Metric Learning
 ICML 2010 Tutorial

Brian Kulis
University of California at Berkeley

June 21, 2010

Introduction

Learning problems with distances and similarities

- k-means
- Support vector machines
- k-nearest neighbors
- Most algorithms that employ kernel methods
- Other clustering algorithms (agglomerative, spectral, etc)

Choosing a distance function

Choosing a distance function

Example: UCI Wine data set

- 13 features
- $9 / 13$ features have mean value in $[0,10]$
- $3 / 13$ features have mean value in $[10,100]$
- One feature has a mean value of 747 (with std 315)
- Using a standard distance such as Euclidean distance, the largest feature dominates the computation
- That feature may not be important for classification
- Need a weighting of the features that improves classification or other tasks

Example: Four Blobs

Metric Learning as Learning Transformations

- Feature re-weighting
- Learn weightings over the features, then use standard distance (e.g., Euclidean) after re-weighting
- Diagonal Mahalanobis methods (e.g., Schultz and Joachims)
- Number of parameters grows linearly with the dimensionality d
- Full linear transformation
- In addition to scaling of features, also rotates the data
- For transformations from d dimensions to d dimensions, number of parameters grows quadratically in d
- For transformations to $r<d$ dimensions, this is linear dimensionality reduction
- Non-linear transformation
- Variety of methods
- Neural nets
- Kernelization of linear transformations
- Complexity varies from method to method

Supervised vs Unsupervised Metric Learning

- Unsupervised Metric Learning
- Dimensionality reduction techniques
- Principal Components Analysis
- Kernel PCA
- Multidimensional Scaling
- In general, not the topic of this tutorial...
- Supervised and Semi-supervised Metric Learning
- Constraints or labels given to the algorithm
- Example: set of similarity and dissimilarity constraints
- This is the focus of the tutorial

Themes of the tutorial

- Not just a list of algorithms
- General principles
- Focus on a few key methods
- Recurring ideas
- Scalability
- Linear vs non-linear
- Online vs offline
- Optimization techniques utilized
- Statements about general formulations
- Applications
- Where is metric learning applied?
- Success stories
- Limitations

Outline of Tutorial

- Motivation
- Linear metric learning methods
- Mahalanobis metric learning
- Per-example methods
- Non-linear metric learning methods
- Kernelization of Mahalanobis methods
- Other non-linear methods
- Applications
- Conclusions

Mahalanobis Distances

ON THE GENERALIZED DISTANCE IN STATISTICS.

> By P. C. Mahalanobis.
> (Read January 4, 1936.)

1. A normal (Gauss-Laplacian) statistical population in P-variates is usually described by a P-dimensional frequency distribution :-
$d f=$ const. $\times e^{-\frac{1}{2 \alpha}\left[A_{11}\left(x_{1}-\alpha_{1}\right)^{2}+A_{22}\left(x_{2}-\alpha_{2}\right)^{2}+\ldots . .\right.}$

$$
\left.+2 A_{12}\left(x_{1}-\alpha_{1}\right)\left(x_{2}-\alpha_{2}\right)+\ldots \cdot \cdot\right] \cdot d x_{1} \cdot d x_{2} . . d x_{P}
$$

where
$\alpha_{1}, \alpha_{2} \ldots \alpha_{P}=$ the population (mean) values
of the P-variates $x_{1}, x_{2} \ldots x_{P} \quad$.. .. ($1 \cdot 1$)
$\alpha_{i i}=\sigma_{i}{ }^{2}$, are the respective variances (1-2)
$\alpha_{i j}=\sigma_{i} . \sigma_{j} . \rho_{i j}$, where $\rho_{i j}=$ the coefficient of correlation between the i th and
j th variates ($1 \cdot 3$) α is the determinant $\left|\alpha_{i j}\right|$ defined more fully in (2.2), and $A_{i j}$ is the minor of $\alpha_{i j}$ in this determinant.

A P-variate normal population is thus completely specified by the set of

Mahalanobis Distances

- Assume the data is represented as N vectors of length d : $X=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right]$
- Squared Euclidean distance

$$
\begin{aligned}
d\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2} \\
& =\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
\end{aligned}
$$

- Let $\Sigma=\sum_{i, j}\left(\mathbf{x}_{i}-\mu\right)\left(\mathbf{x}_{j}-\mu\right)^{T}$
- The "original" Mahalanobis distance:

$$
d_{M}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} \Sigma^{-1}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
$$

Mahalanobis Distances

- Equivalent to applying a whitening transform

Mahalanobis Distances

- Assume the data is represented as N vectors of length d : $X=\left[\mathrm{x}_{1}, \mathbf{x}_{2}, \ldots, \mathrm{x}_{N}\right]$
- Squared Euclidean distance

$$
\begin{aligned}
d\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{2}^{2} \\
& =\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
\end{aligned}
$$

- Mahalanobis distances for metric learning
- Distance parametrized by $d \times d$ positive semi-definite matrix A :

$$
d_{A}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
$$

- Used for many existing metric learning algorithms
[Xing, Ng, Jordan, and Russell; NIPS 2002]
[Bar-Hillel, Hertz, Shental, and Weinshall; ICML 2003]
[Bilenko, Basu, and Mooney; ICML 2004]
[Globerson and Roweis; NIPS 2005]
[Weinberger, Blitzer, and Saul; NIPS 2006]

Mahalanobis Distances

$$
d_{A}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
$$

- Why is A positive semi-definite (PSD)?
- If A is not PSD, then d_{A} could be negative
- Suppose $\mathbf{v}=\mathbf{x}_{1}-\mathbf{x}_{2}$ is an eigenvector corresponding to a negative eigenvalue λ of A

$$
\begin{aligned}
d_{A}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \\
& =\mathbf{v}^{T} A \mathbf{v} \\
& =\lambda \mathbf{v}^{T} \mathbf{v}=\lambda<0
\end{aligned}
$$

Mahalanobis Distances

- Properties of a metric:
- $d(\mathbf{x}, \mathbf{y}) \geq 0$
- $d(\mathbf{x}, \mathbf{y})=0$ if and only if $\mathbf{x}=\mathbf{y}$
- $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$
- $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z})$
- d_{A} is not technically a metric
- Analogous to Euclidean distance, need the square root:

$$
\sqrt{d_{A}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)}=\sqrt{\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)}
$$

- Square root of the Mahalanobis distance satisfies all properties if A is strictly positive definite, but if A is positive semi-definite then second property is not satisfied
- Called a pseudo-metric
- In practice, most algorithms work only with d_{A}

Mahalanobis Distances

- Can view d_{A} as the squared Euclidean distance after applying a linear transformation
- Decompose $A=G^{T} G$ via Cholesky decomposition
- (Alternatively, take eigenvector decomposition $A=V \wedge V^{T}$ and look at $\left.A=\left(\Lambda^{1 / 2} V^{T}\right)^{T}\left(\Lambda^{1 / 2} V^{T}\right)\right)$
- Then we have

$$
\begin{aligned}
d_{A}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \\
& =\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) G^{T} G\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \\
& =\left(G \mathbf{x}_{1}-G \mathbf{x}_{2}\right)^{T}\left(G \mathbf{x}_{1}-G \mathbf{x}_{2}\right) \\
& =\left\|G \mathbf{x}_{1}-G \mathbf{x}_{2}\right\|_{2}^{2}
\end{aligned}
$$

- Mahalanobis distance is just the squared Euclidean distance after applying the linear transformation G

Example: Four Blobs

Example: Four Blobs

Example: Four Blobs

- Want to learn:

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & \epsilon
\end{array}\right) \quad G=\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{\epsilon}
\end{array}\right)
$$

Example: Four Blobs

Example: Four Blobs

- Want to learn:

$$
A=\left(\begin{array}{cc}
\epsilon & 0 \\
0 & 1
\end{array}\right) \quad G=\left(\begin{array}{cc}
\sqrt{\epsilon} & 0 \\
0 & 1
\end{array}\right)
$$

Drawbacks to Mahalanobis Metric Learning

- Memory overhead grows quadratically with the dimensionality of the data
- Does not scale to high-dimensional data $\left(d=O\left(10^{6}\right)\right.$ for many image embeddings)
- Only works for linearly separable data

- Cannot seemingly be applied to "real" data!
- These drawbacks will be discussed later

Metric Learning Problem Formulation

- Typically 2 main pieces to a Mahalanobis metric learning problem
- A set of constraints on the distance
- A regularizer on the distance / objective function
- In the constrained case, a general problem may look like:

$$
\begin{array}{ll}
\min _{A} & r(A) \\
\text { s.t. } & c_{i}(A) \leq 0 \quad 0 \leq i \leq C \\
& A \succeq 0
\end{array}
$$

- r is a regularizer/objective on A and c_{i} are the constraints on A
- An unconstrained version may look like:

$$
\min _{A \succeq 0} r(A)+\lambda \sum_{i=1}^{C} c_{i}(A)
$$

Defining Constraints

- Similarity / Dissimilarity constraints
- Given a set of pairs \mathcal{S} of points that should be similar, and a set of pairs of points \mathcal{D} of points that should be dissimilar
- A single constraint would be of the form

$$
d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \leq \ell
$$

for $(i, j) \in \mathcal{S}$ or

$$
d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq u
$$

for $(i, j) \in \mathcal{D}$

- Easy to specify given class labels
- Relative distance constraints
- Given a triple $\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right)$ such that the distance between \mathbf{x}_{i} and \mathbf{x}_{j} should be smaller than the distance between \mathbf{x}_{i} and \mathbf{x}_{k}, a single constraint is of the form

$$
d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \leq d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-m,
$$

where m is the margin

- Popular for ranking problems

Defining Constraints

- Aggregate distance constraints
- Constrain the sum of all pairs of same-class distances to be small, e.g.,

$$
\sum_{i j} y_{i j} d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \leq 1
$$

where $y_{i j}=1$ if \mathbf{x}_{i} and \mathbf{x}_{j} are in the same class, and 0 otherwise

- Other constraints
- Non-parametric probability estimation constraints
- Constraints on the generalized inner product $\mathbf{x}_{i}^{T} A \mathbf{x}_{j}$:

$$
d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}^{T} A \mathbf{x}_{i}+\mathbf{x}_{j}^{T} A \mathbf{x}_{j}-2 \mathbf{x}_{i}^{T} A \mathbf{x}_{j}
$$

Defining the Regularizer or Objective

- Loss/divergence functions
- Squared Frobenius norm: $\left\|A-A_{0}\right\|_{F}^{2}$
- LogDet divergence: $\operatorname{tr}\left(A A_{0}^{-1}\right)-\log \operatorname{det}\left(A A_{0}^{-1}\right)-d$
- General loss functions $D\left(A, A_{0}\right)$
- Will discuss several of these later
- Other regularizers
- $\|A\|_{F}^{2}$
- $\operatorname{tr}\left(A C_{0}\right)$ (i.e., if C_{0} is the identity, this is the trace norm)

Choosing a Regularizer

- Depends on the problem!
- Example 1: $\operatorname{tr}(A)$
- Trace function is the sum of the eigenvalues
- Analogous to the ℓ_{1} penalty, promotes sparsity
- Leads to low-rank A
- Example 2: LogDet Divergence
- Defined only over positive semi-definite matrices
- Makes computation simpler
- Possesses other desirable properties
- Example 3: $\|A\|_{F}^{2}$
- Arises in many formulations
- Easy to analyze and optimize

Defining the Optimization

- Many existing Mahalanobis distance learning methods can be obtained simply by choosing a regularizer/objective and constraints
- We will discuss properties of several of these

Xing et al.'s MMC

Problem posed as follows:

$$
\begin{array}{cc}
\max _{A} & \sum_{\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \in \mathcal{D}} \sqrt{d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)} \\
\text { s.t. } & c(A)=\sum_{\left(\mathbf{x}_{i}, \mathbf{x}_{\mathrm{j}}\right) \in \mathcal{S}} d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \leq 1 \\
& A \succeq 0 .
\end{array}
$$

- Here, \mathcal{D} is a set of pairs of dissimilar pairs, \mathcal{S} is a set of similar pairs
- Objective tries to maximize sum of dissimilar distances
- Constraint keeps sum of similar distances small
- Use square root in regularizer to avoid trivial solution
[Xing, Ng, Jordan, and Russell; NIPS 2002]

Xing et al.'s MMC

Algorithm

- Based on gradient descent over the objective followed by an iterative projection step to find a feasible A
- Constraint $c(A)$ is linear in A, can be solved cheaply
- Orthogonal projection onto $A \succeq 0$ achieved by setting A 's negative eigenvalues to 0
- Iterative between these two steps to find feasible A for both constraints, then take a step in the gradient of the objective
- Despite relative simplicity, the algorithm is fairly slow (many eigenvalue decompositions required)
- Does not scale to large problems
- Objective and constraints only look at the sums of distances

Schultz and Joachims

Problem formulated as follows:

$$
\begin{array}{cc}
\min _{A} & \|A\|_{F}^{2} \\
\text { s.t. } & d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 1 \quad \forall(i, j, k) \in \mathcal{R} \\
A \succeq 0 .
\end{array}
$$

- Constraints in \mathcal{R} are relative distance constraints
- There may be no solution to this problem; introduce slack variables

$$
\begin{gathered}
\min _{A, \xi} \\
\text { s.t. } \quad d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-d_{A}+\sum_{(i, j, k) \in \mathcal{R}} \xi_{i j k} \\
\xi_{i j k} \geq 0 \quad \forall(i, j, k) \in \mathcal{R} \\
A \succeq 0 .
\end{gathered}
$$

[Schultz and Joachims; NIPS 2002]

Schultz and Joachims

Algorithm

- Key simplifying assumption made
- $A=M^{T} D M$, where M is assumed fixed and known and D is diagonal

$$
\begin{aligned}
d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} A\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \\
& =\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} M^{T} D M\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \\
& =\left(M \mathbf{x}_{i}-M \mathbf{x}_{j}\right)^{T} D\left(M \mathbf{x}_{i}-M \mathbf{x}_{j}\right)
\end{aligned}
$$

- Effectively constraining the optimization to diagonal matrices
- Resulting optimization problem is very similar to SVMs, and resulting algorithm is similar
- By choosing M to be a matrix of data points, method can be kernelized
- Fast algorithm, but less general than full Mahalanobis methods

Kwok and Tsang

Problem formulated as follows:

$$
\begin{array}{cc}
\min _{A, \xi, \gamma} & \|A\|_{F}^{2}+\frac{C_{S}}{N_{S}} \sum_{\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \in S} \xi_{i j}+\frac{C_{D}}{N_{D}} \sum_{\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \in D} \xi_{i j}-C_{D} \gamma \nu \\
\text { s.t. } & d_{l}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-\xi_{i j} \quad \forall\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \in S \\
d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-d_{l}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & \geq \gamma-\xi_{i j} \quad \forall\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \in D \\
\xi_{i j} \geq 0 \\
\gamma & \geq 0 \\
A \succeq 0 .
\end{array}
$$

- Same regularization as Schultz and Joachims
- Similarity/dissimilarity constraints instead of relative distance constraints
- No simplifying assumptions made about A
[Kwok and Tsang; ICML 2003]

Neighbourhood Components Analysis

Problem formulated as follows:

$$
\begin{array}{cc}
\max _{A} & \sum_{i} \sum_{j \in C_{i}, j \neq i} \frac{\exp \left(-d_{A}\left(x_{i}, x_{j}\right)\right)}{\sum_{k \neq i} \exp \left(-d_{A}\left(x_{i}, x_{k}\right)\right)} \\
\text { s.t. } & A \succeq 0 .
\end{array}
$$

- C_{i} is the set of points in the same class as point \mathbf{x}_{i} (not including \mathbf{x}_{i})

Motivation

- Minimize the leave-one-out KNN classification error
- LOO error function is discontinuous
- Replace by a softmax; each point \mathbf{x}_{i} chooses a nearest neighbor \mathbf{x}_{j} based on probability

$$
p_{i j}=\frac{\exp \left(-d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)}{\sum_{k \neq i} \exp \left(-d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)\right)}
$$

[Goldberger, Roweis, Hinton, and Salakhutdinov; NIPS 2004]

Neighbourhood Components Analysis

Algorithm

- Problem is non-convex
- Rewrite in terms of G, where $A=G^{T} G$
- Eliminates $A \succeq 0$ constraint
- Run gradient descent over G

Properties

- Easy to control the rank of A : just optimize over low-rank G
- Simple, unconstrained optimization
- No guarantee of global solution

MCML

Recall NCA probabilities

$$
p_{i j}=\frac{\exp \left(-d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)}{\sum_{k \neq i} \exp \left(-d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)\right)}
$$

- Introduce an "ideal" probability distribution $p_{i j}^{0}$:

$$
p_{i j}^{0} \propto \begin{cases}1 & \text { if } i \text { and } j \text { from same class } \\ 0 & \text { otherwise. }\end{cases}
$$

- Minimize divergence between p^{0} and p :

$$
\begin{array}{cc}
\min _{A} & K L\left(p^{0}, p\right) \\
\text { s.t. } & A \succeq 0 .
\end{array}
$$

[Globerson and Roweis; NIPS 2005]

MCML

Properties

- Unlike NCA, MCML is convex
- Global optimization possible
- Algorithm based on optimization over the dual
- Similar to Xing: gradient step plus projection
- Not discussed in detail in this tutorial

A Closer Look at Some Algorithms

- As can be seen, several objectives are possible
- We will take a look at 3 algorithms in-depth for their properties
- POLA
- An online algorithm for learning metrics with provable regret
- Also the first supervised metric learning algorithm that was shown to be kernelizable
- LMNN
- Very popular method
- Algorithm scalable to billions of constraints
- Extensions for learning multiple metrics
- ITML
- Objective with several desirable properties
- Simpler kernelization construction
- Online variant

POLA

Setup

- Estimate d_{A} in an online manner
- Also estimate a threshold b
- At each step t, observe tuple $\left(\mathbf{x}_{t}, \mathbf{x}_{t}^{\prime}, y_{t}\right)$
- $y_{t}=1$ if \mathbf{x}_{t} and \mathbf{x}_{t}^{\prime} should be similar; -1 otherwise
- Consider the following loss

$$
\ell_{t}(A, b)=\max \left(0, y_{t}\left(d_{A}\left(\mathbf{x}_{t}, \mathbf{x}_{t}^{\prime}\right)^{2}-b\right)+1\right)
$$

- Hinge loss, margin interpretation
- Appropriately update A and b each iteration [Shalev-Shwartz, Singer, and Ng; NIPS 2004]

Online Learning Setup

- Define the total loss to be

$$
L=\sum_{t=1}^{T} \ell_{t}\left(A_{t}, b_{t}\right)
$$

- Online learning methods compare the loss to the best fixed, offline predictor A^{*} and threshold b^{*}
- Define regret for T total timesteps as

$$
R_{T}=\sum_{t=1}^{T} \ell_{t}\left(A_{t}, b_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(A^{*}, b^{*}\right)
$$

- Design an algorithm that minimizes the regret
- Same setup as in other online algorithms (classification, regression)
- Modern optimization methods achieve $O(\sqrt{T})$ regret for a general class, and $O(\log T)$ for some special cases

POLA Algorithm

- Consider the following convex sets

$$
\begin{aligned}
& C_{t}=\left\{(A, b) \mid \ell_{t}(A, b)=0\right\} \\
& C_{a}=\{(A, b) \mid A \succeq 0, b \geq 1\}
\end{aligned}
$$

- Consider orthogonal projections:

$$
P_{C}(\mathbf{x})=\operatorname{argmin}_{\mathbf{y} \in C}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}
$$

- Think of (A, b) as a vector in $d^{2}+1$ dimensional space
- Each step, project onto C_{t}, then project onto C_{a}

POLA Algorithm

- Projection onto C_{t}
- Let $\mathbf{v}_{t}=\mathbf{x}_{t}-\mathbf{x}_{t}^{\prime}$
- Then projection is computed in closed form as

$$
\begin{aligned}
\alpha_{t} & =\frac{\ell_{t}\left(A_{t}, b_{t}\right)}{\left\|\mathbf{v}_{t}\right\|_{2}^{4}+1} \\
\hat{A}_{t} & =A_{t}-y_{t} \alpha_{t} \mathbf{v}_{t} \mathbf{v}_{t}^{T} \\
\hat{b}_{t} & =b_{t}+\alpha_{t} y_{t}
\end{aligned}
$$

- Projection onto C_{a}
- Orthogonal projection onto positive semi-definite cone obtained by setting negative eigenvalues to 0
- But, update from A_{t} to \hat{A}_{t} was rank-one
- Only 1 negative eigenvalue (interlacing theorem)
- Thus, only need to compute the smallest eigenvalue and eigenvector (via a power method or related) and subtract it off

Analysis of POLA

- Theorem: Let $\left(\mathbf{x}_{1}, \mathbf{x}_{1}^{\prime}, y_{1}\right), \ldots,\left(\mathbf{x}_{T}, \mathbf{x}_{T}^{\prime}, y_{T}\right)$ be a sequence of examples and let R be such that $\forall t, R \geq\left\|\mathbf{x}_{t}-\mathbf{x}_{t}^{\prime}\right\|_{2}^{4}+1$. Assume there exists an $A^{*} \succeq 0$ and $b^{*} \geq 1$ such that $\ell_{t}\left(A^{*}, b^{*}\right)=0 \forall t$. Then the following bound holds for all $T \geq 1$:

$$
\sum_{t=1}^{T} \ell_{t}\left(A_{t}, b_{t}\right)^{2} \leq R\left(\left\|A^{*}\right\|_{F}^{2}+\left(b^{*}-b_{1}\right)^{2}\right)
$$

- Note that since $\ell_{t}\left(A^{*}, b^{*}\right)=0$ for all t, the total loss is equal to the regret
- Can generalize this to a regret bound in the case when $\ell_{t}\left(A^{*}, b^{*}\right)$ does not always equal 0
- Can also run POLA in batch settings

POLA in Context

- Can we think of POLA in the framework presented earlier?
- Yes-regularizer is $\|A\|_{F}^{2}$ and constraints are defined by the hinge loss ℓ_{t}
- Similar to both Schultz and Joachims, and Kwok and Tsang
- We will see later that POLA can also be kernelized to learn non-linear transformations
- In practice, POLA does not appear to be competitive with current state-of-the-art

LMNN

- Similarly to Schultz and Joachims, utilize relative distance constraints
- A constraint $\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right) \in \mathcal{R}$ has the property that \mathbf{x}_{i} and \mathbf{x}_{j} are neighbors of the same class, and \mathbf{x}_{i} and \mathbf{x}_{k} are of different classes
[Weinberger, Blitzer, and Saul; NIPS 2005]

LMNN

- Problem Formulation
- Also define set \mathcal{S} of pairs of points $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ such that \mathbf{x}_{i} and \mathbf{x}_{j} are neighbors in the same class
- Want to minimize sum of distances of pairs of points in \mathcal{S}
- Also want to satisfy the relative distance constraints
- Mathematically:

$$
\begin{array}{cc}
\min _{A} & \sum_{\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \in \mathcal{S}} d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\text { s.t. } & d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 1 \quad \forall\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right) \in \mathcal{R} \\
A \succeq 0 .
\end{array}
$$

LMNN

- Problem Formulation
- Also define set \mathcal{S} of pairs of points $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ such that \mathbf{x}_{i} and \mathbf{x}_{j} are neighbors in the same class
- Want to minimize sum of distances of pairs of points in \mathcal{S}
- Also want to satisfy the relative distance constraints
- Mathematically:

$$
\begin{array}{cc}
\min _{A, \xi} & \sum_{\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \in \mathcal{S}} d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\gamma \sum_{\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right) \in \mathcal{R}} \xi_{i j k} \\
\text { s.t. } & d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 1-\xi_{i j k} \quad \forall\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right) \in \mathcal{R} \\
A \succeq 0, \xi_{i j l} \geq 0 .
\end{array}
$$

- Introduce slack variables

Comments on LMNN

- Algorithm
- Special-purpose solver
- Relies on subgradient computations
- Ignores inactive constraints
- Example: MNIST- 3.2 billion constraints in 4 hours
- Software available
- Performance
- One of the best-performing methods
- Works in a variety of settings

LMNN Extensions

Learning with Multiple Local Metrics

- Learn several local Mahlanobis metrics instead a single global one
- Cluster the training data into k partitions
- Denote c_{i} as the corresponding cluster for \mathbf{x}_{i}
- Learn k Mahalanobis distances A_{1}, \ldots, A_{k}
- Formulation

$$
\begin{array}{cc}
\min _{A} & \sum_{\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \in \mathcal{S}} d_{A_{c_{j}}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\text { s.t. } & d_{A_{c_{k}}}\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-d_{A_{c_{j}}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 1 \quad \forall\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right) \in \mathcal{R} \\
A_{i} \succeq 0 \quad \forall i .
\end{array}
$$

- Introduce slack variables as with standard LMNN [Weinberger and Saul; ICML 2008]

LMNN Results

	Error in \%	mnist	20news	letters	isolet	yalefaces
8	LMNN	1.72	14.91	3.62	3.59	6.48
	Multiple Metrics	1.18	13.66	3.2	3.08	6.4
.	LMNN	1.19	9.73	3.54	0.7	3.54
$\stackrel{\text { T }}{4}$	Multiple Metrics	0.04	7.08	1.55	0	3.57

- Results show improvements using multiple metrics
- Weinberger and Saul also extend LMNN to use ball trees for fast search
- No time to go into details, see paper

ITML and the LogDet Divergence

- We take the regularizer to be the Log-Determinant Divergence:

$$
D_{\ell d}\left(A, A_{0}\right)=\operatorname{trace}\left(A A_{0}^{-1}\right)-\log \operatorname{det}\left(A A_{0}^{-1}\right)-d
$$

- Problem formulation:

$$
\begin{array}{ll}
\min _{A} & D_{\ell d}\left(A, A_{0}\right) \\
\text { s.t. } & \left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} A\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \leq u \quad \text { if }(i, j) \in \mathcal{S} \text { [similarity constraints] } \\
& \left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} A\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \geq \ell \quad \text { if }(i, j) \in \mathcal{D} \text { [dissimilarity constraints] }
\end{array}
$$

[Davis, Kulis, Jain, Sra, and Dhillon; ICML 2007]

LogDet Divergence: Properties

$$
D_{\ell d}\left(A, A_{0}\right)=\operatorname{trace}\left(A A_{0}^{-1}\right)-\log \operatorname{det}\left(A A_{0}^{-1}\right)-d
$$

- Properties:
- Scale-invariance

$$
D_{\ell d}\left(A, A_{0}\right)=D_{\ell d}\left(\alpha A, \alpha A_{0}\right), \quad \alpha>0
$$

- In fact, for any invertible M

$$
D_{\ell d}\left(A, A_{0}\right)=D_{\ell d}\left(M^{T} A M, M^{T} A_{0} M\right)
$$

- Expansion in terms of eigenvalues and eigenvectors

$$
\begin{aligned}
& \left(A=V \wedge V^{T}, A_{0}=U \Theta U^{T}\right): \\
& D_{\ell d}\left(A, A_{0}\right)=\sum_{i, j}\left(\mathbf{v}_{i}^{T} \mathbf{u}_{j}\right)^{2}\left(\frac{\lambda_{i}}{\theta_{j}}-\log \frac{\lambda_{i}}{\theta_{j}}\right)-d
\end{aligned}
$$

Existing Uses of LogDet

- Information Theory
- Differential relative entropy between two same-mean multivariate Gaussians equal to LogDet divergence between covariance matrices
- Statistics
- LogDet divergence is known as Stein's loss in the statistics community
- Optimization
- BFGS update can be written as:

$$
\begin{aligned}
\min _{B} & D_{\ell d}\left(B, B_{t}\right) \\
\text { subject to } & B s_{t}=y_{t} \quad(\text { "Secant Equation" })
\end{aligned}
$$

- $s_{t}=x_{t+1}-x_{t}, y_{t}=\nabla f_{t+1}-\nabla f_{t}$

Key Advantages

- Simple algorithm, easy to implement in Matlab
- Method can be kernelized
- Scales to millions of data points
- Scales to high-dimensional data (text, images, etc.)
- Can incorporate locality-sensitive hashing for sub-linear time similarity searches

The Metric Learning Problem

$$
D_{\ell d}\left(A, A_{0}\right)=\operatorname{trace}\left(A A_{0}^{-1}\right)-\log \operatorname{det}\left(A A_{0}^{-1}\right)-d
$$

- ITML Goal:
$\min _{A} \quad D_{\ell d}\left(A, A_{0}\right)$
s.t. $\quad\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} A\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \leq u \quad$ if $(i, j) \in \mathcal{S}$ [similarity constraints] $\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} A\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \geq \ell \quad$ if $(i, j) \in \mathcal{D}$ [dissimilarity constraints]

Algorithm: Successive Projections

- Algorithm: project successively onto each linear constraint converges to globally optimal solution
- Use projections to update the Mahalanobis matrix:

$$
\begin{array}{cl}
\min _{A} & D_{\ell d}\left(A, A_{t}\right) \\
\text { s.t. } & \left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} A\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \leq u
\end{array}
$$

- Can be solved by $O\left(d^{2}\right)$ rank-one update:

$$
A_{t+1}=A_{t}+\beta_{t} A_{t}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} A_{t}
$$

- Advantages:
- Automatic enforcement of positive semidefiniteness
- Simple, closed-form projections
- No eigenvector calculation
- Easy to incorporate slack for each constraint

Recent work in Mahalanobis methods

- Recent work has looked at other regularizers, such as $\operatorname{tr}(A)$, which learns low-rank matrices
- Improvements in online metric learning (tighter bounds)
- Kernelization for non-linear metric learning, the topic of the next section

LEGO

- Online bounds proven for a variant of POLA based on LogDet regularization
- Combines the best of both worlds
- Minimize the following function at each timestep

$$
f_{t}(A)=D_{\ell d}\left(A, A_{t}\right)+\eta_{t} \ell_{t}\left(A, \mathbf{x}_{t}, \mathbf{y}_{t}\right)
$$

- A_{t} is the current Mahalanobis matrix
- η_{t} is the learning rate
- $\ell_{t}\left(A, \mathbf{x}_{t}, \mathbf{y}_{t}\right)$ is a loss function, e.g.

$$
\ell_{t}\left(A, \mathbf{x}_{t}, \mathbf{y}_{t}\right)=\frac{1}{2}\left(d_{A}\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)-p\right)^{2}
$$

- For appropriate choice of step size, can guarantee $O(\sqrt{T})$ regret
- Empirically outperforms POLA significantly in practice [Jain, Kulis, Dhillon, and Grauman; NIPS 2009]

Non-Mahalanobis methods: Local distance functions

- General approach
- Learn a distance function for every training data point
- Given m features per point, denote $d_{m}^{i j}$ as the distance between the m-th feature in points \mathbf{x}_{i} and \mathbf{x}_{j}
- Denote w_{m}^{j} as a weight for feature m of point \mathbf{x}_{j}
- Then the distance between an arbitary (e.g., test) image \mathbf{x}_{i} and a training image \mathbf{x}_{j} is

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{m=1}^{M} w_{m}^{j} d_{m}^{i j}
$$

- At test time
- Given test image \mathbf{x}_{i}, compute $d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ between \mathbf{x}_{i} and every training point \mathbf{x}_{j}
- Sort distances to find nearest neighbors
[Frome, Singer, Sha, and Malik; ICCV 2007]

Non-Mahalanobis methods: Local distance functions

Optimization framework

- Denote \mathbf{w}_{j} as the vector of weights w_{m}^{j}
- As before, construct triples (i, j, k) of points such that the distance between \mathbf{x}_{i} and \mathbf{x}_{j} should be smaller than the distance between \mathbf{x}_{i} and x_{k}
- Formulate the following problem:

$$
\begin{array}{cc}
\min _{W} & \sum_{j}\left\|\mathbf{w}_{j}\right\|_{2}^{2} \\
\text { s.t. } & d\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 1 \quad \forall\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right) \in \mathcal{R} \\
\mathbf{w}_{j} \geq 0 \quad \forall j
\end{array}
$$

Non-Mahalanobis methods: Local distance functions

Optimization framework

- Denote \mathbf{w}_{j} as the vector of weights w_{m}^{j}
- As before, construct triples (i, j, k) of points such that the distance between \mathbf{x}_{i} and \mathbf{x}_{j} should be smaller than the distance between \mathbf{x}_{i} and x_{k}
- Formulate the following problem:

$$
\begin{array}{cc}
\min _{W} & \sum_{j}\left\|\mathbf{w}_{j}\right\|_{2}^{2}+\gamma \sum_{(i, j, k)} \xi_{i j k} \\
\text { s.t. } & d\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 1-\xi_{i j k} \forall\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right) \in \mathcal{R} \\
\mathbf{w}_{j} \geq 0 \quad \forall j .
\end{array}
$$

- Introduce slack variables as before
- Very similar to LMNN and other relative distance methods!

Non-Mahalanobis methods: Local distance functions

- Schultz and Joachims

$$
\begin{array}{cc}
\min _{A} & \|A\|_{F}^{2} \\
\text { s.t. } & d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-d_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 1 \quad \forall(i, j, k) \in \mathcal{R} \\
A \succeq 0 .
\end{array}
$$

- Frome et al.

$$
\begin{array}{cc}
\min _{W} & \sum_{j}\left\|\mathbf{w}_{j}\right\|_{2}^{2} \\
\text { s.t. } & d\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)-d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 1 \quad \forall\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right) \in \mathcal{R} \\
& \mathbf{w}_{j} \geq 0 \quad \forall j
\end{array}
$$

Linear Separability

- No linear transformation for this grouping

Kernel Methods

- Map input data to higher-dimensional "feature" space:

$$
\mathbf{x} \rightarrow \varphi(\mathbf{x})
$$

- Idea: Run machine learning algorithm in feature space
- Use the following mapping:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right]
$$

Mapping to Feature Space

Kernel Methods

- Map input data to higher-dimensional "feature" space:

$$
\mathbf{x} \rightarrow \varphi(\mathbf{x})
$$

- Idea: Run machine learning algorithm in feature space
- Use the following mapping:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right]
$$

- Kernel function: $\kappa(\mathbf{x}, \mathbf{y})=\langle\varphi(\mathbf{x}), \varphi(\mathbf{y})\rangle$
- "Kernel trick" - no need to explicitly form high-dimensional features
- In this example: $\langle\varphi(\mathbf{x}), \varphi(\mathbf{y})\rangle=\left(\mathbf{x}^{T} \mathbf{y}\right)^{2}$

Kernel Methods: Short Intro

- Main idea
- Take an existing learning algorithm
- Write it using inner products
- Replace inner products $\mathbf{x}^{T} \mathbf{y}$ with kernel functions $\varphi(\mathbf{x})^{T} \varphi(\mathbf{y})$
- If $\varphi(\mathbf{x})$ is a non-linear function, then algorithm has been implicitly non-linearly mapped
- Examples of kernel functions

$$
\begin{aligned}
& \kappa(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}\right)^{p} \quad \text { Polynomial Kernel } \\
& \kappa(\mathbf{x}, \mathbf{y})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{y}\|_{2}^{2}}{2 \sigma^{2}}\right) \quad \text { Gaussian Kernel } \\
& \kappa(\mathbf{x}, \mathbf{y})=\tanh \left(c\left(\mathbf{x}^{T} \mathbf{y}\right)+\theta\right) \quad \text { Sigmoid Kernel }
\end{aligned}
$$

- Kernel functions also defined over objects such as images, trees, graphs, etc.

Example: Pyramid Match Kernel

- Compute local image features
- Perform an approximate matching between features of two images
- Use multi-resolution histograms
- View as a dot product between high-dimensional vectors
[Grauman and Darrell, ICCV 2005]

Example: k-means

Recall the k-means clustering algorithm

- Repeat until convergence:
- Compute the means of every cluster π_{c}

$$
\mu_{c}=\frac{1}{\left|\pi_{c}\right|} \sum_{\mathbf{x}_{i} \in \pi_{c}} \mathbf{x}_{i}
$$

- Reassign points to their closest mean by computing

$$
\left\|\mathbf{x}-\mu_{c}\right\|_{2}^{2}
$$

for every data point \mathbf{x} and every cluster π_{c}
Kernelization of k-means

- Expand $\left\|\mathbf{x}-\mu_{c}\right\|_{2}^{2}$ as

$$
\mathbf{x}^{T} \mathbf{x}-\frac{2 \sum_{\mathbf{x}_{i} \in \pi_{c}} \mathbf{x}^{T} \mathbf{x}_{i}}{\left|\pi_{c}\right|}+\frac{\sum_{\mathbf{x}_{i}, \mathbf{x}_{j} \in \pi_{c}} \mathbf{x}_{i}^{T} \mathbf{x}_{j}}{\left|\pi_{c}\right|^{2}}
$$

- No need to explicitly compute the mean; just compute this for every point to every cluster

Example: k-means

Recall the k-means clustering algorithm

- Repeat until convergence:
- Compute the means of every cluster π_{c}

$$
\mu_{c}=\frac{1}{\left|\pi_{c}\right|} \sum_{\mathbf{x}_{i} \in \pi_{c}} \mathbf{x}_{i}
$$

- Reassign points to their closest mean by computing

$$
\left\|\mathbf{x}-\mu_{c}\right\|_{2}^{2}
$$

for every data point \mathbf{x} and every cluster π_{c}
Kernelization of k-means

- Expand $\left\|\mathbf{x}-\mu_{c}\right\|_{2}^{2}$ as

$$
\kappa(\mathbf{x}, \mathbf{x})-\frac{2 \sum_{\mathbf{x}_{i} \in \pi_{c}} \kappa\left(\mathbf{x}, \mathbf{x}_{i}\right)}{\left|\pi_{c}\right|}+\frac{\sum_{\mathbf{x}_{i}, \mathbf{x}_{j} \in \pi_{c}} \kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)}{\left|\pi_{c}\right|^{2}}
$$

- Replace inner products with kernels, and this is kernel k-means
- While k-means finds linear separators for the cluster boundaries, kernel k-means finds non-linear separators

Distances vs. Kernel Functions

- Mahalanobis distances:

$$
d_{A}(\mathbf{x}, \mathbf{y})=(\mathbf{x}-\mathbf{y})^{T} A(\mathbf{x}-\mathbf{y})
$$

- Inner products / kernels:

$$
\kappa_{A}(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} A \mathbf{y}
$$

- Algorithms for constructing A learn both measures

From Linear to Nonlinear Learning

Consider the following kernelized problem

- You are given a kernel function $\kappa(\mathbf{x}, \mathbf{y})=\varphi(\mathbf{x})^{T} \varphi(\mathbf{y})$
- You want to run a metric learning algorithm in kernel space
- Optimization algorithm cannot use the explicit feature vectors $\varphi(\mathbf{x})$
- Must be able to compute the distance/kernel over arbitrary points (not just training points)
- Mahalanobis distance is of the form:

$$
d_{A}(\mathbf{x}, \mathbf{y})=(\varphi(\mathbf{x})-\varphi(\mathbf{y}))^{T} A(\varphi(\mathbf{x})-\varphi(\mathbf{y}))
$$

- Kernel is of the form:

$$
\kappa_{A}(\mathbf{x}, \mathbf{y})=\varphi(\mathbf{x})^{T} A \varphi(\mathbf{y})
$$

- Can be thought of as a kind of kernel learning problem

Kernelization of ITML

- First example: ITML
- Recall the update for ITML

$$
A_{t+1}=A_{t}+\beta_{t} A_{t}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} A_{t}
$$

- Distance constraint over pair ($\mathbf{x}_{i}, \mathbf{x}_{j}$)
- β_{t} computed in closed form
- How can we make this update independent of the dimensionality?

Kernelization of ITML

- Rewrite the algorithm in terms of inner products (kernel functions)

$$
A_{t+1}=A_{t}+\beta_{t} A_{t}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} A_{t}
$$

- Inner products in this case: $\mathbf{x}_{i}^{T} A_{t} \mathbf{x}_{j}$

Kernelization of ITML

- Rewrite the algorithm in terms of inner products (kernel functions)

$$
X^{\top} A_{t+1} X=X^{\top} A_{t} X+\beta_{t} X^{\top} A_{t} X\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} X^{\top} A_{t} X
$$

- Entry (i, j) of $X^{T} A_{t} X$ is exactly $\mathbf{x}_{i}^{T} A \mathbf{x}_{j}=\kappa_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- Denote $X^{T} A_{t} X$ as K_{t}, the kernel matrix at step t

$$
K_{t+1}=K_{t}+\beta_{t} K_{t}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} K_{t}
$$

Kernel Learning

- Squared Euclidean distance in kernel space:

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}=\mathbf{x}_{i}^{T} \mathbf{x}_{i}+\mathbf{x}_{j}^{T} \mathbf{x}_{j}-2 \mathbf{x}_{i}^{T} \mathbf{x}_{j}
$$

- Replace with kernel functions / kernel matrix:

$$
\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right)+\kappa\left(\mathbf{x}_{j}, \mathbf{x}_{j}\right)-2 \kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=K_{i i}+K_{j j}-2 K_{i j}
$$

- Related to ITML, define the following optimization problem

$$
\min _{K} \quad D_{\ell d}\left(K, K_{0}\right)
$$

s.t. $\quad K_{i i}+K_{j j}-2 K_{i j} \leq u \quad$ if $(i, j) \in \mathcal{S}$ [similarity constraints]

$$
K_{i i}+K_{j j}-2 K_{i j} \geq \ell \quad \text { if }(i, j) \in \mathcal{D} \text { [dissimilarity constraints] }
$$

- $K_{0}=X^{\top} X$ is the input kernel matrix
- To solve this, only the original kernel function $\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is required

Kernel Learning

- Bregman projections for the kernel learning problem:

$$
K_{t+1}=K_{t}+\beta_{t} K_{t}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} K_{t}
$$

- Suggests a strong connection between the 2 problems
- Theorem: Let A^{*} be the optimal solution to ITML, and $A_{0}=I$. Let K^{*} be the optimal solution to the kernel learning problem. Then $K^{*}=X^{T} A^{*} X$.
- Solving the kernel learning problem is "equivalent" to solving ITML
- So we can run entirely in kernel space
- But, given two new points, how to compute distance?
[Davis, Kulis, Jain, Sra, and Dhillon; ICML 2007]

Induction with LogDet

- Theorem: Let A^{*} be the optimal solution to ITML, and let $A_{0}=I$. Let K^{*} be the optimal solution to the kernel learning problem, and let $K_{0}=X^{T} X$ be the input kernel matrix. Then

$$
\begin{aligned}
A^{*} & =I+X S X^{T} \\
S & =K_{0}^{-1}\left(K^{*}-K_{0}\right) K_{0}^{-1}
\end{aligned}
$$

- Gives us a way to implicitly compute A^{*} once we solve for K^{*}
- Algorithm
- Solve for K^{*}
- Construct S using K_{0} and K^{*}
- Given two points \mathbf{x} and \mathbf{y}, the kernel $\kappa_{A}(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} A \mathbf{y}$ is computed as

$$
\kappa_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{i, j=1}^{n} S_{i j} \kappa\left(\mathbf{x}, \mathbf{x}_{i}\right) \kappa\left(\mathbf{x}_{j}, \mathbf{y}\right)
$$

[Davis, Kulis, Jain, Sra, and Dhillon; ICML 2007]

Kernelization of POLA

- Recall updates for POLA

$$
\begin{aligned}
\hat{A}_{t} & =A_{t}-y_{t} \alpha_{t} \mathbf{v}_{t} \mathbf{v}_{t}^{T} \\
A_{t+1} & =\hat{A}_{t}-\lambda_{d} \mathbf{u}_{d} \mathbf{u}_{d}^{T}
\end{aligned}
$$

- \mathbf{v}_{t} is the difference of 2 data points
- \mathbf{u}_{d} is the smallest eigenvector of \hat{A}_{t}
- 1st update projects onto set C_{t} where hinge loss is zero (applied only when loss is non-zero)
- 2nd update projects onto PSD cone C_{a} (applied only when \hat{A}_{t} has negative eigenvalue)
- Claim: Analogous to ITML, $A^{*}=X S X^{T}$, where X is the matrix of data points
- Prove this inductively

Kernelization of POLA

Projection onto C_{t}

- $A_{t}=X S_{t} X^{T}$
- Say the 2 data points are indexed by i and j
- Then $\mathbf{v}_{t}=X\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)$
- Rewrite $A_{t}-y_{t} \alpha \mathbf{v}_{t} \mathbf{v}_{t}^{T}$ to get update from S_{t} to \hat{S}_{t} :

$$
\begin{aligned}
\hat{A}_{t} & =X S_{t} X^{T}-y_{t} \alpha_{t} X\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} X^{T} \\
& =X\left(S_{t}-y_{t} \alpha_{t}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T}\right) X^{T}
\end{aligned}
$$

Projection onto C_{a}

- \mathbf{u}_{d} is an eigenvector of \hat{A}_{t}, i.e.,

$$
\begin{aligned}
\hat{A}_{t} \mathbf{u}_{d} & =X \hat{S}_{t} X^{T} \mathbf{u}=\lambda_{d} \mathbf{u}_{d} \\
\mathbf{u}_{d} & =X\left(\frac{1}{\lambda_{d}} \hat{S}_{t} X^{T} \mathbf{u}_{d}\right)=X \mathbf{q}
\end{aligned}
$$

- Construction for q non-trivial; involves kernelized Gram-Schmidt
- Expensive (cubic in dimensionality)

General Kernelization Results

- Recent work by Chatpatanasiri et al. has shown additional kernelization results for
- LMNN
- Neighbourhood Component Analysis
- Discriminant Neighborhood Embedding
- Other recent results show additional, general kernelization results
- Xing et al.
- Other regularizers (trace-norm)
- At this point, most/all existing Mahalanobis metric learning methods can be kernelized

Kernel PCA

- Setup for principal components analysis (PCA)
- Let $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]$ be a set of data points
- Typically assume data is centered, not critical here
- Denote SVD of X as $X=U^{T} \Sigma V$
- Left singular vectors in U corresponding to non-zero singular values are an orthonormal basis for the span of the \mathbf{x}_{i} vectors
- Covariance matrix is $C=X X^{T}=U^{T} \Sigma^{T} \Sigma U$, kernel matrix is $K=X^{T} X=V^{T} \Sigma^{T} \Sigma V$
- Standard PCA recipe
- Compute SVD of X
- Project data onto leading singular vectors U, e.g., $\tilde{\mathbf{x}}=U \mathbf{x}$

Kernel PCA

- Key result from the late 1990s: kernelization of PCA
- Can also form projections using the kernel matrix
- Allows one to avoid computing SVD
- If $X=U^{T} \Sigma V$, then $U=\Sigma^{-1} V X^{T}$

$$
U \mathrm{x}=\Sigma^{-1} V X^{\top} \mathrm{x}
$$

- Computation involves inner products $X^{T} \mathbf{x}$, eigenvectors V of the kernel matrix, and eigenvalues of the kernel matrix
- Relation to Mahalanobis distance methods
- Kernel PCA allows one to implicitly compute an orthogonal basis U of the data points, and to project arbitrary data points onto this basis
- For a data set of n points, dimension of basis is at most n
- Projecting onto U results in an n-dimensional vector

Using kernel PCA for metric learning

- Given a set of points in kernel space $X=\left[\varphi\left(\mathbf{x}_{1}\right), \ldots, \varphi\left(\mathbf{x}_{n}\right)\right]$
- Form a basis U and project data onto that basis to form $\tilde{X}=\left[\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right]=\left[U \varphi\left(\mathbf{x}_{1}\right), \ldots, U \varphi\left(\mathbf{x}_{n}\right)\right]$ using kernel PCA
- Consider a general unconstrained optimization problem f that is a function of kernel function values, i.e.

$$
f\left(\left\{\varphi\left(\mathbf{x}_{i}\right)^{T} A \varphi\left(\mathbf{x}_{j}\right)\right\}_{i, j=1}^{n}\right)
$$

- Associated minimization

$$
\min _{A \succeq 0} f\left(\left\{\varphi\left(\mathbf{x}_{i}\right)^{T} A \varphi\left(\mathbf{x}_{j}\right)\right\}_{i, j=1}^{n}\right)
$$

- Theorem: The optimal value of the above optimization is the same as that of

$$
\min _{A^{\prime} \succeq 0} f\left(\left\{\tilde{x}_{i}^{T} A^{\prime} \tilde{x}_{j}\right\}_{i, j=1}^{n}\right)
$$

where A^{\prime} is $n \times n$.
[Chatpatanasiri, Korsrilabutr, Tangchanachaianan, and Kijsirikul; ArXiV 2008]

Consequences

- Any Mahalanobis distance learning method that is unconstrained and can be expressed as a function of learned inner products can be kernelized
- Examples
- Neighbourhood Components Analysis
- LMNN (write as unconstrained via the hinge loss)
- Discriminant neighborhood embedding
- Generalizing to new points
- For a new point $\varphi(\mathbf{x})$, construct $\tilde{\mathbf{x}}$ and use Mahalanobis distance with learned matrix A^{\prime}
- Algorithms
- Exactly the same algorithms employed as in linear case

Extensions

- Chatpatanasiri et al. considered extensions for low-rank transformations
- Also showed benefits of kernelization in several scenarios
- Recent results (Jain et al.) have shown complementary results for constrained optimization problems
- ITML is a special case of this analysis
- Other methods follow easily, e.g., methods based on trace-norm regularization
- Now most Mahalanobis metric learning methods have been shown to be kernelizable

Scalability in Kernel Space

- In many situations, dimensionality d and the number of data points n is high
- Typically, linear Mahalanobis metric learning methods scale as $O\left(d^{2}\right)$ or $O\left(d^{3}\right)$
- Kernelized Mahalanobis methods scale as $O\left(n^{2}\right)$ or $O\left(n^{3}\right)$
- What to do when both are large?
- Main idea: restrict the basis used for learning the metric
- Can be applied to most methods

Scalability with the kernel PCA approach

- Recall the kernel PCA approach
- Project onto U, the top n left singular vectors
- Instead, project onto the top r left singular vectors
- Proceed as before
- Similar approach can be used for ITML
- The learned kernel is of the form

$$
\kappa_{A}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{i, j=1}^{n} S_{i j} \kappa\left(\mathbf{x}, \mathbf{x}_{i}\right) \kappa\left(\mathbf{x}_{j}, \mathbf{y}\right)
$$

- Restrict S to be $r \times r$ instead of $n \times n$, where $r<n$ data points are chosen
- Rewrite optimization problem using this form of the kernel
- Constraints on learned distances are still linear, so method can be generalized
- Both approaches can be applied to very large data sets
- Example: ITML has been applied to data sets of nearly 1 million points (of dimensionality 24,000)

Nearest neighbors with Mahalanobis metrics

- Once metrics are learned, k-nn is typically used
- k-nn is expensive to compute
- Must compute distances to all n training points
- Recent methods attempt to speed up NN computation
- Locality-sensitive hashing
- Ball trees
- One challenge: can such methods be employed even when algorithms are used in kernel space?
- Recent work applied in computer vision community has addressed this problem for fast image search

Other non-linear methods

- Recall that kernelized Mahalanobis methods try to learn the distance function

$$
\|G \varphi(\mathbf{x})-G \varphi(\mathbf{y})\|_{2}^{2}
$$

- Chopra et al. learn the non-linear distance

$$
\left\|G_{W}(\mathbf{x})-G_{W}(\mathbf{y})\right\|_{2}^{2}
$$

- G_{W} is a non-linear function
- Application was face verification
- Algorithmic technique: convolutional networks
[Chopra, Hadsell, and LeCun; CVPR 2005]

Other non-linear methods

- Setup uses relative distance constraints
- Denote $D_{i j}$ as the mapped distance between points i and j
- Let $\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}\right)$ be a tuple such that $D_{i j}<D_{i k}$ desired
- The authors define a loss function for each triple of the form

$$
\text { Loss }=\alpha_{1} D_{i j}+\alpha_{2} \exp \left(-\alpha_{3} \sqrt{D_{i k}}\right)
$$

- Minimize the sum of the losses over all triples
- Metric is trained using a convolutional network with a Siamese architecture from the pixel level

Other non-linear methods

Application: Learning Music Similarity

Comparison of metric learning methods for learning music similarity

- MP3s downloaded from a set of music blogs
- After pruning: 319 blogs, 164 artists, 74 distinct albums
- Thousands of songs
- The Echo Nest used to extract features for each song
- Songs broken up into segments (80 ms to a few seconds)
- Mean segment duration
- Track tempo estimate
- Regularity of the beat
- Estimation of the time signature
- Overall loudness estimate of the track
- Estimated overall tatum duration
- In total, 18 features extracted for each song
- Training done via labels based on blog, artist, and album (separately) [Slaney, Weinberger, and White; ISMIR 2008]

Application: Learning Music Similarity

Application: Object Recognition

- Several metric learning methods have been evaluated on the Caltech 101 dataset, a benchmark for object recognition set size

Application: Object Recognition

- Used the Caltech-101 data set
- Standard benchmark for object recognition
- Many many results for this data set
- 101 classes, approximately 4000 total images
- Learned metrics over 2 different image embeddings for ITML: pyramid match kernel (PMK) embedding and the embedding from Zhang et al, 2006
- Also learned metrics via Frome et al's local distance function approach
- Computed k-nearest neighbor accuracy over varying training set size and compared to existing results

Application: Object Recognition

Caltech 101: Comparison of Single Metric/Kernel Methods

Results: Clarify

- Representation: System collects program features during run-time
- Function counts
- Call-site counts
- Counts of program paths
- Program execution represented as a vector of counts
- Class labels: Program execution errors
- Nearest neighbor software support
- Match program executions
- Underlying distance measure should reflect this similarity
- Results
- LaTeX Benchmark: Error drops from 30% to 15%
- LogDet is the best performing algorithm across all benchmarks
[Davis, Kulis, Jain, Sra, and Dhillon; ICML 2007]

Application: Human Body Pose Estimation

Pose Estimation

- 500,000 synthetically generated images
- Mean error is 34.5 cm per joint between two random images

Pose Estimation Results

Method	m	$k=1$
L_{2} linear scan	24 K	8.9
L_{2} hashing	24 K	9.4
PSH, linear scan	1.5 K	9.4
PCA, linear scan	60	13.5
PCA+LogDet, lin. scan	60	13.1
LogDet linear scan	24 K	8.4
LogDet hashing	24 K	8.8

- Error above given is mean error in cm per joint
- Linear scan requires 433.25 seconds per query; hashing requires 1.39 seconds per query (hashing searches 0.5% of database)
[Jain, Kulis, and Grauman; CVPR 2008]

Pose Estimation Results

Application: Text Retrieval

(a) Classic3

(a) Newsgroups Politics Subset
[Davis and Dhillon; SIGKDD 2008]

Summary and Conclusions

- Metric learning is a mature technology
- Complaints about scalability in terms of dimensionality or number of data points no longer valid
- Many different formulations have been studied, especially for Mahalanobis metric learning
- Online vs offline settings possible
- Metric learning has been applied to many interesting problems
- Language problems
- Music similarity
- Pose estimation
- Image similarity and search
- Face verification

Summary and Conclusions

- Metric learning has interesting theoretical components
- Analysis of online settings
- Analysis of high-dimensional (kernelized) settings
- Metric learning is still an interesting area of study
- Learning multiple metrics over data sets
- New applications
- Formulations that integrate better with problems other than k-nn
- Improved algorithms for better scalability

