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Decoding:
Inference, learning

)|(maxarg* yxx
x
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Can we recover a high-dimensional X from a low-dimensional Y?

A Common Problem

X1 X2 X3 X4
Unknown

state of world X5

(Noisy) encoding
Y=f(X) 

X2

encoding preserves information about X 

Examples: 
Sparse signal recovery (compressed sensing, rare-event diagnosis)

Sparse model learning

Yes, if:
X is structured; e.g., sparse (few  Xi = 0 ) or compressible (few large Xi) /

Y1 Y2Observations 
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Example 1:  Diagnosis in Computer Networks

(Beygelzimer, Kephart and Rish 2007)

Recover sparse  state  (`signal’)  X  from noisy linear observations

Problem structure:  X is nearly sparse  - small number of large delays 

Task: find bottlenecks (extremely slow links)  using probes  (M << N) 



Data: high-dimensional, small-sample
10,000 - 100,000  variables (voxels)

100s of samples (time points, or TRs)

Task: given fMRI, predict mental states
emotional: angry, happy, anxious, etc.

cognitive: reading a sentence vs viewing an image

mental disorders (schizophrenia, autism, etc.)

fMRI image courtesy of fMRI Research Center @ Columbia University

Example 2:  Sparse Model Learning from fMRI

 

Data

Issues:

Overfitting: can we learn a predictive model that generalizes well?

Interpretability: can we identify brain areas predictive of mental states?



Small number 
of Predictive 
Variables ?

Sparse Statistical Models:  Prediction + Interpretability

+
++

+
- -

-
-

-

Data Predictive Model  
y = f(x)

x - fMRI voxels, 

y - mental state

sad

happy

Sparsity variable selection      model  interpretability

Sparsity regularization            less overfitting / better prediction



Sparse Linear Regression    

y
 

=
 

Ax
 

+  noise

fMRI

 

data (“encoding’)
rows –

 

samples (~500)
Columns –

 

voxels

 

(~30,000)

Unknown
parameters
(‘signal’)

Measurements:
mental states, behavior,
tasks or stimuli

fMRI activation image and time-course courtesy of Steve Smith, FMRIB

Find small number of most relevant  voxels

 

(brain areas)    



design
(measurement)

matrix

Sparse Recovery in a Nutshell

Can we
 

recover a sparse input efficiently
from a

 
small number of measurements?

noiseless
observations sparse input



N dimensions

K nonzeros

M  

from just                                         measurements

efficiently - by solving convex problem  
( linear program)

``Compressed Sensing Surprise’’:

Given

 

random A

 

(i.i.d. Gaussian entries),        can be reconstructed 
exactly (with high probability):   

Sparse Recovery in a Nutshell



M  

In general,   if

 

A  is ``good’’

 

(e.g., satisfies

 

Restricted Isometry

 

Property 
with a proper constant), sparse          can be reconstructed with M <<N
measurements by solving (linear program):

N dimensions

K nonzeros

Sparse Recovery in a Nutshell



sparse input

design
(measurement)

matrix

noise

noiseless
observations

observations

And what if there is noise in observations? 

Sparse Recovery in a Nutshell



Still, can reconstruct the input accurately

 

(in l2-sense), for A 
satisfying RIP; just solve a noisy version

 

of our l1-optimization:

(Basis Pursuit, aka Lasso)

Sparse Recovery in a Nutshell



Sparse Linear Regression vs
 

Sparse Signal Recovery  

Both solve the same optimization problem

Both share efficient algorithms and theoretical results

However, sparse learning setting is more challenging:

We do not design the “design” matrix, but rather deal with  
the given data

Thus, nice matrix properties may not be satisfied 
(and they are hard to test on a given matrix, anyway)

We don’t really know the ground truth (``signal”) – but 
rather assume it is sparse  (to interpret and to regularize)  

Sparse learning includes a wide range of problems beyond 
sparse linear regression (part 2 of this tutorial)
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Motivation: Variable Selection



Model Selection as Regularized Optimization



Bayesian Interpretation: MAP Estimation



Log-likelihood Losses: Examples







lq-norm constraints for different values of q

Image  courtesy of  [Hastie, Friedman and Tibshirani, 2009]

What is special about  l1-norm?   Sparsity

 

+ Computational Efficiency
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Lasso vs

 

Ridge and Best-Subset in Case of  Orthonormal

 

Designs

Image  courtesy of  [Hastie, Friedman and Tibshirani, 2009]

hard thresholding shrinkage soft  thresholding







Geometric View of LARS   

Image  courtesy of  [Hastie, 2007]



Piecewise Linear Solution Path: LARS vs
 

LASSO
LARS vs

 

LASSO for pain perception prediction from fMRI

 

data [Rish, Cecchi, Baliki, Apkarian, 2010]:
for illustration purposes,  we use just n=9 (out of 120)  samples, but p=4000 variables; LARS selects n-1=8 variables
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Beyond LASSO

Elastic Net 
Fused Lasso
Block l1-lq norms: 

group Lasso
simultaneous Lasso

Other likelihoods 
(loss functions) 

Adding structure
beyond sparsity

Generalized Linear Models 
(exponential family noise)

Multivariate Gaussians  
(Gaussian MRFs)



LASSOTruth

relevant

 cluster of 
correlated 
predictors



ridge penalty

 
λ1 = 0, λ2

 

> 0 

lasso penalty

 
λ1 > 0, λ2

 

= 0

Elastic Net

 
penalty





subjects playing a videogame in a scanner

17 minutes

Example:  Application to fMRI

 

Analysis

Pittsburgh Brain Activity Interpretation Competition (PBAIC-07):

24 continuous response variables, e.g.
•

 

Annoyance
•

 

Sadness
•

 

Anxiety
•

 

Dog
•

 

Faces
•

 

Instructions
•

 

Correct hits

Goal:  predict responses from fMRI
 

data



Higher λ2

 

→ selection of more voxels from correlated  clusters →
larger, more spatially coherent clusters

Small grouping effect:

 

λ2

 

= 0.1 Larger grouping effect:

 

λ2

 

= 2.0

Grouping Effect on PBAIC data

Predicting ‘Instructions’

 

(auditory stimulus) 

(Carroll, Cecchi, Rish, Garg, Rao

 

2009)



Instructions VRFixation Velocity
0

0.2

0.4

0.6

0.8

1

Regression Method

T
es

t 
C

o
rr

el
.

OLS
Ridge
LASSO
EN 0.1
EN 2.0

Among almost equally predictive models,

Grouping Tends to Improve Model Stability

Stability is measured here by average % overlap between models for 2 runs by same subject 

(Carroll, Cecchi, Rish, Garg, Rao

 

2009)

increasing λ2

 

can significantly improve model stability  
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OLS
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Another Application:  Sparse Models of Pain Perception from fMRI

Including more correlated voxels
 

(increasing λ2

 

) 
often improves the prediction accuracy as well

Predicting pain ratings from fMRI

 

in presence of thermal pain stimulus   
(Rish, Cecchi, Baliki, Apkarian, BI-2010)

number of voxels

P
re

di
ct

iv
e 

ac
cu

ra
cy

 

(c
or

r. 
w

ith
 re

sp
on

se
)

Best prediction 

for higher λ2



Image  courtesy of  [Tibshirani et al, 2005]





Group Lasso: Examples



More on Group Lasso
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Beyond Lasso: General Log-likelihood Losses

1.  Gaussian  Lasso

2.  Bernoulli logistic regression

4.  Multivariate Gaussian Gaussian MRFs

3.  Exponential-family Generalized Linear Models
(includes 1 and 2)

l1-regularized  M-estimators



Beyond LASSO

Elastic Net 
Fused Lasso
Block l1-lq norms: 

group Lasso
simultaneous Lasso

Other likelihoods 
(loss functions) 

Adding structure
beyond sparsity

Generalized Linear Models 
(exponential family noise)

Multivariate Gaussians  
(Gaussian MRFs)

Generalized Linear Models 
(exponential family noise)

Multivariate Gaussians  
(Gaussian MRFs)



Sparse Signal Recovery

 

with M-estimators 

risk consistency of generalized linear models (Van de Geer, 2008)

model-selection consistency of Gaussian MRFs (Ravikumar et al, 2008a) 

generalized linear models: recovery in l2-norm (non-asymptotic regime) for 
exponential-family noise and standard RIP conditions on the design matrix        
(Rish and Grabarnik, 2009)

Asymptotic consistency of general losses satisfying restricted strong convexity,  
with decomposable regularizers (Negahban et al., 2009) 

Yes!
(under proper conditions)

. Can l1-regularization accurately 
recover sparse signals given 
general log P(y|x) losses?



Exponential Family Distributions

natural
parameter

log-partition function

base 
measure

Examples:  Gaussian, exponential, Bernoulli, multinomial, 
gamma, chi-square, beta, Weibull, Dirichlet, Poisson, etc.



Generalized Linear Models (GLMs)



Summary: Exponential Family, GLMs, and Bregman

 

Divergences    

Exponential-Family Distributions

Generalized Linear Models Bregman
 

Divergences

Bijection

 

Theorem (Banerjee

 

et al, 2005):  

Fitting GLM maximizing exp-family likelihood
minimizing Bregman divergence

Legendre duality:





sparse signal

design matrixnatural 
parameters

noise

observations

Sparse Signal Recovery with Exponential-Family Noise 

Can we recover a sparse signal 
from a small number of noisy observations?



Sufficient Conditions   

Noise is small:
1

Restricted Isometry

 Property

 

(RIP)  

2
s-sparse 

3

*otherwise, different  proofs for some specific cases (e.g., Bernoulli, exponential, etc. )

bounded

4
*





Beyond LASSO

Elastic Net 
Fused Lasso
Block l1-lq norms: 

group Lasso
simultaneous Lasso

Other likelihoods 
(loss functions) 

Adding structure
beyond sparsity

Generalized Linear Models 
(exponential family noise)

Multivariate Gaussians  
(Gaussian MRFs)

Generalized Linear Models 
(exponential family noise)

Multivariate Gaussians  
(Gaussian MRFs)



Markov Networks  (Markov Random Fields)



Social Networks
US senate voting data (Banerjee et al, 2008):  
democrats (blue)

 

and republicans (red)

Sparse Markov Networks in Practical Applications

Genetic  Networks
Rosetta Inpharmatics Compendium of gene expression 
profiles (Banerjee et al, 2008)

Brain  Networks from fMRI
Monetary reward task (Honorio et al., 2009)
Drug addicts more connections in cerebellum 
(yellow) vs control subjects (more connections 
in prefrontal cortex – green)

(a) Drug addicts        (b) controls



Sparse MRFs

 

Can Predict Well  

*Data @ www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

 

from T. Mitchell et al., Learning to Decode Cognitive States from Brain Images,
Machine Learning, 2004.

Classifying Schizophrenia
(Cecchi

 

et al., 2009)

86% accuracy
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sparse MRF (1.0)
error

Mental state prediction 
(sentence vs

 

picture)*:
(Scheinberg

 

and Rish, submitted)

90%

 

accuracy 

MRF classifiers can often  exploit informative interactions among 
variables and often outperform state-of-art linear classifiers

 

(e.g., SVM)

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/


FDR-corrected Degree Maps

Network Properties as BioMarkers

 

(Predictive Features)      

2-sample t-test performed  for each voxel

 

in 
degree maps, followed by FDR correction

Red/yellow: Normal subjects have higher

 values than Schizophrenics

-

 

Voxel

 

degrees in functional networks (thresholded

 

covariance

 

matrices) 
are statistically significantly different in schizophrenic patients that appear to 
lack “hubs”

 

in auditory/language areas

Discriminative Network Models of Schizophrenia (Cecchi

 

et al., 2009)

Also, abnormal MRF connectivity observed in  Alzheimer’s patients (Huang 2009), 
in drug addicts (Honorio

 

2009), etc.



Sparse Inverse Covariance Selection Problem



Maximum Likelihood Estimation





Block-Coordinate Descent on the Dual Problem



Projected Gradient on the Dual Problem



Alternatives: Solving Primal Problem Directly

1.

2.



Additional Related Work 



Bayesian Approach (N.Bani Asadi, K. Scheinberg and I. Rish, 2009)
Assume a Bayesian prior on the regularization parameter

Find maximum a posteriory probability (MAP) solution

Selecting the Proper Regularization Parameter

“…the general issue of selecting a proper amount of regularization

 

for getting a 
right-sized structure or model has largely remained a problem with unsatisfactory 
solutions“

 

(Meinshausen

 

and Buehlmann

 

, 2008)

“asymptotic considerations give little advice on how to choose a specific penalty 
parameter for a given problem'‘

 

(Meinshausen

 

and Buehlmann

 

, 2006)

Result:
more ``balanced’’ solution (False Positive vs False Negative error)  than 

cross-validation - too dense,  and 

theoretical (Meinshausen & Buehlmann 2006, Banerjee et al 2008)  - too sparse

Does not require solving multiple optimization problems over data subsets as 
compared to the stability selection approach (Meinshausen and Buehlmann 2008)



Existing Approaches 





Results on Random Networks 
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Flat Prior (Reg. Likelihood)
Exp. Prior
Theoretical
CV
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Flat Prior (Reg. Likelihood)
Exp. Prior
Theoretical
CV

- Cross-validation (green) overfits drastically, producing almost complete C matrix

False Negatives: Missed Links False Positives: ‘Noisy’

 

Links 

- Theoretical (black) is too conservative: misses too many edges (near-diagonal C)

- Prior-based approaches (red and blue) are much more ‘balanced’: low FP and FN
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Sparse Matrix Factorization
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Supervised Dimensionality Reduction (SDR):

U1

X1 XD

YK

UL

Y1

…

…

…

From Variable Selection to Variable Construction 

Learn a predictor (mapping from U to Y)  
simultaneously with dimensionality reduction 

Assume there is an inherent low-dimensional
structure in the data that  is predictive about 
the target Y 

Idea: dimensionality reduction (DR) guided by 
the class label may result into better predictive 
features than the unsupervised DR



Particular Mappings   X      U   and   U      Y

1. F. Pereira and G. Gordon. The Support Vector Decomposition Machine,

 

ICML-06.
Real-valued X, discrete Y (linear map from X to U, SVM for Y(U) )

2. E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with application to clustering with 
side information, NIPS-02.

3. K. Weinberger,  J. Blitzer and L. Saul.  Distance Metric Learning for Large Margin Nearest Neighbor 
Classification, NIPS-05.

Real-valued X, discrete Y (linear map from X to U, nearest-neighbor Y(U))

4. K. Weinberger and G. Tesauro. Metric Learning for Kernel Regression, AISTATS-07.
Real-valued X, real-valued Y (linear map from X to U, kernel regression Y(U))

5. Sajama and A. Orlitsky. Supervised  Dimensionality Reduction using Mixture Models, ICML-05.
Multi-type X (exp.family), discrete Y (modeled as mixture of exp-family distributions)

6. M. Collins, S. Dasgupta

 

and R. Schapire. A generalization of PCA to the exponential family, NIPS-01.
7. A. Schein, L. Saul and L. Ungar. A generalized linear model for PCA of binary data, AISTATS-03

Unsupervised dimensionality reduction beyond Gaussian data (nonlinear GLM mappings) 

8.    I. Rish, G. Grabarnik, G. Cecchi, F. Pereira and G. Gordon. Closed-form Supervised Dimensionality 
Reduction with Generalized Linear Models, ICML-08



Y1

U

YK…X1 XD…

V1
VD

WkW1

Example: SDR with Generalized Linear Models (Rish

 

et al., 2008) 

E.g., in linear case, we have:  

X ~  U V    and    Y ~  U V



SDR outperforms unsupervised DR by 20-45%

Using proper data model (e.g., Bernoulli-SDR for binary data) matters  

SDR ``gets’’ the structure (0% error), SVM does not  (20% error)

Supervised DR Outperforms Unsupervised DR  on Simulated Data

Generate a separable 2-D 
dataset U

Blow-up in D dimensional data 
X by adding exponential-family 
noise (e.g., Bernoulli)

Compare SDR w/ different 
noise models (Gaussian, 
Bernoulli)   vs. unsupervised DR 
(UDR) followed by SVM or 
logistic regression



Real-valued data, Classification Task 
Predict the type of word (tools or buildings) the subject is seeing
84 samples (words presented to a subject), 14043 dimensions (voxels)

Latent dimensionality L = 5, 10, 15, 20, 25

Gaussian-SDR achieves overall best performance

SDR matches SVM’s performance using only 5 dimensions, while SVDM needs 15

SDR greatly outperforms unsupervised DR followed by learning a classifier

…and on Real-Life Data from fMRI

 

Experiments
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Summary  and Open Issues

Common problem: small-sample, high-dimensional inference

Feasible if the input is structured – e.g. sparse in some basis

Efficient recovery of sparse input via l1- relaxation

Sparse modeling with  l1-regularization: interpretability  + prediction

Beyond l1-regularization: adding more structure

Beyond Lasso: M-estimators, dictionary learning, variable construction

Open issues, still: 

choice of  regularization parameter?  

choice of proper dictionary?  

Is interpretability sparsity? (NO!)



Interpretable
Predictive
Patterns

Interpretability:  Much More than Sparsity?

+
++

+
- -

-
-

-

Data Predictive Model  
y = f(x)

x - fMRI voxels, 

y - mental state

sad

happy
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Appendix A



Why Exponential Family Loss?  

Network Management – Problem Diagnosis:  
binary failures  - Bernoulli
non-negative delays – exponential

W eb
Server 

Hub

DB
Server 

Router

Probing station

Variety of data types: real-valued, binary, nominal, non-negative, etc.

Noise model: exponential-family

Collaborative prediction:  
discrete rankings - multinomial

DNA microarray data analysis:
Real-valued expression level – Gaussian

fMRI data analysis
Real-valued voxel intensities, binary, nominal and continuous responses

Presenter
Presentation Notes
Red box on left top : which data where actually used in experiments?

Color version 

Histograms









Legendre duality:

Image courtesy of Arindam

 

Banerjee

Exponential-family 
distribution

Bregman
divergence
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Appendix B
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Appendix B



Beyond LASSO

LASSO

Elastic Net penalty
Fused Lasso penalty
Block l1-lq norms:            
group & multi-task penalties

Improving consistency and stability 
w.r.t. the sparsity

 

parameter choice

Adaptive Lasso
Relaxed Lasso
Bootstrap Lasso
Randomized Lasso w/ 
Stability selection 

Other losses
(other data likelihoods) 

Other penalties
(structured 
sparsity)

Generalized Linear Models 
(exponential family noise)

Multivariate Gaussians  
(Gaussian MRFs)

Generalized Linear Models 
(exponential family noise)

Multivariate Gaussians  
(Gaussian MRFs)
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