxkhMRg/s2XJkn3EoLzL8KFPZv3aSFoe9gFeoleUa0D982um6YrZtrZwWUzch3xbRqMikbYvo+7kWN3ipwtNV9anT2Q1nQjBDXaZXJLSLffb9OJFKcNH8ro9Y7Z2l6Fv6Uc/1x4WjwP2zb0Qlvp7zi/nOa0+QhLXd+1GDyCtPINh0aMgMaSzkZt/N7X+E3GDQ684Obbc/DyD77CoFC6GDeqvIU0JkxY44cirM+NpF+JU4VLjuJIUTrKzYc4IA1tjw85zDbqK2pwPDrHykxia4KlTHvcuTbL6UOdWLk8TKykrSAa/aut1C40LCCNxnkIF4z5CcO5BxUhlLrzOhV1imAoe8fT9AiTMrwXO9m73pXNdwXpPt9jBqWmCshKJUhLw5sQ9zaDuP3bM63Ydpct5u+iytrDgFM7Xvyrz6JcPek+e5l+R43P2gQ9qWnTJn5tFnHr/+muycfFNYCOk5x5dO1z5NjO+qmUYJIBupNlAMQ3VevSGmcIeT3R2rhWm4NAhZbh6rLH59B7uHypuFxDZc8K4n/yjSN2APCj8yzeSkDCDLerA0ebRXdvUaI76DkFr+IwdzX3L350Tj6wHKDHMr7Jf5+N4MOwc1U7yDOJPvb3kVceSGoDw+1J/hhb5HykK9JUHnj7Nzw9uJhi9/qqDb+SFCW2BrxL2QbORktVU0nHJpnZHy6WNNQ9giaddMbhKLXBpS88Wk2Uw5M66zzWz0ProOfCTwcvSDQKY9zdORhw/72PJbdLhCNGMwq5tBueBOR5xpoVNyG9UhUkYfSUiGgTYlKGBztQpImVc4TlUWhavN2SnX6K1/mxDFnAgNR5zldyZIJ+JddPhCHLVO6DIR/Roqj7k9bdypymBB84FWFCkZNdPmikzdlIQXdeKLdRWkRi531HJ1AsVFgOgsodbqG4uMbyhMZ0J7ihRQLzDatA8AfGQuL6eqfTteRhc4I90YORdH8PvIxlvZEAjbg1ziPUHyXpRPQryTjF2mgdLdrX4fZFBUlETS/MuRJt71gls9P+I9HOSHFaN9BWbEmvP1QmlJLDeewYyG1GE0QyfRS0IoAd0jPENOK6+VNIVjh4u9oUkd12gjbt4r6ntn3+SUDOqlC6dCRGeUErWUSOenBMiV853ruTbsJGLqN+p2hkgdtQgrPCXuLBGnXBdczfW8bLcCHN6L7gNzitdSdUnCNFKnpyYGh4GBPBy2OQeMd3jYl1shOH3v44pCodav5lME7x2K3fapHM2RvN0ir2MCpeJBXTn4wfFJ47L0swh3PmVt0yRtZwZTJoLdqeL59sbCtMh72KqvNyQ12pWQEwKYrrTypvU9yjEL1oY6rXmApUJdFHFtI7qtz1+g7KeG8eXTPSOqhdd+FpJ58aUf4Rzvzu6tZuwGwhNazSk/rED8Lq/kFgVYY3oXVZ4Xae8hSnl3sGEy3jc9qEN3oo0nIgkT0av6M7YLVOja4oUy31okBlKhrXfZeFkG2I/iHrrL6W5aQczApTKJq5OMO6IpZHZGLgHPSiVlMOLzINxkHCnU+5yWJKrJH0KBcQNEMuvUsGa38h5Xhx/atlrv54aOXnzaebnTB0Oa+kL97VfoVpucjMu0jMRDqqul6uVwC5/CeVmS2gFmcaj9w4e9jFpOSEIWuoXIpXLsUL2mdP/duSbhYvW3jirHBVUeCJwvS1GEYCMV14im2yjWCC1IGkAnJe2BGSGwtSvzwb6a/nnWgpfKnna5aAIUu3djt+F6ifwqRoh7hwiknhygMh5DI8+g9+as55AkVOuRprQxEyPaiXd6o1FvC7YyfCN5PCV5IztgISIre0EpOcnpYdnCRR/FklDRRmtx3pD2fBmheEZD8F7NibFzV/2jiiNt8/b6e2T+ZTtZh2dMHWpaCF+o71lKFG5p7+BeeL96GKD/pNOAfPYA41l4fi80yI3+qmW0AqJBavE4gTb0WvUiJOyFqeXm290PONX0KFeZwcrBrbfFw1DJOzIYRo/9zK3qJ3UxTXCGssOc1WVWnEmGq2+9SUBqn1lZLV3Z5S5bJ2HwMXv216G5t24ta4uqZiDm8YyaMS+SxGkryVw3LwINAFU0DcUsIoFjBV3ly7D9r+o11kF0St+CF0eQMYlsfQxs5u1l2/q/9JZZtb+2uMBSXycc2kdq7HgIWShD6okPusVQnRmT+VAASYMn3ONnea6Q2UB4veQiWvhmuaW8juyz3IxE1JHb+EGVuBrsJ9++TOtqp+dNIEYjI8cKKwW6vaxna90bIe4uiZRoeW/rRNPRLjN7Xu7JugjVYjnJz2HmLYz2HtaqEtfHHngwV8uhJFzUz09mX65AApMNAA1AEQKtNxJiso2xJYPTOEysETqJ+Qa5XdXk2IsjH1u83k68bQ+6EdCXdFAitWoufMG628T1ufybr/Yey8uitIgOt0xHtocETt84sdScFeTqfk11Ym9oQhZr/On3uIO9p3m2iVslPCnpm0hWOM4nNPLpHAKKg35dHppzmBjKpu7bQynkXC/zDBi1ZlX2yauub2OeicQ+K54Y0XRhvHnDJUdjNM1qzKSWIk0JlzcSi1P6AQqPiKXTI8Z5N/bgJVGiwGlFpETRhfE9IbNB/hcP6/dhgzYrhvR5lW/FcM8F0dTlzsmY3WKp7HTejVwtQi+MG3CwSfvL871FoX4nevppjmGSy4C5mr0ADdpoSQW5rsAcyuQbsa49hV0wzldCCFISnS+JE4Co6FmCe3YzZDW0HDat7ifKpNEvdYLLCfStIOyT5+R5s3rrZY6X01ZPXrYT3RE4PindsYqDOu/bSwkcWuPzmpY1vrNAyCXxhiHtlmiWdnws2aUZddTh7V3xL7HHivyC8az7w6ABjXObu6jOl8VKk/m64DyjicfLlRp+DlWGsCTHVJoAFN50RtJuHNOg2VvLfd/jJBu4KF8/IW/K0vQmEdfSl4Cp5J2hs7gsw3KM3iG1YT2/BWyUgFeEF0/uXXN7RvzLpgh06cq88fJ195cRCayVyI6oJCBk7aU1Bz9XN6MtaVCgIaM8bGncWuZHjD5cp44qjyLRt/UOQEgjlYa7ntfzPWUoqjNT5PqyWZsWqKPXnqFDr6o+3Kroiom8I96bVOzkup9QZ1w8yCYP0yxzvUX/NG9WaEzHkND7xd4+BBbuwizjjvNVbJmhqRegN5ybyw6/Xa8qB7grVXhOTZrYzuz5iHaz+tZ4iGUJIfThyg7fww/xw8MXL1H7/lp7G04qIukdDpf1FTYR3M45LcEc1aRLSPYni/hG07VEkNh4FK24O7DYz2FxleyDWvM656e62SaDu5Jf66+jPsG80r7yIIc2H4wPWR0KjeIifH1Uvlwn2qF8j8r68r2iwiRf36wC5/iYS4ZjKQXvG/YblOqAAxIruEtE0h3uwhKrUe1ekQLKiQ/EJ2eh1g4ckb2RQaOzE8ZJi2kKeIWmwIwpbtPCOqe2qaXwg6JP+0LdXwtivUl7isIlSpbPnJtN4aHCRDkP7K7V9l/EZxQ0QgeEXs9fbScJwvkivNMTHYZFnB32lahukvP6yA1ZlK1lQeQ3IRKhqLPoVZzZZNAfCC2ptaa1JMxK3spKfWOBV1FJSVxb7H+oRsMFh049Ry0ilTBUsA2ssOspmrppHe0xZ1ciMzSUJmsl3goeI5m34jvrMtcawhhZpWrBePJNVo8cM/wjCrEmwOiY2/qdZuuXZ4YxzGYyMIPQGYGlu4cBk7a9QWPz0un184JJkj3dA2GoJuo7X00+h/M3X8tE2grE+WvdtG1Qas0IbKx8Ug32Xa3h8lHUa6g2szaODRBTDtUnOCcEZnTuirLscj0X3t2h8vAuPK52M9Xf/FL6zvlkLDSXjAs6BXEr7318ET/9/Dish53HxBcFxo/Z8KhKbcZ8UpUyq3eaO7NTMe1kERjpuidcUy8g9Eto2LtJ8V9tU3bo1d9hf4hhde/RCeiCwnnOyWkoF6Bh1Od5COBcNtKRQdeYNuKfOMEqqmk0STB1znx/7mHNRYxx2aUA7EShR0NoK6w7kHpBq3IA/WavH96GCWbxje4QLvMUlI3P1gNEb/tghdpmihg2uzXO4dHmo5rzxy5S1nXf29q6smHkJqfiorjJtsfR+NdjmukAH0SHgMghA7bgtfNcRPr6QBfPW6Qj9anz+DUYtGU+2uJ0qrsSosmF4tegYEmOYPQrgHKoT6ScdGHVlyyWtq9Akx5E+YTU8RXUfWouKRUfXXoCSpmuzBsiYb1oLpRGfANsGQXiElWP8e2OxQLYXSZNKXOhKOMZNUk9vctBx8a3gIw+FEj4d8ikiBqLDerzB44N4ZEx9sYHKnG0PNRwe22RnXepKrhPCc6wxcdcu3fs8xvaLtvH0XC9iQYC+bhhNbmgIiL2c/Velt7gdus4shT3+SqwiUfERy12FARK5io9pWjgR8XoOPJ9t3G88uXbPs1M2rO5Xc+kSuJc3jr2ctkkn7Oi/lMGxOgjmfs9CqjPsy6cH7UumIiJeHSCobhnt7lx0GrbG5cXGWL2OzEqtYMcSQQfqfQSpzJ9jCC9yryWmk12C4NpY19Lyju+9no+1i5qOVDJIrMy9gTJgZXGThYGlbhViKvkHnpCDe5u1jxDPSrNR6kv5byCD5mNDIbw8Swp+JP7jjH5iutb0HI5GTfyc4REcx/ZO+LJoplP8i0111EB/i/EP03T9WV9PA9QGseKvsqYz9ZvQzL3wCdZLHKbx7lPkqdj0EOD0F1U1BLMfmbiUpu/Ymqk6cVjB5FeSj7tiCu1s/CeqB6f91WyEsiKlLf3BM2AOrsET5+hOBtF6b0ktY07HHVwc7LR6sfSSXP3Q05SGjuGWpvVLaXzbeccT324LsTHZVedb+/Hpp9ljquUeyhGbS8tBWLi0cyKRw5graOhzZtTvxPw5patNOFZ7896tlETTBzDnhHrMhxVoSnQ4Xzn6CpeY7QfGXdxZ7A0PBWLOVcNk+0kd1xTJs9wSmbDXOmNjMp1T8lRzaOmjBvo/Z6k4A4KrsQSH8DJ36qdfu5g5DrE3/WKkUGM9AgeDnG7cQ0i5V68tdObprbu6wtbeeI8g+bkV2aNnZFmm/ir8N7uBIJq23hNsDjWzb7TbcRXsnLfCrcOVEeFYhxEPlbRlRvTT/Z67xDlanwYp3CnoERUoTcWQbhc0iK+wgOQ+egHuwlLqKwyD/f5xJW7BJfZOkxrUY+cm8HhHXauvqlBjiEqO/bBTsNZf7l9dhovyryDMF+4VJpVoxS1sQOtfwi6vXZktJP3Ipht1tURHlTn2vgiR7M6GZigURHcC8GW86Quocl0QhbReKaHa1R90zN7lQ61O/J0uU+97rhyHmAlQmp1FM4nt7r6kdVzeg47nCr2QyIQjc1TqplBreDlHLYTy4EkfQ/Fmj5Jaw6i/JO95Z6r2/lzWoV+O3SKtKy7aC+eRHKmvmUrGIree7PnvQgRI3uGg+7NtisxDIhzsKHDoWUv6avbk+SH0BJhKSzzggtOL8ZpcCRptbpInJGR194DU549d7PBEbUiLShOzRv+OBu8YmOBjsG3Rsnpna5bvKVLrQErtJoAzYYXjadk+kGJxF8sl+dkHNubhlfaewmYoDHbUmXgPXsrRyX1PvMMMner8dBV5dwd5XSJ3gpmIphqF3JTn/xoViiapde/XQv+qyGRx+KuH+9koD4I0Wg/Ah3nG6Ug0h6zbnyUg7fPhFrLOxZXxD1dRtIImVMVeFgvFzQpzKbXZyxp7HxEHh3pTv3HkhxTwTa1tRqUVz6er7EDsWSD6v3EFd03Cmd5LSX2aVPEoiqLP7CcfE2wP2MugpBGgWjBschdrcPHYfWoeJga3H4212hd2BuvFPx1aGQ02UmZhc1lF0LU0ZrTXjTzQ1i5ygsYgvANgU/GCJXczTzpmD2WWXEYZaHzc7Qq6dZwyBSmUhSE9Uk080feQdTyGoFSQGvAyBO6MAW1zCkOfOEv9ogWzweUJr14lmKFAmjaiND9Iu8R1KFuAg00QEWEnv4rcZPW5dkJJgnHbBSJLlZ7auOUexRzH7ORaOQhj16UAFJiv6UMjKk/q172X2BD1AIYQn9yqSLKr+dzNJif3DIuwukpoANSeRVwcAg8p+KUfWds+TxDevpwF0Uayzadxwch44AOAv70ESJ2cfUCSXOPmb/5W4PRVUPFq0G1fBasCRp2TOhHL5cwfLK6JHLIN9K6Iw4MzSm4F8YQ8Yaun4aN01HZy+gxZpK/ehZryaiH6cShlPoNN9fyeBfqkUqK8U4VKaUTJugL40ZCDEp6UltkLTt/MMDA13q01hAMZUj3K27de9L0DeLGxZkrizUosFV1XqT3DkB1eJPB89ogupK2eTCh750ecrSRp/jz7Qwzehmtrk8hAJnhAOIlRUoNEwut0EhQxlBEtCZ6lsbqKTAtsmgwBBGmQ/SWoymc1cZE4eAsGVKrjOlW1liagG6KMSRDUv5JJLBxgkVUFTeDnyy1XmSAh7/+emMiei1CgGYtWynlKEwsDn5s97FaNu9ee/EFfNMjEsdzcpHL/ZcJtmNDu1PoGIgJ8yYL5mxfxJh0nmqLF2IZ9yMRcUPh7KEtk6qW8Kfh0VeBaL7QGpjD6Sc40k/I77l1x84ok7i7tQbNyDMMSkVuMUHBW3+2DVWhI5gk9YN6SbDoSi7hkgw02dR7ysKmxd/Id8ajL2AxuUSqNrgv7dLM4Uhgbzw59ojwefXemXYuXDiM8FV4aCLCXrlM4WTLTdXJLPQphCkXM07ZXsFVNtw6VjFGLJ43p139XLDZRBGQu7pRrBCP14UoHot36xsgGJ2hoE/tpWiAk3ck8AQPLysKUH9hrLUPN26IUriGguMErGWH4sVHFFXcgxmgIoeJr7p3xlWfTkD3OU5eZ6J9NVzt3SL/jNafnVWwyrlsMD9o/qg7u++J8VXyWpiNj7wn/E3kmLh+XANDwjZf1TD5a+f3Me/8O1xY8dm2JxzDopKUXugjotqzNFT5qMa5UqbAROXd7LyWG9RkbATSWUGPJ66S2y9t3i9rjD0vavOX9evleoFyDleE+AGuR7SLhftaNuuaUJKYQL8EjzcmllDsaTiZvJp9krgNMTEKU0HV7iEBKfqg7kXeAGWuoZPJSWon78yD1E1SgFW0crp5+3W5AFt6L3eRno57MdoQcPiztgeRoWhI8Htz3iz/zAlPhuMCn0fzxk0xaKLHgt2EoYxD7IXRptxIoRi+wLU90gvNKE9Li7rkNBA8QkIv6PasYRyK3Zgh3xMgJFvrQuWY099d3/AB0eSzZLWmd8o+QM3nuvp9D1mXd3R4U7TyfCc2aoawayi7iuIbnbuwNxiCNqRenqcTUjYVxlB7GEtDgfpWCTJxKS9HYiSy1CmYUMX7kTcrZ7LtH9ERThg7Xij0V7InqD0NYH0t5gwvX9EvgyqKPzfYdgQ4XdpO0JOvhih8JSWkDTcwz0qsEIRHuENakzq2sTydlG8qI1gTDhOOqxMjBfsKzx3pfsticepu9TjefYibNT2Lk+BBgc9Dz1JuzcXoEiMQp3vSeTx3c0ICp21JBxs/PW+cj8lF7Kp8G+4O5fBr6TF1OQwbk679R0aEzmYc/uWosFzLCokb1RuGyOKKLC1ODS2PTgaVjSlRCHsltX7e1WS+vgqdFPH0dkSeMBLrq0xWXsf5CiFoi9rY4GFqdwcdDDcCOHykFqEqrpN02htKL0Q3KEtYp8WBBo0HcVhoCLSdWvkLs1jigvbBkNzWCc/tNR6f2kza5es3SSgcrZtjVcVCmME6JX0SBujq59E3o9Xcz9ujEHabYtGGNrlMUM09105WP1dnRslUlgvzFUYFknH6cMKqvogzppNom8PuYWbE1NcXVowaqzIa9zAzOK143jIiZsSKaPnizt3cZ/VBQzaT/Oqqr2LubjiUfjj2GdGs4sdFy5EYxOuNl772yreI2AZR+dmrBKIflItY8LPEJhzMGvuLDSbVdxFKmawLT1A5jUpFF+vSkT55TpDue72eQaNU4Zov3RVzRh5ua/NAedwXqDk5Xw8gdyY3jHVF5kJTR2qFpTXwosv8wlYobmRfGpIJUz3qGGPS/U7z8R253YrJ7Ps0oixo7RUHdoMxUMd+gyDZGD6zgRDkVyUmfxzULT7KicftN9FFr/j7ri7ebLUu7qZhfdpf9Ejydap17Wq081AQ/VrE0+hyPyAprZQf/fLNqyCiJO9AKCb2uIeQQoL4vL06LQghbldZG+91K/+sTb16hfYnfrgNDjvOixpvJt69niEa4KUeqJEOhvhCv4d8NxtSrdcRBiVV+ebwG2FA7KyN7dvVPSPjBCBKXD2/K0oElEin0dkgYFGSRa1SZg+t31N9pPte3PfqMB9RAHkZ50bZNFVknsBJ+rOevX46kdjYTVe5b388oXp1kJbflJ/44onM+dk6+4oQ6kVF8CBmDqFVc5tmzPH4q3Q3+ey3Fj1h/bpMac3vvVj7DGBr6N2gCO/lX4T69e182Q7KMTJbIUdL27EssQQyegnscRNqODA1h01MrZeMSo8ensxCxaM6edEgTFsH0PVTp0L1Er5+JwDJsU5RvszAvH6QZ+XKJdJHGrFVsPcZelG3NClMuQAXktnrNipusvWR8ZvFjNvk8luOftvG1oux9wQeDzS6jbseuLSeJ5KxwahVpZUdRzMLgZePmA33a31IAWIWc59uIZ0aTN6mrSQQNJeYVamdNxN/Puy6SaXTNwk1H/BgafVo7nPTo28eDePXQdZeuNJS9KW4iZuECzn2/GYHP62ws+BCstlvyxY71DZr+6YMpxd6IkJwIMlQHeVsODWdUu3gzkA7TeXUDBJ6DGfkU7KxzdEdwNJ5srcF2JzI4hCTWIm0gCwbsYHjbjoqXqVJ0s82Jl0ViyXIIjf18alPiamxYXlFGeQ7mgraeIezGTQKEliCM+EhIfLx+8Q5uvPhedPaghpzMyAwpG+6MND5Q6rRPalgqCtXjpvGpwl//k8Sp2jXQTBzNRFwMQLW1OGGnxIVvOv6N7c5gKyCnUIXngahXesJNmGZbem5r+FVju+NiEfoYGuegkSfiss1Ps/Nw/JyNRJpvqDbfdpdB8xExhCilC70E0cvoFnQj6HI063nwxP+1Gbe5rBC+cDfSEJcfrWYF9erD0xjZSmU30fii2n6gLqoNXfUP9aUINm+BgXawQc5w3pKbu6vU5uSPEtu6c36BJH7wrm34aLO9slKeU2ND6Aer1xxbrLdYYwzQpCIz6vaBWv7KiByElp9v8f1cVIwTlNbtpvyKtZjQOTL3FPagJNPRR6HO7ZuDrDSgwGC9FuVu0SninfsQ91JiuPPB1JquG01yYwUsMKvuAP6xukH7W7L6O1iVe1Nhut1d4IlplCxc8yj64JvIC/8M9aDrj77ySydRxYk+zcLaNe1t6470q+j1BE7+lUf5QmOHnWYQp4JcPqH5VQRk6l4AK6KeB1Uk81XsSYZQsyuV5bVyY9DuQ3MvQyzeUhGhPmoSttnz+A9MGFZGxZxG3p46VaSegk0UNEQhnCYgKFcWHzfHpNoBGDPGa5rl+b2xiT7ZhJpzJA+Wg/7bKrKOrEVkG7TOZ6WK+a5TyAevcWMua0IW0bpL2OG+4DspjY6XZY+gs7/5hlKW1MzV3rd8rWluM4bOmmf+SM6VgGtj+KfhjSYXFSvYILb50mY7EjPKHncsQYAD+BCMQVMrt/A9ok3qSsVYW3JeZj7IexC+aOuGdMzEPnMPSe2oPiyNVQRLz0cPHu27YZyj5Dux2OMXDQGB+W6/rHSsUvH5GgCUIxqNhpTGUJP5m5dtt2ThV3/xp1GM2FfFtkwmRKvt2BhqvmaWHh83fryOmiK/NAlYMSAyxVyP3g9j+mM0zzya7bCyJ0Pwej+xlGyZEAM6FV3Qssg2rBbHF6/udLTbyFQvN1P4DTfe8Gh1gZNbZbKNcBzlx6ORQQcBuu4maXNTz3XJoXcAt26OdcJTbeQfjKVuX1R/LV+961FCAT+eaUIKqnsRagF4cqAO1Tr5aM9hPmHk3jyIJocq7ADlP7PZOnsAQJlKZYU8+x7tuYfOAJvgmXoxEW+rVXqvC0jX0dNWIuUaMZlFPoM2t17fmG1scekyCxyBOJKKPOcmT5R2dtJT0FePmqekbn23+O4alvEPEkneAUvcut/tCLLt1+UljTLZO+G22vLfLBmyJ6AoZxJ0y0TN4+OQo+dmy9tk16Yw3zl3wqyHNHZRcJrtKiPDcul1KlVohphbtbcTLE3CmV+CJ54FybB8g1/FL7EwyFtW6q1KN07nfdyoYGiHXLEg5yBrMZvM6eBN/Z9pITNu7CZr4TN3zRQURDCvxzjKNz5YaKTUyJCjvCMvJp7r9tkevrt4rZ6wwJpXHrkY/B1xIGwBqJE3fU6nmcin3Pys07hbm2u5qLUlVnSsQ3J0M2lmS13gCilEP4AlJCnvvLY031LBioA/AuNzBUNfep87aVE+v6c9YtJA+FU2TjEKn+rmbhs6MFbXRUxGQ64qC5/yM1Ti20rjwETl+Y6Ao4C3mf5ktS1H2G4tZDndnA/i8xmFM/3d60ge8Zu3m874X0gVzZ9oHC1lpk9Ywjl1oKJWtiN4uLjYqXYQVrdfFGv9YzTuRh4cAcnP9HphzpPlHOt2sOpGz35NYStsohWme5F/syaMWYw7PzzgneiM/7D7zbcY7HY5mBdimgHF9cMRVTZvq1X6xsHVPUyv2eSc9KeeRzK+Xyw+W5TZdKeVZsqNsJDRsVz95mJrcjyMPsx9JLxBmlVWZ46nmXrgNvE6pGuRFA//JiKObMY/MlUPNv9Yj9rDMliMnGDiciMoY7uYfuCZAxnUBuDvAVTsRRz+OPY3ZB+mbamUJJ//edeuCUJTNbF8NcQ3FOzMrckt6IWK6YfvwpBNFXMf3pXMhnRzuiBkJRYnXFoFwBodSTGljFlGiIxk3cCIMH7FNPxeqR3zfVvE/sQ6DgkXe9CB1K1PGs0qyWeezrXMX3Qrp8hi+C1ACox2wZgbK8HvDGVEZ0jap7zET70rGLMxt1oebJVfCVaXuHHhg+n1PLaGZjEJtX9hHVu14NoZO+r1RfMJFGnk/weFOkuPb0pUgWb1FPazIVKjlP7hVTpq3VGRf98ripMP8Mu6up1IahHFbbn9OxwRrEPvbn2vd/Qrxpdh/WdO8vkvd1kThywSk77YJj2WsJZjhU2WAp9krF7jMcXmXn0onKux89W3FTfsAo4+B1IXlPcqWkHa0N0mrRWNdsrYobzB6VwzWOtiIlNX99RuAcaJnLsJk5qreFMLYrhBSNCscl2alu12x96yRipLiwrYAWhyOymFbcRpq48w3WfX5CP6F+20VmGP41SdUtwnCOwSf+av9dSx4ZRhFlXmd40SZ1mutCN6369BnjzQN77iWYP+yCEVPGmylNClmSzNsDolryvoZX8qZqU3Lbr18UW/1ZYbT3r9xgDalJVpMoBUmKSJruDBuxSDJkLro3psXVTFbn0FrJ81ImsGvkdjNd4St+Ml2me4peW6eGnfvLP5X2gRDYzOHfbWZGsCj10q3/94Lsb5zgaREulUvsJMIH9cWaNMD07FudeRMZNI82vzifYTzduWGoOt52W1LVBTDz4yZJW3rDHOwENInmM45mds4r4gTiRdj8bM7fdwdxru/dJfgdKG2i47CftMiju+VircqaxerT3OR2+lwXu3l78YQzjGbJ5gwPx3L0HMwScOQ5urR+K+L7W10clSVREC8IJSs62UHjIm2E3vF50yxu5adQY2AG+A1w9wKdgvIC52iaH0OGlMhrL3+ndmigpIjANp/OkfImdy635obfCGVqQ0pujkPBEgFAE/oWyo/5KxSJOUoOcz4v9im9qK7dj7e9Kye/Tyh9Z5BKfRO9j4jadiLQFbMqprkleR82bXHvpNt7PmnxjxrW5NpCbAe1EU7ONEA49ld8cuXP1ZD3hV30Jry6e1Z0Fynq5UUFhWGe/3sOqWF6F5bGzAP3kaKifAJKcqjKC74PXuzAavHcJY4IkDr4eTRCQxYcSEdnQX2hUC4LggY2iSt4gtLIQHzMcBJf0RNplboALoVfU51xypPAcJffjKfgzCZx1Rtpd9zVWpbRU6PvVLz361OkvM5YmtY1NMmiX03yGVEhhO1Iv610bAVeFcHgW2xMU5+8vhS7DRPNWcl98vUpRdNTRqyb3nt/eOKuEcX6EKhEHAhgp4YWdy1/EExYZTGihSfRNSUmwp7TobBj7vp6cpC3zyUCfwMvSXCTzh6c1Bn3GJTLe3qVAtRQvvqUggWKUO9avmsimhxhjUZUyOEoJhR98fEg7T9lfUT3+RG2q5KnjmLsaH5wlEVOTTh+Mki2jbj5eAycpAFrccI9xiKm0/+ys+rF9zsj6MOeGutmyvoTSiy56/+NSDtkXHgPPnneX169LPIqtSu862tjMWYs2+576vdWLGUHk3VCBaxOfy3+1IhNsGbqhRttXGcRtG2X25TNXH7uvtTx/Qabp/LqLrJsg5Zg6D3RhHaghfCzSTrtBn/IQUzdQIuioLQlThjPg0ir8ALrq26mc60F40oUyV3dU8C2pWFjduj1v7GWGPnBKccs3JrEJVGCEeVcjdHloiLQlbNt4ha6aW9Zi89VMsTXaxXrvvaCzpP2yLB0fOinwNOh5PMNXvko2eHh1/XS4TCTu924OIS7uUmvDScQG4yauH8Ja98oIhWGPjuL19RRmcfSmBnalBhLURDfbiCRXnz5/pPUsehnezx3WRCTnm9wNwYx1wDJIp2oLsYWt4V9aW75X0iItpwQc3tYSzC1C0q6Ma/ULmaVsdtHCqACZZTC9OKxg+6zuU9iyqTKFXCB8RtJ1tWMrk1AIQme4CXGhv07uR700w7K5WsgGIpk9nCieRpS1s82lrcVEVKvXEmWtRtYgp/RofLX6ioKl9FlnEQAxQc0D061YmC1BxgAZhRs9oTihbZR1W0IyMcVghdK40eZPFyOtKUCv6aqcb4awTKpaU45ewG4u46mFrZzbr+7jZrG15TFPY93CuadclidE0jOIo0AZxfoVX/Y9Z+zul3kIITOT4CwE2rb5s6VxHl5R0cYMr2/4JqSe+vaU7N56SuwYPl5TCFgZmkjZn1uys33DPB+ZutXlGKvb+YbZhEGKMtCFKBEPTq2n7vDS+1oqTVkvyBkIvVNK098i+yPhae4U5MmK2EHamBszdrH4Dr7dG8V4Sy68eZE6wajw8dqA8kb+OWd0rHBADXnjvvVHXkF+0WovyLFbA43yInlWCJJZh7rJlbgBCu1A3/zFTGdi8YggzkOj8MLn8c010wz1n40aUeBerj0M3vOGGkJNO8Gm2r6U0V4Pov588tihmKlPPq0qdD6+8dLHXDwYWdvkBg9ar4u2mZ/jpQ8zt2cAEWmgw5xnMuWzgDAseOCj6c4wGbR8yreJawn+7l4GZ0Nt9Dbd2BtMtysdQo0WaDqY8DYdoP8VTl526eAB+gFJnVitFPnoJUS6V0lYMmThPVb7CvS0HszZGpl6Tzbb+Jb2VfjjPtxayRvXtaf61fEvkyoKSneuEp9BnL9Fb0LB/krM2LNUwogSTHvNgYT5ZvmRHyPpmAH3c5ibjyn+AdppBMAqYB5PutCUq/Dr6N0gEf7qQVtlOmKQ9XQMMIDhIHqsO/7Fg7l/Xcx+RFGGX7C0kgTHK3ocrBfs2ZSe5Am1/Glju6VUN4IkpV8Xs9BfRb2KvrDvaNHvin9vrqdFX7n4UAodWoYt2uFd+uHY6hXvapRViH9sIyERYPV1akBV9SuS+aWYJ4ywzk+1wxQmb7WSCS3n0KnfHwsddYIwCqj1z2I8cAbYj+FYdQScYCFLm7Pbz0xXY6bneXFRJjte8DX5+B09MH8OE2RUptC6MoxDqNF1H7U6BmWIuD6Tx9uN/0jLNssFkwsLScKqItV5ZdvcmqvlwuesFvD6o0nE65EETPOcNy4cKWRGnVadnznJroY0kCLY9kOC9PMfY9o6V3SxZhYfCbCrdJ6T+yUUdSkwHuYlIugqFpO/wY09euqyedQCha+QjyPZWSe8myOPcQNaNC4QR+0IvysuHXKewL4GKCnaME7Rn9ItTsVNNafAMY57IVuv3RvCNOVKKhx93Ez8qoShA2tjb5GXUraGMFsVKWFWAqmqkX8xl8ER2S2ViHR803qLBopyk74KNKDOtcrVW1aU8jrVysgtXLf0JfCYIvq0eTmhvZ6D4Mg20f9gzX69NnuLPl6w/nUzzYC7oWtYMV1ABL6EUfRaELmhrTqbjRRb3iGSaq8kD47hE2v1/HVQztPU3o4QHSa7LzjPAkaNiOEzmtvfHSeuD5PlTvJ2fHVbisUeRvxUQvxU4c3zSrJC5PLiTmajlynw80+L6yR1nvUd40UjHw6zP38Y5piGK6a7QvwWqGZBob7Jo/tkWmbqtQ9JICIFg9wGuQK0ss9o2od1l0apiFSqq6yXr+ujENWlqJ5xbkXFSxQ+5V5i2vPaPZD/Kp0pa44p4SgMYfm8jDl3oIm6c5HvlaFHRs7MV50c9Dc29W9xBw5XJQKXrGJXBEavos2RV33aBMmkZWXKp6DvFZP4mxRhOepXXiW/RM7b+JYblK1lZJ8dcZhgV49hxY1tJrM+6I009KRxHoKr3efKNphaWOi+3fRIzU52Ru2k3vzagkg+WcyNhv3dVoGYG/DJniCizuhXKv9sM4kkufOPThDGKI5dySkfeHZCdqZcrVsSGJhMro9EUByxxkHrZaEYDmPVwFRFfc5WYVH8qXRM0ZC3HD4Tqrwyu5s5RMwk58KXeAkV19+ScicS6rVpNn0IRTsQXy7xSn/kyM5ivj3y9hbxyDSkf8pHRPWV0A1LHldAci7WkDrSeP7pvemt1qXIpInWYjMBOUY5KUEF/ZCs2jy1QkVg1PaXBgM5/gKBYEPWyG2ouYzPjrlmJXdhUGo0BRgKH1EUZtab8pLIT7Aa74M4hrX8/FGlvr2Xp2Jb/Cjy4sGkFNP6Mn35NZIwlI0yo6Oxzk67OSwnStRBsNtK71XhDGxJoyphlcGGkaK4ddkUEx/GsNvCtQ70E/VkhBpjBH69ia6H4xNfnBBYThZWM1jD4QkSPEcBSa2pYmoOtfKvhx+wO9mEvFbalpxdGlhfPabMIFiwX3C2whAIf0TCaTlM6w7INynYHe+DPznCiJlkyqyuS2UJNL1/rYfOUAHUztrJispffFpwjYsiCDFdMaXe1eSq+vWTa1QjaJrQV/pQfQtY8sgMAWyepsgckOZKh7Hl5hotGhj3SMfkVlz9LKjTU7CEQ2va1VCq2RXk1v7e2xJgG6fjgB0fGOYTPxsUgoCGdqFF5qh9EhSnGY2IJW30bQFNLiOR+Zx2lqULiUe9zMXTkKXJjCkpk5f7Dg9nuL9zPIFQk462qS4/ri1zCsOTDGO3YIL+jIm5a2hv8zCs9M7bEsjauHlHKPgNBwpWwtv6wrz89Uf0VJPk5sudPhXaa+HpYTHoUu8OdbKLJqmoFMS06tMjHcvXLS9bfdLWRJ2f3fdvDueXFqdfYwiJwUvquYsQmHZ6Ky/F+yrwXaH086WVOGdfrGB6eD8481EStmRb7GwzsEitemmUEEnUXvePkrpCGNldYkYhtrDlm+W5rOsvzhfses8uR2u7KLV95p/qhWiGJ/DIRVplju4U4RbF9z6fMkobOS8RrzMjHiKmcK+RjaajnHPzP63oaU1jy5LXWxhIWxs7roOgG+rCfG6XSH4g9MQ7gfDLFKNd/y5a+r4nex8wOb3Sq/ZmRkOe5ANgOeztcbLlWin7riik1lsvFrw426f0FJThWFYJAcZEgwB9H4W71AwP6feYtMlotDOt2oMCk5jviDnENfpromY8Y7nYXr/icEfEyTxV7evW9RDsG/5YcnQuS6ZBK1/UT3RFUe0l8uWFn5uTD/ZD36QkwcgrjOtMofhvlTnSSsp4tuwtAqzKZx3ptRgIb09ztFJQgFM1lD5lKfa9jR11u1s18W0Clkwa3Q6xUmxZwjqOx09YP1mhXQhqXs+XiquxN6cLG8MZkZul0504YvuXNWMIKSDR0ojwDgZDlA62Ert9taXA9KfluGl28+8WerOiTdtI7EeYcVJ+Z6Tf8MpllNEojkz2Eq4OaNy7dTJxn2O0Fs4LQdSBYqPNj4z/zAvTnX+hnNehu4vSd5FCFwkP+VVBy3Jm+U1P31QNvTDlt25zIqTrbu6VUPR+3dLMJYiPyExQWwvat/1Mo8eQsQvKhATUQkLs/YLdLPy8hgKU6wlMdqyX/mHPIMa5ES9UXkT5BOMi1dlwQ7ZQyx1IPF4RhwsVrJPRhqhZJcoTpwoXK2S71B+8iJGicVQ7WoUeICMVnA9uakSyiUa+Xiz5AFO2hSm8rkhAoU1F33AQibxHq5Pnnse7YsRZQm+3cLFGuB257cR4XxUH/JRFkUI8Efoh/hKR8kpiqBsmhqbQ0SpflgC3YkEi1brJUS0QMpyv/TKnW5N+rfiExfCd3GvpL5db2hsIffIax4kGMdecIq/2WwOmCVoh8kBP6Bv14OYEbUeHDYiDzt6qK84SLEA6KMa1Acn7aEJ8XFlK9BzJ4F/p82pFy9HaSTj5B2wn7drYTGeL8szFPOUjcLvFgZ5+w+HhslN79JarxfSwnnPO5P7JCPrrEz7KkR73W2r3a3TvJszRBTyoakJBTtlnpbG0fZZEPUexjJXqOG3j9/5lT3NfPacYaY8fCVyqu93iKI2kbHujWQ55y+vJNI9/SVKs6dhPwdShuZxrFaF1ErdFHvyBpO4Epf3JMjpgZffDTLC7ui5iorXvVRymGIEiEWTdfkYJQ7f15LVsfUgbKUPXDW7tyRq3JIdkPmVgT0ZRrN3YXFmDH7Lsimljm3akXklN0TvsxjiFPWTGdXRvmwlRIoaXLBoJwuU3AaTPXylIOTkPMLwxkoLpzWEUmbcvplsXkk/vD00saMcgiUnFHG0ALloV0oR0eand5l2RfdXUTIvNxqDMafCO05V8h+nWWTUJTSwQ08ZBxdXexwr1SYy7N8FnIQPfD9W/1/+TYRJggJCT/oIHf24Wna8jQ91CRI8RqzzLHUbqeMC9dmgSFU/qXcoaFuuD61ag8te04iir8BBOoXghH8abrMB5gCo6y3tCZtlnMeE3wwMfUAD+p77rp613RC5nGQ2LtLPknFzDlwfv+p4Qwvl4oetaSHuiAmRFcYm3nP2/ki+LMmNfLr4FitOlzssgkFnnd2VGjlW/NygaUaefK5NA7O63XllKxf6gNWUKZ2CXK0WPQqLNqC8gsoEaIBcW2x78/I6898MrHNPISd2A2+hE+zAZuiSbRBXAmxEP9BjpSE9YdaMRf5OR9pBcWW5Erx4x0ooryNsrnnrj+FJX/QiOb+MfpmsynAxtyhvw6ai9b18v9leI2ks+wUJ/w0nseX/psX5XAvuyg7QvZUZPiio7xIx5wq3oY0jZ5LTMyQk7IoWloTK9byGtJaEd0vxnGWtgudiTCTwvSWBMJtFHRxrXHM+NkD4OwwzH4c9vhas+ub1G6TKWCLSAF3qUYDg5c5Bg6iy7qMhHH+dBJhgkdlfajSA4X/eRfj9jzSa9Nzj8DZu0g/rJ9EQCP36c3eIVeXI9FsdRAnAeMegbjbxebIt45oOXAherv1hGdP2D6F71llSybDNZiuNFZLvazSB16zMb1yFDjZ7X8MwOxeJiZTb99LLFZnYc37wiMgl5a7ibNWOCLzHWjYmyp3o7LO7uX2llKCd1tSZ8GPOBOZVvi9mNjlY3UKkr1DcbDUN3Qrs8YBGzVMYgJ5q5Ue1iSt6t37M+JEiaDbq5YNnjZF0Ky0tQZVO5i7WXnZiI0MiqmAKaO/OVomh2ZEC+TELzJ0xkM40ukCG52aGOWB1v4lRIRB53CGcdq9nucAo0d8H8JB+1+ooNvsVGk1viIW2JNu0VoFwGSuR9yGNcChonH1/jp/NNSftXX6ZxIobc8o6nQCNMSlGK8ZtwHA0ZqQ4GU286eaTM9Wu/3npRwUMdyo3hxI2mwuTE7kYvfO2rud5/UezhE2AJ8ZQ+xWhKhXtmCzZXtgICLrhRLocyuCUGAtmsMYFqfHueRcOsv0orY/xGFrZoUWVtoYfjwuD29cPjHjO1pHWTHaFQGRv/QrNv2JtP2w0I0Akel5pPuEaJnAWD3oppYb3ymDwklYk3naCCeyAq6hYS4+92BEh1ioxbFfumPrl+rowmv0ErqMy+PC49QGqYPJLFNT7mvf5FhFLiCatSkkmJzqh4wBjcWl6mmho03UL/Pn+qz77/lY/uZ9q37t03EElhhwJbIhqHAw1TfRTSWG5MGH03+aN0ep0po6VX7iSeI89TMS4wRI8xnxXx3kbRICG32D50HVBViAKzbomdTy+eOlxJvN9UARGRJ+FOLfMD6mmq1oCq7Rz8wVQI1CC6Qx7KUbScCVzfjch6+RcG+65cx9iz2lyfizQQ/BtzVuXz+/CDN32dn5QSKn9BuSfYXNByMmZcCzduFCIyDlkyLi+MEFUsMnjq9dYH/vkAfyGlt8kw2lnj5OhmnMjpPQ5zuVNW0fn5F8Ktgx07mHfhLPuhklE8aNnwgZW1apcPPlAAAnTyoEwanrTdLwpP1+4EWFifGzmBDvcgG/cvlM0etXYFJPaAauRNKkjlqeJp904mfRkiUEq2r0BqU90lQ1WtulG5LTI9pM/x5FEzb99a6y3iHeDBqcNIhvHaxiHnCNbKbPjxz3rHrGOOs9jy3lP6KwsKVhsKs6BWRpzc4brl7Szvi8uiaq4YHVIWsdwgCyv4VcluNMD4xQqr0XFWvdOH9UFBkn2Deyarb4EYPkp5HDZNALowf4IPdeKQTZEDIZCKjm3H+O0TQdzyFqB7PmjO881nrFWEXhPZsA5TjXQT8aiW12dP5FhXR+kwZz73bCbpbeUqcIwyEFHlQPWc3mPd1+xEScB5b8T7+sXJsGcAL3QaiR82nFHAU2rd0KFBcM+PfznzXf72dFt1Ze5hKy4nBTGW1aU7l9f4RHgHPSKz9ZBzyvI1ZxVjeB8HkvDrw4hMBxRhY6rmFDWQ7JcDO21RnP8XYjadydt0kl1J2OnFsG84C+gUR5owC6YcPtd/OxqbznG/o3I7zZ1Tr5b/wMgIASmSYEsyWTGEkG8Ly9JPCu9Bu1CiCFqpKeAVGnrCEdj1YfGj9b7ZBsR8oe/EqHzvnNG/xfeO3W73WXObRTudSA3pG5BAZac/HBJpu5z8UgrZVemND2IP9nxWcKXPZ3m9vvuL2GFoQe36PTxjN3a1+5JgM3ZEr8lUml8XpNe/7HsTmBF01zKrBI7pKMc9Dm8r73aOHgqYf90JmXgpBLkFNQ3LXvyPrkK+cecBiZ5fjQIb0o5QCqgrQ3crrJciNUD+uuwsf9XJsg/Sm4s0OarDaog0C+CFiLyOy5o9N2PKvYmhxvap/Z+UtYNU5Xt96qSFV2StOazrHViZJkpQSVnMTcPOiNnvzDNXE/UWpgHQBsU7T1U9BdP2/9qgbJ1NrgB8k9hFF7KcPHt/wUkQAVemDxz2DSHDH+flWaWGpQ0KzTLPjfxj2ywOLhiLlxcDu6mRE0TZRMbV19yfwFar88WDPCWiPJ7IX7NeV6d22IHoX9sacZ7kXyeak/XWYIB1q7FlE7xXOazzszZ2qeWXLBNBT4urGXzp4V4bcr0HQ3Yk76vU10jpT5AceyVO67g+EthFl6uARBrLm2Y9zY2AGGtjY1o6OJozj6N8BXJyxW1w2C/UdkwTDFKDWIKPRFkNhPibyequRIOE6teVGgJfIiG7l/hEAwpzVMbnyw0ckK33hVDKy3aG+vp1ytyobHWMj9qObmZ23J0EOZUTHZF4CYieYicgRiKamXQNcfAUgUme59GiCJzOksshet8szugKlVRGRJivoX3xcd5/ae0belIIDoHnsYMkuq7vCv3vlRGpZ3GrtfRl0Lcuf1EkEOyYGNnvm4g4wNKCYOG6KoqFgifrcbchR3PJTtC/DCJAcrs56h8s42PyhA15AstQkNk+hUhxIfs+v+eP6M58teiptaxytr5KdIt6LrdkZ+fJkrmgp/JmAJOnYr+cT7hwA9Q/vjTBKg0f05BlZs9U5x05hsHGeCaJYcGHKsIpKp2wKOzovh8R/cvj/eiYR79ZWVprxKLkdB5CrqptueGQ/k/5TJph5qabnyzQBAyTwlTjSKoM+2B9mhDmWAFMgjS+qSLQukDh7NpJ1u8RUmStKhbUVAb2qamkQDnW1knz5HqA9Te1jOsisYSK+Em55SMngqaWrMdhViS/TfB0BrPoVWFZdY3Kx1Pv2WSCGsA56YfmtjE9k/1v+pDOwp8AV4IgsDiNCIKbIgZIiJBx43CeGAukQBWYSHN+k5We+hLjPMUy7DDrt9MlGyMFkRHnmESmkNOdYsXBByihW3qG6QC4sO25DN38XndGZ62abVGnay1g56etmo+/TMABKLX9h+lBoH1ezxSuoN3pzAxDG2RuHBnnDjPjm009erNjIWDJN99zhRcKUb6aVI22VO/9Q/3PNEHbqoQ1Y6B5t9V+AA7wgvl7v5/by07CalHTg0UzCpPnpwnWsMzHDjFQKgMBS3aItU9hwWmvsdHhcwr5uL69WxRQfht7zoRxRB/g4FUjmFgD63oYxaLj6upI8fDkXSxuVZneg6tAftiY2r2EuQNvCVO3PS+JCuIn7EH3BXuVKF4evL/VlAxDJhAOyfcQ14blLwsaH98yE+m8I0eASroOIcmHEOn/YDTLx9WaWuZo2Ed4Y4pba0ZnyQryJHL9QO5dDQvZjMaqwxmyFDcH6p8V3Df5jzR72AnYqxdU7hBIvVTAsJ+KDjnQUCGjkokF8Ysk1Qs6qEFMMKbfVj9/f6e/KB8GF9THPx+LqBD6sFSi9gCJi/5taX6ZAaYfYLi2J8gMr2ZxPugK0GmQ8BiTHl2VLMWccrTMIJWNLMGiXMslLanYS/hFGk1b/YWcKbbK6Mn2OKD9pmZ8SQd/GhHCiTqhscmeBLE9XT/eM4R86bMHb7W1wcA3qM/HTMyYxzgkaUbXz7TujDX6uxv6FmoIi4/rnXcPow713yD9wcMHLL+CXucbh1QaYp9ozWuZhnDBXbkBgvIgHheTRUzycYWsZVJrk4pRuYwqeGqIiYpgag2VnYEQTBnXoufPDKwLJemXN8GGrZHeTvJV6pQn0fWxjQfL87YcXlHSgFEKBTcA9cRYv7Bj0Yf+Jblk57ToUadlkuudIBmPkjjUrrLloil5FJUnGVMqrQnJEEjm0fkZZdICkjtGWaUAHjy/C01ybEhi+ccGpr7lUQNelTd8hgyjyGtMPyXf5PB/t/Ua+PxIK64VkoF9VM9MzahE/ayEoRLeEuODWAsVEtRWj6jP9w5Kqj7sb/CbhZbQKqRemResg/JBs1QYXv9LjqHyzbA2NxznC02ZyBiiSoeebOOJfmC4vWUpHhfhDF0BPedZ0+acieqTT0KCjw6PfDwxL+n5F/dojULenhuhLdZbRG1frv/Z8XCXHXqDOkpU9Mw8wvtu43kJVuE+Aj5MaVLdNafbxLAg/4COSv+ht9PNMAynH9n3SWG9Dna2LJqieNcwPnY9eCMRIZUDmpRMVjrIDN3hzAJGutDGPJp5uU+oZDTeA7kgWRAGMiL7A89xMlwWt47cV1+Gae+15Mu5FZgALNk/+VTM2HKSplLs5g/Sa1aX9R6l2KmosrNFoTwwZ2Qz3v+M9qIgKMEelgqjCOSp4Lv5BXRY166zmpOYcXkx6Mq754ZoqSXjjBALFsSDRkNtxs2rup3TUAs++DpAVUnKunF4JUKkb1oHfAnel/NE5LCNw5ANyhn/ntdyyGhtp+j2JtRp6gxxHohrQrL8pPiG9f8VueuVTUnCChid1BNYQaZuvkU8fs+gsGN/x6Fnxmtyngmexeaz5Si23IASQDev2lwmQ5NwqzuTxK+y2oibKbz2zhpJAiS6PY4Xrm2hfL4/l3UJNJD6l/BsP3pzz0vs/5hqBw8Ow5bUq3dR0CBykqyjGeXUapfhLYh7AgNHBLBuKxLRKeBZkqigO1TdTI3tvSazCHN7gQ5Ly1y8QGutsSQkryb+SYrDX08nQw2L3CaLbs+SahpWLqJCxKYKum02RVKPTdOYLO0apBOE10jUxPPH9eDzTExzr46HZG4dK1W3hljskpuFpOI06NPacWg3RvhulPgP3PwzzOeogFgtz0Ckh3gpBSqWu1gK4R91MG6utqeWomoDVYLNn7A/3dy599Kk4EXT6TDLIJd5oVBlkyEDdRYdcKUsQzCf0lCamZqKjSA3THGyrEt7lDA0QdJgGL0p33VzBJXNWLqsFksOpvhQbz2WUDk22+gER7ltxc0Rs6TQQDsHdZ5F1PAnqaVZ28wVezCPijchxqbqnbvYlwTHMjD2LaMfss/cRkzGMAtz7UvOBRwhqxFVk6VrolqP/FnjVShP8W5H9t8EkK18MzUKumjpuC8S9p5YFMJ2Oe+A6OoseEMWtFyyiONSTa9yMiT2aovFQwMD2QXu7nCIefpDlqoaOY0WxjNvLQ/+aTJy9BwCKFRhL59IBH4BmoGRQOyzX1/Up8vHjBzIh/6kFzCoMECKKFq8y/VFSF9JnBVzcjTMlurdQwcjs0axxy/R6BbAbrrJkg/QwqqiG4cDmGZaw1lB98qAMKLU6Ww4vavRPCh3YRncd3Jl5T72vH3eec6gMVLSys8MmqyCUPA+4Ky1EiKUPBb6EYmmoJrJHUbO+2gn60AM7dc5S1r52A9qJRj2n6kkLgaYAdSyOUYNtslVJrmtAJNhYEI/2MogkTVPTYdLt7EyAOtTjvjZ41GUAsdTaca6OpwceJCwCuFY/yJvBiiPmY+X6uyyB9P7SsHZE1sdEJg7QUukHySlJi4fqKwYMk5Ozi9H/sp8+9NuaRbNsWmUcSQk1AJEPNKyzqFd39/q72SnUaY4b+PBYTH/Kg90BWdVdnfjnVT02PA+Ixw3+heW9+IKL+srXparFCY80JRrNJEgWRjNcJ+mrlAmn/18rClfDkZnV25WEo/A8Fts2k4uYmzeY96yYcD/b57ZMyjk4UcaGWXQURrmlyvl/ux2YYUNI1hxprbPySVau9onlweKAFiIAn+9uz6SCiC+8AIkXAqQG7KSDBP8Kr08hpGXxHUXtq6ussEp5PWFyBzCJT05LrZj9iqYFhy4HuqoxF2PBECCcNbt3gH6ZVor3JZ3Osg2PkNLCr+pMD1DXUZVNBU53qEzGlJ8Bru+sQCmoubp/FwbU1ianw0g5jGIdAmNeVShzxX7k531VKQkzQtI9GxAGzI2c3he6SbutFQGzbkbBNfwj4blY9Az06JGtyOb/wwazgPTrGixL6205M0I3UkgsgPh3bowgOpNWYIwlx2vRzrOf8+NcHeuGYCtt+9mXNORLcBExZqWaDlRcgq2xNmw+vYKbgslACiMTZPS87XEtgeoKWL9rOqV8+FJUgfoz9A4O0Zb1USe79SQiwmkIKHRJ+DgM/va+vt9pQH4eaTy+THoQpYzVZo/yByCr3/7RbgL2t8dPXFmcc1I1+pPwdVuPrfsTzAavJFK8ESigQYrO4rXCNOS64utAHPF/380EVvs7QlIqR3YGGs68DEXjv/S0ZxMeSXiaOV1J7XDyfycjQkSw4UkumNsdNoM6fTb4FBMOTTHtAmz2oK8yxmNy9y3dELoEEWnwKAcQd6NidbJV9gOB8TKSkR38QG1SDs7JJT3doyxHrhpAjEpcg6w1nEQjcE7fdc8oFS5qd42BvYtt1tWlOIigEBDLT0v3jMwjIPf3VbvrW2XuuCWmb3HKQaRW+rAf/iI8hozi+EQGE46SGl8TqwAXNNtl/OjUSB5kYANm4X1/33lZntGT4YuVFV1CbyVum/sfu3+E4MWoRosyAjhqkgtnj+zVhl307prTJrszhUzr7caWOM03e69FhRq2eFGbD3gUgr346o475IUQEN6o7m4ZTihyPX0iogteUn8zGgJQc8K13Xi44Z06woCws7R1a9TD4bDLFgaDkKyPR2Dk58XJNTQA7+1ncwwsGSs17T//pptS51lCIiK0wS+iT5YUWYgJA0h2PTfQJ8utqGxoPc1aLw/FQrQT1yLZ4Qm7aoJ7viw77efi+gny4PtvjspzVjuyDEycgcBAyoLcVExZAID/fz111Nr33pePbuIELZwyT/l7ANKYIss3UpIXDRrKQLZIC4F8Nn6hlz/33YmXjg+v4e++gr0snSJ4aqLFeAHFSztfaMuDJRiHbnpY+X4pH5K91A/9BFg2VmgyhBp+s0IJXygk1ZScibPdgkkTkQMiu+t2mWOHnGPh7wrBzp5IIsYiEo+dgHwKoEcawTVXZFvxigAxI9wAJiW9ntUGgnTc88tw4XJjRREfBwrfTuIaF713lcOa5xB5EmM2xetvXdLqOvCtkuCDY/9oYb6T0EGJ8OcLQEhXHkLgkiYCpvcqqrFS8hxCzBiYap6/jX22RxywOvl/5e7wrLJ3c1JZjbeKiY1ZMOlrtBpeiCcXIcf31W8yAlHyDY1baordr09+/RNR7byLyUIkXQvF7iilJ9PMfKQ+OnEVYoc/3YT7d22o49N9UZ4srsHbL5Do3HoFf8k8Tb6nIX8OdNaxaDc7f2wsZ9oDRUCBiMHu2b05mbu4W+SlUgNz0Ea/AuHltaef+CxI/h0OxCn0erTzAIiCU8AXitmXJ1fVAhce07rFniwP8tCulMfR7Lms4hBV/bYTM8oLmoCdCpy5qp9c1paTTpQHBGRoEQSe+R6xu9/7KKfSOfEZxk3AGJ2TVoai8k1BC4dqqNbF4pafbYE2LksRVz/Au+BSMqHknREytZyUXbDl5HDFZSVYrNv7alpILpuwNv7ePd0SIGl95lrR7NuCIPm0w/aAz1ubzmDIVhke5rdCMaXC1xKu3gY5JlAvNyH68v9JK8vlJpqq/7IFSwZUmMVFNHimVptoDAw7+pajT5KoVLlazUHXyDvPSjodljsrNjYWudqaAeO71L0Wl99iugT4pt1lRwrz5ozHOrOQmTKNMvPmD/VoCJlyR+DkLB2wBe89OQa7vvAMywLrh69z2HZaJyamhbu1nrp9t7f8lM8rJu+uXtQAxk2LN3g5LJ9gRAguNuzF5lAvXo5/BhFLZKc0PooOoT+8sly/Cdz1V0T35qofuGKgfx3hyZOJdCxz3ZCwy4pjFwtnTVilhTE44UHf0F5QhP22uQfe01IFIkuGcMU9oKYp5PoODLLP4WrKdzG+q+q7VOSzTWgvgO/r7s5GHsH6QGMyReq2ZxSAUZqUH6NqqmBiJ7lAVHIc0hgpmC5SeK7mj3UUVxFU2szipymxEpjpQ4yog0bEAROYJ/Z3e6cx67pZDnp6oci4i0bYfLicuyYL+HuDp36HQVH1WZ1UwxGtASayHDAZbxkgZojEo2z+BdxfTonnzKRkluap1qnj89Zpucc0a4AItx8wnjNHjN65A2f3tVY8xFBUB0yN1SmXx0iu60rRz1pGzu7gxArR7o/DMIl/fFcBrHt9Ttqs2/JtD1womMhmJPUFM9fKBBKy0hO0eRsABFRhD5bAd2c76+nW0Kgveut3tniOlK+73ZOJYgsWE4/JMelwta78G5wfTCXb7haeLzk3uOrIXcT+mQLFpbNMvHmaD8Tg/gE4HROZ6TGSLJNWpJk/dSc2WEmuPFfjYjLvmRQF1/nO1WB9tPBWP63nlR67uToZM9EtbaOBg8DLlHPMlkDio/DOTVsNFtryOVDb9byvw03hM7mlDsdHt/c3mcJuznx8NcpXCAESoYDV9t9AAgt62W//uBv65t4GefrhvOOfcVal+LNZ6sV2eH0KhOpZI6UI9QMm3OId0hjfuCSMhVrtWHcuKSfZFJ1phE0fVwst8wAJMW7wpSx5RUDtMiQovFa3XkMsyZV4lMRNlYbSYgpl6ThGvA1bQcQUknKdmc+jI6FM6xdDuvrbLjvLkemD6JtsNuRyVA/Ai+YM2Pi4JUHwRoY/fE4KEEUGJe37wWVCfoqb9wi+dfaIbjbNFjxit+0Oy18mNukWt0NjOH1cLdTUObhbb8Lv/wpZw0fA+1sbDPjCqM1m+coloxnk5YrWMbcWT6/WDMXbTZ884MSyaz0IVyBRGInRStfpxrXwf9IYXJDM4Y9VTr840ya4syi1qyBjCfZ3BNQ4C3McD+ZJ8L+jLt9GFIDuKVcFMpYwc1zbsmF/eD7JOgLilrQFuYOjGDU9lg4yuGO4wt2yOPf8VbAf3GsmrwYjBrEtZVQjc37b64RbmwojRVb7UgJtLN7D6IBR7f4pHm8Rxqab4tVGyx1zWnpwLxlbTfcC3ju7USqMmDeweiKG5nfOvavJ9JhccXZFGzLzXSaUTNvCHa7Qk1qMOsgpnue4AwvNHdsqBQXKkHGDHL4Sc0pxcviu9OcIrnFXHG8mGdTVute8fH+gRbd/iBiQtnK0GNP4fuhYd+ieb9ia5RlnR7RUPYDOvlZYy1QizmPFFJfwL1NZHlMiMeqvg2zBcpOGbYgNWBPX3s7xIX3SlaYIZKJfRc2jvFQ0/Ov578viOA9vWynPLJABM8sbGC/yHLzJoatgQKTciVLAaWZU6rfKHuWon/EvOIpgqdNw4ea04GHcE06+tS9Feeksf3tUPhnKefFVStODn2L/OSqi0DpT2nmoR8odn73KYeXHl5X3oSfw9NgNUOg8lLbCWXcpkB0etkFUU1/LeK3Y6b6okUD7Okjd2YO31KFp/Nr+FueQKi/8IojyXbs/Zvtnsq0rQJTdsBDD9f8NHt1/f8Lc9+kEHhJnwq32AZgB2TmkBQfaVhrndboIoxhoTvvZ6TGjWvaOi13ND+rNUVfFFoebzO9M+TbzwQ72876IJghjKDMNqgH6miEzzzHfsiWn2toxtcd3TlXZ2r+eaZGDH6N8XA3ujukM35U4B2YwqFvAsqJGIySo8t1LmCPHpAt1ip8i8+yoI30cLdr8mA5j3JoBunCYmwD0iz2YkmQPD1yavh1pisCAk7+moHvtlZY7nIgW906g3zSJXJ2mcLc4Hbn3MNHBOOqHJXGiVg+qwX0knGQsMkbyylhPIxSKbTD0TMCQvGPyuow9BuakdP3d0sTAsgGLmivRI3/EAen1DRgC+fs76dKARDeMWoWuTiH2bgUQJw679IRo1SFWTcAia0OmVFC1BaMgKL3H3bdkLvLqDtbOoscrJDLLt4wKX/HNcg53JJ9/b6++MyDLO0a/z9+9DBzjROPVkqR3DPRuQvFa0h0nG/KFJnttud+CTph72HF5IIqDgwupnTdWhvEGGIbEi/MsqI2ZqcBNdLlRQp46VzpG/2fu0zwhBQSGQ5axR0JyCeLgEM2FeFGRkQK18jszsUfvkRZZlNuLT2FX7U65vFRrsE9o8+pWhmOOL2qUlM2ANUgmGspYzFAptR2vqDA8FxJIq7uETV3rk5Q5oJ6Z5JNQfqqb6K/i6PShS7AOW7P8Wyv3nynr2B1BjcgCGajtsu6zxm2TzOWShyXvEyK+F0Jse1ODOEJ2wp+na4fsYmw8FKKcTmQsWZF01TlTtZqCrj8m6Kjj5dgBLB7G35d+FCA4ijl49ITMNi4DJJqoPUp9W7hIUtRj+cycUIeDfKAIXL/00TJNL5zTH1VU8+opwkISqWy5iOmAcNJk3Ps7bPK3ISW5I6vsEG1XrtI+4t865lHg2+/RTY1OrEmb4LOSXunYPKR0sZuXDqX0s9+aTM0UK/WtACy9LxJdPzivmqH/BajvTfqVkIRI9eNWJWKvrxRF6alyITENM+7uGY4Y8FMf2WCEE/rYg1S++0r8deVUe1yWoV4vkZ913byqsErTg+09S1o78afmpaODTy1+Awys277hCEpLgXjB4tdpMY/ae2RQQSwzA8HF8nEto0RuW7ct9exTdmd8xbvGTjBNBmEHDlEw0PmJv4doZAAYuJaQF2kZe+LMDYievsfOuFQdEfD6v2jzzuMI+SU3sZK0fYJMK7urU4UsW7makxEN0R0p1i0vu+XnPEnMkODL90NMvJqFQzHd2JHEFFkRn0IQj1KUAeAXoXNJY33ddN6QP1kcKkUflZVHPg9/BDKoQPOBKNlsbkOAu3DPdnvk3N0MpVPQbuAjZ13/NS02KFhhBsQKkliowIt34Mydk+9zSTmNu2wvPiSv5jv/TfBR6JlYucAQFksip0ym07k7p8tKhWU85A5JmMf3FJzUrfk8U0ci9aD/14Vzrbg27WB/dtWb3yXNQuJPvYq5YxsCQhPUgn4bC6jw7LvSNExydj8pMFayc2w59zxZsrKN7Dl4T9+TTqZIShC+QyiTUBycJHipEqbgxu33F/CVYFOcHdRc25YgV97EE8cStByLSN1cz1Se1Py+308lCiUI9N8jshGDhMipdPU1SxA7mESicBdoESRHYZBv15Ud7YLRPFXoAVLkUDHY9LQDl0+dIy8fwS2e6T+q2dHBhzO4/PCaHLuiXEy5pKIeSRgjhBjef/NgrNm1MpOJ7xdxoKhLGm5dQdd1AOgats/Dsa/yz3j9f0xgEIbrNnmm3hK0hgPIKD5ei6UpaApi+9WEdW4qsOV1iWyzOLZEdNda+nLIqIgq+4DTmn6lQvbRxliNc4B8KUJ+yRTnLJeBhHPyKbzrTVWMgOZ+C46cJlFB2UW5SBpYtICWUfUrD3JzLOwhHDsCCRd1GO7QTOA7KcuETJU10kNNxSef2tLN+FB6/jNg5a9WPNh7QsuWJPim4JDecIIMA+o5V+pHStVck3FyYLxxVTfw8Z/rjh3NzS7hiW3843Z3m5PLzdCrV8ltjuolLDILZB0KCAUIum40hnGqKeXm4HiZlth6dscU5BtDMBAEqBuQPPwuRLAoHIc3ELXWFYYW8u7BNd9xJVeHHW+BepLwNxZrFy89QUav5ehTxyz6/iLC8OeUq2yayp1rA91GT0tL3IpVg4M0wy6NKuIMh6qx1p4m63dpnw7FvW0/iROOJcXracUuCFKBJOkCYqo2VoY3acPy+I5j8Zsm96qyY2EH7ME5FHeM6T3wlLYdI70PfyG52FgL7xZVxg/t90Mz6s9zDglSuLjonuuZCmO9/oVD22YNei2B/aKapzupBdwPeuFrfWEyEVWXZhH+lg8HT7InuzdUAZqtd9mVURxE7oJgGCyc5WTWcgfnAucxvvJziOlmXDlP/6o4E8KAXBGxBaqxORA5rx9bNFR5rNRTLHuY6ynP8No2fDCJl7ecInbKVc1mnKkilprBIxGn3yZo/FkYHgKObSDDFLqRIPJ+mQWVBa9mpHTC4RHyC499Q7s/DQfXzlped9gtvXDTqgC+YL15jxZGoQ6UawKLPDkDVo6Llt6Y6wfLzW3MlwOzjTyneFZisDuWkB0HZh/ASKCHgL5SC9tX4AQUy0bOwlbOIDR8W8MdhMeZ6LUt6nXsROuKmxIoe+lLKeehRzU/Ce2YaJm30ACtm3HwtYCFWtrC8zd29lKdifLixQGreqp4AWFAFUOMCQqhp9HwmGpTFXxLE1mW8fjPhp46GwuJU/WcBJ2Q7Tksx5iwxW7V6raSkUv/Gt/ZMHseZolEw0b+TUw5s+tCTz5n++yWUQkag6JId0CsraJ41M3W9rnbKYRiPJxKJzBaUqIUKxonltTtGQNa6B5SAndVfSDaA8qp568WTzrBOBGWLCWhaZxAx4niNe1D2wvfAl50GBLTlGFQ9QfHYtTfwzQTPOwoW2grPvpLyfxG6H0zeQzwdxBUTC6+dmzkYNAMD3WAspvyy+B5bc9318Brgcob9jRBHeFPhRJIE0GoHql49vRFAulA6AqdNKa4CulcWXT8okBk4jMI2USoq7hDkcEak7GJKmw/5ukCshVd7ZwOFhDsUHVbwXUG/ol2Kyt9uoUp6JiZhiu7kRed5UN2B3ssHOKHQcUb6narzjHG2b0fffp8yTaKZnQp1fshlWcKviySA7JGFcCNVcdywFXpHAHW1ADhqtwCrvkQZSOZwwYZhKFZtBEa1JI2NMIbHDwMpbefFKmObwnRJ09fkIIgfrnHfoRNuHgRIsclUx8rTxn0NJW3U6wqc83bFFxUJxz0hq7ARFt3TsXMp9Wb2cSIK0wGsfcQaIws7u0wq+1BlParuAOwME0EYEKv5Sk4A77qore5kIpbmr/2noCNPz2UL0CsQqxzefkFEwx2HAatxJY2aJ+vaXSTdxqvX8XWaEJW8MDXeyTcAN1DCi0SXKguaMrRNepX4IFW/sOfCcmPQTZTY8W9r2AAMKdPeqU+Ib3lYkf9yTimKw69dXthBnATly7ttZ9nA1pD2Qs8HMEi1f/4fbegxuGmaIMykowlW8BBI3EuGZ9Q5FravUtVv56iyKYU5Jt8rWnrhorW+XmnMLll8C1MnTsuRUL9gnM8FwOlnow6EQZUMFxuTVXueaUAGzzUOURBap+xwKWUlqU4Lenf8mB2RA82J2+v6CAP6/Z7nI20ktuYXaxZ03UF7rwmGyvF9dKUaXE5EcApLEq/HpHN3/HnWnDDtslTOXv17AI32ggGW1WxOH58/f3/D+0uyyX/N169kZ/Jp8qb1q6NWXGobnwkFCbkrMbGoVjHnYIHC3CxG8r59vuA4e6djm13H4UO6NSVVpB+koMir4ryBfBWxrUQasK4H0ESooet6cUcv6jBJXaBqTTdrXOjsFAPn4N33U1PJI4D2VAytZCx0rYT9aMoYVUGoIt4aF3w9aClxJbmYPaK8M5vEtGfLpguJxMvPjKcSBj4SrVkJpUXFlCssVG/Ksb721AEeolzQ4C072GlbNBcS+eaf1PKw/+bqLEbEUBIbvLoNxxLTebGPLyPxTtevV8qJKLUk2Gg7iOBLUtMhNe7b8gTko6nq/EBIFKt0DJZ/HYcl3LU2Z+fYWRYIS+Aca2BAeaca6YGdTnRoqB3lw+LC1zPx9kR83+Fef4eqS7WiclN5IaCN5bjntCi8J1hU495rGCmkzWB7EJqIrfyy0xluqfq71MlI1AdXEOwKi7DKRyrjm4u2D6Y30I5owEZx7d0kejVu+fr9PwHfzczM7cYZLtg+pT4PywgPruQK14YseKx+yKVhAN5UAET9nTlJOYDStNN+orH35GHqYsZ4Ed4AK6BOEHYyvrz+4Bb1Vwm2kWsakAIzgF7PoSFMR3vY1MxnoNEDuH4Q3oOYxsV47ZAjYJ/C9zicPed8Vznm84DYNLQrDsgHvqGXtX9KU7JYRgP6n4ThFUB9v3khLmrCnd+rEVIMMhApHiyHCzDzpZ9Ti4BEJH064fzI4tHit495DgDZOGg4Fsqt6HAXmHpk1EU1n5wPrRmzZtBfy5UkEooiVEizLRbgYixfcHhKRTzYC1+Px5roX/Rxyqod02JLv8JM26JxbCXYqTPLX03WPjARd56ktEqHyG9wRP95y5u8KCAu+GhLwr/gZmfknsZeRBbyj5/XMwzCkwbOzkEOsRIiumikiq/54sjEapsVqFUUpA6+RcyCECwKaqDwI7LsPVYbZzrBmknkZJpLWyyVv4IeGPe6ajsGmyRI53sCkAYXnbKzULaixWrqTWSt11s+sx7KtmLxxC7M93df9evV/RkrJNh/TYic995aImVIYyseA/PlTyihuD9WRGQNRiFg4kJP28V2i+2cehJGsKfq1L2V36YqvumOhLcHgZ9UsNpkPObvZIsDy6p2bK0gng32CN+Ss9gI/PuZjKy456Y04tuDVRzEBncFHwcUeDl70UbsZLRXluYI9fNg4V9lABIIbVAr5WtuhMTxGWtxmImgKDULskB7dujit0DUpyhlN1owX9UespWS4bHOVEQNvW48LI51VSH/OiWY9uaS0gPgQqDFChNZAkkv1uyOVrJgosQFiQVwVpfuahxpSqD2G4oOkMoQYP5eUI6+41sNsXVIsKXRtqqD53JGkKavtkceO0SkiXqiRUmwToEMn5RKiHas4CNWBHWf+hlS/7L6Hbpfun9EpuOzjmivQID+0RTFm290VKe7IpjeFRf8TQEm/7DfEW3fn5T5SIMKu/OpIvoRV4NCnxxtoWhkuY72Dnl9X7RNXrULaYwhFEdyYpOEkaniGFINfZw44kfBX/muFXmcav3/HyfEj81QwFSxmWbRy80A3dEJt0bTBi3arblvIUPaS+dTEBApIupHe31RyTybppYdu+HhbVPTRpEZmtsDFNe/0I30QzXUwCmsAZG4zsDXEd3GAD9wsaakh+wpAbWakOV6irwXUJ5dw8l4vUOmPm++E1yQwiqesxEtTSfL+KX3J1gIQG4agTu8wuq/zK51O23TOeF8ukLKM5PQGfm/DpsxCTZ5mKOtPh6AMDisrxxB4p3gN7eJmH1VeE6nmB9Ub4PZ4oQ+KCnv9RMAZ7TTPM2gHoc0UvBZrM/91Nt3Rp32LMs9OwIdKX6RIGc47rmjaRNTLCBi/Jgk3tT2Fwp0VqKlPr9Fwr5v45X9v6Zlt8uHh5kNLcypJVLlWSg5x7Ocak8mwyLSb518fF+2RmvZiptjSrQVsDS1Z/NvLCLrWvKcQ/ffxviNVF9YLGbEpHyALs5A5Vi2jZpfB674YKAP5lLhjWlqVfwCl8lKzzo2ZmGlEpK3QqlcUcCVcB3yzDT2a/GaDln71sOLkplLaN/yAZRebplqz5+Yi6e77Kjv1ha+n1thtYwn2nDdqW9owcri7KY8/4hLMuU0JnQSIhirep6awyqoXDETHuSxnKHaCz4MDl8tJCuDxCtW8b71zmgUPfF3OmLUZOjaECEzLw7yeOc9un2mX+Q74txCOSOb7g/QmhHO2SctvH49TV4q2m6kYdcXH1ggXxzjMHR/D9/UgsjCaO3oe/4TzPhP0iTcAv4+7J6qqsjoBHsDIX8hIYx4uxSu6CZBDJ+qh9EkVXrhQ8fHWEXgiSdVJj/yYqFYAHsLj0xrdR6WjJZcWPZMpwfxC/xcXIsUPvW0G3zY+WcBGwv+e9AgVUBxq9jVan1Rby5td+N0Kclgdt+ITe8d1H2NoO2ZhcyITNKVci8arHK6SWg1ciVhRc3zaF6vaBGqKRGh19MB2kwPxnrictx99kWi7Zpla7o7iL7pv3TDjOx0EWuL6ASjAJyEH0KWWEK0tMe4/xzwo6fidFEXSHViWO5u6HaAIlL5qUWplA/7buCwp9cHdPMtFhQjVQvz2hh+eUwShuMwoxp+e7YFSjm3agXOjWHbTDbCLV+JnATvZqn4M+umN6U6D0hiO/U5MAKvn9OvJkQG7bCGD5ADfoSbFE7PdI433TUGDsAd81MYYwNz194AauzdhXw+18A/AXT0p7cEGekE3kjsm4eJ616POZVWVR+8HQp+zmnKVcUPVL0Pidd3WzuvMnma1D4vyOHur07chgKN5OYyKpLqF9Rrode+JSBjKAzPjCw2xgDVnyWqBjFNVyj68cfbGELpnG45mankNkUhNM2z8N9977Dj6//9MKwgRFwfFLIesDwfsngamsMDUEwFgH75vpsl6V0kpdWftFfrIfGzpcUcBkpYJCBKYECcUMG0eHzVD53koHGkUGOWAjxq5BXOevWsADMzEi39KuA5zTZY1ADqhJps8a9H0Dt2NEtj4u1KyZoYts0AEcNSn8zOWlnN4TcDpIiLPOyQYGdI0s+XVOB3gvvK0A6plT/LeNO0XKJQyqk6LAwSZr+zk6iZfRkEFiakK8W+b6B8Lbs1AjymNnU2NWTPYCUt2vrxpxW29zgpDnxow9rX9j1x4PrFh5KbotOIhcnsiOr1i+ESWebUX9PjpYmMt2fkWMG7GSYYnIjv9Ri9wykn6uxUfyw0VKbRSKFBgaFAokhqg+HKLYcpsPRndSMQzY+qZRUP8Xf+0K12z7WLHWNq+9/E8ZdlM0sFlJaDgQ3HqvV7dGQAnnUklNZo2ijhjvNPCvV0DBjGODdwIhQ78SwTHcBr1UPWrbAKGfq074PpL7n1ZDBjAkoBfiGKXCMIMu8I1BZSHn5ddObTslGmWKXHz/FYQPr9vHpRr9i4uZ+u1fhXB0n7dSEsLAFKroUm11+Q2Do5ZJskF05H7YE1D6lmlT9sGb42epY5LhCUIqgnI6Wxb66grrZN8cCxrtWSIFpozd20K8241bFY3BQeHBSK5pFteUDXqcGd67vyd1fOkj46JqG54ilLuvfuiBbN03nMcjdMoeCsQYiAf4a3rgXh2qFkYzHAkFpUcWISyOaDBFZZ6MllqxU2hHBuWqApjBycyVF7CF+ZoJGiGyLSHk+Ier6/JCleS1CxEjZZvxcZ/1jsCUQYwm4RbAYMomn+pl51PK6u+6wLAl/Cf8kvlbpprp917e2HSp0IsIulZIbu3SpGfFhjncxl0Hbc44NMmQYFfYWwDnsAmuFits7ikxI4CFYCpdS7qImA7CssdMXCGEgzJ7CDk5yyVkHdslwPQEtxxsNcJPpr3aaUPGSvuNKifa+n9qShk/hjwwpeEIXCWqLT+Jq0BTPg1SuHBspq2SeN2lhjFI5OP6xoq/astm/fNr39BZAr6whyDpl1WDQslAbAsizGcFHD4Rg/8fNS54JRAmD/POtHae8tfK22S3yJ1HlgOZNjT60qV0TsjA4EEFD4ijSfyMzf8UjCpUmxLmvksw1CIwowSf3jTHfanz25lo0AH2YfUHy98zw5tpURHwBzUUL5/95tZus1UkUmUB6pB9nB+uEqfqrIuFiS+ltOYs16Wut448ksQWFKTf2U+sys7Byli5T1LQOGcql+9909eufupXz4REGOAcHFh3JljbCviXCqTCMIbcZD2XbkBa3SZP0VeyjMAoyiyBYb31Y+0GfRhrVJmVPM2ieKCWrj9sL1RVTbv0v3QZaNsk1P6DU0ImTAUvBMWmeuEc/0iQsVh6dc8x6mkIWnjjGooC8gYdPYQCjRxZ+OQue7odhrYgeYA/Ucj7nvUJfzrXi6NCrj8v/GnWEqw4VU8/m0t1yaHgLhyzhddmvw7Tby3JYAgU2iSC1LXEjY+HpSn0SDoEsn9VKah4j2FHjbnkYU07AvzKmKcYtErWomx1DakVGxoqtRQoFv7gQguY1fdqKOZ85jLvfWBx9ja1QV5Hi6WAooIDXDDxjLHdK1Rf9LmTRScpJ2G+TljUYcV7qqpZympg5YK8h7i9IOswxQs9Lcf7AaFJAogaq/ih0v+9pm9a2hWWkni/eRpoCRZFMh9XMsmiKOEfRj31akd6KIU347s2zPVdkCUy+Kj2NzWpfL1tTc3hXqDd6Mci68GWN29OsEZoHAVBU1o6luH7UneyzJjzXyuPG0QEBriQ8Hc/o9yQ255OE44jAhTcTpMHvAo1DAp2RLs67zhQyQIyfK19A4NDGfwDQmNeIwtvVApHlHHUhAQwDu01nNYhU/PH9eRKJJ1zQx4BCv+6q3vyienpYkfz/pfmYw76qvLawensLm7TFjTJU+rBOkBQ+OMQFs9qCPg0hFxSwm8JeylxRqW+fU7P4cZOlTEFgsXkNUH/q/vcaMbrXaI3EUf+qfrm7KKdiMKzBZmPYmJTlqU/a+yz8bpUGklvgqX+7XwFqDlv1lWi/RHUO7iN6sm1UXA4m/zFbQHqeNDUt8xm8aiUeczSQQ0ChHeLI4ymvkSNLdaCxo/qCZ+FD8e9obCXjn3sQOlw8z8EuWGxjrSr5gt5cZEvIOW3Nh+MOVRCILWpwk2FWPF3sjc41x0oHcyqNtxGrmXMfZZOkNJXyRFVjUQ3M5uHF+HCpYJyYCy9LL0Xy5A1WmhZ+8/vCOu4xsct+sEdxIYuZKCnsKcy3CsLrJNDgycWnJ5j9YhK4e31rt5TpEsFfavW4L3uQ31u3ufKNB5Qg7Eou5uMBFGfxxs8fSYAXwOC4YKTfjceWQ9+CZlKgwkJdpE5Qs8CHTjxhg/ts3PAVONFeE9/E2lQ/F/+YFfe/qURY3YRPMsZjCkYHNk+bppA7kgrOsgqCVhFR0aCRo8Lh7Br4s5l6Flj7EAGEUr6oWYGoQPWLFk9wejQK+B4paQ0yeAGcVoLmTvhwcAcS6bg2TuvS7tFFcueyBHyUJ9UPbvytBgqMnoesEyI+PC/twOXx8VB706Geu7Or86CgAiwfCQhfxlTX6EvMd3g6HkoQt1qns4384ZnvMAxT0PJjsplN7japf3ruX9N7ioJ6/LXga2n2+vWrZuZQ2c3GrAQRX0z0GxSTSPaVOIARa56I5lfIMNplaukOAOynBB197+nR3hfBqrRAfF+8YB/DzlY61FUejwoZPuFcLdB+j+eFLy/69nQr2REqUflh/jdXRQP4IzWVAog33+tT5ASvL+g5AVR782eiJ0alYCmEz5CSkEPNfefDXTpp+Dg1AWvjcjqUwSTbovCAGVhFOFiRHjOKHRvdQtgYoHA9EGM0pinh8fnCE6qYL9JetuAJnTi/3qkwEkCRri+QH6FvjjVxyBzLsCEdqa2aFwSKj1o3Cuj+T29Iw44lH5+4sq3S7QFfitPyNjaKyM4L1+M0UcPFhBBdNIHXDMCgjJMMMKDI5q3hT0oL7sZCRiJqI7gF/ZQ0cyyFhbKCR36Hh00vtRBFGv1vwtvyiP3WMVbiDPhj0tgr3Esh1Kexj44bK+S5fGi6rZfLq5Gr5alWUW3qIqnUUTyf4CdWrduAOoppQdjYwoSugTXqtR9l0RKKLA0LKTWzQqQ83kD4Fn3/xf2pX+htWjb85Qm0NSJHwN1+FTtmnQ0fzCMB6G74Nl1D2jNrqFW4L6tarY6ztfoipv41kb831TfwcU4+Dnkf7ofwqjDpORMISud9+HWoU+lo4yunvoahxg/AnhlUdc6x0UVmHsINXnApiXbsC9mxDR0uP13GjIgPzyrgRSHWPwwoms4MMaSe2ASUPvnEC8syRFaK2Z0j18/9RUvqwDZKVE5JJJxHPtWTIQuUJJTCm2R1lx+SZLBz+CpQmpsh3RMj+CzXqnj94MNZI+VzfNk8i+nb9OaMUsK3RNUt3RW9ReyAJMSgaoFR36Uzn0EMOYXoCaxVm8P7/qTmDpwQe2jTGfviuhXApKYwkXC7sIlJzcGjoL25hCVChpHD2nVD7YuKlCO7WYqlj9m2RudtxWelAtSrkNMs10EMfqQSGKKbdXRASFvdIqYmWEs2O2/cmG3Vi2WG9pmn0lvqK8CHIUy6UFY+Ew+AWGiFFgyiQhSzDrk/F/yF8Hxwq5WXecP/78hY3zK/jWq61Em/f5oOcq3f6eC4T9O/c+7Jx/I5I33o0D0hRbCjb1cQ8nm1KM4Fs5apBNP6eoxJkxVocbBiK7JdzkWGDU0Ma6ZDawcSATrwizQiP9AzrLKWVqUlf0hCoSlq+2F8PeKL5XRcIxXrzttUbJkUoGi6h55ano81W+Bp/+0CmRHQmHgko96sVjvnoV8SlRsFmaipSOjG/GDCx7Tu27HEIrktsS9QeB0LQCzHCmSZEVpRvrO7JJHwaw+RH7kyDgRZIsyP0SLIrc9KguPevGLLeqHlSJIk4aBvqFiSr9l9nweF2qA/2taueaG+DqrQ7IA0VHAOvORZxpKtyeba0k81Rm8dergLZwYpiUQ8wS9f7/ayx6gXIsB/AZrTqONQBHK5aA9PtvOHUhEApree6hCAYPfsH2PHmu5WMQEMj/ta1NhbRnZdpFmtxzd4xYt732UjHzLH12YAP5TyOUKyEgXpAxk4BgUzJ4BPFXggPOVEmo4huUB0tG0U5HP24FP+4IKevw7ImcgLAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9CYXNlRm9udCAvTVNCTTEwIC9GaXJzdENoYXIgMCAvRm9udERlc2NyaXB0b3IgMzkgMCBSIC9MYXN0Q2hhciAxMjcKL1N1YnR5cGUgL1R5cGUxIC9UeXBlIC9Gb250IC9XaWR0aHMgMzcgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAzMCAwIFIgL0YyIDM0IDAgUiAvRjMgMzggMCBSIC9GNCAyNiAwIFIgL0Y1IDIyIDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvSTEgMTMgMCBSIC9JMiAxNCAwIFIgL0kzIDE1IDAgUiAvSTQgMTYgMCBSIC9JNSAxNyAwIFIgL0k2IDE4IDAgUgovSTcgMTkgMCBSIC9JOCAyMCAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMiAo4OD//7KyYGD/KV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyA1NiAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgMTY3IC9MZW5ndGggNDEgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggNTYgPj4Kc3RyZWFtCnic7cuxDQAABAAw/H+0F0Ri0u6NAAAAOJZLoiiKoiiKoii+i7UkiqIoiqIoiqI41KfzJIkKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago1MgplbmRvYmoKMTQgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyICjMzP//o6NeXv8pXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDU2IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCAxNjcgL0xlbmd0aCA0MiAwIFIgL1N1YnR5cGUgL0ltYWdlIC9UeXBlIC9YT2JqZWN0IC9XaWR0aCA1NiA+PgpzdHJlYW0KeJzty7ENAAAEADD8f7QXRGLS7o0AAAA4lkuiKIqiKIqiKL6LtSSKoiiKoiiKojjUp/MkiQplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjUyCmVuZG9iagoxNSAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDIgKP/+/v/k5P+goCldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgNTYgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDE2NyAvTGVuZ3RoIDQzIDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDU2ID4+CnN0cmVhbQp4nO3LsQ0AAAQAMPx/tBdEYtLujVwKURRFURRFURTFYawlURRFURRFURTfRQAAgGMN080kUQplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjUzCmVuZG9iagoxNiAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDIgKP8JCVhY/w4O/yldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgNTYgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDE2NyAvTGVuZ3RoIDQ0IDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDU2ID4+CnN0cmVhbQp4nO3LsQ0AAAgDoOr/R/tC4ww72aeIoiiKoiiKoiiWEQAAoDRPoiiKoiiKoiiKpQP2jSTBCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKNTIKZW5kb2JqCjE3IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMiAo/+zs1tb/YWH/KV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyA1NiAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgMTY3IC9MZW5ndGggNDUgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggNTYgPj4Kc3RyZWFtCnic7cuxDQAABAAw/H+0F0Ri0u6NAAAAOJZLoiiKoiiKoii+i7UkiqIoiqIoiqI41KfzJIkKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago1MgplbmRvYmoKMTggMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyIChYWP//AAAAAP8pXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDU2IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCAxNjcgL0xlbmd0aCA0NiAwIFIgL1N1YnR5cGUgL0ltYWdlIC9UeXBlIC9YT2JqZWN0IC9XaWR0aCA1NiA+PgpzdHJlYW0KeJzty7ENAAAEADD8f7QXRGLS7o1aClEURVEURVEUxWHMJVEURVEURVEU30UAAIBjDU71JIkKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago1MwplbmRvYmoKMTkgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyICjq6v//vLxgYP8pXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDU2IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCAxNjcgL0xlbmd0aCA0NyAwIFIgL1N1YnR5cGUgL0ltYWdlIC9UeXBlIC9YT2JqZWN0IC9XaWR0aCA1NiA+PgpzdHJlYW0KeJzty7ENAAAEADD8f7QXRGLS7o0AAAA4lkuiKIqiKIqiKL6LtSSKoiiKoiiKojjUp/MkiQplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjUyCmVuZG9iagoyMCAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4Ci9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDE0MyAo//7+//z8/Pz///r6//j4//b29vb///T0//Ly//Dw/+7u/+zs7Oz//+rq/+jo/+Tk/+Dg/97e5ub//9ra/9bW/9TU/9LS/9DQ/87O/8zM/8rK/8jI/8bG/8TE/8LC/8DA/76+3Nz/2Nj/zMz/yMj/vr7//7y8/7q6/7a2/7S0/7Ky/7Cw/66u/6ys/6qq/6io/6am/6Sk/6Ki/6Cg/56e/5yc/5qa/5aW/5KS/5CQ/4yM/4iI/4aG/4SE/4KC/4CA/35+uLj/rq7/pKT/np7/lJT/jo7/hIT/fn7//3x8/3p6/3h4/3Z2/3Jy/3Bw/25u/2xs/2ho/2Zm/2Rk/2Ji/2Bg/15e/1xcXFz/Wlr/WFj/Vlb/VFT/UlL/UFD/Tk7/TEz/SEj/RET/QkL/QED/Pj7/PDz/Ojr/ODj/Njb/NDT/MjL/MDD/Li7/LCz/Kir/XChcKP8kJP8iIv8eHv8aGv8YGP8WFv8UFP8SEv8QEP8ODv8MDP9cblxu/wgI/wYG/wQE/wIC/wAAdHT/cHD/ZGT/YGD/Vlb/UFD/Rkb/Ojr/Njb/LCz/Jib/HBz/Fhb/DAz/Bgb/KV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyA5IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCAxNjYgL0xlbmd0aCA0OCAwIFIgL1N1YnR5cGUgL0ltYWdlIC9UeXBlIC9YT2JqZWN0IC9XaWR0aCA5ID4+CnN0cmVhbQp4nE3GV1sIABiA0ZfQpDSJUhpaRpKRFCoNLW3KLMoIZTSUEaUh/WVX7+M7V4fv4pv4KlbFivgilsWSWBQL4rP4JD6KDwqbV9icwt6Ldwp7K2bFG/FavBIvxYyYFi/EczElJsUz8VRhTxT2WGGPxEMxIcbFA3FfjIlRMSKGxZAYFAPinsL6FdYnekWP6FbYXdElOsVN0SyaxA3RKK4rrEFh18RVhV1R2GWF1YtLok5cFLXigjgvzomzokZUiypRKSoUdkZh5aJInBKFokCcFCdEvjgujok8kStyRLbCshR2VGQoLF1hRxR2WKSKFJEskkSiOCgOiASxT/y3XxwSaSJTFIvTokSUijJxS9wWLaJVtIk7ol10iB9iTfwUv8S62BC/xabYEttiR/wRu+Kv2NM/QnacDwplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjMwOAplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDExIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDkgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIxMDYyOTEzMjgwMCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjQuMikgPj4KZW5kb2JqCnhyZWYKMCA1MAowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDEzNjM1NiAwMDAwMCBuIAowMDAwMTMyNzU4IDAwMDAwIG4gCjAwMDAxMzI4MzQgMDAwMDAgbiAKMDAwMDEzMjkzMyAwMDAwMCBuIAowMDAwMTMyOTU0IDAwMDAwIG4gCjAwMDAxMzI5NzUgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwNDEwIDAwMDAwIG4gCjAwMDAwMDE2ODAgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxNjU5IDAwMDAwIG4gCjAwMDAxMzMwODQgMDAwMDAgbiAKMDAwMDEzMzQwNyAwMDAwMCBuIAowMDAwMTMzNzMwIDAwMDAwIG4gCjAwMDAxMzQwNTQgMDAwMDAgbiAKMDAwMDEzNDM3NyAwMDAwMCBuIAowMDAwMTM0NzAwIDAwMDAwIG4gCjAwMDAxMzUwMjQgMDAwMDAgbiAKMDAwMDEzNTM0NyAwMDAwMCBuIAowMDAwMDAxNzAwIDAwMDAwIG4gCjAwMDAwMjQyMzMgMDAwMDAgbiAKMDAwMDAwMjIzMiAwMDAwMCBuIAowMDAwMDAyNDUyIDAwMDAwIG4gCjAwMDAwMjQzNjYgMDAwMDAgbiAKMDAwMDA0NjkyMyAwMDAwMCBuIAowMDAwMDI0ODk4IDAwMDAwIG4gCjAwMDAwMjUxMTggMDAwMDAgbiAKMDAwMDA0NzA1NiAwMDAwMCBuIAowMDAwMDcwMTY2IDAwMDAwIG4gCjAwMDAwNDc1ODggMDAwMDAgbiAKMDAwMDA0NzgxNCAwMDAwMCBuIAowMDAwMDcwMzAwIDAwMDAwIG4gCjAwMDAxMDA1MjAgMDAwMDAgbiAKMDAwMDA3MDg0MyAwMDAwMCBuIAowMDAwMDcxMDcwIDAwMDAwIG4gCjAwMDAxMDA2NTMgMDAwMDAgbiAKMDAwMDEzMjYyNSAwMDAwMCBuIAowMDAwMTAxMTg4IDAwMDAwIG4gCjAwMDAxMDE0MDkgMDAwMDAgbiAKMDAwMDEzMzM4OCAwMDAwMCBuIAowMDAwMTMzNzExIDAwMDAwIG4gCjAwMDAxMzQwMzUgMDAwMDAgbiAKMDAwMDEzNDM1OCAwMDAwMCBuIAowMDAwMTM0NjgxIDAwMDAwIG4gCjAwMDAxMzUwMDUgMDAwMDAgbiAKMDAwMDEzNTMyOCAwMDAwMCBuIAowMDAwMTM2MzM2IDAwMDAwIG4gCjAwMDAxMzY0MTYgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0OSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTAgPj4Kc3RhcnR4cmVmCjEzNjU3MwolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-06-29T13:27:59.305893\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# collect true solution, best guess, std, and 4 samples for plotting\n", "rvdict = {\"$x_*$\" : x, # true solution\n", " \"$\\mathbb{E}(\\mathsf{x})$\" : x_rv.mean, # best guess\n", " \"$std(\\mathsf{x})$\" : x_rv.std, # marginal standard deviations\n", " \"$\\mathsf{x}_1$\" : x_samples[0], # sample No. 0\n", " \"$\\mathsf{x}_2$\" : x_samples[1], # sample No. 1\n", " \"$\\mathsf{x}_3$\" : x_samples[2], # sample No. 2\n", " \"$\\mathsf{x}_4$\" : x_samples[3] # sample No. 3\n", " }\n", "\n", "# retrieve min and max values of all entries for plotting purposes\n", "vmin = np.min([np.min(mat) for mat in list(rvdict.values())])\n", "vmax = np.max([np.max(mat) for mat in list(rvdict.values())])\n", "\n", "# normalize diverging colobar, such that it is centered at zero\n", "norm = TwoSlopeNorm(vmin=vmin, vcenter=0, vmax=vmax)\n", "\n", "fig, axes = plt.subplots(nrows=1, ncols=2 + 4 + 1, figsize=(8, 2.5), sharey=True)\n", "for i, (title, rv) in enumerate(rvdict.items()):\n", " ax=axes[i].imshow(rv[:, np.newaxis], vmin=vmin, vmax=vmax, cmap='bwr', norm=norm)\n", " #axes[i].set_axis_off()\n", " axes[i].set_xticks([])\n", " axes[i].set_yticks([])\n", " axes[i].title.set_text(title)\n", "plt.tight_layout()\n", "plt.colorbar(ax, ax=axes[i], pad=0.2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Encoding Prior Knowledge\n", "\n", "Apart from trading-off precision with computational cost, the ProbNum method has a second *additional feature* which is the ability to encode prior knowledge about the linear system at hand. It is known that encoding prior knowledge leads to faster convergence to the true solution [1]. In this particular case, the prior knowledge is an approximation to the inverse of the matrix $A$, called `Ainv_approx` $\\approx A^{-1}$. Such knowledge is sometimes available when consecutive, similar linear systems need to be solved, e.g., in optimization or as covariance matrices. Using a related solution will help find the solution to the current linear system faster, with less cost, and/or with a higher precision. The prior on the inverse plays a similar role to the preconditioner for classic linear solvers.\n", "\n", "Let us first define the approximate inverse of $A$:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1.125 0.02 0.0275]\n", " [0.0325 1.025 0.01 ]\n", " [0.0275 0.005 1.07 ]]\n" ] } ], "source": [ "# Approximate inverse of A\n", "Ainv_approx = np.array([[ 0.2 , -0.18, -0.015],\n", " [-0.18 , 0.7 , -0.03 ],\n", " [-0.015, -0.03, 0.20 ]])\n", "print(A @ Ainv_approx)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that $A^{-1}$ and `Ainv_approx` are not completely identical, otherwise the output above would return the identity matrix $I$.\n", "\n", "As a second piece of prior information, we consider the knowledge that $A$ and $A^{-1}$ are symmetric matrices which can be seen from the definition of $A$. Symmetric matrices are a common occurrence when solving linear systems, for example in linear regression, or Gaussian process regression.\n", "\n", "\n", "In the case of the ProbNum solver, encoding both pieces of prior knowledge (symmetry of $A$ and $A^{-1}$ + approximate value of $A^{-1}$) is achieved by specifying a prior distribution on $A$ and $A^{-1}$:\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "from probnum import randvars, linops\n", "\n", "# prior distribution on A\n", "A0 = randvars.Normal(\n", " mean=A, cov=linops.SymmetricKronecker(10 ** -6 * linops.Identity(A.shape[0]))\n", ")\n", "\n", "# prior distribution on A^{-1}\n", "Ainv0 = randvars.Normal(\n", " mean=Ainv_approx, cov=linops.SymmetricKronecker(0.1 * linops.Identity(A.shape[0]))\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The random variables `A0` and `Ainv0` define symmetric [matrix-variate normal distributions](https://en.wikipedia.org/wiki/Matrix_normal_distribution) as priors [1] whose samples are symmetric matrices with mean `A` and `Ainv_approx` respectively. The covariance of `A0` is chosen very small to concentrate the prior, as $A$ is known.\n", "\n", "We can now pass this prior information to the ProbNum solver, which again runs with a limited budget of `maxiter=2`." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "scrolled": true }, "outputs": [], "source": [ "# Solve linear system with limited computational budget and prior knowledge\n", "x_rv, _, _, _ = pn.linalg.problinsolve(A, b, A0=A0, Ainv0=Ainv0, maxiter=2)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([-0.12366124, 1.28360716, -0.6396483 ])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# mean defines best guess for the solution x\n", "x_rv.mean" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0.00037817, 0.0015451 , 0.00064998],\n", " [0.0015451 , 0.00631279, 0.00265563],\n", " [0.00064998, 0.00265563, 0.00111716]])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# covariance matrix provies a measure of uncertainty\n", "x_rv.cov.todense()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We observe that the best guess for the solution (mean), even after 2 iterations only, is virtually identical to the true solution and the entries in the covariance matrix are smaller as well, indicating that the probabilistic solver is confident about the solution. \n", "\n", "Analogously to above, we illustrate the uncertainty about the solution by sampling from the distribution of the solution `x_rv`." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[-0.15524932 1.15454793 -0.69394021]\n", " [-0.10279559 1.36885782 -0.60378554]\n", " [-0.15759199 1.1449765 -0.69796667]\n", " [-0.11881182 1.30342041 -0.63131338]\n", " [-0.11739131 1.3092242 -0.62887187]\n", " [-0.10227204 1.37099691 -0.60288568]\n", " [-0.12448216 1.28025315 -0.64105925]\n", " [-0.14592228 1.19265534 -0.6779094 ]\n", " [-0.14117987 1.21203139 -0.66975839]\n", " [-0.10546366 1.35795692 -0.60837126]]\n" ] } ], "source": [ "# Sample from solution distribution \n", "np.random.seed(1)\n", "n_samples = 10\n", "x_samples = x_rv.sample(n_samples)\n", "print(x_samples)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The samples, this time vary little for all three elements (columns), indicating that the solver is certain about the solution. We print the marginal standard deviations:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "true solution: [-0.12366738 1.28358209 -0.63965885].\n", "best guess for solution: [-0.12366124 1.28360716 -0.6396483 ].\n", "marginal standard deviations: [0.01944665 0.07945308 0.03342387].\n", "\n", "The marginal solution of element 0 is -0.12 with a 95% credible interval pm 0.04.\n", "The marginal solution of element 1 is 1.28 with a 95% credible interval pm 0.16.\n", "The marginal solution of element 2 is -0.64 with a 95% credible interval pm 0.07.\n" ] } ], "source": [ "print(f\"true solution: {x}.\")\n", "print(f\"best guess for solution: {x_rv.mean}.\")\n", "print(f\"marginal standard deviations: {x_rv.std}.\\n\")\n", "\n", "for i in range(3):\n", " print(f\"The marginal solution of element {i} is {x_rv.mean[i]:.2f} with a 95% credible interval pm {2 * x_rv.std[i]:.2f}.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again for completeness, we visualize the best guess, the credible intervals as well as the first 4 samples:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDU4OC43NzMwNDY4MzgzIDE1OS44NCBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEyIDAgUiA+PgpzdHJlYW0KeJzVmEtvGzcQxwv0tp+Cx+RQijMcPuYYI4nR3twK6CU3x3FqWClcF20+focrrUiuSGU3sA49+KFZzuvP3/IhUA/D5g2o+2dl1IP8/KtAXavN27t//ri9+/X6St0+D0bsu8HFqEOwhoJ8fCw/gmMdSWwm//t5GL4MElfGXkvI+wGsRjX+klDyxyCw3RseK0P617so1oNLNkjQT8OTyqHIaDP62ehBAaaPMtSAkyL+ulO/qy9q8wZTeyDtgbQn9Qx1e08pjEWV2kwhkIoMtzu1+RnU2z/VzXCjnqZoqH5RoNHtA870Kls96WH4bd7+rtO+jDwrWn4++ZyJZKRgI9ORZbgfrrbD5r3IFjRbDA4hiN/204BeA2P0Ege8BOJ9oL2q24/Dq6+v1Va4eS+5UTuHMYgrQ/INOpAx8tGI60+ofeTIJI5x9Pxx9Hy3naDbE7IHbyJlYNTWk3Uui5gs3hFPvVeW3GjpOcMmTd7xsZQYvpeg4XTCGwQ1Uo0o4TqUTqRodziiUGu062kkYxcIPBuVCetH7SJmTxFjp9lxILYucAuxdwfE6NQXQHwdcHRoQbKk4R9eff3weglbEECPwMLUO0o8Zw0bmnqvLMVyVLo26Do+N9IHXRavVq6RL7tyqTqRo9OlzO9cqF1PqETjApnnwzJj/bhrljHwrF0MMTJSpBZkz39/7GOGVhsMHtnJO7AWM3RGe7bG+2P/nCwO/ZGywpB7rBwbkOXnaZ2/LGStXCNktA6yhhjtLhNktUy7jkxp5Lclno8qCOtF7QLWIsRbHRxYYvQE5zZKt3qjhCWUWZTTlguEx0OC9cnCHtykQWXJrVauDc6Oz8EbjJflrJVr5Myt46whR7tLmee5ULueUGnsApnnwzJq/bhrWLOEmsEFQ95TfFnWcAlrZFjWQwghTCIQJYvlMGlQGnKjlWODtPzcGOsuS1or10iaX0daQ4x2lzLLM5l2HZnSyG9LPB+VMetGXUOZsKvlRGF8ktu9LGV2EWUhlRRlyz1ee1KRZII9ruqVpeCsdG1xNj1HH/jCK1or18hZWMnZiRydLtOtcibUridUYmiBzPNhxSWzG3cVa7IFM/uIsmTCC69otIQ1OWFKG46guGL7ZAkE+YuJwpJbrVwbrOXnBqdgXtgyskfIfZDPoyaPkngwXLeLLC3exxD8vCTUwYZoqF9qt7HCXEUplSmSnhVstIgoVyXwxRcxJy+S1zKBxXuUiveUpp/9/gWK+xdoUiqxNr0892VyJDnfkRNaRLG0d87Nj6ms9EKPfI5aMgUv+7RllxBzJNWMXjJrCtImDt4hS+sjYz9kOueuYLSQiFbOhpYPVwejnZmo3JdclpvgB0Mm1uVm88pyLcklPZAcccHB95WLrl+us1q4SN/9VeVmc11uI2ddLkWZYJDLLMuKcMhvzsjlo9CBhmazm80r88tB3srKYmQtMrCg/yivhgty2KvzZ/PK/GmdBWJgw8EvwIWDxpAmuM6fzSvzM2qysqA7L5n26cOZ9kHu50HWW67TZ/PK9GBSaDlxILhDAXB2/gG9tkZWh9kEFPa1JSBo8mh99IcLWAEAjtvaw7TU1KvW/26J/px26pvhP8z76aMKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoxMjA1CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjIxIDAgb2JqClsgNTI4IDgxNSA3NjEgNTkyIDY1MiA2ODYgNzA3IDc2MSA3MDcgNzYxIDcwNyA1NzEgNTIzIDUyMyA3OTUgNzk1IDIzMCAyNTcKNDg5IDQ4OSA0ODkgNDg5IDQ4OSA2NDYgNDM1IDQ2OCA3MDcgNzYxIDQ4OSA4NDAgOTQ5IDc2MSAyMzAgMzExIDQ4OSA4MTUgNDg5CjgxNSA3NDAgMjcxIDM4MCAzODAgNDg5IDc2MSAyNzEgMzI2IDI3MSA0ODkgNDg5IDQ4OSA0ODkgNDg5IDQ4OSA0ODkgNDg5IDQ4OQo0ODkgNDg5IDI3MSAyNzEgMzExIDc2MSA0NjIgNDYyIDY1MiA2NDYgNjQ5IDYyNSA3MDQgNTgzIDU1NiA2NTIgNjg2IDI2NiA0NTkKNjc0IDUyOCA4NDkgNjg2IDcyMiA2MjIgNzIyIDYzMCA1NDMgNjY3IDY2NiA2NDYgOTE4IDY0NiA2NDYgNTk4IDI4MiA0ODkgMjgyCjQ4OSAyNzEgMjcxIDQ2OCA1MDIgNDM1IDUwMiA0MzUgMjk5IDQ4OSA1MDIgMjMwIDI1NyA0NzUgMjMwIDc3NCA1MDIgNDg5IDUwMgo1MDIgMzMyIDM3NSAzNTMgNTAyIDQ0NyA2NjUgNDQ3IDQ0NyA0MjQgNDg5IDk3OSA0ODkgNDg5IDQ4OSBdCmVuZG9iagoyMyAwIG9iago8PCAvQXNjZW50IDc1OCAvQ2FwSGVpZ2h0IDEwMDAgL0Rlc2NlbnQgLTI1MSAvRmxhZ3MgNAovRm9udEJCb3ggWyAtNjIgLTI1MSA5NzggNzU4IF0gL0ZvbnRGYW1pbHkgKENNU1MxMikgL0ZvbnRGaWxlIDI0IDAgUgovRm9udE5hbWUgL0NNU1MxMiAvSXRhbGljQW5nbGUgMCAvU3RlbVYgNTAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yCi9YSGVpZ2h0IDUwMCA+PgplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTY2NiAvTGVuZ3RoMSA0Mjk0IC9MZW5ndGgyIDE5NTM0Ci9MZW5ndGgzIDAgPj4Kc3RyZWFtCnicjLcFVNVL9z5OgwjSSHMo6e6U7k4pyUNzqEN3CAoI0kiLNNJIdzciXdIh3R2/w33ve8H7ftf6/xdrAc+ePTPPntn7mf2hIlNWYxQxtTMGStqBwIysTCx8ADEFNTVWNgALCzsTCwsbMhWVuiXYBvhfOzKVJtDRydIOxPfEQ8wRaASG2MSNwBBHBTsQQNbZBsDKDmDl4mPl5mNhAbCxsPD+19HOkQ8gbuRiaQpQYALI2oGATshUYnb27o6W5hZgyD7//RdAY0ILYOXl5Wb4azpAxBboaGliBAIoGIEtgLaQHU2MbABqdiaWQLD7H0sAaAQswGB7PmZmV1dXJiNbJyY7R3MhWgaAqyXYAqAKdAI6ugBNAQ8xAxSNbIF/x8aETAVQt7B0+s+Amp0Z2NXIEQiAGGwsTYAgJ8gUZ5Ap0BEA2R6gJiMPULIHgv7jLP8fBwbA36cDYGVi/We5v2c/LGQJ+muykYmJna29EcjdEmQOMLO0AQKUJOWZwG5gBoARyPTB0cjGyQ4y38jFyNLGyBji8Bd1I4CkiArACBLi3/E5mTha2oOdmJwsbR5iZH5YBnLOEiBTMTtbWyAI7ISM/EBQ3NIRaAI5eXfmv6/XGmTnCvL8LzKzBJmaPcRh6mzPrAGydHAGyoj/7QMxIT/azIFgACcLCwsPCwcA6AAAuplYMD9soO5uD/xrkPXBDAnC29Pezh5gBokD6G1pBoT8QfZ0MnIBAsCOzkBvz6cDfyJkVlaAqaUJGGAMNLcEIT+uDjEDzf6DIRngaOkG0GWBJCArgOXh55//9CE5ZmoHsnF/dP/rjv8b6z9WUVE7N4AnIxcbgJGNkxXAy80D4ObkAXj/Of+fyP8b9V9WZSPLv1mxPC4oAzKzA/D+hzzk1P4OAMDs8ndO0PxdMbSAP7YAMCvaQXIZCKB5TH09Fk4WE8gv1v/fBfDXlP8r7R9W+f/M/P+hJOlsY/OXA81/PP7XwcjW0sb9bxdIMjuDIYWhYAcpD9D/+GoB/1PPCkBTS2fb/xmWARtBSkQEZG7z3+MEMFs6SVq6AU2VLcEmFv/Jor8HNB4q0MYSBFS2c7J8EB0AIysLy78HIXVnYg1RFifItf01BoSU1Z8XKwEysTN9qD82Ti6AkaOjkTsyZHdWCOQEeEL+QkoC6PZXggOYmUB2YMgkACRKb4CZnSPyw/WyAJiljGxtjR6sfxlYAcziQBvwo4ENwKxuAXxiYAcwyxvZGps+WjgAzG8s/0GcAGblR8QFYFazNH+yATckQntIqUOC/q+JBzLD4nEKLwQ6PUJWCEclW6D5E44QkmZmjxBC0eyJP4Sgmc0j5HhwfjLM+YCfjEMYmtpBXgenp3ty/2O0ejRCeJo7PpT/PxYIVSMTSNY8nhaErImR45Pg2CBkjR2BT2axQfjaGpn84QTh7Phwj/8YIKxNIJlmY/PkJiDMzYGOthBhMrZxejRDAjB6sjqEut0TCCFt52Rj5GTxaIKwFpF4vM+H830CIXyV/pzADiHs5Gxv7/iQi/8YIZQhiWVjZPtogpB2cLYDAyH8/iMB/4xAqIOcbY0fRMT8MWz2v84eEqPjowlC3x7oCHlsnsyGxGBkC7E6PTws/1h5/97tz604IOHYQ548kA3Q7ImV9W/rv5whkRk5PSzhZP1ohERmb+P8GCrHw2XYPa0SDkg8Fu72FsDHWDi4/iJuaffIkAMSy58nyQGJxAPoaPdogAQB6R4eiwfCHuz6OA4RT2awhSPwicdDtts5P54Y50O+Wz7JL04IXSfIy/IPhpB1giTgI1eIWDAD/zgITghVkOVTIjwPMT+tUk7eh2VsLf+0crH8Nw1MIQ/toxnCG+jgbPRYZ5AnCnJdQKcHufvTlf1x4NEIicHokR4XJASRRwShL/qIINTFHhGEt/gjgnB+TG1uCFfJRwShKPWIIPSkHxGEk8wjgpCRfUQQLnKPCMJF/hFBuCg8IggXxUcE4aL0qHkQLsqPCMJF5RFBuKg+IggXtUcE4aL+iCBcNB4RhIvmI4Jw0XpEEC5vHhGEi/aj4EK46DyivwTLyMQaCP6jhHjZHqv7zwH2fyb8WV28D3Vj6WjibGtmA3zMR17Ov8QV0j8+LXJerr+X/3NtSBCPZccLCcL4EUGCMHnyTECiMH0CHzLwCXwomycQwtn8CYQwtXgCIQyfPkAQak+eARYIJ+snEELqyXMC6XGYHyWR9eH1Aj2BEFZ2TyCElf0T+FAKTyCEleMT+FDHTyCEFfgJhLByfgIhrFyeQAgr1ycvJoSV2xMIYeX+BEJYeTyBD0oPMn2qY6wP7xPQ9l+2B1F0BpkbOTrb2hg5P+H28ESBLW1Mn9zHwzNlagmEPCmWT2J6eK3+56VhfdAYJ3sjkyfTH/TlX43Lg8D82bqwPkjLn80L64Ow/Kt9YX1QlycNDOuDvig/xdz/bmJYH2Tm320M64PaPG1kWB8E549W5kFznMzA/3o6WB/EB2T8rxAfNOhffQ83x5+Nz4MUPW1tHsToaWvzIEd/9D4PivRH8/MgSv/b/TyI0//R/rD+T//zoFR/NkCsD3L1ZwfE+qBZf7ZArA/C9a8eiPVBvv5oglgfJOzfXRDrg5L9H20Q64OmGT3tzVj+aIRYH3TtX50Q64OmPWmFWB+kTOkp5vifZoj1Qb7+N0cf5OuPfP6jUTdxdoT0HuC/vqogpfRf/NdXMxDoBjRBnp6wM+EPsioPargoFSF0ZVwbRFhYavrwSbvzPSf41WSGp4U8YpLUTwdRQ9MivP4E5an84JEJL0K6vYshN73WFP9f8dLpYCiJzhXRA8YvvZfHreZAElM7AvNh7oQPKxj7USrEaIa6cLrUMVoTN++429g3itezbpucNnR4twG2gJwzdLJ4QvBHkbSmbZgwbTLKJXCfth56BKajbqKzuozG8C1MmGXEuWhDOP6l+4puxOe++fmelK7OBPajTLn2Eq6iYCx8bA9ZsrT+6B/TZ+RhKvletOr2zwQy7dtrX6pYnB7mtyywamtHMDqacTDsA8omM+9wl6SiKpdD7tlIk0mv+NtNNiZ4ghmISEtjZUziqrZLUY4YbrjOc+qZpaGYo7jx0TmlvgXzs//G0j5wGu4tH3NWT1adSn/Ly7r80ypQqSb9HWe5AtFi4rc8jdISynCSkEgu6T6GK1gHZssFrYjp1p4tyzFT44YMCvvpzNtnk4dK43fxJJnPFMZsLjFiKuiGTb3LaF1r2AraO19DC7lJBmxjviJY2EFy/D2oTREMRGIHa/miLOlI9uYzoxaD7vhjFobmUL5827yBmTO1+UEAfT5jaxipt2Gu3icr+52CmIJReWHdeI3HFI2gNXrzbcVg4VVjAD6fFoaeYgsGP/EPepae46hTCgZE5ivlL/r539Oc1F8kHYRJ+ZGgdz2X0SHFzaBlG53wRSt7w0Qro+NCfZu9ViRrAIwuuc5Ft0mX9tg05lxnaDafHKCrTXl7Hz/utnfFmDn/bqG1R/UDnvtBXYatHUzMqAGvh7L378+4jGog0XzuGNlIHYF2np/DHmNmY2/zu60m1Nf5Mtsz/cp/dknCMhLihrT1HTMZH84WovFMryqom2oBYVV/VBgfb7RNRZ5BZ+XRp2tkdhVkKBX6EKWNJ1mJ8DyDqxNDWgF7uS6b49Y28BCIKtMF8ny/jJozUYDbfic4Xq1Pn/h+PkXQUvuqEqciFF6RDJpymsls9VVvPNWp2xAmhl/PWZNYXH5brba0nKw/qrvN63Ok3P45+5z3Mw3+CwfNo8Jh1oLaX2qDI81mv0xdgN4qovm6fnQdCaK/UI6giBHcjsJsubr/OfST2qKOfCKPMRjt1WUYcoymsR5vJXOeTQ/6yWnvzpBfwZBhd4c8ZwJ3mxCWDCFL+ZB5IQHt+VQKGCDSgQnjLN251BEvNDxopHeKg/RK8eym4LRs3y6LNW43g7Rw1ICNvsqLo9w9XkIhg60KmkMDsT2LdHqje3s8MfMjHWXbHHwua0TKzQX9F7ao69ff3ZcD0WjpOZ7Vle2UNY1oWWLG2oi/yABfXHJSahq8zPhYqDVIod1EbfI9N33MD+eVa9ptbJLsXiMmQ4MMWgSvDJWZSPEKr6ZMGK6iEFi/DlySy01vL8hx3M1dGwjUzwbMgFyHdnOq6kQ/0xQLuxGYvFT4NmAkEjp/N/Zy/lWeaOBRH5xLM3hFQpP5TKbQY/LCgsQhYRtzIRVvFkAdZsHnxKjBD/fWcNUHtRsOlaPN96WXU2CM/HjmjAntZPuODuOMB7v5uJISe5S5ctWvFE8i9N7fTFAuMj9NE866ip3rqE3WX7grkArugb52UL+4JuPE36GrCdZ3AMjMDXbPIyiFZWyqEp3dtiyGWkuMbvvq2WnNX8WMJcc7Mj43aqvUsSqo+DjD3Mhkblx4yVeU6Hc+/gtb/dPdGiUwZKPs8FdtskOT+yxy4wy+gl86J22sr/I7n5u0g47jOtI3ZMGSymWV43yBUDb1vqDj0/3XH+jQuFAZqWg5atnYwelXUHzVqC8rmcbTdFkJS1uKAdHpq86t7WiTI5SI6Be/t51/s+7zocfsW5XutfT1b4Ut/cxjSXbSBNGpPNdeDe/Xl+EKf25XO8eDDh1OG39sIUf5dsPvTfI39KNR4kI06bn3fHFzTrFauL2A2YaOC9WhHGCwaKvX9symic2wYMhAeTNzuSYWVdoPkU/Mh8bdOH4z1WNusJaBfW1vVTuapOhdoj9PJ8bREZ/gtFIOvUUPWVO9qx8RbGtYS1UUW3Z42avspFU6TzqHhCdyEpxeM/wBdrMyJ3HnWq4VX5nFmRyAsuMgF6G8MHdr+qosbDEtUEVBov5ri8/rprL9XPnhFHQWAy33DNQbJcUg2hxPin23ijsP8U0nNhEoxTYVsnZfC/PGxBFa0uvrH9/ghUIKNK6oPCjGatA/6Oz3JV7RXoxXb6P5OfmyDqeJ/2pPzheTqa9Hb1FDxq0fsfbslmPE9s2YL0tgLkUTfYGNvV651dJtA0TMbgLtuHfyn15sPpuUOSMvvWOQUZP8PfJDxpPAy9EGFyEz4gOrPFUEHG8fK4jVtisx8cXNEO8HnJdrY3iSrP4oz3eWzR25xE4zulXSuQFtNa0FFtVsnlB2fVLfnHWg9WQ+C4zSkfkPm+JTf2rpDwxM+XXcG00xuyRmsQoK4SOfJcs+uHD3bIVL+sxlUGDcFbsUorhJwJflxghH0guQjDbsZSAXYgoEBQ69nBUS64kpKnHYNhXJKx5UNuycNY6zrn3OpJWqnYEUOTuVhp+1JO4SZHchrG1fFnjfWolZOjwoPmVOuI4aohVfWdxsQCByRChn4Jokp3skG17M2FgusHjvEKDh6HrQx8K4pggfyI5Gfc8W+3KP8v0vHzHReY40OP2xXFLnL8trJws6vkoUutjJMa8zC4Qx+fxRHdCt/BHL5lg47nCjecu5mbwYxeeqOuwxuspgEy3mCIQyVW5j3RvjN2HLvxxN781WyU7Mx62hIKS+zokpl5NUijUR+jjKagNtyia3Uv9MdOFeTgGWIlzE4ZoLoaNsYlRDuYOxdWBfjr2nh5in4jC2HAGTf4w3vGZQfIeVJmLBcGOKv3eD1GvYesuxWSycrg81pAMFts3lbJf7tYCneRelM2qBowoAsWE9rFCs/iL9B5r3jb6NqM+IiNBRYiFzMC6q+l6MokbfudVYS4sgZ54yzcvVMNy92or0G/kdd1xi+YXZLL3KUZKc+1W0/IbJ9A9aryXz+ZnQZxxAFhsvD4eyUXxWgEHQec4XTdLMwFfuOzayeuvw3M+vkPKyejOqF8Wd5jGHjr86Y2B1zuFowqQeL1MmnpO5615yCjUL/upgDDW8UxsOj3id2zBQdAOIDt56NiNR8SEJ/H1iSLDXg0sg9avc9t7HTFWiPjW34K6xXis9ADrCgqJlWcB7SUpi63M+Rm0duNyTr8NAZpARejPZr2R27j40G6kmTzS6EEzCLyBE7cK5ifljHJFPacHH98Lkjj/myQ3e7hCb3Q2aDCSG1orbV4CBQX0V6ulufNc22INSxQLoFAamxiZY6D6paliaq2/kWLcUO8b5GJnSlRxNPrk4fOj5id6hjyvpy48L8LMMdnfoa3n5EUZ/EdVYZanYmGnV0HXXYnuyiW8Iv0ya8fQTPHLBR8M1Op1lokrU+j509haqmBoGbbDfdYybFuuiEW+jiuzWvWRWzYDzGbV18mvKDJ4cxQbnAJRO9VOHvJRd31lM9189aX2jb6LrndxSYOu4c51dmjvTKDJ22got4IC7/ZzfP5h7l94F5NEPzd3L5wjsNvDtDdS5QCmhMr7wtIKZeStTLQR/n7yfzYUTkzStHoF3XtijXu2UjlDL4Ne7UOe6FwBeHISR7kV1qTNCKfTT7S1kuDaDZUdjnTdioJxxlPHWjMnDiUUkNA589l774qO4hQ8WkiM5wZBGsL8vs4me7HicMrTcMpeeYaS0RJYNuVsM/LdgnR/fatOAN9m7zBXjUz7W3MS6k992zNrMmmdGvnfNBBBHit7eiUeu2yjRm0j5HARQB+CahatyNQLrwbLqnIsGn+HhNaodTvRV5cWnAkiTi0olqNPwhEosFiKqClITSnh1Ja/lLTcJe5NH5hrKGYhOkPy1YvjYasYlb6dwa3xvq9XCRJTfr5GC2AgAUkQKzvFVLPqwefWXz042szeM1p9JdjInVlE9j7dD7m80pkiG5WZi+y2bJutasbn2lkqPiyADlzKqNkAY1iPtU7ZaRu8a2usegHXGUp7sLork7zub69t9LrhxT9VvL1qo1LQuvwuWel0Rhw16SoIBnbQ0qdquJS6ZCblhrJ4SzUh1PIPoSHy5cwLlcRL5H0lWK6BkA34S2Jbp5ANl/GhKR0rrJs06m8vRqVBuiSwM343qHb5dXKEeZ5q4QylZBALg+ea9Ll8M5YF+rZhmzJKPeTbqVCkUw7blvRu88QrKvO1/rhnNgYzT+3ktUjPOAMP/c+tOdbQUfUbRIKIg1qGEpEbiWaEWsnd5AeP2yKsFac9EycHJpToH7tnySz0Kt1QkZqXJ/W85tbmgwtwq2oWoeOSVg9n4Vy2EMNal2jZoAd6WWKS/hE24y/DyPzi2v3ZLO06iQwNgdkQDFwdkx95EZt6BqowsWqyslthLPtFGB9hD6/Imf6nlKsMOnHfVJWAuCenUBiepCq9yeCN+zYMjV+wCHmQOtG5mYftTh37GyZ47ifmEVgiMCzNjtzEbRUjpdwkptswujQ3Tc09r2VoXoY74ZYa+WM9h4uv1GQtqFzFg0dwtFD0KtqfyIqApn0aUzgyB4ytuXgzaC+1RxMHTyY0+BWKoyvbnsHJGqwhfsN/1IHphTdPFg+AdpRmkG+rECI6jqj5Tyy8vpDD4SIJCdQOaM2djapL1yJMPKn64RrHlaTE0k1ZiQrOPc2B/vy0ShxlF8jaZohMtyVfwGpFbObFLRwucmQ254fLUdd7l28lmYu6brtwKgQcZOPe100gDNWW8lToM0QqXeMtLpJ+xzo1Lxnw4h+aWxP2Mx+uQ08+6gvZB/L5OsSMgxXewMK0oXpnOqIOE8lWPpUcWpVj00RshueB8uBgUol7j049HA/gHEdIoTaD1rrvf21LhA4M3IYpFHkRFDrfCAAaPdUO+5x73kmEhV9ctRE2WehgpEgeqo4TtZvpVgfde5+nlhJhJc9WFbFmzpPapw7kWKJw3MT4HYeh8V/S1J0o6L0aDhEivmWMZCquaUcC9PxA09Uqpu0XsMgNWjV9gkMTupIkbV3ylNVSa/oQ0Df0uu3zppjXSwnHMvv8Wa9puLwV/KuBlou2z5fqzYnOf0hpg4Cj/IYaAUibn12u0w24a5Bi/O3bUadUkOoMzyYvOYSpR298plIi2FLSHpTMxPlr6y3TRt4kx+Z6ZHwmRkbOcyN5LLDSbvh1MCydH0QgrGTvQewPXpdBv6VpznJ5TLMv3yvPA0yZfW62/IVdmiAqGK/NevDwnjrpsW8KE2VV8GI+V96BHDvxeiaGKZc5PCkxEvaQHFZVHFohMJqRCFB899GP13fykPvzF+Po3U0oNkKPgmOEO4QKSS8gOS90pzPlgmfL7rwyDn4GE2Z+ygwRZZHGTjZMZtNbenwfEsezFyQoYDD8/XSdHHUZX/UJ8/aO8nkn0C0ejg8knhjrF7/TXaeTGeVkmv4I7qGQUQ0nhb/odygtpMC3TEVSy0NNghF9hTy2T9AaDaLOOxexTctNbkTxr0hRPsX+iVX2CkQ5n+IyvJbvTzrWjo8oTtrJmpOrwWiEm5pWUWc7hmhvxrm0h8qZZo2pNY4GS0xce+RLWwR9VApN5OrSgrYjvpvg0428ctN/ixG57abwwmxRGILxSsX29Tij/zX4C4/yCfF5iUM9YaRRZKuaEUeQNtATOVY+Ya1CbY1vYz7SL9baMxru62t0kAzlRd6eNEuJeFWNCTvXujYqlXNwjJp5m3RDD+Rgtt4DCnuL78qvOUSTYaS6EqfDhBf6yIwUdf4s6/8uD0QHsewzGdtRWgyZDfOovOks1se58r7u0VwS4hy9sVCeH8QvPsMWOXDlamJcY2lHWvw9xbLWhWqrLR5aNVE+Xc9X97lvyJd/7fRKqNoMke7r4WoNZXyLO6FW9r+36bnU+eII+/h1eC079t+hetc3CgCrYBl/eH/wo0nRqW00iZOttmmpfSxJDfsHOQuWLNFzSHulTH93oma/SjVgznn8R9eB1N3VmOfxtgPZjpuFVKc8MR9Nr2xajOPI2zzJW6+SBL58td+y33VIFC6LLmkUzR0xxsaW5xUMGego/z6R+Q0DFeWFqC53u1+jOsFIfFLhEZaZ3726w7BClIW+yIPWGKaXlrKpgInPA//QlNomvnWZJStrnBovwpG38VktSC36JX97WJU0lTT+H4cgsZjVXSeROkZ49V7jQyDUdLN3CfvdmPb+CukZqrzaVTMGIYVsoEcOzPPbeV6OvJF9zzidkaYqaNXqbZXVs6I3Yblq/ghK6UqLPXP/Xfq56XenLYjFa0/DFdp0QH7hkBmseug8yq8smJoEsp1kKe799EZvbOPUuQYRwuXQb4wJcqKkSR65CkTsxxop0DVeuWlEu+930Mf0OWc9mdYBZBENjWxSH7DY72Tll1xmwvPbz9FKCsMRnQpUKo9SEIsSGNHa5cXIHryoM7p3mxFpG2NpNzlBqghk8iwdhv6anxPSxjnJgX207/6LxHc/4BO+OH5m7dlXrvLVnW0n0fL9UWTx5b1kb0Rx3MgU7ff34Ph5FWlKZ54pGvLuMFV1TW/ojp3Qngg3CqoTLOveKCN4euJqInZuMy/xVEnQC6IZti0Aj1D9a6L2NiW/RADzIHXcpDk3lwp++t7E7iuM89hshVI9V33hz+yfS2s2abS1Jnb6Pics13Cj+8uZIoyljYRSIqj6gc1fvdgrPtqLhpn5r/UubidDrOimcDQn1ZfVuHhI/sv6Xpy41GV7OPaK+LQOw3/w9CFG05Yel3CTCXTpCDtYyXngf4BPyGXkdvlBpq0mW91/CC9sjJnbbGGb1a5mk2u9rft3lQEgbPC3mRc+TR8zQZWYtHF9S1KAbQ4xYiQeVNtGcGJzIdGqRRmQ+7XdoiUUzN0JwEesyJZPQ3/ki6/T1q6vKeVppqaC2Z5hcdBZjuIQBr9d5PDjzgk3ExDz2Rd4WKarqtVBIM3UbSec1MMtyx4m2v+dPvW1EpPmxsibSepN+znBdbhDJPXa8+9NuGGpP/bfJ+7TONdj1VW56LNctm3hH39mamnAnXwBMcEbxVg32MAvNbN/u616T0/KsZYLmJX0E9dKTO/rvGs5eAD/6po/G5sjuawfQqRvqRysGGFmx2P7SMmN3XkiKO7hmx+SFuK/N+z2nxu7Y5UkJuCM3zFNSuysSGrZV4QxV5HjKSPUuDvZm4vzMWCxOM8oAfgLF9zxwsbns2jJVO61Ds947mAgy8WYqZuqKiC/lOHHKUD+jrBLFvnA0mKAJf2EVdZFIzcj4fkKIwDVkN7ACrBr2xbOZOeut6Fh8GSMlh0+exwScR4UOG9vUUlYOqebe4rqkeRjefEqnwUsVaTp8uxV9WQW/HX+L8TkbCvyI2CDuUfykJCyn1mih9BhE9fQYz2HxjdI8aJxDHqbE4N1JXM+obdJhmuyYzMxh/RT4mRwKo5cE6sfol4kzgbzyRbuSktgxPhfY6y6nbP7paPdhSxOW6grLQUXk61j7mdBYohFTkveLPhfkDZM5vg4vKidKwn9f2DK3vdK8xrNyLjehHN6Uq05cb/xxhMLwQbOArMUxsVYS5dWzfjDHTgMKj7g0cujBUJF2A20KW8m6DJOYYpF393jid7lDEhxwX1TSYkHZ1/MdYRtzXYSb+KOYXHAnzQyw54N7q4SgTV64FhR2oqHQa8n0ZXLvOJ2Zlsm98N92ngHFvvlhx6ZhYgFDMBo9HZjGIYJ6QtWsgXqLKWlpbVwGjLgxbbcVt/Ii/ffliWzxlf7iyPx0YRvKnzKFd5LRe1C3tnYROrcz2rmpCO2n2btfRr+m0qHYtArhZaya526C/TCyIMWYBbRvamnWSpyOtgjnGS8MMM8rcrKkfbtxA0dwT7V6YIZq6r5+qQyNHc9khOpZWP6SBc8AwZ+AsG+nH8haX7THXn42Kt2xUCJS7YMSpl0LEoJNYZjw4S4sWN2kP+589ktgjwlXrZbI9cx31r7PX5JURU18uW2sbent23blqPKGcSYiZKWZQf7nE40YX/SvsWdCfjkU8fGELyie9Q9YRkVAH0UTcaAbMyBKcXxZ5n5xb6sv8J6/cUnwuBgedP4rbLhibNgjalO0//RuJeW5bkYPBi9aHKV5jlZtxo0h/L1wAqNWIQeNM/KK2XRcU9cESXLRRFKzQU5JxZVUMR8KvwsoqJOkhK6k9433UYLF+jHJpv/wEqYS46cli98Nul/Z3oxkENl0oNbQOTRDuYsDVDPrbJKF7EOQaNa+ChMk8F/L151LIfhUGNvYl1nBc8Sdqp3vW67dlXMrXRQMovpailEw/UrHAGbN5T7f3mbquC7fjf6MaJvo3ghwOpNw5mwdzQ6rkvDGvPDH3/NXHfzeagkwXt6nnpefPgGVPs+JKfwMHrUX2nhVoAWVezpfZGw2zVYi3L2bwyCOED1RuRNVw5oe2XYsx1Az5Xkz8O5d5YJn4THLPRSz2waPLGoGzfbHl7h417S0krUNR1uzJr772XrWVJ/OCIwSf8YBmZY3DU1kVD/hsoD9g1JkxsyGA2+9ffVjr7PZErxNx2DzJvfx7A3GCW6+lnF5/8jjOEodZhchxP96OkvioYtvUGK5WiDMHb98PwPLzVwCYPkBXedN4TwNr3goIUN3OeRaH7b09d2ODtfVi/tYKESORkfqce73iaO8/XW1jQ5qOJlazlft9hgpccFj2xeZxm9NPkaNy/tffj+PktREHpxxGLTrPpl8A/clKEKX/X3s+98A/X5HXuYlMJGx8da7kppgrhgtc2/ovUUkFmJDpNfV5BXv4/KxO6RFlV8S8X6E8uvdvEDpDRVKkp5+Dg65+JJkM0AGVDTI3HrzG/F7XdeE+A/cLIWaBOuIYqgNClBsBzzLnq3ll/PMA5+9yUZxdTx/hlPFlTTDyJ03x21hHq2Vt7I193UVsgKJV78zMhv1Z7NdOdcAuflLBvdHRGdNVp64gLYW6oEI/w7imJDMKAeLgDbBV+1eMRiOp+eRXWrBPUSv5HdaRCo5HfNiP6iyxFX+bIImqRvjz7QbVvNXYGHS+mmMNUQ79prNdOb9iVTzy+bPNzs6JolHzj0f8Rwz9Avjbo/VqNZh7lHSGwtkh5PsUJm36gPhuN+GvHjWOjDbaOWorBQlG0pAOwV/kFHHU9fNl4+hY9dGXYkHMGHOJoRXgw5uSnmRmSueC0OQOWZMfIVOaL0AlQN2cLrgnADgG0jDkIbRccQd0YfO1EXMIG7rjBJ9y+naDvTf72o5k2xlE1H7jM/9E4+hhYSkbvrIIn1oFurMyedclHrCe8jELi0ATuI94Sdkq64zznsScnFrbuJ8gUpkZzhZUGMN2fvRBK/+0++MJptMviueMc3F4jkbPgl9kph7JXfyZ2IOnOtHidscCaRIb42diR1MzT5CPiNacLhJq14Foa24VBCXmYiWEPrzXAT/HhWt7gEx2GW+RdWqNCqi8K7yVOzU832Ff8i5rRSqO7+bxtGI5B8qcCUhRfS8pS3U+a5itK8HC1mkfTerxI6M+Cfy8agshyr1+zIawxGNN3sk0TqW8Ti3DeO3m1fbehbog7hQCcmmCIJxMXF7EwYKr5nF9MlBhJnjgdt3NfNrC6U1wZTmu8HmWu81+lmjo5kUZAQUGvq7X4k1WGMQjOWmyCSN7EeRHcMg/QjxjOrRH1MN/+5+UxQZCrXyafxMaM6uh/BYJt+FqNFIhira/QVFuuYJyOisqd5hhszfJHbpyja6qEtKbCNhrj+B0JpDS4jRcLCBX7r6Y7kv6YglM87gFsnWcR6soOhYj8gHN2isTkeJfe6XbUz0UDfft2+qN1kYJy0YFr31UpdiCL3v1gdiglvzfg06Eoau+nSmMXyJ2XMd2P9CWhdSW+gp8VEHiwALNbsC3Xa+mEBmcskiYfzq+Td2XBFv+U9R6xGo3Mk3Y1vXdqVNK7dd4StyDb+AES6C3Cl+sF+f9e14Jcwh5b92zY5VVFRFlSBgSeq1D87cq+FAC2uozBBwbB5A71JiHSbppWyZzfw2AdtcWonZM4KrPPsuoKQRAW7KMrs/16l8EoF4/BhhYcAav1SlTUwdh1H+06KUm0nhJyE/K5TzN2Js5Enqb3Dz38FVz7ibdySnGwcOf0620YiQOc/6CvyA8HOm0umK0d+gBkwHnLgpIe3vq9jS7e4keaZewnSy83q3X+A8J4AkPPirGpf76kjEayKbHorGxIz4cpsdxmdLRvT1ym5+7KAKjDM0z4w7N7Mxtd/z7+iyaKqGS7zgu+xQPl3HdX4MJIQrMA31TJ8Cnn3b3it+b7NEGd1RQIuZb1GVR1qz3cA2hQlya8GYrrXFqFrYOxgYTfxqmcV6q3ZA7RhC24TMRSrEjyqljKn6zEon0/dVF65kuSQxQD2e2xsn5XiEwmcHSccg+etbK2a1iMhLvzOUjuasQWjXZU9q3HI8D3o7KMsjZNHz8pHOXGBuYhbXBkXMa+sLpSiLsSOvdwwJQ0smWR8KJ0NrX3kyDQ12JrHQKPGTFnPXuKSSdx6hmMpluLu/FxCitfFOBlm5DLXR0myjvN3WY0OfdJyEPQMFoc2suBFQhZQYeHfqE1yt662zHZ6+rKILG3/XYqdSLM+34LFmPWaQ8C5giP69dgsepWPtW7vnL9/ykLVlnN9eySezX7HaYGnZ697WZNV+Ky9dbz3bMif3u1XulnbGMet3UsjaT77eRLP8NdS2s/ipFvdd89L3+sySqazPhSeJos9qo8UEe9z6KcQuoYZovAdPosyXP7t+/mi5IyYeMcZWDyd4oAnM90VB/flti0DIqLveQKGVFXEVras62YXb1V7mja6bHBFpvgYPzX7U1t1qLJVbKm9tH7gbDzqN68NC1DB/oyvV3sbz9iz7q+TbYJ+k8Mj4vRzdjy+Tv2W5/khU9d6sIGrD8aUEp1NsqhPsQmXGUcESdY+LfrWwtiKfIi2oKNQ0PdPfI1wboonMZdayzMmhyuxAN/jhI/mF5wZmj0GuCK7utG6VuNVwoDo1XO2nIhU/3VGTVTbH57OEQCsyKAS1QffdwJioLVmPZIYi2ROdicuiHMO39VT6bfCDkbf+v5/bKkR/vcnEQpkKX4jP2F9Wme27EPPhyDFwCo2kTxuo1rvNsvukfZWydB48ybhdhOssXIZZXbqt3EIT5PDGPeo1l0+yPObIb5Fc9kTVGcYzLp+hHeKNQte2zxtoULk0hKdmQ1B6EoxiAgayxQbwsO+fvagPfkPl3tGdlO7U63GOl1UjURo/dAAckAu/CaVj+j6d+Eb6XXaIE2u9Flu+D1dmQbR4Ttqb/ezvfTQZXuGxK5QOX8NEoCkwnF5fq/iXFKBrQGGQbNp+vKlfCojMHA8+z9HuuDDUpdaUxe54y94nxt9/xi6rPQFDcGuRUgLij0Ic/8jst5doK+YQ29hxt/zWGFr2PqYeZ+yTK33DR5LVLwpqd+swFvzMOtTf412cbjGmAo8jTrBIio6D/Z5JOFRiWM2+GevPPV42mLaodhapc7icL4CnNo1MZYvbOJPiYcszVaSFFx0KbFv0zmPs4F+TWhff9SKIfrGjRuSLmtaTstkUSMMI/iFKPnJhP9+fhRcB0JhQ4I2pIVUYuS/Gp9JEJFA6dxQ3CbgsHr4P5ArlnVLfDMLrw5X/epUUxO+nsyrIY+NIGhRQYWUg9hVWWcI/qCRo8tJ58ZIm2lCJCjkf3Y+HdyPUm4g+lXXSCQp5+cr08Dv8nK6dKiwZiXzDBMlLVXHQsWW/EHNvC4o4zHYx+V363nHNts6xIaXgD63Z9VY6nJgzurWZPadXLlDuJsKsrVFdeB7PkIN1r0eJVjqBsSG9szYaJwuf7zLVhaiul6BnL3LrOmD2Op4JUcbV+HPxq8QLICzaui6R+inkktNnuandPzcQcCxSyOWy6VSAUsOvg3vLbrn8WsjqwE09Vlo6pZ57M8RXXMHK1diQjWxfjh2GnP/KBvF+SoiUy+9IHqjFU9gidkSRiYnl4S6uQPkuMZCrgBy/YsXc0uTY+6b3cC4piMq48+uAePXbfguOAlNLdb/z5VfwUXIWuEpBxGOqY5irNzT91KrsJaQ6BB9GE0+bFoVewhX87PRtSB6rx4Auumv5KJ39wXVlnuqwxT+s+k75N9PnZLu3C5hZ7Z/I/XPm0vWd9cylMZDDKfXtD6Eg36LZpe/GVUZ5JHeY7/D954QYT7ICoFhfV3nqGMmYtyhhib4AlR4Wa+/ROclpFqQt6MyM0Ebb7RZ/JHmBjyvIuBJ/3soD/SwyWAtrVKTd6lPcVYM/gv4tDwtG/+h50wGdxxLT/YssyxvipKypRRKXZk7hayojGOaaqyw4R5eIl5SFRgIo/MbULUkfJce/bUx3j3wkIyLEXu5/mexJPpO9Hqo8HglebMQuAKnWldRHYoJfZqzIaXaJGUC/vR8EgumkuA81PZd3GnB84G1Rm2y5oRzquk4uhPjwdBxPvv80aVq3ApyAaaETe9mhCLzvP55IvaQg8rCT4fai2ny5mmPEVaaTZuHeKvP+kmdTNwKT+vrHC/uBoerWMWODZ3o18s9hrzHu59DvXn5WXWlTYi4Q2nbDw8vNHWnFSFR9hwrfePG+P9WXQyYPPzbimSdj8gGPTwwXYxVlT7ZzCJyUsBs/zzt5ytqPLGP7JX4S7XWEMDpVjCe8ZcR3w1jYn5ak6Kadv12rFpBWiaxuvzVScZPAt7X59o1/9iuL7Er2LvQCy29avGFV2Rkufx8k3e5u5h9XU2WJ83INglu1zj+bxpIzAAntPiLIJzBToq85acKnkJJioKauflHHOHw9/AAuJ61TFF5ceiflJQ4lpaV7w2qUKtJd53gUnthM6OZfO4xKvKkZ3dAy5g9T8CHpHTKCZrRnT1Rrvsjn5yXzrXOLC2Gfgc5BebNxArafV1LPONmqQvdck1YOPzLoo9QL9BLhpN195jqapVGR1ybhTcCuPZa7XDfxGjuElsrX+oUuHp2dvNDCua4I7+MgKEzm6Vq9Tp0LjzNEXsRtfiLv8VGrmQ/zYsL71Hrqlf4wO40zyhcmZOZTkQFvTBi7YX3LOl2VZILJyOyroS/g7os43asyh53poRP9YOrCCCYLUdA8+Ls7J0rh2zOXj0yxdYSpwN0IApYuyub0wdG3zwKTJI8TA8LTyZyJSQ/YjODQ5e/eGTowIYlXRwfzyBghxzo5AIsotRSQTtsWUz4YmDpV2wzYKHUMY8vdjVll0nTYcyQXe+0v/yTC5lUv3+N+p+lIlK739QKrQW8pczjB7pgeHgntW9Mho9clVIr1YApycocnA7BbplOqsFKSPPf3PBVeI+H3qTf5h19UW1ltp9z6MsPsjj709HgCaq9FNmRWRWHF9QLYPuRVH8uwn2L6Ybw1IvGkiEd11oC/8JxrIYOmNlmscmBpgJeeD0Ro02f8FEtrtIzjdjuqdS9ONxE67qmNST7MUTp6XYwct6CWD+W/B1B6tlrUlOvNj+x9YNKVdDSfJ0qQi0PIafJ7lgsOptoSeGlP1fNdD7EYCT6yn7uIJCbQmnyywcR9jMqkk7LXw/HtqyI9HeyIBuSQYCRhz+gWGB/2JoSP36Tg5/eyaDhl6uOj+NhC+y/yT/p77PYZsRNdy8yPSY0CHPudIF+KO1WqCD8nAr0jkwwNr/sdfySvFlM0BGlNedpwQmHBJ+ROiZQ0CS8J4CMroXX1oH4x8vS1TP/WNX1D7/UFQEavro13BOPf1+YvzFqvmuzXBU2MAGclmUtbTUaGvhQntdacNBRsSg5/dYWdMBIAfaJ86qyB+ybTpEKFQK8boGEoqBsRG2vYTBiwnItuX4BB3GZ/FRbqn5MvsBbwrZjGb11yISg2qTo414nvB9wVxaG0BTB91eV3hjo1Qblb77mgCU2OQuZFtgnlSJyT99klsXGexbJQ82Cjgkgv0nmyf8oBnHcrWeICwCi7HtNxYLJeKRBD8dcgdwzZWcB9F8Ew7BL/2SAuvYLNAubP29Vaf61Z6xy91G+CObVObDTNNIusyewMYhohpPQd45TT7LHTKEC45w56X+UwmxRRGV21aQaSDwWBO2lM+hKI5F77ppZwRsl8HzQbCApeVnfbf9HnRhNfbjzkXi4OkG2uW4hOhiZB1BBuWFWLld04SHYVmAKxkcDeu6kLrgJwo59xp61na4BOxr4HmBh/scJTFnLTlWcyYfs2LKoomeB9tfHdswps5ql3vbSSgXDfrIKpQAOC62T6gAPaqahRGjuznxYYP3T36r1pX4xqYSPlUHTAHgiPEn6/Mzv3zhd62dgLTEEaCdOG0Pypgr9tGDSNHljK/ZmKRXCwq9ztxaBQ8Xm/+XviT5bDb+KlRxh9K+uCZ9LZc4l14V2PSpoKesSLYMm37OlkPgh69diwVSG7DSnBMxi1xMEsBWyVbtgpm/qRrSveJ9S4i9LUOt9uoYdtdl1LAttxztcR0FMwtwOocAXUtH7UuyffVyx/fKcd+JWHzcJLVqj+2fts+J92lMvlMi34Q0rDklKzC3MOKzYWXBb4FQHxvwgzqPzYlGm6514jRRDzxdCGQ72pZUz/1hNoonZCsGCSErmLrgkYVKdzyF5s8eYqjkpnAlBOpxH37bb1EVFZlNc6XKi4oDEGUZW83PcL4fUTkKyYcKRaec5G+9GH0qC/cSkKmavFb4Iq7/wwdX9YL7NY66KIJ/Gci4k+zwN4EZu8RdlhwVc81R2/bleVJozb8Vuerj/Dp95JaLH31e+gG2ysEuDFtg1/3CqC/NicNiyNhqWDhxSHJNoZItRzjfgo5jXnAY9lloCwtdpuWRo/0vVXO1BBpyANbxHl4lcGi/OI+TFt5PG2l070EbD74wISDZJwvw6CHbMLvcqm1x18MIbCMDqI1wIv8jTu+zOK71xw3Tl7BGBwY340alsdKJvV0DVwDwmdUJFe9t9TQu06x2EzCnLK2chtCe2dbNX/jsPqciQwBgzjYnRgWeHxNTKnIiS0raO+N1QPYQslcX8tI9x33kQxdHZz5EqBysFtx3kDPdOfjJrtqq15mqoW9UYAB298RLSk9nU1lwZmOPulwEHKtgvPSI7G9DUMs11SHF+ny3t0LSFomve3Y4RK43OFr76hpkWmyCzqzVz5ScCaRPdE+IgdIywh9lK0FXo4uQpgWYZ+8WaGduu7zAnb56Zy6UP4bE+F3IcZimHl76p9+BMTU5GIcLjyoDvhTLsy90TTj7RhOIPfQJWvwLm0ys0kitgXvlNroqaLq4DUvRa1NlLQt2Us2mq+P/oLSYfg8zc/OeBUDrUu03Z8BLliRZI/7h3rjZlEXx5QpTnBHhuQyMLbHTODsjLlnitBpQgeaqPBjX5fnJsoL7DG6c7zrldosLatnpZjOv3aEvT2gPiHUVPadCjsHsM0c5zYZe7wV5yfX0qvSuf40l8ei0et5WgUh9FtLaqBO+Z/FkdRd0+q7IuH0nDjhFy1+rn17q+9RCM0g9u8qBtmj8GXIJmAQu+QIILSNJTXRoRSODffFbL3Ehz2jnqRzxt+73nUf37r4c8niMS/8OFO8rendKZPOzW37qkC5wAZ8K2hYYYduBx+iS6tAIv+UO9t+KyU1xX4Z8Yzj8XzmEX4EHHYdP6rFwMuZ1GGmorZpZ9bYmeKeN72JB0mkll7MAyF3OuZ687yqSa9C33DdZXJUEQi/SKgpg6mtjb9yKw9GAu6SL3bHjCQOvEc+kN6FCfZLzufjeViQLyptB4h7HHCuQ2H0GXzugjKniCUp+ndxmWjR4UlX2A3yH2GYXTp05bvckQTq3BA9hvJsdZxF5bRUic95NArx+ty7IO5z/RKKBVpBljOWS7WFrecKoGFnHso71bOTLmtNXfZ0/U1ArS23Uy122uyAX6c3lkzyYfzGDqo9fGFvV72LKaKpyIFqRfRduJJLM5EH1RSt5/dR1Rn6U1ZmxY4joVl+kQHuCQr7KdymHRH83MC3Iqm54q6EnH0YzsBfdPIJLDowJeOiFuUmw3NZ/u0LB/IOaljpJdRSiO+kizoxp8B4DoDs2acpfv56UobfJbHF1swXDa5RNi806emtmVDIpM4+8+uYQ22X/HIbUuN3bCeUaFaR8v1O15ooJuq8744bDj2HOJcS/DZVD8wmAjnrAygDPi9bT8LNO+E4vx55cdOD1sVWK2D2MnfxjwaCgvrv7korM7t/NpVPngvorlXP9M1qVFFaL+Vn5mb4jho7ndlTGDkUmU7aUvIb3UUZiP1morrfhTksPy6DFSHDiQvSsS2PTb7jHhT9cjTzdUPDMxkVqFVa+eI7dk/P6PXSTC252ZG+Zm7z9pW0vTbWixJgwtglcEnJXuf/dFwI/bxoM4ofg6NqBsGzNX3TEe3Aa7R8XFyfTyUJBeHUM0S5d40/Ra2MnFQNTHaZeBOuv9gO9XisnhzCVeOy8AtksT/1cV0+n6yWxkDkF+FwqlT9d1gv5ZHoYteoP3Ny9Tq7dDAesa5b0FSlAV3igdlk8ZDIeBwubTf1d/bzGtyc0YZe8EouDCg9wSwSLbB+xzzFiDE68tpEsSMQn+/WGAL43L+W7qaiy3JwPGsVatmO5sepSE7cre+8rTrgzz5E2SuM8V5d0Uz8krtwt0dUV/atvKM8B/HNwGKluwS+ponGlpmrmsju52Zpj/M1VB6Twje1DF5RS5m3+8bWbvZ0l1+K5RTeM6z+HaB0LJ2FPjjSHq4OVFm4cKJKXP6RIUj8fPnmTZr6dVMSVfOcan1Q+V6ip9Ti05jv7Zed6nE6x0PWiMcZFzJ22AEcIgIwL5kprNV6xK18D15MY6j8LxqqskCh5FPVGPTp0PycGHAo06UPT7rkzNLOYO0wnu7lSBYU/9+1svwrtR4p+u+qK+lUNcA95dmB5vPtr1BskyWTRam7ec/9L6zS5q8s44abs60pt+5nMMDPQ+zyJt1r68MC1zT2RyEdRuPDNoGbDglAdX4cEf6BJISp21vgY0Un+LHIh3EiMgq4jgNA9+IzasIazNxTSDj3O5NqHwdFTsPmw2V9VfstuC319xDj9zVgYlokgMnCN0Kr5BU4xmrAXuD7EZD3Fd6rIigl6d9K3hZJ7GTCuvntzkuUnuzuiSb2mln5poW7bANsD4taPo1dfrA/7Re7ZfBy8QV0P2xCtZ/PWKvwdrqiGZdzyFcP4jFEiMU/eJk6jWjx3VVCewkS/QPOVzKQ26TQidxQdW7pnPZyxP/Xdnxr6UVPOfCnMDKTBsbGh9Z3Jnud/LOl2y0BYpGeMdQH2odQ0iexX9Z3uADmXwBEeGwIrNqJTpRXll0Trw/zaUpHFcT7vQBLSjBJxMFIAZ8phCg1Yd+JV45zGEa3S9FrzJZaN0Rt8hgHjXsie6O/r1uCIZyvFANijhzHwqa+XQcKsIrOiw0I+Watgj1lNcy1QmVhDNn8tk4IekNy3hKUDl5uTsbBtJecpPL6Cde/S3TkNXMU9B+ek0WllAFTybS+3nTCbgQpwFKC2WP+aVL54JlxZa8bZwYGg7xIG5lBTcA3OCZclLKSJBI9jFXRV2vxw0YyyzQ504hzlP5pWfm++eS0PF+fe7W0MQRScHUudf5ARrvbBL4Xzp6aenJiFvLYTyDwtmuhkr9/vwHc5RzW0NBsDsLmjG3o6PUYDNjJp5K00STVpIffCaY4BSPP9lMWqI6Gt0KrLxvdGDz8Y23mZVgsZN9pl75noXtEVSOhnwWgrLYeEXrATFJlGZ+tP459SboThqd2VFnyN5HMMqJosD2S9gnVBxFtv04kvcvyHH34m2x99cndD7vZMfo3+KctvoT7b8G7y5cIyT6UXUtK+jNMSiJb9a045BQ+pKX4mVKUN6PAcOYgyUWCyPbdfKklFCQm5LK2yLQj+yswco/29GR07upQL11VBTR1RipWLjJDkFzFODbgttDJMtkpx25dfYU8EdKsTc2Xx17tF0tjFXdb9X1pDvcUV6xVP3q/7WJMjzEe5GDbnfo5NfmfY/elHlzKeYUR8uf8Xy7BHHbmvQ3123gFh8iKyPiFdICWsbwjCLjcOAvhp3+/mcnNqiqcB24ukZhJ1FiqkwxYHMou+qZxSu5TOKVVIxAPRYlWlZDH85+rpDfEdiNQwkGJ1ZphAT00MPMDWFXky8+5+vMLfUVhu+1i7pVa73uVMX2s+u4s46Pj3DHQw72rQtF8jS7RAFH3MikQeufn7O3j53KuTgKry2Rl9w8W8Uac92qy0ZCvjreFaWv2gN0czy7M8QOhQ6JtwZ0jrV9yGHuoTh0jhFz+IKsUH9FU2843q9UZTCS1BVnThyNoMvLU/gu0U84XtXOB2rsHPeq5nfUOD7sGw4AOuloIygjPT6tQY2X9cXhybctgl2Y6uL3eZ5kY2/PY+M6g57/HMntWCMmWhtxaAATfeHAQTosrHJxERRbspMPau29ckzmb7MumoKhDHt30C0qDyYR6FN7JmcqJPLz5HNXWjZed0VQavExHr0w774KsWz4YMYBrhbVs7JKMwn/kI/Vbb9+rI+XWvU0dt7zIB3JMbYzGY+jPhs1DVa1ShsUzaTUX/sEpfFSOyJeZyFmjLBlb26nUyYxKlnfEZiAhOfHQGwW/n3GTVltkkE5i5HH/UVbYvjWgFzhEKln+miFMphkl/8oGx1d1B3m2iR9MSFUqC/Hi/okNN6oYfC3auLxuziUFdHn4weIlwG4uIATVF3b5wXT6ev3JrTw9Bf4QWS1ohU6dKNMtoPdAQblX/tTict6WIw+s9kDbSWwrTwIPH+gaYpc7Cvp/5ZE4o5hWkpaT778SXjlWaey5o7dLdRS2pKuLDeDnhDhgLfgjzDqz0ch3IAUi+RZ4+KXonsq50oG2BiYQFCdhIlsUyBaSSh38/Zy6XSC4cIdbu1Cb+FGjWGQFQGguAVrGM0mypRmTp0STdDWuxbpl+AdEwrYOksnXXqbf1AVNTBDRQBIbZhM/safSiFRO0h1ggdvsCy2YjFAZzAi4Rqeeo2cz1LORtlTtpNyByKO9rQY+p1LkEd8S15co8+cdh2ty/QYULGNzRwWxw8oXVR8B2pL83iuE7I+8kbaXWtL5q0e+WrPe/yAtq1uq6+xJ0sBqXpwrF7VvZFYdFNTLLnypvM9cjFIcTPoqAtOrFGF20Ilks5DqvRmbVYsEgZtdtuSvWhWe8VTk/vv3UO+qyppLNBc8ZVUg1ddyCqdYpqB9KJNsNiOB1sKAYjHQ+MBqr22ehfDlnPSKgkx8QGcFzPWown1AZremvyc3eioXdir9m3HXDET5Z/WXuj2vkc/4U80O1uiPsj5xkSn4lQ6Vc+HumHGT5XEMLoHHD//dSgGo8tyPZZElNX3XYp03p36Fdxh0EaNYemSvDtX30/o6tjZMYWbHdlFU4IQuJvnQeG9cQJuPuvzMq/1Cz+UuU05u5bb3fzC2Pshy40YSS/g3rLX0w/1/IhP8/r6jj8mSiP3pOWATM6CsJDfOZkMlUXa1z55glBUSDfd36E2+iC5X8KGi0601ehVcNpoDFQazPPvV/7b7d3oBF+qS2RVc4IXQhq+OwKzZWc5QDLWfT3P3eR3rRtzoN8ThyLlhHvDwF2qogt7uawcrFvmEfGXiqX8+CL89Ysj7TfdIkHtQhCy5Ad0fZ/UiTkbnTVb4nsysIIy9htYdNmkiku9CuPKsfrxduzI+YPOUY09hbmzTZxXi47Q6/sFWp++7ALn06T0kl+tbJJ8dbYU4ut/VVlHNnUaTUk/jYpFh4zyW+otbgWYhhlstsVitoDlihsOcBTO80GQ7FrX9isOGcnbDZ8kF8oKMhfeqTeh863AyVfAHeC4DwSOr9w9D2ZChfsE6FeqN6AwY3wlFNv9W8q27T6Cv7HvwrddlT61Z4NDSn+igp5+rkmst/umGoRWYWHOvdN85BvnlpAw3MC3ji88XNRTsQ2FXrGBBzJhK7FvzE1gtfR+zTe+jJglTxWhglWaHujDZFsPBUu85iw6cmMvy+4m1qWUfYRp0+cTY5KRgYFBGDDrbSm615VFLbU3RaCpWxjJuEjUgn1AqNXAjUZlPK8SVMrErdCnDzusXHAzMArvxB+Gm3MAfpWGb/VCeobsTeDUHf9YU7gOkhDGOX5QmtVRe2h19/rEu1/LGaI/I1XzuBP88MtU5Qps5lqFhfLlk+MHGnr/XwCvEVDuTDE2BWFsSwEbNAodwHse91SOLeBklAj/dxNoyvRbDV3DKP0fI9psQ3lXohPHKGrqUlXzaLoIQsvE7fr9aTMJGhlR26J/gNdUjSNikJU5+LndBn5zxjN4VzynjFXBYfSR7uhO4E8+N2zy1Tc1JDAzIfsiqgmg4DQaObW+r7Qz+etYTA9QvrBmKGeWMsHoxCXcmWxYDDtWaVhSOZdRvnh27jPzqEOHlTnY6SDxssJC0+V/LzJwMrtlJCklZ5gRB8vFysrsc8/ZNIsqyWut+gpRB7+Ckt2EGrnPDGp7KMRAsjP+VpxfFjVuRip+gYAn90HsVMtCbV4FUv5R2ZpzyHsSt58etOxH/X4IiqW8xj1thigAqwXN3RlmxzrAsSsSbe/x7q9L2XZl2S1L8Pd2k0AkMRFuDYwR2fit6y0qKrmVWN2zR6r30QOnm9zbvPj6uBpHZNg1d/+1C8UkEO8u5NcJHI8ZOw51529pw7pK3BABKYLNJ2dM/9c8vAxxw/In09y9LW9zjvr0kLAKUDTA79W1lbkSzUpsOdXJQDsKffsTEiBVSHnCCFh3CfJeuYMdA55YhUVyxKJ795F13srdP1gVjzMgWxy81lLrv3YpnXiBVnO0T8771T8eia8uRd8ONAbLO7xu+qDu3U7Q/oxOsDo8BmyAuJnRn/JSN/w+cqiFcaXwph1PM+Fsg3Puqsd09VhJFVi86CCO64y2b2EwHnJl+ys0rbhIYcJ+ARthIno+Ro/2Mp9VjCOywp7XvT56Yej9PK1Tf15vgedip6DEh1tAaaSw09ilk+3rXxeWLTIu5mSennXpTEDPq+YXRikWh6NRoclGoH8eW0ULKMDnl+rqimt05ZV0K+58VDd3gLD9LGPzbEFOYpvkRy2RsFhy2+rS1kXJ0M7HYwbAC1jtVPVGpM4aZaNQD05pibW3qsWGxU3Uvby8ZbiKIupCsaTJfWUHrYQa0JfbLdcNIqiNyxNzDtzJd2hBFugjAwf1dlQoITXDJ+6PdSznaBwH8oAPNL0rox9BYOLh2B2OKOp4/BCQuih0RCnN2cD4bw9ectaDXIhV2Q2qgq6hRta97brviK8Y1LDzon26N3Y3aD2//cF2qHipQFubDFZrbUwc87W0+FGun+vyhF3hFJeeBAOovG6e4nLflTCjX1RXqy7NVm6y32VQxxV3GSOyFXa1B6FqsYa8INSmYWvP456wOlhiLWSqwq7xAUm77hxqna3u0k+TtRByIyGfotzkUjStJvhjOw4jVjISspnClkCZEnD+z+deEP5HT1p1bGNGL/ze/GaChzbr5XHbjzilGHnE2HLjp3JnhqH1McLhjQrJOZ95M4yv4Q3wrT/Q/9UL3ECbtG7zaFImgrxWScewO1iXdwyUpLHImyI9ugMzOvABMPhPWSfnQECwoGojdSwvMNmtYnOIgsHzzfMnCLJwjVxOnIpdZgFfMouhlc84D5VyJEXEWBd3vlJgyu+4u/yl+96k0nWj/lgy1i7uf8A/fEknQIylAyi7Ge12G+kjTqcXzK2aCrcSO9tNanVNNOr4+4jRwoWkamKygWyU4DaoJiVirB8hyiYyvgF53rrKxVpcwEvV97SBri0rul6SwVDoYG0ppKquB9rZzkJpcOz1ryYEA/3FtsYaPjpj65L4QsodiSD3spOp5KZ+psXsm9DFiWGjM2kazV5R1MVFtGbrJbS5HhAjg5mkyKPVoJ3tX31Ylf4fkENB3exdB3ld/OD18PFzOdsFrQ6SUib2slOVs+48F7aZLaWaQtnMkFtuLQ2LAEU5mShB1hDz3lptsalvZzzgxOOVZo9R+Y16n1N03TEjgszyLiXVpNvCcJESk4rPm7IDnY8TAG/XpClaGWwQybPfpxPp0ZPygNDuPDG6l1R+3nQk0w41GpgP15JtWdDkrnhBkdpqt/BRwLdrsyPpDe+z+u7091a5P81EGEVvfRamSNWdO4i5LevhBSEj9bi/IkoTtyr+vmUutEcZloXJGMQBUukYUA8OajOgvHvu1IX7WM/HmoDEtKQlqLDB4dd4RAjph78blhcnC/khpoulQk5o0Zon79mtEPYpYc32ixCA45n26UYw/2h2cFG584CaRTBraAe+O4mXok6WwjKO5eir35dJoJVnGkak2MTCa0z38X5K8IhRqOwzeLiWhGi7DDw3nedQ/qiS6blyyEvwIpKWiPRgabL2TrYZNRHnEu7+XEE0LA8yWr34P/YuMMvtsSszhh12HCsa537moaq2cmf5YNeDhA7bKSPvhBgwFN+/4xIbMIfqQOltTR09dRCmA8EftcL7bECQwSX1XApLLMDUAG747+/ipvPaf17UMyrdjVBgg5xyRLFn6GW4E1u3HTwj3G4hJNeIJ5ldNM5xqjwVYfcl0zk7dRHDcJWPvZDMKagnV2DVi3DzceDAgBgCa+WYBTfFjbhEIAtW0Nj7D/GjU9yNtvHVXqre/HG1H1ZXSKLHIBHjF5skaTSQJ/W5dMlc5mGsWCx/C/TChc6eMlNoE6uU2Ma6jtqe+Das7jxPTAThTIyMmVEW9vwDtnh2h71qwt+lSbsRliI9EgZBn0uTr1UChdqRGJubRUvL8K2uWF/lh7Y+qir1724quxR6pqxPlMJxkhNXeVXfHUy58NcQ2HaRNUs9fW1RRIxpZic2/Fy2vQV6snoz3IHb+2Igfp2YnKryBCF+li79CvkRL6STTB07wj1Y1+cqETublOUkIvKnfliHZxNLkfrdUJ1YKPuFFjsuLY+rZJ+c2kDPbVM9BXN7AbhNHPFFko0zSmTE1bBlI2peyfINySSnH6YcEwNwN01Z+CHX2wiRQeqQExoHRpJSCHQxKNR8Jy3os+9PMt4qr1C3Oeib2lmQHYuZFSjMHn6rRdoHmMDImDOXv4c8MIv/hz8V/gWvFtUaE1rOjJXZrGblzgH6gWE9Wt2HaFdFqhlzafY2E4Wa9HU7W2fDDg9k2ES/5UnzIef8Tw5i8fjNX0llmTV23STU62LswzAAvrAWkRCGjYXdNym52ghMWp+iWpfPexwzFFKZuPSPhbtruBvjS2rR/dwQURPrexFMMA+BmibZMZlmBJaiJH15EAL6kot7RreincryLrh3qvmT3FXlT7r4ynhJwMv74rdJwXaEkbrRV1BVRFN/Y1dxiKirDkkchxJTzD09CMSkFkjz6A00S1+u+E4PCqpKV9ClefMzTfSmvDBaE7TJYDFT8DJsNjNuPFVo4qSbVSg2SniElJkSWS+rVw7IOjV+iIRotwdhXof6YBALJM9NzJ/bnxhoCoFStz8eTN1JErNBSd5NspSbPuNxs6pOSBmFj3ngmxfJql07cXZ9pQU4WyFPVVxwRlo/2zdGTWLyCyMRrMXNiAwobyEuDj5huJvwCr1IDsLcDEKNFT8qjiZ9XR1in/UQtL4dEnBuLz0eX49HHpNNPkN6BKWockiEkvuPR9d4xP5QqJucbQUqLbHJ+f9qnTuGh9FCMhRsloTDWMlh849m+F53bmE98R0UOoRTRazAmpfmUtwBGMsmvKpJC16vAx9mfp4obl8goqR2f/W8e+XPfewA/XgjA4GwoRUR1tTgli/NYlekKGTQmeMGOPGZTZMTE/LQsEdW13AF8ZSsiByjrOy0lalJWoZo8N9frRPTZUF5CmuD9Q8UiNwzUHhmYfT1oKI/Tp53rEjgIKS+7NN2fzSukl4J/StCzuIcAGybYM4pBqchTEhVUqXzBIESCUDW8M69YgqpP/x3IhwIebjcBUz74rq/dqBbUQgksi87nIDQA+B4KoQFPLFVO3/n3h/J8fZd1SDV01+VZZOpXCx/nTVYUcQvRdgsBGvX/HorHpPZpZsXx7qJcvvBmBFI/oHcUjls/2vbZfmxvScy6HUSS7XQ6O+0SoIFvjdMpEvejF1g55M5JmASThQOMwzqqBnij5i31s+Z09x6S4weU3/sL37cNr4oxQG88sLZuCvpQU6kNmB+J5VBRENU7KWoMl/yWkIM6TIdAjabn8usguAOwdxGDZ3Mn81ifJOTXxF/24s6ZtRGJP+C0Wbdqn4uK8BFj1VtMDxIxs3sLqxaF/qUQbXU6aoIT4vVfrLZ077pIAwbf8d7av4mN1gGFOEJuDqb5cK7E0s8PhIoEjFanO7tb6xZA4G7A/mirXLsloqtZbZM7LZuEDxZA/ZRdihdTs4i/sFYs8MkzTPMr1Bgsa4LaPC1wsKvu53djXRepTplxKT29gZmYaqvUiDW7q/oP5qq+DGG4acFtNY/5WkMwVAHTVr+m9RQDsDzhn8/9DgqNB8DQflk7r5gXxqrBC+LwGG9GUsNSdyDXTPKkHe7A0eRt9fS1lgO2EI1n8UAJnb8MDwr6yAf+KN4Pz1uiDSpVcEj5j7K9YZ96Uc9iXHFHRWOYaYPDOa8ldb6S37h3HN2N9nxqFr7DWM42Gw6If93tJz4HNNiauLX+JnegNgB137heqUWmRfNIb6pRmJB8KD/S92fClXEEahm1G9f2g0mnpeyDJl5LCdtEgRyEveC8IyB/gkuSOVDcoqbXbOOzs7sOQvSPku+3UwQb8IC4eo4HML8bede2Ue3x3DhagvJ4SJSyi4XlnoLVykmZ1gb6X6dovOaXQrXlFdrmSfsI4Wp07al8KE4z2AXjK/B1tuWubGjq6e1UgL389813OFa6tGHrbkgULhuOWmCDvTNuRdGzAMnk+Iu+hQzNdiXyjK4XJSXmiHqXDRksCRe0YiAT0rBaG/VUqtmAHF1RHXv7+73DP7eKffb3vTkbZ+RC8gQm2T7rQTdS11ck8tmanLYFWJuUOHVuZSLdZZ7TxO2hDo5G1qmmdVUKUmWxG5pAp6g1nqDocvCcOcje016GdO8bG9o7OHRAWOpWyOWffM3rw1WjpNHx5dmhfiV8wVKspWA87HgN08pAyajIjLyZeyD3HM3gUHA1eZUtfB+dGJzJ/AukgGi8k36itj9O9BMUx6fZXSTnsF4NGkxSnrZWPX+yIV7TTtWxd+CRR4RBAdJwOq4OWIShu2xobuJf0TEDGIO6rM10+0RCjwoTMtHN8Vq5TfqxqMxjNQMzXMqNBDZno3fy24AsL8jvvB4K8ik49DnXWbhQgb8b/ZPBxP7q1l+KcPOPxYSkHtUgB/1fIDflGDUkIMU8EUBiPdvuNGCFw3tZL7mwGjiIJAZ8CTKKnrrEucuhIVLFZPXOTPI3nzRTooEvD1ZQLC9IOVUadtYULYe4PG5iYUvMp3u7jRki26IeDMj9XiK7PaIIcuK0gjN4l5kFkk7KyhtMMOZWZGZOxaaNTmGQp7/ZuHCyE52yMXxvtGBH+hNGysa68+apmUN0PGEc6j0ouC/CaMZ+uveT3ZW3e7c/czOPzQC8+k/g5bI70XltfRZOO3vC3pQr2gYtoHkK4qcIrVSblChP31o2ytfqwqXDEI39o8q3UcU74d5VXflesaRe4es5X8bwaqjP8+iLApKaq9sVeI5mUfRz+CeG6MOJbA20KZnpiWFkw+Wy0WwwbC4JeZAC403ORm0dK4KkqgOUvydQGoqv5bnJq7D6vbadGuKGWZIC7MB7UVyIgXgBz1Hxed4RHBNpvzuIhZpPqWAWRPu7DWIkMdm/kzSMkXdPZGeESr5sMydwXbxowBIUcD7O4Z/wHGGXrsVOhG+OvrUhD2Xz6la+6dsjtrwBWRVDjIvIVnhcTKExourbwziznU9cs8lE+EalTQZ7cM/rryTBofSpcYqImDPAe2A8phywCaiAZrH/k+B8ljSf+PRPq7U4XuyGFTfd2Qbvm8fA2SRvpuvbNZqeuYcgxSb2xahr+crppNYfP0Q1y6jE80QGoy2OxvEVZ8s0HFJn9C0P72jFsdRM34JT2ocDNh4/JKwjdlPXTZ0jAE7cxCsEU41ije9UyMOs88J5TPPZbNWKARV/PlNHsRkFj8BHJyqbJS1zZEFvnR9YrVudSTcsN1dmoLX67VSEixxA9RTZL6Q+LaINbEjKFU81f2huFTUbEZfzr/r+YDVI6MywXYuA0P/eHuLoOasMTpHovqLUNbcvkkNBj2CvgplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9CYXNlRm9udCAvQ01TUzEyIC9GaXJzdENoYXIgMCAvRm9udERlc2NyaXB0b3IgMjMgMCBSIC9MYXN0Q2hhciAxMjcKL1N1YnR5cGUgL1R5cGUxIC9UeXBlIC9Gb250IC9XaWR0aHMgMjEgMCBSID4+CmVuZG9iagoyNSAwIG9iagpbIDUwOCA3ODMgNzMxIDU3MiA2MjYgNjYzIDY3OSA3MzEgNjc5IDczMSA2NzkgNTQ4IDUwMyA1MDMgNzY0IDc2NCAyMjIgMjQ4CjQ3MCA0NzAgNDcwIDQ3MCA0NzAgNjI0IDQxNyA0NTAgNjc5IDczMSA0NzAgODA4IDkxMyA3MzEgMjIyIDI5OSA0NzAgNzgzIDQ3MAo3ODMgNzEyIDI2MSAzNjUgMzY1IDQ3MCA3MzEgMjYxIDMxMyAyNjEgNDcwIDQ3MCA0NzAgNDcwIDQ3MCA0NzAgNDcwIDQ3MCA0NzAKNDcwIDQ3MCAyNjEgMjYxIDI5OSA3MzEgNDQ0IDQ0NCA2MjYgNjI0IDYyNSA2MDAgNjc3IDU2MSA1MzQgNjI2IDY2MyAyNTggNDQyCjY1MCA1MDggODE5IDY2MyA2OTIgNTk5IDY5MiA2MDYgNTIyIDY0MCA2NDMgNjI0IDg4NSA2MjQgNjI0IDU3NCAyNzIgNDcwIDI3Mgo0NzAgMjYxIDI2MSA0NTAgNDgzIDQxNyA0ODMgNDE3IDI4NyA0NzAgNDgzIDIyMiAyNDggNDU3IDIyMiA3NDUgNDgzIDQ3MCA0ODMKNDgzIDMyMCAzNjAgMzM5IDQ4MyA0MzEgNjQwIDQzMSA0MzEgNDA4IDQ3MCA5NDAgNDcwIDQ3MCA0NzAgXQplbmRvYmoKMjcgMCBvYmoKPDwgL0FzY2VudCA3NTggL0NhcEhlaWdodCAxMDAwIC9EZXNjZW50IC0yNTAgL0ZsYWdzIDQKL0ZvbnRCQm94IFsgLTU4IC0yNTAgOTM5IDc1OCBdIC9Gb250RmFtaWx5IChDTVNTMTcpIC9Gb250RmlsZSAyOCAwIFIKL0ZvbnROYW1lIC9DTVNTMTcgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDUwIC9UeXBlIC9Gb250RGVzY3JpcHRvcgovWEhlaWdodCA1MDAgPj4KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE2OTAgL0xlbmd0aDEgNDI5NCAvTGVuZ3RoMiAxOTU1NwovTGVuZ3RoMyAwID4+CnN0cmVhbQp4nIy3BVTVW/M+ToN0dxykpTtFWrpbGg5wqEM30iWIdJd0SkqDNNIISJfSDYJ0/A73ve8F7/td6/9friU8s2fvzzN7zzwz0FAqqzGLmoFNgFJgO2dmdhY2AYC4gpoaOy+AjY2ThY2NA5mGRh3kbAP8rx2ZRhPo6AQC2wk88RB3BBo7Q2wSxs4QRwWwHUDWxQbAzglg5xFg5xVgYwNwsLHx/9cR7CgAkDB2BZkBFFgAsmA7oBMyjTjY3sMRZGHpDPnOf38F0JsyANj5+XmZ/toOELUFOoJMje0ACsbOlkBbyBdNjW0AamBTENDZ448jAPRCls7O9gKsrG5ubizGtk4sYEcLYQYmgBvI2RKgCnQCOroCzQAPMQMUjW2Bf8fGgkwDULcEOf1nQQ1s7uxm7AgEQAw2IFOgnRNki4udGdARAPk8QE1GHqBkD7T7j7P8fxyYAH/fDoCdhf2f4/7e/XAQyO6vzcampmBbe2M7D5CdBcAcZAMEKEnJszi7OzMBjO3MHhyNbZzAkP3GrsYgG2MTiMNf1I0BUqIqAGNIiH/H52TqCLJ3dmJxAtk8xMj6cAzkniXtzMTBtrZAO2cnZOQHghIgR6Ap5OY9WP9+Xms7sJud13+ROcjOzPwhDjMXe1YNO5CDC1BG4m8fiAn50WYBdAZws7Gx8bFxA4AOAKC7qSXrwwfUPeyBfy2yP5ghQfh42YPtAeaQOIA+IHMg5Aeyl5OxKxDg7OgC9PF6uvAnQmZnB5iBTJ0BJkALkB3y4+kQM9D8PxiSAY4gd8AbNkgCsgPYHv7985s+JMfMwHY2Ho/uf73xf2P9xyomBnYHeDFz8wGYObjZAPyc/ABeCPD5c/8/kf836r+sysagv1mxPR4oY2cOBvD/hzzk1v4OAMDq+ndO0P9dMQyAPz4BYFUEQ3IZCKB/TH09Nm42U8h/7P+/C+CvLf9X2j+c8v+Z+f9DScrFxuYvB/r/ePyvg7EtyMbjbxdIMrs4QwpDAQwpD7v/8dUC/qeeFYBmIBfb/1mWcTaGlIionYXNf68TwApykgK5A82UQc6mlv/Jor8XNB4q0AZkB1QGO4EeRAfAzM7G9u9FSN2ZWkOUxQnybH+tASFl9efDStqZgs0e6o+Dmwdg7Oho7IEM+To7BHIDvCA/ISUBdP8rwQGsLHZgZ8gmACRKH4A52BH54XnZAKyvjW1tjR+sfxnYAawSQBvnRwMHgFXdEvjEwAlglTe2NTF7tHABWLVB/yBuAKvyI+IBsKqBLJ58gBcSoT2k1CFB/9fEB9lh+biFHwKdHiE7hKOSLdDiCUcISXPzRwihaP7EH0LQ3OYRcj04P1nmfsBP1iEMzcCQ7uD09Ju8/xitHo0QnhaOD+X/jwVC1dgUkjWPtwUha2rs+CQ4DghZE0fgk10cEL62xqZ/OEE4Oz684z8GCGtTSKbZ2Dx5CQhzC6CjLUSYTGycHs2QAIyfnA6hDn4CIaTBTjbGTpaPJghrUcnH93y43ycQwlfpzw2cEMJOLvb2jg+5+I8RQhmSWDbGto8mCGkHF7AzEMLvPxLwzwqEup2LrcmDiFg8hs35191DYnR8NEHo2wMdIc3myW5IDMa2EKvTQ2P5x8r/99f+/BQXJBx7SMuzswGaP7Gy/239lzMkMmOnhyOcrB+NkMjsbVweQ+V6eAzw0yrhgsRj6WFvCXyMhYvnL+Ig8CNDLkgsf94kFyQST6Aj+NEACQIyPTwWD4S9s9vjOkQ8WZ0tHYFPPB6yHezyeGPcD/kOepJf3BC6TpDO8g+GkHWCJOAjV4hYsAL/uAhuCFU70FMifA8xP61Sbv6HY2xBf1p52P6bBmaQRvtohvAGOrgYP9YZD8fDcwGdHuTuT1fOx4VHIyQG40d6PJAQRB8RhL7YI4JQF39EEN4SjwjC+TG1eSFcpR4RhOLrRwShJ/2IIJxkHhGEjOwjgnCRe0QQLvKPCMJF4RFBuCg+IggXpUfNg3BRfkQQLiqPCMJF9RFBuKg9IggX9UcE4aLxiCBcNB8RhIvWI4Jw0X5EEC46j4IL4aL7iP4SLGNTa6DzHyXEz/FY3X8ucP6z4c/q4n+oG5CjqYutuQ3wMR/5uf8SV8j8+LTI+Xn+Pv7PsyFBPJYdPyQIk0cECcL0SZuARGH2BD5k4BP4UDZPIISzxRMIYWr5BEIYPm1AEGpP2gAbhJP1Ewgh9aSdQGYc1kdJZH/oXnZPIIQV+AmEsLJ/Ah9K4QmEsHJ8Ah/q+AmEsHJ+AiGsXJ5ACCvXJxDCyu1Jx4Swcn8CIaw8nkAIK88n8EHp7cye6hj7Q38C2v7L9iCKLnYWxo4utjbGLk+4PbQoZ5CN2ZP3eGhTZiAgpKWAnsT00K3+p9OwP2iMk72x6ZPtD/ryr8HlQWD+HF3YH6Tlz+GF/UFY/jW+sD+oy5MBhv1BX5SfYt5/DzHsDzLz7zGG/UFtng4y7A+C88co86A5TubO/2od7A/iY2fyrxAfNOhfcw8v15+Dz4MUPR1tHsTo6WjzIEd/zD4PivTH8PMgSv87/TyI0/8x/rD/z/zzoFR/DkDsD3L15wTE/qBZf45A7A/C9a8ZiP1Bvv4YgtgfJOzfUxD7g5L9H2MQ+4OmGT+dzdj+GITYH3TtX5MQ+4OmPRmF2B+kTOkp5vqfYYj9Qb7+N0cf5OuPfP5jUDd1cYTMHs5//VUFKaX/4r/+agYC3YGmyLNTYFPBIKvqoJaLSlESN+b1YYTlH23h0To9YdzOtNPZXpbyiKmvxx3EjMzKCQeTlGeKQ75NeZO8OLgYcdfrSPdfSpTOcoaS7FkVO2L+2H950mEBJDcDE1uM8iaFr2IdxqiQYRi9gXtDF6c1dRPM28m5+Wkj77bNaVOXfxdgCyg4w6RMJHF+L5rZtgsToUNJ/cN5QEcPMwrb8U2yi7qMxugtTAQo6lysJZLo0mP1TVTKwOLi1/TeniTOXzlyXRU85SE4RLiespSZg7Fjs2fPI1SKvRnU7Z8J5dh37iqStiz66w8laIm2KTaw108PBneMqyNWQw8RqL9xR39vqpqdPVmwvuQBZj0lyDVBabE9ihqUmlflNZ//TFo83n+8uvQBMxDA7d48FPC6FT51u/8zkL5lPUpBTnte9AwYICfXy86AkAXClsb3FBfLB52ok23xsUmzjr+ZcM1mNezM/QBUMfOmjD78nSRZ+h3szIwvl1sx5U42tOcdQ8Dajx0D2v26glS3TY1Sz5cmEBx4MCdIszlzNwvrJspncHOdd7gqZKnz0ktXBC3Nizch45S2Bxb9161NS19iuLwMPvMym4zHEmCknCEF4/oCK8d9lo8BRZOZqGLywk6Eo63T50UK+7XrECZDVn2VkS7xW+tI1C0fjnW2hecWszOJDj2VitGM+uV8A28thX4Gi1JFX6jujbnDfKeqGRmN9au8fr8QYBJAGf+iTyxP4B2dlmq5ojXWB+I+L33Yl1anNHnYrLXSNyf3sMaDq7AMVtuoKDNEGt5ZF+4Ktm9/x4YpwpJXDFp275wYTsD0Yl/+rEwibK4gfsfX/HLA7RsUJchazl+y44ub3U81o2eRAUHOGqGfUMMoaMf84wPvyQlpoV7Qcil/YVcd8XxRyKxe3KdNLwpnOxafFZdXrWRtErSjuKS9M/N7zUXlXUjogdTL2ZhCG2Vpqk9LhH5ULMf7LEGcrOe/3mPhLXHWq3/dmeBMmPdtu5gfoyxi4nmeab+doo/nn+uguSQ/KaZ6ZInD27SMosnb9Jm5y6f7V3bPynNt9eJyA6PxqymCwCh0s7bYPcRkgjYG4tHvU5Vf7th+MSSOrTUhWuob3AA6A73P6jo6xxA/uIeOKI2H5qPe5WNeYiRexBMhry+gX1HTx+7MNszqKrHi+gtd9LGoxHSlkoVFfZPBLo1cq5LjnHOkIiNrPb7aN8jTJKxnhp6qbDFi0GST7eZY70aoVH5VRKmDCI/dOSLLOY/+hY7x+fdhp1amFFf+QDe1ZmvUZzblfEJXaSgBsvlJ8oKbhM8F+1NthJJH1hBckkdLGeJscL/RJRgbUxLv00dKio78nrvwyUEPpDIG4HLtWL46E54cTVUaGBZIH8NcNszFeO3506o+HO7o+ysoQqVeUS7ZO9accrV9Wsqml+lJXwBD8ASMY42Y0pLEyGWIIB7lkAoRKs2mbpafX2XRYiez8Mgo0XaZbvjY8jCDyUgZeyrPDNhPoMxg2LikEJiQuJfsiHiIBFO0PlfdJfwWK/h8iCuScl/cid2DH0yqhic77P4djcl4v3nMXJ8rT1chjCh/9YfgJXdFeFGTEyCOzOSD17aMrA3SDsttEvrmK41Ml9MSSW4h74C5Q8OtyTgG0zIO8ipf26YrH47Bsays9apB9jF7qDaUmGEzevXimJ4hx09OZY1rqPiLjhqSp1lQ5gTLKgXvZHpDbaZkCSSIQtqs5yX3e5jWVvV+jvCT1cd50s1lr36Pan6FrL6NHcFHv1hoL6Q36Y1KZ9LYQtO21awa2mdo8wvH8ICthtJ/CnzqWaAVeDQ0CBLY150VoiYA6lRtJHRJceo0LgCTMuQ74BXMoTlg1HczJq+Ax8SR74AcQu9jEthEQVcUJEnPsuUQt0cHzzqgGV9hox/qQ/ksXr7qUInvwuXEU6XzCVszt1TYGSv74h7UUZRuvIPSWTdI1CwlH+yR1WpD4HM0gQHNH0ynNGdnMK1UW2anKH0/M8syO9DT58re7FTxMtzSBHqEmL+rG5C26sz4bCRvzlIo2k9C8FmLb7RG6dq5dQCYbKoMm+3KE42SAk0s66uCGPqvlNS7Q7jDZ5kib7MKrt8vvbpOw1CJB7mDZQGSAsvOUL/ayIaEw4Nt98v5CKh6LSQS364znoxo9kEvmZKiLWpavjKM8YU7j9RNW7ggGUDLNWA0gK41m3whJm/Z++X3/SljFuWvfI+w6oENk9ZzprLb9p1fZt3qJaoKTSLKPT9WQ620JtpYGerqInpDdnUrV0IJe/PnpJt6fE9QUX9zk09VdYWN5Rx/ioCXrylZV/oSzik2DDd+cjY2iNJEptPqyjDmiN24WdmCOszT2J0YDBeAJmHT8Gzpx2tpHzZ4ZW/LeaU56zctUBy19wpJS2Jk5iEkDDLECDNnt37s+Ky68HX0hEgeuE3rVbqrnCF0a8LjK5Ojy4K9B2cATSwAjgfD0HMyh2LJbY/1AUlk7BfBZQt2MbmBMDjKpzPYMT/g7v2/AXwJJevT3Y8F+1IZHdgODnEKqHZlUoCM3CJiPpoWG8Zc/SQ0TOd3gFN+ndJKaxN0NRWYGHIZcv7Xds5roeukX6qki+n5XT6x/7z6il6yIObaGE5aQziEd0w7GZYU0ZkoczRxx1ri2j90PwcN08rvVNCach29besC8jUKVO2s8ITqCJnh7Dts7lfOPVrLsQ++iWueK+Ex3q9Mxp42U/YF1HLXv3ieLhqsgPUGnrkbXmH5Gm2/5Dj2dhAEi6Sm9QtN5fnS1JlCKY7kxh0BrlvNoY/Cj1i/j6zGvJUmbszqn/3wK3xXPmZxqDJ0/DZybQ43vtn5eilUkqXhmBdrNUt1hbP1wbFVhJHbSCY9xI49XA3X3HX43jUjPryKmbyXo152niSL3Fzn0qqZPFGnpjY9M/w7cU/X76ByfjgJmh6SziEatEqbauUt7G9XngFQq5FjyiIrc36MkZ8MBCeaisZQUlv08+nGZ5EjDb9cFqwkLEQ11n9JQ01TB80oX03gZao4LodG3rKS3uqeCtenK1Ecehutv5TdLwnWvbOzl22VsTj5ztOa9vn9qeJQiLkGFP1RH1RRYTO9mmo6+/U20tosYxNyeR9vZcJP7sLzAKGMMMW2UE14sAftxvM5CoWP+4mkqYxZ8HH8dXK1uO6iK4e1HvGpMOCb6zQ8xh1yFBfvX+hY3Qu/xbodyThtXeLGgbuHwWMOZwNbPYhmMg133/3ymqCZCYgSGSNxImFHRdqGX0JxZGjcLvC2wKFuO72BqpLYEsn/MJXUNYxSlmFMAN4y2AME6/DnQcsgWfWZHWXUYX8pm/La22Oak27wal7yPY/7vp1D9JHtK/6d/ubSwOLesSa7nAyBOeuP3Blxm4n5LoQgj9AVVMyywEL5RZNl0vMDu2qBlzEYtZFgFnWQSOEsnmx46I1tnYE917Pmfbx35OmGY88P+mFFwEZJY+fVY3Lt43WO/dY/Z+KOhLlgoOpZ4pQHcIdJOV3wqtIi33Huzrbf7dR0rWUZ1KiMtVq+fxskvbq1FOws7BcQ/exavlXBtmGUr8bkJA4tsGZP6MWY6Vubmo/0TPRk+f5xq4axyi1oXZ7r4upa09vzR2pRziuyjhcjcSK0qS/z14KJ9yOREb2ZpMWn0U6riyzMPh4hx1ve5vDX//oukYvetJJV1//WA/l5JWUhegT5B5aJJNjjBa2I2y/tc0t3SNmZZJNI2vRkkrdh4nR7SctSzGZiAxX4hpZ2xh16JU6/GI5z8neiJF8RP/8Wj2Nh1SnYslfRL+w9f77a0ku8otK7oPYDONARfqZPK2cDY4ffqLWC5OvJVTHVrEm4n4Uw8RaF+Xf2fZRIZ3PDtg9WGjfoPboCstoAiMcavwCbM/WEDVU9mydBhtKCW1XYQbjzzqT9Zi0WZVhwloIK3WjGaFNVGxysz5rndkRbGxg+e0KL7bKSFdu7pfIRaBPoiBSMXj6Jkt+/+2pj9kgmAAmTsfz597wFem1c0ww33gTDiCwq9q1WB3i2Oe5GKa1jTrLjwG+E45TGmAKf1NJMBCRLvOhVxfEC1DM0fiIUGDaQH+6pBzbZ+3A8m4AyVRp+uQlXVc+X9wP1uOMl1/sSwtT35ESwVVLPjczVvVk0PqlVlKozvpkbpKLprxcPPr6VzcpVXNQNoczSQQ9xUIeztZQmL/gemJERgCRQXJ1+6jUUQAyL+myiV+oZOj3Z6lWv/M3RrTr/IZTQYS6jTZVjJH8tsqKPTuTXhrV5l1rTfGx2Td8e9AzdsZfZ7uoZdjYqqB+3Y3oPHZxUorzj1wnbq+SHr/oilhRtF3DNqcjksjFkwmBjtjOs+ExN1KK6TtTwl+158YocZxkLMie54s+OmRX9CT+aQTVIafQpTQCZ/YPvG2nevXQhSAmgDbgoP/pyTMsFf6t1MUKYNE9LALUGL8XxcZnIWwkpKi+pfjpSHYSh/Dqim+aOA8fyJV2FDOWvwdAsgZ5E9A/qtiDPEPnkiVU/2BBU63lXvlpULtn225VWaPZ2dcIY8g1PxyN+XgOzkZomE2CxYsMxlGXZiWw7nJBO+z2yh9w3L52CalWkpaCDlJWdYnj26MvEMv0YC3el0c6Chndc76naHPTjJD4v8RdLRjWLSfuO4FDpBx68B0uDTzz5DbN8ilCT02icaH54awdiopeX3OOrCoWhYmKPOu5LHdj4WKXT+qIjCDL0DrSraIvn8RMp0DVREWUlo6Lp4cTgOgtlrfmqYWDAc6LQZwCDokA0drCdQmqKxq6/PsIy33pZaO1elMe4Sx0tZRukRtyaW3I+e0YikRzqn8v5HNgjh7/hx3ARJXRPPeMMn6EQNRO8QD5n/PySm0IM65vhB/N1A7TTeMkvqbloaGVQwUXKLLUwnxZgXH11DY5Da/gxTi7rfzBcD4Isl0aWX/Q1CbxWFzJ6G6zydhab9Uvby3zNRVj7btpkF0G5XiEJrctEtZ3+m9yPkYNkt0j8yXliFhEHCwbJknp0BRsUre8mdPrdXMEVEeHxpOhnEc/9+mfMTcou8JIr0QUcrG3LK7EAFgzOc0ySO0qWjfO6xpm7SqF2E0vScanrTY3YBPWc2ZenFD/q69yDiXXATXpbe1GE3xx9yakaEw9241gBxM/47pqL+ILr4Ki3ctLTTWZNu/k+vm114ou+6zi1v7k0+SxNigVE94e6nJn+YI53sjnSlo9R5dRtdbicKmSDJlVv19vu0IzlQn0JwnO4bJJf+F5y25j3/KRuUbRZ6KIZ/Dra9jzeKYpOpobtCiHbaocehzH4/hs0X/sSx3O1ysy2rwUJApUvgjjMpcPeSzim0j4fQ3puOltAe7fvhJXfKu5L+BlqxPUe2WbrPSfcexns8GWpdhVznHHLAqBF1FviASpr+/JIDYdoGzNwta6fENzH1/iIgRsq5a3KdsJXXkkl1HWd94ycyPjfC6Uca532SWxAbhdvSPmsU37+5FYCBGdabBDOhEzyTkuu1/VLXXkfVqQxT7PpVwa6zxg2nlAsEkF9rTs3OIL3LtVl6M6bU+qhOelQKEsNKTeeh35LK57GV5kBa/Xug90KZWuuNI0vesZNAjmt5++kCr78Dyvz9ZzHaw5uyWMvvKdiiRVwKzZrYwfJojPkRVIlTkTxwpRcqiKp0ra9ZRFB6b0kfu7H+CSsHrs9TrbdtW2Vwzqn3fdaI1FynwaHHT/fJ6xhh6h458TkTw1erNXi/Fa1cD+i+AkHNsMEQqdfTDu/8Mgc9vPQ3lXGfwfOfX7D/omZhd+MuW4qtSGwv/flVhSSnbjr9LCTsXa4jMP672RsLKFphRE/3JT0X0bW3AvMd732Ui6qaCJ0Qjxvh11JtSTNG0UU3CuUaK5wUKFQhsR01S/Q31HWjjHuEdflXeYqYPqGplMSEoTqAMddqxkEyEYcwNO1P2bkdbnYwc9sRl9u9SVWhvDGNlG7oNQciuRbmu3uJs5NWJr1NIR7p015Drs8S8Cfn7X3QDwJ2jRDFgnL8xN7cTQs2iXhRIaTbEw1E/QDqtXf9I6f8vdVvCV5LQIyq0GgPeaXENVzYsx0itngVvQ1nNB1YlOt0nPukYa6Isba0+5VJg4ES8e+xXnbgVtZhn1phueLDiFezFpAQwmpEG7bGHj1PL8kUlZKgP3da8PjcBx27m2hBrQJc0cxalrubz06OYv1vxw4wxwF897SnyWYvLXGalYq0xQchM1Jqxuv7hbvFjGx7gZ93hY+ls0R1UTGnsVQzDxUu4cR23aDslkZZJpyvV6XXTJhUYrKvF3wub+93daeWtv3VkOn3iOa2sYL3C684o32UhivkEBwNZZgkLXpAC5IfGUpoPBaW2CHpT0sS0NLR9Hda3pTomf6w8tExPY92ssgsGXPwYQZRtCGZrkzHPYX4dPf5quVnBF9Bin+lLLRPz6nOH0Gjs8hFaRhbPViCZJoKm/M8YUFQxFWczLv1QCY2xp74MfS4ySq30YorIuLn+aEf4r/zTYZEcQBf3S/ECLctEg0i9v9OoQm3FUpUf2kVoMYGbr3XnPmyqER8SuSJ2pHZ91EKLvfYjTx81r6hnYgJ4kbTAoSd4v398a37i/OCRRQjkpfsFpqvjbRERsqWxh4/y0icCtmNRXh/K54Avq20mdaZVSlQueUIEJ1h3TERdjYRLRK7NI24hndUXZcerHhZWRwQ4jraXsrztlAoaGH+L5xyirHpiFx6hxinOlm0/kAkwa7JGUUhnH04e6WvWW7UbRCcGc7cRGbDSOhRI/n5olAMIawExesNAVmXXEKgojkbTjz1JJj3uCYmb1L1POkI3CQahXCxoB+5/1dFQVF++uYAmN85SMnWqE5kmrmnlpZ9ZVRV77lODL5PbPaD+Fj94O0Q51FJb6/q1TWn1MSJDbwERfAYJxQldgdXK55//hl/520RsFJ8FJV0xVPb7wzqvXbqEouRu90BYhCp8My53u3SVoY3WsyqUY/ZsIoeNuakuwLmHhOuo39T22brJ307mKLtStii3xbQS19IF8pHxzy5sCbHTpr/+xFQwp8p68fhfeeF8eFeCB802gSgsv31zkQc9ib+RaNtCJ32MO7MUA46DDwHul2bkOLVHQEFl44oSVVw9FRCDSSnUnZdlCfvcMhHiskQ9eodBZw/8sHifeZ30//GKZiKPTkkp6KU+DwJRGC4ofG/Z5AjCkZAlW5oTMY0eh2bosFPaaM8PWsk191WkvCm4HQYxb1XdHI0Y1vnPVCDBfRvdWwiI+81JJv9d5eD9QraWnWo3rSkShIiMuNSTPUvsedRjuR7B7QRnctgr7/OoowUCuvdwW74F20R7rFVu/OtB1aAcMhg9/TRHREpFWY/cOXPUdQmiY+q5SBsi/SAm2e7cd+pfUwVvOi2HKnVHyrdcHZa/PSguHcgIO6vAnp88EotVMTPQbQ0Piy0WIJfX2WakM8ijscJp4cTLYR8vyFQvz0ydBhR4RakHNb9nCN0pXaBmFjv6+mhxwvHqH2FTofq12+B6O9oJo1tPIa7Bk283zcuqlbtOxlLPy8Wvu+TM91xbuATdZLhy7gCzjRMgqdd9ri3wbU1A61Ej6IDXu1hxZdqdtW5ed8YXcKCZHBnZ4h1dQa0I/VJQHyoxAVb/gFiHk8W6Xar03wTaXLupalgE1VCr/+uXpwE2mvPCZeGWe5JrSrWFtWKilvU6+EriY+4sYaDLOYEB5KvBIKm2FNjqunCyLy9hacsDzdW06aZ55Ge170frYf/Cpv73KchMRTIrvq0nfRFwEhZG+nHBDNBIN7C417svSVZiBdJUBHjm5DHL3WV3hSCTyS6Q5zgLAqjbybULggInGGMh5zybhWYC1u+0HJp6j208Ess5Qo/SQ3vvklakd1qD4/ArfEgW8oCqtSqBnYOu9FD0zT9GRDcKmv/jd5Pk7V8983iQON9aVqLqa8HfVf2qsYwFuWixJJTq0El2SsFs/7lPOc/TxV04LYxIHa5p/EB6Gzxp/ruZj9zp/CLfMbbvtQP42mi6XT9czqd0a3fNlH7EUSgqKN8rKUPtq3HTNELjAptC4664ZMslZSUM+aYSL8DN4EGD6/YNGYRgo7B/Cw//Dc1lQxCtfz2HKPtZ0kXWN/4XmcscfuReSRyEsh/0sinN30diAMPTlWXC59f9RrHAglVIXbw0/Xfe5cKELUOtUB/1rZio07yMkNt+ceH5/r3TYCeFsCVPa73JYHKEwwLx3t0JgY8mFFzTuCshck/PKdnAdM0qCyKFr/F/WoK9rYr2YgaWDO5/eRGJPWWlvg4YAtAwEVRIwTRM1KL/9T/FfNUqZLErNHbwZmXL8oLKC/Tv3lV1a7bfN9X8WccW5uUQGBiZduGB1mojUkoeaWHiM9+7V84j0ZZwU6v+nh4o9r5b6U3TC80lvXavMjSZ89ob0g3KmdH/TEKiovlpTHSdvl1Mg8PPWUEuQDw1N+FyDsIKDp3kyJ8nFMmWW5sI3i6MsKtEdKrUhwpoERkQqPltPEKezruqvQpnRtxtVI0BoMS1NNzM3X2y4lV4pqxppeGtTScOzXO9zmjkZIZxGsUTCV0hPCwlwf+Vn7DDEVnFAOGXcXpLz8OZWmjiY3gmuP0fNzRIVCBXV4NXnQHb+aw9saAebAPe2Okg2KKrW3JabwTq6sMF9Zk/HD3g4cAwaWoqUgsw6zws4Ap7OxpXkBbK5w93k6kAE1Ym5SYSzIMYa29Aav5AL1wsvFW4UpAGehpmDtncdcW6IyFU9ko0AhwWh1OWysroBO4k4N5dxKZnbtYu9a/Jfi6xhlGqZlhslPC/GEiUiKUZLN5JuhFeXTsbF8mRquay/7fqYm94sFH9AqHxlPki/mhNOqcX66qUPcEjv1AW5p+8Wdt9z5mOXIRUF9CHPVZpK+6FVwoqGvPlB1d8ItHW9ryR8Y450oSuey+in59c6o1AuF8B1xapIC3s91mr5FNbO7Q02KmQCGcW7sMkn69l3mnC8ncnauOlYbQtfSw4D4XhaiCGptpRVuXFLmJqLxgu9Lu0W2u2I22aQnjHEz6bN+sI2XmnW/+dUyxpuk/WCEyKwsjdysPaPau9KKPEnV7ouWk+euZZu0NxVhLtF8L7SEqLXemaC9OpqZemfmG93Qc1+DPTlqpB0b3GKIqKFBVKZKe2UXT/IrOZraOn8p1+kaie/7bcT0WFeaegrtkYnymK9KL3PIRcPm7a1Xf87rTs6FlvOG23Me8xIF7z4DHVNKymNMP5E228x1WJLMI80d+HLDA0s2nbKqlrnfsDY18scdunPWb2IHxVa/NC/yldjoWPOXnPUXBY6X7xlfKBJkEX+01jgjqae1YyjdkIS131CuPvUl+NRvE44M5/p7l2TwKr32srn7OA6GR0dNTM+z8k790txKrWTmei5f4Kt9fppgrQgu2CVjsvl7mptlGaMMdqXDptdQIzBKY6tJhtECx1tPtsdJ+aOTTnxEy0W0Q//um91Ej7Oa0Fga4TVmRAVyFEQy71Ln8X0srTd1jAj49shdlK8nqFNWEZgLnfjbqIV9AyROh4+WoFYoMnbfZlKjAyz0j45MUOTLZFH3035V3p9GpiXp48unDYJH31YL9OzUdM1JJnUM2FOb7lZ7Cha9njpnYToO7tBBwrlxY9ono3xzlrGBg9tZn4NfjRnz+UPCsAea7dz4EG9s5stYs+Qi3uF5x5PYDFoon/Za08gOdruR3IVW6aNokgqpb9RIpx+8EpyVayzl8yaHtj93cL9y2OE8CFmeodhwReNS0buhjl5Zh13aqtfUvxb8dDHgMK3fc6uaNYTJ3zeq+5Xxmwz1JGh7MXMptUPx+iBsNGISkaRDhLjcDVVwd+L5Jxz+rrf6/T+AWTz5wiz1+K+MfH/Ke46z3D9vjnZyGVjWOY/ZFE+k9Xz9qoOI0LzNyoluuI2ZkS5ToUuiyBwrf2cNOzxFYKu8pvzT8FE3dIh2q5JZuER/GjT1XaDSHv9PUjqBkzwlwlSCkoR8uPjCFvcPJjcsdYCUz0PrwyLNfiac+TSj6nBNhQsbricV31OyuUTkq+8Q/eZUQn7TZmTf6X6C2ZVL/8QG1yOTm2eQHM9dehAArewSOdKPWVs4sk/JOCGCquPco28lmBA9VPcqBvHI9RWW2qdgI1O5EOAZ3Wty6fXfLYiblzTlODwWZJnvPytyV/W2oKcv3GVgqQkiS1T3VU+Vu7JOJ9SbxLyhNgz1b5UPlK6LkA5MhI6nrJYlcDdW4GWE4x0ZN4/Z2zveVGerzlzQugsorSO8+1BxD2DkJU3IlMQUhsup/omhmyFJ4rEwtecznx64OZSvth6NiZiL/SWutdwIU9pSi6MpT5vlFf2arm8OzSg1zkUi1WWV1nfTSd0UGlVvy7XMChHMKC8JfqG7xWGjRUexdrJa8veM37DPyH4Zj6BLY0bvUqfidnmp98h7VH4tSKvSMAwKWrVsc1JVtT8Sb2qfVMj89TYUlI0ERgl9XjHZGBzSSsJHW0qtV5XQoe/r4el4hzRuPSnPMFTmL+KUEToXScF8ucuCBHfqtyyNpxZBfYCVhP3L3zjdY1ZA4eYK/4jnmu4FlXDm1XdP2pmSVzYV1e/o4SXn1CFa/qwKi9BQM8+COT1ibDtzBVG+3rKnQ3IYTpkwqGNlTKHOnn1CiWIbBycGSNY/qTEgvYqRIciP7WzF173ZLIuOYGYoV6rsKXdvllpMGITMi8vfsP6z5TAgoIzCKqvLJWpB0nMw1QXUbIxkxmLIiN1OMyDqafRigijcy1tQrEv3d4VS8yLgEEVRjwzvdrlQNBKVh8w4cVknE6rEEfTDUNUPDWOR5W1yGsExocNUfT13iqdbiuP57+/TUJEbv1998snyubIBmefyYVi0B01vf/yG6oKewIVNr/K6a75y6J21CjSugxj6M+zG3IoWXNLBodTXjH6f/Abe1E0ylc3noqMxL8ulsiMIQ9tj4R7MJnulLxW8y4UrRWq+xDWe6JyZbLCoTktnQOhSZ7/8lIwwmh7jhWiVIohhPnW9jfhcQjqozXq8afszKT9Ty3yVZ+eVcJ3D9bAEhY1qn0Ffg+5sJ2+vfqtT387bcXsD+7KUuv0cPKZfXC4yaxR0F/zAtcX5oALThgPknQ1H6DK8oKlcXmaNtiq4nKlPFePKlV46CRvSEq7ep07D5GWgSiz/YkLGWxW/c4ND47bsfoxShpMVhJmvYUbb5cLX4ZGqwJMEeMjIM54reozahRpxDqOqttzYGfT7Ju1gZeCko3UiY6VKQspprdgJv8boC+0rsRKTuM8WsI7sL2N6bNMmaDQob3jz6JjPl/mZ4wPDr7RI3hOUhfFZeVinIM4FUKG+vRW2SxSIeL6XLxII38iF5tfPNcZReyDYcSXmmvyiP8bRmGlmsmPFei0Cy/b5aG9ttnM89nxbsIZJwdLmJCeLaY2eOdJrsyI/8eqxn4yegWqnFAmVCxztcTlIvKKRpPKM0lRcLfe5qvC7PGxdIy2jOMkwI3o3N2JvLOXxmAtPWjA2gxDJrYUpoXlRv4dqPPNAsoXnGvxAq96ibXW63TtFMH7kP+eydrnDWb5yubJAyforWejVFXp04zeL9vzYhVCBqDexfNQ0NbG5UW9137ztd4xEQSiRD/LFg6ZsOafFqYsYiZ75+evZ9Is7u7MIa9nWM38lxNu0iTduaY3Bjmo41TshRSxaMOF0tsqFY99DHJfK8731qK3sOlievyheLlPaRD1Bwa+C0a7s1K/FlPwcIFkv2qEi2t9FUWksArbz1zdYo3Snk8Vl3v3g7qwLsyRl5kxbpUsPaqOViwSlMV8u+yQ5T1RkZAL6r0qm3HyJYORQ4YKRw6uIoNS+V4LQY9EFJfc6EV99P4WhOsEsQBXj/kytVl+kkmBPEUtuh5VTGtKIF7Ni7ps3u2NeajaZLAmTnflS6nOQ2T4eidUr/88eDs0KL5XAMm8rUxPZshFEx3XZP8Rx3b/9qsrfD48wzH0+1eywAK49JX07r/Yyjhyst7y6EV42bOuUUMMyuUIlTlANNHJTXlZR+EFE1g/P+DxnyeLDRwGunKgq9nfItcurH7/caGuy2pgo91oCoHLcb2Lh26ZzGtFD5M1vPkuS0SHcLiMdvJocklrlSSiIL7gKc9aktDov3q9W34frKOEysrc0NesW8itVVu5THnytyN3C1PCCNXDR0OA7GuxRXPTsGJkJn/FUmU7QEFLmuxzVAny5rjqJ7VxVq0+v1F9sGsTNy3ptLOmKw2kGt3IJYaOmj8vRTMb6oQvYDC7+2DHJthSe+10slhd9l8WsmCKpzjapM/xSnUj8WoEIK7gAPty5+N0FhP4ZnajNZvCCqhl3nW4mXgqeNd10EXU6MheNnFuTFvwSQ9BsA4JvkJe7EZPDfee1TXRLC0eZWzPVCkNwbsP0wTdG+gH50xOViU/NcT9ewHHbheWoHaHNmt8BBdwiAjlpR/yXdT6jErJ01KjwGizmiIxLt5VhYS7j1qhsa1+bGN6txr5gH+f9hUbTENL/dWNz7WdfB5V/NTWb51HQt2+f+O3sCAjg43MJhIacfyg098SR48WFiSo2vgxsdXHMERzypxwSxPSU63yHE1TKYujhXE6Awu1gFhr5jm52Xv+Axe9Q2CdSP6jDZFAukHRZiOlrzNI5oxoTnDhHbkEDK3FjqORhgIjEa3OLVVecmF1MgklHxWdgNqoRC6KPOM8r3MvvRhHCUaBnVKiPbXUP1S6Hhz2wPVW9N9yqBjIdda3uzauPf2X2f9s5C3f6BWf67sY2U3Iyymjl3lw+gKjbq59h8UaFt0M8vqI8Ddxy52bh7Xh5uIemj/qqbDfDpzSt6/ZLmRYNqt7HocWZSyjb0zQN6139w0GYOFUchSr7nyy5WxiUHlYyH/svFxXuBiiO2htNsAQZ0jkVv4+ZSRVO4TbjO9Aj9h9o40fFD8w8x6lEZeXXIDUNbjMa9RBj/4h2TEGNWHo1C+dmrfs6LQIjqp5F6SNnon6tiaXpNyiwQQj23t01QK6rgA3uR0RBf+gdc552V3M6HyGxZAGCJJVjaO5ur+m16QfFzS7M14PRy2ZVvqEtjb/1qtqbU1EbxWj9+pspE17AVUtssfrwH17hD32+W7mecpYlJTstStxfV7LarX0pxRt9WtjTii9k0tRPAS8sN58XiRS8FJ2FLmEWAKBmaufcviIXqtM98u7+LR8LlvYfPQf6NZoFLnb18L0ocQxKDPXauM0Mh56aCtfO92/cFLVX6Eds/Ux04O9xS1dKgukfFcUDf7mTDohkYsPEkJYQzAt2nI8Rab5OIrYCqanT3VHKXOJ41ZFjkA60JJ0EZEh7s8I6HrDIjC+8rqjCuYlV4mykRmwbTNa8OoX7MpXOQWRQtPK5gdmaihPjDjwEhcZnFl2U78YmlRUbc8YmdfO+C2WG11mkS7wWZ2emk3/9TV2ccTRtfFv/lLcXrz+29FQPu+QvTLThT+mB9Fu3WJfoGsQXi7Dm3zTw0XQreq97K98PvcNunwkjaduPa7jJDKPrJpdXT5UMkWqmHO0PKGnQcn0luVZ1nueNeVpHj/TVwoQ0w6eAskFMteZKt87LxI6zid1+yh3ekPUFD9FVtRaKvzYGucj8DLnBs87SL9+e/Z4gIvlYmh6SnsoZI3yiKpAFUj33cQRZ3VPfiIrxFxLb4VKwXuTa6ybhOnTYe8Io6VwLEWGprID3gi+L6STeg4p2X3M4IJbzDFUc4zepkqzifsYdwrBg/OTDKKDFq0tMdqUZc+Apv5D0xUbmaIIXidBD4kCluTSxI5YatqqEqcfXqhi0fOb58eZrkeGPXSrR6HljAeMiQjihUBF8EjpcLb3qHhz5FN4fXXHG8Cg2PxwIVGXttVGTyI7FjZRxI8NatMNu8o0G3nvAU33P6u4nCMBSHKVZ58zJqen3xRs8luXJwhUeUlUTJE6ysfsYDchNn+esfsWvxSeevFsOK2JhUf0lWnIdWz73bTfMgnT5soPDq0zSr+/9+j4FKn+QVXDXS9WteBlcjD3z8+xMLOX99VC+zBF0kr8spqzNqzPulh2J3OdJAvSD+FiX64JbhCUYOaRaajzLFk3TSNJ2z2yLlTL04T1wD2uoKp1NrNB30jzU7wbi7EVGUNlgoF1D8SNOfeeG3tJdaLYh9mDMdzcSVTAwqO/bFNZ5pmAhRHS5poCzQg2/UkS76c1vfrOLZE9u9uXg9Cwti7DcAKyWKChq+i/MrTwnGZeKNRlT+xVAN6JE9hrBAByJ7fxJhoJAvU8834yBkDdX+cuBkTvZO+jbSTOwGG8Y9agfh6Beof6Md9W8P9Ze5zHmpTiR2K8S6+99yAOcic00lIGjAxjuUSPXwradSJ4TwnTeUiXZUb4ZlE2k+ZPLHKNZP1blXqXn3WvZRyOL7YxyjjK5YQiy1eA+G8X7+A2LRF8UQdHwBwX3UJYDAb6rk0hmz9WhqvCmydIzCVEskSJOjGsHIR95cbCVEW36/SApRUXf+yC2QpwSoFoUjeh3KF09qDPmLvpmOolVkpjBe6lMIpQtJi9e8a+SV2+Ul+NjBrl9oFz9E5qqsOUQFJ2sNVWJR6beEfs5e5GIzXxapSYhnWHGpkltOCf7gb8sdicKdby4uWmP+QWr1uaIhyAmnQEqm5539PvJ5/1NeqcrjfSNTj1BmPfPCjF01MoViRTNPKooNdrFhTt/ZeGph/FvZX5KiGbo48rAthSyNZ4MallZQY0vrkMBmCV43uOYos6FmHq9jwo6vBhpL+sTOcjQZhbsIMkg4mQ/iZQ6J6lJ8lnImiSvZzf74DpvCD0hQEk6VkEWG6lpk0QF78iQaCKf/Fqd0FfHuWoZvZW3w8ALKNu1BGqoAmMcditw/v7E99ZUEmpfH8ONasGC6S2jl92caE7g5a3f3K6OZuwXmpCwXynbMNzIxh+/vdKMaPrUqogJQ3Ybe5hmtdvmtX5ygdmdrGxPnA915O9YGUo37eYNlknT0xzYVN5hI3TMESr4CcxvbZZbylkIZtqveeuSyLBNqhfcV6/HsXjSuIDgTKc9yFiYP9zq2508P1klEewKpdxBzEI9AZrRkGKevke1+XBJ8zM2NHJLuIat09AxteT+ROeV7p1h2UoE79ib97lctImDWQYLsjSvvnLnZKTYBMob0n69vmMnbqYjxmxJu8QO1902wQzhosuwPSOZnomkJg9YsPfeg56tQsYE5woO2/HGyeJtpBM00qxaoQgc2szbL9cl4zqwbmUiNdepvhoeNcDGhsNZm6mOhmWsXfAm3oEl1oSmJ+XSyeBmVzc3i3+tK67xBold62r0Zj3TSSAeVpLv/bvYup3S5FXxzuuqhnv9o59V1K6JEROjLDeEermv5RtJa6mGObaqcmTEcGsvtRd+tRP5cxxyZ72j7X5phjjgbTLZaYyXBLyzASAUwyCC3bUoJxhrheQQdVc/o3wR+xx5/eYbN4OXbENjh8/IZd8P5R9s69aIfmsKZ7p5I7IBwpm4t7Ocsb4yQuv0B+14dMXVA/NgM/1WAb85p4SMve6a8Oq3cSn0hhIp/j9UDBA1b3Tdu5tEXfOo+z9EReuly3NqzcsEesZyeroTaNxuJp/VBxJgqIECd0xKTJZ32mwXWbFfoR2ZiAxDJns7NoJ6eHOjJBQ3CsdphLJ7jN+yd+2DUnrZJHRfIuYDP788fH0ms2tPTCnwpd+cBI+smzhZheobfYbxB2RAV4QW7sb6u2mbesKrSa2+HItM46iZ+1BU7rtSAgSVnWC08Ylx7+32UFxsgh/A9nRzhcOeqCZKX3HzbNVkVfcy8cWXIKEJkVpojjc/vTS+B5rkVmH8stkaWKcn9gh1VKP82UMmVjiYwwb189kFUDs3N4mMNPcUWtC02pVZIErNmO3DdhBU630n2hXMgvPpPaqYccqP5sMeltXvq+Yn/Vw+n5X8V/QrrAF2ddnF7G9dlezfV7XvNoAto6MoQR1amAEMmu9vnMeNyicyXau4FVcQOpCNOpQFdPc209ZdpFrEEht8YQaX0IgMDNJLAXCKLS9eV+pQ8/uo38ALiWJ53guCM4XvHJx4kqROsjjYlpnKalGui6+1Ck+vbzaIW9fHrK8wfAhCclFUAbpyQi9WFjn76BZInOHyAYxWPUzvp35mt9CHFfwU93yRFsk/ifWq4sQ0LIpJSncaKvos6W7ECxQvLG0Jlr9oPGO9dkF1z/QkKxiaScVjvHHf/zrPVrRfTqpD+HMkt1a7eOcEKvlkKK2LRHLfvGmnTdh3VjvN2FJ7RkSNbRQzs0vqS5GsymdmVC7Prm3So28um7KOv4FCz9/An3SkIqXYmvLRsMNDI48KbWNOd73YxSHL80YYcjaQnzPrmhBfB3s6AOgtgue7s2fIq5n7F3GJL94lFy6MQhc/Y2ONQNo8HmnwsgKrF4aZS91I2nEAOD0Rp75PlfLyGoQZ7CQESwzNmHfHYMymLghhJjdv9rKO3Q1klwm5QKNriOWG74S/+LQOZf4GKy+2lBgR72JD5m2YVMFyPMpFpmcPjylj27eZ9+aG6b2mWfmn+cSt+jrjOoTYu3JywhOtKR+SspppVWDXDCsWf/yinErg+SylotRZhpjEbXhkT08Rn/XD8Hfm2l2RlOdmSsGYC5XAHCWc3CvHxSBQpt2XIfKwX5yujTqwjOYHqx7vIuLEUhk2o9SIitDiIX3v1OMY5aM2f/Dgh/7jsMCOLVL4SBflUEdqS9bpajpy9cnPCwJO21l7o5cbvUgTZMT1m8MLKdkf9cOonmGho79fEjHg806qOHvN8U4F63c/z3fbPgxiPqIrzC9ZLXd+n76mFbzqFkKXA7O2wI/aHYJWtyc4d9P2c2lMKbBe5Sa61JynfxTTi2E5PkftCt8IlMg73F0KLfisL/2CnyU0chmxjNOgaC+5TJSoIMsF4aLIVivEQVguHa9oRVlCkstwxiwmp4FbgZFzIndpn7ECpouXARX1AjR/5FYV3IkLl8xgBjOS+HZegl/MBT1+WUwNxqBQ6RgPbB6tYp0U03Hlh/x+vKLt7m0+2y3pMu51nILYnn0G+FX63ZGk9yv4FnPL+oZyaYUaozrWvUky/cia4/riiaN0mmOxdE55kjVGkq++/T7AkOe/jpZueo0HPO81Qsq12+LP3rSSl8peP1uYN9U2yFr8ilGSLw+fS5JQ87rk4MKVXodbWBzfS6defpLV5kLcOeD9Ya2kCdjvJFJ8ReRu9S111A7zeYNQPR6x+OUv4I/uev6bdED/aIx5B9NL4+nlwxl0zsSJkaph6eJjmc7TScoNkx0PNMyVZ9BR0qZM9TehXVAfKuiGt0RcMPUOu39nxKvlFe/SvqWMcpL2nZQ5lTNCYKIS7VwVT7gEhhKCULltK7mXOxrbe8Zjn3GkP3c7/NmegAsXMI8v3wPXX+yx2FRMhSrIxPctUAqrMTbURNnUybikMo/2pf9ZTS2lGPCD3dfN3zDkg9noRVfEM9oOSgx8VwcJiA30aM9z1vluItXcM7q/H8KVz2L7vrMHQofu372+ieuOJ0Zn8yg/shSHa9fV92Agpjry9/5OOPXRr7f1eNJslzT7WU0+goNNkLWRTUds6OuIKmh8JOedeGFFa0wlTrquV7IZbjJCWUjUmbZd3CE4njwp30ZHcqPEKQ2g1CPceiLQET9pyH4eNRRn4R2xGyCZLbOMxM+PvNSCpqmCLayQS2JMCsmOdPQtrPrYi/6CmWcMXlepQWFgAKv6yivmG5L151y3902bDAFGhD83nXmiN7lRe7W9YEK2xbNViP3RXjdPNCQMPOs09mJJ6Aajt+CuE0pJOaNMR6NINbBVDte5ayQWr8fklaK4O1kXvOOZriJErF7x1UurlQu0GUXrzBuKDk/2CnoR89MSE4n6me+qp9ry8d7IOs8XdXEozuDWTh8a6EK3cOqki/HfLizuuiTGjJswfjgvaD5EVSFSoSpl/ir+xEFV/+ui/nYLActRsk8Bo6OWMmet1cjVTySZl6enUGrBb3lihDjEFR3RYSNttRoHjaJKg+30bQlbmuGLLdT9zNavtnbQfYVJjLRZn6YAErZoHZzwiuFKWDXUHXRwPbjMqVQhPsswd5I/ozGXeGa1rtbarSiazbCnZcQ/DXNf6uN9O7IObx7a6JYu0/vOC5g+rx/GYvEgX80f780XeOt1KHctlihvYM6CdVsU8Hmwb+5W3I3JUixqi1o/HjV8GbERb9pQPMH1tDCQqrLvlmWjs+aIXy39WXqSpJkTHSp8dUPnoczHM/00TZym9brzVhfiWmh3JbqVddlMWIquCDw5l1ZK3sMjqNUP6pISOPApcURILsBlgzXqC8Dmed0kew1h1K8pjUttSpxB2KZCpUX9ENHNpm+LeYF28tn8M3nFE1euF0IVdqnyfvW/Mf27SvHYphOlX6pM7wWePXcOy23tpUNS5spc8PHofXHRqv2RfGGKGziYV1LGPLFYklj4bu/DGoVtgWz1GAZjaf3V6cht0PaZhhGKRTV8IMjNemuyzwHPehmZntVd0V2r05nsNonTKt3IH+a1oxuHzatRD1xZpGpwUS4sdpipHFZF9XXKygF+y710tR8KD7VVmoCTXGAkyLl7PYdKehAF1bN77S3miBn9TbfJmKn5kg4BI7nPNZJHTpgSrquq6Yc6KbNYo/ebSZ0C3mRt31tbsoBWWHBE5vpQXTJYDvrN2PoH7z/8ej3JyeaRWZugczmxsy6k2mbI5O6LYV2nOUUV8ub9hD1poFTAu4taG4XNEbphIpf0Z4ap95e6KJWoYHnZUpdx9xfEBGtRPA6FHKCeWJJcQWKpSp7h4jdUoTkz3BUGxJeGJEf1KRnidc5LTVs3O9Js1JWm0Egp50K0XCVDfkolVd3t1Xo8n8Je4NM63sgdyC2HUBxZ7TgSM+B77HnWKCs3BwqixRQ5X77xS3L6Lc0/gq+hKA6QyBTs9YYqpCEfd3P6CkqtCaz4oX7ypXPF0YCawPTiWyzV2dvS6S2RjwR+B3DdNIe311/v7TUtYHy/gF3N6tsvIg01Os30nRNlPge0mzbK2Vi8HPjp9+IgPgPLzaKRSxybtlmAep5XBIVbNKNDYqgAgXhwy1UvgLrIRzPHwQm+3H8pEzbrXeKHoxDWcaEEe28qx5gUaBanTK3stJxzbtNN5iZFMaaeTqLxTNVgJ+7ogChzqYBlJb9FGeAlebALUttit7QwPFVwtWik/NwntBVff2sFC6qBXuNCaldUxwzF+NK+/rmEOWhBcjV5LUYqv3HHqt2oJLpEtY2g7ekITHurpF/lP6c/+jn/pNBISULaihzil78VjEW1J74QObkxfgPIYnmxbruy6DbJXIslG+Yr8cXGMft++TyfONmZkQZbnoseWk+NPJeYo4l7Qxv7Drp6k1cTXn3YrLIOWVlD/dXnlKILt8Qmk9hnr2LfKSDFiya6njKNl3/qgCLjL7Ju83lXaa0ZvqmMyqR7LOaQpCXVOKq/1ScX5EQAYCsoXuLwcyUpn2/2r966GHdTy8WKOE5QLJNizeZqDp6C7UiTYfyAR3CdHaTIq7DkwipVeYJbgIM264g121KkgFrsmbHe3he9NRK1V72zRXAfdBSmheDH+VmAq3BOLRdGs3d7TC4jgWnbajfpYMW4PkXvBybDs4hOsTajYY/Xzb08xGHJ1zM0MJxJhV5tW/zNQPwRpZcUSKH6p6jenFav36dhxjWj0s1XoVWIdQJJLD7OIMq1U/Daw2mYwLuIXvYs7Cd6IoQ3EWr3dOsmnfbGvRSs9/JGSBaVUb1M1LuPnUaTC5pFZcRVBqGnGpT1150a5kRZv+w9DMTpJlCs3stg8ZLZH/iNRKzSa0ViVlhn7XuMollR77S2xYduD8xPi7sT4jlPikHOIjtZn1dq2SG9DiQrThRWW1VGDyvZU6MmLv0m7Ifj82wkvmBUMDjw9CcC7WSJ5Gk0vpK8wLe5odq6umcpVEzkZWxqMDUecDl7Y+6y+pY9s1VfhODEwQllSQCuRK4Tou/KuXkNUhWUE55ownnPDbW/UUzLcUN1fymEL515Q/bCVam2HiS3ji4g/pn+7SfUypI9skZnLkXoXARla6EfijRdeHvdpaKFdJLvn/Us6RZkQaOzrvEfzXlhW6v1nWiwJr7P3kB0QcsAiZEl8kuzy8g2B053UBA0eGECiyW0/18AwRE+7s0tdr6beWjHHMX4MKWPtJQAmZXHlJBh8TaOnqOjVIYyGpvb5BRB6/pdHFVeSt+lqbO1gdqB7JWgaC6ZF8Pg/HVDQ3b5iwSVbsKXS1y4ndPOYTiq9CGlCTIXuzgLh2iujNIuvcmx/c9v9pAUMAjOsQg2PPiD90ZebA3dbO0TafcCGW/p1LTXgAzf2JefiJ7MC1yHaMy4vxiJpGjfaG23Hphy71MQPLKw0j3t55tXhwfDULh6bN9fSTkl9O4xefzDCQ5qrmX1ghkYE+wgWYnn6FGn9oZ/gjQl8jSPPA6jEwkn07FCtLBjZnrbzLvI70feVtmN3yyKuwcvEHi581KE/o6s+XDNzuNu+q2spA0k6IzZtO+6EXv3WQvOU8AV/+FCZA2ruV/qaUcbC9FOOLlm6BprOhCit2/uaKtLvOJOELvKtckCOVm4OO51yqvuELL1dH2FzperbYpjUMMGCAGUx2452BV29X26n+ZWYyvbIRHqcqaJf1aWwZn4GolBPbpMhdGH6r9W+g3yXQcZDly3WEBRtKt5CO5p4LBt4KTETmmD1etCkaG/djrF5JF5WV/RI3z7KB9SNednaCJhUTX5N4xInoig183xqaE02p3HKFqFmRu9QQoSsqXGz92Jkd3KFGZSvuf4KGBE3eJfHhf9O8ZM9qOfJQ3GJG1e/xTb8fXK2NQ1u0+oi4p1Cokt2u9Qjmx2Vqc/tSJXCyezKwlyUfqkTNdRGacwvYhBadApeRAF1VZSJft+oLztm2+/tqADSzIiD666hEXfHS41oOvaT4Lk9Uo2Il+pmygyqnxm8mCMfUGfedoFZRSGZkNnAqFpOkQkaWQ7XIQALTOK3ne+5lbrFDQ2dci/bwSthGg5VZov2YE4zvETVSXUv0b4RVXVvZmRirLTC0X8hnwmKU5wRMmVoP+NEZq+wLGSTMplCyl1QTQtGqz9Ivmi7HkAD9vaCzDUYNwtdpSRDqp92ZEqRDZqczk4svLuaCAF/wJXPHDf3krKeB88R8Ck+Y8257eLAR0iXVa7fg7AXVubYqa5WBBHyoh4PGou8Rw2JHcCYVnScgRvMGOvfjuqpnM7SVe6AGhLLUAs6lCrL9yyR0Y9RMpZo/CrAuS5QKlrgNiDLnZmXGi0v7aIazXQ1vej54D3b8yZBSU+jU2RGBiLTglWNVWzv0aB1/aNKnUsRUTQewNIPtQyIfa/YsBsXDBWvgsBoz3mbkoUySdKV2jbeWgknyiC96s8S7bahdAyWZ/C6rSyP8yIvGelWpspnmtT1qlYARIuivfnPkz72lR1pT+dj6FJjhffxf9QelMtydEPGnnGEK3k7LGrUNZsYHsHin1e6yYYvDIZrrUID6I0ni4KZOVQqVYZJz25CMW0dE7rAno/FP1y3gkTUi8csoOild38pB0hYdtotkP7EqADjhR56J6+fAgDhUqPuplSe3JLCbbK4tkbFL4SjW9Pps8NPQYLmMatsLvgcPWMmJCvFPJTb8FRy6i8YDxFFwCLnBRSJ1z1EgE7re4sGSgee6Hbg1jTAtYlo3Gl+AM/fNq0kFjNat3zimDHfZqKksdReaALWhhwMQVAwIO8Fs3pcDBpxwoiYezKoiXefmqVcsvauIq33yhHOjzH5r+y4lyOolKX3OdQN07ugorOTWsVrxc4ASdex7X7PKQXL4Nuys+bz7MqLmoPXVygsWSUTbksZd73tOfnrvVhtdq5Ta6tTJRnJkkcI1FmV2ocDWKtn7fQ5TeDyEy9SNILGpsyZcr2vGWTno8S9JCmcygPV68DNdsqMwylxQBf+lt0gQUO2Tc4QqZnYfeA4QC3wxRuVzhwOY3cAaTfXg5X6J6izj8CTD9PAsHPSsGiUjv52i5TCMIZbMnZX7KAHaSKwLpoMAIxqVL9zuOTZu1mvFoPEoiZF/wohaBV5ha7bI37ALOc+e7G/sZIs8rV/oj/eA51wr5ybWF5TYIQB+KN+sEBVoRG7kSeJti0CkI1EO7EMva8MWXDSGPJ7dSzQoDSJfp03nc5Xi6C3EYxYYOJP5W3DXZVlo1SRG6h26vTz+23LCs5FTunK55yG5Vx+BsZ5jIt+OWs5NcYZu5C5O+ZKJYqEK6cWUgcQEPiH0aYjcSwsSvoJMUDf9EcdieuCeNJUtnHzywEXj29c0mEcpFWBoS5DPViapkk5TCPhVY6mABuuOiC1CO/hN19JMfL+41qu5Uwyhve49np8pO9GZWIginbKXJ5aufzmk1A6ZI7HLn/hKMB9UVMeCXXnCkAw5EuKK8D9cOlaWB3rZI7VpojPm0p7VMjB7dvqL+QQYEb+UXUM6dPa6O2imprn1qvFMKuzlgZq/bKFMakczmCvNRmIw2WW3F/MW1oA9FWpijxQ5hq2A4BuO9C6/CM3gRDo76aw4r9eU/SkFYTof4Iahko8tV2JlkGyfly38q42CjoO8AKTrEy33Lzm73TPNwM51rWkbiI3O+jaj4hzqNQfbC4jG2/ps9bBWue4Q0Z8jduIhEtj4zfe99ky7NfUN4/jy1wr89DH5tpq0BNULFPM1dHMMneXqZR+b1A+uDKkX9TgggZUwuJxPfKJsfvoAbTXE/qgPc9PfoZx7rreRYikkpjTe0I0PK+E6EFXucB7eAy0SQWKCLEAxO7p0PtWTKAGGpYr/4nquK9apFZY5pmqdVpSE88FxKsvDsalnvH5NCk8k1NUc3kDcswl+NneWlnvvtqreeFVEUeaOf3VQATmkwMaVOT23qJM+OAEXsWUw3bFn1ryq96Q3oGPfR/eUSc/IsDQsYs1nS7GIFxyePwd3NQvpJRQ0W732i/e2AeGT3A91psyfES6g5J93IjqnbCIpA1V7eJf+i+zgqUkE5X6/lSYKSrrSO8kuG7X/zXW5ICwdYZdJKNSY6HpIzEup+dCrCc7HE6OBV0/CLO298y8QSXnKndzYvoYrG8hpOdEtPkzPFLCzuWBgN0juyl8IILndR7D1UNd2nAsXiboBrKGzTZISBZE+/4/Mfns6Kbsp35oUm6JLBcY31obDlrvL+qRmNLFgdXz6WUkXhiulMBv66kKBxiwPq4SsaREjmU9VWdyPQYbEit5fhSCeq5RVv/zZBoZF5e46pTJNmcSep/DS22RZQDghCvXeaPfwHFeqgnwRNB0vAfNCbncG8z1FIBSUu8DIXnVspOzvP0D7osGv6y8g6EGbs2cn3DU0dkZEpCaA8UTcudFg8cJtZlUkMKqPAXarHseb5KfgZtMM3UPH+byQvss+GwX382zLZywZOu1nJqc8Itw5NBe4Fh+GGk2Uwfo6YTllQbXefiM4AeknLE+jNbhrn/EClme9sreabJe4/VIAvGSofDuC+Nz007iDM/pQ3QtJV3CX6MjgpHcVsMArpnQ44hE7rIrVmz9mNKs3ZW/FtdSf1v1EbGgsnINw7wTDWpEYLKlK6N3HRkEnslyFhcgB3t4fBlUxAtGkxz00B0gPWZvQVyJ/CIqf/kc7VEwYL2EeaLgsIG7VXWnckhIUGqg10Fhkx+mb38CwlMo6Bwrh0L0xldA4eGllC4oXWZFw7nu9UEZkTxMV5Zx6oiGEcVZNOQ7mgfEH5gD92eQquoOLsRFlMq1nrv4KvRkSwkCA6lDFSlAI+ar46HnWbaewxd1KrcDwxoIW5b8u7ikEOuEU1HqtHM1Or0g84ae7yCk5iGXCKz2c9bioyeIdA3zrISaZlGA6oHjrmWY5tQA00xkXuAp+rhWy9Swzgu1FdFThsKqrwjJJy9Nsu4ehb5JoT3aDNZUNW08ZZNklBXYGsJw1165x0H7uiM+gqaZMkz9bh6DQFrOrngeOPFtCv3APT4cPXDs4/0leum5Cnqhj6o1sTSI6Ol1lgODj/56aLdHWAMQRAaojgr50ZvTr8jdg6/rOYgISriQvUK0Z7bSOqnyxw0twplvCMnosnxQZH3FaQlPVTfSFSscBeOMkVM0BEeJwXZvsbQEoRG3kD9H+S5xClS5wTp33FyXLpEWpaUtoN368ktBQ6q+hMRF95h0+tAjBZrxtTwee8YUjyCxJ1RQwJ6+Acua0XQszJ97BtA7Abm+2BVsG6TjuVqkniQb6pJTbU7VcjSdPNZyqPSycb7F+jRRgNt+oB/3PVRhV53UXT1NihRtHaU3c7RDTSBz6rqI8kAvKS5DHPk+La5sVzdqUjt4OCR8/n3rb7TY4HmDf0p8G/HJ7Im2vnr8RLzDCYS1fIR/zZq2njSoqViJfrMHkrRx6PKHPp2yuvFVQzUJhQUEFnV/TPrIyZNiPq7IXYfrnxsnNmVzgDjUvs9eF9+FrgM2a0y1XZeiJLkov1DQ8kEEF1zy8tzV6UxhhFCsw7xkMi47oz5kPN96QMXk6TnAhm2iz7GANvDGtfnhnw/Y5lnQSL73Br2M88kx9crB35vTggEVfQIYWoEUD0V/6pySneQjKmhS+wmlVQMXIGoz1OtypK0mDLCCMsrW0yQREKbmZtClHXzjcrC+ORcWJkDGsXaigg+k6HtP2QJythUFcgh+vu1WQIZ1gXZjBi/53+UBsRmgR3ZXmesDCVpj8c9Ipgs68HorXOh9Xje8QLLPRs0HMk153shfSRjbbyzPlvPUWXqRON06GY3IcK3bQSbF3Ns2XVvh3hNZ1uXSELrTIoMtuNHN3sS7Nkpz8uzZPAjivkmSMGJ3WbOwFzNpAAEUntbtVhrox9UHCcG9R4OlnnTmeT0inxWMm9gYkPlYwh6iIFZiMtO9pqWjFLeY6BrG3bBAMBikm/g36teKbwfn9hw7I6f2aacg5eY9mcFUWZxSfWRP87/Ghs/pzwCfwVk8oLEuAsr+LaeTswoIWHW7zpVNuzYn6jaocI2mx5QOCOKA6Ko/yytZCPLw+6PwF7Eq9x+49m/dKnX+LtVz4a4eU6pPyBVqibV6xvDevStmuuYdsQ5KRR7VngTr2d6yyLQ4ZmZrZF+sHSdbMwdQPeKKOxa0XX76kuvwycRfqoemT7zSlU0rExA35qveIY0havLUgehHa2DSlgGrFu65aCiIr3sy5kriPjmLMplqQWTY3OkmhtU6KPIjocth49YPUPLEB8bu7Wx6DBd0+kMFMCuHui23ZbZ3D6pd5y/+4+wpS1bZ4I/afqUnHSNQfMsFqN9ckG6f3lmuQCx4IgyMrrL8J9qh6soLCZ2O/LXvvI63jecJGs9skibIUmOS1q9w3NbCNmZKv2FBdHOwHiJH5quwNXDxopDMQuPAJF0bXJE1b0y5FtvRQCt0Y+QYYy5QrCTuXdfqy0M4Bafky//iIdPCvzZOJ01TzipfahXC+mAwiVxZrlxhFBx0AbKSnWaUMZoGO0bC+EmdghI/Xm867zCVCuK/lUmBNPhsy4mH4uuRmXi93bEJZKJPH3zEtzAWOO7kaivY6C7G5G1D8hrbHWlEP63dNTzEkaKPwnsZDR+ycYTT5p6jNv1+eeFX++CJWyKP8+5MBFJ735/ykEjaei+HA5KoOoSNJtsHgCg4pjHGshnSyzC7fKvcC2YP5UJZ+FJo0fitb5cu7HWSb0wV9Y5FF0qErq39a5RnB4WmzhMKse7OJi2Gy/00U1vWibS566IxO9HMHwIM/kyugvS91CAPViGYduRqZLq4FZwd2VLwQXRokjgC/VSMzHuDTaJvAsWkJxSWh/B0SGhnbncF0SxgAcuzBmoAItyTQrYEZTOoL1vNhW2MlZcbu6U1P2RMFboAvf5anKXCmKIFGU1+9q1tv7Qflbf/QNshLyz2itxUTlD0p0flR1LkSylPjbQPeif/cdhy552xFnZkJTYwh9SRuabi0vr4JltI5j2eJoY4LhUi/H0IrkJE0slFCZwEikgLlnL13Odvr31xAcmMd18HjeWf2hNQeguM7jYEm/ph/f00hqmiVI/V6pCX4HLheHcaF1IMk534q/D9h59PoYbUWGo2RCcaxcm5H6y8BWBUKKS/r6Fkbyt6qQ/nE+dCYDMBcc6g78RRKwDxzRnhISungN5ZmL9U5zi8T2S6tEYenUPJgB0VkJKGAPN2vTUH26REYLiFsqN3AfA7stgwvwygAQla1Ab5Yex/Rqy6JyFRRwKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvQmFzZUZvbnQgL0NNU1MxNyAvRmlyc3RDaGFyIDAgL0ZvbnREZXNjcmlwdG9yIDI3IDAgUiAvTGFzdENoYXIgMTI3Ci9TdWJ0eXBlIC9UeXBlMSAvVHlwZSAvRm9udCAvV2lkdGhzIDI1IDAgUiA+PgplbmRvYmoKMjkgMCBvYmoKWyA1MDggNzgzIDczMSA1NzIgNjI2IDY2MyA2NzkgNzMxIDY3OSA3MzEgNjc5IDU0OCA1MDMgNTAzIDc2NCA3NjQgMjIyIDI0OAo0NzAgNDcwIDQ3MCA0NzAgNDcwIDY5OSA0MTcgNDUwIDY3OSA3MzEgNDcwIDgwOCA5MTMgNzMxIDIyMiAyOTkgNDcwIDc4MyA0NzAKNzgzIDcxMiAyNjEgMzY1IDM2NSA0NzAgNzMxIDI2MSAzMTMgMjYxIDQ3MCA0NzAgNDcwIDQ3MCA0NzAgNDcwIDQ3MCA0NzAgNDcwCjQ3MCA0NzAgMjYxIDI2MSAyOTkgNzMxIDQ0NCA0NDQgNjI2IDYyNCA2MjUgNjAwIDY3NyA1NjEgNTM0IDYyNiA2NjMgMjU4IDQ0Mgo2NTAgNTA4IDgxOSA2NjMgNjkyIDU5OSA2OTIgNjA2IDUyMiA2NDAgNjQzIDYyNCA4ODUgNjI0IDYyNCA1NzQgMjcyIDQ3MCAyNzIKNDcwIDI2MSAyNjEgNDUwIDQ4MyA0MTcgNDgzIDQxNyAyODcgNDcwIDQ4MyAyMjIgMjQ4IDQ1NyAyMjIgNzQ1IDQ4MyA0NzAgNDgzCjQ4MyAzMjAgMzYwIDMzOSA0ODMgNDMxIDY0MCA0MzEgNDMxIDQwOCA0NzAgOTQwIDQ3MCA0NzAgNDcwIF0KZW5kb2JqCjMxIDAgb2JqCjw8IC9Bc2NlbnQgNzU4IC9DYXBIZWlnaHQgMTAwMCAvRGVzY2VudCAtMjUwIC9GbGFncyA2OAovRm9udEJCb3ggWyAtOTQgLTI1MCAxMDE5IDc1OCBdIC9Gb250RmFtaWx5IChDTVNTSTE3KSAvRm9udEZpbGUgMzIgMCBSCi9Gb250TmFtZSAvQ01TU0kxNyAvSXRhbGljQW5nbGUgLTEyIC9TdGVtViA1MCAvVHlwZSAvRm9udERlc2NyaXB0b3IKL1hIZWlnaHQgNTAwID4+CmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyMjM3IC9MZW5ndGgxIDQzMDUgL0xlbmd0aDIgMjAxMDcKL0xlbmd0aDMgMCA+PgpzdHJlYW0KeJyMuAc0HFr3PqwTBCGiJBjRe++i9957GwxGG70T0QXRa7TovbfovUSLTqJG76IT4T/ue99L7vtb6/uWtZhnn33OefY5ez9nDwpSJVUGYVOIMUgCYuvEwMLIzAsQlVdVlWbhAjAzszEyM7OiUlCogZ2sQf8MoFJogBwcwRBb3kcuog4goBPUJgZ0gnrKQ2wBMs7WABY2AAsnLwsXLzMzgJWZmee/jhAHXoAY0AVsCpBnBMhAbEGOqBSiEDt3B7C5hRN0o/9+BFCb0ABYeHi46P+aDhC2ATmATYC2AHmgkwXIBrqjCdAaoAoxAYOc3P9YAkDNb+HkZMfLxOTq6soItHFkhDiYC9DQA1zBThYAFZAjyMEFZAq4jxqgALQB/Tc4RlQKgJoF2PE/I6oQMydXoAMIADVYg01Ato7QOc62piAHAHR/gKq0HEDRDmT7H2e5/zjQA/4+HgALI8s/y/09+34hsO1fk4EmJhAbO6CtO9jWHGAGtgYBFCXkGJ3cnOgBQFvTe0egtSMEOh/oAgRbA42hDn9xBwIkhJUBQGiMfwfoaOIAtnNyZHQEW98HyXS/DPSgxW1NRSE2NiBbJ0dU1HuCYmAHkAn06N2Z/nvDVrYQV1vPf6AZ2NbU7D4SU2c7JnVbsL0zSFrsbyeoCfXBZg5yAnAwMzNzs7ACQPYAkJuJBdP9FmrudqC/BlnuzdAwvD3tIHYAM2gkIG+wGQj6B9XTEegCAjg5OIO8PR8P/IlQWVgApmATJ4AxyBxsi/qwOtQMMvsPhiaBA9gNoMsMzUEWAPP9zz+f9KFpZgqxtXZ/cP/rmv8J9h+ziAjEDeDJwMMOYGDlYAawMLPwALg4uAHef67wT+z/jfsvqxIQ/Dcv5ocVpW3NIACe/9CHntvfIQCYXP7OC+q/y4YG8McWACYFCDShQQDqh/zXY+ZgNoH+Yvn/XQV/Tfm/cv9+lf/v9P8fThLO1tZ/eVD/7fK/HkAbsLX73z7QlHZ2gpaHPARaJLb/46sJ+k9Zy4NMwc42/zMs7QSEFoqwrTk02Rn+PmMAE9hRAuwGMlUCO5lY/CeX/h5Qv69Ea7AtSAniCL5XH+gkZuZ/D0Lrz8QKKjGO0Kv7awwELa8/L1fc1gRiel+HrBycAKCDA9AdFXqhLFDIAfCE/oUWBsjtrzQHMDHaQpygkwDQOL0BZhAH1PsrZgYwSQJtbID31r8MLAAmMZC104OBFcCkZgF6ZGADMMkBbYxNHyzsACYt8D+IA8Ck9IA4AUyqYPNHG3BBI7SDljw06P+auKEzLB6m8ECh4wNkgXJUtAGZP+IIJWlm9gChFM0e+UMJmlk/QPZ750fDHPf40TiUoSkE+k44Pt6T6x+j5YMRytPc4V4E/rFAqQJNoHnzcFpQsiZAh0fBsULJGjuAHs1ihfK1AZr84QTl7HB/j/8YoKxNoLlmbf3oJqDMzUEONlB5MrZ2fDBDAwA+Wh1KHfIIQklDHK2BjhYPJihrYfGH+7w/30cQylfxzwlsUMKOznZ2Dve5+I8RShmaWNZAmwcTlLS9M8QJBOX3Hxn4ZwRK3dbZxvheSMwfwmb76+yhMTo8mKD07UAO0Efn0WxoDEAbqNXx/oH5x8rz925/bsUODccO+vTZWoPMHllZ/rb+yxkaGdDxfglHqwcjNDI7a+eHUNnvLwPyuErYofFYuNtZgB5iYef8izgY8sCQHRrLnyfJDo3EA+QAeTBAg4C2EQ/FA2Xv5PowDhVQJicLB9Ajj/tshzg/nBjHfb6DH+UXB5SuI/R9+QdDyTpCE/CBK1QsmEB/HAQHlKot+DER7vuYH1cpB8/9MjbgP62czP9NA1Poc/tghvIG2TsDH+qMk/X+ukCO93L3pyvbw8CDERoD8IEeJzQE4QcEpS/ygKDURR8QlLfYA4JyfkhtLihXiQcEpSj5gKD0pB4QlJP0A4KSkXlAUC6yDwjKRe4BQbnIPyAoF4UHBOWi+KB5UC5KDwjKRfkBQbmoPCAoF9UHBOWi9oCgXNQfEJSLxgOCctF8QFAuWg8IykX7QXChXHQe0F+CBTSxAjn9UUI8rA/V/ecA2z8T/qwunvu6ATuYONuYWYMe8pGH4y9xhfaRj4uch/Pv5f9cGxrEQ9nxQIMwfkDQIEwePRPQKEwfwfsMfATvy+YRhHI2fwShTC0eQSjDxw8QlNqjZ4AZysnqEYSSevScQPscpgdJZLl/vWwfQSgryCMIZWX3CN6XwiMIZeXwCN7X8SMIZeX0CEJZOT+CUFYujyCUleujFxPKyu0RhLJyfwShrDwewXultzV9rGMs9+8TyOZftntRdLY1Bzo421gDnR9xu3+inMDWpo/u4/6ZMgWDoE8K+FFM96/V/7w0LPca42gHNHk0/V5f/tW43AvMn60Ly720/Nm8sNwLy7/aF5Z7dXnUwLDc64vSY8z17yaG5V5m/t3GsNyrzeNGhuVecP5oZe41x9HM6V9PB8u9+Nga/yvEew36V9/Dxf5n43MvRY9bm3sxetza3MvRH73PvSL90fzci9L/dj/34vR/tD8s/9P/3CvVnw0Qy71c/dkBsdxr1p8tEMu9cP2rB2K5l68/miCWewn7dxfEcq9k/0cbxHKvacDHvRnzH40Qy72u/asTYrnXtEetEMu9lCk+xuz/0wyx3MvX/+bovXz9kc9/NOomzg7Q3sPpr29W0FL6L/7r2zMI5AYyQZ2bhpjwBVhWBTRfVgi/dGVYH+FHPEy61GJlGMkxQHHqER83XIlRTUv9JlskMdfNImFg2aYgYn+Zvjhz4rlWTVLjzn7OQCKxZU5iHDV9dw47Get58er1NGYDzCfNBBFi3nyHHhglojCs9ieCpuY9qhSYXlRVXbOxrpTPCyS4ZAKbFVrbKwpS5V684tHY+6Hi9Nm4X22d4xSfKuOHTaT/arheaKJCymtZ/tYr1BjXcqzlvi/988+6iTrC3sm4+K0fkQc5PRPn638lxo5cLlz+3p8wMB9mtNeAhqDVJ6HZNE96ZwGnQOd16aIMbUH5x5b6z4jyATLSCBSj/Qo83zynkSg4v6QqW3rOnplK9/fJ0Ex8QBYIRELnOIhiWuaw4S2eI6XnDVMHIQy8R4ptqEFHMKNwxXKbnhoRkllTbX65icQoFzBorlCTZuWPi7VwAClECOzzAwwn8+OunhrQjwDjO4Rnt+5qjj2pGKy83T4frlPtV6c7OwbQC+gGa6ryjyII5gtWYqHKrHiV3CiZIqcooWQdhbd/Z1QRtmtmUqtO5cBVU5pgz+OpnIrVuP74Srr0tc6HKEuV3zWZh6sfadobO1SAqDaZrEYe4k4v4yWaTYkGFFZ2fe4svvqXsu3/bmtKUo02MxMvFBv8vUorEh79Zjnk5dZ6BQGFp8thb7eO/Axn+WDFaURUY5yJYyKhHI8/cJ6/Z9f52FHCeXKbkFCQdpe+QIZpvG6P+HnbKprZgqTlcSJiHB32RzFr+/Z2n36EobLS8L65sXrCn55jNNGEjjJbegzfnloo28fftqGammEeLDFXgwTbpLllYzQcSqrauFeSaHGySvSrMZ9c4sYxr7kMV3qMN0zu06j6DmMp0Kcx4CppSpQGav9e+uFj/w6erNKDdRETiQXd02+t7vyIeO34UOLLcVMO3IfGrmQmHRwiyaXCUT6Xfi2yMpEZb24ltdm17B8lY29q3r2SWWhF4CaNfMFuSUt0kKeAR2J+quqSaQazsiQleECU62iy9Iq8BrWjjBoh2roSwcyheG6uZW0+5NRBDlmbxLpEXk5VohJpc/hb3diJVhzXe+6KeDYew4kpmoJImlOekpnwaiw6BnsBn9A0poNq5eqjzkkh3aCku6ZL/4j8WMnFdPnCIRNiaTHVo7cN9mwnwI9hQwGf8CDG+R2UlazYauRc074kCfrBXpquYS2eYmPemk+Vyuh2aTHpBc6i+5BcVD23GPS/VKackTMYsud9/fq1p3IkUejNkxXystvUN/Elij2fOEslW/F6+qpEbIcRyySA5XndnrxU+Dpb53Qgrm/+qEr6UXWvqATxlUCm72sRNkd9zIOj7AzBnkNpz01NB3i5pdajaH3y9IhXZ/nCEG4Oe+WxxHrt+sVnKwqex9r+WhtL9WdAGvrlTZtkiMYclvo7S68qjxfWyrJsQacrcdgd9HrfpWX1MgKQFxuzPtKbmqgdlueIImPbl9c3h3atFBRy5p7pbwwIng8kT2cI7yPK0LHrcOAipk2rMu/ut7hDzfngl7mxS7vKj/CherXU70XtJb6HYRWKd/s8KE27tebuk+Rw0jVcJI+0cFo1I2496oCA2CFXqQS1mbk+Xo3fGQFry/JbLCOLrtgW4x7wDeQ8ZFB8KzLyMilhiqyhRhZ7yJYwZC3ipAm+DuKUWv5pUnEe8gt9wzcQZew5SoAEoHvj6pgq7sCgIiuxPEkotAS3tV+y/+tFzJtVx9/hwTTvgU83fMV1pdpG+JzoqfC6CnzbDqVeCTdMGLPbjV0XAHiFye2wk1kk00ZP5yXHwo87z9+hd0Cu25s+IPuBeV69llCnq0jEsLIneOERAhmqTbqaLKiQwc4Pzt5e5hUNavLOjC2aVjb+IWklATdPK1SS4o3Xn+YWg8YmFqolb9V/zppUYfh8ByFDPEC0GMQofuHH9JJvhX2zwkww9K0kIUyb0GeikZZ97yMnMvsm61F6ByR21Xr0qWJTEsTpDuSGqyy+Aw3DRgk6+stbOnRlNEUEumerKF1vNL7UrkVHnxi7c2skvfS4DnvTYSbQUMAB/Jn6q0HTbnUTWPFr6X1ytReGCBOvA4h0Hnv6hyKt0t67UpWiQsfBnkYBGHpU+M9bz+jMe4au5H98f3m1TzYppJds8BG56RkE4j9anBqzoA/sUMedgtPtnNRJg5iHM0jlJ+ZyclNdWE9jwjEjd3kTZFCKZ/++pJjtuqiSE5mg5GBZJ2/u+RIdVOUceoLZc4Wf2+NH5aGww+1NGhf3fZ9yqwJ3covFBylKJoQ4Bm+N+LT2l/3mxVyA5wZOiIxrS681Kf/hdPVNWYUp/l21UFW73Mqn+L6NTIZgyejBYcZtl93ZCsam6Ng11toR5q0qiwMJnQzpRGKSK+/KjFKH3kl82JWN5kg5IxS3fHOo0CwZ8Ad9yKjoKaOvq9K0mEoaIs4WhRGLC3zvH4Dz6VaqA07DoUbC9M6UI3vmO/bCcL+yY3DU2pOUqTGSfLP3tEblN3b04qhPmEeQZLR1lklRxONDZzKMBTCsX3r3ejTbz6ptT40e4RkwPXlOz5vDwMhSJw2cbn5RkiCi9BN8VfumPnGzJyvATJvtLv2tIi4umtJu14HeMuXhEGqRk/o1ez7GVVrr94zJbbgc4/43gRRhKDhoGj7ZT5oXMmnbjQczstMjjkUXaavfd+zY98xKfQqC+wksuRZ0gYlHYSo8sU54nTBHQxu9XBecZ55gPjQqmaPdWqQx7xdRPprB8J78pLWkX+Uia2Llo2q42zMrmOc417fZ/skLJRJUW9tML37X2Wlxx3F2gCYlmS5nCVQN8cpQT9IqZgbzwmDwUVrUcj4K8KeeoUDQhH5cUY8WKqXqzO/JhLpQPntLYNI9M8RsNR2n9/RueMttLSIDRqfx2zmRkJErAxNNO1dUhGKnhOtc99swBOO49d2Mz4LPjJILqJHJQLIzsOGUP3epc+Z0K14/a7EogcUUf3bo3lFIcvr5xCofjYK0I9Jb1tcldIdn61quM2TiRoaWy3bVevU7Sxf1b0eS3HS+RsORsB/fO/X4OdLIT0ylIp+0TG+JcDIp5O+7xA5IyZC830qv6ROFQU6FdXV4h9PHTanzmj7AVK/B0cagPFvqe/nNMOG568gLP9mfGLL2yE8R9Fsiw/U7I5lMG6WnSw4g3J/gvjIsvevP3CiT9SQMfdvrd5Mb0JaTP0PwS+JbKKaBY0CmJYGeVANeWhF+skJFFh1/4wGy+oFYZfBMdoRtRd6EQdMyN79A1fyHsVtqgkXPMLwVwssY9HERjJ6jXtScK1Hx25KkFv3PrjLMqqTXcNgiAS0ScZ5izZ8dgBTH620/AulR9aoxGf223P0nKAZuQwzgBk40azJykL/oU7WK3jWSUEi2XGFaxnyndynp9Y2zTm6P79a/3BBsVRVwBZtPG4zwxKbMwfQRU7nIJUu+mHOeMkw8/NZc7kQvvpKeo3PFHZ2Uh0JaVDmS6bX8hBRR7+YWZ/tppVtzGFEf6je7kyjBONL9cdBZS2EBTXceBf6upHv8LWaGJlqgqO/YC9YVnDkR86SQ9dGuTFZyn6LBH4gXQeMl8EbXq10kVfZ0lLwU5HFUL9oUkOVJmLFxSILi2kAMECsYq+oOMhgU8LHy8J5iyN1J7VbyQIByrysaqivZkrjujVXKh4M00G2T6tysNVJx9An863DJyXFSWlqvCXDpRI3NbBE49tnizRKdjD+aDGtzTYk+qVDNOPO7A/Qd0fVfJcCyThKazx2Gtn6G+q/CCExFswueK7jf4l2+D8Bkieav3ahV+JKYsX9GkkWbB4sfqj3Qn7b3WR4/na3eAKB7G/HLTzPhzN+ZmLndIyZUWGk3Ke6FXZdV/DyjoER0QCQC12vYN3B+FQrFq8s2vvlUjGoUxV0biWh3RpqKSmobooPO+kkkSHOccpnph2sqamn6+tMT+27lpp+n7W+kFWHcvw9OOUjA6ASJeJsb7JQ64RRWFYfT58oi6jU0bGxqUPI2BZu9TB9aWQrT+iV3xRqW90PQJ0grmXXt6MkbzQrIlOG67652dA41svuhvUoAbGaO+L71ghdGFRMJgYnq/lHeCLsux3O3JGlMB4zyVUpufd9wtheTle+GDtFnbksDfyekVX2uu4MtBg0fzTJbNKCSIdtIKQ6+lgxXmcdnZU2N2r/W/Jqy6Bu6h0LhMBNlixtIe7kLqpqMZ3MyZOhKTazCxTlJ5Ji69OShI9vDrDNBkBOeMHVKl8an7IrZ7TeQDZd10EtV88qyTdAFTzT733y6o5Thj24mTYKoNBlJnzNFYdY/0ZU8X9PNvln3Y0g5/cL2ZEDnVI06+VcQB2fBXk6sjuwkqQz1xHKMegn/M5vDo/jruNkB7nx//ETNaeap4+0ETcP3rAcECEWzSSml8GKRGMHkl59dPRBewFONRqlHUMXJ5XBqsFlwqlypHhRNaZ1DissahVDUpOVx73iz3ZRoFCcxmBtZxaS6OGvYdP2H3JswexsYfa+ORiKG2mQjnrMu0xy1N28VSRe/+nX6jEP0HVuvaE97M+ugVJq8ZXGbJih//IVyvq02QgbSKCcWSlD8yWtsai2c1vyIzPN95Xn3jaPtfZoQWpIEGI7nutWTlETT5vVsOSGn31QbK0NffEam2x4uxPU9R1y6YO2jk5nCNbYoL1cafFfMUu9cE8tn+0lnLCvxXOrriYA9W7DVtKFuBHd+oVYz29dQc7sgMNX3wVbdt19ghRFp1+DVRCxdvwNdjJDkrquw7tirBzr41S0xXmAVp/DFSHdWLZX04hq/HmUhDqdRKl6eoycNgr9LDfFPukGpa5EejM2yl2LZ/tJ4TMtGu6cdxZXYuBliiZuzUfxi9vDDUuwpBHHrrUgGQnJhAyTRTLABU1WdaI5eA7k63LfJ7FTvKmlIJ8dOvBGtHJ68forEmLPPw8LBOha/GfY7nTr6+p7U840srDe1v7vhm3hch+37OMOQUthak9UVX/IpTLKcJYrEju446bLHzDhEtgG4nL0uf42JPrM67g7nfZ/weqiMeMcW1y/xe155IpxVZpygo0FR/Piwhmd9xUCB6zdXd8OlH9dJrE9obUXMybkzWLgplS/HdF+qFTm4Tv+Q5H+zF2t/DTn2Iu3MHbSx7FDMoAh8EoA+6RMR6vIB3pct0R2mSmWGwWoOAzXrYmuqsqUG0UTW+gC3JVK8EVb0m5e555tsTqGdST0293lJLwXVRW3i47egQPnzPY2uSm/OwkAUh1luLjib3e3b1dLQMyRR/b7yfDp+keqn0xT+27deN6OdST855fBtUbSx+S9EyewlHCna0RmkjQ776F/D6l5eVzbVDf+MRApdpCh3TnZoOW5SdoxF5fulU4Ps0lJX1oUa5kVQsmZO5yQyHDOHMKVJTR8qsL6PsPGzD0xLPWjM9PWoHKPJdaDQmi7mRlmIIM1pcEel8+iCUV2kacl84wfr2Om2cMqozxA5lukJ3KsJ+OwaFPO5/Mpjd5DneeCzkV9PjuQgTXCbSmP4MxVffqXeic1wsQsl1oz4KxN9OnmaK25uWJuDmGgnUb+TzF1EZXhL9f1j0Cf28N0a01hiYuKX0h7kmumkHpWyCirNFlujGT2xtmSiS7fjKqfFwRfhXzvrxygyu+LTtCOvLlDDd9HkCn/VnSB82PA3Tc8InKel1PDyCEwOpDQeh5DQCWHEEAjgzBv4yWovz4CDWoz1LhAhVP7+ii+bI9iXB/MPSAnZKXnUDMmiZsOHxZFbNmEnsg8SOj5wwAVwXVSk4TtI689ntwWJwTZ0/mwaH6jZVh5fpmmXffOLMmCdR9lPGsbL/XrI/aJaYhG1AmZWaysBbNVQaKXPP6tVSMzReZZP/NOF3TzD7TdGSL3xqIf589qYAUGCPuE8c14CluKeNyy/+5LFXjzZEyda2C9cUlEDXKu9AVRKB1M6ibPq8lz0ROz4SklbIRgR9nsg2VcKv7Um7PTCq0Qq2TZVO3LusGjfexatXONZPVTyrSV8FU7pqbvH7KLRST2nuoSnjYpTUAPj0RqJjbbp4r7hsOGRsEuShbtTBgbZa7q4HBEOPx0HkrUxrri0YCXPuWMUd67QEHtztB8pzzdFRP0H0aZUko7FE5kG2n7iz5TXY0kYN0r9vHagVwvvEhYLuXs1fkTuNqce3AB6dSfqZdGHHO+YuHNgRUP2rMmPXSnwlJbHv8abwkDTveu5tk2xL6nTO6wbkXdZx+4hKtsikpg7tBUOu4HDKTXjSUUwKx3EcnCmRB4usZ8H7Fe0Y7n7+MlUu7BMPuxTTX88cQtAe6JS3R46FWnNlFbmW4+j8nNEhWi1WU1qOCM0eEBDx6rUNW3ASxNxYXBmAc1e0CaW5f145bMc1wpFwzhVljZ97xO8WPs1maljlq853IjKrF96nuv8+BYSwsykN0HCSsfw3fLJMREne3Nrwktpnl7vJIPW70lPM4sMegr3SsdkMH+RaYbF9p9J+C+TgzOuCs/POJNUyitSEPvTkEkhkGVl+QtbzXZb2xTOQu0oihJnszA3/zGqhZJzHK2bOLeKySp1wyDiSg0V0+LIOeLAa8vV15hAPF4ZjhCqFtFMiHDXikUtvD8i7tzXH29Y2R1KfPORUgaiSUhQjLAEnFfTPibStppMxHfmO+E5C5afBjVMiRnUXJj6zCD1syeofup9Sna5qtF9pYqXNZl6MmV1GoEofNFnfK0o7PGZS2SWoqFzgSc4qfTACqaQpEUXB7OtLmAHxUGFzaJoZgp2D/k6l1obttAinY11UGcu3Z7mrltAwocANB7YlPqxj+Omc99m5ySwt6TJJsoAa5c/VkPxlZkVpGTQf+uXGV7UrW++pGq5QNPrE4InDh27/AfsDcaLc9Kb6BblrN81+U+UBtewbuUagWiMW/ZjmRh1NCL9tRkSfdKOii1v3g2A6D+Qw2vPf3VumWgEjG3sHWj/RPDBZO1IefeLiktY9+R1kfEUj4cZL2j8khfXHxLeI/l68FydMWCZnEZVkyw5DdklSuuQ1j0i8GKsxY4vAMdTY51JEI4eCS4iivdb/rYge/jhj+wYdD6KhLU0+ovoJVPX2vCVHD2cakYf1aD6i/dE8ZJnqcdkb5YlBeWDayfRiE8xQpS7bzmdbYY9vEVE8Xk6LDQbE7vCBeDRleQ2f3wKgOF+OviJD5exkbo4Mdf2PF156JgX44xdLJgsgdsuhWv7Wc/Ec0yK5V+Dv3EyjVbK+pLUfkuyphaS5Lhi4CNp6WBUNF/iNanjuPU4XS1dw7zdwNGw/0KwRoppMVs2+8XqVElE8shZ/zb1gm3+w6CH8MTQCzWsAd/UK5lrdni7IzVTi85bbXBDU8fgRmY5PUsCwWAcDCfhhSGxttDn4NJva0+3xqnbNE+XLTvKnXIm8G6MIvFe7SU68XRLdDnN2sE74EgnvjSKdtthLFAQfKvHfgvMlm9Tw/zI1Sf7chjRRYRRPXPWq/j51HSb/gCNTz788eqHbNCPbynw5bM0iYlao5fZRoQZsu3Etf4oYegItadwrxNWpER86adz6UJNe8IrGj8X0H1jbG9LxRYwwecSxlAA4fH8LGbEKF95B8N3RXxuAUoissZKS5O5wPyt/ZYuKL4/7vXYiCbD8QQ41hCJrosCdwV51YyDPp/G4lXz6QkWt4iysN3HoOMnbhF5nQ1Jadq2EKWbcbkbkbfVvcf5yQe4neiV2owkXUihKae2Je/AA6rkxT4/FtXeOke/0o265iQ2QfTTJ8CF9yQQcrXe+HGCphiuYGoYNXbdgRMKy4ODUqy4ga1cTxJjJRqb2cGKwvKM8I5wXcxfFX3JiqtMmqSvOmK9cViElmpIBfYGE+d8bpKUDcxnoDym81ELVV80ddqR3LwtdGsnQs74Lp5ZQW+kyagY80eW/r4I41OGs5aV46/pjq+smdIbPhqVM1lugeyT9x3th8nAk8Hpz1j71p2xtsxyX5rvCH1JYguxX4Uf1zw0KSp9uQ/8gsH+A1MWjq1jtM/894h/f7CUQFbAZri1TTuBgJ/4MZmj0AChdr9Elivb6CvK6tLZVkL3eGqJitJ0FNqWQvm5pwr9nERvzsKCGZQSeNSehNaaLDEf2YIX1XNkjDtTDav9E3hZAYykMXOfjeSxa8UwaIjxmSTzqwS7bQW+o/zWa0PNEGjvwMfVP0HIpw5q67ZJNduHbVBnJ8Dj18z2FJUKsTwlmeEGP/mUAO8vCXfHIcK+rfxCd2MQB/+9fq9EsdFX3+kXGQoXaXx4L80mf2DuLcGNvarJg9OJlDfI5p/EjcrKDPZBKlfmGrJj09LbYgmOX/Q1Yig1R9ktVyGQIp3C8A42kct+Vq+MNL/OeMobuwFmRQoxpxsaFjE6gj1F8PpoEV5QXsnf6giHAnNogh+2zxYZIFjAXkxw6+UxhQXwSFs7115LztQ+UakJ7GzayOluWUD5mZ/s2vktXGKqCURUn7HcwBKrW/fpSl7iG6xydD9Zchdy50xkyjMna7kPzagKlqJ2WmM42nHjudQmYD5htAT7bEk25eKvz4e51zQp0EsdJS3mlqhNb0iMu13RVPdh8NQwUS6CptQxEH//yJs24J1UJelvRv7xrNaGy4gYTuBkIbjanZfC2HdbzAMH/MNmm0vTn7zs1jmAygAVxxf87uQ1O6x2nHTfhpXU2Cbyq1yOlLCJSYyUhPi49xMlNFPBoCKuAxtbmGeCClJs2ld2vKCFjl0MeqW7EaHyMRMEz7zafbJLpqzgpz9mqkB9+6o1mx0xmkQTQ33fxWcYP2d/d+TYZ2wTHcpemdGVunZ+lQG+/IrCulEcJYquefwR0YTHypqKBPFZPSbazUj9WBKgEw89fjJ9c9jM9CK+vORLHTptxhfglKjdR/RUcnBQ4KtbZ/93tN4jhvkrVUpfdYbqdTWVotLXC00qlsmcYow5u0ibhOJRvhxhorHILx9oM4D3ONxpys/esjPOhydO9U8i8GxewGMax8bqOPsBdXHAR4Gn6zkdYOmyTt/Mts/iT1KefZwBVxow07+3YMULC1K2z6eVHN8y57iYuZIzb2+s3DnL7nkVFifKeFVobgfDEDVHvpLzoUzwB75DeSUmAUIzKilxisgLLulhbd5wzZ/l9KuL/qcQyirjOsqvyYkRvg2VHl+0SvxPlzojIOvD82sEElHizgeX1cz607RGuvVrW3P4NyeXNP66XLbsWdQyM6w2V3Metw4EE28MX7bhbXdlWqgYtxW9cb1Tv4xfE1qRBEaFLtvAFzmcEXuI3OYKrz73zaN4qyoHU7skt/rh21QdrUCNdNkHntuW+HnVNzX0XksmHIe+uxgSFR3faxVBJQ7ZHPGa8Q21Ry6vhH+LnQmVlS1u8sfY8lMc+7rIJ/gWr/SdUmI39ASmKSKah+dYPikvjyfaePJyUys6+WWC9MYihST6BkVBRSh6SX3zgJ5jN3riCN2PYiwSSs8aPDOhRIr1msr65xGDKYF5GkeS8tyo39lwE6XPmdGXSTPZnV5oWKhpAesnw5l0guj42esuXPa299af56+aBO4/z8vL5S1eDHpToASvhaTNJneWMUNWaBMpQPN7Md40YExfnctA8EOxzs5M8ZNXulP18k9xDmW9Wm0W+3lKaVepaglo3yR8MhnXmd1I8GJeXwCDcM/VI8qKHFvOeqzp4M8b5S7lPv8ysKuTW8pre3ZLtZD0+5tdJalTK6BDm1MfNapbQbCLf30UvoNoJey6LzdPrdjzUKsi3aKeXV6iwOdDayFk0pQiPI6k6vCFvUYHzyU+haGST2zXXAbzcm/J9aeV9Y8pYT22bpK7w0xOGqqWH2uSzdVIziodhxiHpjIvygw7mKS89SQdMeV+5jnIHMMxbSp9kV4MvOFa6whmCSUu8w+WHai79V4M8Nztv8t7dhrhyPXam45kICmI31J+dRLocxFRVxCjs0ItPVbYND9i7OlWP1fW03033Q65LrfE7SFkqrmycBSw8v0sfhS9LqIVXfM8yqR4f2Za3T1adBjHwXwy9UaMUgzhsOrjx7v5adj+/Nx2S2W4Al2IyW33DI3taDMb6XMHFM8vJqtEv5WL1GWRjMJj4+LPPm0l3Q5pG2Hg8ILMOoRP6L96jn9OzUbBkoFr4rpY0jT4QsgnMbofrHxywxIC9Pzoxcxu3PU69fzKpe6tkBeXqS6x0K6iCuvrakwL/cC5xvMKiQ/fwgiEd64GnwTAagqGIyNoHn5pvyobJ10Y8cJOk8JsNFAQAJKn/sCyJr1ziYMpmFwe7R8jxkkhrxe/qZezOzI1vl33HYOJFaXTHfWOpW8CCUUcaGeg+IUd8RiJMqbj5i0fkzG9HgLdsH1uBz97nZK5tOOghbif29MFf+mjxw077JS5INymiXv0pNyoE8Gn1gX3c8feiAueTpzV8hW/LoCvL2kpLqaKLLfvtTnSqH4Vx1Z6Lfo+Nz3RGXA5FolQePGFuKg+py3PYP/KWgnsz7qBAG5pdFlEcSU++pAUqm/86q0IAuRj3muhDgFVd1cNO/3mXGQ/2VZ0lJRBV1Hjqfz8c256GpndrfGSz4Bkn0GIQxfpxfkY5ZdEeiKk0e4mzZssnt5vMci5q6SoEOPyK2TtsOtdTRB+IWLTKIig5cVkmr1K9VlftMHlQraFxYwtft3Ezn7RUDTuit07qc0zIKJ38jzZsoMlIQXxpf4HjD7DBeEfcGMnBkCiCNcf1RFruzcuuShZOcbvtDEFzWn69PIpDAgpLx3FRSyGm84jQHcpjEcLE5DhCX1XACl/FdcLWS4nkRo02BrhBQi9bElG5eCc7ZjfXXAlwbokwltRNNe+Id8fy4txNb810h14ZhvhHK90XUc++lta9e7tR+9wmHNoayIoYaSZJPEmRswx6nmKbNcSOoFrNqu5emr4NA7j55Kj2Ne8ne5qazY0QjS7c4mOsgT06AAJJO9/H9V9P+rMZbOlfP/J5xD6q5KjBK3x1fFENdglkVVKbTxmpeVUMydbWT4yr3uMWCFZ2yFdrvdkIdHi9PCQBNQqWpaCazVWEHUHG6V/s9d8c9zhR9ju4IXMYt4V2W4zspcfR6nJ1yDn/y4IeW/prB/fvve7b8uv16wnP72R6RBrcocznr7BRcY+hqsGaWbN+yofCL3iHCMwYn2tsT/8jDkqwJbq/ScSQTFdei804VVCOiA1gY02YOY91TaMXhqdVT7fQXPH90jj7yKUwUCUAmn+o05gP2qXtUERc+a2bLdtUOI5mEHfLolWFN5bpRl1dHBcepb99ULtloLO4ftymyXFuxlIf3MOey6lgundK5mSncr4gCy7ptdKP2waDtNEhY5H3I1NIz4zteRyHloWXhyjd/RRxsB3q9vqXoIifjWriF16zvohllbE7ZZXkKgMcSfo6WqKBMA81e5xJ9qr0F2u9J8OVncN2ZpU2m6bJ5q3GJ5JEKEuDVrH/6pZeuT6DG97glNBqaUHklteemG81yTj6E0mlZiH1kxNi/cUiDpEEJ+3Gf4RXjb6a/Si1ZZcMA8Ml9kvgjd0ZCb2xKx859hoDexNZhUqJDwtZxUc4z7flwU1kSrLWTyGvjgsnwwUeWJNaQ+Y6uf362a/lEU+eu5OA20b9S3SuDvnpeN8YFRtaRKlFqKcp82PHGfe1ON9WBODLbNPr4ZnEsb+5s0KqS8SxpL5Yj7KFoYby8mSbnhD1bsrudeusptb2OxarCD/DZGbcFhPs9sq4vwqai7J1rmXhbkLobcYVk+ySDmLVre6vPLk4ndgIoQ5PmU4+QQlr944nA32ZMo7BL3hqxzZ9zlnGp7nLVbf35oeP33tr35Rxj4Xa4IrvQx6AyMoc+FBDx6vT4jkRLlQNI7NjU4GDlX54mQbTdtBvxc20LiagGgyuFxsvgypdYu1znUdeoiQoo4X2aqxvPJtDPA+eIqoVM9GobP584ibsWQrDT45v6KPljfBiVE2tBQsGjM3Go8X7OXvhddl5TK0eMuZNfnKE9+G4dvRiNG1O0YEs4msdPXl0t1pbS5u+dJneXVloRAJPqfikm1PK7/jCYQJ7NHXP80gsloNRKrdNyqVpyVXC/IqjFdwd6LRyHueB8TFcBpcYGfCn7PIZQ0LwxZyCuwD+XJ01hhqQb9dMyd/Ygj6XRIOOTEQ0/xiFAaPcwEBbjOHFyJUh3cM/mwS3xrU7kbRcbHtOMQ3RjeFtqenNYTVR5brM18qY0TnccaCuAvtVogCaCezk9iQXjGVtxM0PkFuBh7TMglgEfCxWo7K1of70jYnzgy9EOtbc+hvmJfznqAPtGqlCquhefXN/hVSjSMP2WQZPhpo8iYSZE+nlle39d2imbxv9iPuPqPJFyf9JzT6u6ycgiN9voVVwbm5S9fNrLS0gsYepgi5xi+HKegLPCQHPu2+a1iXfm87+R0Vpou0Gybl92jOU70wtZhmpoHScu9bn5mSX8/JlVuZ5DdqPfsdGT6s15cat1m0RUVH1j1Nt9o60xusfOO1VuEq6DA6+yboe0PXhG/RGpajKdrIUTgSHenPps6FlGbVcCdyNbWBV5vMHVIbhbuh094zoT/pW9hAnHYm8MjTNtq/SwvQPZzpk5yUEg8az8Avr85jJ7U79MVJSKIzUYfIp1OT+xTrMggzhZGRqwwmrZ9NfMdSh8UMTi6qF09+Ou7NR1DmfzH0CZlJI+WmKE9VS8iaLsEieRoOyTJEv9OpGmwNzFzROXKZ/FrPAW7LzvDSHy4SHq0jJR4RCeMZl8R8E8bh9zROwJPqPDvxVbMyIo0y8pOOYOnCCOxOCtO5ui8R8LLV4A5a7KCy8cGrtWShS4SjoVehSXypud6CNcNGwZQoXjGL50vn6kv6F/tbPQm400KH4M8WPiKdXMTNKN278oYXLmmH2OJk39tJvki2kyoZy8Vbp+YtvhIjUAT98mtxrnurLaZu7jgHaWk153yfQ0wn7VCVH7zq71mNbsZjYGYEavtuEz5y5LIgiibOtLT1ccRG93oPIGTFd1tcncZaENAH6XgDO/rC86lnE20VEF5ZwDPQnI3BY5ZospocfskTpoUePqw/vmAsPUBkgcOy5bTypKNSJY2Ve0TiyK4tBVdmwAwMkDlyRg4GLNtuBibumh1QGRrM+EvvCeC86rPQkPsemTQVUE+I0d9MKoi9Xd7RzkqBsX/YhEVnoez72vVmhgKv0W6sasb8nQNuWu7TiNb9TowGQpNXdn0BhIM/zegG6506snf47UNM/djphwW0F/wIVv1T5xyar3rlyr60Bb0ojYelcCiyWtqc/LAB4kt8J00hd5Z5BrNW/eZ76127CTHoQkk3DdLOwzAdULEasFdEbh55GRynOykn/5mdz+ld0AcBrY2Z82qwI9PP5pZU9D7nUutTRxXzptTpG4kv0leBx0u05IvCi43IHQJIN25UWXQeOcUMI5SbR+1Y1AVyjRxZVvCeP+mrq5doy/RErfYsI3+7WKf7G8DwVNLDr3zDtsf48JbUB/kDzUoVJns8xTwvLbgnV3vMd8OfmDutEY7lbhVjWGNTzhLQrNZDjWRKd2U1oSAYgw3QcpYRaVodUG94v+Hyu2s4aXjoJenF1ygylFleQ+vg9JLzg+ffEakaMYaXDkPkMK8O4YmE7MUDKqh9dqKuwub7n14Vk32FSTioysmmEq2qQK3kcM7GDo12r6vxFLR9f0fkD3bNd0u1cokVUJUDay9+1p0l7aJXfqVg6WqPCv9S7xZsELTyLmz+epw4WYfq3afQazu+5H0+6fc/6WNmuAWRkcK+6yMIzaBejmE+1QeCNp14qi168LOb6ylc8tsllx1VvyG+BJd2tTa0C2pwGgTr1SJlTykuXnP2vmjp1bvq4NsqUPht7BTRYMrgG3bVQfNxXhKd0FjwFT/SaxeRGqeRt4IqLU8d9WtYNlicFxMQxzuyLCBgrr7gzyPGa001DopG+VivUxuZCUon0JTECppWCo7gDFFxLkmj1uGxjiTxMz2+tOJ3dtixXqvIgWtb4XmB2i8JWqSJWSWspIMhVHZkJlUnYKsgJCDGMcfYAh7wHbk6SltERHT+dHorT5pn44Wso2kVJzPPYn0Qhwc9YJtbOIEoG7nXuTM46gMuASebm+B4fFPo05pSP/z99I88Su0V9EtlsZJohxLTL63Z9m4Zl9cygy0+qwR+k+aNGDVJAwKie3XZWQe6jo8ddGiEKIBI5HtFJH4EVCSdORve9ggyohw9Ye/4vaW3AxKt544Sx+fqo3mVnmNrMvR1EhnqDqpNVj1HOu+EuJWtjHr5Z2rPam/Dm0CIe2rNjNeQM0XNCCJAjiaD0lTxE0q+DW1eLdV4aELfTFTHt3+hysxNmzsLMq+ztfNtk/Rj8fYu7cS28Elt4+xY9N+0p9hK7O1GzYh+q6iJwszCgXQTvWB2kNER9+lyKkkaPl1+S/NrE31BasDF/sVX2N9jmvbf6nzEP0h88gnfCp7/8SH/u3RdZrupF7OlaCnW7lKRrsIWGNZiULZxa0MvKo7Gz6nLEOECaaBi9VWuDu2goJpvJn/krrPU+OHikXcno1B2BhzDi0rJXw07EFSsPVm+3Epmq7z3Qlo32anY77mKLZsJrmcJOEY+THTjfWw+RnTOXpip+e2TeMq8pBDNbnJCN/Rr+Fep7hyfapT5RGTVkIHPuyLZ6x8al2oa0wkHCRjnAOLihrfXst4gtvUpCX45oYGl5r2RU/zwwvdvs/r0eaiUJ/oSi9NO4+jewQ6jvPeg7FzuW6XCqC1QW06dkyblhD+IX4dT5+ZogxOeSMS0Futtm/swstqP2kil9bTG6v0xp1H/qUIryUF2GerboAN2pLPQafaWdiy3teT5bVLuDxfFrgji+Q19AzS6T7xflJHgh168uZtcgUhFP2WYXRmeQ9RBtKe3GjKXkcuOn6Zj99YCDH44HH65Y2gtbeU2eaebsZuMwB33OtLW5FdcN/+Fqaq3zXqGXJaJ7XRrDLwbLi8nsO3ozNnwRadwZgayuzzSKzWfSDxTS2731DOrXL4vVqhkUQP2GPwxG7Qirkb+7mNVTyMHQ2aR6NI7hpB2NwI3hYUZTknkPrnZx/q9zOIcCjTVhDPWkEP4edErZ3gTOTXPDBf67VN5tRU2jdfG7izJV5+4RsLpxv5f0WnVtWu0Fr0V6rArnQRu28waPHZ1Dd6/BkriFamCD0LcGIta9joJlo0zKQddsFpLaVR8TAlNlitKjnypB5AHFCDlxVSbSpUTWTDPinVJCAnWQNpHSy5PJate3ux4JcGyOO4bxD/vK3+y0i988rOi0U1nfr17T7NZekAZRSgZCFqYk/OoyDcxU1PScsUSWZcbtIdYl1C8H0dvHNXf2HVLmQxjmirqkEYOVuc41rPHtZOM6er9hBbk695PYNQFp0e8/GPbmfj9pBy8tOpd2CRBfupMTAC4/KwQ/El4lkYmAvu4sgKpCPUNj7ro5mbG9eWwh+8I38SXjlAeWh8dJJ6QV0oblNvjJIGinhM1LBNI4rMmRa8O4H/eGO/R2Ui6dvgy3areiIrhho4sNDjgm9dJfwuErX52tZRhasjra6KMltg1r9nKCkhfeuvgqqKqyi3IficgAH+VNWxmYh+ZbG0DoI34WMef7+ZO2WotPoZeIY09mR7MeYWyL2Y8Z4eDqssn0TSFptKdbGLihoOeTf0+0J8oz7Qs254j2xjUQGcUk5jxHSbHm0zfb6WvH8xVIw7bG0qCwizUyY15jg73BBjWu/pm5StsSJl6jPObtLP9N5VO6qjqdYMyLBZrn7YagmKRfjceb8AWvMHcEtUQD4nHE07V5uab3bPGmECXl6N8W7RR16nsKDX67aeEYcxZ+IlkoKktKlzuIktrr98vL6zfcoTWgANpcE0dDc7muHORwnqddMSC8zmMppA5BgUZ5baxtCSV0nEfdTbIREalwbuEgnC1cX9QBu9z6PFCdwTS9aevRGi/wk512MFc89Y0Z/3n3hfG0cd9kh9Aky7iDfn4oDcnjhptEj9w9AfarxhBRpEUzdQomckX9q50dzNGQc7qT1mXWBkJF22cIufERfj0tIVFTE5ZXki57cs39XhZTE8sVnlGjiokNrA9Vea43T2A96b/fmikkSji8bHo/UKO1g8p9oiDxZGPe1nAba2BHISIu44qTTGPPFPxXd8jBPz+qlkRogBEuasqdXveKR8WpBGD82YsyJa9HZnic+VMh8rbwuuC/cMlRp0URoTBrn3G4fyYDxwwYQEZ+AvdvfE0iayMfDpFYtlmDam1ZhTzaM9rZpuNyEvprr+iJSqZDHY+i2FgsN+DT94OgBxiNtW9f8fj9GnjlXWqx60LPHnBXDrCTyKzxhiDga2O9B6NsK91TW6rS2Yy0l/VySnnKtG9Op6MH9FlCVVF/BJ0ph/W3d1cv3lhO6RH8USRrXvt264KgDTn8v1MB6nwz/X00pl+NpFTks4Pr0cmUId40hUKBaYTLYMD1Ez59nSinOpt+2HiZLjFir+yr4SL8z+tgDQ0Jijk3z61jLlkqegdN8Aemv7IwxPyXGnxVD/+C7db+f5Ou3tKA37PXFORvuP7t9hyXAbUGfaJfr69zsziSD9x1SItJTR6YbYr1wfVHcc9ceT0r0WZR+pmKn56nggJxepoASPzBS0EeMLRXGWfM4cTE9X2V3/qdbfUoB6fkbKqwTxsxv+ZvLit4pW31JDQTUvkQ9zZOKy2bN7vYdnp6NYgBhYz6rM1wR3t6ZdSOVmIiCiimj6T+RXor2I3e5FNrXAi/puve+MlJr+M/mxtFAnCqMm+odaE+nqsGZ7kAkoAheg5Hv0WOt/85EhFfTSEdF9zl5w2jwrx2Izd5pTQf2k3qH0gpgPy1dYebK/bBqHEa0bMmBtVNBlgOM5qGFC4GAFmyLG2v0xCcJ0sLXa5++no3MfNgDb3KaSmWqRSqii24O0mfmfBghb66NdFq585X6QYMwkcY39sfy1NeK101kFOxrjsl6amF9q/SFBFR/xpSXhzZUpPWrQ8KM/0mv8FpZPPLliKd6fBldGo22NbsuirUJYcf0ANz9X2hlvLTjDuntVQZASCYlLjQH/+lNdVi2P5iEOTEuVWuaNSru2SRzBGg6Eb2vyi8JSPMS+KJB7kYqnWFldV/crYW5Uw9lPi7kU7dfJW2PZoESG2a5A3dkII26YJ5SW+E0QndxUz5lgnC/4pvOcoe69p9Hd1q4TjLplaYAMLInj4HUNTW3aN+nKqXxUbdzgXKSHmMoJiA9OeXR3Vb38gn2KA06DXaPDpHV8nggbVQVlchYVNocVNohjsNhUtV6J8a63ISvwLYI41wlSGoKZyPPN3zOEO45ctW9YNtfo0Oi8vYm84q6fddGvoPg12Cvm7EUWbbeERygZvx+lvcOqoHzIoTh0UvUe2loVzErHfV9FU+Qb/VVhUKPV0tW1vD3eH6QCEAOdHGo1QRZq4g9A+L8erzSSGcjMe0cc9z81J9JOwadZLL13t+TD+6KHATi6l4NoUvHkx/aC5fRP4cOc3qxad0iE+Khbzme56/p3q1XMD4o9EZgwsX0QT3MOELltXiKnFwkyFzZQX5WmQ2DLNJSV6FcQmWrZRf52UfqS3xGdOmT/ejRVkKy9tBRDW8/UjMfnFK7e1KVPcatGQ2vMwBlE0cEnnyXwqO3m+3tNk14hL7/cCq1wdkL9macHEbg+6viVnCvbZImiXkpUgkf4azxXX0qreJVpfgeMhOY3ieB42B/Ycs/+6SaQq5gomTEo/kZ8KTe0fdDsOKtrVE6XFIs0zg9hZs/s++bw4x7cwMBhOBQFl2oJUqaxizhUJXLO/9A6y0dH7zJhVTaufqe7R8FTuxhZrChqXNQ/lQoJWYaOUc6jR/Q1YQCFSohjNdyi3JXxNPnlYqRNGvrG9mhtDSaVsh8xqEOIBNsEvGs2/PL4QDU/Dshlv05sxYhpDAo8lNm60Ckgb955F7z0VDFSYg9ef2LydeuFGeca6uuhROxo6AepdOGYshkE8wBH9JFNmBWzTrQXas8YV6g7wGsDnrwapruHZ0hU8rSH6hGelw8woEO2aLOfpxtfbHFlA2eiWhfuLL/mwntRT3iSoxcZ1G5u2/GV1n2HscEQ86FvKe76kuPH95TPzQz8clk0YGBS4bd7C4tjYw+8lia63GXxFcdSSEhJemOeZTid+p/lkfktMMIHJM6TEITvpEfBHJlImwE8DF3iy+bcF+KU0QYsfNPInCr8ltHNx9X7Ij0VS0y8TafwUSVKvMqePWsTBybdS6IVjccyDbW5/GxXa1JPLSEpwMRGfI1Dm4dvgt/DNqm/2E6dQsJUrznnEulW26/ef7D3JsLtdYCI8L9s0vDA8blQG0y8SnB8JbmaqnW2NsHs0dGa/5UYv7ypkcFxhK/BH7UkjpmBcuCu+uIlAJRwLZBNcweNmt37ZgEUB0Jzf09x1EQwfKCAsNWkvnDiacg9nlCG3Hx9t4FjUyHBlcZ39mo/33q0InbBVRfSt/u8z4xSWd2hXEi91kQzND0kzjFMw1TlaT16I/P49mmVv6eD2DSPWwIhOOpD5NC8nIGZihHWiqBrSrk1J7N1e7RDe4aFVH7jLslCXTDQv7YrIX6Cl8gW57qqJJbXvrXmd2k+flEv/5ZNzGX7iC2a0F6dWLFuK/XgwPfFjQ3gvcsrafqBd2GwxjOF81YoTsL/LbFbui19WeJb2nCZKl/ym8XwUZ0rV/oJkJaom17eOuIk5j9UFu4nprPZZn8tOuBpOJIFSEJkHfPrrCjmCgXQJGjpCA9y0TyKYahD5XgSChoqrVSR7UXWgBTgURaHNOe8sprk80/7kt8t605DpdHgWYaqbcDcjforXB60ARUehz2aa1RCDFwOeoGNW+UgZS0dsBDlFx9RwR7RpJnQiWwyVpyF2OR9CR7gX6h1xBb4vJogpF0Msl6Tf5wo0a44cGZ/VjBrm9m0IFlGJv2vOt1XuUi8KaSV7ob8AixE7IJ0UPJB9h0ZV6DcapJw/i61iq7awmUW262Ct/tOkn8T4PctW/jT3THrTUO21+VcIHbzYP//g1YPN4S1wYvuqXmUwhSA4+TmGZ58i/TB2/uJ8k/eqqb4v3rLCqdkXUikq7AHLssYqOYayKKbOUVNSJGLXY/l74nyXmGn9lyk5Uq6FILLrQBibfsv4cMPF2nX58eFn6/63FxFRZsmDqd3mfnPUbgKzUg0hQ+MSvOPaK8Hy4+EtcdTScfUl+LF7vWXkSYL0BwVwUiHcQoL0sovf/UjLUSPqI78MdMAzXluNc73fVtZz/OG2GTpV9g6/fzIKtixIzJhki7C4gGBAaurzsFCX27miTZyQs8DCNrW3PrwhfVv3s/NOlCwZjacWIjspY98y/AIvahlYvRvV6F4j7NTAxp26ckSWU5XDVHqGefG3kQK0EGojj30UAga9xArojMmodpgRFtJF0u+8nBgH8PYag9k8SukRq/akedifjmWt2H2j2NHYepK1+Svnq77ghmiL9KGExg5rquw7fsqbvL48lPI1HGLUgm0nCNb6S9PliWqKjsJ8Y2OI094tBvPd+lxfvHKAX0Gi5he7ZGCtGKmp1B7iAaowdjHqdrZHxheNYR90ujtxG3yd8/UpuIy7TGEFmiehhTmU4xkO+8hb5NmxyT8sHBVuVfZ0iPut0veHRzVukLq+BoRhf/o9QJsT2BYr4N8WpKVJ3qsmpnd+pn7s/EloS1GNBg1Eqs6hwSSeqM3ee8Jm2rmP5U1u1i+83Cnj95abb509qU+s2OldiYqhZiY/JCf8eXj77dC52AercNioSOqXW0s3VTujJx17DLR9Gy7RTm3GqqWZ357Nq510xXIPv+0F5gkGGq4T+zw70YyZN/3MvmDAaR1qrp6zV3rc7QcOhGNCi5uzQwxle3oTeoG6kaTY8Xa2M6yMk+CcPM34HR6R4bqsfL6i+hOJgAVkXJkwF7U+sv4fuGehCmXc9YiWUTS0bnAVh61sQMlh/ZKtD+NZRbjUCV8OdUxTgtg0SPlJtPK/HaaRUNlw+h078bW2BFbJwR1mdYo1FMiqtWpZsr3Liezn2KFZLqp7A6/ULYadyh8QVv7RMtEmmKRt1ab4I1sQCXb/ZPAl2UbTYd453UGQWbU4LZXDxwTO649wL1DlTdrwvd/H3tpLflRO+Lko3ZMOytCjmKgCbhRSsVvyzP2/AOQTG+wmquXAKBdt9FOSxTDWW3xXBs5mqZAA/6cJZqn8BPUF+X6ddsFwb+t57a+sj3VnV9wV6pQFhsqS0BsB4Yd+xkXdcWKoyCEkmeWOz+6/btuAKZrdpjtrkHGovB8rrsI1vIY2iLQ+rZmPMjf/ztS5ait5F2+XBiXff5QswS7cBnAoZxbsfFnHgWxow4xsFPPwgmlIIbTrhD4HFLvsz3VoHLjXIHFPYAK0wpH38dcF1N0C7ADm+UxjIaLInUZNnyfgtZNbL7GouvaQrdXKoCMCKXG9nC38990FyKBa7apnNxzVL5T+WgJ4XMhj8pEsLmioqEUlwVZuTPNDzEt8BvvXGjS55Jk5QXvIfr74s0Wvss+dPlaB+vYOT7vgcW9CKqTfxye9i4rI/1zuqrCLENwV5o3VgncN7StjO5D215w251vjSITERhc5JWDXPV3Z5Yz8RMzLFhp5ZHFzNwRqb3PA8Yw5+c2Mg8GO3QcSbYkIG0Sr6ODz/y9vVCJ4UTlbex434sI41+HaC8XKxdDZ4WFbHWQMc0jphrSeEG0mV/Dec52UHLpZAgf5om/DL5AhqLFtaLZ4l3pjTfpL9Vi0es+DE7tVuE1tVnWK43ZG2IUNvXhW3LBdgvtHjilAKy5pDFKHfbIQW709kzdz+ZYq37a93++4vXXtcPiU2y6xcjfQ8cEa5GijfCO6TIk+We4b2k4w5HTbRNe1A3fD7Ikg7+Fv5Sj1fTLbfyvtFsHBoAyhV9pldYG2mDfDPrsPzEaX6XTBQM8OARStTJRo94UfV0v4ua3cVTWiWopf1EeG1vcYeq1BXnH5y4IDP2ej+l/tfOjFXIX3KDGTPWseXP2CBIy6iPpN486rK5e2BmvqoNfkzibrNV/pc5nm8XKkzd039YReeQ0lvB5rCB/uStHn77eHCPOtpyswgqMMEDAImjtOUqSyiP/p2P19jkT1+NlALXOx5/Rs20VyKpkabInfSGUIWfDLoKxWmjSUbwXDVyHh4X4NysF7h0AhVAk8PZz8MnG5XcCGnuhdDjFQxoF7ty2WwcsxgFiIXzMRkxG5iI0L6ZbDYDGwCuTHaJKTNiJPE08I8LC1a/maBic/o2twvTc1BMkytemVdY8quw+5tu7AbTJrLXNgGgi+GBgLGjMHw0gXLFgchmQSXBuk4Gw9SYp1KaWpc/rzv+e33P9zRDbcevwIQzo3nDfAZNqPOcBDF67I5uFm8Bp/Iyf1DellAdjXVKwOpXabujUE6cANnT3u2B4nKLRis3oFEts+mfIC1b7sZrPt7MIr8Y/5DTztX/wBm69QH81ZSwW92WLrMrrmiKHrhTid7p5Bm0sFXTuwAjnaWPF0B+HGu4nCd+V8smh9gqtR191zMleUHot9vhZsnK55pgrKk31NkIh3lURwCh6zeZZxIPuStrU4DNfo5rt0RWhDWmeYsEQBy5mNCPy/LXbPqB1QENQorYZZ34KWwZ9AT7dLmpI3B71Jo8AocP4aZqcZQ76VZ5nQo6V3Ccbi2Fk7LEFCK0hyRkkyeTkt8W3fBs5dJiQyjZmrDemGtzrVb1UKxvsbPnGdfT0QAbQAxTUlxoUcNaukFXCzwzHqrqDZ02qGvtObVNhmMgh3NG3pyxZfNEZ0kqfvoRrBJy68ls3wCJTdazqqGYYg0u9xnUhnvCZAggw6TwfwMTOKJL/gr7kKRgKV07ahoB+tFmRO0OeXwk+pcxNDcpcKyb9/CKDTk9+D4li+jNs4nClH+OmprehEmKF4/ZRtvVEMcijB1VVKRmQA8I2aFvZj/OyBsXz5ZzYw+k7t1y8hySwVj+OPHbRsI6Swune6MBctBNH+8dyJ5GiTd8HvJn2/aJABydSAvhSJoHOr7iQn8Phzj+HOwxUlZdEMshWVh1JuJeVbuPqiDEBOpWERNClEiyv0Oy9b/bVkHr3mr5DGUXC+cP7fhRfuuRZQ6dQdY5GcIi017F811a0HjK7FIx1KJlShuzHPO73Sn0s8P5F2H7yf9ciKtoA4pxGbYTKzOuzluvi5L/aycYUYPDz49RVu3H3jPRveIdCpAvIcX1AAy9h/qBaIlmkmC2FtIxpYeMLLfWHRDR46BUI3j1ctF2jBBR3PFfjOMS/16OKIgaxsJJLEyAmkAbTtZvkvORjjKUh0vrfJLjwKFQTwd3kIZr5L6HV0syGO3uz6zzd133tIvpduJD5hhnxF/hGBYBPF++mYd1O8qye/A4krP5LszThGM02gxfDfD90jSuWz5AsemwqlWvB56qsqqpPnC6fyiWHwymLFGEmtS2YNbofnb1cH6i7QhhKNHOIJI7AxHpl4ubxlDcdzM4cxZ3ss2fc2BVElOLUZiArCq7aFjE2nE+35HQvLIRbN70Xi6lqNPkqhUuU/Watxc4wXHTnamhsIQEyvYgMsVBeVgpBROicSNdTl58Ni9w+eKYs7tIK7Y32FLBGr44O8WqV7V+r0wLuG8+bxd0ArKs92bKIIc7VErIpiOpIFBgXLmeknDrbN61zaUaDOCGVaG0CL6WRaG6cpIFGF/MNvxRxlp5pTSzb+wBpZPxENMH1qDRofQTMz5W6Sgh8DzL/2dRGQTWQAYD+GbOLdbRiaxzvZjd1eqIvoUJudwMJRPUSgdw04RBpIbHvp3hPhALNs9Fh8v/5JKyZIk967GQxHQAewQhKP60MEZXMYbvMpfxXoTGYOHTdYEn2vGZdLxQQVxrIUhycZ3fesS8bBu44GtUImG7B7XVZsVs0BJt7airpfNMyAJjUQcJU/YgyOKd8p5znW7mcMW7gToSAN6ww0QDdNkyfgjm43GcSFeYEysR/zIGnAQgQLrAe9jSoljTXUy5Qnsdxc+tH0hsnFTGzCvF9l4eAONNe6lqCfi6Kv7P0VECpgng7NpvvhzVNfTtScGTRvkfPknxb0B/bl/wHes90co0orTzLR6vZg3+4E9rKdVtr0l7IlSaqM1XBE0F8YtxB6BdC9MXnrjKyybcvmWm5kqoOgCOA7a42+gJTWjVxmq/RqwNaFXO7AQ4meGbp/qdf53w5usG5tJi9vYT4ZOKYq8rBb+NJUrn4dxCOZvp92I/MJYPMF9oa0C0FbIWYsJo5ymDJORSrzeCpuTOmGlYpsA9MVHBY3X/gTvq9h8CuxymhTDclVtNfS6Zvr6LGiRWnElakDCGXl+bBj5Rj9tQp3yfyhwiC4LOVUaj7IwoPAjoyXGVGCHt7yvhHQcEdkkUWTuxSp9GHQNUk+Rlg18SKvhps9EpAHeCllPZyMV8GMof23X/Zg1FoUA2hFPeahbSSWGAbIy4idDx1DtZo8lKDevbMow4pOQcAg7TL85aEO6GSPUCfIAwpuaFe3+kSLbZiEMnK5z8dEpxvfcNrKp+PZdKm5NvEn+Eh8YyJ2nzL5W7AiU/m44gPzDbZbVDDm36VXCmgcAOsngOi+Pk801Er+8Uwh7me6gt+E/6pnnDoqWmPyWcgS8289CyBeqYxZ85LgiWPdmuwiPnLbNehnEWmRa2cAG3bgDNbHvE9MuFQuAp6ZNXfKc4EnLhzTwegBVto7yqYHd/RInnw/14/VUm1D7xEBEBLB6tUOU1Iq3WgD8hEWWBVb1pFhGailWo6wS3WvnuSiVl8lbIXq85rioUlwuEXCzo88amBq+kLHiQMg99LVZilv6Qwug2rBB2L/mqCSkK/ycklmUh/SGrmWdtYW69lnBTg8CklPWJ8WUlYBypRXf5sCfAdCjEmcl49xG6sf3rxXPJG6y2dsvqUFmFr5O8XXLtNbBjjDORpth8l/KcDXUUYfJkO6k7ZlBRHp2kWi6LuCTy4DzvzUI64/quevCjojTzu3DcY0+DQs08MFnxQFWvgAv1gqEdxxmD3cRDoYCaqmPPMrS75zrvPnbPckRosKza/zvXnpb9ie/lyEmHQuaq4HL7AV38eCnsIS/cK3KDWxfk1yRe9k8u+UbghBjNDCZIf01muei9mQf65Ya9nIKi5n8O27FsBu8WJuJEgET4y/YC+xCBxi13dOqpXNL7nGNioFqzL+esGbemGHew9kfPNUxmchlbq6nwMIzUflL9y3EJg8/HVZ1sEjymzDLPY22MGL1V7zLjlSRru1xyGCoVL42FhjzsG2xYSnfgkBpX0TVnj1F2su14Zo9jwtv6Xmao/yvqjv2Qd58sjnPAmJLj5l6/YXnYnQScwpahPbk9xZemVIK9QboBDCTzMvKx/4V2PNxCelv8gH0NNabm+KNz4XmIIzfb7QerlfC56Je+rhLZ5u3w37QG8rg+56M59dcC9qR1fXFb1XR5ZeuenWKpxgrWhkk7TictNE7YGNHuqOLVV+78b/kHVjyg5azujVCeidc9qeZk6yu5xrfiITxrtdfXAN4ibLFkpmmy8GJBqQ3OarBKbxh4is2Tgf+FwCNRpJHVx1oAnVlc6Yiz1Adq0SDncAuAu3IB8jj8bQ1yR8zAJD4UPX8CzZ3k2V1TMdBkCv2Ti4+DPqxMTBER9/6Hd3RvwJKasLH8VI+0ITT7lT6sR6pd5L6qL49Rd/bmp8LUKGhVWX1+VXBvtvc4tHy7LIYNKrwrTRfGgRJhERMzgi4HyRzd2qqDwCjyZgZkFpKknaU7FijJP7jszLaWgmTs/iA/On27garGCS3CdDphwCYxZLClZr05zNjPhGkHgTx9KgZ32eDzo3qJN7l4RPwlhsRFPvIGlTiAcS2wGFHihArs8eu5xamCMLSP2sO7yyeyeLgNU2gdBGVJEK7Tl0fFOtK4+JSXt9sp6HFcURFdxJILRWROYQo8AtrwKjnPasD0kDo/zBlDDDjtaPBXErJynLl3FSnT/pwITbyhbjawQJSoEnoC8jbD7zxxYZA2B9UWiV85uILhRH4vJ533b12hWhktN8BHPmscXTHatHbJcNmtYfHMCVmuvht1iqt4ppKtWS77ANiCeKzYmvRDtxFcz/e0EOU5fgwi8NGBbG+N7shX7a/6ZbwkPdzPR/nv5z0D238FQ0UhSQ/s7RdqBNw+ANzFOnurBTInmonUTmUDp2YLZH9brgkugW90cD0miZOZ/5H08fTzvQOynYDQEztMtcZfN2mYALgPSDd9I7SCnebpOsyhz58H39YF/VKHeLw6xQAKXFq0wRzNq1p1Nh163xvuBxVMIbkUEwWrjRtW1NPSCIQtIq/ogmyrMmA+gKwzTmQUFWKFZieACvpdDlJ3GUm23dWSjj4u037V8Vli19vr5chAkRpfoW82fLe+b4RE9q09GMvvkyNiNBpECn78yuTPkZDpjMS3x0WqzUmbFchurD4jTfWb2JTS7Oj75RvebGnKXqPLiHFBAAIvW6xMErSajdMkL34r7A7h3yrMMRx1BCuN55cPCQVmPhfLzupxoN3OFJ51rFuDIdkyOxBFqutIYwaomfZ/tJEx3lY9xOHmgquYm3Db0ZWw9YI74LnIKp1BjNFFdIbYQ5Fp4jUlRjmZmxL6LqCwbQeJTgLF35cZOUgoXoyONI9N7K9tD/eBeYGZ1UJQLPzJOzxcnvZIqwQ0V4KheVRiYU/GvmBU8WTZhRY7AAn4lmfwRfLDX/2Bx9oT7p8aX0JLffcZZdx84tplyF/DKwPwlFeFntr9bmCAq3MvTndL+xi0pkCEvElf8KWhw2S64uBwMVNC6UxQWrJ7UcBVXNHjTqZqDJnovuPglLe9r+UHc3NaiL3upkWYfxF8hUZYZ8uBct1+eRskgBO37Izk/JOfK/BxLy3O/Lqekn1JxzmpyMHOXQjbcTLB5shBHXWW6aNIHszjVfRskfVe1zf6UTUfxWI1dRYQhrQiE/1vFj8ZFmQEAEy16/bacqbX/7EbmS5+OfGW4eVD8M3sUa1KF5oHDt8sV3j1E1wPukbvh2HRml6fYmdXUBdXUaJKM1SBT9rublgLIM4k7Zbn5kbtUFqxEpf7xF+qxbmVJ8Z1RfAGHDxj5vtFtOW3cL0D1Am9NT+i7yPcqnVEL8K4FfidiNgMjpnhWINSz0hXInvrsxCDyzijaHZT+1SP9XWQuSyimpFYe8BUDBH7QeA6/mHtFyoYYZibjPBjZMGNCx6hNM3pNRuT3zLekdc2rBOV46IOhFneQGVKhZwj55utT7bpLJmKphcgcEtq1nNw46tjIT0AFasHEbtRZZR7Fe+8CZzlk1PgqIGf0rfgKjxH2TKik/qdKIer+513T1OdWIEPScptCU1ejrAekWniVb/bRBifBMxsZp4gYaPRBx3kjFVtQvtiyL14UcwyP3J9ynKf2HHUX2Xj9Wl+9vAp5lO1eNKHGuGurAHWEhAMiOQ8xyHL9rYkyg8rOQuGMNphoUGz/A0SPzME5W1hwhK2N5+9z+dub+tIndcMr+qFJ2IwSqsrAxdBnARQHEKJZKt9ZLSp9IYQySSbKZNl61jXVHUjksX7XoXsLwlKsG1NtJj5hhPRawHmIOfzkt92OyA+gOSSCdAxJM4WzkAy3pKqEDi2+JtSZTmNlaBWmU2iMMAJy5Khh9OUXm5zb6Pib3/bOLhSVqTdX9NtPQf6XiLd1DL5dZQPJG98droJNDYPjr8g7sOcOAWTEjzolpl0E9+/V94PwrSPECOoAFGvbSNKG07+n5iBe/+MURQA6JyUKNbXSwUDubj2xviYbtPuOaSLLa4pQuLiXrcjQ2tAGRq8JrcwbQKkYgXsO6gVw33bz73Dhq0g6FBXt5Syee2v6gDBT7n5B3U7aTpI9rHxNm/9c5XKtV/ncBdgVNXlrnbPUCBL6Beh7Ty3LKokepucCYoRHd1LG37fb9UpE+/rqDDcP4YCP20/NWv00nHFo5WCkU8UmIWwplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9CYXNlRm9udCAvQ01TU0kxNyAvRmlyc3RDaGFyIDAgL0ZvbnREZXNjcmlwdG9yIDMxIDAgUiAvTGFzdENoYXIgMTI3Ci9TdWJ0eXBlIC9UeXBlMSAvVHlwZSAvRm9udCAvV2lkdGhzIDI5IDAgUiA+PgplbmRvYmoKMzMgMCBvYmoKWyA3NzcgMjc3IDc3NyA1MDAgNzc3IDUwMCA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgMTAwMCA1MDAgNTAwIDc3NyA3NzcKNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDEwMDAgMTAwMCA3NzcgNzc3IDEwMDAgMTAwMCA1MDAgNTAwCjEwMDAgMTAwMCAxMDAwIDc3NyAxMDAwIDEwMDAgNjExIDYxMSAxMDAwIDEwMDAgMTAwMCA3NzcgMjc0IDEwMDAgNjY2IDY2Ngo4ODggODg4IDAgMCA1NTUgNTU1IDY2NiA1MDAgNzIyIDcyMiA3NzcgNzc3IDYxMSA3OTggNjU2IDUyNiA3NzEgNTI3IDcxOCA1OTQKODQ0IDU0NCA2NzcgNzYxIDY4OSAxMjAwIDgyMCA3OTYgNjk1IDgxNiA4NDcgNjA1IDU0NCA2MjUgNjEyIDk4NyA3MTMgNjY4CjcyNCA2NjYgNjY2IDY2NiA2NjYgNjY2IDYxMSA2MTEgNDQ0IDQ0NCA0NDQgNDQ0IDUwMCA1MDAgMzg4IDM4OCAyNzcgNTAwIDUwMAo2MTEgNTAwIDI3NyA4MzMgNzUwIDgzMyA0MTYgNjY2IDY2NiA3NzcgNzc3IDQ0NCA0NDQgNDQ0IDYxMSA3NzcgNzc3IDc3NyA3NzcKXQplbmRvYmoKMzUgMCBvYmoKPDwgL0FzY2VudCA3NzUgL0NhcEhlaWdodCAxMDAwIC9EZXNjZW50IC05NjAgL0ZsYWdzIDY4Ci9Gb250QkJveCBbIC0yOSAtOTYwIDExMTYgNzc1IF0gL0ZvbnRGYW1pbHkgKENNU1kxMCkgL0ZvbnRGaWxlIDM2IDAgUgovRm9udE5hbWUgL0NNU1kxMCAvSXRhbGljQW5nbGUgLTE0LjA0IC9TdGVtViA1MCAvVHlwZSAvRm9udERlc2NyaXB0b3IKL1hIZWlnaHQgNTAwID4+CmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI5MzM1IC9MZW5ndGgxIDQ5NzMgL0xlbmd0aDIgMjcwMzEKL0xlbmd0aDMgMCA+PgpzdHJlYW0KeJyMuAVYlen3BUp3g1ICRwlpOHRIl3R3xwEO3Q3S3d0dAoIgKSUhKSHdjZQ0SArcw/xmBp2Z/7338XmUvfZ+v2+v792xkPK5gjKDkImtEUjc1saJAcjIzAMQkVXWBDIDmJlZGZmZWVAoKVXATlagv3AUSjWQgyPY1obnlwgRB5ChEwQTNXSCBMra2gCknK0AQFYAkIMHyMnDzAxgYWbm/ivQ1oEHIGroAjYByDICpGxtQI4olCK2du4OYDNzJ8h7/voRQG1MAwByc3PS/3EcIGQNcgAbG9oAZA2dzEHWkDcaG1oBlG2NwSAn998eAaB+Ze7kZMfDxOTq6spoaO3IaOtgxk9DD3AFO5kDlECOIAcXkAnggTNAztAa9Cc3RhRKgIo52PF/DmVbUydXQwcQAAJYgY1BNo6QI842JiAHAOT1AGVJGYC8Hcjmf8Ey/wugB/z5dQBARuDfj/vz9MODwDZ/HDY0Nra1tjO0cQfbmAFMwVYggLy4DKOTmxM9wNDG5CHQ0MrRFnLe0MUQbGVoBAn4I3VDgLiQIsAQQvFPfo7GDmA7J0dGR7DVA0emh8dAvrOYjYmIrbU1yMbJEQXlIUFRsAPIGPLl3Zn+vF5LG1tXG8+/LFOwjYnpAw8TZzsmVRuwvTNIUvTPGAiE8oiZgZwA7MzcHBzsQADIHgByMzZneniBirsd6A/nHzCEhLenna0dwBTCA+QNNgVB/kHxdDR0AQGcHJxB3p6/On63UIBAgAnY2AlgBDID26A8Ph0Cg0z/Z0MqwAHsBtBmhhQgEMD88Ofvn3QhNWZia2Pl/hj+xx3/xfVvVFjY1g3gycDCDWDg5mAGAIFADgAnJzvA+/cH/E39L9p/oAqG4D/T+uWJkjamtgDu/2UP+Wx/MgAwufxZFNR/tgwN4LdXAJjkbCHFDAJQP9a+DjM7szHkL+D/7w7448h/1f3DU/4/S/9fKYk7W1n9EUD9v4h/Bxhag63c/wyBVLOzE6QzZG0h/WHzr1h10P8aWhZkAna2/pdb0skQ0iNCNmaQOmcAsjEys/3pADuKg91AJgpgJ2Pz/9XSnw7Vhz60AtuAFGwdwQ+jB3KOmfmfTkj3GVtC5osj5O7+8IEgzfX77YrZGNuaPHQhCzsHwNDBwdAdBXKjQIjJDvCE/AtpDJDbH2UOYGK0sXWCHAJAqHoDTG0dUB7umBnAZA22cXZ8QP8AgAAmO8g12ZpAmh7ySSAf+y8PCyTU2coJbAd5+V8YK4DJ0BESBna0hNyn+d84G4DJBAyZkaC/EfYHxNDa1sbkt0AOyOusnB1/z4Hzz6QePH+DXAAmY7CDsRXoN5T7L/QfLJj/xv+ZMqQ//3T9I0Mgy98OW6dHlPUv1Pihun9xQDjaQiaoEaTSQL/AEKL/hCAkQfbOYBdDR3drO6eHZnn0cf7lswLZGP+SDISuA8jUCuTm6Gzk+OvDuB8dkIv61cUCIW0FKRfI8yB99TcK4Wv2sLggl/m7A8LXDjJXQSagfx6BcDa1tbKydf2nA8LZEQxpHEOHRwxC2NDOzsHW7R+xD1frYPuQ4+8MWDgfHf9kwPU/BtbOxo8lAplwfxH4DWdlfsz/EQT+nfojBiEK6Q1bVyuQ6eO7WFn/RP83sf6G2f6EIT//jbH/iZlANsojyvEnamT7S0Gzcv6J2tg6QKYcpDseXVx/uhxtnf/p4v77w/7+FdmY/3q1kdVv6bMBHx2/M2BjefT8QoKN9RH+jQcb26PjNyps7L9ScQX9ki8bx69Ufnf9eb2QM5DB9isVrgcH2PqxyNkgrME2kO0NdnrsT8isYwJB+hYyfh4xCFlIGqDHqmOHkIQsUcM/hu7fIOsjCLZxecQhDG1AZn+IPEcrQ8dHipAxyWRtaOfoZPsIQag524Aflt4vybM/9KkbGDLrbJzAv+IPFWtr9rDJbH6ZGuwQZiBIr7v/Wt2QLc2kZOpgaOzk/EiEA0JN8l8ghJ2VodPDVnWyfbxCDtY/hjNk6EB2tPOvTcjxcIeQ0fjLYIUwE3q0IKSEHy0IGZFHC0JB9NGCZC72OIkhKYs/WpBcJR4tSJKvHy1IbpKPFiQfqUcLkov0owXJRebRguQi+2hBcpF7tCC5yD8uAEguCo8WJBfFRwuSi9KjBclF+dGC5KLyaEFyUX20ILmoPVqQXNQfLUguGo8WJBfNx7UDyUXr0QL+UTK2jz3FzfJQ2U4P083Y6TcH65+hf+ylR5jt7zJ6UNB/w+x/w7aPl80NSRpSLTaOThDp/dtQ4Ob8xfP7VOCGsDG1srV1+P0A95/o78EPYoTJGASGqBCz3+KBzMC/Hf88AqFsBKlj0D8OsP4J/zP8oWJtzB5cliCnf5xh/9X3z4MQ9ka/lD6QmfMPADK9fsG4fpnNLr/g3L/Pul9cD5LBCPLC3wcE8EEuuD5sH3PIUDNxNv4lkwfB4GBo8oeKfQQf9ILtv2MfRhDkNyHDXyD2/9WImcNv5zn+LBBH+19Azt/L6TcfhOr/Nqyj/e+7A/igFf7asf9yPqiFf1Yn8EEsmBiamf0yaYEPOuF/2G+f+EEk2Bk6GELS/2XsAB8kgrGVs9EvyKP0+wWE0ISswF/11IMucLQz/E2Rcf3X5gY+DFJI5K9y6WGM/kMCPgzR/0PKAh8m6b+V4R9T9L/kLJCD/V+CFvgwU/9L0gIfxuu/RS3wYc7+W9YCObj/U9gCOZn/D2nLyfp/a9uHufvf4vZhBv+Hun0Yxv8tbx8G83/p24cR/S+M+/9F4T7M7f+WuMD/S+M+jPP/Q+QCH4b7v1Uu8GHK/6fMBT5M/P/WucCH8f+fQhf4sAr+qXSBDxvhv6Qu8GE5/KfWBXIz/59iF/iwNv6ldoEPq+O/5C7wYXX8S+8CHzbHPwUvkJv9P/vmYXE8dthvv0kaOzs4QLrkj9/9IfLiL/uP/9wBgdxAxiizU7bGvIEWHwJbLquEiF0Zvg0hLK+2hcVqdoeyO1FN53qayyCmS4zZCxuYVBB8SVGYKQ0enfIipj24HHbT6cj0W0p+neMEJda9LnzEkNd/ddphBiI1sSUyG+FMCVvHPoxTJME00IbTfpmgPvUziLOTdatys/C2zXFLi/s7wBpQfI71PJnYKUoou+07TITmc4pVpwFNHaxoHAftVGcVSdWRW5gIcPSFcEsk4ZX7unZ02sDiYl9mT3cK60m+dNd7jopgXEI8D6nn2V/iv86ev4hQLPWiUbGD+tlX5Nemwud4fDfBh9TNkYDrC9tOSvLckkDRfTXIhha+zMq0rNm8YUMw9nlcWVa0jH7znOpxs2WP+24TQltK0nw8irHIcII03LTuyUoXaszYhvMduulEGcifwKR30aI/IR0OWW43gLGCdd4D+yBKU7/qm8jXbXTgZOBHN/ea3tq3Oj3s4UJsDHYVqCkdQuTCZNslo8AbdNhYVG6mOZSmn5Q74mOUZE8wupO21Uc9NijmXWqBHAbBp64fcg9uuZHXr9m/EQT/BIaFdRwC6n+kYZJwdz5/eVTo2SdOxnN76Z0xJ21F8uzWGfd4vWs8oe3CpCwAmeOp3AK9S4q3iz6youkdSQZc6kBthbkR2QI14XAwO1bVmy6PYftiIdHIYTZlGFqMrx3vt+bp9gwQqsnk0l6BApVbCWHAC/rIxF8VVFN55IMzvE7D79OuRrCT39e0o5ogfnOkHumqkP3G3FeAkop/+p6Cqz6DIs26EEtKnn64ky0Cl/p7oEgUeg+viw9nfxw/7cbiFLh1T9gHLDQw/EXJwbOBjYQHFyQQPzw2l1NanSO1w4vgqlDeQGaPqEEE9SQ3quHJulZ0bN3oyXJziyWvKJ8ZwCrHROGYggbDI56ulr+MV98Pevdq0s4mLvvmxwnmeuBb7BJyL8YfuamKl0paCDC5jQkfUnbgVtsvjSRxJ1n60glqYVcRkKZTYI2N+tJC8OmA3kvk5/slwa0SsKGm+0N1MwH2LE+UzqVoAIIvbL/x7oYkiJTTs+9RR17PrPegsnf4NAfd4vULbtNBA3VnNsPW04OcGOJZYecKi07xrxwzx5McKxuZ4F5up4pkcGWHlaQtTo52zdojB7kyLV4h5QYd7+enHOMYNcAKnIT2Ge/Cz/C/v4orh8fhAmOODZIY1e/4BWmNLGFfoLROUqkk2Y1epMaPAUZT0MgxL92np/BmgFBXVOtU1xpl+Jx7lXHSnp+3Q638ew4+D4d6azWxX9gpsQ1kP4cL/LKUTVuk6eKKJPkxKU6eXD5SqPVD3cFH+fJC/Be+c/mMi3DZfF5SZb06VR4FdoLF0e9dStPKMId+3K6NIqTAdbIiBEndCAi7x+6LvhH2xge9NlBX//b0O8ie0yCCEDGjHvU94xOzN92vza4j2VX33yz0ZNLnmTXZ/yQPclxeU/CWZWKuJUEhPwh4ieW9Y1n2Er0dDF67v4QpGNa8EyImxOCX/ITHJtSYrVQOkw9cFgZL97jAWXuylKGw5KmxD1dZe/m2ra3BpZaLYUDfZm6RvA2AziL5HGX0YVa19mc6/M7tLrmK7ueeS/+XLldstJrqSM6jO1B7WyZnJ1y3FG0OoEDiwxvSE9TBXVNqA6271ReHAko2LDHPp4lcq3gahab8qD0iIziwYU3w/LZsfNi1LTVOWjO1wXg7xqqtmnyHfoFErcuWqSTYBh5+GYJQ536nlE2YP9gJpbsnz+9mShSgP2MlcNktJRYytWGIrYLwR5ecvubIDwifcr6GwwiWakBsNaJuwp9cAXhw3qTZcTg/r9GqJLlrcCFrSthtsUcw0pfLMkIHLxP7IoJflX1FwSvtjlt5sonJfl3NgooVEHaAw7U+BUK7zK/uueMtDh4RXPRUJ63MA9+HCOvmYot8cMi6ahvSb4KLTbtvYdic/x5MKuDiDOulIjuEymWqeLk82k3muul52LiKZnfRkLmnJuwrjFbVeReAakDTMH5BC3hHgtCOiVR4p1qBjA8215FQTOXCdV4gyxVV9ZGOKOieCi9J/Umin5jN3GP8fEmKYbjc68ptiTwH5/SIUcvT4+Cj++bK9NaX7mIZzAB3dode0/l1JdDK3rSqsmAXvMWLy67yNOLnFaSCztYkmtqN5eh6Z9jrRaFhUrDQP2vUibtKZD49vZFmqmal7nPREAlBHRBNvvImnXtiNDBLkTpA3Patn/RpF0megMrO+Ngp++sZud53qbeBiLbss4qw8nI+CHGvqi7FULP5GpNde9tzEiTffSUiVdARfkbJbXzrordG9jUmiNjKwME8i8eXle2CdW+HZUYu1BopKUkTQyO2sGez7U5CqW3vgjlFKETgCZaQ8LdBKXHVCk6QIJqF+Mop0hx7NCxrFa0Q0D8F8fKdnl1bWnamrVjablYVPBIVy+qM/kUwyt3HghZ2RqyldOQ05fCpjLbjKD5GLpyu+9ai9rShHjKz4iDSwIH7T2FEKYn74VcDH+zWeyOTnqkA2invCqTRNWuZQ15MYZlmP4cCFGneWll9oj9QnowWf2GV/5VIio/bjy6flYJLC5UOQb3lPlv58vWn+vNm/HX3n3Z+Ezxc94I9n2nYCtS+e7Bjpy4YS/CNS3/RpYsjVsZFlTOGEhRLb9zl3PTQbnun+fLn2fS5AMcFAZbzdIvtQdaXPOp1LTUvb+0SPS1ZQDGNhbl7vrTRfn2qkntwTO7aYGpq6fu9BjUKdVPShs8hGwIN7Tyqz7OFpH4emyxf87PwDsOkB7fTkdqPmmBvLL6Qv+n0paLScgc9Uyv6geUZ+VrJOzL09eqZl5GMFxTfBpGO8tpMhS8dJYnpqsDbchTgcESHFC2C0k4qqDSzoJpxXJELkDMR2Ymud5IiMF017qODejjvXHiUxWs46KBP8wKgnqFwrQt/bmu6kmHc2kEl5mUKVIl+42xOFo1KOLlMyUjXJLYRUi6ATLqJOPAyUtN05GpA7tUM7nAAaU4F8OlMebOFZzxawcIVG2+hc6hNYlNsbnN3S5qTmbpo/1OGzn6cmdWMD6etBcdeLkGMrw5RhzJualrc4xmUCDuGRvIP/KWlDiM2j/TvLlvLFH8UMXXwSD0J9oLuNBIMecb54V5JWTQd5m7Wtw40RW+FjtohWaAGLd2kkPJymOSc9uwkiP3HF2yzwSAkpBTw1zeK9u/dL14+D6ZFtWrRXHA31NW7C2u46yY7vCNpBI9+LaAZS/ax07IX4Tja0g1E5cxjjIetw5I8olDCMOV8L10uO6JQY87geUEGku42JXyhaiM26HM4QGjJDq4Gz8tB1+UpHSunE9Z01vu6azfD+VvOvQqy14DJeceIupS4p7Mktr5w3u4/f2rNN+6Jq2WLyLFOybSwRvBdt9GVn+H9LUmFshlpzQzPS11o4h+T0PkMgh4r8epDz2k8DX3gRG7m8lPG35i+E7FuiBDCcM+FIedB9y4mHCydk8Bj0VL8gtqWXT9coNRMhMJ0yYH1Ic+H8DVGfNCqOtrPxj0fEjCRgyEJq/W3HiMLEhKGU+O8ab/5TRz241Ffnc63PXZQ+oG34n5mlyaoOPGZpxLKEYnfOee4Y2UljGf5nT3WanudZ6PJm1L52dNoaWjhUkCie+L0xWrf9jgPojcsj7uqavtxluErn7APggShqiyH+nUzLfU5Lm/DMWqIYDobjZc+xey3qE9e8VHBsZAVG9iNyu8biJIip2XEFt3YK0to8LADRfxUBYEtG5tbPOM/mw330WWgNYyxM0kS9VKJTk8j/b7zsKPYFfNXGRIm68ROfy8Gs+d8WX7rJfsRcHk6m+mYu+yDNf4ZC2xtlvmpMoCUP+3uvJ3rHNwdTVp/jvkj5Mee2lOaQ+EUti+hFld47/gt2+WfTwsQyOQx+MDyMj8jIHmCRZRq+VGRZa5txb8YXwntSq8fITEtlwmRz7tNyMFS8Sd8KVuYsqS2zFIUSkwk3FePtpomKBce35P1Ol9Jic3YeR5P3p7P4WY/JvR1QDF799TuqHYJQWOyMD950XLSq+SeRrxzOwrwzpiA6Si/DsSLmXlCAY00pEiqcBNtcgKlcaCysS9GQDTb7Op9wAr7OY30ck+tvtNt2Pi88z6eOZzy4/t5saC3SOUCsDN5WoD79bSlDZp+zcua5WU/kVdCw+9CRN3zu8lyKssmGz6wMH9MIr+hNE9+qxX5ul29BH1L7EK5loCnzDaw9l05MibrID2QwJokHIagRI4wZMYykwOmiUZmLOdgWChE6dUP7FtEtfjqdt+i/Bd+TWVyJdDT6nxI/Ew2SwUTObv39J9SU2C3uag3e9cpVMNvHNe5YlAxLFL297WSlBdZ55ubTvCl1GjXGgvrt0b5Y+8zvEEwwC9XB6/n56Eq11buPkWZuR1ntjS6WKAMZgxTaboSX6cMe77FLiju+3IQlsr9jXKOcejcajZneBamDIshfij9ZaJyk9NhJNopPXYhTq7ONT2BG+tl0Knmwi7bAcUO5hssD/LZA6rMJ8UScbZqXZQiFfp+s2iBjcx62nfHpzVqw9+136mUQS1k2sLWvh/xKBwnNOF0piw2vGkQGU8zkXj/yaXvOkT6S41TFb1yeA8VlFzf6g4susHn3JSh9x0ijkwNIlhII9Tle2I0Z+YpgIlDDQSXgSD9u8UeSy+SI+/G7J1I9PrrIlWiJVkzacWN9WtpioJ5xeSVZ1Z5y7qm6a8wu707frh0NuFNLlGL471ncVnPe5L5KUpQ2MJgu3tR2BYX8QVDWXhJxIFqpw8VNBBwo2L/hXVAvl64uisYOnp9QlimEPsscxI89K6O6GOznunqKv/kZRtGHF3HK0/yVTQ4etY5QpCRybQErxwaX/mqfE6iGDo2bl/0HsHIgQmKdbrgXObw1J4eYw4xu3cxe1d+dz6X00Zyo/ktjME4Jr5vSHgsaqyxBw5nD18Aq5bARLEJyzO4iJOXAplS609JyRA2d/UFnozsi/S8WJleE9u/CTZOXT7ZSxN3cvF8wzejPMBuwYHY+ykm0zzse5pw+Qb4MJQjRPhGR+irIeUYHOOukDSbVC/BXWUNEjOTGmK7uVIB2oXbGMde7ABWgoxRzmRqLL6RyfxVR2UNjwH1x0PkKssvBAxF0YNlcoxkzbjBkanD9TjkO6DoT1A8PU4JGh5PbG62+PsihyZ1MrGGfipdlHxwmgLO103RnBH1uSAKJfFYxvbsbIz1psB0Z+8tgGYSA/Cn3JBGWv2SeMapOQsZmzdiXKdqQtYcgvRU3o0zsLquplDUNHOi2PewdhUSwZP/fJ59q4z1/VXdz4Sjq81P1U/w1z5CQ1ttL4p+equJsfQ2Ronmfj5gAxpWxt8WNkqjI1vFTkqOkaPBMabnEv1shlYpKOiV5JV5gjE3JUdXE2U7qlvQ1gK34k7dGAVe/06+SZLM4PVlyxba/cQFFRV/W7PdJK1GzVQrTI6qljG6uZePPWxf40kNfyE+y9TNm9K0wVwCLdy+Vt98F9qPcZn8Oe3Oak2R9pK1g9oa89vCKevbYzVicbM/34EyMVefnEo1+XrPimK9j1GmIOBivLxIxXiSWuphGG/pmzNt/8FdB7xZfax/dDBOc+MuUHB9pIEBWYZVqy140LsKVGHusSPIV84w5u/9GMPmVEk7pMXcOIa4vrXbuxccoLTyBPUkvHtLU7QRfytPfPySUkW+xe86H0oicJ7DPhCoY962c1M9FRPX/zWWuIJ3Tv6+E7aT5aWFpN7xh0YmjjsOezPWo52E6kREJxkER4rWsUkTQtfqPIL5RlEskZQr4wFG6IYnOo3S9cI/gTowMRsK5OwXhqWLbRcVq+Xb3sD3geFKQa0B1Pv84bQGQbFz2Mnhb9tnoGFpSlcdyjp7vyIQ4+1XYAvftfItYIxBkY8gNONZCmgU56Us5n2hZP3AcX3irxd1Z9eQjsw1nWzSMWYpinOL1WtG8+UFN2OYSzJK29dcPv3F3u7OnhfEeddIMKiht+m5wxH6Y9Yaxe6s6bSbjojijUK8NvAc+Ko3x2SfClNkOt5z4JrDzvv7l/wQTnjZ6Pz19gU1e2+5P1xma3EFPvD8q8VYPtRLF51zJh/pHSU8UEnXjvn8SNJJD2ONf+bm8rbYAWB7N2zASrwJ71spYGYtXBCpE+tCwoh2nUw/lqMXs4ju/ihcupxPL//QJljtMlbjDJLJe+adPBOzSeMPbi/M19RCzc9dQShOZ0+oM5val4YuqV8rmL5DbMc24tsx4VviDkQlcsxg3efvhe/guyHEc0i10/wGbQcz5vY0Qsn3mpGqZ/JZsXFN4I+Rs2JyJn3z1SBy0l3yNDhgNgFm3FxqMS/Xqg1uFMOXkcOi02/vbLdMCkpPvxs9xzelvaXKo0h4Vb0iVa4cz/NjdjGFkuNzrNRTGDh4sdIKSbgZs46v5bHejvwLhHvIrHG8GDs2QW5Kb8ZHAVKUqVTsg7lEGVhEgQJWnDyf+9azuZtxKy0w8uzq0kJeB/qNhyJM0OzA+JJlruntfzfAGcxuQuTwx/TvERyK9A5iyL7fvABP364uGoUa3htFtDdFH7+kuuR7M2wz46bb8g1mEd6+xDq04bpjbZ5iPoVbkjNvFx8Wy+0A8SuqqnRmGL15PcV4LIzpdhBMCAXvhjz2pU3SAtR2po7ED8f2kuMhtCEqyQC23nEPnjMxr7fwohZObGIpUZF8lDf57Cgh0eRLoInsbH2/xMAF4qB9uuUr8udWWGQzZ9gdojzTLT92MBctx1LT+mxq9vqoWe6ci7JrrsG2VMmFCmsKUhJA8rdjkmrlh1pzP2qa1e+LOITx3mFkU+iMiJDchHsowrWmTH7DkinNVXf6+rN0D06j1SHMXf445ysGAzySMUcsJd6PET8hZi9YH11G5nqGZ+FaLv4tiUQqYjN5b9TsVKUmKim+JynJfD/RzNKFqlxaq1N+E5wu/gmZJbn3TfC+mkbXIs/HTg0FIynlc3Uexd6KHJHvAYDlArI3Giu31znngvPaqjc6ctBSkQorRsd86q8ClYBXkUtOeK2iKBPD2VA33C0JXaN9P+56lH5SV2Rf4g0lyx52+3FRVxWEV6202byagtFsLMJM+gLz3Vx3CS7KcR7OIFWv2rpEcol/1UjRf79b6Rjum8QYo5ECSZZceXsScFPM06P69X1Tb7wjwWVb2u63d9kW21h+axwEXgxcUvGSsputZAvdJYm4BjnBOgZm3w0aeUnRJccGPoWeKHG6higLclaWSAXSnxCp4p2+TYc6KOBMmGIW3GPEAbYLUjUub/pgoIpj8PZsYtqXP4M/STrH949XbW6airL20TrAmZthL04oNqxII28G9fp9RFITHC8CegEZxnueZD6ZmSsoiu8/qy03iXiKIc07tr4ooeqojqm3ilWpPfBKMgkXgQzA0GDzpQ5o+/xIKEk6+95Zyih6kM4c0WsKkd4Y7WPi8yY+dJJ8mfaMKOHtvTrGptxV61UBTEZypfhcBP7x2Nm3m0FPodl2gFcUowpd1etPBvtsaTuzYL7ORn0PWO5VxqZeKVetuxg1LJRdeSLBtYSgZiqKIT4r8/nd889MHAwvaHW+y+9ct4fRNuXG8PA0WLwYcVwXaZrTCWPX8n9mVkzVfm0bIowfkWSkwoF4bRKT056Cz/YxW8KGYwfHifDECbzIW5w3Q+X7RFscdnTRfPBGV5sodtjL0g310x2OA8+I17645MLUFEk3U2MCs65M9axa7VtuPtqhC2GJI7BOitvkKtwgzdZ263dc+MVycnyNVqGl1DdSfLQxa1hDvla1TOJJRIonYlRnGwKr4T7EIlRK0Md4Jxpfss5FohBkxlTI7hAbJbptTLuhncNv+3tEB7WvIq3RpRblhcUWZtpaJpNPjS/Fs1rLfmC7JRMeSa+T7WgeJ0tO+8YIl1WqbQ4n9J/WjA55EZmt/Azaq6h9HZzFxkp8nZmOJNhwN7pAhyKISKckmgFdTl+mDuosBdcTl4kcBS7dk0ZfE8rbtEU+k9APTepZnM0ciJEt8r6FKYA1QTQj4ysh3CbMHzPzM9vFH9YbULgjLdAscjYTn9807L88M4twYdr2ZOgP31beGsmkzSuQ51ODed0dgqA8Jeao4ZqmJBZwpLE1uZDlu9UCm3ttakertTGY3ak3IcIr4ol4I8sJbc6HVuUdu5YR4YFZfsGApLS3/SPitkunhI7jSw3bGOmYS2AASa0A26R80HE6HUsvtVOZdfqnkHCbW7VmuaNVdCYoP5oQWlhWScLlnSswA61zo10hP2EYOtYqX3GWAPEo5gJK2AHzfhhK1MsoXPrwS1Q8QDD5bh+7pOO3ks73L+Xuq7lTLNHirrkSY16R+XCrjPvb0hF2uacEdnAvVGfSk47pGC359rkcLd6yuuUaXtLwVMW7ppyJ8V0PWSO0d2d7xfMu7wp7eIWIiSyTCsPGJx/tqmX0DVg65ivayErqvk58SmMkHBGnZf3jAFFjdEzqe0p8aeX46+xidjwkr77qQJkGvcVPbFwln8YYQWiWAOGpFyBb+yTMxj1lqPwkEaL5gI6UAdizY1Qq5517p2/iaaQsdCi7XJeCCCZq2ETMsrXpSO9W9tA6YMhUJBj7BQt1Wt/PT/RjpOQVK+V/i2YJi+21kaOuVheBlWl2Z45y4kAU8z2JnNLls4/8lqh4gH/5kxvES5AG7coOHjBtmBZDjUJYSkp5QRhOp1CGiVqUEO5vE3Udeux4qP3dGX7c7draja/PffnDbiYGvlw+CeLn6eYC9Vvn1RAbPmyziEzlcauXZk+6fDt4pKpS2UM+R5UGnrkZUKjgB5B8uMRc1x0sVw3zTV5EgT0QcavYMVHfQv1RKioQsPKU5XaKuzyZDurOeatHSNNGLIYQxz6PPhp71TDyrsixYsdTG+gLv2Z8TKiBI98O33f+8s1ZnSK8qojHbnejT2S5LdtWUey71Vr1XeZkeH49nAsW0BnXmz5lbIchH7a4mbJaCl4A922JP/X9G65A6jlauJC3Xmt6VkK60iL84HVP/mWgt9dkDHHmvMmc02ow6kFjwnWcpbBdMu8Bg7F+6kvTZqXnbygdJcWL+g+ar7zxqcYpW4XfaKQ1gEbyguuUC0bryABq0W8wTkwutEsShr8UCiwgn6EGIROmkL8IPX5tMaLX7vKzfw32oxneKnpIC2w6npDup2ksevVQPAaqhiB5V0/WtINRJkDxGUvYXHPkS7fKrNqAwKfP+ScI89GmXX3Sf+CYf2/D/gLbfzuydMc3c0AaDic7yMbHhWTH0nI4tdWF7YPaJPuN51JxAAah1lrnLbWlY4DBjxjkg4POK86IGy6so05k17OObS8pHeZMh0/Tm0mL8qHU6GMvs/ZYYp7lTywAJfaM1/GRg+Xbd8bjeZijJxUPawFy+DokgsgXZisKVdgrSPUtWYVvUk/3LupM/IPtVho/iFZdjzf5vO5kY4Y50qCgeOXNofqMtups8vAutTEnr2odnsgtMTD31WzHjGaNeJAv2Pez00/qm6fd4NVbelRpORs5zrBx8XjKieGCd/39juh1lnm6eHaro+2YvczJIMfYS6Jh/Hz4S8vb44D8ff9R/UGBOT1VjDPJZMJPhvg8NynnqcVVMyvD7Ph5zCTNVRMfRhREhEEkYZ7kXakgPKaJQyC1/prWcx9TkL7EkvdJIW/XzK7jnATLzVU5y8stXL0pfaLyrPPlwGLcmFJjPySqfsCRtEDtUD5aYJ2j7KIpfgAwIeytsEOE3ZU80L/u3aCkqiD92phZvQD+OBkDiwfG/AZmoLhCa+4pXgna4sBuRihuZa976EfA0ho8icfcm/uCNfptIraWAOMhqm3J0Yb1GMK8XZuMT6xxTXUfypp4XQ5vkrVLK3tYw5K7gQrqop6a0cWxZ2epZVCK/fN5r/BN+OFSq67PU9NgOtTe8Bkw46kN08xYEChQzrZ6f6+wfenCEI0UH5f6oy7PYr1pgFWzLS9494nJnLqtc0R3dba5sXFc4OF42p2vut3RgidYLm6NRL/Cmi4XRqlfdgX1fajtp0nMue7JCh7vELoRFQQM9qMlE76XPy9qXOfVeFRMXht6hUE7AivPn49hR6/c55Yla9oeFHyNmV37/K43MoX8mfEsnsJW3VmArUo1NcrsMv17ZtSWZStrJ7pkF/72fcv4O6k+q0MSDv7mtBm+DWjZJT8wBaaPId0FLPqrRrG6ltPX6/iC08lpLIVuliWabWoUTV/Yo58u6nMOxsiDIxzgAjlDeqKlOaFjz/SDheFLTXf9N9/LJd6j6zqlyaNh9AELs4rKMmGP4uZvX9qXq+lz0sy6W/m7R8jWHi7BipS80997Spp4ASgt1E7S+ETzDNDrxLyqh+nxefiYZ4tsYxj/4GexFqKlxNsAi5BGOuNvO9A9ZclrUFVhsj/MX/PxEXSM2vPZhDicfX+NSaI8G8vT6rmZLVMfheeP7Lfj/exj8f3OU9UsTDWmRhg+rXBKsx7/3gyFtQmtLvTZXOuqmskfdg38mllyM5HbtSjDME+feKKTvoka8LOlPy9RLDOcuRGoGbezSuVJXj3LZqFQ8e3HSxbhDJ+yrz+y36+uDwNEC0vx8XV6Yrtz3N4B4lQEY2iZFMWee1gqnny9gC4l+LKkA6DcM6UMQSqg0yYd+VjmmYMhZxXjP0ona67KrA9voiC++53wVErDTHLp3Nm8XlenmKcFHxfIBOXYYkTOiYxonfBa4MSFC9fsh5+Ke3/OZ4bObPsmK/tIvyqW+8IvK3RG5QYVFV8qlIO8cLBw/GjX6SRpW3cFbV4CPpHcYDOj1sMdfU9tSD5VvPx2uZAG4E9ZNlA6NGFvQZPSNWnxOQ2Ts3jv0QGuRqTUi2cuxz4+DOZ2ny8aIR9azcpiBPYS4M28o1faOWCiNsnuNn3Lj1KcE+D56mMxqvN2TOKoR23EaMzJ81wP4YqYJ3YOJNqyV3pYfE80B9Sh9fauxdSFlRaJbaeaXhW2oU1ZvtDOfv4pidQqAcU6SHw7m1fDykQsKuEAPryKrdaDHDhAxfZjy2qIYcQ2l3cD+9SgQptlmN6u8hyH1H7dKGQjM7HL5mPYCd3tJyIrzKTXt3wiY3PJdcV8ydVnPslmiSevS1GcC1nxSASNyyx0rIA/5vbxmDbd0TWHmmmTCzGjtsB1qJEUbq/6HA4ZKNVTldTkjkg+m9g3jPZ3cRpYU74iN10dtBUck4RqSn8dMPC0xfbQKimpjddE3P+zpauCaWsWesC+XWKtBwYmJ1DBXhq60fwNf95+pWomnI44AejsZ0ZcPprvecPsEwLX108zR+VTNhFa81EGTFMag+smiGayKfjSNJQy6iVzkJA9MFnPo4zIeV5Hz0bzTYEkYsYS5WhLLUiWN7/7tw4/deTDZdXL4vQ9L+dyDRE1lXoaO71aYk60vtPhdQzj72uRyASyPDXVNP/4Rg6jCPutWheBWvMlhgIpG+4r5BwG4jdasbpLafWf6RCvu7ylq5nNxcJ9nO0zcCu5GSX3gw5WB7+C1+GOoqOa4QNOlgAizaXX4apS0AnQHwXbBJt/eGxNPAUEvcInw7Hpi9opT7yL+J5x7xNoC+Vp5ypmRcDAaSy4m1a5Zm+aPeB6KkrMM4d+8NnuWWKUpu1hgCUseTxR3uYUVepXj3T/Ntri6c5Uv2dp8fCBFY3NMB8280KDNeXbSmKTNOfktfzr33GcGKJ458yXzvxslkJto470V9DGSCD9bPyhEz6q24qefEy/Gcqt2yft2RBhnBv1cUZ1DEpidxvimlDvUx/9VPocTZr6aJYDp6gi0Z8qeq8Gg0o5J3tLnr79rPo04gs2uRfoKnNPd1WJorQ6KtBlyTUER8ugkk9kRTxud9XWiUc+Fn9L4tTjyY5wJrPEOH5mZOaL1ZpTnJOC/vVFVxHfwShHM7wCVYfpyem65F1mYRsJfTWKxmqT0xWE4YLS6bVtrvt+LmMRnSQCH6mfqICZ63DL8CUBqApLxS9jMTrv4ThD9m1eerCVTrMON5Y086S/5X0pl3CT+HPFU5T58x6V0CY/dKs1dYjeZsfoKc5QGM1nme4pQww/F0OR2brnKdgEE2X3aUt6UaianGaf6tkHOUyV6JcTL7oEdepGuZXgC5zkln76NTOnqHd/vbqPUh3KU22aP2BSGKJR3WSoqkeTgNP+nuVVtPS2UbLCks5ZU6bNE+0Z5jMVpy/72y0JAf5e1hfXOHlGict9XghL1C5uoWOkQZdnx5L41mUY0M7NRTQ+iSPpQyjOGpzxT/T4VCkRdclhzrhKKFuAnVQDJAQ3LxiZnbNFXYWjm2EaaO+aHcwtCpNb59+GmXq6i5xu+qwmkkWHylEoSa7hjLF/8WpEba7FqgjuzZid1XTxdoYnx0OiTSh77XZBxyDJaLvu3w/znii451XhIdeH+nWuiGweKErq11ZvL8d5t9u+hFNmCCsfp1UQbsEeHtv0JNVmNbgMVfSP8L0iWmQSrrAmqYh4Xu/N1Mz+8dXgjk3yMN9Lz+AvaSC7FT6dUFZtZbsMkJ5FYrvXSiGjuGhECZl8p2Hq5jP3Nuf92pma5MGVBPo6Fq2YpaKQo/HhDqVX0h17b0SzNrbREXikZLthIotHCSRHPUMnoKA4RC+S2HyRcclmImOITeCqjtVbPbjaDLT7Cby/rK2pWeLlbdbifOpSV1W5cy+cNbnUoPLWyIbTQRUdTRxDqsd2VjJv0B9x6YeOosamJgk0s1xUUqSIa3PLhmfCD13DRZp9Jl/skJ4U9g050y+GXMTWQtvnJP9l6+vt76npfE/h45fcpUpqF7cZyO4b6qQY7kyZprXSqDves9EcNn1QVV/SYYjCp1I7giaibHZyXN1TK/hWQAPO7K7GlyLwWriy52oX8lebKDqdpDjZ3kq9SMrKt1TXpLLoU6GsWkTHQVt7volnnS9ZURwxgbx7bsmI8ZzKiXiEvNpny3KDlieVMsh8v9XXHtYHT2ij514yJwuHcRJ+DH5UTv6jLSaY8MJtCx00rGyekwLb/WKYdWy3/WvP3FvPfmOWRNt83wG7/e6ETb/SAAaBG7gcfPKvLHY3ucNRVOWD8shKqeXb3wLrOrmjogTvYbVqkBeR0+yEenBu+eOy7sNmhe1JK8QrQj9e/ihZzi0yyVblUiWeN6WwcJrhSegkX8ih98caDTHJzcY5k4mGmmCq2h2ZJh5ie3OnH9F6FAzG7RMZclAIQM9IyDLKCDrDxc8dNLm8YrGeifHUJw46NTXZTU+Ylc0X0CpmPRKIwLFEbVFpfX93nnzp1SEOJOjZ3jMk7BNDLPukvPwhmUKsvd3uM5T0h5TQLz6+gnTyOJmj4L63NjTMC89jBZ3RwvpLA5BbGdGd+5kjRIcPa5BAjBdSRG3ttPdjhGeumLFwOTR9wTBcfWnCIM9CNpn+5pIF5Rdh3s3RE9B4zznyXvpQJtcJZI7atwptX13prrxPmV6OPBFHZFiOca8al7kz9hm0zLo2zaJxTDoAs5cFQAceJcVJtL8Z9FL57jSPDnr/bt3BXpI1OYr7SaXAgfvgyXC9ZZMLJxhRB25nN8LVdA90iYazhOVHbnmTd+Uog3SHGjjrdjopKztMwVSsTcEr/LGUc7/h1Jb0yrE6n3mhKYouTqaCH2lArQTsBWejzd66dDQGBUDCfruDWskUcr1WjdD6HdVEuUoMnyPPllZKkC3EhHreUVloXzOIAbxDT0z21S5uV8ImtNj0qFk+3+5ju9bQKcl4FMZNnm9kRMQu5peVm/MPgIg16Hsc51fDtmwNwqoLtHnLsKYNONhjWStUDOf5H5/eBiD0uXDkohdI88E4nHpzNe3R4p3ymYap0KryC1NqdmiQTfNGGY/EzO9LvxrJ5K4MaF+k9tYlzxHlq5g1iC+sLSHvEvqUclfgdmckTbSvlQ8N3RXYrfDFkZsfWUw0XXm/iLoQNCJfxguDgsEOf/9EMglghY5B9SF9H0ckgQHliMLR1GfGUi1Ezy88cnnLLBDUMnLgRmCk43EV0iqCMdd1Ku023TY8d9QmXZgrxECooUD5ZUA+KQA0FLU9X4WUsBYyWo1e6NkwFO22dwoW7AMhZ/Cx9a0Yf816sRQ3lUV51MS2G5QBbFCovD7Ookriw0JW/KqJK7QR8R2rKQr7s2zd6G5fG75lC2pIxJtEPfCXIqqGFRuTK1aUHKvGz9nIa/kWUvTnuZXggtdGYoP34QU/ehntsWG9XwVjP43j2xy87G5W+dRJIdCnbCZp2SvmFbT9bFKteM0Xxldv9f5ZE+lbdqiRMyJlD2wt9a/u19Q3gXpSI3AlWDV57JFQ7NLtlZLYE4loui5Y0p/ap3wRa1e3hlk+BKQoXBSd1t+xxXw6JWeugdJ9qo2riUA2PdXdgnB84eGY7SEdV9hjQxosmUbDVGXXkkgUQd0Ez6AluRF/KBuhZThM3vzRqTpgn3W1PWLDGqMVjjhJf4mX9AoOcy/wWfig9Pq8wOm7fS6n53IGa11Nn43afacWQwc+Pbnfa7jgtc+UelMFz+VObJx8P1w/We/dkQTfLaLNCchRfwLL6+E8WDgeEY2KxQGgnF0lXgjA9sdocvC9nm/VC3tny0DmH12S42vdpzEg/J39W9aoS0qTOItjT24dja6XRnkWrWaDXYuF9cQM+e1rynogYmfV1AhirDOl0Agj1vU7lsGqyzvUZuaXd+URCKAnVAgZcHu8typqvG9Pqci2kpkKpLj7xHoY06Ywjm4dMt1fXzAbEdZw10W3f72nzwx16AhofcavzrCh/GEG8SUJlr02fms2U6+GQMDKK6di2ZM2FqINxh2xTz5OH58yxYXHYI/PkhcOjJdG/ODB1+GnQrKmSHun5oma+MbJdeuEgk+iL+ygILZmwbPldp8t0fbT59HAL2wfWekQkgSy5hbjnDSZLN91+Zz5ACsGWbIqmFU55SbgPs/gjC8dlu0YUflK+r6DXglBS6NCEiZJ0+1XaZPRKFtGMShbCH9ZpAcfUqst81lnqeVc1FacFm9VrNxBRk7H/FAruFseT0+k/IvY7aAKqn34Hj2rA7z4Pi0DUjIZtBoD/AoeiEG1/9qzYVyKbK/Mg972eswY6Hb+4TOpFPRGHqpnatJFOxiBwYWOFFpyFYpk7+jdvWyyUcsrMtrV6kaDtzIVbIJiE03eK1BLL6rY/fVNC4jK3g9s5l75LXALqB2Q0A0aLMifxIguXNf362rdCtp/0j7O/hluzc4awybCVwhzKUF4CjXi+ExadX7rgl0OiiFoYRZnoqyJDuZ8BunVh74rerp4bGw1ez71bHcroW4kZWOx8jK9nwVZpnJ4bM3W6GibRYErQHPfVRsrQyVxrFejC5VhHgHJN1ZoreRquCuojUN0TNlpvETQ7/wyMm3N0qknWAM11oiP0byEONai6BAwwdIZsH0czoXFT/eU3aGVkIg8pfEVEp9VY3tOgotY9p9JLkhe8+VONTHvvKotIcL7gI87d8k0+yp9Y5KHaZO0mK7Lm6tTAaOhLn+j9nUak3CUc3z45d6cVTqnpSt+R5one9dsCgmJZFtGtDjVehKn4lHPdGAtwhO2UHj+uZoIDufhCPh2ZtZnKUImSME0a6WNbggcgUE8nCeo9yUzQERwIadTHclx6z13MaDbbdR9HMdPUIwHdavM5YIEy8pCw4SJyOYW9tt3nAY5AvlnmMO4UqFWJnrqRs2un3N5j8o8E7ZdTLFThIxOy2PiOLe283xsSnScxzZvfBnOs/cSujc17ncButd3oZTz7tZy0eSMUDgM6iXIRSsqfNB7pJQv9pkPX4uwdr5IyohItcdMis6kVa8V5hR2wmLJJNK7H19d7aB8xUPJ5anzVMkBNoYQJMASahJ6bNFF5qNu/HITYegUnwpPDSduq0lIvpXIWQNJNnMC6bDhXqeby6zmZ/JmWSLhnexseDqCTI/7BDVNd2YyMhPuhXd2MYukyws7aB854OriWo56xcl+WRzCIF78W3x8/EoM4VJsq7iBj9Js/XD5fgSxy55KbYLtBOKjwL7lwZtltr2sIX25b/7bGqfqXUE8r8OQQ4MyAPSdb0fMtC9r2kXEUwsLZKNqNDZouV4gOV36vljqfP/RbEQCbQOZcOcozyeWAGGS0+DaL5VPzlwCT/BTFPHRm2GeD77rP4vK0W8zmp1OU5QSMpyn6EWK/dIFxYXCTgpzcGrGlMCNQ2S355Eu7/z8n10Xm5+sdU46omECSKaxGI9MD84A7BoI1S+HLOGruk0EHYbORIUZyp/5Tx7XdTzt1bD3Ho8kJKxK+7zAr7tTL0J8nZjzNQO6gXzhO66mwSVuFKAL+Jk4Y91ljvLC4MzAoTftAi9Sh1JUx/yqCHjktVtEDnpLgwU984H7o9WUIqZ958nh1BIP08xTbrpVAW7okaxxtDVYxZtMQUk6UclufPPcLpnWcnz9r55lzaiS/extdMOgl+8q612XJ/nvlNvVF2Pkjdhn+eZGm7/J6rmxIGQx5oxsl+so4vwwMUV6GsByHlcOzyb4pqZg3PoVIf9Lw1tYGfOMcZ1eVq0ZAwx3NSgBtf3zw+t6lrgOdwuiUJop+qfLAaJNbw20lCNZMCMmSNlfo/fsjiEHj27aT5rTk7hO9xEzpvLq0qi6eGgKHpAVYWveKLogE98DmNVnE44J+7zVwHtSefvEWK9XxqVE0rFy+U02vyjDQ3GxUHrpDEYpE1qjqr/zL1r26D+5fUJ9U/yObQlbbXZlYHq8ejVRi7dXf5YU0wVJD74qeZUb12IZbqD+iOqzDbBbdC3CO6yg7BsFQbD61hnGqdwZnaexhRg0RlbeRJ50jhn/GGuhRURzvxKj7hO8wChFU2m3YkRu1NIJdlGT05JSohArkjDmeCxV9QHctUIDI9Tor5yROcUvnyd/u8if4pl1pFefcFNJxSknLWN01P+08gFq6o360yf4VXX0WAe4MgjJCzPX0StwNYj+QqHiqcJrBtMSGn6vnwph0C2TN6wh6h+HkGuyc3QmqMuRVe59SdWGWb81kr+D9d0Edhml6u6IwmLm4Ap7jOt5htjpbRm2clvGFy20W6tRMUhqJobBEBzjd8FI+b1K5EFA2oMdWJlIrlO/eN0hnjzMTYSHPvmNIpz4Wzi+CaLNeBEHEaVxM86r18DlUqWpmRBajFeIeHS9iea0icU2diIIIp+RrezPi9nWmhor91nS2/2w6mOHJ9BqHJgrY3Ha6OuL9/PXYGi98szsi1rpbIs1myUG6YV9ZABZ0H76KLGeyAZBdRJKXHw9N3DpeD7W/TMMzWFdcnXQSBN3A96d5O4v4jdfQ4sKeOy/WCVH9ChiqkyfSL8NF2BFKwnfrAptDvZzR2H3FN8KNqBr4wmscsNj7W8lyk1N5FNw4l1naukv0N8m+pBEmcpnlVDBWNVjge58iBl0WepV9E2+6HB2jcuuw7tbZNtjt9rCzDPQhkxTJV7GAIQJK4Qq47OSJqRt8Pxb3ym/3/Wuev0iT7NYm3fLydir76LJOmwbGPU+b7vh2mIxlyZ9RNMtm+hV/ck+GCrbccAiAcf436+gAnHL+XtdlwfZPcvub0EqhqHhb/HEadZzAlbBXOJBHWDCl/eh6Wa1vG8CzeO4hqusLA5FYerAvCvi4ERTnb1Tea0ptQHkiOfqKu5SNmpedbGdR/hJHxKIy20de11b2hR0nw2HwFitLwk9YWr5vCqB6Wh4pxDIhznP6ID8YXC5u3cW6xOLSwW3vvicjTK5CJaM9P0er9GbsOYSuhG70NwKNRl4qqd2y2vVa9GRhoqZNz8SPCalOUuqeV3t+plTOOT1g5KbeH+sSOCjXZ0Hj4Z/auiURn3hjG7xIZxM4rBqxbJyLDG6sg9rbfTZtZNiM2v+dez1AaEK0rOBhILVEMmRIhQmZ+UyYygUWsK7+Ao0dEmneyc+ViEC/bCnvQGFpp12PWFcmSlm1BlEUKM4VOX8pLE7yM6hKx1yM/vNF/gARh3dyjQgHSnXa7eN+jQSrIUdStqIGFQmhqXKK9oQmgy68ZzR1+HqQ71vViVgk+bQZb2319KxpnPdJHtjoHgEaMJG96+9SlAxw2bhihaGWmjoVnO/Fegw2WrPlR7menNthmkuoehA32HoX7Rei9eO6sNjDBs4G7cp1WDJlrvB1544AEfaS7hN4QdprUUyOZBhkaxGsRnNyJw2tm59AWhFX/r3kN509uuXKKXgbrCwu/jQwOqizm1ZyUq3VxB8X6VdcI81tUbavQoSc3zTRnVMulpLq1Rtd+r5PMyGFZCeUZjLElSkY5t6zZssSX3J58ZcynXXW48pJl0touCEOF5NZzWGLDtb5pjih/HhWcmGVxecKlCU+sd3qMw4tfzkvJfJlf2KdfVv1/JCx0+72/lX8SzIEpejTcmCKOoJRfjW36VW87Vx42o3ibQH0IjezGNZIySPYMtef5XTna4v6WaIC8STdCWUHpM5cQtX+/7jtD++B5VJyjMc/Kb8ndpnLlG2Y7RUTJJ5bfelccmgtSk2KeJ2jiGF+dbGZiim5LchsJYRpdsECfO5WrcKXVAWrVpO/hbtQT2XiuYrqYPdx284uPDFf3L2sDMt8YUrMOMZMK65zfWiPN1PHvrW/K6JNoWcyV4QNULmVkaUgFXs9KmObKDd+xRkX6uQdyEjI5bVw8am5/xoJoaG3w532Aaf667yMqYn+DJ1dZSVT2nQon24KYC70VNQlI5i+qa9qqILKw/wSF42rPQpf4YwZnGW8I1YIoO3JPpp7910enZX9DPJ0Na3BS7xp9mWiXJb78dpLl9WRmtMT4lRY+e+Uzjd17duV+0d8Fa6c7Il37U8YvgQILzq2Lxn4sN1uLAh5p/0QyGzicLDZdffXK98O9DGE7G8woFZH6E0BN83dTSds6xcVjk1EnzrjAstxzCUztEBU3KW/kKNiOVK1jW2ZMJ4yiT9DTq32ssvtJNwYsUwX887V5tx9065imCDcsXkKoRrRJ/NB1haHSLhT98lchHYiTUNBWafskW/1dzyQt9SdF5dSjlxsWKgPBugYxIlzdm+rEy6mhlwtCiq8AiPkvkIa08Vs0FkxHs3VyX//f3N+bXhIhF/p6qrzGRkvMdnMgqXHMAEH9oK7iSRE1sqtisOkauKF014y81RZUCwHIo+PP0edMN4GuH9DV8fIXMtORTr6yZ7kXuN89hQWLCuXd4LJCLXphh3rz497pnyM8L3ISwSjCcpzzkrWRDc7CVVUX9uc/NSEdO+dxRycqw1E5cfDAygaeEvGriXcDP6yT6uffgtCFrZkS+0uYhh9GBqbtuDtD3VVUjdBeQkskgvJs0X3mzvwoRuDDZ+q9pG+UVpqv55e/bzQm/0fcodJiVO9N24QTkB7EgkhgNjFRENevXpJ8QJUnUpOlnBcV/vqIkOZjqSq2zdvKd1znOlz3leZYQWGMJWRw4ttHzAPbHboKbnFdz6SFTEXt8dQZ45vURxyQJjMSIbst/HUy7CB1tmzIssVc9E97adSjubexTxhX87BZ06gqEMW+fJIie1l6Oi9pBrM62UcCj3hfkr2cgAFik/9UlL/3vFmK5Z2EvdajObBlylDVtiQdCzwR8C3vEARLf800YhqStX9ybo1cVviaXdG1pEvNqbuO4YcVQOvEnru1R6FmC1WNl6Q8w0L9cVJvvs/YzPKFumXd63nRpEJFZGuneJeDbcCyKaARNPDg440ZPITFHQwtkqmPneYkwZaUyIW5i4s2tgBE+Tz5IP8bY9QVUNL0xA+3hQWzhW5CmP5OSYn1HjgkpeaaiNVReIM2xZaEwXVz/t3G7qXonExYTM1myJLnMgr536rmd6UvyZRba/B7YBX17QhmI/fCAnKyzei+dB3FXPtnzdgxtNzzVdSD5GNibS5SWlf3Tkgk28gI2vqA+5iw+1NorQcITXuZfHUlrIQ6lXz5MgiCEVrvY113ZgBc4Msr/kx5ZnkVXuX9oKPDOgmnOwHEsI5bOcN5jIJ4wO6yR4ur6FPXE71lE65VxC3IOsr5QTTLn95JJxpA9EU/QezBje4vJRcDSLYuojCGrdtuf/CVMvrNBi1ZN/ZMFxHB0mWiyQ3Vas9tfMM8djPbN7/UN/XD14lz5holfDefoQlYB1ee4lFK4Vr1s0G0OILz/hkjalnpJlHsZJYeYuT/t6j4ALizxSXnGMfn7ZLqB8BP/p/lygWdL7BblYAO/ITDp8a4FtghIl+6nT45rIBS2fN4KCGKIhoDHdq+xivwNgEYPmjIPovnE6LFnpMG6PQhgKv6Lvg78t5wf8NbRvtqbtcotWnMB71oDKJWYeL5/YlCi9zkWOllePcl0hC2CvJt2q+zgryOMRadW8W/59SOkpWO6igj49pePu56atZE8AORW5IkZf34WDia5qiM95JNy7lu/YXxJHi0w9MwvGxfxBIJHzxUyfGmvheXPAJfSDQtVmyWIg5m2VywRHfAVHWaPG3rP6tbP2UKzG3BpX7QuYWcklbGv0kBxoOC/bJarNR96d9ZNmI2w8S75dUEZduvE59PSeLW5cup9H1Vi6wG37mBMbv+j+5oHV5Kc3Ah5LF1scuW7QtbARvNY5yXVvjDCvrbpRYqSNj1CQxGmo4e/4PlYTSXyN1717WTzjRAxGAn8FYbGH91+cOwyCmSMxA1TlqQP6mEbBmaQFlgrAcxGIyGO0YLUfvBK0B/UNQCaq68HSFHSgkVq0KzaK8rr2WJAtOyjhQ8ayseG0FLs5nvajm1rLLq9DjMCzj7RPHKm0F0kmtYW/Xih/i0J1ir6Udqnk2Lm500GAFLLRooUMYtRzLSAk1CYvzELqqto7kMo54DZ0rBlEPFtcSWxKgzJPgiaSuCO+Ip+QGrDMKvmMQ7DhMXnWkx8aoo2NwrHPbEoJWWAqhOWrHQV1399w40eppjiep3NtNT0OUlmnaGtQiHiDs8msIysNuj3qXGtZ1TB7IF8afV7ZF8+zounmYIC/5bNroBLQXHP2hkweWdBcoHYUfa33hO/1U5C0EvS6RI+TUg8tQbvDzVJRTYwSvcxp1MUBWzRisjMARoKDmQKfYnmoEJA0stilr8zxsM8gN4pBGGMUjf6d97W6Yhn+oCHZrBCyQvxVqCmwUO5Ax8ghPBdfiCz2j47fqAyxpr4FOzOacLHMkhkdFcLT4W7NXxRa6v24PM6ISVCKcMP9oiiUkHDpEDqIFpf8zyqvaaITtoCPJ2lEM6vMr1AqiwtvB190Wd7sq/uCf3YMgkDYjvUp9ChLTLq5ToZRvZRRYAX3ImjBO5YoZ++LeTnhsHckNHj4OVH5lbjGl1COlzR+Xslv/XRZwXycfF++O6XPFewN0ocqYMMXNvnDlINxsQqQPfYqn8NgkzdG8ggJwsCRcwL+Cjl/ZoL1HO61CfSgcFRsdCLfb0IbgB0Gs8tvfQje4+U6IdpbQWZ4Fwdp7ZHifDRBC86+j//ZSy1rIuiP03fcELoiPH8wXG18282iTKWy2KC4PWOZ7O5HvkQhqV5rr+t+U52mPc8yjlX0I57a/n/nIrxrKyxP2JYjAjyO461oLbRWloMyz+cUXHOS9gmw5rXbTz5WkvO4DgcFzF5xJQfWuF4zcqVJETNq3Beyg1605HB6sQL8K3ZaLvDg6vOWsnwE3GFB52lHUAn1eEr4SY38cOk/X+lupDZLNYXfJ/4WXCVonIz42Kzzu0cFtGK+/yVZpOQ7ehEY5hHMZLugTyrIeQOID4/pSyrSfB25ienzadpzv9o6K9bmul7QPBMlBeIrfez6dwBQ1qKcCeMqP2ELceXGapZBT+GAMPecZS1WUYRyN3HD9+Z1YCfGi7jwNiAjwiuQsaa3QtPWUpeIWucib3qqYDCfoOCJ8wcx4w9MNnXUosmqFcw/j1SvxO/Gvasc/dP6bGLFjh1G8PhJUXinJlq2uW7n71HP8aJOxSIxZiOfiSvrey5YSLXQdL4D7IiJN6w2LZ4OvFG51pwzwbw8uy7ZfO/7C7bKSLeGEfgHdTI3D3Gng+QUrenCqOISC9mEn1KHLGWk6/9UTi2j8nR3oTRXSV9CLcq9jEK4Tj4tKM6bis5QRWwNZ9e7RwKlHRI6kpDXUxYR7dfQIvaQPWs/lXTDU2xrr7VLAHAvncHr1L5cLosRP5IIHDp/LvkuBPClPmfBoN8n3WW9jIDyACYKqp1np4pkbwaYUMVt6Svi/E/86W8KQZLn6L/xdBPx4MAfuS75cEd7RPATs8Ct3YVu9ufZ3fsqiGknYN585DumBSjuTOPmVoOfdIEr11j4kB8+DiZ4KBXyhvAeiOy5DSuVtaEYODbWqZiy71fpmGGFqRwzoKNcrn2SW42okXU18bYCz4pdaxiCUCGyQLqWYjaWqPbmaMXSM9U3WR9Yd6ssy36VTAVwEHBu4mkB1ksvuh2tnPKg56xwSpajxPXWy5X3jaEe2fmNNr5IaT6uMM0b/jzfxH+0arrn1nJn3d8KMZ74XJGPyvbmV0tWISGNBP4YZPdU4i2uIADuE1uXXjYwBkB4p9/gh+yBuGNXAI8JcxDUX3wQolOpDXE6eQ9rCz3W+s+pmqFROr/PsB/TY/GBQnUKM/8oNUM3fnPRwAbYvq/vG+pOyMVrRutf0GuF6iNO5cuER2XCKfCE3407ymCMNHQrxqg2L1p5lKsR2FYAxbqycpuJ3+DjtHq/jQI2e1OcJ/x3KDjYBsmRxrA7nGrxBncfb3RY9q+ko9vKvX+eRf7CKmgfPgOaRxPKfZuh4JHPckTw2i5T6hMj4DBQ5hxy3fjGUfTDQLNfo0G4gnanQZAMnfzA9/+GbPs0j6u+vKsYez+KriAiV08ocyTPkVq4sjAYSJiegHVnxr6inWrLnNgNa1SSj4ykMDxrUZ1+Ppfukuyf/Er/5NhCyXnckjR5shE2rRLY2hJ8+xIFPgspOjXQFS0HIeqW14crpM5EeXi+HNyy/awNEv8mOWrgJm1HwhcKREWA779XkeFJCpeKFRQVJvscdict52EWfEZxePEL2blJpEUq0b4ueaIpDDVqzL0FVqPmiojqrELxZsJj83onSYJ7Cfd8W9u4E8fuYvYltov78/JlsdEdfhnKHh0xvWzhyxI3HCxg8vjVbQwSIDTC4omV/QywRz/NKJOJIhm8x5miM94YCe7GJ/3nWmbHR1vFeA1/OxMw5JYHWROzacqMUJGHNrwxGSKNk+LCMWrEQYrTK3QWZfgf5mfRaX2PWVlIgkJPASIo21V9b9vJl5i9gcQNicWDuoDeUd46RY01C/++NUcrFXH3jVkCFsgS7sooXGq0BZo2Nrgj0PC8LZMefpDitiA3QJmkO4yT3NasnsmG6EovaSPEnJLgFvWMVA8a1LKvjYeNWSHHJf2jSFwFjZ+hymckEe/zHt4iuvNAti1aaUG4SOqfVsZR3GTVGTYx6IxqcLt4YGqbfsnONU60EKWGEgYXm2UyESY8tJ1RKyDvI3vN4LuPiaIBPQitf3TraQmG5glwYpArTFI7NOeYpwKSicbEPeEnGMbo7ROkuYfESh+yW2nhIbs1K9k4aV5kmB3N27md4KmNIThaKXktl5KUmzhcyVLy58h0p11D0zEJG0iUwXakLrCo89LFaqldT9iBO9VvD0G6DHaVFrzLH6MoSp6XPFQUMAWWkn1oUJWS4iQXLs346Q2ZYrxCJzVpMldNlR9qDu767693GlvIoHSAxCSlW8U8/7tuTt4Pb4+1BrWCQIbYy9DDocINBnoRHe4RNSO7fGkNPckfIw33BzJQx3nW07HqwERp0yx4fpQlwn2c7T9RTFlihU2L472bCJloXRZI5GoUhKfWuCDPg4IDTgXuO+PlxBIgtox/DX3mkLGn8qBHLRHDTP9i89NV+y4jdzh3PcFkIIdqU56aBM9csjidz9YE8lgxdXPl9GJlu02QlmOTRbduvNLgKQchNCrfdf9W/8ANMC3NdXbPARLJ8OMOSUPIEQgdG1SFN3e3uiSecIT2xdfPPGFG9KP4g2TaoJP6MNJIEz3EEAXmbBtWwZHmhY7NpdPYZjY115atnTVICH2HU7yr400sy3BmzyPv4YlnUJ1PP23DMY94J8Aa0ZTyWyDcKp0I5IeNxsSkKQLOFdLfDpHUd9y7W6DSLttHHwd+G4oE9BEe6gThspIDg5wZYQwUsv7cwdbas1a+D+Vmy+GECC+J58LHDq8qUSMGSoEYkZpGVcTmvH5TU6r7Q5f+KYBYimeKK3VF0c0++ACmRRKh3yOiMkk0QngVCgKATlRnC/tEAqX9QCQVWY4UcBlvxw+Q1D37g/mESiuR2RS/7pFkvc8fiBF/EzfOeM+gfF039fTN01zmyGU88gc2mfxc+EiXjhc8J7VF7TXeiNO9RfhXguXlGpwiE8LbZazbjnQnT3uogKHacgX6sH6GplBJm4sllZwd9EQ6AD8mFqaCZse6FjZ2f92/P1DUMmKOUhm95GWN2smE6tti+duGNXHk2nTSQCTCSRclQnUJRp9TJeQktImTcHBx7DxFAG8Zhuh501lgYCdRDVOD4heNAWtAKhi5FCR+AJX5t/kF7Zc4Z4CxEg05CZOrqz0Yo2ouubuLrC8IRgL4utnLdU/sjz9KJj9IJjwnDsYZ5zwNHpF4z/c5ZwpVzmsfyOwtuCeVr+shNURIATeIYrsf5BiMHAJ4QOujnkMaTTPx22ZX8dqJ0s8xyb/GSaNsHaiyjpk7TqOwB0JSL6/lKJ8cc21rptyV68qN1Frh+kBTQRzprF92jj8g4uC3mRc7XQsfw5PqfIbY11tRG6SbIqvM/EPZ6wW5K3c3KPnSwU8KzxvnxVH8K4rQJYqzSNmXKxk5+ZB7YTW+ELDV+/r3v4V3Ed1YdMkEVE4S1lmKMOQm1L1a2oLxiqWnjlryfinCsISlndL9jfyIOygpb+4enBQ3I2Z8qjRpcw3oPydmoLf2cCXpQeYAo89Uu9BteuvZW4Cm8FvB1P/lDn/tk1H6NksoK0p9JS8Xwsb9UL4afeiOxp6UNvi7K+62BwZozgpVr1GvLpq4jcOAnv07y/pAd4BU7c5u5NXokBh8NA0ip72qZrfR+6DILxsxWWaZKUui37TKjdCLtbHa/Uy4EEnBhqfpHKhb881yUITKvirRS9pluUfBB/k9j7vBCgJD+coYuYaNa7cJY5IrMNYZuv5vYyAjxWKBr6OTdvg47jeK0cbXKW30rnng2TKw3AJxZO8qo4zVQ/uB2kjYhPBWP1Oii1miqaBUaAX1WmCy2q5cqQmIUI+cjlEJ/j9si/i3Kl6NkobmcyFmltgPveTNKv8xpXXde9b8RVVuMAEnMX3Q3wdLJVlO4H3b9DH149JGj3YdsCqF7O2AD6zqUhOaF0DYiRQFEhMW5NMA1fW2g4Eal47vKJ0PeNHMAMJcU50ugoCVpcVfAQdx9pTqr45ciVIErLRckC8EfaGdUYl4UowHOHgoqXepqEWgai7hjB6s5lXD5vcwqrxD4EyTn3Puu/97G6uRkS09qT5GSqv9oDNdxwNwFawXIV19CgKqSGw8e+qYFsEfAntXc0G8+hAGPHq1ZxIrg3rYXF9HYx/VTYIxPMBOGyIz+S7oRKbcAZfnl6k2zdEMWLs1wTjHxfhBganvZyRugV1LNVh3VkoH906MJA7/11feR0vv1MZqPVDLpbfbX3jt8qF3ZrOPXYq0uQ2gkPdfrDEeRKJ6w6VGa8a+OvoIuLLrMdmYpFEIp3t63i6Vg1ED3tT8Jtw8pw9aKddikkdYdlY8Xlt+ErLbrTcvrY7H5rzvT8x+AUaeOatGxbPPzfpg3VUHdrl0iqVYGVfy2IQGP+GSB5Dq3KK/g4f8kjJ2bY/nK7qbMmRFgTBSso0bl09iITRtG2DDVniiO5zvC4dSIjP+V1wcSfXwYG12SwK16oi7w473t9lrQevibeZLXbtprfO8LLc6BGsgw6LKH3UA0fgjYqrnnvmKGumHl2z633sEH4L7WCtfxr/NaRh7g5yyvBj8rJiB2xlKgoK/I2qKGh/jfExcllBXBbLSm7AbcDE8gsSdUWIBHbp0YBnRMe2LlOIA4esqcuWaV8fZWEtGmRUU8vutkEW7v/B1a2OBd2dqsKSnF8qcy0VNLhV9kKFWiKodSz/kPNbyUDS+5FFY7I7JTYNjAn4NThjRPGp32dl7DlWtay3MDnt31qlC97+z8mMorNrh1N7eHG6DEFQMo44NSpvSydth2mdHFvO8r8OkO/XmO05yPPRTJBAJ4eiFPfVvuLYelpRhpHn064YKp7PcoidmI6aIF3wOP0015ro4Apc81cFa97tv0wpPYw0w1tn5dikdu6BVp+KmZUNJIawA8hEUe6FG14zJ4A0uGVbBWpWqTcqmbcanOsrfgoOF/fHLBHxqHWSrxVdUWO/3qLBRj0WbwMzqL1vmwXxrL/XZ1mcc200evNzt4xHr28Rv/kzlklF0+2hnvYeC+7XfiaPgmw46E1HM7flbkZ9QiXk/gv61e8ahA/jObrhK9QbErdYKiClbCs6v6gPUF2ZPmMQgsvq+Wd2Fg31/VIBMWqBKy3jCH2M4mJM1IA5XI+vith8a/jc3S9EoHbZ+uzjNe2/0lVCH2R225QUnrDXSid4Qhjucry8YoktJei6De5LhjcspjpWlUxUqlKCg2iolibhvsqH/nZyg6EgvLtkioYBcemUCwewM4N592T2dAwzcFCV2MAj1c1qv0766vqHvbmHggVE8WVX3h2UNOBoF0LgG0vtHMUuWLnF8OCje1GU73do23+ITGqZ1g72V1why0ZEshjXF0Yi0LdJfFeVv0LfI2kkBVwB7bYJBo/+jyOOxBeIz9vofpDYKVuSm0d59vxX5qbKYFUEp1D+puCCMQKUZVptMeDsnh4SJMN2pxWbFiTPzu6mUutnFc9ATD4GMr+7572shzAXaHOE5L48p1VUDhdL3hLZXBe2Coe1170ZTfz0zbpH+X6GEO4Q0A96Sf6iAzawO7K8DHQXn8pPQZEr+YjNYMjCg2DHiKFsQyz8l+4y3AZpsC/BUpfo6l8tquJ/dkg5Rs92Ky8lloZP/DwnakMB5HHR0IhiNqQ4un9/OfOolLPr68mFlWf54hsLlwrOZ8BqSvwCBAREVUdhJWGmyliC+vwH9CRy/gSTfj0M+1+EfYfttPvu4M4yMmprYX+vrgVfzPjmc+wagdIeijqCUYoVme+Qy1EGVGS8MqyRg5SKPAnNim5cYoJZWrWh7Cwl5GRR6sAQKiILl32Bnr87l7Q3yWRST8B3rEG0r+yQvgipOR4o8WHvanj9SGJjQ3TAgwwyZlyGk4t2qcv9gDthIHnrYnF4KOlSEQqXhF8gAW/uCFu27hdwSBjINkDhVvP5S7kgL8lFHYdXnCs0n7DYpS47oMWZ2mxt5EdTGpudoqCupxrsRT/gDxTJZCxv5DpH+2Yss94N4rkCNUBNzFUfFSOvWK+6twyu0F5a8E8KiMAgnxfcX1KxTsx3z4YJK0cXUY42g3hSx2a282spFzQJPFCcs8/978pfsa7qgZWb1mYgvQsFK/vvL6fDwKWqfr8wN0E4kq3ERju4fgFF1XT+aGt4BU3TVpsdHOqIxiaNcOc7kAixXRsV9uiIIKJoRfa9I25ebqDXbpZ5PU3iwAoP0moK1IS7jDOK7A39ii5zN0F6fQFqtNk92MrXAM4Y4tnj3/5YRyeeqWaUOKPXONYJVBFOvWzg3mOA7x1WoXDHv6f9/eoVRA7FvzKQWin1H0LB5K8Ut61arDIjx5MG4bIOCtegl8dAg10Ipsl5At3Shz27gKimER8Ll2ltIAUFuOidULuBYO/9rLOkNptqRtoFNWEYAFeam9t3TqARyXjjE5uil2BAHXcYU+vVN4EyZywkuN7T+xVr5F3stMqVw8Y0OX8VW47/bfH75UAPrJcGAP89A2V0nYttLpCja1Ph08I4oUt/pqdIu3LioqBrrTbAAEAaUoHdcMmh347qEA3MsZAuC/zlHF+/UhANVCnAAqYKk5LU78BwPtqP3dW76Ri76BuVhpyx/+ySz3ugnrDXh6zAs3md2KFlGgm7az8n6WVx9ci3gWab/F7ahd0+0VWOYiBEI0jlJH6SthVI3qFR6pVkG2+SC9bl5eciFu2XjLjiUkFLi/Z5xTXIZFh2pTs2/xZG9bvCljEz1yxPBlFOBH/uB1E/SzYGZfz6om48O43mGHuHH0YZn5ip+NjzdlWuOfKm9hXlLFU7F7qnT/blg4nIXgEP08NoWP637Kvqb6iO6bjv8Gi7XzL8BS5bli6LgfMWMM4Szj8jkzXhzIRdlDI9+1XYlh7wWY71GrUWJ4XuTPv1VMYQ5G6HRSIHt1zAZSF2IDhsQlOcgsw5R7FNl6Gw2zysFJMiEd8DXHiwF6LA4i6yti8H9ZjO0GhilPNyqhtKn3xsLEDJrOY4gju3bPr6AUWCR+3xG7/jwjsSnLdij/Kx3mJXBRiKxQTSMdpW9K4YeMrMfPnGi3xKwp625bsDIxHOG+5BsNGAwQ+5O/qy3thCv2qTxkUdTKyGT3tGXm3HJ0SVZDnjFFyxSeYje3mc0HjBlOM1qg3AREw22Lah7ukIRzIf2gVkUqwGHsLlH1Q/eMWJ0hiRYKeHqWpRZnw5u0Nt4U62uldfmzYJUKhSUHCB/l5TJIk6N/NQ03u0eQ+fAuGyvcPeuZzMFiUvrCjOoQMSX00JLCX0QZcV9nKykNhwv6tcZO2zvwaEPJrLfMFFV2aOSXDYFBcKcQAdDebKRzYYjVWJXJmuq1o4hn9nyQwX5YeXWAXl4FzpesXfhcFfbV3/c9j+w0tRb59Y/C8IF59L0wXScyd6yTnMPG3Qgp3ljkjd1bKlRYXDuoH5gfrPVYnRn9l9dtJzUP8bUo6surT32cD6+YT7N/fZLfJspsIrrWC3aJflEFn02f1mXuAI1ZGF8UXhz/+2GzNcJVl2/aQ+fwi44p+YZcYyc58OZmVuwFHjrOrSW8dfhB6/mJ8d8wpRNuY7ikZvlfBREgEAP5TlwQD9PDfz2nKaCNfABMJhByqZETr3ouO0KGwScYuV7l/+OIwdXO9qriRPSILaKjVUeLmZT9rFP6/h1VEBHQBqzZqkApY2hw3umYlLvGHSzmXTw4xCGuyCWHROax9V7jy+OjtZZ8KaM7FmMNSN7ggpILWJN1cYoM5lGoNxoqL/C5mDgfxGRbpUayCzkXX5NMdL6Xz1c2CH3MA67i1a35KUtz2QaWyZ6U94L0CKz+SjBrtyK0/Ov8g7F5KWt41pfHjIgFKL7nRn31C+ZTB5L6kUuJaCQ5ZKXsQ769Tei1YTYbPkA+YbC6xOWC4C8jRM9LkaCARKtmSFJn8oWF9yEqq7sQD3cq4g362miTIhAdDf8FWU1qDTCn8Bt7mlf4XNNzokb79gThorC7TegmpwpvhQ8BSriONqALFuTHTJetAB/oVVK+W3mo4LM+c1AU2izAgnY9K+FVxbwp4N40aQVLRCl4xmNV5H8HH1K5rzRW6677lNgzx14PsexW0P5PCDcCbagFrtRG8DbTE/cH/RCiUR9o0zFMPzBmIvekhBQXOBxlrXyL/xADZUVN5eDh98ldWKDP+fnbN0F2sP9N/IYQzqtnC7dkP3zRrknVP2h6xZEyJdfGsJx119EKBDBY6K1J4G3K68i0hrXfUH3gyXKGQy77ycXO6AiFIasr0k10pZvw05h1OlaFdQLgGBUb5nWQCNxpGFkdquYQ8Z/FbLgx5r/AUqNEVxSH+J1crn7OeDAVxCIZvgGeYFpFGbhP2isjWw1+Qo0e1EPCjDeCbmN9BKfnsJDW3+eYlkJswUFOyGsyLfQPKwrQr5eh9buQ5LoAn5FOD6b1ivxBfr5ow4MkasfPFXLUZldfNsnuJQEArZ7m7KdG1lVyDM4Y/cTI4Y3pCo7ila+mzuMIdnMBOGHvq/tpW8xNdxM8Thn7cRLslNwZfvPbMW0Z246fQMxtjYMcikaPZ6VhKDkJBLSTNZS0tCmGuH626zCdYAEOFMYI+MTg/O/da0sd6edh8aOY/s6vul9fDuJ3ykhTmE7gulorwTkoBY5j97FXz9dz/U+5Mj1CpeflHqUidh4t7xsbY49i6Ig9EJHH7vbvyD2tUKnZrhbNidMf1kjLoa4m8VJErZniH+GT+FLZV1gBnTnDHqPga0vuScB04SOHUvLyND04xeumdbyNDdAHgD3pF47qKEM2jespUVx8WpPqbpGn3GsE5XTdkHpg6hGz33gjq+R6vG1DLmp6tutbXJnmfcLfY6ZMMoPYLXpWtdN6Euc8MuotXZ8ErYrh16fls0KxTclYhTJNjqUvAkfwOi0X6yfFUfJoo4p+EbtiCFTCrWJjZ/fCljVBuLIu3D2QL64Ia1JOy9USspzWEz6vmddRXBunvbPjs6GfB23nncODgAPMOZGYUaVgds52pzPl4OGW/ZGz91XXtXlsNPzmGZdB26hm/iAw0MlO4qG+iUJZNRdpNoFas431z7J2cU8DmHOltqMbBK8Oju8QN1LlXkeQ6Jiur6B5gEmB2x6NJr8q5EsDQ07N3Gu2U9bqQuZZLdFO8e2KKpDgAckOKbnrHxA1cWvLgcuuGSzD+v3lw6DV081H7jxBpWtZkZDZZU45iJmUlZ3v9ueWQA9eYVaq5LnUgh/E455xdIsaXcEP6vt7i8kGgx4XIR7z5tI+20cVS1gBy/e0dU3J3UX76lFZpsWyjK4sti0gyaN3LbwCj9D3Zb2hN8hEGeSqx0AD5rWXoXPG5FGfj1EcPW0BUH2kyJqHsv4Rn1vq4yKmdJnYGQwV8yXe5L9LuUr5RUqo5lhvCFw0juQvG15uz4TvjNi6BAzoKtfmQI0Ow5CVPXO7qnTvZC489F3jyzIxbHqzGWixGpJ+z28qweo+aB/T2ehR+lgzmQ9oPtFHujjAViiCD9KJSG1CTg7z8lk7N65aA8dS1xUEU+EAnzqBk+9U6fxujGFJrxKM4if5VcS10lrRhfD/tPtU1egtNsX0WLfBacBJWCHN1/ZZ0RANvN2p5nNKO9av3JuYa5EQYJmHbRtoXuZXM2uCyEj0cwWPS3fOkLbz9lRvLmucJ+WMgHVjlyM5wG98sYRHOuD9tfC58cBMVFpgxLm0v8WF9zm8kdfbCG7yD8IbmfFPnZzXILj3sqOx0WMRFdIwk4nmmCQz3i8GauvxohU7i1ewub02uvzfmlI4eyrooYHjozun/7Vnwk3pOYtGwgzp83BZRbOss7xUK0Ir3WVHrqPwBgjvqojIycIm5kAOZkeMThFG7lytVmsUBJBnC1jYsFqVA9qQLRMwS01lDugd5lQSP5fK4HX2F0eoehGcuQ+MzMlKJ54iP88nH5lMFbnEgFkm3CDT7Hapn89AcLI0HtfYwjmHAdtn33N9gTWUq6lbV1Qek1yeDGl/jlI2kchY8Yh+DyLKHj9i5arziizzYPJwuCKhCGvUkfKbpqIKMeNCSBvgFIgH5cNSF2iFYtugcJINLMaj08q7PuJmCcn2qs08qHNgBb1lccd0Zp5Y82SOV/8zySFmRGHVM2EFFSLl98Yuc/9SRY6Z98XrOBhSyGDM5g8Nxazr2d+yZ57qwmyFrmhUnrM3RN/UODTftY0kQuhXPBJjvi23j8bhG7bE+IstVRW+1uTIrOVRwtfN8AU1lcqPD/xCyEogK+sdnOVuzMl48VRohr1crv7sRjJWUpazCPAs1I+Q/pq1ysoo3qC+quYNgDP9izLSgSRXeOR61pxg/9eTz5NWKlg5JornSN07G2lBOhUobaPXCklr1+EeAHn0vosEobqXwVft9IiphU3HRnTPia9U34OMjBj0Bwf/mMZDR1NttX0UpjO19qX8c5ggZkGvdv7xbZ50lgMtQIY8OOuj9bQb9r4cQQmoyRhEjxFCxR6AQgIc1EdpE6V3nVr4OYVcXarQ73lqedFkTXgY9zVoKb3d5znPgmikCovBAzdYuCwM6ez1Iocw4xp0hn8ROgNYcHdxuP1UxaJE5gO0v84WL5sOCxb/R6CNDBYjeF0n3whCBQ3oZGlTbmA0CitMNbevKZSNBwPbkshH+Mkf8oZM4AVXJUTOG/uBbP4M2PfIF19EJUDARzFafXmL0S6fR7OLdRTPxv0FX+zRti/OKB0hYh0F2T8UOftQOe1iu3ujOltfwn64VHBjABjMLO2/xLRUq5Q0jwZf0Yd6j5L9er2w+9wD8y99zivGy5MKLGlFLwZo6pa3sGARtdQksLqnccMbZjS7CXNAjUlNID+rb9BYDIpaZX16UmCqHTuCVJzSOMe+E8hIk9fBTH4VIanf+28xgU5onr2GcqrI+Jpl1hSmxV8fyuqdRI6HFry85opxBt+d60LsNEpBQHN8FVVlVg9BORH51ATkVxFlGjoN45bYUatVFGswOkC6sjth32g5r5Y7Ym+9DqHDhwVXwj4zymYtJTl2Ieh4KcIXMGRd+vvxiBtNyaqEUjpMG82S3JK99UmO6z/Dpd9OZzLWOxlPPgfElmJ7IHyIko2OEdwnmq5X+/vBTcWHTbOLx82FD8N1rE5mzHALvzr2Gk1lWC95nshX8iM8weugfOdeTRGw/OpL4HkHkxKxicO0KfUxpcC+0xsrKh8sVQtx23T1yjX/yXb8dSR8SGyeqNbOSltSOhdfq4WRSv/HZtOIR6fvtVnyYQtHxUD7HV3ewH0/ttPGZyv4cVZR7F9CHq9zw57WDWvfILD2aStw2jXiisdRrIzfAz8ep+P06h8aDAMKx7q9uoe0N818NTdksAfduULhMh57k0RUQoCEcGad+JoDk6y6XNRPri3dkVR/xOaECgmfPskBjM78cnRMobH6pAuJ1YhbrFDUYnT/AlUzPyXBEB3X20QZWHsNLJ1Cs3lMD0l2lDin8p+OteDIu0mrP71eswkPnZIuxaMmSXLW1fi68SPDoYEl0IV/QOVjulcqPJRcsyMmZKw7pSvPjf3TYfJPtFNlsFf+niCRq1uc7zi6CQkBcX709AfirYXMyr1Jd1Ei6gyemJg0tKjgTMY9G12IO8fmsU5rL2knfOeF7gwOiK1deXouP/q2Lfdvaf5wpIwJ5rO4F0lcE4jDIN8CfW/Yfunr+yLRIx2qD6A3vOWGUvXzgJ0wzRgI9+ZMCaHz2JHBHiBUfj+15JGO9yHEup02nlxDa9eBZ0acr/jbW4daIeF2q5MweXWFnEz4r5UqlZ9YUmsBhOesfcFwpFX+PWmQxzltXN0v2jB1WNzuHEUci6umC9+mDfFLf1bvWgTEbG2io54BQqWvRSjdCgPVBd4d492Uy1/n3+jH0GuXIGT1ACejvKF+W9GaHl6CjapLWxwBKuejTdMq/TKmdBygHq3oqbxN7ehsdyhmVE49DLxjEiNIOTCloI+chIhAe0/z51a0WxKkRqVHlny4ey2G2osmETlcYYurAmnkCl5+eZwq1pH5BB/r8NrCyXIWxCcmIR/eBGWDT4ECKnftIwhwuT1QPMUxiJQZ/C5rj9QfWN8PwU+oVRSmVLJ7nkK76vXXJoP8AGgIaOcWJBt/3OVKq4ogW2ZmVXERu5bgkVeTaxSVlarQahXE5GStyBXKJ8C3W4jQvPeHl3r7MgVMuEGvQaul9ty6PM1x/1jNae5ZH04uDFLKHQqjWz9bAN5E8o/ELd7ATPGfJEwyocy//Nm74nT9XwiPCjLYirJVkUwcbhcBo0THpge27m+pnPUuXl+oFv6ePf7v9cVNT+sUAAFW7erDl+IIpQTYSJbEZ5PIPEIpKLXdCC/v9jbejwuBTxJJb/yfPze8iPnPdAtVfbtgzeRq3SnnejRb6H25Wy14ShLHiQU3reqAgtO2K5Ev27m5DPoKg1hI9hx3LFNsH9GMeafGnDj3Hph5DTARo+rAjgXMr6yuVimqsuzHMU0fxloqGPMbBdiYAmxR8P30nZPRviUdgMlJv0LHYhJga8NwnCNGnx7tlSO2pDXxnvZOyVqNtSXW8nJ53TZPS0SPbhAI68u+iL3+JI1gtRDSmr9yY2DG7vonxB+K/by6L+zFMIP2GYPpQ7wG8hImBIEj4rYJ7sMCi5jQ1xIjeqheN23XU12tgz5XQfehfV2S1SE83d4j0mt0lRai4u4HLEeUrGWRXfjs081BbKt52vlEqDrze0Q013bJRCzcqtxynGtwIVwHHpax/R/8uwRkS7G71Oo304vgjpmR5WU5w4U14sr5hCK9NB3ZQxf4DzLF6wElSl39mi4h8nEJsLt5JDighHYA0xyJtEoobkbIGMfUFFDqxU3s3Fwmtt9eBJjhBZJOkouvCfazIUB6DZ318rsBef8jNotF/u60W/9xHA1R4roTKcsX2RL6wkE0jJZaLnoBl7L7Dcmnm2b+jypdc0GwZ8fI7Bz1Y4GFR/xHs1x8gRFwqaQCrnNVNTI04Rcb+oIDkL3WCFNwAEnWC9qbbIJWNpNzPNFK1rOBRSWknzsfO9CwCaMlRfcpNFGvgtLANflEHN/KK4UB5mNCV2JNUv6MnOPET+k39HMKPwWF38Uqo74NQzDV5PgHnf9wmmWOKDSaeyo6yHJTQVjLjtD/DOuV/X4CMAFnyLx+7yohO+R10TlSo221R6p8IPYmgVxxefYXblLqFUIKOdaYZZ0JzMGOI63u+uPab4gPpyQJ+o1yYxKO1YioR9DQgS6oAjzvoUkhMemHX3oHFdS6MYAyNuJbmCLyL2to3Z9zzpq2jLEgrjL4XtBZ4OrAYJD/e9by4SiKUlU310fSTehdpmwOblpSiBjffyKrZJhc9k1ZS9iZpastj2M2Ks2yrJJn0Sj/qeKmbs78W+lLqJnZy2pd88tWvweSZZ9wEom4ahJ/iDYJr72YpzW3FaO6H1Os9ycwpHYKa8SUa5iIKtg59dQ6L33vGNcaclGVuY4r7naal3dhTd38msLYWe0ysoI7LC66EBosk4e6odP5YOhD7fOXlgXkSNUJ3hMDhvxjFhL9fIzCvwhwm6Yv/EwVGLg6P0C0TrRDTMDHWCSRDNYM4Cki5dlacGCu2NumNOfmWbbhTBYvgKrx+l4x8L0XY8Np1T1HLNFSiXL7oJPzpeC0He4zGeEb7M8vnx/ZOE65YfkCW13l9UUAdMJsG1ah+FGcSW36zyeQxXPbGCzH+dnKHxmm7C8ryXPDi0i6rAN+C7bkOv8a48WSVgrRE5jN6f6LJJfZ3tK6Ckmpg/rnTD5XtpZuGwGWBhPJIKp8J2kU7iNJWokef8D2AM2gSAKUF1DsanmGrcSYu48fstR+mLWBGqfNVlqBUPeyC4kUlCPDahsXvaqEF0Q/R8naVAaT89Jhhy+pmlry3ao4+hNsvQ9pqFwU+n7LLRZq36pGoDiCTI4bZ863aI9Lkoc9da6c7R3gkq+FrpF5kHzQQRwgSnYljpdlyCS02C8bBalPfx2FX8ifnHsYhvJ4cnaB0kBxMKIcCVmpchjnDkUTuNGFYcW182Uc5dCuUSW3h24JTNzQvfN1t5ovbVHCKueSWlQMbB9+TZsPtCu2zW9YFE6JJqzjWvERHJjihe1N/iea/HdNnCXr+TaWAn52QE9Wv2MkqLPpuBA8oq9fgoNVr+X7sNczY0hLlp3KzPRUSVG9MNdwcpMxmawG1uPqfUXzkCfJtNxDFGfaOQR5HrtabgAD/PflVlDoMvW6rEkprwVet74Ym2KufaRCxjpUGGRRshCh3E8Tz5qMxGn0QoV85Z2D0P2v8FE90wNMkbI+eP+vc6WA2tqxDFghc3Lcuf+UtcyuD1l9I5dI7bl6UjlrivVaGrf76P9RgGwlr+/BNSSQ4S3ZP400pxeYWKdtZVrij98Mm17jSwB67pth1VXutE0tCKlkftjb2+zJReaFUjcGD/JTL6SS+N5pXef4q3enWUteEAM3Gd+8M3AioW/r1AivKkFS9C0naTdt3yp9tLJekFFcx1I2CIInmh0gd/3EeKtYUKNvKIsba7SkkUOnWvOALefw+sCdoM1LaeiAJSPBrKUbkL43Ij8ItQ9IuRSfEwMxBU6KF14M5wsnTD3wanQFJhryq0+1ttB1myYGhsLRg90OaBsLzGaLy6yTPZIXmtGRH+Qi7RzCHUJBwBzPMIsXgJj5T6A/laGL9M20mMkXC1DPF9Kuqp6gbJCf5rIWVSYFAy4RhiT19ExEHXfQi3Oojq3HxLciQmgq3hyGZdyFINtCF1FagU6GTVhwmpdTcLfO5ng7TSp+9aIl37tHRjv+OjWF2KNuQKYjRswZqYvoSPCYjU2iiG3nWgCIkhmTJPCQbx6sk+rrSK/CwplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9CYXNlRm9udCAvQ01TWTEwIC9GaXJzdENoYXIgMCAvRm9udERlc2NyaXB0b3IgMzUgMCBSIC9MYXN0Q2hhciAxMjcKL1N1YnR5cGUgL1R5cGUxIC9UeXBlIC9Gb250IC9XaWR0aHMgMzMgMCBSID4+CmVuZG9iagozNyAwIG9iagpbIDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3Cjc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNzc3IDg4OCA4ODggNzc3IDc3NyA3NzcgNzc3IDc3Nwo3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyA3NzcgNTAwIDI3NyAyMjIgMzg4IDYxMSA3MjIgNjExIDcyMiA3NzcgNzc3IDc3NyA3NzcKMTAwMCAxMDAwIDEwMDAgMTAwMCAxMDAwIDEwMDAgNzc3IDc3NyA1NTUgNzIyIDY2NiA3MjIgNzIyIDY2NiA2MTEgNzc3IDc3NwozODggNTAwIDc3NyA2NjYgOTQ0IDcyMiA3NzcgNjExIDc3NyA3MjIgNTU1IDY2NiA3MjIgNzIyIDEwMDAgNzIyIDcyMiA2NjYKMTg4OCAyMzMzIDE4ODggMjMzMyAwIDU1NSA2MzggMCAwIDAgMCA3MjIgNTU1IDc3NyA2NjYgNDQ0IDY2NiA3NzcgNzc3IDc3Nwo3NzcgMjIyIDM4OCA3NzcgNzc3IDc3NyA3NzcgNzc3IDc3NyAxMDAwIDEwMDAgNzc3IDY2NiA1NTUgNTQwIDU0MCA0MjkgXQplbmRvYmoKMzkgMCBvYmoKPDwgL0FzY2VudCA5MjAgL0NhcEhlaWdodCAxMDAwIC9EZXNjZW50IC00MjAgL0ZsYWdzIDQKL0ZvbnRCQm94IFsgLTU1IC00MjAgMjM0MyA5MjAgXSAvRm9udEZhbWlseSAoTVNCTTEwKSAvRm9udEZpbGUgNDAgMCBSCi9Gb250TmFtZSAvTVNCTTEwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViA1MCAvVHlwZSAvRm9udERlc2NyaXB0b3IKL1hIZWlnaHQgNTAwID4+CmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxMTAxIC9MZW5ndGgxIDUxODUgL0xlbmd0aDIgMjg5NDQKL0xlbmd0aDMgMCA+PgpzdHJlYW0KeJyMuAVUFVrzPkyDpLQgcaQbDg0S0iDSKV2H7u6W7u6QRrqkpEu6Q7q7W0D+R2+o9973932LteDMPDN7z8yevec5kL+QVaAXMLDSA4laWdrTAxmYuAFSCoJSQCYAExMLAxMTMyI5uaKJvTnoLz0iuTLI1s7EypL7FwshW5CuPVgnrGv/3dDKEvDawRwAZAEA2bmBHNxMTABmJiauvwytbLkBwrqOJgYAKQbAaytLkB0iuZCVtYutiZGxPTfg748AKn1qAJCLi4PuhztAwAJka6KvawmQ0rU3BlmAd9TXNQcoWOmbgOxdflsCQMVjbG9vzc3I6OTkxKBrYcdgZWvER00HcDKxNwbIg+xAto4gA8D3nAHSuhagP3NjQCQHKBqb2P0BKFgZ2jvp2oIAYIW5iT7I0g7s4mBpALIFgLcHKEi8AchYgyz/MH7zhwEd4M/qAIAMwL+X+9P7+0Imlj+cdfX1rSysdS1dTCyNAIYm5iCAjOgbBntnezqArqXBd0NdczsrsL+uo66Jua4e2OBH6LoAUQE5gC44xT/zs9O3NbG2t2OwMzH/niPj92XAdRaxNBCysrAAWdrbISJ+D1DYxBakD668C+Ofx2tmaeVk6faXZGhiaWD4PQ8DB2tGJUsTGweQhPCfNmAV4k+dEcgewMbEAuTiZAaAbAAgZ31jxu8bKLpYg36AwO9qcBIebtZW1gBDcB4gDxNDEPgPopudriMIYG/rAPJw+xX4XUIEAgEGJvr2AD2QkYkl4s/VwWqQ4R8yuANsTZwB6kzgBgQCmL7//P1JE9xjBlaW5i4/zX+c8V+5/q0VFLRyBrjRs7EB6FmZwS3KwsoC4AJ/8Ph9gb9T/yvtH1pZXZM/w/plRQlLQysAxx/Rg8v2ZwYARsc/m4LqzytDDfhtCwCjtBW4mUEAqp+9r8HExqQP/gX8/30Dfrj8V99/X+X/s/X/FZKog7n5DwOqPyz+baBrYWLu8oeJiIM5yPZfFiqgP66xFMjAxMHiX7CEvS74ZghYGpn/VUQAo4mdqIkzyEDWxF7f+I/m+QGAwJfi91MRsdS3Mvh+e5jZ2AG6tra6LojgRYBgkQ3gBv4LbmiQ84/2BDAyWFrZg50A1g72HgBDK1vE72fDBGA0B9nZWdmCQZCNA7iOYPgHAgQwGn1/p0C2/wEyAxjBuu+ev+tZfuj/9PsdYv3b5W8V26/Wf2vZf2itwTcVZAD6aczxQ21oZW5u5fRTy/lL/AbgB8Lm54ZcvyfwDxR8Bf6Kx8rWztzS/jcQ+Gtk/4Ez/7Htv4vG8vem/8ZYf0vMyva3Fdl+Te8fGLgif3r9eRSO4Hh+wuDK/OH3n+ivFbIzATer7s9SA/9Ro3/izD+L9KN8v7XAbzX6N8z8d9DfF/5HAZlZ/or5v0DWX11/rOz4E2T7xfOfGPvfx/LveDh+PZl/w5w/svlXAbh+qHWtrW2tnP/R6uDaOFjbmVuBH7+/deCaGIAj+4f2j9ti56BnB7L//WhZWP6ErMFv479A1t/8/tHALGz/cP0nDi7GX67/bn8Wju/oX67/gXP+5v0bxPUP119BVqa//P4JAH96/RP6tT6/Ab9X5zfoz8uka6trbg76Rf9HVfR+OUPWPx4UO2Mr29/1HD/1/17nj36wd7C1tLP/zkz+Brj+vKi2+r88Tmx/XBQ78CyyMzT5FQD+Yg5ytrfV/Qn9kTZ4hOtaGoFz+2Pi/Y2y/I6agwx/AVl/AcFh/4ax/Yb9Y9U/agGeFFZOv3tx/AT+4fJHJcD98R9eXL9hvzuyM/0G6lmBJ+/fGPDndr8D4KIYmIBZMcjCwdzexBo86P6GwBUBWVjbu4Bb4afyj0qAnE3s7ME8z+SXC8oOLoTATwmcueBPCZyu0E8JnKLwTwmclMjPsQPOQvSnBI5b7KcEDlb8pwSOT+KnBA7s9U8JHIvkTwkcy5ufEjgWqZ8SOBbpnxI4Fpmfww4ci+xPCRyL3E8JHIv8Twkci8JPCRyL4k8JHIvSTwkci/JPCRyLyk8JHIvqTwkcy9uf0xUci9pPCRyLsa69E/jcfuqY/9b9vHRc4MDA98kA9Lsp6y/aX4zBsYmaWP584LnA4YlZmPwywJjAm8hYgIx0fzUDMn1vlV+6CsgE3uDH8w2e5f+cgUzgeuj9bg3e18jEAvQrWwDvbKBr/rvZn6PVwOqXccv0c6T+pv/ON360tL65ld3vNxb4nW78xH6/RcDvXAP8bP14pn7RgjP869H6JwTOFczKQUbgCH7cpF8gcKr/yv87vfivAQf8Tiz+AKxs/wlx/jWF7f6Ncf09vv8NfmcUurb6xt8L8H1S/oIA/0B+pP8PCFwCYRMjXQsL3V+U4AqYgcP7VQXO3OwXEZyttbmupb6ZFfirB7O1yS8Q+z8g4C8YOG2QNfirpJXlb031F0X4jzEO/P7W2Vnr6v9S6+9P3P+i1t9fuf9NroHsLP+DXgP/fO7+k2AD2dn+TbGB7Oz/SbKB7Bz/TbOB7Jz/SbSB35/F/0W1gd9fyf+LbHP8zOg/2DTHb1n9lwHb/+Lb35/S/0m4OX7P8R9nxvFbov8Euf5vzv39Kf6/SDfw/2LdnMz/N+0Gcv4s17+YKpDzt2r9B872fzFv4PcH/39Sb+D3AfA/uTeQk/N/k28gJ9f/Zt9ALqb/k34DuYD/yb+BXMz/k4ADv8+SfzJw4PdR8m8KDuRi+9+X9/uY+ceF/+1btr6DrS2YW/z4fwb4K/hf8o9/WIFAziB9xLlpK/2X/qZV/s03FQLPneg3h5lZUXrOQi4QVDZE8By35XyFeG7PWXJCZwXaJrdCb1cw9pkLHz+aqeIwmWktuyeHcuPM1TTDGuqt07mPYvB+3bd748C8JdnaqqbDYmlghHNcL9/ndPFqghqXzuZ0cyptV4yHor7sutT4GJ6y7oABGWo4PBT+GScnCzKU/yeBtE9lgpUCE5MtEmR2Z6+GD2MJRXdvk7sHmNnWer4U00GarCY/39tDsZa8SNvjS9rpYMeX1BkFTJBvdIigvRx5SwKEHkepi+OLzqxZJ0M7OnQ+0odz+nqeUqXI+6wthDapwV5uSHDAOfZLAOQgmki++t69wbGtklD8F2+Cs931Cn7Q6aekm+6bPbgZEWdBJh58H08PE99n8MwhFxQNi83PQlzyrZoydGNrcg6/Adl7VCTT3sStDeR+c0m8lWiiL0FhTqOZ3XiiPhYC7fr52s1FpjN4c0h58A2S/bRMxShdTH2wYHuoRaHUmwvfL+dZRN4t4tw9h2VJl+cbqb16x2ZFHFNU23JzqqGIRL7HiG+r6DE8ES+T6/UYsQ9iHswOTSapnjDx4MgyquAtbh7g9s/6tGMLFC+dcyapsVURhfWrX3e8z7NLZycln/TKH+fO5JnCM65cqzBRIuFN777lgW4Yc9IMgHGqO0mnfD69SbT7bSeLXDWwnz+3HrPFylko94x814AN8iyAYVjpopTdqzjhZZamSWfomerTGifeE0ahM6911Me52nKcx1dZH1ld/c/rHBYeePpd6Dh5MJpUnTb04vGFqeUYZPuORAQE63fGcO9uB9tz9TSQL9MelgoFyw2aDpnPBdPg6eufqz8eKnRJyYzO8Z3s6iBFzTuMleuJyRUbVeLi6D0pnjX0TalJUadBeQUq5UEnmpLZQh7qXIh+Ni1ROh16qs+xf/shYk2IFNETM2Nxr3dEX2WwtnDoYDyBLSb1AoFWf1yUUecpvl5jEKMo63Yk08RAUVRegipj+IFFsS7q4u2yuYJRGiGrSu7YMmB5K5oFKQmO1zdi995xXjYoGy4E5aHDcKeVPa9LjIFnAkHJUIbD6Ss2SRcrYgJjBVOGqXq06I4CzaXQhpkqCkGmU+BEINGH5ye8nSzGSExGD+zZcmSfcSgvMvwoU9m/dpIWh72AV6iV5RrQP3za6bpitm2tnBZTNyHfFtGoyKRti+j7uRY3eKnC01X1qdPZDWdCMENdplcktIt99v04kUpw0fyuj1jtnaXoW/pRz/XHhaPA/bNvRCW+nvOL+c5rT5CEtd37UYPIK08g2HRoyAxpLORm383tf4TcYNDrzg5ttz8PIPvsKgULoYN6q8hTQmTFjjhyKsz42kX4lThUuO4khROsrNhzggDW2PDznMNuoranA8OsfKTGJrgqVMe9y5NsvpQ51YuTxMrKStIBr9q63ULjQsII3GeQgXjPkJw7kHFSGUuvM6FXWKYCh7x9P0CJMyvBc72bvelc13Bek+32MGpaYKyEolSEvDmxD3NoO4/dszrdh2ly3m76LK2sOAUzte/KvPolw96T57mX5Hjc/aBD2padMmfm0Wcev/6a7Jx8U1gI6TnHl07XPk2M76qZRgkgG6k2UAxDdV69IaZwh5PdHauFabg0CFluHqssfn0Hu4fKm4XENlzwrif/KNI3YA8KPzLN5KQMIMt6sDR5tFd29RojvoOQWv4jB3NfcvfnROPrAcoMcyvsl/n43gw7BzVTvIM4k+9veRVx5IagPD7Un+GFvkfKQr0lQeePs3PD24mGL3+qoNv5IUJbYGvEvZBs5GS1VTSccmmdkfLpY01D2CJp10xuEotcGlLzxaTZTDkzrrPNbPQ+ug58JPBy9INApj3N05GHD/vY8lt0uEI0YzCrm0G54E5HnGmhU3Ib1SFSRh9JSIaBNiUoYHO1CkiZVzhOVRaFq83ZKdforX+bEMWcCA1HnOV3Jkgn4l10+EIctU7oMhH9GiqPuT1t3KnKYEHzgVYUKRk10+aKTN2UhBd14ot1FaRGLnfUcnUCxUWA6Cyh1uobi4xvKExnQnuKFFAvMNq0DwB8ZC4vp6p9O15GFzgj3Rg5F0fw+8jGW9kQCNuDXOI9QfJelE9CvJOMXaaB0t2tfh9kUFSURNL8y5Em3vWCWz0/4j0c5IcVo30FZsSa8/VCaUksN57BjIbUYTRDJ9FLQigB3SM8Q04rr5U0hWOHi72hSR3XaCNu3ivqe2ff5JQM6qULp0JEZ5QStZRI56cEyJXzneu5NuwkYuo36naGSB21CCs8Je4sEadcF1zN9bxstwIc3ovuA3OK11J1ScI0UqenJgaHgYE8HLY5B4x3eNiXWyE4fe/jikKh1q/mUwTvHYrd9qkczZG83SKvYwKl4kFdOfjB8UnjsvSzCHc+ZW3TJG1nBlMmgt2p4vn2xsK0yHvYqq83JDXalZATApiutPKm9T3KMQvWhjqteYClQl0UcW0juq3PX6Dsp4bx5dM9I6qF134WknnxpR/hHO/O7q1m7AbCE1rNKT+sQPwur+QWBVhjehdVnhdp7yFKeXewYTLeNz2oQ3eijSciCRPRq/oztgtU6NrihTLfWiQGUqGtd9l4WQbYj+IeusvpblpBzMClMomrk4w7oilkdkYuAc9KJWUw4vMg3GQcKdT7nJYkqskfQoFxA0Qy69SwZrfyHleHH9q2Wu/nho5efNp5udMHQ5r6Qv3tV+hWm5yMy7SMxEOqq6Xq5XALn8J5WZLaAWZxqP3Dh72MWk5IQha6hcilcuxQvaZ0/925JuFi9beOKscFVR4InC9LUYRgIxXXiKbbKNYILUgaQCcl7YEZIbC1K/PBvpr+edaCl8qedrloAhS7d2O34XqJ/CpGiHuHCKSeHKAyHkMjz6D35qznkCRU65GmtDETI9qJd3qjUW8LtjJ8I3k8JXkjO2AhIit7QSk5yelh2cJFH8WSUNFGa3HekPZ8GaF4RkPwXs2JsXNX/aOKI23z9vp7ZP5lO1mHZ0wdaloIX6jvWUoUbmnv4F54v3oYoP+k04B89gDjWXh+LzTIjf6qZbQCokFq8TiBNvRa9SIk7IWp5ebb3Q841fQoV5nBysGtt8XDUMk7MhhGj/3MreondTFNcIayw5zVZVacSYarb71JQGqfWVktXdnlLlsnYfAxe/bXobm3bi1ri6pmIObxjJoxL5LEaSvJXDcvAg0AVTQNxSwigWMFXeXLsP2v6jXWQXRK34IXR5AxiWx9DGzm7WXb+r/0llm1v7a4wFJfJxzaR2rseAhZKEPqiQ+6xVCdGZP5UABJgyfc42d5rpDZQHi95CJa+Ga5pbyO7LPcjETUkdv4QZW4Guwn375M62qn500gRiMjxworBbq9rGdr3Rsh7i6JlGh5b+tE09EuM3te7sm6CNViOcnPYeYtjPYe1qoS18ceeDBXy6EkXNTPT2ZfrkACkw0ADUARAq03EmKyjbElg9M4TKwROon5Brld1eTYiyMfW7zeTrxtD7oR0Jd0UCK1ai58wbrbxPW5/Juv9h7Ly6K0iA63TEe2hwRO3zix1JwV5Op+TXVib2hCFmv86fe4g72nebaJWyU8KembSFY4zic08ukcAoqDfl0emnOYGMqm7ttDKeRcL/MMGLVmVfbJq65vY56JxD4rnhjRdGG8ecMlR2M0zWrMpJYiTQmXNxKLU/oBCo+IpdMjxnk39uAlUaLAaUWkRNGF8T0hs0H+Fw/r92GDNiuG9HmVb8VwzwXR1OXOyZjdYqnsdN6NXC1CL4wbcLBJ+8vzvUWhfid6+mmOYZLLgLmavQAN2mhJBbmuwBzK5Buxrj2FXTDOV0IIUhKdL4kTgKjoWYJ7djNkNbQcNq3uJ8qk0S91gssJ9K0g7JPn5HmzeutljpfTVk9ethPdETg+Kd2xioM679tLCRxa4/OaljW+s0DIJfGGIe2WaJZ2fCzZpRl11OHtXfEvsceK/ILxrPvDoAGNc5u7qM6XxUqT+brgPKOJx8uVGn4OVYawJMdUmgAU3nRG0m4c06DZW8t93+MkG7goXz8hb8rS9CYR19KXgKnknaGzuCzDcozeIbVhPb8FbJSAV4QXT+5dc3tG/MumCHTpyrzx8nX3lxEJrJXIjqgkIGTtpTUHP1c3oy1pUKAhozxsadxa5keMPlynjiqPItG39Q5ASCOVhrue1/M9ZSiqM1Pk+rJZmxaoo9eeoUOvqj7cquiKibwj3ptU7OS6n1BnXDzIJg/TLHO9Rf80b1ZoTMeQ0PvF3j4EFu7CLOOO81VsmaGpF6A3nJvLDr9dryoHuCtVeE5NmtjO7PmIdrP61niIZQkh9OHKDt/DD/HDwxcvUfv+WnsbTioi6R0Ol/UVNhHczjktwRzVpEtI9ieL+EbTtUSQ2HgUrbg7sNjPYXGV7INa8zrnp7rZJoO7kl/rr6M+wbzSvvIghzYfjA9ZHQqN4iJ8fVS+XCfaoXyPyvryvaLCJF/frALn+JhLhmMpBe8b9huU6oADEiu4S0TSHe7CEqtR7V6RAsqJD8QnZ6HWDhyRvZFBo7MTxkmLaQp4habAjClu08I6p7appfCDok/7Qt1fC2K9SXuKwiVKls+cm03hocJEOQ/srtX2X8RnFDRCB4Rez19tJwnC+SK80xMdhkWcHfaVqG6S8/rIDVmUrWVB5DchEqGos+hVnNlk0B8ILam1prUkzEreykp9Y4FXUUlJXFvsf6hGwwWHTj1HLSKVMFSwDayw6ymaumkd7TFnVyIzNJQmayXeCh4jmbfiO+sy1xrCGFmlasF48k1Wjxwz/CMKsSbA6Jjb+p1m65dnhjHMZjIwg9AZgaW7hwGTtr1BY/PS6fXzgkmSPd0DYagm6jtfTT6H8zdfy0TaCsT5a920bVBqzQhsrHxSDfZdreHyUdRrqDazNo4NEFMO1Sc4JwRmdO6KsuxyPRfe3aHy8C48rnYz1d/8UvrO+WQsNJeMCzoFcSvvfXwRP/38OKyHncfEFwXGj9nwqEptxnxSlTKrd5o7s1Mx7WQRGOm6J1xTLyD0S2jYu0nxX21TdujV32F/iGF179EJ6ILCec7JaSgXoGHU53kI4Fw20pFB15g24p84wSqqaTRJMHXOfH/uYc1FjHHZpQDsRKFHQ2grrDuQekGrcgD9Zq8f3oYJZvGN7hAu8xSUjc/WA0Rv+2CF2maKGDa7Nc7h0eajmvPHLlLWdd/b2rqyYeQmp+KiuMm2x9H412Oa6QAfRIeAyCEDtuC181xE+vpAF89bpCP1qfP4NRi0ZT7a4nSquxKiyYXi16BgSY5g9CuAcqhPpJx0YdWXLJa2r0CTHkT5hNTxFdR9ai4pFR9degJKma7MGyJhvWgulEZ8A2wZBeISVY/x7Y7FAthdJk0pc6Eo4xk1ST29y0HHxreAjD4USPh3yKSIGosN6vMHjg3hkTH2xgcqcbQ81HB7bZGdd6kquE8JzrDFx1y7d+zzG9ou28fRcL2JBgL5uGE1uaAiIvZz9V6W3uB26ziyFPf5KrCJR8RHLXYUBErmKj2laOBHxeg48n23cbzy5ds+zUzas7ldz6RK4lzeOvZy2SSfs6L+UwbE6COZ+z0KqM+zLpwftS6YiIl4dIKhuGe3uXHQatsblxcZYvY7MSq1gxxJBB+p9BKnMn2MIL3KvJaaTXYLg2ljX0vKO772ej7WLmo5UMkiszL2BMmBlcZOFgaVuFWIq+QeekIN7m7WPEM9Ks1HqS/lvIIPmY0MhvDxLCn4k/uOMfmK61vQcjkZN/JzhERzH9k74smimU/yLTXXUQH+L8Q/TdP1ZX08D1Aax4q+ypjP1m9DMvfAJ1kscpvHuU+Sp2PQQ4PQXVTUEsx+ZuJSm79iaqTpxWMHkV5KPu2IK7Wz8J6oHp/3VbISyIqUt/cEzYA6uwRPn6E4G0XpvSS1jTscdXBzstHqx9JJc/dDTlIaO4Zam9UtpfNt5xxPfbguxMdlV51v78emn2WOq5R7KEZtLy0FYuLRzIpHDmCto6HNm1O/E/Dmlq004Vnvz3q2URNMHMOeEesyHFWhKdDhfOfoKl5jtB8Zd3FnsDQ8FYs5Vw2T7SR3XFMmz3BKZsNc6Y2MynVPyVHNo6aMG+j9nqTgDgquxBIfwMnfqp1+7mDkOsTf9YqRQYz0CB4OcbtxDSLlXry105umtu7rC1t54jyD5uRXZo2dkWab+Kvw3u4EgmrbeE2wONbNvtNtxFeyct8Ktw5UR4ViHEQ+VtGVG9NP9nrvEOVqfBincKegRFShNxZBuFzSIr7CA5D56Ae7CUuorDIP9/nElbsEl9k6TGtRj5ybweEddq6+qUGOISo79sFOw1l/uX12Gi/KvIMwX7hUmlWjFLWxA61/CLq9dmS0k/cimG3W1REeVOfa+CJHszoZmKBREdwLwZbzpC6hyXRCFtF4podrVH3TM3uVDrU78nS5T73uuHIeYCVCanUUzie3uvqR1XN6DjucKvZDIhCNzVOqmUGt4OUcthPLgSR9D8WaPklrDqL8k73lnqvb+XNahX47dIq0rLtoL55Ecqa+ZSsYit57s+e9CBEje4aD7s22KzEMiHOwocOhZS/pq9uT5IfQEmEpLPOCC04vxmlwJGm1ukickZHX3gNTnj13s8ERtSItKE7NG/44G7xiY4GOwbdGyemdrlu8pUutASu0mgDNhheNp2T6QYnEXyyX52Qc25uGV9p7CZigMdtSZeA9eytHJfU+8wwyd6vx0FXl3B3ldIneCmYimGoXclOf/GhWKJql179dC/6rIZHH4q4f72SgPgjRaD8CHecbpSDSHrNufJSDt8+EWss7FlfEPV1G0giZUxV4WC8XNCnMptdnLGnsfEQeHelO/ceSHFPBNrW1GpRXPp6vsQOxZIPq/cQV3TcKZ3ktJfZpU8SiKos/sJx8TbA/Yy6CkEaBaMGxyF2tw8dh9ah4mBrcfjbXaF3YG68U/HVoZDTZSZmFzWUXQtTRmtNeNPNDWLnKCxiC8A2BT8YIldzNPOmYPZZZcRhlofNztCrp1nDIFKZSFIT1STTzR95B1PIagVJAa8DIE7owBbXMKQ584S/2iBbPB5QmvXiWYoUCaNqI0P0i7xHUoW4CDTRARYSe/itxk9bl2QkmCcdsFIkuVntq45R7FHMfs5Fo5CGPXpQAUmK/pQyMqT+rXvZfYEPUAhhCf3KpIsqv53M0mJ/cMi7C6SmgA1J5FXBwCDyn4pR9Z2z5PEN6+nAXRRrLNp3HByHjgA4C/vQRInZx9QJJc4+Zv/lbg9FVQ8WrQbV8FqwJGnZM6EcvlzB8srokcsg30rojDgzNKbgXxhDxhq6fho3TUdnL6DFmkr96FmvJqIfpxKGU+g031/J4F+qRSorxThUppRMm6AvjRkIMSnpSW2QtO38wwMDXerTWEAxlSPcrbt170vQN4sbFmSuLNSiwVXVepPcOQHV4k8Hz2iC6krZ5MKHvnR5ytJGn+PPtDDN6Ga2uTyEAmeEA4iVFSg0TC63QSFDGUES0JnqWxuopMC2yaDAEEaZD9JajKZzVxkTh4CwZUquM6VbWWJqAbooxJENS/kkksHGCRVQVN4OfLLVeZICHv/56YyJ6LUKAZi1bKeUoTCwOfmz3sVo271578QV80yMSx3Nykcv9lwm2Y0O7U+gYiAnzJgvmbF/EmHSeaosXYhn3IxFxQ+HsoS2Tqpbwp+HRV4FovtAamMPpJzjST8jvuXXHziiTuLu1Bs3IMwxKRW4xQcFbf7YNVaEjmCT1g3pJsOhKLuGSDDTZ1HvKwqbF38h3xqMvYDG5RKo2uC/t0szhSGBvPDn2iPB59d6Zdi5cOIzwVXhoIsJeuUzhZMtN1cks9CmEKRczTtlewVU23DpWMUYsnjenXf1csNlEEZC7ulGsEI/XhSgei3frGyAYnaGgT+2laICTdyTwBA8vKwpQf2GstQ83bohSuIaC4wSsZYfixUcUVdyDGaAih4mvunfGVZ9OQPc5Tl5non01XO3dIv+M1p+dVbDKuWwwP2j+qDu774nxVfJamI2PvCf8TeSYuH5cA0PCNl/VMPlr5/cx7/w7XFjx2bYnHMOikpRe6COi2rM0VPmoxrlSpsBE5d3svJYb1GRsBNJZQY8nrpLbL23eL2uMPS9q85f16+V6gXIOV4T4Aa5HtIuF+1o265pQkphAvwSPNyaWUOxpOJm8mn2SuA0xMQpTQdXuIQEp+qDuRd4AZa6hk8lJaifvzIPUTVKAVbRyunn7dbkAW3ovd5Gejnsx2hBw+LO2B5GhaEjwe3PeLP/MCU+G4wKfR/PGTTFooseC3YShjEPshdGm3EihGL7AtT3SC80oT0uLuuQ0EDxCQi/o9qxhHIrdmCHfEyAkW+tC5ZjT313f8AHR5LNktaZ3yj5Azee6+n0PWZd3dHhTtPJ8JzZqhrBrKLuK4hudu7A3GII2pF6epxNSNhXGUHsYS0OB+lYJMnEpL0diJLLUKZhQxfuRNytnsu0f0RFOGDteKPRXsieoPQ1gfS3mDC9f0S+DKoo/N9h2BDhd2k7Qk6+GKHwlJaQNNzDPSqwQhEe4Q1qTOraxPJ2UbyojWBMOE46rEyMF+wrPHel+y2Jx6m71ON59iJs1PYuT4EGBz0PPUm7NxegSIxCne9J5PHdzQgKnbUkHGz89b5yPyUXsqnwb7g7l8GvpMXU5DBuTrv1HRoTOZhz+5aiwXMsKiRvVG4bI4oosLU4NLY9OBpWNKVEIeyW1ft7VZL6+Cp0U8fR2RJ4wEuurTFZex/kKIWiL2tjgYWp3Bx0MNwI4fKQWoSquk3TaG0ovRDcoS1inxYEGjQdxWGgItJ1a+QuzWOKC9sGQ3NYJz+01Hp/aTNrl6zdJKBytm2NVxUKYwTolfRIG6Orn0Tej1dzP26MQdpti0YY2uUxQzT3XTlY/V2dGyVSWC/MVRgWScfpwwqq+iDOmk2ibw+5hZsTU1xdWjBqrMhr3MDM4rXjeMiJmxIpo+eLO3dxn9UFDNpP86qqvYu5uOJR+OPYZ0azix0XLkRjE642XvvbKt4jYBlH52asEoh+Ui1jws8QmHMwa+4sNJtV3EUqZrAtPUDmNSkUX69KRPnlOkO57vZ5Bo1Thmi/dFXNGHm5r80B53BeoOTlfDyB3JjeMdUXmQlNHaoWlNfCiy/zCVihuZF8akglTPeoYY9L9TvPxHbndisns+zSiLGjtFQd2gzFQx36DINkYPrOBEORXJSZ/HNQtPsqJx+030UWv+PuuLt5stS7upmF92l/0SPJ1qnXtarTzUBD9WsTT6HI/ICmtlB/98s2rIKIk70AoJva4h5BCgvi8vTotCCFuV1kb73Ur/6xNvXqF9id+uA0OO86LGm8m3r2eIRrgpR6okQ6G+EK/h3w3G1Kt1xEGJVX55vAbYUDsrI3t29U9I+MEIEpcPb8rSgSUSKfR2SBgUZJFrVJmD63fU32k+17c9+owH1EAeRnnRtk0VWSewEn6s569fjqR2NhNV7lvfzyhenWQlt+Un/jiicz52Tr7ihDqRUXwIGYOoVVzm2bM8firdDf57LcWPWH9ukxpze+9WPsMYGvo3aAI7+VfhPr17XzZDsoxMlshR0vbsSyxBDJ6CexxE2o4MDWHTUytl4xKjx6ezELFozp50SBMWwfQ9VOnQvUSvn4nAMmxTlG+zMC8fpBn5col0kcasVWw9xl6Ubc0KUy5ABeS2es2Km6y9ZHxm8WM2+TyW45+28bWi7H3BB4PNLqNux64tJ4nkrHBqFWllR1HMwuBl4+YDfdrfUgBYhZzn24hnRpM3qatJBA0l5hVqZ03E38+7LpJpdM3CTUf8GBp9Wjuc9Ojbx4N49dB1l640lL0pbiJm4QLOfb8Zgc/rbCz4EKy2W/LFjvUNmv7pgynF3oiQnAgyVAd5Ww4NZ1S7eDOQDtN5dQMEnoMZ+RTsrHN0R3A0nmytwXYnMjiEJNYibSALBuxgeNuOipepUnSzzYmXRWLJcgiN/XxqU+JqbFheUUZ5DuaCtp4h7MZNAoSWIIz4SEh8vH7xDm68+F509qCGnMzIDCkb7ow0PlDqtE9qWCoK1eOm8anCX/+TxKnaNdBMHM1EXAxAtbU4YafEhW86/o3tzmArIKdQheeBqFd6wk2YZlt6bmv4VWO742IR+hga56CRJ+KyzU+z83D8nI1Emm+oNt92l0HzETGEKKULvQTRy+gWdCPocjTrefDE/7UZt7msEL5wN9IQlx+tZgX16sPTGNlKZTfR+KLafqAuqg1d9Q/1pQg2b4GBdrBBznDekpu7q9Tm5I8S27pzfoEkfvCubfhos72yUp5TY0PoB6vXHFust1hjDNCkIjPq9oFa/sqIHISWn2/x/VxUjBOU1u2m/Iq1mNA5MvcU9qAk09FHoc7tm4OsNKDAYL0W5W7RKeKd+xD3UmK488HUmq4bTXJjBSwwq+4A/rG6Qftbsvo7WJV7U2G63V3giWmULFzzKPrgm8gL/wz1oOuPvvJLJ1HFiT7Nwto17W3rjvSr6PUETv6VR/lCY4edZhCnglw+oflVBGTqXgArop4HVSTzVexJhlCzK5XltXJj0O5Dcy9DLN5SEaE+ahK22fP4D0wYVkbFnEbenjpVpJ6CTRQ0RCGcJiAoVxYfN8ek2gEYM8ZrmuX5vbGJPtmEmnMkD5aD/tsqso6sRWQbtM5npYr5rlPIB69xYy5rQhbRukvY4b7gOymNjpdlj6Czv/mGUpbUzNXet3ytaW4zhs6aZ/5IzpWAa2P4p+GNJhcVK9ggtvnSZjsSM8oedyxBgAP4EIxBUyu38D2iTepKxVhbcl5mPsh7EL5o64Z0zMQ+cw9J7ag+LI1VBEvPRw8e7bthnKPkO7HY4xcNAYH5br+sdKxS8fkaAJQjGo2GlMZQk/mbl223ZOFXf/GnUYzYV8W2TCZEq+3YGGq+ZpYeHzd+vI6aIr80CVgxIDLFXI/eD2P6YzTPPJrtsLInQ/B6P7GUbJkQAzoVXdCyyDasFscXr+50tNvIVC83U/gNN97waHWBk1tlso1wHOXHo5FBBwG67iZpc1PPdcmhdwC3bo51wlNt5B+MpW5fVH8tX73rUUIBP55pQgqqexFqAXhyoA7VOvloz2E+YeTePIgmhyrsAOU/s9k6ewBAmUplhTz7Hu25h84Am+CZejERb6tVeq8LSNfR01Yi5RoxmUU+gza3Xt+YbWxx6TILHIE4koo85yZPlHZ20lPQV4+ap6Rufbf47hqW8Q8SSd4BS9y63+0Isu3X5SWNMtk74bba8t8sGbInoChnEnTLRM3j45Cj52bL22TXpjDfOXfCrIc0dlFwmu0qI8Ny6XUqVWiGmFu1txMsTcKZX4InngXJsHyDX8UvsTDIW1bqrUo3Tud93KhgaIdcsSDnIGsxm8zp4E39n2khM27sJmvhM3fNFBREMK/HOMo3PlhopNTIkKO8Iy8mnuv22R6+u3itnrDAmlceuRj8HXEgbAGokTd9TqeZyKfc/KzTuFuba7motSVWdKxDcnQzaWZLXeAKKUQ/gCUkKe+8tjTfUsGKgD8C43MFQ196nztpUT6/pz1i0kD4VTZOMQqf6uZuGzowVtdFTEZDrioLn/IzVOLbSuPAROX5joCjgLeZ/mS1LUfYbi1kOd2cD+LzGYUz/d3rSB7xm7ebzvhfSBXNn2gcLWWmT1jCOXWgola2I3i4uNipdhBWt18Ua/1jNO5GHhwByc/0emHOk+Uc63aw6kbPfk1hK2yiFaZ7kX+zJoxZjDs/POCd6Iz/sPvNtxjsdjmYF2KaAcX1wxFVNm+rVfrGwdU9TK/Z5Jz0p55HMr5fLD5blNl0p5Vmyo2wkNGxXP3mYmtyPIw+zH0kvEGaVVZnjqeZeuA28Tqka5EUD/8mIo5sxj8yVQ82/1iP2sMyWIycYOJyIyhju5h+4JkDGdQG4O8BVOxFHP449jdkH6ZtqZQkn/95164JQlM1sXw1xDcU7MytyS3ohYrph+/CkE0Vcx/elcyGdHO6IGQlFidcWgXAGh1JMaWMWUaIjGTdwIgwfsU0/F6pHfN9W8T+xDoOCRd70IHUrU8azSrJZ57OtcxfdCunyGL4LUAKjHbBmBsrwe8MZURnSNqnvMRPvSsYszG3Wh5slV8JVpe4ceGD6fU8toZmMQm1f2EdW7Xg2hk76vVF8wkUaeT/B4U6S49vSlSBZvUU9rMhUqOU/uFVOmrdUZF/3yuKkw/wy7q6nUhqEcVtuf07HBGsQ+9ufa939CvGl2H9Z07y+S93WROHLBKTvtgmPZawlmOFTZYCn2SsXuMxxeZefSicq7Hz1bcVN+wCjj4HUheU9ypaQdrQ3SatFY12ytihvMHpXDNY62IiU1f31G4BxomcuwmTmqt4UwtiuEFI0KxyXZqW7XbH3rJGKkuLCtgBaHI7KYVtxGmrjzDdZ9fkI/oX7bRWYY/jVJ1S3CcI7BJ/5q/11LHhlGEWVeZ3jRJnWa60I3rfr0GePNA3vuJZg/7IIRU8abKU0KWZLM2wOiWvK+hlfypmpTctuvXxRb/VlhtPev3GANqUlWkygFSYpImu4MG7FIMmQuujemxdVMVufQWsnzUiawa+R2M13hK34yXaZ7il5bp4ad+8s/lfaBENjM4d9tZkawKPXSrf/3guxvnOBpES6VS+wkwgf1xZo0wPTsW515Exk0jza/OJ9hPN25Yag63nZbUtUFMPPjJklbesMc7AQ0ieYzjmZ2ziviBOJF2Pxszt93B3Gu790l+B0obaLjsJ+0yKO75WKtyprF6tPc5Hb6XBe7eXvxhDOMZsnmDA/HcvQczBJw5Dm6tH4r4vtbXRyVJVEQLwglKzrZQeMibYTe8XnTLG7lp1BjYAb4DXD3Ap2C8gLnaJofQ4aUyGsvf6d2aKCkiMA2n86R8iZ3Lrfmht8IZWpDSm6OQ8ESAUAT+hbKj/krFIk5Sg5zPi/2Kb2ort2Pt70rJ79PKH1nkEp9E72PiNp2ItAVsyqmuSV5HzZtce+k23s+afGPGtbk2kJsB7URTs40QDj2V3xy5c/VkPeFXfQmvLp7VnQXKerlRQWFYZ7/ew6pYXoXlsbMA/eRoqJ8AkpyqMoLvg9e7MBq8dwljgiQOvh5NEJDFhxIR2dBfaFQLguCBjaJK3iC0shAfMxwEl/RE2mVugAuhV9TnXHKk8Bwl9+Mp+DMJnHVG2l33NValtFTo+9UvPfrU6S8zlia1jU0yaJfTfIZUSGE7Ui/rXRsBV4VweBbbExTn7y+FLsNE81ZyX3y9SlF01NGrJvee3944q4RxfoQqEQcCGCnhhZ3LX8QTFhlMaKFJ9E1JSbCntOhsGPu+npykLfPJQJ/Ay9JcJPOHpzUGfcYlMt7epUC1FC++pSCBYpQ71q+ayKaHGGNRlTI4SgmFH3x8SDtP2V9RPf5EbarkqeOYuxofnCURU5NOH4ySLaNuPl4DJykAWtxwj3GIqbT/7Kz6sX3OyPow54a62bK+hNKLLnr/41IO2RceA8+ed5fXr0s8iq1K7zra2MxZizb7nvq91YsZQeTdUIFrE5/Lf7UiE2wZuqFG21cZxG0bZfblM1cfu6+1PH9Bpun8uousmyDlmDoPdGEdqCF8LNJOu0Gf8hBTN1Ai6KgtCVOGM+DSKvwAuurbqZzrQXjShTJXd1TwLalYWN26PW/sZYY+cEpxyzcmsQlUYIR5VyN0eWiItCVs23iFrppb1mLz1UyxNdrFeu+9oLOk/bIsHR86KfA06Hk8w1e+SjZ4eHX9dLhMJO73bg4hLu5Sa8NJxAbjJq4fwlr3ygiFYY+O4vX1FGZx9KYGdqUGEtREN9uIJFefPn+k9Sx6Gd7PHdZEJOeb3A3BjHXAMkinaguxha3hX1pbvlfSIi2nBBze1hLMLULSroxr9QuZpWx20cKoAJllML04rGD7rO5T2LKpMoVcIHxG0nW1YyuTUAhCZ7gJcaG/Tu5HvTTDsrlayAYimT2cKJ5GlLWzzaWtxURUq9cSZa1G1iCn9Gh8tfqKgqX0WWcRADFBzQPTrViYLUHGABmFGz2hOKFtlHVbQjIxxWCF0rjR5k8XI60pQK/pqpxvhrBMqlpTjl7Abi7jqYWtnNuv7uNmsbXlMU9j3cK5p1yWJ0TSM4ijQBnF+hVf9j1n7O6XeQghM5PgLATatvmzpXEeXlHRxgyvb/gmpJ769pTs3npK7Bg+XlMIWBmaSNmfW7KzfcM8H5m61eUYq9v5htmEQYoy0IUoEQ9Orafu8NL7WipNWS/IGQi9U0rT3yL7I+Fp7hTkyYrYQdqYGzN2sfgOvt0bxXhLLrx5kTrBqPDx2oDyRv45Z3SscEANeeO+9UdeQX7Rai/IsVsDjfIieVYIklmHusmVuAEK7UDf/MVMZ2LxiCDOQ6PwwufxzTXTDPWfjRpR4F6uPQze84YaQk07wabavpTRXg+i/nzy2KGYqU8+rSp0Pr7x0sdcPBhZ2+QGD1qvi7aZn+OlDzO3ZwARaaDDnGcy5bOAMCx44KPpzjAZtHzKt4lrCf7uXgZnQ230Nt3YG0y3Kx1CjRZoOpjwNh2g/xVOXnbp4AH6AUmdWK0U+eglRLpXSVgyZOE9VvsK9LQezNkamXpPNtv4lvZV+OM+3FrJG9e1p/rV8S+TKgpKd64Sn0Gcv0VvQsH+SszYs1TCiBJMe82BhPlm+ZEfI+mYAfdzmJuPKf4B2mkEwCpgHk+60JSr8Ovo3SAR/upBW2U6YpD1dAwwgOEgeqw7/sWDuX9dzH5EUYZfsLSSBMcrehysF+zZlJ7kCbX8aWO7pVQ3giSlXxez0F9FvYq+sO9o0e+Kf2+up0VfufhQCh1ahi3a4V364djqFe9qlFWIf2wjIRFg9XVqQFX1K5L5pZgnjLDOT7XDFCZvtZIJLefQqd8fCx11gjAKqPXPYjxwBtiP4Vh1BJxgIUubs9vPTFdjpud5cVEmO17wNfn4HT0wfw4TZFSm0LoyjEOo0XUftToGZYi4PpPH243/SMs2ywWTCwtJwqoi1Xll29yaq+XC56wW8PqjScTrkQRM85w3LhwpZEadVp2fOcmuhjSQItj2Q4L08x9j2jpXdLFmFh8JsKt0npP7JRR1KTAe5iUi6CoWk7/BjT166rJ51AKFr5CPI9lZJ7ybI49xA1o0LhBH7Qi/Ky4dcp7AvgYoKdowTtGf0i1OxU01p8AxjnshW6/dG8I05UoqHH3cTPyqhKEDa2NvkZdStoYwWxUpYVYCqaqRfzGXwRHZLZWIdHzTeosGinKTvgo0oM61ytVbVpTyOtXKyC1ct/Ql8Jgi+rR5OaG9noPgyDbR/2DNfr02e4s+XrD+dTPNgLuha1gxXUAEvoRR9FoQuaGtOpuNFFveIZJqryQPjuETa/X8dVDO09TejhAdJrsvOM8CRo2I4TOa298dJ64Pk+VO8nZ8dVuKxR5G/FRC/FThzfNKskLk8uJOZqOXKfDzT4vrJHWe9R3jRSMfDrM/fxjmmIYrprtC/BaoZkGhvsmj+2RaZuq1D0kgIgWD3Aa5ArSyz2jah3WXRqmIVKqrrJev66MQ1aWonnFuRcVLFD7lXmLa89o9kP8qnSlrjinhKAxh+byMOXegibpzke+VoUdGzsxXnRz0Nzb1b3EHDlclApesYlcERq+izZFXfdoEyaRlZcqnoO8Vk/ibFGE56ldeJb9Eztv4lhuUrWVknx1xmGBXj2HFjW0msz7ojTT0pHEegqvd58o2mFpY6L7d9EjNTnZG7aTe/NqCSD5ZzI2G/d1WgZgb8MmeIKLO6Fcq/2wziSS5849OEMYojl3JKR94dkJ2plytWxIYmEyuj0RQHLHGQetloRgOY9XAVEV9zlZhUfypdEzRkLccPhOqvDK7mzlEzCTnwpd4CRXX35JyJxLqtWk2fQhFOxBfLvFKf+TIzmK+PfL2FvHINKR/ykdE9ZXQDUseV0ByLtaQOtJ4/um96a3WpcikidZiMwE5RjkpQQX9kKzaPLVCRWDU9pcGAzn+AoFgQ9bIbai5jM+OuWYld2FQajQFGAofURRm1pvykshPsBrvgziGtfz8UaW+vZenYlv8KPLiwaQU0/oyffk1kjCUjTKjo7HOTrs5LCdK1EGw20rvVeEMbEmjKmGVwYaRorh12RQTH8aw28K1DvQT9WSEGmMEfr2JrofjE1+cEFhOFlYzWMPhCRI8RwFJraliag618q+HH7A72YS8VtqWnF0aWF89pswgWLBfcLbCEAh/RMJpOUzrDsg3Kdgd74M/OcKImWTKrK5LZQk0vX+th85QAdTO2smKyl98WnCNiyIIMV0xpd7V5Kr69ZNrVCNomtBX+lB9C1jyyAwBbJ6myByQ5kqHseXmGi0aGPdIx+RWXP0sqNNTsIRDa9rVUKrZFeTW/t7bEmAbp+OAHR8Y5hM/GxSCgIZ2oUXmqH0SFKcZjYglbfRtAU0uI5H5nHaWpQuJR73MxdOQpcmMKSmTl/sOD2e4v3M8gVCTjrapLj+uLXMKw5MMY7dggv6MiblraG/zMKz0ztsSyNq4eUco+A0HClbC2/rCvPz1R/RUk+Tmy50+Fdpr4elhMehS7w51sosmqagUxLTq0yMdy9ctL1t90tZEnZ/d928O55cWp19jCInBS+q5ixCYdnorL8X7KvBdofTzpZU4Z1+sYHp4PzjzURK2ZFvsbDOwSK16aZQQSdRe94+SukIY2V1iRiG2sOWb5bms6y/OF+x6zy5Ha7sotX3mn+qFaIYn8MhFWmWO7hThFsX3Pp8yShs5LxGvMyMeIqZwr5GNpqOcc/M/rehpTWPLktdbGEhbGzuug6Ab6sJ8bpdIfiD0xDuB8MsUo13/Llr6vid7HzA5vdKr9mZGQ57kA2A57O1xsuVaKfuuKKTWWy8WvDjbp/QUlOFYVgkBxkSDAH0fhbvUDA/p95i0yWi0M63agwKTmO+IOcQ1+muiZjxjudhev+JwR8TJPFXt69b1EOwb/lhydC5LpkErX9RPdEVR7SXy5YWfm5MP9kPfpCTByCuM60yh+G+VOdJKyni27C0CrMpnHem1GAhvT3O0UlCAUzWUPmUp9r2NHXW7WzXxbQKWTBrdDrFSbFnCOo7HT1g/WaFdCGpez5eKq7E3pwsbwxmRm6XTnThi+5c1YwgpINHSiPAOBkOUDrYSu321pcD0p+W4aXbz7xZ6s6JN20jsR5hxUn5npN/wymWU0SiOTPYSrg5o3Lt1MnGfY7QWzgtB1IFio82PjP/MC9Odf6Gc16G7i9J3kUIXCQ/5VUHLcmb5TU/fVA29MOW3bnMipOtu7pVQ9H7d0swliI/ITFBbC9q3/Uyjx5CxC8qEBNRCQuz9gt0s/LyGApTrCUx2rJf+Yc8gxrkRL1ReRPkE4yLV2XBDtlDLHUg8XhGHCxWsk9GGqFklyhOnChcrZLvUH7yIkaJxVDtahR4gIxWcD25qRLKJRr5eLPkAU7aFKbyuSEChTUXfcBCJvEerk+eex7tixFlCb7dwsUa4HbntxHhfFQf8lEWRQjwR+iH+EpHySmKoGyaGptDRKl+WALdiQSLVuslRLRAynK/9Mqdbk36t+ITF8J3ca+kvl1vaGwh98hrHiQYx15wir/ZbA6YJWiHyQE/oG/Xg5gRtR4cNiIPO3qorzhIsQDooxrUByftoQnxcWUr0HMngX+nzakXL0dpJOPkHbCft2thMZ4vyzMU85SNwu8WBnn7D4eGyU3v0lqvF9LCec87k/skI+usTPsqRHvdbavdrdO8mzNEFPKhqQkFO2WelsbR9lkQ9R7GMleo4beP3/mVPc189pxhpjx8JXKq73eIojaRse6NZDnnL68k0j39JUqzp2E/B1KG5nGsVoXUSt0Ue/IGk7gSl/ckyOmBl98NMsLu6LmKite9VHKYYgSIRZN1+RglDt/XktWx9SBspQ9cNbu3JGrckh2Q+ZWBPRlGs3dhcWYMfsuyKaWObdqReSU3RO+zGOIU9ZMZ1dG+bCVEihpcsGgnC5TcBpM9fKUg5OQ8wvDGSgunNYRSZty+mWxeST+8PTSxoxyCJScUcbQAuWhXShHR5qd3mXZF91dRMi83GoMxp8I7TlXyH6dZZNQlNLBDTxkHF1d7HCvVJjLs3wWchA98P1b/X/5NhEmCAkJP+ggd/bhadryND3UJEjxGrPMsdRup4wL12aBIVT+pdyhoW64PrVqDy17TiKKvwEE6heCEfxpuswHmAKjrLe0Jm2Wcx4TfDAx9QAP6nvuunrXdELmcZDYu0s+ScXMOXB+/6nhDC+Xih61pIe6ICZEVxibec/b+SL4syY18uvgWK06XOyyCQWed3ZUaOVb83KBpRp58rk0Ds7rdeWUrF/qA1ZQpnYJcrRY9Cos2oLyCygRogFxbbHvz8jrz3wysc08hJ3YDb6ET7MBm6JJtEFcCbEQ/0GOlIT1h1oxF/k5H2kFxZbkSvHjHSiivI2yueeuP4Ulf9CI5v4x+mazKcDG3KG/DpqL1vXy/2V4jaSz7BQn/DSex5f+mxflcC+7KDtC9lRk+KKjvEjHnCrehjSNnktMzJCTsihaWhMr1vIa0loR3S/GcZa2C52JMJPC9JYEwm0UdHGtccz42QPg7DDMfhz2+Fqz65vUbpMpYItIAXepRgODlzkGDqLLuoyEcf50EmGCR2V9qNIDhf95F+P2PNJr03OPwNm7SD+sn0RAI/fpzd4hV5cj0Wx1ECcB4x6BuNvF5si3jmg5cCF6u/WEZ0/YPoXvWWVLJsM1mK40Vku9rNIHXrMxvXIUONntfwzA7F4mJlNv30ssVmdhzfvCIyCXlruJs1Y4IvMdaNibKnejss7u5faWUoJ3W1JnwY84E5lW+L2Y2OVjdQqSvUNxsNQ3dCuzxgEbNUxiAnmrlR7WJK3q3fsz4kSJoNurlg2eNkXQrLS1BlU7mLtZedmIjQyKqYApo785WiaHZkQL5MQvMnTGQzjS6QIbnZoY5YHW/iVEhEHncIZx2r2e5wCjR3wfwkH7X6ig2+xUaTW+IhbYk27RWgXAZK5H3IY1wKGicfX+On801J+1dfpnEihtzyjqdAI0xKUYrxm3AcDRmpDgZTbzp5pMz1a7/eelHBQx3KjeHEjabC5MTuRi987au53n9R7OETYAnxlD7FaEqFe2YLNle2AgIuuFEuhzK4JQYC2awxgWp8e55Fw6y/Sitj/EYWtmhRZW2hh+PC4Pb1w+MeM7WkdZMdoVAZG/9Cs2/Ym0/bDQjQCR6Xmk+4RomcBYPeimlhvfKYPCSViTedoIJ7ICrqFhLj73YESHWKjFsV+6Y+uX6ujCa/QSuozL48Lj1Aapg8ksU1Pua9/kWEUuIJq1KSSYnOqHjAGNxaXqaaGjTdQv8+f6rPvv+Vj+5n2rfu3TcQSWGHAlsiGocDDVN9FNJYbkwYfTf5o3R6nSmjpVfuJJ4jz1MxLjBEjzGfFfHeRtEgIbfYPnQdUFWIArNuiZ1PL546XEm831QBEZEn4U4t8wPqaarWgKrtHPzBVAjUILpDHspRtJwJXN+NyHr5Fwb7rlzH2LPaXJ+LNBD8G3NW5fP78IM3fZ2flBIqf0G5J9hc0HIyZlwLN24UIjIOWTIuL4wQVSwyeOr11gf++QB/IaW3yTDaWePk6GacyOk9DnO5U1bR+fkXwq2DHTuYd+Es+6GSUTxo2fCBlbVqlw8+UAACdPKgTBqetN0vCk/X7gRYWJ8bOYEO9yAb9y+UzR61dgUk9oBq5E0qSOWp4mn3TiZ9GSJQSravQGpT3SVDVa26UbktMj2kz/HkUTNv31rrLeId4MGpw0iG8drGIecI1sps+PHPesesY46z2PLeU/orCwpWGwqzoFZGnNzhuuXtLO+Ly6JqrhgdUhax3CALK/hVyW40wPjFCqvRcVa904f1QUGSfYN7JqtvgRg+SnkcNk0AujB/gg914pBNkQMhkIqObcf47RNB3PIWoHs+aM7zzWesVYReE9mwDlONdBPxqJbXZ0/kWFdH6TBnPvdsJult5SpwjDIQUeVA9ZzeY93X7ERJwHlvxPv6xcmwZwAvdBqJHzacUcBTat3QoUFwz49/OfNd/vZ0W3Vl7mErLicFMZbVpTuX1/hEeAc9IrP1kHPK8jVnFWN4HweS8OvDiEwHFGFjquYUNZDslwM7bVGc/xdiNp3J23SSXUnY6cWwbzgL6BRHmjALphw+1387GpvOcb+jcjvNnVOvlv/AyAgBKZJgSzJZMYSQbwvL0k8K70G7UKIIWqkp4BUaesIR2PVh8aP1vtkGxHyh78SofO+c0b/F947dbvdZc5tFO51IDekbkEBlpz8cEmm7nPxSCtlV6Y0PYg/2fFZwpc9neb2++4vYYWhB7fo9PGM3drX7kmAzdkSvyVSaXxek17/sexOYEXTXMqsEjukoxz0Obyvvdo4eCph/3QmZeCkEuQU1Dcte/I+uQr5x5wGJnl+NAhvSjlAKqCtDdyuslyI1QP667Cx/1cmyD9KbizQ5qsNqiDQL4IWIvI7Lmj03Y8q9iaHG9qn9n5S1g1Tle33qpIVXZK05rOsdWJkmSlBJWcxNw86I2e/MM1cT9RamAdAGxTtPVT0F0/b/2qBsnU2uAHyT2EUXspw8e3/BSRABV6YPHPYNIcMf5+VZpYalDQrNMs+N/GPbLA4uGIuXFwO7qZETRNlExtXX3J/AVqvzxYM8JaI8nshfs15Xp3bYgehf2xpxnuRfJ5qT9dZggHWrsWUTvFc5rPOzNnap5ZcsE0FPi6sZfOnhXhtyvQdDdiTvq9TXSOlPkBx7JU7ruD4S2EWXq4BEGsubZj3NjYAYa2NjWjo4mjOPo3wFcnLFbXDYL9R2TBMMUoNYgo9EWQ2E+JvJ6q5Eg4Tq15UaAl8iIbuX+EQDCnNUxufLDRyQrfeFUMrLdob6+nXK3KhsdYyP2o5uZnbcnQQ5lRMdkXgJiJ5iJyBGIpqZdA1x8BSBSZ7n0aIInM6SyyF63yzO6AqVVEZEmK+hffFx3n9p7Rt6UggOgeexgyS6ru8K/e+VEalncau19GXQty5/USQQ7JgY2e+biDjA0oJg4boqioWCJ+txtyFHc8lO0L8MIkByuznqHyzjY/KEDXkCy1CQ2T6FSHEh+z6/54/ozny16Km1rHK2vkp0i3out2Rn58mSuaCn8mYAk6div5xPuHAD1D++NMEqDR/TkGVmz1TnHTmGwcZ4JolhwYcqwikqnbAo7Oi+HxH9y+P96JhHv1lZWmvEouR0HkKuqm254ZD+T/lMmmHmppufLNAEDJPCVONIqgz7YH2aEOZYAUyCNL6pItC6QOHs2knW7xFSZK0qFtRUBvapqaRAOdbWSfPkeoD1N7WM6yKxhIr4SbnlIyeCppasx2FWJL9N8HQGs+hVYVl1jcrHU+/ZZIIawDnph+a2MT2T/W/6kM7CnwBXgiCwOI0IgpsiBkiIkHHjcJ4YC6RAFZhIc36TlZ76EuM8xTLsMOu30yUbIwWREeeYRKaQ051ixcEHKKFbeobpALiw7bkM3fxed0ZnrZptUadrLWDnp62aj79MwAEotf2H6UGgfV7PFK6g3enMDEMbZG4cGecOM+ObTT16s2MhYMk333OFFwpRvppUjbZU7/1D/c80QduqhDVjoHm31X4ADvCC+Xu/n9vLTsJqUdODRTMKk+enCdawzMcOMVAqAwFLdoi1T2HBaa+x0eFzCvm4vr1bFFB+G3vOhHFEH+DgVSOYWAPrehjFouPq6kjx8ORdLG5Vmd6Dq0B+2JjavYS5A28JU7c9L4kK4ifsQfcFe5UoXh68v9WUDEMmEA7J9xDXhuUvCxof3zIT6bwjR4BKug4hyYcQ6f9gNMvH1Zpa5mjYR3hjiltrRmfJCvIkcv1A7l0NC9mMxqrDGbIUNwfqnxXcN/mPNHvYCdirF1TuEEi9VMCwn4oOOdBQIaOSiQXxiyTVCzqoQUwwpt9WP39/p78oHwYX1Mc/H4uoEPqwVKL2AImL/m1pfpkBph9guLYnyAyvZnE+6ArQaZDwGJMeXZUsxZxytMwglY0swaJcyyUtqdhL+EUaTVv9hZwptsroyfY4oP2mZnxJB38aEcKJOqGxyZ4EsT1dP94zhHzpswdvtbXBwDeoz8dMzJjHOCRpRtfPtO6MNfq7G/oWagiLj+uddw+jDvXfIP3Bwwcsv4Je5xuHVBpin2jNa5mGcMFduQGC8iAeF5NFTPJxhaxlUmuTilG5jCp4aoiJimBqDZWdgRBMGdei588MrAsl6Zc3wYatkd5O8lXqlCfR9bGNB8vzthxeUdKAUQoFNwD1xFi/sGPRh/4luWTntOhRp2WS650gGY+SONSusuWiKXkUlScZUyqtCckQSObR+Rll0gKSO0ZZpQAePL8LTXJsSGL5xwamvuVRA16VN3yGDKPIa0w/Jd/k8H+39Rr4/EgrrhWSgX1Uz0zNqET9rIShEt4S44NYCxUS1FaPqM/3DkqqPuxv8JuFltAqpF6ZF6yD8kGzVBhe/0uOofLNsDY3HOcLTZnIGKJKh55s44l+YLi9ZSkeF+EMXQE951nT5pyJ6pNPQoKPDo98PDEv6fkX92iNQt6eG6Et1ltEbV+u/9nxcJcdeoM6SlT0zDzC+27jeQlW4T4CPkxpUt01p9vEsCD/gI5K/6G3080wDKcf2fdJYb0OdrYsmqJ41zA+dj14IxEhlQOalExWOsgM3eHMAka60MY8mnm5T6hkNN4DuSBZEAYyIvsDz3EyXBa3jtxXX4Zp77Xky7kVmAAs2T/5VMzYcpKmUuzmD9JrVpf1HqXYqaiys0WhPDBnZDPe/4z2oiAowR6WCqMI5Kngu/kFdFjXrrOak5hxeTHoyrvnhmipJeOMEAsWxINGQ23Gzau6ndNQCz74OkBVScq6cXglQqRvWgd8Cd6X80TksI3DkA3KGf+e13LIaG2n6PYm1GnqDHEeiGtCsvyk+Ib1/xW565VNScIKGJ3UE1hBpm6+RTx+z6CwY3/HoWfGa3KeCZ7F5rPlKLbcgBJAN6/aXCZDk3CrO5PEr7LaiJspvPbOGkkCJLo9jheubaF8vj+XdQk0kPqX8Gw/enPPS+z/mGoHDw7DltSrd1HQIHKSrKMZ5dRql+EtiHsCA0cEsG4rEtEp4FmSqKA7VN1Mje29JrMIc3uBDkvLXLxAa62xJCSvJv5JisNfTydDDYvcJotuz5JqGlYuokLEpgq6bTZFUo9N05gs7RqkE4TXSNTE88f14PNMTHOvjodkbh0rVbeGWOySm4Wk4jTo09pxaDdG+G6U+A/c/DPM56iAWC3PQKSHeCkFKpa7WArhH3Uwbq62p5aiagNVgs2fsD/d3Ln30qTgRdPpMMsgl3mhUGWTIQN1Fh1wpSxDMJ/SUJqZmoqNIDdMcbKsS3uUMDRB0mAYvSnfdXMElc1YuqwWSw6m+FBvPZZQOTbb6ARHuW3FzRGzpNBAOwd1nkXU8CeppVnbzBV7MI+KNyHGpuqdu9iXBMcyMPYtox+yz9xGTMYwC3PtS84FHCGrEVWTpWuiWo/8WeNVKE/xbkf23wSQrXwzNQq6aOm4LxL2nlgUwnY574Do6ix4Qxa0XLKI41JNr3IyJPZqi8VDAwPZBe7ucIh5+kOWqho5jRbGM28tD/5pMnL0HAIoVGEvn0gEfgGagZFA7LNfX9Sny8eMHMiH/qQXMKgwQIooWrzL9UVIX0mcFXNyNMyW6t1DByOzRrHHL9HoFsBuusmSD9DCqqIbhwOYZlrDWUH3yoAwotTpbDi9q9E8KHdhGdx3cmXlPva8fd55zqAxUtLKzwyarIJQ8D7grLUSIpQ8FvoRiaagmskdRs77aCfrQAzt1zlLWvnYD2olGPafqSQuBpgB1LI5Rg22yVUmua0Ak2FgQj/YyiCRNU9Nh0u3sTIA61OO+NnjUZQCx1Npxro6nBx4kLAK4Vj/Im8GKI+Zj5fq7LIH0/tKwdkTWx0QmDtBS6QfJKUmLh+orBgyTk7OL0f+ynz7025pFs2xaZRxJCTUAkQ80rLOoV3f3+rvZKdRpjhv48FhMf8qD3QFZ1V2d+OdVPTY8D4jHDf6F5b34gov6ytelqsUJjzQlGs0kSBZGM1wn6auUCaf/XysKV8ORmdXblYSj8DwW2zaTi5ibN5j3rJhwP9vntkzKOThRxoZZdBRGuaXK+X+7HZhhQ0jWHGmts/JJVq72ieXB4oAWIgCf727PpIKIL7wAiRcCpAbspIME/wqvTyGkZfEdRe2rq6ywSnk9YXIHMIlPTkutmP2KpgWHLge6qjEXY8EQIJw1u3eAfplWivclnc6yDY+Q0sKv6kwPUNdRlU0FTneoTMaUnwGu76xAKai5un8XBtTWJqfDSDmMYh0CY15VKHPFfuTnfVUpCTNC0j0bEAbMjZzeF7pJu60VAbNuRsE1/CPhuVj0DPToka3I5v/DBrOA9OsaLEvrbTkzQjdSSCyA+HdujCA6k1ZgjCXHa9HOs5/z41wd64ZgK2372Zc05EtwETFmpZoOVFyCrbE2bD69gpuCyUAKIxNk9LztcS2B6gpYv2s6pXz4UlSB+jP0Dg7RlvVRJ7v1JCLCaQgodEn4OAz+9r6+32lAfh5pPL5MehCljNVmj/IHIKvf/tFuAva3x09cWZxzUjX6k/B1W4+t+xPMBq8kUrwRKKBBis7itcI05Lri60Ac8X/fzQRW+ztCUipHdgYazrwMReO/9LRnEx5JeJo5XUntcPJ/JyNCRLDhSS6Y2x02gzp9NvgUEw5NMe0CbPagrzLGY3L3Ld0QugQRafAoBxB3o2J1slX2A4HxMpKRHfxAbVIOzsklPd2jLEeuGkCMSlyDrDWcRCNwTt91zygVLmp3jYG9i23W1aU4iKAQEMtPS/eMzCMg9/dVu+tbZe64JaZvccpBpFb6sB/+IjyGjOL4RAYTjpIaXxOrABc022X86NRIHmRgA2bhfX/feVme0ZPhi5UVXUJvJW6b+x+7f4TgxahGizICOGqSC2eP7NWGXfTumtMmuzOFTOvtxpY4zTd7r0WFGrZ4UZsPeBSCvfjqjjvkhRAQ3qjubhlOKHI9fSKiC15SfzMaAlBzwrXdeLjhnTrCgLCztHVr1MPhsMsWBoOQrI9HYOTnxck1NADv7WdzDCwZKzXtP/+mm1LnWUIiIrTBL6JPlhRZiAkDSHY9N9Any62obGg9zVovD8VCtBPXItnhCbtqgnu+LDvt5+L6CfLg+2+OynNWO7IMTJyBwEDKgtxUTFkAgP9/PXXU2vfel49u4gQtnDJP+XsA0pgiyzdSkhcNGspAtkgLgXw2fqGXP/fdiZeOD6/h776CvSydInhqosV4AcVLO19oy4MlGIduelj5fikfkr3UD/0EWDZWaDKEGn6zQglfKCTVlJyJs92CSRORAyK763aZY4ecY+HvCsHOnkgixiISj52AfAqgRxrBNVdkW/GKADEj3AAmJb2e1QaCdNzzy3DhcmNFER8HCt9O4hoXvXeVw5rnEHkSYzbF629d0uo68K2S4INj/2hhvpPQQYnw5wtASFceQuCSJgKm9yqqsVLyHELMGJhqnr+NfbZHHLA6+X/l7vCssndzUlmNt4qJjVkw6Wu0Gl6IJxchx/fVbzICUfINjVtqit2vT379E1HtvIvJQiRdC8XuKKUn08x8pD46cRVihz/dhPt3bajj031RniyuwdsvkOjcegV/yTxNvqchfw501rFoNzt/bCxn2gNFQIGIwe7ZvTmZu7hb5KVSA3PQRr8C4eW1p5/4LEj+HQ7EKfR6tPMAiIJTwBeK2ZcnV9UCFx7TusWeLA/y0K6Ux9HsuaziEFX9thMzyguagJ0KnLmqn1zWlpNOlAcEZGgRBJ75HrG73/sop9I58RnGTcAYnZNWhqLyTUELh2qo1sXilp9tgTYuSxFXP8C74FIyoeSdETK1nJRdsOXkcMVlJVis2/tqWkgum7A2/t493RIgaX3mWtHs24Ig+bTD9oDPW5vOYMhWGR7mt0IxpcLXEq7eBjkmUC83Ifry/0kry+Ummqr/sgVLBlSYxUU0eKZWm2gMDDv6lqNPkqhUuVrNQdfIO89KOh2WOys2Nha52poB47vUvRaX32K6BPim3WVHCvPmjMc6s5CZMo0y8+YP9WgImXJH4OQsHbAF7z05Bru+8AzLAuuHr3PYdlonJqaFu7Weun23t/yUzysm765e1ADGTYs3eDksn2BECC427MXmUC9ejn8GEUtkpzQ+ig6hP7yyXL8J3PVXRPfmqh+4YqB/HeHJk4l0LHPdkLDLimMXC2dNWKWFMTjhQd/QXlCE/ba5B97TUgUiS4ZwxT2gpink+g4Mss/hasp3Mb6r6rtU5LNNaC+A7+vuzkYewfpAYzJF6rZnFIBRmpQfo2qqYGInuUBUchzSGCmYLlJ4ruaPdRRXEVTazOKnKbESmOlDjKiDRsQBE5gn9nd7pzHrulkOenqhyLiLRth8uJy7Jgv4e4OnfodBUfVZnVTDEa0BJrIcMBlvGSBmiMSjbP4F3F9OiefMpGSW5qnWqePz1mm5xzRrgAi3HzCeM0eM3rkDZ/e1VjzEUFQHTI3VKZfHSK7rStHPWkbO7uDECtHuj8MwiX98VwGse31O2qzb8m0PXCiYyGYk9QUz18oEErLSE7R5GwAEVGEPlsB3Zzvr6dbQqC9663e2eI6Ur7vdk4liCxYTj8kx6XC1rvwbnB9MJdvuFp4vOTe46shdxP6ZAsWls0y8eZoPxOD+ATgdE5npMZIsk1akmT91JzZYSa48V+NiMu+ZFAXX+c7VYH208FY/reeVHru5Ohkz0S1to4GDwMuUc8yWQOKj8M5NWw0W2vI5UNv1vK/DTeEzuaUOx0e39zeZwm7OfHw1ylcIARKhgNX230ACC3rZb/+4G/rm3gZ5+uG8459xVqX4s1nqxXZ4fQqE6lkjpQj1Aybc4h3SGN+4JIyFWu1Ydy4pJ9kUnWmETR9XCy3zAAkxbvClLHlFQO0yJCi8VrdeQyzJlXiUxE2VhtJiCmXpOEa8DVtBxBSScp2Zz6MjoUzrF0O6+tsuO8uR6YPom2w25HJUD8CL5gzY+LglQfBGhj98TgoQRQYl7fvBZUJ+ipv3CL519ohuNs0WPGK37Q7LXyY26Ra3Q2M4fVwt1NQ5uFtvwu//ClnDR8D7WxsM+MKozWb5yiWjGeTlitYxtxZPr9YMxdtNnzzgxLJrPQhXIFEYidFK1+nGtfB/0hhckMzhj1VOvzjTJrizKLWrIGMJ9ncE1DgLcxwP5knwv6Mu30YUgO4pVwUyljBzXNuyYX94Psk6AuKWtAW5g6MYNT2WDjK4Y7jC3bI49/xVsB/cayavBiMGsS1lVCNzftvrhFubCiNFVvtSAm0s3sPogFHt/ikebxHGppvi1UbLHXNaenAvGVtN9wLeO7tRKoyYN7B6Iobmd869q8n0mFxxdkUbMvNdJpRM28IdrtCTWow6yCme57gDC80d2yoFBcqQcYMcvhJzSnFy+K705wiucVccbyYZ1NW617x8f6BFt3+IGJC2crQY0/h+6Fh36J5v2JrlGWdHtFQ9gM6+VljLVCLOY8UUl/AvU1keUyIx6q+DbMFyk4ZtiA1YE9fezvEhfdKVpghkol9FzaO8VDT86/nvy+I4D29bKc8skAEzyxsYL/IcvMmhq2BApNyJUsBpZlTqt8oe5aif8S84imCp03Dh5rTgYdwTTr61L0V56Sx/e1Q+Gcp58VVK04OfYv85KqLQOlPaeahHyh2fvcph5ceXlfehJ/D02A1Q6DyUtsJZdymQHR62QVRTX8t4rdjpvqiRQPs6SN3Zg7fUoWn82v4W55AqL/wiiPJduz9m+2eyrStAlN2wEMP1/w0e3X9/wtz36QQeEmfCrfYBmAHZOaQFB9pWGud1ugijGGhO+9npMaNa9o6LXc0P6s1RV8UWh5vM70z5NvPBDvbzvogmCGMoMw2qAfqaITPPMd+yJafa2jG1x3dOVdnav55pkYMfo3xcDe6O6QzflTgHZjCoW8CyokYjJKjy3UuYI8ekC3WKnyLz7KgjfRwt2vyYDmPcmgG6cJibAPSLPZiSZA8PXJq+HWmKwICTv6age+2VljuciBb3TqDfNIlcnaZwtzgdufcw0cE46oclcaJWD6rBfSScZCwyRvLKWE8jFIptMPRMwJC8Y/K6jD0G5qR0/d3SxMCyAYuaK9Ejf8QB6fUNGAL5+zvp0oBEN4xaha5OIfZuBRAnDrv0hGjVIVZNwCJrQ6ZUULUFoyAovcfdt2Qu8uoO1s6ixyskMsu3jApf8c1yDnckn39vr74zIMs7Rr/P370MHONE49WSpHcM9G5C8VrSHScb8oUme22534JOmHvYcXkgioODC6mdN1aG8QYYhsSL8yyojZmpwE10uVFCnjpXOkb/Z+7TPCEFBIZDlrFHQnIJ4uAQzYV4UZGRArXyOzOxR++RFlmU24tPYVftTrm8VGuwT2jz6laGY44vapSUzYA1SCYayljMUCm1Ha+oMDwXEkiru4RNXeuTlDmgnpnkk1B+qpvor+Lo9KFLsA5bs/xbK/efKevYHUGNyAIZqO2y7rPGbZPM5ZKHJe8TIr4XQmx7U4M4QnbCn6drh+xibDwUopxOZCxZkXTVOVO1moKuPyboqOPl2AEsHsbfl34UIDiKOXj0hMw2LgMkmqg9Sn1buEhS1GP5zJxQh4N8oAhcv/TRMk0vnNMfVVTz6inCQhKpbLmI6YBw0mTc+zts8rchJbkjq+wQbVeu0j7i3zrmUeDb79FNjU6sSZvgs5Je6dg8pHSxm5cOpfSz35pMzRQr9a0ALL0vEl0/OK+aof8FqO9N+pWQhEj141YlYq+vFEXpqXIhMQ0z7u4ZjhjwUx/ZYIQT+tiDVL77Svx15VR7XJahXi+Rn3XdvKqwStOD7T1LWjvxp+alo4NPLX4DDKzbvuEISkuBeMHi12kxj9p7ZFBBLDMDwcXycS2jRG5bty317FN2Z3zFu8ZOME0GYQcOUTDQ+Ym/h2hkABi4lpAXaRl74swNiJ6+x864VB0R8Pq/aPPO4wj5JTexkrR9gkwru6tThSxbuZqTEQ3RHSnWLS+75ec8ScyQ4Mv3Q0y8moVDMd3YkcQUWRGfQhCPUpQB4Behc0ljfd103pA/WRwqRR+VlUc+D38EMqhA84Eo2WxuQ4C7cM92e+Tc3QylU9Bu4CNnXf81LTYoWGEGxAqSWKjAi3fgzJ2T73NJOY27bC8+JK/mO/9N8FHomVi5wBAWSyKnTKbTuTuny0qFZTzkDkmYx/cUnNSt+TxTRyL1oP/XhXOtuDbtYH921ZvfJc1C4k+9irljGwJCE9SCfhsLqPDsu9I0THJ2PykwVrJzbDn3PFmyso3sOXhP35NOpkhKEL5DKJNQHJwkeKkSpuDG7fcX8JVgU5wd1FzbliBX3sQTxxK0HItI3VzPVJ7U/L7fTyUKJQj03yOyEYOEyKl09TVLEDuYRKJwF2gRJEdhkG/XlR3tgtE8VegBUuRQMdj0tAOXT50jLx/BLZ7pP6rZ0cGHM7j88Jocu6JcTLmkoh5JGCOEGN5/82Cs2bUyk4nvF3GgqEsabl1B13UA6Bq2z8Oxr/LPeP1/TGAQhus2eabeErSGA8goPl6LpSloCmL71YR1biqw5XWJbLM4tkR011r6csioiCr7gNOafqVC9tHGWI1zgHwpQn7JFOcsl4GEc/IpvOtNVYyA5n4LjpwmUUHZRblIGli0gJZR9SsPcnMs7CEcOwIJF3UY7tBM4Dspy4RMlTXSQ03FJ5/a0s34UHr+M2Dlr1Y82HtCy5Yk+KbgkN5wggwD6jlX6kdK1VyTcXJgvHFVN/Dxn+uOHc3NLuGJbfzjdnebk8vN0KtXyW2O6iUsMgtkHQoIBQi6bjSGcaop5ebgeJmW2Hp2xxTkG0MwEASoG5A8/C5EsCgchzcQtdYVhhby7sE133ElV4cdb4F6kvA3FmsXLz1BRq/l6FPHLPr+IsLw55SrbJrKnWsD3UZPS0vcilWDgzTDLo0q4gyHqrHWnibrd2mfDsW9bT+JE44lxetpxS4IUoEk6QJiqjZWhjdpw/L4jmPxmyb3qrJjYQfswTkUd4zpPfCUth0jvQ9/IbnYWAvvFlXGD+33QzPqz3MOCVK4uOie65kKY73+hUPbZg16LYH9opqnO6kF3A964Wt9YTIRVZdmEf6WDwdPsie7N1QBmq132ZVRHETugmAYLJzlZNZyB+cC5zG+8nOI6WZcOU//qjgTwoBcEbEFqrE5EDmvH1s0VHms1FMse5jrKc/w2jZ8MImXt5widspVzWacqSKWmsEjEaffJmj8WRgeAo5tIMMUupEg8n6ZBZUFr2akdMLhEfILj31Duz8NB9fOWl532C29cNOqAL5gvXmPFkahDpRrAos8OQNWjouW3pjrB8vNbcyXA7ONPKd4VmKwO5aQHQdmH8BIoIeAvlIL21fgBBTLRs7CVs4gNHxbwx2Ex5notS3qdexE64qbEih76Usp56FHNT8J7ZhombfQAK2bcfC1gIVa2sLzN3b2Up2J8uLFAat6qngBYUAVQ4wJCqGn0fCYalMVfEsTWZbx+M+GnjobC4lT9ZwEnZDtOSzHmLDFbtXqtpKRS/8a39kwex5miUTDRv5NTDmz60JPPmf77JZRCRqDokh3QKytonjUzdb2udsphGI8nEonMFpSohQrGieW1O0ZA1roHlICd1V9INoDyqnnrxZPOsE4EZYsJaFpnEDHieI17UPbC98CXnQYEtOUYVD1B8di1N/DNBM87ChbaCs++kvJ/EbofTN5DPB3EFRMLr52bORg0AwPdYCym/LL4Hltz3fXwGuByhv2NEEd4U+FEkgTQageqXj29EUC6UDoCp00prgK6VxZdPyiQGTiMwjZRKiruEORwRqTsYkqbD/m6QKyFV3tnA4WEOxQdVvBdQb+iXYrK326hSnomJmGK7uRF53lQ3YHeywc4odBxRvqdqvOMcbZvR99+nzJNopmdCnV+yGVZwq+LJIDskYVwI1Vx3LAVekcAdbUAOGq3AKu+RBlI5nDBhmEoVm0ERrUkjY0whscPAylt58UqY5vCdEnT1+QgiB+ucd+hE24eBEixyVTHytPGfQ0lbdTrCpzzdsUXFQnHPSGrsBEW3dOxcyn1ZvZxIgrTAax9xBojCzu7TCr7UGU9qu4A7AwTQRgQq/lKTgDvuqit7mQiluav/aegI0/PZQvQKxCrHN5+QUTDHYcBq3EljZon69pdJN3Gq9fxdZoQlbwwNd7JNwA3UMKLRJcqC5oytE16lfggVb+w58JyY9BNlNjxb2vYAAwp096pT4hveViR/3JOKYrDr11e2EGcBOXLu21n2cDWkPZCzwcwSLV//h9t6DG4aZogzKSjCVbwEEjcS4Zn1DkWtq9S1W/nqLIphTkm3ytaeuGitb5eacwuWXwLUydOy5FQv2CczwXA6WejDoRBlQwXG5NVe55pQAbPNQ5REFqn7HApZSWpTgt6d/yYHZEDzYnb6/oIA/r9nucjbSS25hdrFnTdQXuvCYbK8X10pRpcTkRwCksSr8ekc3f8edacMO2yVM5e/XsAjfaCAZbVbE4fnz9/f8P7S7LJf83Xr2Rn8mnypvWro1ZcahufCQUJuSsxsahWMedggcLcLEbyvn2+4Dh7p2ObXcfhQ7o1JVWkH6SgyKvivIF8FbGtRBqwrgfQRKih63pxRy/qMEldoGpNN2tc6OwUA+fg3fdTU8kjgPZUDK1kLHSthP1oyhhVQagi3hoXfD1oKXEluZg9orwzm8S0Z8umC4nEy8+MpxIGPhKtWQmlRcWUKyxUb8qxvvbUAR6iXNDgLTvYaVs0FxL55p/U8rD/5uosRsRQEhu8ug3HEtN5sY8vI/FO169XyokotSTYaDuI4EtS0yE17tvyBOSjqer8QEgUq3QMln8dhyXctTZn59hZFghL4BxrYEB5pxrpgZ1OdGioHeXD4sLXM/H2RHzf4V5/h6pLtaJyU3khoI3luOe0KLwnWFTj3msYKaTNYHsQmoit/LLTGW6p+rvUyUjUB1cQ7AqLsMpHKuObi7YPpjfQjmjARnHt3SR6NW75+v0/Ad/NzMztxhku2D6lPg/LCA+u5ArXhix4rH7IpWEA3lQARP2dOUk5gNK0036isffkYepixngR3gAroE4QdjK+vP7gFvVXCbaRaxqQAjOAXs+hIUxHe9jUzGeg0QO4fhDeg5jGxXjtkCNgn8L3OJw953xXOebzgNg0tCsOyAe+oZe1f0pTslhGA/qfhOEVQH2/eSEuasKd36sRUgwyECkeLIcLMPOln1OLgEQkfTrh/Mji0eK3j3kOANk4aDgWyq3ocBeYemTURTWfnA+tGbNm0F/LlSQSiiJUSLMtFuBiLF9weEpFPNgLX4/Hmuhf9HHKqh3TYku/wkzbonFsJdipM8tfTdY+MBF3nqS0SofIb3BE/3nLm7woIC74aEvCv+BmZ+Sexl5EFvKPn9czDMKTBs7OQQ6xEiK6aKSKr/niyMRqmxWoVRSkDr5FzIIQLApqoPAjsuw9VhtnOsGaSeRkmktbLJW/gh4Y97pqOwabJEjnewKQBhedsrNQtqLFaupNZK3XWz6zHsq2YvHELsz3d1/169X9GSsk2H9NiJz33loiZUhjKx4D8+VPKKG4P1ZEZA1GIWDiQk/bxXaL7Zx6Ekawp+rUvZXfpiq+6Y6EtweBn1Sw2mQ85u9kiwPLqnZsrSCeDfYI35Kz2Aj8+5mMrLjnpjTi24NVHMQGdwUfBxR4OXvRRuxktFeW5gj182DhX2UAEghtUCvla26ExPEZa3GYiaAoNQuyQHt26OK3QNSnKGU3WjBf1R6ylZLhsc5URA29bjwsjnVVIf86JZj25pLSA+BCoMUKE1kCSS/W7I5WsmCixAWJBXBWl+5qHGlKoPYbig6QyhBg/l5Qjr7jWw2xdUiwpdG2qoPnckaQpq+2Rx47RKSJeqJFSbBOgQyflEqIdqzgI1YEdZ/6GVL/svodul+6f0Sm47OOaK9AgP7RFMWbb3RUp7simN4VF/xNASb/sN8Rbd+flPlIgwq786ki+hFXg0KfHG2haGS5jvYOeX1ftE1etQtpjCEUR3Jik4SRqeIYUg19nDjiR8Ff+a4VeZxq/f8fJ8SPzVDAVLGZZtHLzQDd0Qm3RtMGLdqtuW8hQ9pL51MQECki6kd7fVHJPJumlh274eFtU9NGkRma2wMU17/QjfRDNdTAKawBkbjOwNcR3cYAP3CxpqSH7CkBtZqQ5XqKvBdQnl3DyXi9Q6Y+b74TXJDCKp6zES1NJ8v4pfcnWAhAbhqBO7zC6r/MrnU7bdM54Xy6Qsozk9AZ+b8OmzEJNnmYo60+HoAwOKyvHEHineA3t4mYfVV4TqeYH1Rvg9nihD4oKe/1EwBntNM8zaAehzRS8Fmsz/3U23dGnfYsyz07Ah0pfpEgZzjuuaNpE1MsIGL8mCTe1PYXCnRWoqU+v0XCvm/jlf2/pmW3y4eHmQ0tzKklUuVZKDnHs5xqTybDItJvnXx8X7ZGa9mKm2NKtBWwNLVn828sIuta8pxD99/G+I1UX1gsZsSkfIAuzkDlWLaNml8HrvhgoA/mUuGNaWpV/AKXyUrPOjZmYaUSkrdCqVxRwJVwHfLMNPZr8ZoOWfvWw4uSmUto3/IBlF5umWrPn5iLp7vsqO/WFr6fW2G1jCfacN2pb2jByuLspjz/iEsy5TQmdBIiGKt6nprDKqhcMRMe5LGcodoLPgwOXy0kK4PEK1bxvvXOaBQ98Xc6YtRk6NoQITMvDvJ45z26faZf5Dvi3EI5I5vuD9CaEc7ZJy28fj1NXirabqRh1xcfWCBfHOMwdH8P39SCyMJo7eh7/hPM+E/SJNwC/j7snqqqyOgEewMhfyEhjHi7FK7oJkEMn6qH0SRVeuFDx8dYReCJJ1UmP/JioVgAewuPTGt1HpaMllxY9kynB/EL/FxcixQ+9bQbfNj5ZwEbC/570CBVQHGr2NVqfVFvLm1343QpyWB234hN7x3UfY2g7ZmFzIhM0pVyLxqscrpJaDVyJWFFzfNoXq9oEaopEaHX0wHaTA/GeuJy3H32RaLtmmVrujuIvum/dMOM7HQRa4voBKMAnIQfQpZYQrS0x7j/HPCjp+J0URdIdWJY7m7odoAiUvmpRamUD/tu4LCn1wd08y0WFCNVC/PaGH55TBKG4zCjGn57tgVKObdqBc6NYdtMNsItX4mcBO9mqfgz66Y3pToPSGI79TkwAq+f068mRAbtsIYPkAN+hJsUTs90jjfdNQYOwB3zUxhjA3PX3gBq7N2FfD7XwD8BdPSntwQZ6QTeSOybh4nrXo85lVZVH7wdCn7OacpVxQ9UvQ+J13dbO68yeZrUPi/I4e6vTtyGAo3k5jIqkuoX1Guh174lIGMoDM+MLDbGANWfJaoGMU1XKPrxx9sYQumcbjmZqeQ2RSE0zbPw333vsOPr//0wrCBEXB8Ush6wPB+yeBqawwNQTAWAfvm+myXpXSSl1Z+0V+sh8bOlxRwGSlgkIEpgQJxQwbR4fNUPneSgcaRQY5YCPGrkFc569awAMzMSLf0q4DnNNljUAOqEmmzxr0fQO3Y0S2Pi7UrJmhi2zQARw1KfzM5aWc3hNwOkiIs87JBgZ0jSz5dU4HeC+8rQDqmVP8t407RcolDKqTosDBJmv7OTqJl9GQQWJqQrxb5voHwtuzUCPKY2dTY1ZM9gJS3a+vGnFbb3OCkOfGjD2tf2PXHg+sWHkpui04iFyeyI6vWL4RJZ5tRf0+OliYy3Z+RYwbsZJhiciO/1GL3DKSfq7FR/LDRUptFIoUGBoUCiSGqD4cothymw9Gd1IxDNj6plFQ/xd/7QrXbPtYsdY2r738Txl2UzSwWUloOBDceq9Xt0ZACedSSU1mjaKOGO808K9XQMGMY4N3AiFDvxLBMdwGvVQ9atsAoZ+rTvg+kvufVkMGMCSgF+IYpcIwgy7wjUFlIefl105tOyUaZYpcfP8VhA+v28elGv2Li5n67V+FcHSft1ISwsAUquhSbXX5DYOjlkmyQXTkftgTUPqWaVP2wZvjZ6ljkuEJQiqCcjpbFvrqCutk3xwLGu1ZIgWmjN3bQrzbjVsVjcFB4cFIrmkW15QNepwZ3ru/J3V86SPjomobniKUu69+6IFs3TecxyN0yh4KxBiIB/hreuBeHaoWRjMcCQWlRxYhLI5oMEVlnoyWWrFTaEcG5aoCmMHJzJUXsIX5mgkaIbItIeT4h6vr8kKV5LULESNlm/Fxn/WOwJRBjCbhFsBgyiaf6mXnU8rq77rAsCX8J/yS+Vummun3Xt7YdKnQiwi6Vkhu7dKkZ8WGOdzGXQdtzjg0yZBgV9hbAOewCa4WK2zuKTEjgIVgKl1LuoiYDsKyx0xcIYSDMnsIOTnLJWQd2yXA9AS3HGw1wk+mvdppQ8ZK+40qJ9r6f2pKGT+GPDCl4QhcJaotP4mrQFM+DVK4cGymrZJ43aWGMUjk4/rGir9qy2b982vf0FkCvrCHIOmXVYNCyUBsCyLMZwUcPhGD/x81LnglECYP8860dp7y18rbZLfInUeWA5k2NPrSpXROyMDgQQUPiKNJ/IzN/xSMKlSbEua+SzDUIjCjBJ/eNMd9qfPbmWjQAfZh9QfL3zPDm2lREfAHNRQvn/3m1m6zVSRSZQHqkH2cH64Sp+qsi4WJL6W05izXpa63jjySxBYUpN/ZT6zKzsHKWLlPUtA4ZyqX733T165+6lfPhEQY4BwcWHcmWNsK+JcKpMIwhtxkPZduQFrdJk/RV7KMwCjKLIFhvfVj7QZ9GGtUmZU8zaJ4oJauP2wvVFVNu/S/dBlo2yTU/oNTQiZMBS8ExaZ64Rz/SJCxWHp1zzHqaQhaeOMaigLyBh09hAKNHFn45C57uh2GtiB5gD9RyPue9Ql/OteLo0KuPy/8adYSrDhVTz+bS3XJoeAuHLOF12a/DtNvLclgCBTaJILUtcSNj4elKfRIOgSyf1UpqHiPYUeNueRhTTsC/MqYpxi0StaibHUNqRUbGiq1FCgW/uBCC5jV92oo5nzmMu99YHH2NrVBXkeLpYCiggNcMPGMsd0rVF/0uZNFJyknYb5OWNRhxXuqqlnKamDlgryHuL0g6zDFCz0tx/sBoUkCiBqr+KHS/72mb1raFZaSeL95GmgJFkUyH1cyyaIo4R9GPfVqR3oohTfjuzbM9V2QJTL4qPY3Nal8vW1NzeFeoN3oxyLrwZY3b06wRmgcBUFTWjqW4ftSd7LMmPNfK48bRAQGuJDwdz+j3JDbnk4TjiMCFNxOkwe8CjUMCnZEuzrvOFDJAjJ8rX0Dg0MZ/ANCY14jC29UCkeUcdSEBDAO7TWc1iFT88f15EoknXNDHgEK/7qre/KJ6eliR/P+l+ZjDvqq8trB6ewubtMWNMlT6sE6QFD44xAWz2oI+DSEXFLCbwl7KXFGpb59Ts/hxk6VMQWCxeQ1Qf+r+9xoxutdojcRR/6p+ubsop2IwrMFmY9iYlOWpT9r7LPxulQaSW+Cpf7tfAWoOW/WVaL9EdQ7uI3qybVRcDib/MVtAep40NS3zGbxqJR5zNJBDQKEd4sjjKa+RI0t1oLGj+oJn4UPx72hsJeOfexA6XDzPwS5YbGOtKvmC3lxkS8g5bc2H4w5VEIgtanCTYVY8XeyNzjXHSgdzKo23EauZcx9lk6Q0lfJEVWNRDczm4cX4cKlgnJgLL0svRfLkDVaaFn7z+8I67jGxy36wR3Ehi5koKewpzLcKwusk0ODJxacnmP1iErh7fWu3lOkSwV9q9bgve5DfW7e58o0HlCDsSi7m4wEUZ/HGzx9JgBfA4LhgpN+Nx5ZD34JmUqDCQl2kTlCzwIdOPGGD+2zc8BU40V4T38TaVD8X/5gV97+pRFjdhE8yxmMKRgc2T5umkDuSCs6yCoJWEVHRoJGjwuHsGvizmXoWWPsQAYRSvqhZgahA9YsWT3B6NAr4HilpDTJ4AZxWguZO+HBwBxLpuDZO69Lu0UVy57IEfJQn1Q9u/K0GCoyeh6wTIj48L+3A5fHxUHvToZ67s6vzoKACLB8JCF/GVNfoS8x3eDoeShC3Wqezjfzhme8wDFPQ8mOymU3uNql/eu5f03uKgnr8teBrafb69atm5lDZzcasBBFfTPQbFJNI9pU4gBFrnojmV8gw2mVq6Q4A7KcEHX3v6dHeF8GqtEB8X7xgH8POVjrUVR6PChk+4Vwt0H6P54UvL/r2dCvZESpR+WH+N1dFA/gjNZUCiDff61PkBK8v6DkBVHvzZ6InRqVgKYTPkJKQQ81958NdOmn4ODUBa+NyOpTBJNui8IAZWEU4WJEeM4odG91C2BigcD0QYzSmKeHx+cITqpgv0l624AmdOL/eqTASQJGuL5AfoW+ONXHIHMuwIR2prZoXBIqPWjcK6P5Pb0jDjiUfn7iyrdLtAV+K0/I2NorIzgvX4zRRw8WEEF00gdcMwKCMkwwwoMjmreFPSgvuxkJGImojuAX9lDRzLIWFsoJHfoeHTS+1EEUa/W/C2/KI/dYxVuIM+GPS2CvcSyHUp7GPjhsr5Ll8aLqtl8urkavlqVZRbeoiqdRRPJ/gJ1at24A6imlB2NjChK6BNeq1H2XREoosDQspNbNCpDzeQPgWff/F/alf6G1aNvzlCbQ1IkfA3X4VO2adDR/MIwHobvg2XUPaM2uoVbgvq1qtjrO1+iKm/jWRvzfVN/BxTj4OeR/uh/CqMOk5EwhK5334dahT6WjjK6e+hqHGD8CeGVR1zrHRRWYewg1ecCmJduwL2bENHS4/XcaMiA/PKuBFIdY/DCiazgwxpJ7YBJQ++cQLyzJEVorZnSPXz/1FS+rANkpUTkkknEc+1ZMhC5QklMKbZHWXH5JksHP4KlCamyHdEyP4LNeqeP3gw1kj5XN82TyL6dv05oxSwrdE1S3dFb1F7IAkxKBqgVHfpTOfQQw5hegJrFWbw/v+pOYOnBB7aNMZ++K6FcCkpjCRcLuwiUnNwaOgvbmEJUKGkcPadUPti4qUI7tZiqWP2bZG523FZ6UC1KuQ0yzXQQx+pBIYopt1dEBIW90ipiZYSzY7b9yYbdWLZYb2mafSW+orwIchTLpQVj4TD4BYaIUWDKJCFLMOuT8X/IXwfHCrlZd5w//vyFjfMr+NarrUSb9/mg5yrd/p4LhP079z7snH8jkjfejQPSFFsKNvVxDyebUozgWzlqkE0/p6jEmTFWhxsGIrsl3ORYYNTQxrpkNrBxIBOvCLNCI/0DOsspZWpSV/SEKhKWr7YXw94ovldFwjFevO21RsmRSgaLqHnlqejzVb4Gn/7QKZEdCYeCSj3qxWO+ehXxKVGwWZqKlI6Mb8YMLHtO7bscQiuS2xL1B4HQtALMcKZJkRWlG+s7skkfBrD5EfuTIOBFkizI/RIsitz0qC4968Yst6oeVIkiThoG+oWJKv2X2fB4XaoD/a1q55ob4OqtDsgDRUcA685FnGkq3J5trSTzVGbx16uAtnBimJRDzBL1/v9rLHqBciwH8BmtOo41AEcrloD0+284dSEQCmt57qEIBg9+wfY8ea7lYxAQyP+1rU2FtGdl2kWa3HN3jFi3vfZSMfMsfXZgA/lPI5QrISBekDGTgGBTMngE8VeCA85USajiG5QHS0bRTkc/bgU/7ggp6/DsiZyAsCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0Jhc2VGb250IC9NU0JNMTAgL0ZpcnN0Q2hhciAwIC9Gb250RGVzY3JpcHRvciAzOSAwIFIgL0xhc3RDaGFyIDEyNwovU3VidHlwZSAvVHlwZTEgL1R5cGUgL0ZvbnQgL1dpZHRocyAzNyAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDMwIDAgUiAvRjIgMzQgMCBSIC9GMyAzOCAwIFIgL0Y0IDI2IDAgUiAvRjUgMjIgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9JMSAxMyAwIFIgL0kyIDE0IDAgUiAvSTMgMTUgMCBSIC9JNCAxNiAwIFIgL0k1IDE3IDAgUiAvSTYgMTggMCBSCi9JNyAxOSAwIFIgL0k4IDIwIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyICjS0v8UFP//Dg4pXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDU2IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCAxNjcgL0xlbmd0aCA0MSAwIFIgL1N1YnR5cGUgL0ltYWdlIC9UeXBlIC9YT2JqZWN0IC9XaWR0aCA1NiA+PgpzdHJlYW0KeJzty7ENAAAEADD8f7QXRGLS7o0AAAA4VkuiKIqiKIqiKL6LuSSKoiiKoiiKojjUAFskUQplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjUyCmVuZG9iagoxNCAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIFsvSW5kZXhlZCAvRGV2aWNlUkdCIDIgKNLS/xQU//8ODildCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgNTYgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDE2NyAvTGVuZ3RoIDQyIDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDU2ID4+CnN0cmVhbQp4nO3LsQ0AAAQAMPx/tBdEYtLujQAAADhWS6IoiqIoiqIovou5JIqiKIqiKIqiONQAWyRRCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKNTIKZW5kb2JqCjE1IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMiAo//z8//j4//DwKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyA1NiAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgMTY3IC9MZW5ndGggNDMgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggNTYgPj4Kc3RyZWFtCnic7cuxDQAABAAw/H+0F0Ri0u6NAAAAOFZLoiiKoiiKoii+i7kkiqIoiqIoiqI41ABbJFEKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago1MgplbmRvYmoKMTYgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyICjGxv//XChcKAAA/yldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgNTYgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDE2NyAvTGVuZ3RoIDQ0IDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDU2ID4+CnN0cmVhbQp4nO3LsQ0AAAQAMPx/tBdEYtLujQAAADiWS6IoiqIoiqIovou1JIqiKIqiKIqiONSn8ySJCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKNTIKZW5kb2JqCjE3IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMiAo2tr/IiL//wAAKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyA1NiAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgMTY3IC9MZW5ndGggNDUgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggNTYgPj4Kc3RyZWFtCnic7cuxDQAABAAw/H+0F0Ri0u6NAAAAOFZLoiiKoiiKoii+i7kkiqIoiqIoiqI41ABbJFEKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago1MgplbmRvYmoKMTggMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAyICjGxv//XChcKAAA/yldCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDEgL0NvbHVtbnMgNTYgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDE2NyAvTGVuZ3RoIDQ2IDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDU2ID4+CnN0cmVhbQp4nO3LsQ0AAAQAMPx/tBdEYtLujQAAADiWS6IoiqIoiqIovou1JIqiKIqiKIqiONSn8ySJCmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKNTIKZW5kb2JqCjE5IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgWy9JbmRleGVkIC9EZXZpY2VSR0IgMiAo09P/GBj//wwMKV0KL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMSAvQ29sdW1ucyA1NiAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgMTY3IC9MZW5ndGggNDcgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggNTYgPj4Kc3RyZWFtCnic7cuxDQAABAAw/H+0F0Ri0u6NAAAAOFZLoiiKoiiKoii+i7kkiqIoiqIoiqI41ABbJFEKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago1MgplbmRvYmoKMjAgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOAovQ29sb3JTcGFjZSBbL0luZGV4ZWQgL0RldmljZVJHQiAxNTQgKP/+/v/6+vr6///4+P/29vb2///09P/y8v/u7vDw/+7u///s7P/q6v/o6P/m5v/k5P/g4Ojo/+Tk/97e///c3P/a2v/Y2P/W1v/U1P/S0v/Ozv/MzP/Kyv/IyP/Gxv/Cwv++vtjY/9bW/9DQ/8zM/8bG/8TE/76+//+8vP+6uv+4uP+0tP+wsP+urv+srP+oqP+kpP+iov+goP+env+cnP+amv+Wlv+Skv+QkP+Ojv+Kiv+Ghv+EhP+Cgv+AgLy8/7a2/7Ky/6ys/6qq/6Sk/6Cg/5qa/5SU/5KS/4yM/4iI/4KC/4CA//9+fv98fP94eP90dP9ycv9wcP9sbP9qav9oaP9mZv9kZP9iYv9eXv9aWv9YWP9WVv9UVP9SUv9QUP9MTP9KSv9ISP9GRv9ERP9AQP88PP86Ov84OP82Nv80NP8yMv8uLv8sLP8qKv9cKFwo/yYm/yIi/yAg/x4e/xwc/xoa/xgY/xQU/xAQ/w4O/wwM/wgI/wQE/wIC/wAAenr/dnb/cnL/bm7/aGj/Zmb/YGD/Wlr/Vlb/UFD/Tk7/SEj/RET/Pj7/PDz/Njb/MjL/LCz/Kir/JCT/IiL/HBz/Fhb/EhL/DAz/XG5cbv8EBP8AAP8pXQovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAxIC9Db2x1bW5zIDkgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDE2NyAvTGVuZ3RoIDQ4IDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDkgPj4Kc3RyZWFtCnicbcZXVwhgAIDhNyOiMhooldBQiYaKaFBRlJYmUjSNjJaMJEqKhmT8WlfvOd+F5+rhvXgn3oo3CjYrXosZMa1gU2JSTIhX4qV4IZ6LcfFMPBVPxGMxJkbFiBgWQ2JQwR6Jh2JA9IsHok/cF/fEXdErekS3gnWJTtEh7oh20SZaRYtoFrcVrEk0igpxRVwW5eKSgl0UZaJUlCjYBVEsikShKBDnxTkFyxdnRZ7IVbAccUZkixMiTcFSRYo4LpJFkjgmjoojIlEkiHhxUMEOiFgRI6LFfrFX7BGRYpfYKSLE/+wQu0WU2CcOicMiTqSLk+KUOC0yRKbIEpWiSlSLq+KaqBG1ok5cFzdEvWgQN8UtMSc+iHnxUSyIT+KzWBRL4otYFl/FilgV38R3sSbWxYbYFD/ElvgptsUv8Vv8EX/1DzZnvl8KZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iagozMjUKZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMSAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQ5IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMTA2MjkxMzI4MDArMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My40LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My40LjIpID4+CmVuZG9iagp4cmVmCjAgNTAKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAxMzY0MjkgMDAwMDAgbiAKMDAwMDEzMjc4MSAwMDAwMCBuIAowMDAwMTMyODU3IDAwMDAwIG4gCjAwMDAxMzI5NTYgMDAwMDAgbiAKMDAwMDEzMjk3NyAwMDAwMCBuIAowMDAwMTMyOTk4IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDQwMiAwMDAwMCBuIAowMDAwMDAxNzAzIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMTY4MiAwMDAwMCBuIAowMDAwMTMzMTA3IDAwMDAwIG4gCjAwMDAxMzM0MzAgMDAwMDAgbiAKMDAwMDEzMzc1MyAwMDAwMCBuIAowMDAwMTM0MDc2IDAwMDAwIG4gCjAwMDAxMzQ0MDEgMDAwMDAgbiAKMDAwMDEzNDcyNCAwMDAwMCBuIAowMDAwMTM1MDQ5IDAwMDAwIG4gCjAwMDAxMzUzNzIgMDAwMDAgbiAKMDAwMDAwMTcyMyAwMDAwMCBuIAowMDAwMDI0MjU2IDAwMDAwIG4gCjAwMDAwMDIyNTUgMDAwMDAgbiAKMDAwMDAwMjQ3NSAwMDAwMCBuIAowMDAwMDI0Mzg5IDAwMDAwIG4gCjAwMDAwNDY5NDYgMDAwMDAgbiAKMDAwMDAyNDkyMSAwMDAwMCBuIAowMDAwMDI1MTQxIDAwMDAwIG4gCjAwMDAwNDcwNzkgMDAwMDAgbiAKMDAwMDA3MDE4OSAwMDAwMCBuIAowMDAwMDQ3NjExIDAwMDAwIG4gCjAwMDAwNDc4MzcgMDAwMDAgbiAKMDAwMDA3MDMyMyAwMDAwMCBuIAowMDAwMTAwNTQzIDAwMDAwIG4gCjAwMDAwNzA4NjYgMDAwMDAgbiAKMDAwMDA3MTA5MyAwMDAwMCBuIAowMDAwMTAwNjc2IDAwMDAwIG4gCjAwMDAxMzI2NDggMDAwMDAgbiAKMDAwMDEwMTIxMSAwMDAwMCBuIAowMDAwMTAxNDMyIDAwMDAwIG4gCjAwMDAxMzM0MTEgMDAwMDAgbiAKMDAwMDEzMzczNCAwMDAwMCBuIAowMDAwMTM0MDU3IDAwMDAwIG4gCjAwMDAxMzQzODIgMDAwMDAgbiAKMDAwMDEzNDcwNSAwMDAwMCBuIAowMDAwMTM1MDMwIDAwMDAwIG4gCjAwMDAxMzUzNTMgMDAwMDAgbiAKMDAwMDEzNjQwOSAwMDAwMCBuIAowMDAwMTM2NDg5IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNDkgMCBSIC9Sb290IDEgMCBSIC9TaXplIDUwID4+CnN0YXJ0eHJlZgoxMzY2NDYKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-06-29T13:28:00.825744\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# collect true solution, best guess, std, and 4 samples for plotting\n", "rvdict = {\"$x_*$\" : x, # true solution\n", " \"$\\mathbb{E}(\\mathsf{x})$\" : x_rv.mean, # best guess\n", " \"$std(\\mathsf{x})$\" : x_rv.std, # marginal standard deviations\n", " \"$\\mathsf{x}_1$\" : x_samples[0], # sample No. 0\n", " \"$\\mathsf{x}_2$\" : x_samples[1], # sample No. 1\n", " \"$\\mathsf{x}_3$\" : x_samples[2], # sample No. 2\n", " \"$\\mathsf{x}_4$\" : x_samples[3] # sample No. 3\n", " }\n", "\n", "# retrieve min and max values of all entries for plotting purposes\n", "vmin = np.min([np.min(mat) for mat in list(rvdict.values())])\n", "vmax = np.max([np.max(mat) for mat in list(rvdict.values())])\n", "\n", "# normalize diverging colobar, such that it is centered at zero\n", "norm = TwoSlopeNorm(vmin=vmin, vcenter=0, vmax=vmax)\n", "\n", "fig, axes = plt.subplots(nrows=1, ncols=2 + 4 + 1, figsize=(8, 2.5), sharey=True)\n", "for i, (title, rv) in enumerate(rvdict.items()):\n", " ax=axes[i].imshow(rv[:, np.newaxis], vmin=vmin, vmax=vmax, cmap='bwr', norm=norm)\n", " #axes[i].set_axis_off()\n", " axes[i].set_xticks([])\n", " axes[i].set_yticks([])\n", " axes[i].title.set_text(title)\n", "plt.tight_layout()\n", "plt.colorbar(ax, ax=axes[i], pad=0.2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ProbNum solver found a nearly perfect solution this time, with less budget (`maxiter=2`) by using the available prior information, while returning a measure of uncertainty as well. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n", "\n", "[1] J. Wenger & P. Hennig, *Probabilistic Linear Solvers for Machine Learning*, 34th Conference on Neural Information Processing Systems (NeurIPS), 2020." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.6" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 4 }