Машинное обучение: Выпуклая оптимизация по Ю. Е. Нестерову

Кураленок И.Е.

Яндекс

12 апреля 2012 г.

Содержание

МL и выпуклость

- 2 Выпуклая оптимизация
 - Оценивающие последовательности
 - ISTA/FISTA

ML и выпуклая оптимизация

Часто в ML мы можем поставить задачу в терминах выпуклых функций.

$$||Ax - b||^{2} ||Ax - b||^{2} + ||x||_{1} \log \frac{1}{1 + e^{-t}} \log \frac{1}{1 + e^{c-t}}$$

Пример сведения к выпуклой оптимизации

Хотим элемент классификатора h из деревьев решений:

$$\underset{h \in T}{\operatorname{argmin}} \sum_{i=1}^{m} \log \frac{1}{1 + e^{(c - \alpha h(x_i))y_i}}$$

Деревья — зло, но как их подбирать в случае MSE мы знаем. Разобьем задачку на 2 части:

Первая часть выпуклая(на самом деле вогнутая) в \mathbb{R}^m , вторая понятная.

⇒ важно научиться быстро и эффективно решать выпуклые задачки.

Выпуклые функции

Есть много определений $\mathcal{F}^{1,1}$, вот некоторые из них:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) , \forall x, y \in \mathbb{R}^n, \alpha \in [0, 1]$$

$$f(y) \ge f(x) + (f'(x))^T (y - x) , \forall x, y \in \mathbb{R}^n$$

$$(f'(x) - f'(y))^T (x - y) \ge 0 , \forall x, y \in \mathbb{R}^n$$

Важнейшее для нас свойство: $f'(x) = 0 \Leftrightarrow x$ — глобальный максимум! Часто хотим чуть большего: $\mathcal{F}_L^{1,1}$, более того, сильной выпуклости $\mathcal{G}_{u,L}^{1,1}$:

$$f(y) \ge f(x) + (f'(x))^T (y - x) + \frac{1}{2}\mu ||x - y||^2, \quad \forall x, y \in \mathbb{R}^n, \mu \ge 0$$

Класс методов

Хотим искать решения в классе

Модель: $\underset{\mathbf{x} \in \mathbb{R}^{K}}{\operatorname{argmin}}, f \in \mathcal{F}_{L}^{1,1}.$

Оракул: локальный черный ящик первого порядка

Решение: $\bar{x} \in \mathbb{R}^n$: $f(\bar{x}) - f^* \le \epsilon$

В этом классе решения будут не лучше чем:

$$f(x_k) - f^* \ge \frac{3L||x_0 - x^*||^2}{32(k+1)^2}$$

при числе шагов $k < \frac{1}{2}(n-1)$.

Градиентный метод

На классе $\mathcal{F}_L^{1,1}$ и $\mathcal{G}_{\mu,L}^{1,1}$ градиентный метод с фиксированным шагом $h_k=h=\frac{1}{l}$ сходится.

$$f(x_k) - f^* \ge \frac{2L\|x_0 - x^*\|^2}{k+4}$$

$$f(x_k) - f^* \ge \frac{L}{2} \left(\frac{L - \mu}{L + \mu}\right)^{2k} \|x_0 - x^*\|^2$$

Скорость сходимости — линейна на $\mathcal{F}_L^{1,1}$, а далеко не квадратична.

Утверждается, что релаксацией невозможно получить оптимальный метод первого порядка!

Оценивающие последовательности

Последовательности $\{\varphi_k(x)\}_{k=0}^{\infty}$ и $\{\lambda_k\}_{k=0}^{\infty}, \lambda_k \geq 0$ — оценивающие, если $\lambda_k \to 0$ и $\forall x \in \mathbb{R}^n, k \geq 0$:

$$\varphi_k(x) \leq (1 - \lambda_k)f(x) + \lambda_k \varphi_0(x)$$

Введенные последовательности хороши этим:

$$f(x_k) - f^* \le \lambda_k (\varphi_0 - f^*) \to 0$$

Построение оценивающей последовательности

Пусть:

- $\bullet f \in \mathcal{G}^{1,1}_{u,I}(\mathbb{R}^n),$
- $\{y_k\}_{k=0}^{\infty}$ произвольная последовательность в \mathbb{R}^n ,
- $\{a_k\}_{k=0}^{\infty}: a_k \in (0,1), \sum_k a_k = \infty,$
- $\delta \lambda_0 = 1$

тогда последовательности $\{\varphi_k(x)\}_{k=0}^{\infty}$ и $\{\lambda_k\}_{k=0}^{\infty}$:

$$\lambda_{k+1} = (1 - a_k)\lambda_k, \varphi_{k+1}(x) = (1 - a_k)\varphi_k(x) + a_k \left(f(y_k) + (f'(y_k))^T (x - y_k) + \frac{\mu}{2} ||x - y_k||\right)$$

оценивающие, а если $\varphi_0(x) = \varphi_0^* + \frac{\gamma_0}{2} \|x - v_0\|^2$ то и все $\varphi_0(x)$ имеют такой же вид.

Общая схема оптимального метода

- **1** Выберем $x_0 \in \mathbb{R}^n$ и $\gamma_0 > 0$, возьмем $v_0 = x_0$.
- k-я итерация:
 - $\mathbf{0}$ $a_k \in (0,1): La_k^2 = (1-a_k)\gamma_k + a_k\mu$, положим $\gamma_{k+1} = (1-a_k)\gamma_k + a_k\mu$
 - Выберем

$$y_k = \frac{a_k \gamma_k v_k + \gamma_{k+1} x_k}{\gamma_k + a_k \mu},$$

вычислим $f(y_k)$ и $f'(y_k)$

- **3** найдем $x_{k+1}: f(x_{k+1}) \le f(y_{k+1}) \frac{1}{2l} ||f'(y_k)||^2$
- 4

$$v_{k+1} = \frac{(1 - a_k)\gamma_k v_k + a_k \mu y_k - a_k f'(y_k)}{\gamma_{k+1}}$$

Скорость сходимости оптимального метода

Если все делать по схеме, то:

$$f(x_k) - f^* \le Lmin\left\{\left(1 - \sqrt{\frac{\mu}{L}}\right)^k, \frac{4}{(k+2)^2}\right\} \|x_0 - x^*\|^2$$

Iterative Shrinkage/Threshoulding Algorithm (ISTA)

Ограничемся задачей

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Ax - b\| + R(x)$$

В основном интересен случай, когда $R(x) = \lambda ||x||_1$ (I_1 регуляризация) или $R(x) = \lambda \|Lx\|_2$ (регуляризация Тихонова). Заметим, что задача в случае l_1 негладкая.

$$x_{k+1} = \tau_{\lambda t_k} \left(x_k - 2t_k A^T (Ax_k - b) \right)$$

$$\tau_{\alpha}^i = (|x_i| - \alpha)_+ sign(x_i)$$

Такая штука, являясь по сути градиентным методом сходится со скоростью:

$$f(x_k) - f^* \le \alpha \frac{L \|x_k - x^*\|^2}{2k}$$

Если шаг $t_k=t$, то $\alpha=1$, если шаг брать "умнее", то $\alpha<1$.

Fast Iterative Shrinkage/Threshoulding Algorithm (FISTA)

Объединим ISTA и Нестерова.

- **①** Выберем $x_0 \in \mathbb{R}^n$ и $\gamma_0 = 1$, возьмем $y_0 = x_0$.
- 2 k-я итерация:

$$x_k = \underset{x}{\operatorname{argmin}} \left(R(x) + \left\| x - \left(y_{k-1} - \frac{1}{L} f'(y_{k-1}) \right) \right\|^2 \right)$$

$$\gamma_{k+1} = \frac{1+\sqrt{1+4\gamma_k^2}}{2}$$

$$y_k = x_k + \left(\frac{\gamma_{k-1}}{\gamma_{k+1}}\right) (x_k - x_{k-1})$$

Это добро сходится:

$$f(x_k) - f^* \le \frac{\alpha L}{(k+1)^2} ||x_0 - x^*||^2$$

Что еще бывает?

Область богата на исследования и приложения. Стоит почитать: Hecreposa (strong recommend), FOBOS (google), TWIST, etc.