
Metric Learning
ICML 2010 Tutorial

Brian Kulis
University of California at Berkeley

June 21, 2010

Brian Kulis University of California at Berkeley Metric Learning

Introduction

Learning problems with distances and similarities

k-means

Support vector machines

k-nearest neighbors

Most algorithms that employ kernel methods

Other clustering algorithms (agglomerative, spectral, etc)

...

Brian Kulis University of California at Berkeley Metric Learning

Choosing a distance function

Brian Kulis University of California at Berkeley Metric Learning

Choosing a distance function

Example: UCI Wine data set

13 features

9/13 features have mean value in [0, 10]
3/13 features have mean value in [10, 100]
One feature has a mean value of 747 (with std 315)

Using a standard distance such as Euclidean distance, the largest
feature dominates the computation

That feature may not be important for classification

Need a weighting of the features that improves classification or other
tasks

Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Brian Kulis University of California at Berkeley Metric Learning

Metric Learning as Learning Transformations

Feature re-weighting

Learn weightings over the features, then use standard distance (e.g.,
Euclidean) after re-weighting
Diagonal Mahalanobis methods (e.g., Schultz and Joachims)
Number of parameters grows linearly with the dimensionality d

Full linear transformation

In addition to scaling of features, also rotates the data
For transformations from d dimensions to d dimensions, number of
parameters grows quadratically in d
For transformations to r < d dimensions, this is linear dimensionality
reduction

Non-linear transformation

Variety of methods
Neural nets
Kernelization of linear transformations
Complexity varies from method to method

Brian Kulis University of California at Berkeley Metric Learning

Supervised vs Unsupervised Metric Learning

Unsupervised Metric Learning

Dimensionality reduction techniques
Principal Components Analysis
Kernel PCA
Multidimensional Scaling
In general, not the topic of this tutorial...

Supervised and Semi-supervised Metric Learning

Constraints or labels given to the algorithm
Example: set of similarity and dissimilarity constraints
This is the focus of the tutorial

Brian Kulis University of California at Berkeley Metric Learning

Themes of the tutorial

Not just a list of algorithms

General principles
Focus on a few key methods

Recurring ideas

Scalability
Linear vs non-linear
Online vs offline
Optimization techniques utilized
Statements about general formulations

Applications

Where is metric learning applied?
Success stories
Limitations

Brian Kulis University of California at Berkeley Metric Learning

Outline of Tutorial

Motivation

Linear metric learning methods

Mahalanobis metric learning
Per-example methods

Non-linear metric learning methods

Kernelization of Mahalanobis methods
Other non-linear methods

Applications

Conclusions

Brian Kulis University of California at Berkeley Metric Learning

Mahalanobis Distances

Brian Kulis University of California at Berkeley Metric Learning

Mahalanobis Distances

Assume the data is represented as N vectors of length d :
X = [x1, x2, ..., xN]

Squared Euclidean distance

d(x1, x2) = ‖x1 − x2‖22
= (x1 − x2)T (x1 − x2)

Let Σ =
∑

i ,j(xi − µ)(xj − µ)T

The “original” Mahalanobis distance:

dM(x1, x2) = (x1 − x2)T Σ−1(x1 − x2)

Brian Kulis University of California at Berkeley Metric Learning

Mahalanobis Distances

Equivalent to applying a whitening transform

Brian Kulis University of California at Berkeley Metric Learning

Mahalanobis Distances

Assume the data is represented as N vectors of length d :
X = [x1, x2, ..., xN]

Squared Euclidean distance

d(x1, x2) = ‖x1 − x2‖22
= (x1 − x2)T (x1 − x2)

Mahalanobis distances for metric learning
Distance parametrized by d × d positive semi-definite matrix A:

dA(x1, x2) = (x1 − x2)T A(x1 − x2)

Used for many existing metric learning algorithms

[Xing, Ng, Jordan, and Russell; NIPS 2002]
[Bar-Hillel, Hertz, Shental, and Weinshall; ICML 2003]
[Bilenko, Basu, and Mooney; ICML 2004]
[Globerson and Roweis; NIPS 2005]
[Weinberger, Blitzer, and Saul; NIPS 2006]

Brian Kulis University of California at Berkeley Metric Learning

Mahalanobis Distances

dA(x1, x2) = (x1 − x2)T A(x1 − x2)

Why is A positive semi-definite (PSD)?

If A is not PSD, then dA could be negative
Suppose v = x1 − x2 is an eigenvector corresponding to a negative
eigenvalue λ of A

dA(x1, x2) = (x1 − x2)T A(x1 − x2)

= vT Av

= λvTv = λ < 0

Brian Kulis University of California at Berkeley Metric Learning

Mahalanobis Distances

Properties of a metric:

d(x, y) ≥ 0
d(x, y) = 0 if and only if x = y
d(x, y) = d(y, x)
d(x, z) ≤ d(x, y) + d(y, z)

dA is not technically a metric

Analogous to Euclidean distance, need the square root:√
dA(x1, x2) =

√
(x1 − x2)T A(x1 − x2)

Square root of the Mahalanobis distance satisfies all properties if A is
strictly positive definite, but if A is positive semi-definite then second
property is not satisfied

Called a pseudo-metric

In practice, most algorithms work only with dA

Brian Kulis University of California at Berkeley Metric Learning

Mahalanobis Distances

Can view dA as the squared Euclidean distance after applying a linear
transformation

Decompose A = GT G via Cholesky decomposition
(Alternatively, take eigenvector decomposition A = V ΛV T and look at
A = (Λ1/2V T)T (Λ1/2V T))

Then we have

dA(x1, x2) = (x1 − x2)T A(x1 − x2)

= (x1 − x2)GT G (x1 − x2)

= (Gx1 − Gx2)T (Gx1 − Gx2)

= ‖Gx1 − Gx2‖22

Mahalanobis distance is just the squared Euclidean distance after
applying the linear transformation G

Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Want to learn:

A =

(
1 0
0 ε

)
G =

(
1 0
0
√
ε

)
Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Brian Kulis University of California at Berkeley Metric Learning

Example: Four Blobs

Want to learn:

A =

(
ε 0
0 1

)
G =

(√
ε 0

0 1

)
Brian Kulis University of California at Berkeley Metric Learning

Drawbacks to Mahalanobis Metric Learning

Memory overhead grows quadratically with the dimensionality of the
data

Does not scale to high-dimensional data (d = O(106) for many image
embeddings)

Only works for linearly separable data

Cannot seemingly be applied to “real” data!

These drawbacks will be discussed later

Brian Kulis University of California at Berkeley Metric Learning

Metric Learning Problem Formulation

Typically 2 main pieces to a Mahalanobis metric learning problem

A set of constraints on the distance
A regularizer on the distance / objective function

In the constrained case, a general problem may look like:

minA r(A)
s.t. ci (A) ≤ 0 0 ≤ i ≤ C

A � 0

r is a regularizer/objective on A and ci are the constraints on A

An unconstrained version may look like:

min
A�0

r(A) + λ

C∑
i=1

ci (A)

Brian Kulis University of California at Berkeley Metric Learning

Defining Constraints

Similarity / Dissimilarity constraints
Given a set of pairs S of points that should be similar, and a set of pairs
of points D of points that should be dissimilar
A single constraint would be of the form

dA(xi , xj) ≤ `

for (i , j) ∈ S or
dA(xi , xj) ≥ u

for (i , j) ∈ D
Easy to specify given class labels

Relative distance constraints
Given a triple (xi , xj , xk) such that the distance between xi and xj should
be smaller than the distance between xi and xk , a single constraint is of
the form

dA(xi , xj) ≤ dA(xi , xk)−m,

where m is the margin
Popular for ranking problems

Brian Kulis University of California at Berkeley Metric Learning

Defining Constraints

Aggregate distance constraints

Constrain the sum of all pairs of same-class distances to be small, e.g.,∑
ij

yijdA(xi , xj) ≤ 1

where yij = 1 if xi and xj are in the same class, and 0 otherwise

Other constraints

Non-parametric probability estimation constraints
Constraints on the generalized inner product xT

i Axj :

dA(xi , xj) = xT
i Axi + xT

j Axj − 2xT
i Axj

Brian Kulis University of California at Berkeley Metric Learning

Defining the Regularizer or Objective

Loss/divergence functions

Squared Frobenius norm: ‖A− A0‖2F
LogDet divergence: tr(AA−1

0)− log det(AA−1
0)− d

General loss functions D(A,A0)
Will discuss several of these later

Other regularizers

‖A‖2F
tr(AC0) (i.e., if C0 is the identity, this is the trace norm)

Brian Kulis University of California at Berkeley Metric Learning

Choosing a Regularizer

Depends on the problem!

Example 1: tr(A)

Trace function is the sum of the eigenvalues
Analogous to the `1 penalty, promotes sparsity
Leads to low-rank A

Example 2: LogDet Divergence

Defined only over positive semi-definite matrices
Makes computation simpler
Possesses other desirable properties

Example 3: ‖A‖2F
Arises in many formulations
Easy to analyze and optimize

Brian Kulis University of California at Berkeley Metric Learning

Defining the Optimization

Many existing Mahalanobis distance learning methods can be obtained
simply by choosing a regularizer/objective and constraints

We will discuss properties of several of these

Brian Kulis University of California at Berkeley Metric Learning

Xing et al.’s MMC

Problem posed as follows:

max
A

∑
(xi ,xj)∈D

√
dA(xi , xj)

s.t. c(A) =
∑

(xi ,xj)∈S dA(xi , xj) ≤ 1

A � 0.

Here, D is a set of pairs of dissimilar pairs, S is a set of similar pairs

Objective tries to maximize sum of dissimilar distances

Constraint keeps sum of similar distances small

Use square root in regularizer to avoid trivial solution
[Xing, Ng, Jordan, and Russell; NIPS 2002]

Brian Kulis University of California at Berkeley Metric Learning

Xing et al.’s MMC

Algorithm

Based on gradient descent over the objective followed by an iterative
projection step to find a feasible A

Constraint c(A) is linear in A, can be solved cheaply
Orthogonal projection onto A � 0 achieved by setting A’s negative
eigenvalues to 0
Iterative between these two steps to find feasible A for both constraints,
then take a step in the gradient of the objective

Despite relative simplicity, the algorithm is fairly slow (many eigenvalue
decompositions required)

Does not scale to large problems

Objective and constraints only look at the sums of distances

Brian Kulis University of California at Berkeley Metric Learning

Schultz and Joachims

Problem formulated as follows:

min
A

‖A‖2F
s.t. dA(xi , xk)− dA(xi , xj) ≥ 1 ∀(i , j , k) ∈ R

A � 0.

Constraints in R are relative distance constraints

There may be no solution to this problem; introduce slack variables

min
A,ξ

‖A‖2F + γ
∑

(i ,j ,k)∈R ξijk

s.t. dA(xi , xk)− dA(xi , xj) ≥ 1− ξijk ∀(i , j , k) ∈ R
ξijk ≥ 0 ∀(i , j , k) ∈ R

A � 0.

[Schultz and Joachims; NIPS 2002]

Brian Kulis University of California at Berkeley Metric Learning

Schultz and Joachims

Algorithm

Key simplifying assumption made

A = MT DM, where M is assumed fixed and known and D is diagonal

dA(xi , xj) = (xi − xj)
T A(xi − xj)

= (xi − xj)
T MT DM(xi − xj)

= (Mxi −Mxj)
T D(Mxi −Mxj)

Effectively constraining the optimization to diagonal matrices
Resulting optimization problem is very similar to SVMs, and resulting
algorithm is similar

By choosing M to be a matrix of data points, method can be kernelized

Fast algorithm, but less general than full Mahalanobis methods

Brian Kulis University of California at Berkeley Metric Learning

Kwok and Tsang

Problem formulated as follows:

min
A,ξ,γ

‖A‖2F + CS
NS

∑
(xi ,xj)∈S ξij + CD

ND

∑
(xi ,xj)∈D ξij − CDγν

s.t. dI (xi , xj) ≥ dA(xi , xj)− ξij ∀(xi , xj) ∈ S

dA(xi , xj)− dI (xi , xj) ≥ γ − ξij ∀(xi , xj) ∈ D

ξij ≥ 0

γ ≥ 0

A � 0.

Same regularization as Schultz and Joachims

Similarity/dissimilarity constraints instead of relative distance
constraints

No simplifying assumptions made about A
[Kwok and Tsang; ICML 2003]

Brian Kulis University of California at Berkeley Metric Learning

Neighbourhood Components Analysis

Problem formulated as follows:

max
A

∑
i

∑
j∈Ci ,j 6=i

exp(−dA(xi ,xj))P
k 6=i exp(−dA(xi ,xk))

s.t. A � 0.

Ci is the set of points in the same class as point xi (not including xi)

Motivation

Minimize the leave-one-out KNN classification error

LOO error function is discontinuous
Replace by a softmax; each point xi chooses a nearest neighbor xj based
on probability

pij =
exp(−dA(xi , xj))∑

k 6=i exp(−dA(xi , xk))

[Goldberger, Roweis, Hinton, and Salakhutdinov; NIPS 2004]

Brian Kulis University of California at Berkeley Metric Learning

Neighbourhood Components Analysis

Algorithm

Problem is non-convex

Rewrite in terms of G , where A = GT G

Eliminates A � 0 constraint

Run gradient descent over G

Properties

Easy to control the rank of A: just optimize over low-rank G

Simple, unconstrained optimization

No guarantee of global solution

Brian Kulis University of California at Berkeley Metric Learning

MCML

Recall NCA probabilities

pij =
exp(−dA(xi , xj))∑

k 6=i exp(−dA(xi , xk))

Introduce an “ideal” probability distribution p0
ij :

p0
ij ∝

{
1 if i and j from same class
0 otherwise.

Minimize divergence between p0 and p:

min
A

KL(p0, p)

s.t. A � 0.

[Globerson and Roweis; NIPS 2005]

Brian Kulis University of California at Berkeley Metric Learning

MCML

Properties

Unlike NCA, MCML is convex

Global optimization possible

Algorithm based on optimization over the dual
Similar to Xing: gradient step plus projection
Not discussed in detail in this tutorial

Brian Kulis University of California at Berkeley Metric Learning

A Closer Look at Some Algorithms

As can be seen, several objectives are possible

We will take a look at 3 algorithms in-depth for their properties

POLA

An online algorithm for learning metrics with provable regret
Also the first supervised metric learning algorithm that was shown to be
kernelizable

LMNN

Very popular method
Algorithm scalable to billions of constraints
Extensions for learning multiple metrics

ITML

Objective with several desirable properties
Simpler kernelization construction
Online variant

Brian Kulis University of California at Berkeley Metric Learning

POLA

Setup

Estimate dA in an online manner

Also estimate a threshold b

At each step t, observe tuple (xt , x′
t , yt)

yt = 1 if xt and x′
t should be similar; -1 otherwise

Consider the following loss

`t(A, b) = max(0, yt(dA(xt , x
′
t)2 − b) + 1)

Hinge loss, margin interpretation

Appropriately update A and b each iteration
[Shalev-Shwartz, Singer, and Ng; NIPS 2004]

Brian Kulis University of California at Berkeley Metric Learning

Online Learning Setup

Define the total loss to be

L =
T∑

t=1

`t(At , bt)

Online learning methods compare the loss to the best fixed, offline
predictor A∗ and threshold b∗

Define regret for T total timesteps as

RT =
T∑

t=1

`t(At , bt)−
T∑

t=1

`t(A∗, b∗)

Design an algorithm that minimizes the regret

Same setup as in other online algorithms (classification, regression)
Modern optimization methods achieve O(

√
T) regret for a general class,

and O(log T) for some special cases

Brian Kulis University of California at Berkeley Metric Learning

POLA Algorithm

Consider the following convex sets

Ct = {(A, b) | `t(A, b) = 0}
Ca = {(A, b) | A � 0, b ≥ 1}

Consider orthogonal projections:

PC (x) = argminy∈C‖x− y‖22

Think of (A, b) as a vector in d2 + 1 dimensional space

Each step, project onto Ct , then project onto Ca

Brian Kulis University of California at Berkeley Metric Learning

POLA Algorithm

Projection onto Ct

Let vt = xt − x′
t

Then projection is computed in closed form as

αt =
`t(At , bt)

‖vt‖42 + 1

Ât = At − ytαtvtv
T
t

b̂t = bt + αtyt

Projection onto Ca

Orthogonal projection onto positive semi-definite cone obtained by
setting negative eigenvalues to 0
But, update from At to Ât was rank-one
Only 1 negative eigenvalue (interlacing theorem)
Thus, only need to compute the smallest eigenvalue and eigenvector (via
a power method or related) and subtract it off

Brian Kulis University of California at Berkeley Metric Learning

Analysis of POLA

Theorem: Let (x1, x′
1, y1), ..., (xT , x

′
T , yT) be a sequence of examples

and let R be such that ∀t,R ≥ ‖xt − x′
t‖42 + 1. Assume there exists an

A∗ � 0 and b∗ ≥ 1 such that `t(A∗, b∗) = 0 ∀t. Then the following
bound holds for all T ≥ 1:

T∑
t=1

`t(At , bt)2 ≤ R(‖A∗‖2F + (b∗ − b1)2).

Note that since `t(A∗, b∗) = 0 for all t, the total loss is equal to the
regret
Can generalize this to a regret bound in the case when `t(A∗, b∗) does
not always equal 0

Can also run POLA in batch settings

Brian Kulis University of California at Berkeley Metric Learning

POLA in Context

Can we think of POLA in the framework presented earlier?

Yes—regularizer is ‖A‖2F and constraints are defined by the hinge loss `t
Similar to both Schultz and Joachims, and Kwok and Tsang

We will see later that POLA can also be kernelized to learn non-linear
transformations

In practice, POLA does not appear to be competitive with current
state-of-the-art

Brian Kulis University of California at Berkeley Metric Learning

LMNN

Similarly to Schultz and Joachims, utilize relative distance constraints

A constraint (xi , xj , xk) ∈ R has the property that xi and xj are
neighbors of the same class, and xi and xk are of different classes

[Weinberger, Blitzer, and Saul; NIPS 2005]

Brian Kulis University of California at Berkeley Metric Learning

LMNN

Problem Formulation

Also define set S of pairs of points (xi , xj) such that xi and xj are
neighbors in the same class
Want to minimize sum of distances of pairs of points in S
Also want to satisfy the relative distance constraints

Mathematically:

min
A

∑
(xi ,xj)∈S dA(xi , xj)

s.t. dA(xi , xk)− dA(xi , xj) ≥ 1 ∀(xi , xj , xk) ∈ R
A � 0.

Brian Kulis University of California at Berkeley Metric Learning

LMNN

Problem Formulation

Also define set S of pairs of points (xi , xj) such that xi and xj are
neighbors in the same class
Want to minimize sum of distances of pairs of points in S
Also want to satisfy the relative distance constraints

Mathematically:

min
A,ξ

∑
(xi ,xj)∈S dA(xi , xj) + γ

∑
(xi ,xj ,xk)∈R ξijk

s.t. dA(xi , xk)− dA(xi , xj) ≥ 1− ξijk ∀(xi , xj , xk) ∈ R
A � 0, ξijl ≥ 0.

Introduce slack variables

Brian Kulis University of California at Berkeley Metric Learning

Comments on LMNN

Algorithm

Special-purpose solver
Relies on subgradient computations
Ignores inactive constraints
Example: MNIST—3.2 billion constraints in 4 hours
Software available

Performance

One of the best-performing methods
Works in a variety of settings

Brian Kulis University of California at Berkeley Metric Learning

LMNN Extensions

Learning with Multiple Local Metrics

Learn several local Mahlanobis metrics instead a single global one

Cluster the training data into k partitions
Denote ci as the corresponding cluster for xi

Learn k Mahalanobis distances A1, ...,Ak

Formulation

min
A

∑
(xi ,xj)∈S dAcj

(xi , xj)

s.t. dAck
(xi , xk)− dAcj

(xi , xj) ≥ 1 ∀(xi , xj , xk) ∈ R
Ai � 0 ∀i .

Introduce slack variables as with standard LMNN
[Weinberger and Saul; ICML 2008]

Brian Kulis University of California at Berkeley Metric Learning

LMNN Results

Results show improvements using multiple metrics

Weinberger and Saul also extend LMNN to use ball trees for fast search

No time to go into details, see paper

Brian Kulis University of California at Berkeley Metric Learning

ITML and the LogDet Divergence

We take the regularizer to be the Log-Determinant Divergence:

D`d(A,A0) = trace(AA−1
0)− log det(AA−1

0)− d

Problem formulation:

minA D`d(A,A0)
s.t. (xi − xj)

T A(xi − xj) ≤ u if (i , j) ∈ S [similarity constraints]
(xi − xj)

T A(xi − xj) ≥ ` if (i , j) ∈ D [dissimilarity constraints]

[Davis, Kulis, Jain, Sra, and Dhillon; ICML 2007]

Brian Kulis University of California at Berkeley Metric Learning

LogDet Divergence: Properties

D`d(A,A0) = trace(AA−1
0)− log det(AA−1

0)− d ,

Properties:
Scale-invariance

D`d(A,A0) = D`d(αA, αA0), α > 0

In fact, for any invertible M

D`d(A,A0) = D`d(MT AM,MT A0M)

Expansion in terms of eigenvalues and eigenvectors
(A = V ΛV T ,A0 = UΘUT):

D`d(A,A0) =
∑
i,j

(vT
i uj)

2

(
λi

θj
− log

λi

θj

)
− d

Brian Kulis University of California at Berkeley Metric Learning

Existing Uses of LogDet

Information Theory

Differential relative entropy between two same-mean multivariate
Gaussians equal to LogDet divergence between covariance matrices

Statistics

LogDet divergence is known as Stein’s loss in the statistics community

Optimization

BFGS update can be written as:

min
B

D`d(B,Bt)

subject to B st = yt (“Secant Equation”)

st = xt+1 − xt , yt = ∇ft+1 −∇ft

Brian Kulis University of California at Berkeley Metric Learning

Key Advantages

Simple algorithm, easy to implement in Matlab

Method can be kernelized

Scales to millions of data points

Scales to high-dimensional data (text, images, etc.)

Can incorporate locality-sensitive hashing for sub-linear time similarity
searches

Brian Kulis University of California at Berkeley Metric Learning

The Metric Learning Problem

D`d(A,A0) = trace(AA−1
0)− log det(AA−1

0)− d

ITML Goal:

minA D`d(A,A0)
s.t. (xi − xj)

T A(xi − xj) ≤ u if (i , j) ∈ S [similarity constraints]
(xi − xj)

T A(xi − xj) ≥ ` if (i , j) ∈ D [dissimilarity constraints]

Brian Kulis University of California at Berkeley Metric Learning

Algorithm: Successive Projections

Algorithm: project successively onto each linear constraint —
converges to globally optimal solution

Use projections to update the Mahalanobis matrix:

min
A

D`d(A,At)

s.t. (xi − xj)
T A(xi − xj) ≤ u

Can be solved by O(d2) rank-one update:

At+1 = At + βtAt(xi − xj)(xi − xj)
T At

Advantages:

Automatic enforcement of positive semidefiniteness
Simple, closed-form projections
No eigenvector calculation
Easy to incorporate slack for each constraint

Brian Kulis University of California at Berkeley Metric Learning

Recent work in Mahalanobis methods

Recent work has looked at other regularizers, such as tr(A), which
learns low-rank matrices

Improvements in online metric learning (tighter bounds)

Kernelization for non-linear metric learning, the topic of the next
section

Brian Kulis University of California at Berkeley Metric Learning

LEGO

Online bounds proven for a variant of POLA based on LogDet
regularization

Combines the best of both worlds

Minimize the following function at each timestep

ft(A) = D`d(A,At) + ηt`t(A, xt , yt)

At is the current Mahalanobis matrix
ηt is the learning rate
`t(A, xt , yt) is a loss function, e.g.

`t(A, xt , yt) =
1

2
(dA(xt , yt)− p)2

For appropriate choice of step size, can guarantee O(
√

T) regret

Empirically outperforms POLA significantly in practice

[Jain, Kulis, Dhillon, and Grauman; NIPS 2009]

Brian Kulis University of California at Berkeley Metric Learning

Non-Mahalanobis methods: Local distance functions

General approach

Learn a distance function for every training data point
Given m features per point, denote d ij

m as the distance between the m-th
feature in points xi and xj

Denote w j
m as a weight for feature m of point xj

Then the distance between an arbitary (e.g., test) image xi and a
training image xj is

d(xi , xj) =
M∑

m=1

w j
md ij

m

At test time

Given test image xi , compute d(xi , xj) between xi and every training
point xj

Sort distances to find nearest neighbors

[Frome, Singer, Sha, and Malik; ICCV 2007]

Brian Kulis University of California at Berkeley Metric Learning

Non-Mahalanobis methods: Local distance functions

Optimization framework

Denote wj as the vector of weights w j
m

As before, construct triples (i , j , k) of points such that the distance
between xi and xj should be smaller than the distance between xi and
xk

Formulate the following problem:

min
W

∑
j ‖wj‖22

s.t. d(xi , xk)− d(xi , xj) ≥ 1 ∀(xi , xj , xk) ∈ R
wj ≥ 0 ∀j .

Brian Kulis University of California at Berkeley Metric Learning

Non-Mahalanobis methods: Local distance functions

Optimization framework

Denote wj as the vector of weights w j
m

As before, construct triples (i , j , k) of points such that the distance
between xi and xj should be smaller than the distance between xi and
xk

Formulate the following problem:

min
W

∑
j ‖wj‖22 + γ

∑
(i ,j ,k) ξijk

s.t. d(xi , xk)− d(xi , xj) ≥ 1− ξijk ∀(xi , xj , xk) ∈ R
wj ≥ 0 ∀j .

Introduce slack variables as before
Very similar to LMNN and other relative distance methods!

Brian Kulis University of California at Berkeley Metric Learning

Non-Mahalanobis methods: Local distance functions

Schultz and Joachims

min
A

‖A‖2F
s.t. dA(xi , xk)− dA(xi , xj) ≥ 1 ∀(i , j , k) ∈ R

A � 0.

Frome et al.

min
W

∑
j ‖wj‖22

s.t. d(xi , xk)− d(xi , xj) ≥ 1 ∀(xi , xj , xk) ∈ R
wj ≥ 0 ∀j .

Brian Kulis University of California at Berkeley Metric Learning

Linear Separability

No linear transformation for this grouping

Brian Kulis University of California at Berkeley Metric Learning

Kernel Methods

Map input data to higher-dimensional “feature” space:

x→ ϕ(x)

Idea: Run machine learning algorithm in feature space

Use the following mapping:

x =

[
x1

x2

]
→

 x2
1√

2x1x2

x2
2

Brian Kulis University of California at Berkeley Metric Learning

Mapping to Feature Space

Brian Kulis University of California at Berkeley Metric Learning

Kernel Methods

Map input data to higher-dimensional “feature” space:

x→ ϕ(x)

Idea: Run machine learning algorithm in feature space

Use the following mapping:

x =

[
x1

x2

]
→

 x2
1√

2x1x2

x2
2

Kernel function: κ(x, y) = 〈ϕ(x), ϕ(y)〉

“Kernel trick” — no need to explicitly form high-dimensional features

In this example: 〈ϕ(x), ϕ(y)〉 = (xTy)2

Brian Kulis University of California at Berkeley Metric Learning

Kernel Methods: Short Intro

Main idea

Take an existing learning algorithm
Write it using inner products
Replace inner products xTy with kernel functions ϕ(x)Tϕ(y)
If ϕ(x) is a non-linear function, then algorithm has been implicitly
non-linearly mapped

Examples of kernel functions

κ(x, y) = (xTy)p Polynomial Kernel

κ(x, y) = exp

(
− ‖x− y‖22

2σ2

)
Gaussian Kernel

κ(x, y) = tanh(c(xTy) + θ) Sigmoid Kernel

Kernel functions also defined over objects such as images, trees,
graphs, etc.

Brian Kulis University of California at Berkeley Metric Learning

Example: Pyramid Match Kernel

Compute local image features

Perform an approximate matching between features of two images

Use multi-resolution histograms

View as a dot product between high-dimensional vectors

[Grauman and Darrell, ICCV 2005]

Brian Kulis University of California at Berkeley Metric Learning

Example: k-means

Recall the k-means clustering algorithm
Repeat until convergence:

Compute the means of every cluster πc

µc =
1

|πc |
∑
xi∈πc

xi

Reassign points to their closest mean by computing

‖x− µc‖22
for every data point x and every cluster πc

Kernelization of k-means

Expand ‖x− µc‖22 as

xTx−
2
∑

xi∈πc
xTxi

|πc |
+

∑
xi ,xj∈πc

xT
i xj

|πc |2

No need to explicitly compute the mean; just compute this for every
point to every cluster

Brian Kulis University of California at Berkeley Metric Learning

Example: k-means

Recall the k-means clustering algorithm
Repeat until convergence:

Compute the means of every cluster πc

µc =
1

|πc |
∑
xi∈πc

xi

Reassign points to their closest mean by computing

‖x− µc‖22
for every data point x and every cluster πc

Kernelization of k-means

Expand ‖x− µc‖22 as

κ(x, x)−
2
∑

xi∈πc
κ(x, xi)

|πc |
+

∑
xi ,xj∈πc

κ(xi , xj)

|πc |2

Replace inner products with kernels, and this is kernel k-means
While k-means finds linear separators for the cluster boundaries, kernel
k-means finds non-linear separators

Brian Kulis University of California at Berkeley Metric Learning

Distances vs. Kernel Functions

Mahalanobis distances:

dA(x, y) = (x− y)T A(x− y)

Inner products / kernels:

κA(x, y) = xT Ay

Algorithms for constructing A learn both measures

Brian Kulis University of California at Berkeley Metric Learning

From Linear to Nonlinear Learning

Consider the following kernelized problem

You are given a kernel function κ(x, y) = ϕ(x)Tϕ(y)

You want to run a metric learning algorithm in kernel space

Optimization algorithm cannot use the explicit feature vectors ϕ(x)
Must be able to compute the distance/kernel over arbitrary points (not
just training points)

Mahalanobis distance is of the form:

dA(x, y) = (ϕ(x)− ϕ(y))T A(ϕ(x)− ϕ(y))

Kernel is of the form:

κA(x, y) = ϕ(x)T Aϕ(y)

Can be thought of as a kind of kernel learning problem

Brian Kulis University of California at Berkeley Metric Learning

Kernelization of ITML

First example: ITML

Recall the update for ITML

At+1 = At + βtAt(xi − xj)(xi − xj)
T At

Distance constraint over pair (xi , xj)
βt computed in closed form

How can we make this update independent of the dimensionality?

Brian Kulis University of California at Berkeley Metric Learning

Kernelization of ITML

Rewrite the algorithm in terms of inner products (kernel functions)

At+1 = At + βtAt(xi − xj)(xi − xj)
T At

Inner products in this case: xT
i Atxj

Brian Kulis University of California at Berkeley Metric Learning

Kernelization of ITML

Rewrite the algorithm in terms of inner products (kernel functions)

X T At+1X = X T AtX + βtX T AtX (ei − ej)(ei − ej)
T X T AtX

Entry (i , j) of X T AtX is exactly xT
i Axj = κA(xi , xj)

Denote X T AtX as Kt , the kernel matrix at step t

Kt+1 = Kt + βtKt(ei − ej)(ei − ej)
T Kt

Brian Kulis University of California at Berkeley Metric Learning

Kernel Learning

Squared Euclidean distance in kernel space:

‖xi − xj‖22 = xT
i xi + xT

j xj − 2xT
i xj

Replace with kernel functions / kernel matrix:

κ(xi , xi) + κ(xj , xj)− 2κ(xi , xj) = Kii + Kjj − 2Kij

Related to ITML, define the following optimization problem

minK D`d(K ,K0)
s.t. Kii + Kjj − 2Kij ≤ u if (i , j) ∈ S [similarity constraints]

Kii + Kjj − 2Kij ≥ ` if (i , j) ∈ D [dissimilarity constraints]

K0 = X T X is the input kernel matrix
To solve this, only the original kernel function κ(xi , xj) is required

Brian Kulis University of California at Berkeley Metric Learning

Kernel Learning

Bregman projections for the kernel learning problem:

Kt+1 = Kt + βtKt(ei − ej)(ei − ej)
T Kt

Suggests a strong connection between the 2 problems

Theorem: Let A∗ be the optimal solution to ITML, and A0 = I . Let
K ∗ be the optimal solution to the kernel learning problem. Then
K ∗ = X T A∗X .

Solving the kernel learning problem is “equivalent” to solving ITML
So we can run entirely in kernel space
But, given two new points, how to compute distance?

[Davis, Kulis, Jain, Sra, and Dhillon; ICML 2007]

Brian Kulis University of California at Berkeley Metric Learning

Induction with LogDet

Theorem: Let A∗ be the optimal solution to ITML, and let A0 = I .
Let K ∗ be the optimal solution to the kernel learning problem, and let
K0 = X T X be the input kernel matrix. Then

A∗ = I + XSX T

S = K−1
0 (K ∗ − K0)K−1

0

Gives us a way to implicitly compute A∗ once we solve for K∗

Algorithm
Solve for K∗

Construct S using K0 and K∗

Given two points x and y, the kernel κA(x, y) = xT Ay is computed as

κA(xi , xj) = κ(xi , xj) +
n∑

i,j=1

Sijκ(x, xi)κ(xj , y)

[Davis, Kulis, Jain, Sra, and Dhillon; ICML 2007]

Brian Kulis University of California at Berkeley Metric Learning

Kernelization of POLA

Recall updates for POLA

Ât = At − ytαtvtv
T
t

At+1 = Ât − λdudu
T
d

vt is the difference of 2 data points
ud is the smallest eigenvector of Ât

1st update projects onto set Ct where hinge loss is zero (applied only
when loss is non-zero)
2nd update projects onto PSD cone Ca (applied only when Ât has
negative eigenvalue)

Claim: Analogous to ITML, A∗ = XSX T , where X is the matrix of
data points

Prove this inductively

Brian Kulis University of California at Berkeley Metric Learning

Kernelization of POLA

Projection onto Ct

At = XStX T

Say the 2 data points are indexed by i and j
Then vt = X (ei − ej)

Rewrite At − ytαvtvT
t to get update from St to Ŝt :

Ât = XStX T − ytαtX (ei − ej)(ei − ej)
T X T

= X (St − ytαt(ei − ej)(ei − ej)
T)X T

Projection onto Ca

ud is an eigenvector of Ât , i.e.,

Âtud = X ŜtX Tu = λdud

ud = X

(
1

λd
ŜtX Tud

)
= Xq

Construction for q non-trivial; involves kernelized Gram-Schmidt
Expensive (cubic in dimensionality)

Brian Kulis University of California at Berkeley Metric Learning

General Kernelization Results

Recent work by Chatpatanasiri et al. has shown additional kernelization
results for

LMNN
Neighbourhood Component Analysis
Discriminant Neighborhood Embedding

Other recent results show additional, general kernelization results

Xing et al.
Other regularizers (trace-norm)

At this point, most/all existing Mahalanobis metric learning methods
can be kernelized

Brian Kulis University of California at Berkeley Metric Learning

Kernel PCA

Setup for principal components analysis (PCA)

Let X = [x1, ..., xn] be a set of data points
Typically assume data is centered, not critical here
Denote SVD of X as X = UT ΣV
Left singular vectors in U corresponding to non-zero singular values are
an orthonormal basis for the span of the xi vectors
Covariance matrix is C = XX T = UT ΣT ΣU, kernel matrix is
K = X T X = V T ΣT ΣV

Standard PCA recipe

Compute SVD of X
Project data onto leading singular vectors U, e.g., x̃ = Ux

Brian Kulis University of California at Berkeley Metric Learning

Kernel PCA

Key result from the late 1990s: kernelization of PCA

Can also form projections using the kernel matrix
Allows one to avoid computing SVD
If X = UT ΣV , then U = Σ−1VX T

Ux = Σ−1VX Tx

Computation involves inner products X Tx, eigenvectors V of the kernel
matrix, and eigenvalues of the kernel matrix

Relation to Mahalanobis distance methods

Kernel PCA allows one to implicitly compute an orthogonal basis U of
the data points, and to project arbitrary data points onto this basis
For a data set of n points, dimension of basis is at most n
Projecting onto U results in an n-dimensional vector

Brian Kulis University of California at Berkeley Metric Learning

Using kernel PCA for metric learning

Given a set of points in kernel space X = [ϕ(x1), ..., ϕ(xn)]
Form a basis U and project data onto that basis to form
X̃ = [x̃1, ..., x̃n] = [Uϕ(x1),,Uϕ(xn)] using kernel PCA

Consider a general unconstrained optimization problem f that is a
function of kernel function values, i.e.

f ({ϕ(xi)
T Aϕ(xj)}ni ,j=1)

Associated minimization

min
A�0

f ({ϕ(xi)
T Aϕ(xj)}ni ,j=1)

Theorem: The optimal value of the above optimization is the same as
that of

min
A′�0

f ({x̃T
i A′x̃j}ni ,j=1)

where A′ is n × n.
[Chatpatanasiri, Korsrilabutr, Tangchanachaianan, and Kijsirikul; ArXiV 2008]

Brian Kulis University of California at Berkeley Metric Learning

Consequences

Any Mahalanobis distance learning method that is unconstrained and
can be expressed as a function of learned inner products can be
kernelized

Examples

Neighbourhood Components Analysis
LMNN (write as unconstrained via the hinge loss)
Discriminant neighborhood embedding

Generalizing to new points

For a new point ϕ(x), construct x̃ and use Mahalanobis distance with
learned matrix A′

Algorithms

Exactly the same algorithms employed as in linear case

Brian Kulis University of California at Berkeley Metric Learning

Extensions

Chatpatanasiri et al. considered extensions for low-rank transformations

Also showed benefits of kernelization in several scenarios

Recent results (Jain et al.) have shown complementary results for
constrained optimization problems

ITML is a special case of this analysis
Other methods follow easily, e.g., methods based on trace-norm
regularization

Now most Mahalanobis metric learning methods have been shown to
be kernelizable

Brian Kulis University of California at Berkeley Metric Learning

Scalability in Kernel Space

In many situations, dimensionality d and the number of data points n
is high

Typically, linear Mahalanobis metric learning methods scale as O(d2) or
O(d3)
Kernelized Mahalanobis methods scale as O(n2) or O(n3)
What to do when both are large?

Main idea: restrict the basis used for learning the metric

Can be applied to most methods

Brian Kulis University of California at Berkeley Metric Learning

Scalability with the kernel PCA approach

Recall the kernel PCA approach
Project onto U, the top n left singular vectors
Instead, project onto the top r left singular vectors
Proceed as before

Similar approach can be used for ITML
The learned kernel is of the form

κA(xi , xj) = κ(xi , xj) +
n∑

i,j=1

Sijκ(x, xi)κ(xj , y)

Restrict S to be r × r instead of n × n, where r < n data points are
chosen
Rewrite optimization problem using this form of the kernel
Constraints on learned distances are still linear, so method can be
generalized

Both approaches can be applied to very large data sets
Example: ITML has been applied to data sets of nearly 1 million points
(of dimensionality 24,000)

Brian Kulis University of California at Berkeley Metric Learning

Nearest neighbors with Mahalanobis metrics

Once metrics are learned, k-nn is typically used

k-nn is expensive to compute
Must compute distances to all n training points

Recent methods attempt to speed up NN computation

Locality-sensitive hashing
Ball trees

One challenge: can such methods be employed even when algorithms
are used in kernel space?

Recent work applied in computer vision community has addressed this
problem for fast image search

Brian Kulis University of California at Berkeley Metric Learning

Other non-linear methods

Recall that kernelized Mahalanobis methods try to learn the distance
function

‖Gϕ(x)− Gϕ(y)‖22
Chopra et al. learn the non-linear distance

‖GW (x)− GW (y)‖22

GW is a non-linear function
Application was face verification
Algorithmic technique: convolutional networks

[Chopra, Hadsell, and LeCun; CVPR 2005]

Brian Kulis University of California at Berkeley Metric Learning

Other non-linear methods

Setup uses relative distance constraints
Denote Dij as the mapped distance between points i and j
Let (xi , xj , xk) be a tuple such that Dij < Dik desired
The authors define a loss function for each triple of the form

Loss = α1Dij + α2exp(−α3

√
Dik)

Minimize the sum of the losses over all triples

Metric is trained using a convolutional network with a Siamese
architecture from the pixel level

Brian Kulis University of California at Berkeley Metric Learning

Other non-linear methods

Brian Kulis University of California at Berkeley Metric Learning

Application: Learning Music Similarity

Comparison of metric learning methods for learning music similarity

MP3s downloaded from a set of music blogs

After pruning: 319 blogs, 164 artists, 74 distinct albums
Thousands of songs

The Echo Nest used to extract features for each song

Songs broken up into segments (80ms to a few seconds)
Mean segment duration
Track tempo estimate
Regularity of the beat
Estimation of the time signature
Overall loudness estimate of the track
Estimated overall tatum duration
In total, 18 features extracted for each song

Training done via labels based on blog, artist, and album (separately)
[Slaney, Weinberger, and White; ISMIR 2008]

Brian Kulis University of California at Berkeley Metric Learning

Application: Learning Music Similarity

Brian Kulis University of California at Berkeley Metric Learning

Application: Object Recognition

Several metric learning methods have been evaluated on the Caltech
101 dataset, a benchmark for object recognition set size

Brian Kulis University of California at Berkeley Metric Learning

Application: Object Recognition

Used the Caltech-101 data set

Standard benchmark for object recognition
Many many results for this data set
101 classes, approximately 4000 total images

Learned metrics over 2 different image embeddings for ITML: pyramid
match kernel (PMK) embedding and the embedding from Zhang et al,
2006

Also learned metrics via Frome et al’s local distance function approach

Computed k-nearest neighbor accuracy over varying training set size
and compared to existing results

Brian Kulis University of California at Berkeley Metric Learning

Application: Object Recognition

Brian Kulis University of California at Berkeley Metric Learning

Results: Clarify

Representation: System collects program features during run-time

Function counts
Call-site counts
Counts of program paths
Program execution represented as a vector of counts

Class labels: Program execution errors

Nearest neighbor software support

Match program executions
Underlying distance measure should reflect this similarity

Results

LaTeX Benchmark: Error drops from 30% to 15%
LogDet is the best performing algorithm across all benchmarks

[Davis, Kulis, Jain, Sra, and Dhillon; ICML 2007]

Brian Kulis University of California at Berkeley Metric Learning

Application: Human Body Pose Estimation

Brian Kulis University of California at Berkeley Metric Learning

Pose Estimation

500,000 synthetically generated images

Mean error is 34.5 cm per joint between two random images

Brian Kulis University of California at Berkeley Metric Learning

Pose Estimation Results

Method m k=1

L2 linear scan 24K 8.9
L2 hashing 24K 9.4

PSH, linear scan 1.5K 9.4

PCA, linear scan 60 13.5

PCA+LogDet, lin. scan 60 13.1

LogDet linear scan 24K 8.4
LogDet hashing 24K 8.8

Error above given is mean error in cm per joint

Linear scan requires 433.25 seconds per query; hashing requires 1.39
seconds per query (hashing searches 0.5% of database)

[Jain, Kulis, and Grauman; CVPR 2008]

Brian Kulis University of California at Berkeley Metric Learning

Pose Estimation Results

Brian Kulis University of California at Berkeley Metric Learning

Application: Text Retrieval

[Davis and Dhillon; SIGKDD 2008]

Brian Kulis University of California at Berkeley Metric Learning

Summary and Conclusions

Metric learning is a mature technology

Complaints about scalability in terms of dimensionality or number of
data points no longer valid
Many different formulations have been studied, especially for
Mahalanobis metric learning
Online vs offline settings possible

Metric learning has been applied to many interesting problems

Language problems
Music similarity
Pose estimation
Image similarity and search
Face verification

Brian Kulis University of California at Berkeley Metric Learning

Summary and Conclusions

Metric learning has interesting theoretical components

Analysis of online settings
Analysis of high-dimensional (kernelized) settings

Metric learning is still an interesting area of study

Learning multiple metrics over data sets
New applications
Formulations that integrate better with problems other than k-nn
Improved algorithms for better scalability
...

Brian Kulis University of California at Berkeley Metric Learning

