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Introduction (10 min)

Why do we need sparse modeling? 

Historical background and motivation for sparse modeling and compressive sensing. Examples from several application domains, including both statistical and signal processing applications and associated problems that involve sparsity.


Schedule

m 9:00-9:40
Introduction
Lasso

m 9:40-10:20

Sparse signal recovery and Lasso: Some Theory

m 10:20-10:30
Coffee Break

m 10:30-11:45

Sparse Modeling Beyond Lasso



A Common Problem

Unknown

state of world \.@

Inference, learning

Y=f(X) X' =argmax P(x|y)

@ Decoding:

(Noisy) encoding {

Observations

Can we recover a high-dimensional X from a low-dimensional Y?

Yes, if:
X is structured; e.g., sparse (few Xi# 0 ) or compressible (few large Xi)

encoding preserves information about X

Examples:
Sparse signal recovery (compressed sensing, rare-event diagnosis)

Sparse model learning



Example 1: Diagnosis in Computer Networks

Probe (Beygelzimer, Kephart and Rish 2007)
4216

O (@

N links (possible bottlenecks)

AN
- )
X1 | X2 | X3 | X4 | X5 | Xe vector X of
tor Y of | (unknown)
vector Y o Y 00 06|00 |00 |60 |00 link delays
end-to-end
probe delays Y1 008006 | 1 0 1 1 0 0
g Y2 060006 0 1 1 0 1 0
S vs||l ee® | 1 | 1 | o | o | o] o J Routing ]
s vi [l[@@@o | 1+ | 0o | 0o | 1 | 0 | 1 J=———_ matrixA

m Model: y=Ax+ noise
m Problem structure: Xis nearly sparse - small number of large delays

m Task: find bottlenecks (extremely slow links) using probes (M << N)

Recover sparse state (‘signal’) X from noisy linear observations




Example 2: Sparse Model Learning from fMRI Data

m Data: high-dimensional, small-sample
10,000 - 100,000 variables (voxels)

100s of samples (time points, or TRs)

m Task: given fMRI, predict mental states

emotional: angry, happy, anxious, etc.

cognitive: reading a sentence vs viewing an image

mental disorders (schizophrenia, autism, etc.)

m [ssues:
Overfitting: can we learn a predictive model that generalizes well?

Interpretability: can we identify brain areas predictive of mental states?

fMRI image courtesy of fMRI Research Center @ Columbia University



Sparse Statistical Models: Prediction + Interpretability

Data
X = fMRI voxels,

Predictive Model

y = 1(x)
Y - mental state
+
+
Small number + happy
of Predictive | T
Variables ? sad

m Sparsity === variable selection === model interpretability

m Sparsity === regularization === |ess overfitting / better prediction




Sparse Linear Regression

-

.

Measurements:

mental states, behavior,

tasks or stimuli

Y = AX + noise A

fMRI data (“encoding’) Unknown

rows — samples (~500) parameters
Columns — voxels (~30,000) (‘signal’)

/
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Contrast 1 [ 1 B 1% wax 7 stat of 13.779 at voxel (32,7,7)
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full model fit — 7
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Find small number of most relevant voxels (brain areas)

fMRI activation image and time-course courtesy of Steve Smith, FMRIB



Sparse Recovery in a Nutshell

0
y A m X
— X
i J -
noiseless design . \

observations (measurement) sparse input
matrix

Can we recover a sparse input efficiently
from a small number of measurements?



Sparse Recovery in a Nutshell

y° A R

_ ﬁ] P X
M { H > N dimensions

K nonzeros

" Compressed Sensing Surprise’:

0

Given random A (i.i.d. Gaussian entries), x* can be reconstructed

exactly (with high probability):

m fromjust M = O(Klog(N/K)) measurements

m efficiently - by solving convex problem min ||x||4 s.t. y = Ax
* (< linear program)



Sparse Recovery in a Nutshell

_ P X
M { H > N dimensions

K nonzeros

/

In general, if A is 'good” (e.g., satisfies Restricted Isometry Property
with a proper constant), sparse x© can be reconstructed with M <<N
measurements by solving (linear program):

min ||x||1 S.t. ¥ = Ax
X



Sparse Recovery in a Nutshell

i <T: = “ #XI

observations noiseless design
observations (measurement)
matrix I

sparse input

And what if there is noise in observations?



Sparse Recovery in a Nutshell

BN
|

(— — #x.

Still, can reconstruct the input accurately (in l12-sense), for A
satisfying RIP; just solve a noisy version of our l1-optimization:

min [x||s s.t. |ly — Ax|} < ¢

i

min ||y — Ax||5 s.t. ||x||1 <t (Basis Pursuit, aka Lasso)
X



Sparse Linear Regression vs Sparse Signal Recovery

m Both solve the same optimization problem
m Both share efficient algorithms and theoretical results

m However, sparse learning setting is more challenging:

m We do not design the “design” matrix, but rather deal with
the given data

m Thus, nice matrix properties may not be satisfied
(and they are hard to test on a given matrix, anyway)

m We don’t really know the ground truth (" "signal”) — but
rather assume it is sparse (to interpret and to regularize)

m Sparse learning includes a wide range of problems beyond
sparse linear regression (part 2 of this tutorial)
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Why do we need sparse modeling? 

Historical background and motivation for sparse modeling and compressive sensing. Examples from several application domains, including both statistical and signal processing applications and associated problems that involve sparsity.


Notation and Assumptions

e X1,---, X, - predictors, or features (e.g., voxel intensities)
e Y -response, or label (e.g., level of happiness)
e Data Z = (X,y), where Xiis n x p matrix and y is n x 1 vector

n samples-rows X', p predictors-columns X,, n labels y’

1 1 1
Xy X, y
n n n
Xy X y

e Assumptions:
- observations y' are conditionally independent given X
- centered Y and standardized X;: Y =0, X; = 0, Var(X;) = 1

- X has maximal rank



Motivation: Variable Selection

o Filter methods:
rank each x; (or a small subset of X) using a ranking function r(/),
such as correlation or mutual information with the response y.
Fast but suboptimal - can miss multivariate predictive patterns.

e Wrapper methods:
rank each x; (or a small subset of X) by its predictive accuracy,
l.e., train a separate model for each x; and evaluate its accuracy.
Wrappers yield better predictions, but are quite expensive.

o| Embedded methods:
variable selection is embedded in model learning.
(E.qg., via greedy methods or certain regularization techniques).




Model Selection as Regularized Optimization

Regularization constrains the model space to avoid overfitting:
m;n L(Z,3) st R(PB)<t

0
mf__jin L(Z,3)+ \R(5)

o Z={Z",..,2"} - data (e.9., Z' = (X(i..), V1))
e 3 - vector of model parameters
e [(-)-loss function (e.g., model’s error on the data)

e R(-) - regularization penalty (e.g., model's complexity)

e ) -regularization parameter



Bayesian Interpretation: MAP Estimation

e Loss: negative log-likelinood
o Regularization: negative log-prior on model parameters

e Learning: maximum a posteriori (MAP) probability estimation

Z|B)P(5|N)

arg max log P(
)
arg m;n —log P(Z

)
arg mcgn L(Z,3)+ R(5,\)

3)—log P(5|\)



Log-likelihood Losses: Examples

e linear regression: Gaussian noise with unit variance
P(yilXi)B) = N(p = Xy, 0 = 1):

n
[ = —log Z P(yil XinB) = Ily — XB]|5

=1

e (Generalized Linear Model (GLM) regression (logistic, Poisson, etc.):
exponential-family noise P(y;|©;) with natural parameters ©; = X;; ,/3
and means 1;(©;)

L = —log Z P(yi|©;) = Z B(Vi, 1)
=1 i=1

e (Gaussian Markov Network: multivariate Gaussian with the inverse
covariance matrix G, P(Z'|C) = N(n = 0, C):

L = —log ZH: P(Z'|C) = ur(SC) — log det(C),

=1

where S is the empirical covariance matrix



Regularization: /;-norm, 0 < g

e lp-norm: [{i|5; # 0}| - number of non-zero parameters;
used by AIC, BIC/MDL criteria

e (squared) kL-norm ||3]5 = >_F_, 3¢ - Gaussian prior;
used in ridge regression (Hoerl and Kennard, 1988)

o li-norm ||5]]1 = Y., |3i| - Laplace prior; Lasso regression
(Tibshirani, 1996)

e more generally, l,-norm ||3]|d = >-F_, | 319 - bridge regression
(Frank and Friedman, 1993; Fu, 1998)

Pr.q(3) ~ C(A, g)e Pl

e Extensions of /;: block-penalties (/1/1, - €.9., l1 /b, I /I), Elastic
Net penalty (convex combination of /; and b)



Best Subset Selection

e find best subset of M predictors, i.e.

minL(Z,3) s.t.[|3llo <M

I5;
where lh-norm ||3||o is the number of nonzeros |{/

Bi # 0}

e NP-hard problem!

e various approximations (mainly greedy):

forward stepwise regression < Orthogonal Matching Pursuit (Mallat and Zhang, 1993)
stagewise OMP (StOMP) (Donoho et al., 2006)

regularized OMP (ROMP) (Needell and Vershynin, 2009)

subspace pursuits (Dai and Milenkovic, 2008)

CoSaMP (Needell and Tropp, 2008)

SAMP(Do et al., 2008)

GraDeS (Gradient Descent with Sparsification) (Garg and Khandekar, 2009), etc. etc.

see more at http://dsp.rice.edu/cs (Compressive Sensing Resources)

e Alternative approach:
l1-norm relaxations of y (or, more generally, [;-norms, 0 < g < 1)



What is special about l1-norm? Sparsity + Computational Efficiency

lg-norm constraints for different values of g

qg=0.1
|

qg—=4 q =2 g =1 qg=0.5
| | | |
| | | |

Convexity = efficient optimization methods

Sparsity = variable selection

e g < 1: convexity, but no sparsity (no “sharp edges”)
e g > 1: sparsity (sharp edges), but no convexity
e q = 1: sparsity and convexity

Image courtesy of [Hastie, Friedman and Tibshirani, 2009]



LASSO: Least Absolute Shrinkage and Selection Operator

2+ A8l

mBin||y—X,3

e First proposed by (Tibshirani, 1996)
e Known as Basis Pursuit (Chen et al., 1999) in signal processing

e Bayesian view: MAP estimation with:

I : . 1 i 2\2
- independent Gaussian observations y; ~ e~z =%*7)" and
- independent Laplace parameters 3; ~ e~

—Ilambda = 2
lambda=1
flambda=0.57

o Laplace prior enforces solution sparsity <= variable selection



Equivalent Constrained Formulation: A Geometric View

5 st lfll <t

mﬁinHy—Xﬁ

p<n p>n

unique OLS solution multiple OLS solutions /3 + :
3 =argming ||y — X33 ¥ € N(X) (null-space), y = X(3 + )



Properties of LASSO Solution(s)

Assume t < t, = min, ey |13 + 7|l (otherwise LASSO < OLS).
Theorem (Osborne et al., 2000).
o If p < n, a unique LASSO solution 3* exists and ||3*||1 = t.
e If p > n, a solution 5* exists, and ||5*||1 = t for any solution.

If 57 and 35 are both LASSO solutions, then their convex
combination a3 + (1 — «) 35 is also a solution for any 0 < o < 1.




Lasso vs Ridge and Best-Subset in Case of Orthonormal Designs

For orthonormal X, explicit solutions are given by the following
transformations, where 5 = (X" X)~'X"y is an ordinary
least-squares (OLS) solution:

Estimator Formula

Best subset (size M) ;:’_%j v [I'allk(‘ﬂ%j‘ < M)

Ridge Bj /(14 A)
Lasso sign(3;)(15;] — A+
Best Subset Ridge Lasso
d . A
: ‘L/"‘}(:\IH ‘/” ”’
[ (0,0) _~1(0,0) e (0,0)
| - P
hard thresholding shrinkage soft thresholding

Image courtesy of [Hastie, Friedman and Tibshirani, 2009]



Algorithms

e Standard quadratic programming methods: too slow

e Least Angle Regression (LARS) (Efron et al., 2004):

much faster; moreover, produces the entire solution path (all
solutions for all values of the regularization parameter \) at the
cost of a single least-squares fit. Similar to homotopy
(continuation) method of (Osborne et al., 2000b).

e Coordinate descent (Fu, 1998), (Daubechies et al., 2004),
(Friedman et al., 2007a), (Wu and Lange, 2008):

for fixed \, optimizes each parameter at a time; using
warm-starts, it can compute the solutions on a grid of A values
faster than LARS (however, the full path is NOT computed)

o Many other methods, including generalizations to other losses;
various software packages, e.g., see http://dsp.rice.edu/cs



Least Angle Regression (LARS) (Efron et al., 2004)

Assume that y and all X; have zero means), and all X; have unit norm.

e /|nitialize: currentresidualr =y — vy, coefficients 5, =0,/ =1, ....p

e Find X; most correlated with r, i.e. X; = argmax; Xjr

e Move 5 towards sign(Xjr), updating residual r along the way. Stop when
some other predictor X; has as much correlation with the current r as X

has.

e Increase 3, and j; in their joint least-squares direction u (equiangular
between X; and Xj), until some other predictor Xx has as much
correlation with the current residual.

e Continue adding predictors for min(n — 1, p) steps, until full OLS solution
Is obtained. If p < n, all predictors are now in the model.




Geometric View of LARS

N X3

= X1

At step k, LARS estimate ik moves towards the current OLS estimate
Y« in the direction uk equiangular among the current predictors.

The direction changes before reaching yx when a new variable enters
the active set.

Image courtesy of [Hastie, 2007]



Coefficients

Piecewise Linear Solution Path: LARS vs LASSO

LARS vs LASSO for pain perception prediction from fMRI data [Rish, Cecchi, Baliki, Apkarian, 2010]:
for illustration purposes, we use just n=9 (out of 120) samples, but p=4000 variables; LARS selects n-1=8 variables

Least Angle regression (LARS)

N Crossing
\ zZero

B /113(OLS)|1

Lasso modification

LARS with LASSO modification

Coefficients

“ Variable
e ) deleted

0.

B /113(OLS)|1

If non-zero Gk hits zero, delete X from the active set and recompute the

current direction u and residual r.

LARS with Lasso modification produces the same solution path as Lasso



Predictive Performance

Three scenarios (Tibshirani, 1996):

Best Subset | Ridge | Lasso
a few large [, best worst 2nd
medium number of moderate j; worst 2nd best
large number of small j3; worst best 2nd
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Plan

Phenomenon

Signal restoration for random Fourier projection
Uncertainty principle

Examples for worst case, Dirac comb

Main techniques

Robustness and stability

e Compressed Sensing (Donoho, 2006a; Candes, 2006; Candes
and Tao, 2006b; Candés and Romberg, 2007; Donoho et al.,
2006; Candes and Tao, 2006a)

e Back to Lasso (Knight and Fu, 2000; Zhao and Yu, 2006; Bickel
et al., 2009; Meinshausen and Yu, 2009; Wainwright, 2009;
Juditsky and Nemirovski, 2008))



Phenomenon (Candes et al., 2006)

Theorem
(Nyquist-Shannon-Whittaker)

Let f be a function with a Fourier
transform F[f(x)] = 0 for |x| > L, then
f is determined by values of f at 2L
points spaced 5‘3 apart.

Example (The Logan-Shepp
phantom image ( 512x512 ))

In this example direct zeroing of the
Fourier coefficients does not do much.
Minimization of the variances allows to
! precisely restore data from 22 instead
P o of 512 ( 5% ) sample planes.

Figu re: Example of a recovery problem(a) The Logan-Shepp
phantom test image(b) Sampling domain O in the frequency plane (c)
Minimum energy reconstruction by thresholding Fourier coefficients

ey Racanstriiction By minimizing the variation (L aorm of 9 aradiesnt)



Notation

Denote by Zy =0,1,--- ,N —1.

Definition (Discrete Fourier Transform)

For vector x € CN Fx=%xeCNis:
R, = Z yoem N e D
weLy
The vector x may be restored from X by (F~' = LF*):

1 ~ [
X =5 Z SiaeuN e
weZp

Let T,Q C Zy. Denote by Fr g operator mapping C"¥ — CV:

Frax = (F(x[7))la-

For vector x € CN denote by supp(x) = {i € Zy|x; # 0}.



Exact recovery for random Fourier projection

Definition (OPL1)

Let Q c Zy and x € CV. is

min||ull, ==Y _ |ut|, subject to (Fu)x = (Fx)x, for k € Q

teZy

Theorem (Candes et al. (2006))

Let x € CN be a vector with supp(x) = T C Z.
Let Q) C Zy be a uniformly at random set of size |2| = N,,.
Fix B > 0 (accuracy).
With probability p > 1 — O(N~°)
the minimizer of the OPL1 restores x precisely when

2| > Cp|T|log N

Here Cg < 23(B + 1).



“Take-home message”

Theorem interpretation

e The theorem describes restoration behavior on
probabilistically typical (random) DFT projection.

e The theorem claims that vector may be restored
@ with high probability
@ using OPL1

€@ qgiven its DFT coefficients on the set of size proportional
to its support size times log N.

The worse case restoration behavior relates to (Donoho
and Stark, 1989).



Uncertainty Principle (UP)

Classical uncertainty principle (Heisenberg) At - Ap > 1.

Theorem (DS Uncertainty Principle, Donoho and Stark (1989))

Ifh e CN, then
supp(h)| - [supp(h)| > N or |supp(h)| + |supp(h)| > 2VN.

How UP relates to /4 minimization?

If x* is not unique solution of the OPL1, h £ 0, h|q = 0, supp(x™) = T C Zp . then

PR T SRR S ST SR N LS ST

tezN teT teTC teT teTe

The ||x* —:°:||J.1 = |x"‘|||,_I implies 3¢ 7 [hy| = X7 byl orhis 5 T.

Now uniqueness of OPL1 minimum obtained from the following.

Theorem (Concentration form of UP, Donoho and Stark (1989))

Let h € CV is half-ly concentrated on T, and supp(h) c Zy — Q. Then
2|T|-(N—12]) < N implies h= 0.

Refinement of UP in Tao (2005): |supp(h)| + |supp(h)| > N for prime N.



Example illustrating difference between worst case and typical case

Example (Dirac’s comb)

Suppose that N = k* and f = {fy = 1 for t = jk; f = O for t # jk;j € Zx}.
The signal is invariant under the Fourier transform f = f.

Let T = {Jk|j € Z«}, and let Q = Zxn — T be the set of all frequencies except
for the multiples of k = v/N.

The f|q = 0.
The OPL1 reconstruction of f from ?|n is identical zero.
For sufficiently large N holds || = N — /N > Cg|T|log N = C5v/Nlog N.

“Take-home message”

Reconstruction Theorem (Candés et al., 2006) does not work for all sets of
proper sizes (Dirac comb).

Dirac’'s comb gives extreme sizes for uncertainty principles (Donoho and
Stark, 1989).

Dirac’s comb with kK = 2™ shows that logN is necessary.



Plan

e Signal restoration with random Fourier projection (Candes et al.,
2006)

e Phenomenon

Signal restoration for random Fourier projection
Uncertainty principle

Examples for worst case, Dirac comb

e Type of randomness
e Duality, convex optimization
e Hilbert (energy) polynomial

¢ Robustness and stability

e Compressed Sensing (Donoho, 2006a; Candés, 2006; Candés
and Tao, 2006b; Candes and Romberg, 2007; Donoho et al.,
2006; Candes and Tao, 2006a)

e Back to Lasso (Knight and Fu, 2000; Zhao and Yu, 2006; Bickel
et al., 2009; Meinshausen and Yu, 2009; Wainwright, 2009;
Juditsky and Nemirovski, 2008))



What type of randomness?

Reconstruction Theorem (Candeés et al., 2006) deals with uniform random
projections.

Uniform distribution is difficult to work with.

Consider instead binomial random projections with sample size N and
probability of success .

Probability of failure to exactly reconstruct for uniform and binomial random
projections are equivalent.

Remark (Details)

Let Q) be a uniform random sample set (projection). Let Q' = {j € ZnIP( € Q') = 7} forsome0 < = < 1.
The E(|Q'|) = +N and for large N, |ﬂ"|f.l'~.l' = T with high probability.

!
Let Faifure{ﬂt }} be an event of not restoring vector with supportin T. IS4 C (15 then Failure(S25) C Failure(S24 ).

For + - N integer, median of |2’ | = T - N (Jogdeo and Samuels, 1968) since

PIQ' | < TN —1) < 1/2 < P(IQ'| < TN). (1)
Then
N
P(Failure(t')) = S P(Failure(Qy)) - P(12'| = k) (2)
k=0
N N 1
> S P(railure(2y)) - P(1Q"| = k) > P(Failure()) 3 P(1Q'| = k) = EP(Faf.rure[ﬂ}), (3)

k=0 k=0



Duality and Optimization

How do we solve problems like bellow (OPL1)?

min||u||;, := ) _ |uk|, subject to (Fu)x = (Fx)x, for k € Q

tEEN

Take a derivative, set it to zero, find solution.

But [|.||;, is not smooth, it has special points when one of the coordinates is
zero.

Apply convex analysis!

Definition (Subgradient)

For convex space X, and it's Y and function f : X — R, subgradient of f is
defined as

Of(x0) = {y € Y|f(x) — f(x0) > (x — X0, ¥)}

If function f is differentiable, then of coincides with gradient V.

Theorem (Fermat’s like theorem)

The point u is an extremal point of function f iff0 € Of(u)



Duality and Optimization lI

Example (Case of )

For x e CV,

: | sign(x;) forie supp(x),
110 = { [-1.1] for i ¢ supp(x).

Karush Kuhn Tucker Theorem with Slater conditions (Rockafellar, 1996;
Nesterov, 2004; Boyd and Vandenberghe, 2004), see also (Fuchs, 2005)
imply that

If Fr o Is injective then u is unique solution of OPL1

there exists u™ with

« _ | sign(x;) fori e supp(x);
T x|l <1 fori & supp(x).



Stability and Robustness of recovery

To recover we can find support of the vector x by /; optimization (OPL1) and
run regression to find coefficients.

Stability means small change in the conditions gives small change in
the results.

Robustness means stability under noise.

Is regression stable?

Regression is given by formula:
x = (FiaFr)” FioXla.

The proof of Reconstruction Theorem implies
FiaoFr.a > 0l (with 6 > 1/2) with high probability,
hence for 2] > Cg - |T| - log N stability has place.

To deal with robustness (signal + noise) we need some generalization.



Plan

e Signal restoration with random Fourier projection (Candes et al.,
2006)

o (Donoho, 2006a; Candés, 2006; Candés
and Tao, 2006b; Candes and Romberg, 2007; Donoho et al.,
2006; Candes and Tao, 2006a)

e Back to Lasso (Knight and Fu, 2000; Zhao and Yu, 2006; Bickel
et al., 2009; Meinshausen and Yu, 2009; Wainwright, 2009;
Juditsky and Nemirovski, 2008))



Compressed Sensing (CS)

Compressed/compressive sensing is a sampling based on 2
principles:

Sparsity is a low dimensionality in some sense,
Incoherence extends uncertainty principle.

Vector x € RN for the basis W = (v, ,9n), and x; = (X, 1;).
Vector x is S-sparse if |supp(x)| < S.

Definition (Coherence between orthonormal bases)

Given a pair of orthonormal bases V. ¢,

p(V, @) = VN max |(¢k, 1))l

1<kj<N

Note that 1 < pu(V,®) < V/N.

Fourier bases:

for F=®: ¢x(w) = vNe2rke/N1

for F* = VU - Uk(ﬁu) \/_ —IETkwa

In thls case ,u( <D) maximal incoherence.
1Dif [ norma




Under sampling and Sparse recovery

If we measure all N coefficients, but observe only M << N, can we
reconstruct signal?

Theorem (Candes and Romberg (2007))

Fix § > 0 and x € RN and suppose that x is S-sparse. Choose )
measurements uniformly at random. If

Q| > C- pf(®,V)-S-logN/s
then solution of the convex optimization problem

argmin || x|, : (X, k) = (ok, ¥X),k € Q2 (OPL1B)
XeRN

recover x with probability at least1 — é.

“Take-home message”

To restore signal in the two orthonormal basis case, one needs
sparsity times log correction times mutual coherence.

Unfortunately mutual coherence runs up to V/N.



Robust signal recovery from noisy data

What happened if signal is nearly sparse and noisy?
Consider now recovery x € R" with

y=Ax+ Z,

here Ais M x N sensing matrix, z is small in some sense noise.
In previous cases we had A = (®V)|q.

Restricted Isometry

Let S < N. Matrix Ais S-restricted isometry (RI) if matrix A satisfies
(1 = ds)l[x[lp < [|AX|[p < (1 +ds)]X]]s,

for x with support [supp(x)| < S and some 0 < §s < 1.

Theorem (Robust recovery from noisy data, Candes et al. (2006))

Let y as above, and let matrix A is Rl with 6,5 < V2 — 1. Then solution x* of
the
argmin||X||, : |[[Ax—yl|l, <e (OPL1N)
xeRN
satisfies
1x* = xll;, < Co - ||x — Xs]|y /V'S+ Ci - .



Sources of RIP matrices Candes and Tao (2006c); Donoho (2006a);
Rudelson and Vershynin (2006)

Matrices satisfying RIP are generated by randomization Baraniuk et al.
(2008); Mendelson et al. (2008).

Tree main random constructions:
e Random matrices with i.i.d. entries. Candés and Tao (2006c¢);

Donoho (2006b); Rudelson and Vershynin (2006)

Let matrix A’s entries are i.i.d. for a sub-gaussian distribution with o = 0
and o = 1. Then, A = ﬁA satisfies RIP with 5 < § when

M > const(eg,d) - S - log(2N/S) with probability p > 1 — «.

Distribution examples: Gaussian, Bernoulli

* Fourier ensemble. Candes and Tao (2006c); Rudelson and Vershynin
(2006) Let A = ﬁA with A being M randomly selected rows from an

N x N DFT matrix. Then A satisfies RIP with s < & providing
M > const(e, §) - S - log*(2N). with probability p > 1 — «.

e General orthogonal ensembles. Candés and Tao (2006c) Let Ais M
randomly selected rows from an N x N orthonormal matrix U with
re-normalized columns. Then (OPL1B) S-sparse recover x with high
probability when M > const - M?(U) - S - log°N



Modeling: Dantzig Selector, consistency

Let y = Ax + z, x is parameters vector, A is design matrix, z ~ N(0, o°ly).
We are interested in estimating ||Xp — x*||,,, where x* is actual parameter,
and Xp is a solution of the Dantzig Selector:

fp = argmin(||X||; : [|A*(Y — AX)||e < M- ), Aw:=(1 + t')y/2logN.

xckN

For the ideal case suppose A is identity matrix and y ~ N(x.o” - ). Oracle
knowing x*, choses X as x;" with |x;"| > ¢ and o otherwise. Then

E||x* — X|2 = XF, mir(x, o) is a MSE.

Thresholding with level /2 log N - o achieves this with factor of log N
(Donoho and Johnstone, 1994).

Theorem (DS estimate)

For S with d»5 + 035 < 1 — t, DS estimator with high probability obeys

N
%0 — X*||f < CaAX(0® + ) min’ (X}, 7)),

=1

DS is log factor far from oracle choice of parameter.



Plan

e Signal restoration with random Fourier projection (Candes et al.,
2006)

» Robustness and stability

e Compressed Sensing (Donoho, 2006a; Candes, 2006; Candes
and Tao, 2006b; Candes and Romberg, 2007; Donoho et al.,
2006; Candes and Tao, 2006a)

@ (Knight and Fu, 2000; Zhao and Yu, 2006; Bickel
et al., 2009; Meinshausen and Yu, 2009; Wainwright, 2009;
Juditsky and Nemirovski, 2008))



Back to LASSO: Lasso consistency

Remind: Lasso estimates

%(\) = argmin(||y — Ax|[3 + X[ x]])

XERN

Types of LASSO consistency

Consistency Estimator converges to actual parameter in p- norm:

1X = x||lp — 0

Model (Support) Signed Consistency Signed support of estimator
converges to signed support of actual parameter



Back to LASSO: Irrepresentability, Support (Signed) Recovery

Let yM = AyxM + ey, M is an ,Auisan M x N
 xMis in M-th experiment, ey is ani.i.d.
random variables with . = 0 and var = o2.

Remind: Lasso estimates X"(\) = argmin, _on(||y" — Aux||3 + Al|x|[1)

For fixed N: XM (\y) P x and estimates are asymptotically normal (for
Am = o(M)) (Knight and Fu, 2000).

Definition (Strongly Sign consistency)

Lasso is strongly sign consistent if for some Ay = f(M) holds
iMoo P(XM(Ay) =5 xM) = 1

Let supp(x™) c I c Zn. Let QY = (AM)* AM be a scale of covariance matrix.

Definition (Strong Irrepresentable Condition (SIC))

Matrix A satisfies Strong Irrepresentable Condition if
11/ M(QY|1c(QY]1,)) 1| < iy — n, for some fixed positive vector 7.

Theorem (Strongly Sign Consistency for Lasso, Zhao and Yu (2006))

Lasso is strongly sign consistent if AV satisfies SIC and1/M - Q" — 0.

Lasso is not model selection consistent (Fuchs, 2005; Lv and Fan, 2009).



Restricted eigenvalue, Lasso persistency

Definition (Restricted eigenvalue assumption)

For integer S € Zy and positive ¢y, matrix A satisfies restricted
eigenvalue assumption (RE(S, ¢p)) if for Q = A*A

: . Qx, x
k?(S, cg) := min min ( )
JoCZp, XE]RN_._X#U, M - (X|J[}1X|Jg)
I =S |1x| e 11 <collx]q |1

=0,

.- Qx,
Let C.Dmax(s) = MaXycRrN | supp(x)|<S %



Lasso (model) persistency

Theorem (Lasso persistency, (Bickel et al., 2009))

Under general condition for DS, let for some integer |supp(x*)| < S

and assume RE(S, 3) is satisfied. Let \ = Co\/ 2" and C? > 8.
Then with probability at least 1 — N1-C°/8

. . 16C log N
HXL_X Hﬁ < kz(st)Us M (4)
16C
5 LR |[]2 2
4G~ X < g 3y S1oaN (5)
64Pmax(S)

supp(XL)| <

63 S (6)



Lasso consistency under Incoherent Design Meinshausen and Yu (2009)

Definition ( -Incoherent design)

Let my, be a sequence with my, = o(M). Design matrix is incoherent
for my if

. | : (Qx, x)
lIim inf &min(Myg) > 0. here ¢min(my) = min
e ﬁt‘mm( M) : (Pm.'n( M) XERN, | supp(x) | <My (X,_. X)

We usually consider Sy log M -incoherent design (Sy is sparsity).

Theorem (Meinshausen and Yu (2009) )

Suppose that design matrix satisfies my-Incoherent design for
my = Sulog M, Ay ~ aomy+/M - logNy. Then

logNy — my,

=)+
M @?nm(m?\m)) (m*M

|1x* — XL (Am)|[5 < On(



Lasso consistence under Incoherent Design (Meinshausen and Yu, 2009)

Corollary (Lasso’s consistency, (Meinshausen and Yu, 2009) )

Under condition of the theorem, Lasso is I consistent if

Sulog N -%%(JM’?EHM—}DO.



‘Sharp’ thresholds for Lasso support consistency Wainwright (2009)

Let S be a sparsity set.

Definition (Incoherence and Eigenvalues (I E))

Incoherence condition:
11Qs,5:(Qs.5) |loc.oo < (1 —v) forsome 0 < v < 1(Q = A*A).
Eigenvalues Condition:

Gmin(1/M - Qs.s) = Cmin, Cmin > 0.

Theorem (Lasso support inconsistency, Wainwright (2009))

Probability of sign support equality is less than 1/2 if either
e expression in Incoherence condition > 1+ v > 1, or

e minimum non-zero value in |x*| less than right side of above
inequality.



Lasso’s /., consistency, Wainwright (2009)

Theorem (Lasso’s  consistency, Wainwright (2009))

Under general DS and I&E condition, let \y > 21/271°"  Then for

some ¢, > 0 with probability greater than 1 — 4e=M\u —; 1

a) The lasso has a unique solution x with supp(x) C supp(x*) and
satisfying .. bound:

4o

|£L_X*DC£AM| *ASMDC_{_

1.

b) Ifin addition minimum non-zero value in absolute value of x*
greater than right side of above inequality, then x; has proper
signs.



Efficient condition for RIP verification

Mutual coherence property is easily verifiable.

Rl type properties are complex to verify, since they include min over
all subspaces of given dimensions.

The following papers apply either linear programming or semidefinite
programming to extend RIP verification beyond Random matrices.

e (Juditsky and Nemirovski, 2008), (Juditsky et al., 2009)
e (D’Aspremont and Ghaoui, 2008)



Summary

Signal restoration with random Fourier projection

Compressed Sensing

e Lasso consistency

Efficient restoration and consistency conditions
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Presentation Notes
Introduction (10 min)

Why do we need sparse modeling? 

Historical background and motivation for sparse modeling and compressive sensing. Examples from several application domains, including both statistical and signal processing applications and associated problems that involve sparsity.


Model Selection Consistency of LASSO

e Let X5 be the columns of the nonzero variables in the true model
(support), and let Xsc be the remaining columns (complement)

e (Strong) Irrepresentability condition for model selection (Zhao and Yu,
2006a; Yuan and Lin, 2007b; Zou, 2006; Wainwright, 2009b)

(X Xs) "X Xgc||oo <1 —€, forsome 0 < e < 1

states that the least-squares regression coefficients (i.e., correlations)
for the non-essential variables (Xsc columns) on support variables in Xs
must not be large.

e Relaxing the consistency conditions via Lasso modifications:

e bootstrap Lasso (BOLASSO) Bach (2008a) and stability-selection
(Meinshausen and Buehlmann, 2008) use bootstrap approach: learn
multiple Lasso models on data subsets, and then include the
intersection of nonzeros (Bach, 2008a) or only frequent-enough
nonzeros (Meinshausen and Buehimann, 2008). This gets rid of
“unstable” variables and improves the model-selection consistency and

stability to the choice of A parameter.



Parameter-Estimation Consistency

e due to shrinkage, Lasso produces biases parameter estimation, and is
in general inconsistent

e relaxed Lasso (Meinshausen, 2007) solves Lasso twice: first, to choose
a subset of variables, and second (with less competition among the
variables and thus smaller CV-selected ) to fit the parameters; smaller
A = less shrinkage (less bias)

e alternative - modifying Lasso penalty to shrink large coefficients less
severely: SCAD penalty (Fan and Li, 2005); however, SCAD is

non-convex

e adaptive Lasso (Zou, 2006) approximates SCAD using data-dependent
weighted penalties, but retains convexity; results into consistent
estimates
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Beyond LASSO

Loss(X) + \|[x]|1

Other likelihoods Adding structure
(loss functions) beyond sparsity
m Generalized Linear Models m Elastic Net
(exponential family noise) m Fused Lasso
m Block I1-lg norms:
m Multivariate Gaussians group Lasso
(Gaussian MRFs) simultaneous Lasso




Some Limitations of LASSO

e selects at most n variables when p > n (Osborne et al., 2000)
(but what if more predictors are relevant?)

e does not group correlated variables (Zou and Hastie, 2005):
- even if X; = X;, has many solutions with 3; #
- tends to select one variable out of a group of correlated ones

Truth LASSO

relevant

cluster of
correlated
predictors

5®
O@;



Elastic Net (Zou and Hastie, 2005)

2+ MBI+ Aol 513

3 =arg mﬁi nily — Xs

: Elastic Net penalty:
lasso penalty P y
-=-=- Lasso
A1 > O, )\2= O —— Elastic Net
e 2.1(1 — 3
\ al[Bllz + (1 = a)[[8]l1,
where o = ———
/- -\ A2+ Ay
s\ . &5 ’, By
. >
ridge penalty/ N o Elastic Net
A, =0,A,>0 AP penalty

e /1 keeps singularities at vertices = sparsity
e |> enforces strictly convex edges = grouping effect

e /> removes the limitation on the number of selected variables

NOTE: to eliminate “double-shrinkage”, Elastic Net computes a re-scaled version (1 + /\2)__.-'_'? of the above naive EN estimate /3



Grouping Effect

o strictly convex penalty guarantees 3, = j3; if X; = X,

e )\> controls grouping effect: highly correlated variables have
similar coefficients (and thus are included/excluded together):

5 5 Y1
5 - 41 < B AT=)

T . .
where p = X' X; is the sample correlation (we also assume
same-sign coefficients j3;5 > 0).

e When )\, — oo, Elastic Net becomes equivalent to
univariate soft thresholding:

n ] A\ , : .
Bloc)i = (lyT X' = Z)asign(y™X"). i =1....p.



Example: Application to fMRI Analysis

Pittsburgh Brain Activity Interpretation Competition (PBAIC-07):

m subjects playing a videogame in a scanner

m 24 continuous response variables, e.qg.
« Annoyance
« Sadness

Anxiety

* Dog

Faces

Instructions

Correct hits

Goal: predict responses from fMRI data

L LTl — 4

|
AN h [k IS IR0 U \AJIL‘L,L\H‘A \l Ll ln.‘u lllll. AT AN TS i l“‘lthl‘"l'M‘ h\ h‘ Il Allu‘ | VI I
S AT L ST \ ”rry 11 "’l‘l“ A y'n ”"] | ""‘ TV v ’ly'wm] y, W Y O

« 17 minutes
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GrouPing Effect on PBAIC data (Carroll, Cecchi, Rish, Garg, Rao 2009)

Predicting ‘Instructions’ (auditory stimulus)

Small grouping effect: A, = 0.1 Larger grouping effect: A, = 2.0

Higher A,— selection of more voxels from correlated clusters —
larger, more spatially coherent clusters



Grouping Tends to Improve Model Stability (Carroll, Gecchi, Rish, Garg, Rao 2009)

Stability is measured here by average % overlap between models for 2 runs by same subject

AnnoyedAngry F—

Arons ] Pe———
1 Eeod
| DogVizible
HOLS s Dog
Ridge Faces
il =LAgSO FeartulAnxicus
FruoitsVe ct:lblcs.

<= [IENO0.1 ender
Ha
gl | LEN20 HitFrott b
HitsPeople
HitsWeapons
Hits
Instructions
IntedorExterior
ReadSign
SearchFruoit
ScarchPeople
ScarchWeapons
VERFixation
Instructions VRleatl\lllonh ] Velocity Eiﬂﬁ;_ﬁ'—'
Regression Metho WeaponsTools

|

1

o
oo

R
o

o
D

ﬁrWT

ﬂ

Test Correl.
o
e

o
A

A 10 15
Voxels Common to B oth Runs (%)

=

Among almost equally predictive models,

increasing A, can significantly improve model stability



Another Application: Sparse Models of Pain Perception from fMRI

Predicting pain ratings from fMRI in presence of thermal pain stimulus
(Rish, Cecchi, Baliki, Apkarian, BI-2010)

Best prediction
4

/

for higher Az

Predictive accuracy

(corr. with response)

Pain Prediction

0.8

0.75F

°
3

).65

o
>

—OLS
lambda2=0.1 |
- lambda2=1
—>—lambda2=5 |
-©-lambda2=10

0.55

1500

number of voxels

Including more correlated voxels (increasing A,)
often improves the prediction accuracy as well



Fused Lasso (Tibshirani et al., 2005)

e EN smoothes coefficients uniformly
e But what if there is a natural ordering of the predictors?

e Fused Lasso encourages smoothness along such ordering
(besides sparsity):

p—1
mﬁin ’ ’y — X ;3’ ’% + A4 ’ ”))’ ’1 + A Z ’.,..-:'"'_5),41 — ’J),’

&5

Image courtesy of [Tibshirani et al, 2005]



Group Lasso (Yuan and Lin, 2006)

e \What if there is a natural group structure among the variables?

e functional clusters of genes, or brain voxels
e categorical variables encoded by groups of indicator variables
e multi-task learning: parameters for same feature across all tasks

e Block /-/, penalty selects groups of variables from G = UL G;,
a partition of {1, ....p}:

1 promotes sparsity between the groups,
I, discourages sparsity within the groups:

K
min[ly — X5[3+ A [/
i=1



Group Lasso: Examples

e (Generalized additive models (Bakin, 1999): groups < basis
expansion coefficients for each component function f;:

gE(Y)) =D (X)),  fi(x) = aihk(x)
i k

e Multiple kernel learning (Lanckriet et al., 2004; Bach et al., 2004):
groups < kernels < weights of multi-dimensional features:

m
Kox') =S aii(x. X)), Ki(x.x') = o] (x)i(x’). i(x) € R"
=1

m m
predictor: ZWchb,.-(x)j penalty: ZHWfHZ
i—1 =1

e Sparse vector-autoregressive models: groups < time-lagged
variables of the same time-series (Lozano et al., 20093a)



More on Group Lasso

e Extensions to logistic regression (Meier et al., 2008) and
generalized linear models (Roth and Fischer, 2008)

e Extensions to overlapping groups (Jacob et al., 2009)

e Consistency analysis Bach (2008b)

e Algorithms:

e block-coordinate descent (Yuan and Lin, 2006)

e active set approach (Roth and Fischer, 2008; Obozinski et al., 2010)
e Nesterov’'s method (Liu et al., 2009b)

e greedy approach (group OMP) Lozano et al. (2009b)



Multi-Task (Simultaneous) Variable Selection

e Select a common subset of variables for k problems

e Example: joint feature selection for character-recognition problems for
multiple writers (Obozinski et al., 2010); variables: pixels or strokes

The letter “a "wrirten by 40 different people Samples of the letters s and g for one writer

AARAZrROARARACALCRARL AR IO UG ARk ArdA 4000~
nardde-O0AanfloaracalJdldedolcadifincaan
ageadeaQindhdcoaadcal Jafdodacenegddffuncana
ummaﬁa&1éaamaﬁnmaaangmﬁa&ﬁuu&m@DdﬂmaQnm
AmrﬁﬂﬁGDEﬂa&ﬂDmLﬂﬁkﬁ&aﬂﬂﬂmﬂmhhtmﬂahmaqam

aacrdnifiadffdonanfollioncefoncafrfabdan
noeadedlyiddfoncadanfloateciaasagdfanaaac

paaR?RGAQRAG[{OAcdaddl JAcdadantad(Rascaaaa -
worAfellRdaad{GRadadt afancfoacn@iracodan S E.:' 5 E",l:l 5 ::l

aatadRONiAAfHGUcaddd) Aafofnacofgofdeafan

wnsdadnlfidacflalaf(dRod andafed= afd ~oaee
greodpdioxaffonndidcon Aakodnarn a(ld nodxa 5 E g g 5‘ % ? %

s Maaarnal TAAAarTOn ta™NYAR AR Ma A ar AMa LU IR

e Group-Lasso approach: groups < same-variable coefficients across
tasks (Obozinski et al., 2010, 2009; Liu et al., 2009b)



Multi-Task (Simultaneous) Variable Selection

e Alternative: /1-I« penalty (Turlach et al., 2005; Tropp, 20006):
k k
min Z Ly (7). X. 5()) + A Z 1501l
J= J=

where L(-) is a loss function, y(j) and 3(j) are the response and
parameters for the j-th subproblem, respectively, and

1BU)lee = max{51(/). ... Bp()}-

e In general, composite penalties /1-l4, 1 < g < oo, enforce more variable
sharing among tasks as g = oc: from none (g = 1) to full (¢ = >)

e Hierarchical variable selection with /1-/, (Zhao et al., 2009)

e Efficient algorithms for /1-/: blockwise coordinate descent (Liu et al.,
2009a), projected gradient (Quattoni et al., 2009)
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Beyond Lasso: General Log-likelihood Losses

Loss(X) + Al[X]|
l

—log /T(y\x) + AfIx][-

/1. Gaussian < Lasso \

2. Bernoulli < logistic regression

3. Exponential-family < Generalized Linear Models
(includes 1 and 2)

\\4. Multivariate Gaussian < Gaussian MRFs /

l1-regularized M-estimators



Beyond LASSO

Loss(X) + \||x||

Other likelihoods Adding structure
(loss functions) beyond sparsity

m Generalized Linear Models m Elastic Net
(exponential family noise) m Fused Lasso
m Block [1-lg norms:
m Multivariate Gaussians group Lasso
(Gaussian MRFs) simultaneous Lasso




Sparse Signal Recovery with M-estimators

X2 A
m Can l1-regularization accurately
@ \ recover sparse signals given

general log P(y|x) losses?

m Yes!
(under proper conditions)

m risk consistency of generalized linear models (Van de Geer, 2008)

m  model-selection consistency of Gaussian MRFs (Ravikumar et al, 2008a)

m | generalized linear models: recovery in l2-norm (non-asymptotic regime) for
exponential-family noise and standard RIP conditions on the design matrix
(Rish and Grabarnik, 2009)

m  Asymptotic consistency of general losses satisfying restricted strong convexity,
with decomposable regularizers (Negahban et al., 2009)




Exponential Family Distributions

natural base
parameter measure

log py.o(Y) = _ + 09 @
T

log-partition function

(0) is strictly convex and differentiable
(0) uniquely determines the member distribution of the family

Examples: Gaussian, exponential, Bernoulli, multinomial,
gamma, chi-square, beta, Weibull, Dirichlet, Poisson, etc.



Generalized Linear Models (GLMs)

Epn’;,a (y) — f—1 (AX)

Ey, ,(Y) = n(0) - expectation parameter
Corresponds to the natural parameter § = Ax

f(0) - link function, where f=1(8) = V()

1. Gaussian noise - identity function f(;) = ; (linear regression):

E(y) = Ax

2. Bernoulli noise - logit function f(;1) = log 1:5 (logistic regression)

1
14 e A

E(y)




Summary: Exponential Family, GLMs, and Bregman Divergences

Exponential-Family Distributions

log pys(Y) = Y0 — ¥(0) + log po(y)

Legendre duality:
W(0) < o)

0 = AX
=1(0) = V(0)

Generalized Linear Models Bregman Divergences
Ey) — £ (Ax) 0¥ =009 — 00 -
< (x—y). V6l >
Bijection Theorem (Banerjee et al, 2005): S T Z;\L:f;‘::
_ d(.-*} . 9 {0.1} Bernoulli logistic loss
p’z;':’,@ (y) = @ g (y,LL( )) f(;') (y) !-%‘__ Expon—emia-l Iiakura-?aito distance
I]P._"’J : nD Sphl.J (;auslsian squared Eul:lidZan distance
R" nD Gaussian Mahalanobis distance

Fitting GLM & maximizing exp-family likelihood <~
< minimizing Bregman divergence



Sparse Signal Recovery from Noisy Observations

Euclidean distance (Candes, Romberg and Tao, 2006):

If
e small observation noise: ||y — Ax°||, <e
o A satisfies the restricted isometry property (RIP)

Then the solution to the sparse linear regression problem

x* =argmin |||, s.t. [y — Ax], < ¢

is a good approximation of x°, i.e. ||[x* — x°||, < Cs - e.

4

Generalized Linear Models:

replace Euclidean distances ||y — Ax°||, and ||y — Ax||, by the
corresponding Bregman divergences d(y, ji(Ax°)) and d(y, j1(Ax)).




Sparse Signal Recovery with Exponential-Family Noise

/ \

Y  pyle) 0 A m X
L R .
I noise I |

observations natural design matrix
parameters

|

sparse signal

Can we recover a sparse signal
from a small number of noisy observations?



Sufficient Conditions

1

Noise is small:
df/)-:‘. (yf M(A';:,:QZ‘O)) < €

}
Po; (yf)

y
-

A A A

4

0; =

bounded ¢; " (y)

2 3
Restricted Isometry S-Soparse
Property (RIP) Xl < s
I | .
A o X
J ] L]
| ]

Then the solution x* to the sparse GLM regression problem
min||x||1 subject to Y d(y;, (Aix)) < e

f
is a good approximation of x°, i.e. ||x* — x°||, < Cs - d(e)

§(¢€) - continuous monotone increasing function, and §(0) = 0 (i.e. d(¢) is small when ¢ is small).

*otherwise, different proofs for some specific cases (e.g., Bernoulli, exponential, etc. )



Summary

e sparse signal recovery (Candes, Romberg & Tao, 2006) can be
extended from linear to generalized linear models
(exponential-family observation noise)

e signal recovery requires solving an /y-reqularized Generalized
Linear Model (GLM) regression problem

e recovery conditions include, besides standard RIP for design
matrix:
(1) small noise (Bregman divergence) d,(yi, u(Ai.x°)) <e
(2) certain conditions on ¢

e results also hold for compressible (rather than sparse) signals



Beyond LASSO

Loss(X) + \||x||

Other likelihoods Adding structure
(loss functions) beyond sparsity

m Generalized Linear Models m Elastic Net
(exponential family noise) m Fused Lasso
m Block [1-lg norms:
m Multivariate Gaussians group Lasso
(Gaussian MRFs) simultaneous Lasso




Markov Networks (Markov Random Fields)

X=1{X,...X,}, G=(V,E)

P(X) = Z H dc(Xc) u '\ [ =
CeCliques __ x\“_
Lack of edge (/,j) — \J <

conditional independence X; L Xj|rest

Gaussian Markov Networks (GMRFs):

e P(x) = (27)" = det(X) 2 exp (—5(x — p)TZ 7' (x — p))
e Y - covariance matrix, ¥~ - precision (concentration) matrix

e Zeros in X: marginal independence

Zeros in X~ « conditional independence < lack of edge
(Lauritzen, 1996)

e Sparse X! < sparse Markov network



Sparse Markov Networks in Practical Applications

m Social Networks 7
1 US senate voting data (Banerjee et al, 2008): W Vo
democrats (blue) and republicans (red) g — *.’,/‘L

m Genetic Networks £
1 Rosetta Inpharmatics Compendium of gene expression - - -';:-,__. TR

profiles (Banerjee et al, 2008) = :.-

m Brain Networks from fMRI
1 Monetary reward task (Honorio et al., 2009)

1 Drug addicts more connections in cerebellum
( ) vs control subjects (more connections
in prefrontal cortex — green)

L

(a) Drug addicts (b) controls



Sparse MRFs Can Predict Well

Classifying Schizophrenia Mental state prediction
(Cecchi et al., 2009) (sentence vs picture)*:

(Scheinberg and Rish, submitted)

o
86% accuracy 90% accuracy
08 I I I ‘ 0.5 T T T T T - T T
== IRF (0.1): degree (long—distance) — sparse MRF (1.0)
0T —8— GNB: degree (long—-distance) i 0451 —8—error N
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MREF classifiers can often exploit informative interactions among
variables and often outperform state-of-art linear classifiers (e.g., SVM)

*Data @ www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/ from T. Mitchell et al., Learning to Decode Cognitive States from Brain Images,
Machine Learning, 2004.



http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

Network Properties as BioMarkers (Predictive Features)

Discriminative Network Models of Schizophrenia (Cecchi et al., 2009)

- Voxel degrees in functional networks (thresholded covariance matrices)

are statistically significantly different in schizophrenic patients that appear to
lack “hubs” in auditory/language areas

FDR-corrected Degree Maps

2-sample t-test performed for each voxel in
degree maps, followed by FDR correction

Red/yellow: Normal subjects have Ajgher
values than Schizophrenics

Also, abnormal MRF connectivity observed in Alzheimer’s patients (Huang 2009),
in drug addicts (Honorio 2009), etc.




Sparse Inverse Covariance Selection Problem

e Firstintroduced in (Dempster, 1972)

maximum-likelihood (MLE) with bounded number of X' # 0

intractable for large p; also, MLE may not even exist for n > p

e Most recent approaches exploit /i-regularization

tractable up to thousands of variables
handle n > p cases
enforce zeros in ¥~ explicitly, while MLE does not

e Neighborhood selection via Lasso (Meinshausen and Buhimann, 2006):

L

very simple and scalable approach

(1) fits Lasso to each X; given the rest of the nodes; (2) includes
link (7, /) if both X; and X; models include it (or, use OR-rule);

consistently estimates the network structure (zero-pattern of ¥ 1)
but not the actual parameters! (may violate symmetry and posdef

constraints on ¥ )

can be viewed as an approximation to the /i-regularized (joint)
maximum-likelinood problem



Maximum Likelihood Estimation

Assume the data X are centered to have zero mean. Then:

Al

31 — argmax log p(C|X) = argmax log p(X, C) =
C>0 >0

= argmaxlogdet(C) — tr(SC)

C>0

where S = 1N ZL x,,-Tx,- IS the empirical covariance matrix (MLE of X)

Why not justuse ¥—1 = S—17?

e in small-sample case (n < p), S may not be even invertible
e even ifitis, S~' almost never contains exact zeros

e /[{-regularization takes care of both issues!



i-Regularized Maximum Likelihood Problem

Primal:

~

> ! = argmax log det(C) — tr(SC)—\||C||4 (1)

C~0

Convex problem; unique optimum for any A > 0 (Banerjee et al., 2008)

Dual:

> = {arg max log det(W) : [|W — S| < A} (2)

The dual estimates the covariance ¥, rather than its inverse
The constraint W - 0 is implicit since log det(W) = —oc when W £ 0
Smooth and convex problem; can be solved by an interior-point method

However, the complexity is O(p° log(1/¢) (where ¢ is a solution accuracy)

Not scalable for more than a few hundred nodes




Block-Coordinate Descent on the Dual Problem

Initialize: W «— S + \I

lterate over columns of W until convergence:

1. swap the j — th column (row) with the last column (row) in W and S:
W:(Wy W12) S:<S1T1 S12
Wia W22 Sip S22
2. Solve a box-constrained quadratic program (QP):

Wnp = argmin{y Wiy« |ly = sizlle <A} (3)
3. Update W using the new estimate w;»

COVSEL (Banerjee et al., 2006):

solves (3) using an interior-method approach; overall time is O( Tp*)
where T is the number of sweeps through all columns

GLASSO (Friedman et al., 2007):

solves the dual of (3) (Lasso problem), using coordinate descent;
about O(Tp®) complexity, much faster than COVSEL empirically



Projected Gradient on the Dual Problem
min f(x)
X

xeS (S isconvex)

lteratively update x until convergence:

1. x < x + aVIf(x) (step of size « in the direction of gradient)

2. x «+ Mg(x) = argmin,{||x — z||» : z € S} (project onto S)

(Duchi et al., 2008) applies the PG approach to the dual problem (2)
S is defined by the box-constraint in (2)

O(p®) complexity - similar to glasso, but twice as fast empirically



Alternatives: Solving Primal Problem Directly

1. Greedy coordinate ascent approach: SINCO (Scheinberg et al., 2009)

® updates one diagonal or two (symmetric) off-diagonal elements of C at each step
® evaluating each Cj takes constant time (solving quadratic equation),
thus each step takes O(p?) time and can be easily parallelized

® naturally preserves the sparsity of a solution; can reduce false-positive error
by not including “weak” edges not contributing much to the objective

® Speedwise, comparable to glasso; outperforms glasso on large-scale problems

800, n=500

{a) Random

CPU time comparison: SINCO vs glasso on (a) random networks |
fixed range of A) and (b) scale-free networks (density 219, N and A scaled by the same
factor with p. N = 500 for p = 100).

2. (Honorio et al., 2009) also solve the primal problem:
® Optimize over each column (node) at a time

® Exploit “local constancy” structure adding a regularizer similar to fused Lasso



Additional Related Work

e (Yuan and Lin, 2007) solve the primal problem (1) using interior-point
method for the maxdet problem (Vandenberghe et al., 1998)

e (Lee et al., 2007) learn MRFs using cligue selection heuristic and
approximate inference

e (Wainwright et al., 2007) extend the approach of (Meinshausen and
Buhlmann, 2006) to binary MRFs Ising models, applying sparse logistic
regression at each node, and derive asymptotic consistency results

e (Schmidt et al., 2007) apply /;-regularization to structure learning in
Bayesian networks

e (Huang et al., 2009) prove the monotone property of (1) under
decreasing A (i.e., connected nodes stay connected with decreasing
sparsity levels)

e (Lin et al., 2009) propose an alternative approach based on
ensemble-of-trees that is shown to sometimes outperform
l;-regularization approaches of (Banerjee et al., 2008) and (Wainwright
et al., 2007)

e (Schmidt and Murphy, 2010) learn log-linear models with higher-order
(beyond pairwise) potentials; use group-/ regularization with
overlapping groups to enforce hierarchical structure over potentials



Selecting the Proper Regularization Parameter

“...the general issue of selecting a proper amount of regularization for getting a
right-sized structure or model has largely remained a problem with unsatisfactory
solutions® (Meinshausen and Buehlmann , 2008)

“asymptotic considerations give little advice on how to choose a specific penalty
parameter for a given problem" (Meinshausen and Buehlmann , 2006)

m Bayesian Approach (N.Bani Asadi, K. Scheinberg and I. Rish, 2009)
Assume a Bayesian prior on the regularization parameter

Find maximum a posteriory probability (MAP) solution

m Result;

more ""balanced” solution (False Positive vs False Negative error) than
m cross-validation - too dense, and

m theoretical (Meinshausen & Buehlmann 2006, Banerjee et al 2008) - too sparse

Does not require solving multiple optimization problems over data subsets as
compared to the stability selection approach (Meinshausen and Buehimann 2008)



Existing Approaches

1. Cross-validation based on predictive accuracy:

e Aims at the prediction rather than the structure reconstruction accuracy!

e (CV-estimate approximates the prediction-oracle A\, that does not lead to
consistent model-selection due to possible inclusion of noisy edges
(Meinshausen and Buhimann, 2006)

e Indeed, empirically, CV-estimate yields too high false-positive rate

2. Theoretical approach (Banerjee et al., 2008):

guarantees consistent reconstruction of connected components for each
node (i.e., rows in covariances matrix, rather than its inverse):

guarantees that .
PEk e {1,..0}:Ck C C) £ o,

where @g\ is an estimate of the connectivity component of node k, and Cx is
its “true” component.

e Controls the false positive error in ¥, rather than ¥~
e Too conservative, empirically: misses many edges



Being Bayesian about \

A as a random variable; learn its distribution

Maximize the joint log likelihood

y 1= In p(X. C. \
,. Crr;% np(X,C,\)

p(X. C.2) = p(X|C)p(CIN)p())
Thus, we need to solve:

N ; 2 A
max E[In det(C) — tr(SC)] + P?In 5 A[Cl|1 + Inp(N).

The choice of P(\): flat? exponential? Gaussian? efc.




Results on Random Networks
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- Theoretical (black) is too conservative: misses too many edges (near-diagonal C)

- Prior-based approaches (red and blue) are much more ‘balanced’: low FP and FN
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The Bayesian A
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Historical background and motivation for sparse modeling and compressive sensing. Examples from several application domains, including both statistical and signal processing applications and associated problems that involve sparsity.


Sparse Matrix Factorization

e Dictionary learning
(Elad and Aharon, 2006; Raina et al., 2007; Mairal et al., 2009):

T

X U Vv

0 A,
Q2 S —~ "
o o ; T||2 -
= o~ . < g = min[[X — UV']| +)\;||U(f--)ll1
3 N C a8 |
c 2 B |=tam VeI <1
" T © ==
) ol
p variables sparse representation J €
sparse U(i, :) < sparse representation in dictionary V

e Sparse PCA (Zou et al., 2006; d’Aspremont et al., 2007):
sparse V(:,J) (loadings/coordinates of components) — interpretability

e other sparse matrix factorization methods:
sparse CCA (Sriperumbudur et al., 2009; Hardoon and Shawe-Taylor,
2008), sparse NMF (Hoyer, 2004), with applications to blind-source
separation and diagnosis (Chandalia and Rish, 2007)
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From Variable Selection to Variable Construction

Supervised Dimensionality Reduction (SDR):

Assume there is an inherent low-dimensional
structure in the data that is predictive about
the target Y

Learn a predictor (mapping from U to Y)
simultaneously with dimensionality reduction

|ldea: dimensionality reduction (DR) guided by
the class label may result into better predictive
features than the unsupervised DR



Particular Mappings X—U and U—Y

1.  F. Pereira and G. Gordon. The Support Vector Decomposition Machine, ICML-06.
Real-valued X, discrete Y (linear map from X to U, SVM for Y(U) )

2. E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with application to clustering with
side information, NIPS-02.

3. K. Weinberger, J. Blitzer and L. Saul. Distance Metric Learning for Large Margin Nearest Neighbor
Classification, NIPS-05.

Real-valued X, discrete Y (linear map from X to U, nearest-neighbor Y (U))

4. K. Weinberger and G. Tesauro. Metric Learning for Kernel Regression, AISTATS-07.
Real-valued X, real-valued Y (linear map from X to U, kernel regression Y(U))

5.  Sajama and A. Orlitsky. Supervised Dimensionality Reduction using Mixture Models, ICML-05.
Multi-type X (exp.family), discrete Y (modeled as mixture of exp-family distributions)

6. M. Collins, S. Dasgupta and R. Schapire. A generalization of PCA to the exponential family, NIPS-01.
7.  A.Schein, L. Saul and L. Ungar. A generalized linear model for PCA of binary data, AISTATS-03
Unsupervised dimensionality reduction beyond Gaussian data (nonlinear GLM mappings)

8. I. Rish, G. Grabarnik, G. Cecchi, F. Pereira and G. Gordon. Closed-form Supervised Dimensionality
Reduction with Generalized Linear Models, ICML-08



Example: SDR with Generalized Linear Models (Rish et al., 2008)

Generalized Linear Models (GLMs)
E(X4) = f;'(UVq)
E(Yk) = fi ' (UW)

E.g., in linear case, we have:
X~UV and Y~ UV



Supervised DR Outperforms Unsupervised DR on Simulated Data

0.7 T T .
m Generate a separable 2-D ig;“;‘g:_SSDDRR
dataset U Sl Logistic-UDR
. | =F—=SVM-UDR
O L = e
m  Blow-up in D dimensional data = ST o= ;
X by adding exponential-family e ool
noise (e.g., Bernoulli) %
O |
m  Compare SDR w/ different @0
noise models (Gaussian, Sl
Bernoulli) vs. unsupervised DR
(UDR) followed by SVM or ‘)
logistic regression o /

FanY £ L i L 1
b6 b LMD s00 600 700 800 900 1000

(data dimensionality)

m  SDR outperforms unsupervised DR by 20-45%
m Using proper data model (e.g., Bernoulli-SDR for binary data) matters

m  SDR "gets” the structure (0% error), SVM does not (20% error)




...and on Real-Life Data from fMRI Experiments

Real-valued data, Classification Task
Predict the type of word (tools or buildings) the subject is seeing
84 samples (words presented to a subject), 14043 dimensions (voxels)

Latent dimensionality L = 5, 10, 15, 20, 25

method\ L 5 10 15 20 25
Gaussian-SDR | 0.21]] 0.26 | 0.23 [ 0.20 || 0.23
Logistic-UDR | 0.44 | 0.42 [L0.29 |[ 0.30 | 0.26

SVM-UDR 0.49 | 0.52 | _0.56 | 0.57 | 0.55

SVDM 0.32 | 0.25 |L0.21 | 0.23 | 0.23
SVM 0.21

Gaussian-SDR achieves overall best performance
SDR matches SVM'’s performance using only 5 dimensions, while SVDM needs 15

SDR greatly outperforms unsupervised DR followed by learning a classifier
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Summary and Open Issues

L Common problem: small-sample, high-dimensional inference

0 Feasible if the input is structured — e.g. sparse in some basis

C Efficient recovery of sparse input via I1- relaxation

- Sparse modeling with |1-regularization: interpretability + prediction

m Beyond I1-regularization: adding more structure

C Beyond Lasso: M-estimators, dictionary learning, variable construction

- Open issues, still:
choice of regularization parameter?
choice of proper dictionary?

Is interpretability <& sparsity? (NO!)



Interpretability: Much More than Sparsity?

Data
X = fMRI voxels,

Predictive Model

y = f(x)
Y - mental state
4 +
Interpretable + happy
Predictive =) T
Patterns sad
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Why Exponential Family Loss?

m  Network Management — Problem Diagnosis: Al
1 binary failures - Bernoulli

[1 non-negative delays — exponential
=
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m Collaborative prediction: b robing station
1 discrete rankings - multinomial

m  DNA microarray data analysis:
1 Real-valued expression level — Gaussian

m fMRI data analysis
1 Real-valued voxel intensities, binary, nominal and continuous responses

Variety of data types: real-valued, binary, nominal, non-negative, etc.

iy

Noise model: exponential-family
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Bregman Divergences

Definition. Given a strictly convex function ¢ : S — R defined on a
convex set S C R, and differentiable on the interior of S, int(S), the
Bregman divergence d, : S x int(S) — [0.c0) IS

dy(%,Y) = 6(X) — hy(x),

where h,(x) = o(y)+ < (x —Y),Vo(y) > is the value of the
first-order Taylor expansion of ¢ aroundy evaluated at point X.

dcf) (;C, y)

Fig. 1. Relative entropy (KL-divergence)



Bijection Theorem

Theorem [Banerjee et al., 2005]. There is a bijection between the
exponential-family densities p,, ¢(-) and Bregman divergences

d(;‘)(', Ju’):
Pu.o(Y) = exp(—dy (Y, 11(0)))fs(Y).

o u(0) = Ep,,(Y)

o 1=V (0),0=Vo(u)

e ¢ - (strictly convex and differentiable) Legendre conjugate of v
e f4(y) - a uniquely determined function

Legendre duality:

PEOET R
Exponential-family Bregman
distribution divergence

Image courtesy of Arindam Banerjee



Appendix A

Lemma 1 Let y denote a random variable following an
exponential-family distribution py(y), with the natural parameter 6,
and the corresponding mean parameters ;(6). Let d,(y, 11(0)) denote
the Bregman divergence associated with this distribution. If If

d,(y, 12 (6°)) < e (small noise),

ds(y,u*(0*)) <e (constraint in GLM problem), and

¢"(y) exists and is bounded on [Ymin, Ymax|, where
Ymin = min{y, 1°, 1*} and ymax = max{y, p°, pi* 1,

then
2\ 2€ |
9% — 60| < : max _|¢"()).

o e~ (Y e[l
\/mlnye[ymmiymax] " () Frelmm]

However, in some specific cases when condition on ¢(y) is not

satisfied (e.g., logistic loss ¢ (y) = y(%y) and some others), similar

result can still be shown, i.e. |§* — 0°| < 3(¢), where 3(e) is
continuous monotone increasing function, and §(0) = 0, i.e. d(¢) is
small when ¢ is small (Rish and Grabarnik, 2009).



Appendix B

Theorem 1.
If

o x%is s-sparse
e Aobeys RIP with same constants as in [CR&T, 2006]

e Observation noise in y; follows exponential-family distributions
po, (i), with the natural parameter 0; = (A;.x°)

o the noise is sufficiently small, i.e. Vi, d, (v, u(Ai.x°)) < ¢, and
e ¢; satisfies certain conditions (specified below)

Then the solution to the sparse GLM regression problem

min||x||1 subjectto Y " d(y;, n(Aix)) < ¢
/

is a good approximation of x°, i.e. ||x* — x°||;, < Cs - d(e),

d(€) - continuous monotone increasing function, and §(0) = 0
(i.e. d(¢) is small when ¢ is small).



Proof Idea

e Follows the proof of Theorem 1 in [CR&T]
e Only have to prove condition 1 (“tube constraint”):
167 = 61, = [|AX" — Ax°|]), < d(e)

given that Vi, d(y;, i(A;.x%)) < e [~
and Vi, d(y. u(A.x%) < ¢

For Gaussian noise (Euclidean distance),
this follows easily from triangle inequality \ gy
(given ||y — AX|), < e and ||y — AXT|), < e),
which does not hold for Bregman divergences, in general.

e Condition 2 (“cone constraint”) remains intact: it does not depend
on the particular form of the constraint in the /;-minimization
problem, and only makes use of the sparsity of x° and
l;-optimality of x*.






Beyond LASSO

m Elastic Net penalty m  Generalized Linear Models

m Fused Lasso penalty (exponential family noise)

m Block [1-lg norms:

group & multi-task penalties = Multivariate Gaussians
(Gaussian MRFs)

Other penam %’t’her losses

(structured (other data likelihoods)

sparsity) LASSO

Improving consistency and stability
w.r.t. the sparsity parameter choice

Adaptive Lasso
Relaxed Lasso
Bootstrap Lasso

Randomized Lasso w/
Stability selection
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