Sparse Modeling Theory, Algorithms and Applications

Irina Rish Computational Biology Center (CBC) IBM T.J. Watson Research Center, NY **Genady Grabarnik**

Department of Math and CS CUNY, NY

- Introduction
- Sparse Linear Regression: Lasso
- Sparse Signal Recovery and Lasso: Some Theory
- Sparse Modeling: Beyond Lasso
 - Consistency-improving extensions
 - Beyond I₁-regularization (I1/Iq, Elastic Net, fused Lasso)
 - Beyond linear model (GLMs, MRFs)
 - Sparse Matrix Factorizations
 - Beyond variable-selection: variable construction
 - Summary and Open Issues

- 9:00-9:40
 Introduction
 Lasso
- **9:40-10:20**

□ Sparse signal recovery and Lasso: Some Theory

- 10:20-10:30
 Coffee Break
- **10:30-11:45**

□ Sparse Modeling Beyond Lasso

A Common Problem

Can we recover a high-dimensional X from a low-dimensional Y?

Yes, if:

- □ X is structured; e.g., sparse (few $X_i \neq 0$) or compressible (few large X_i)
- encoding preserves information about X

Examples:

- □ **Sparse signal recovery** (compressed sensing, rare-event diagnosis)
- □ Sparse model learning

Example 1: Diagnosis in Computer Networks

- Model: y = Ax + noise
- Problem structure: X is nearly sparse small number of large delays
- **Task:** find bottlenecks (extremely slow links) using probes (M << N)

Recover sparse state (`signal') X from noisy linear observations

Example 2: Sparse Model Learning from fMRI Data

- Data: high-dimensional, small-sample
 10,000 100,000 variables (voxels)
 100s of samples (time points, or TRs)
 - Task: given fMRI, predict mental states
 - □ emotional: angry, happy, anxious, etc.
 - □ cognitive: reading a sentence vs viewing an image
 - mental disorders (schizophrenia, autism, etc.)

Issues:

Overfitting: can we learn a predictive model that generalizes well?

Interpretability: can we identify brain areas predictive of mental states?

fMRI image courtesy of fMRI Research Center @ Columbia University

Sparse Statistical Models: Prediction + Interpretability

Sparse Linear Regression

Find small number of most relevant voxels (brain areas)

Can we recover a sparse input efficiently from a small number of measurements?

``Compressed Sensing Surprise'':

Given random A (i.i.d. Gaussian entries), χ^0 can be reconstructed exactly (with high probability):

- from just $M = O(K \log(N/K))$ measurements
- efficiently by solving convex problem $\min_{x} ||x||_1 \text{ s.t. } y = Ax$ (\Leftrightarrow linear program)

In general, if A is ``good'' (e.g., satisfies Restricted Isometry Property with a proper constant), sparse χ^0 can be reconstructed with M <<N measurements by solving (linear program):

$$\min_{x} ||x||_1 \ s.t. \ y = Ax$$

And what if there is noise in observations?

Still, can reconstruct the input accurately (in l2-sense), for A satisfying RIP; just solve a noisy version of our l1-optimization:

$$\min_{x} ||x||_{1} \ s.t. \ ||y - Ax||_{2}^{2} \le \epsilon$$

$$\lim_{x} ||y - Ax||_{2}^{2} \ s.t. \ ||x||_{1} \le t \quad (\text{Basis Pursuit, aka Lasso})$$

Sparse Linear Regression vs Sparse Signal Recovery

- Both solve the same optimization problem
- Both share efficient algorithms and theoretical results
- However, sparse learning setting is more challenging:

We do not design the "design" matrix, but rather deal with the given data

Thus, nice matrix properties may not be satisfied (and they are hard to test on a given matrix, anyway)

We don't really know the ground truth (``signal") – but rather assume it is sparse (to interpret and to regularize)

 Sparse learning includes a wide range of problems beyond sparse linear regression (part 2 of this tutorial)

- Introduction
- Sparse Linear Regression: Lasso
- Sparse Signal Recovery and Lasso: Some Theory
- Sparse Modeling: Beyond Lasso
 - Consistency-improving extensions
 - Beyond I₁-regularization (I1/Iq, Elastic Net, fused Lasso)
 - Beyond linear model (GLMs, MRFs)
 - Sparse Matrix Factorizations
 - Beyond variable-selection: variable construction
 - Summary and Open Issues

Notation and Assumptions

- X₁, ··· , X_p predictors, or features (e.g., voxel intensities)
- Y response, or label (e.g., level of happiness)
- Data Z = (X, y), where X is n × p matrix and y is n × 1 vector
 n samples-rows Xⁱ, p predictors-columns X_p, n labels yⁱ

$$\mathbf{X} = \begin{pmatrix} x_1^1 & \cdots & x_p^1 \\ \cdots & \cdots & \cdots \\ x_1^n & \cdots & x_p^n \end{pmatrix} \qquad \qquad \mathbf{y} = \begin{pmatrix} y^1 \\ \cdots \\ y^n \end{pmatrix}$$

- Assumptions:
 - observations y^i are conditionally independent given **X**
 - centered Y and standardized X_i : $\bar{Y} = 0$, $\bar{X}_i = 0$, $Var(X_i) = 1$
 - X has maximal rank

• Filter methods:

rank each x_i (or a small subset of X) using a ranking function r(i), such as correlation or mutual information with the response y. Fast but suboptimal - can miss multivariate predictive patterns.

• Wrapper methods:

rank each x_i (or a small subset of X) by its predictive accuracy, i.e., train a separate model for each x_i and evaluate its accuracy. Wrappers yield better predictions, but are quite expensive.

Embedded methods:
 variable selection is *embedded* in model learning.
 (E.g., via greedy methods or certain regularization techniques).

Model Selection as Regularized Optimization

Regularization constrains the model space to avoid overfitting:

$$\min_{\beta} L(Z,\beta) \quad s.t. \ R(\beta) \le t$$

$$\lim_{\beta} L(Z,\beta) + \lambda R(\beta)$$

•
$$Z = \{Z^1, ..., Z^n\}$$
 - data (e.g., $Z^i = (X_{(i,:)}, y_i)$)

- β vector of model parameters
- $L(\cdot)$ loss function (e.g., model's error on the data)
- $R(\cdot)$ regularization penalty (e.g., model's complexity)
- λ regularization parameter

Bayesian Interpretation: MAP Estimation

- Loss: negative log-likelihood
- Regularization: negative log-prior on model parameters
- Learning: maximum a posteriori (MAP) probability estimation

Log-likelihood Losses: Examples

• linear regression: Gaussian noise with unit variance $P(y_i|X_{(i,:)}\beta) = N(\mu = X_{(i,:)}\beta, \sigma = 1)$:

$$L = -\log \sum_{i=1}^{n} P(y_i | X_{(i,:)} \beta) = || y - X \beta ||_2^2$$

• Generalized Linear Model (GLM) regression (logistic, Poisson, etc.): exponential-family noise $P(y_i|\Theta_i)$ with natural parameters $\Theta_i = X_{(i,:)}\beta$ and means $\mu_i(\Theta_i)$

$$L = -\log \sum_{i=1}^n P(y_i | \Theta_i) = \sum_{i=1}^n B(y_i, \mu_i)$$

• Gaussian Markov Network: multivariate Gaussian with the inverse covariance matrix C, $P(Z^i|C) = N(\mu = 0, C)$:

$$L = -\log \sum_{i=1}^{n} P(Z^{i}|C) = \operatorname{tr}(SC) - \log \det(C),$$

where *S* is the empirical covariance matrix

Regularization: l_q -norm, $0 \le q$

- *I*₀-norm: |{*i*|β_i ≠ 0}| number of non-zero parameters; used by AIC, BIC/MDL criteria
- (squared) I_2 -norm $||\beta||_2^2 = \sum_{i=1}^p \beta_i^2$ Gaussian prior; used in ridge regression (Hoerl and Kennard, 1988)
- I_1 -norm $||\beta||_1 = \sum_{i=1}^{p} |\beta_i|$ Laplace prior; Lasso regression (Tibshirani, 1996)
- more generally, I_q -norm $||\beta||_q^q = \sum_{i=1}^p |\beta_i|^q$ bridge regression (Frank and Friedman, 1993; Fu, 1998)

$$oldsymbol{
ho}_{\lambda,q}(eta)\sim oldsymbol{C}(\lambda,oldsymbol{q})oldsymbol{e}^{\lambda||eta||^q_q}$$

• Extensions of I_1 : block-penalties $(I_1/I_q - e.g., I_1/I_2, I_1/I_\infty)$, Elastic Net penalty (convex combination of I_1 and I_2)

Best Subset Selection

• find best subset of *M* predictors, i.e.

 $\min_{\beta} L(Z,\beta) \quad s.t. ||\beta||_0 \le M$

where I_0 -norm $||\beta||_0$ is the number of nonzeros $|\{i|\beta_i \neq 0\}|$

- NP-hard problem!
- various approximations (mainly greedy):

forward stepwise regression ⇔ Orthogonal Matching Pursuit (Mallat and Zhang, 1993) stagewise OMP (StOMP) (Donoho et al., 2006) regularized OMP (ROMP) (Needell and Vershynin, 2009) subspace pursuits (Dai and Milenkovic, 2008) CoSaMP (Needell and Tropp, 2008) SAMP(Do et al., 2008) GraDeS (Gradient Descent with Sparsification) (Garg and Khandekar, 2009), etc. etc.

see more at http://dsp.rice.edu/cs (Compressive Sensing Resources)

• Alternative approach:

 I_1 -norm relaxations of I_0 (or, more generally, I_q -norms, $0 < q \le 1$)

lq-norm constraints for different values of q

Convexity \Rightarrow efficient optimization methods

Sparsity \Rightarrow variable selection

- q < 1: convexity, but no sparsity (no "sharp edges")
- q > 1: sparsity (sharp edges), but no convexity
- q = 1: sparsity and convexity

$$\min_{\beta} ||\mathbf{y} - \mathbf{X}\beta||_2^2 + \lambda ||\beta||_1$$

- First proposed by (Tibshirani, 1996)
- Known as Basis Pursuit (Chen et al., 1999) in signal processing
- Bayesian view: MAP estimation with:
 - independent Gaussian observations $y_i \sim e^{-\frac{1}{2}(y-X^i\beta)^2}$ and
 - independent Laplace parameters $\beta_j \sim e^{-\lambda |\beta_j|}$

Equivalent Constrained Formulation: A Geometric View

 $\hat{\beta} = \arg \min_{\beta} ||y - X\beta||_{2}^{2}$

Properties of LASSO Solution(s)

Assume $t < t_0 = \min_{\eta \in N(X)} ||\hat{\beta} + \eta||_1$ (otherwise LASSO \Leftrightarrow OLS).

Theorem (Osborne et al., 2000).

- If $p \le n$, a *unique* LASSO solution β^* exists and $||\beta^*||_1 = t$.
- If p > n, a solution β^* exists, and $||\beta^*||_1 = t$ for any solution.

If β_1^* and β_2^* are both LASSO solutions, then their convex combination $\alpha\beta_1^* + (1 - \alpha)\beta_2^*$ is also a solution for any $0 \le \alpha \le 1$.

Lasso vs Ridge and Best-Subset in Case of Orthonormal Designs

For orthonormal X, explicit solutions are given by the following transformations, where $\hat{\beta} = (X^T X)^{-1} X^T y$ is an ordinary least-squares (OLS) solution:

Image courtesy of [Hastie, Friedman and Tibshirani, 2009]

Algorithms

- Standard quadratic programming methods: too slow
- Least Angle Regression (LARS) (Efron et al., 2004):

much faster; moreover, produces the entire solution path (all solutions for all values of the regularization parameter λ) at the cost of a single least-squares fit. Similar to homotopy (continuation) method of (Osborne et al., 2000b).

 Coordinate descent (Fu, 1998), (Daubechies et al., 2004), (Friedman et al., 2007a), (Wu and Lange, 2008):

for fixed λ , optimizes each parameter at a time; using warm-starts, it can compute the solutions on a grid of λ values faster than LARS (however, the full path is NOT computed)

 Many other methods, including generalizations to other losses; various software packages, e.g., see http://dsp.rice.edu/cs

Least Angle Regression (LARS) (Efron et al., 2004)

Assume that y and all X_i have zero means), and all X_i have unit norm.

- Initialize: current residual $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}$, coefficients $\beta_i = 0$, i = 1, ..., p
- Find X_i most correlated with **r**, i.e. $X_i = \arg \max_j X_j \mathbf{r}$
- Move β_i towards sign(X_jr), updating residual r along the way. Stop when some other predictor X_j has as much correlation with the current r as X_j has.
- Increase β_i and β_j in their joint least-squares direction u (equiangular between X_i and X_j), until some other predictor X_k has as much correlation with the current residual.
- Continue adding predictors for min(n 1, p) steps, until full OLS solution is obtained. If p < n, all predictors are now in the model.

Geometric View of LARS

At step k, LARS estimate μ_k moves towards the current OLS estimate $\bar{\mathbf{y}}_k$ in the direction \mathbf{u}_k equiangular among the current predictors.

The direction changes before reaching $\bar{\mathbf{y}}_k$ when a new variable enters the active set.

Piecewise Linear Solution Path: LARS vs LASSO

LARS vs LASSO for pain perception prediction from fMRI data [Rish, Cecchi, Baliki, Apkarian, 2010]: for illustration purposes, we use just n=9 (out of 120) samples, but p=4000 variables; LARS selects n-1=8 variables

Lasso modification

If non-zero β_k hits zero, delete X_k from the active set and recompute the current direction **u** and residual **r**.

LARS with Lasso modification produces the same solution path as Lasso

Three scenarios (Tibshirani, 1996):

	Best Subset	Ridge	Lasso
a few large β_i	best	worst	2nd
medium number of moderate β_i	worst	2nd	best
large number of small β_i	worst	best	2nd

- Introduction
- Sparse Linear Regression: Lasso
- Sparse Signal Recovery and Lasso: Some Theory
- Sparse Modeling: Beyond Lasso
 - Consistency-improving extensions
 - Beyond I₁-regularization (I1/Iq, Elastic Net, fused Lasso)
 - Beyond linear model (GLMs, MRFs)
 - Sparse Matrix Factorizations
 - Beyond variable-selection: variable construction
 - Summary and Open Issues

Plan

Signal restoration with random Fourier projection (Candès et al., 2006)

- Phenomenon
- Signal restoration for random Fourier projection
- Uncertainty principle
- Examples for worst case, Dirac comb
- Main techniques
- Robustness and stability
- Compressed Sensing (Donoho, 2006a; Candès, 2006; Candès and Tao, 2006b; Candès and Romberg, 2007; Donoho et al., 2006; Candès and Tao, 2006a)
- Back to Lasso (Knight and Fu, 2000; Zhao and Yu, 2006; Bickel et al., 2009; Meinshausen and Yu, 2009; Wainwright, 2009; Juditsky and Nemirovski, 2008))

Phenomenon (Candès et al., 2006)

Figure: Example of a recovery problem(a) The Logan-Shepp phantom test image(b) Sampling domain O in the frequency plane (c) Minimum energy reconstruction by thresholding Fourier coefficients (d) Beconstruction by minimizing the variation (*I*, norm of a gradient)

Theorem (Nyquist-Shannon-Whittaker)

Let f be a function with a Fourier transform $\mathcal{F}[f(x)] = 0$ for |x| > L, then f is determined by values of f at 2L points spaced $\frac{1}{2L}$ apart.

Example (The Logan-Shepp phantom image (512x512))

In this example direct zeroing of the Fourier coefficients does not do much. Minimization of the variances allows to precisely restore data from 22 instead of 512 (5%) sample planes.

Notation

Denote by $\mathbb{Z}_N = 0, 1, \cdots, N - 1$.

Definition (Discrete Fourier Transform)

For vector $x \in \mathbb{C}^N$ discrete Fourier Transform (DFT) $\mathcal{F}x = \hat{x} \in \mathbb{C}^N$ is:

$$\hat{x}_{\omega} = \sum_{\omega \in \mathbb{Z}_N} x_t e^{-2\pi i \omega t/N}, \ \omega \in \mathbb{Z}_N.$$

The vector *x* may be restored from \hat{x} by *inverse DFT* ($\mathcal{F}^{-1} = \frac{1}{N}\mathcal{F}^*$):

$$x_t = \frac{1}{N} \sum_{\omega \in \mathbb{Z}_N} \hat{x}_\omega e^{2\pi i \omega t/N}, \ t \in \mathbb{Z}_N.$$

Let $T, \Omega \subset \mathbb{Z}_N$. Denote by $\mathcal{F}_{T,\Omega}$ operator mapping $\mathbb{C}^N \to \mathbb{C}^N$:

 $\mathcal{F}_{\mathcal{T},\Omega} \mathbf{X} = (\mathcal{F}(\mathbf{X}|_{\mathcal{T}}))|_{\Omega}.$

For vector $x \in \mathbb{C}^N$ denote by $supp(x) = \{i \in \mathbb{Z}_N | x_i \neq 0\}$.
Definition (OPL1)

Let $\Omega \subset \mathbb{Z}_N$ and $x \in \mathbb{C}^N$. Optimization problem L1 (OPL1) is

$$min||u||_{l_1} := \sum_{t \in \mathbb{Z}_N} |u_t|$$
, subject to $(\mathcal{F}u)_k = (\mathcal{F}x)_k$, for $k \in \Omega$

Theorem (Candès et al. (2006))

Let $x \in \mathbb{C}^N$ be a vector with $supp(x) = T \subset \mathbb{Z}_N$. Let $\Omega \subset \mathbb{Z}_N$ be a uniformly at random set of size $|\Omega| = N_\omega$. Fix B > 0 (accuracy). With probability $p \ge 1 - O(N^{-B})$ the minimizer of the OPL1 restores x precisely when

 $|\Omega| \geq C'_B |T| \log N$

Here $C'_B \simeq 23(B+1)$.

Theorem interpretation

- The theorem describes restoration behavior on probabilistically typical (random) DFT projection.
- The theorem claims that vector may be restored
 - with high probability
 - 2 using OPL1
 - 3 given its DFT coefficients on the set of size proportional to its support size times log N.

The worse case restoration behavior relates to *Uncertainty Principle* (Donoho and Stark, 1989).

Uncertainty Principle (UP)

Classical uncertainty principle (Heisenberg) $\Delta t \cdot \Delta p > 1$.

Theorem (DS Uncertainty Principle, Donoho and Stark (1989))

If $h \in \mathbb{C}^N$, then

 $|supp(h)| \cdot |supp(\hat{h})| > N \text{ or } |supp(h)| + |supp(\hat{h})| \ge 2\sqrt{N}.$

How UP relates to I_1 minimization?

If x^* is not unique solution of the OPL1, $h \neq 0$, $|\hat{h}|_{\Omega} = 0$, $supp(x^*) = T \subset \mathbb{Z}_N$, then

$$\sum_{t \in \mathbb{Z}^N} |x_t^* + h_t| = \sum_{t \in T} |x_t^* + h_t| + \sum_{t \in T^c} |h_t| \ge \sum_{t \in T} |x_t^*| - |h_t| + \sum_{t \in T^c} |h_t|.$$

The $||x^* + h||_{l_1} = ||x^*||_{l_1}$ implies $\sum_{t \in T} |h_t| \ge \sum_{t \in T^c} |h_t|$, or h is half- l_1 concentrated on T.

Now uniqueness of OPL1 minimum obtained from the following.

Theorem (Concentration form of UP, Donoho and Stark (1989))

Let $h \in \mathbb{C}^N$ is half- I_1 concentrated on T, and $supp(\hat{h}) \subset \mathbb{Z}_N - \Omega$. Then $2|T| \cdot (N - |\Omega|) < N$ implies $h \equiv 0$.

Refinement of UP in Tao (2005): $|supp(h)| + |supp(\hat{h})| > N$ for prime N.

Example (Dirac's comb)

Suppose that $N = k^2$, and $f = \{f_t = 1 \text{ for } t = jk; f_t = 0 \text{ for } t \neq jk; j \in \mathbb{Z}_k\}$.

The signal is invariant under the Fourier transform $f = \hat{f}$.

Let $T = \{jk | j \in \mathbb{Z}_k\}$, and let $\Omega = \mathbb{Z}_N - T$ be the set of all frequencies except for the multiples of $k = \sqrt{N}$.

The $\hat{f}|_{\Omega} \equiv 0$.

The OPL1 reconstruction of f from $\hat{f}|_{\Omega}$ is identical zero.

For sufficiently large N holds $|\Omega| = N - \sqrt{N} \ge C'_B |T| \log N = C'_B \sqrt{N} \log N$.

"Take-home message"

Reconstruction Theorem (Candès et al., 2006) does not work for all sets of proper sizes (Dirac comb).

Dirac's comb gives extreme sizes for uncertainty principles (Donoho and Stark, 1989).

Dirac's comb with $k = 2^m$ shows that logN is necessary.

Plan

- Signal restoration with random Fourier projection (Candès et al., 2006)
 - Phenomenon
 - Signal restoration for random Fourier projection
 - Uncertainty principle
 - Examples for worst case, Dirac comb
 - Main techniques
 - Type of randomness
 - Duality, convex optimization
 - Hilbert (energy) polynomial
 - Robustness and stability
- Compressed Sensing (Donoho, 2006a; Candès, 2006; Candès and Tao, 2006b; Candès and Romberg, 2007; Donoho et al., 2006; Candès and Tao, 2006a)
- Back to Lasso (Knight and Fu, 2000; Zhao and Yu, 2006; Bickel et al., 2009; Meinshausen and Yu, 2009; Wainwright, 2009; Juditsky and Nemirovski, 2008))

What type of randomness?

Reconstruction Theorem (Candès et al., 2006) deals with uniform random projections.

Uniform distribution is difficult to work with.

Consider instead binomial random projections with sample size N and probability of success τ .

Probability of failure to exactly reconstruct for uniform and binomial random projections are equivalent.

Remark (Details) Let Ω be a uniform random sample set (projection). Let $\Omega' = \{j \in \mathbb{Z}_N | P(j \in \Omega') = \tau\}$ for some $0 < \tau < 1$. The $E(|\Omega'|) = \tau N$ and for large N, $|\Omega'|/N \approx \tau$ with high probability. Let Failure($\Omega^{(\prime)}$) be an event of not restoring vector with support in T. If $\Omega_1 \subset \Omega_2$ then Failure(Ω_2) \subset Failure(Ω_1). For $\tau \cdot N$ integer, median of $|\Omega'| = \tau \cdot N$ (Jogdeo and Samuels, 1968) since $P(|\Omega'| \le \tau N - 1) \le 1/2 \le P(|\Omega'| \le \tau N).$ (1) Then

$$P(Failure(\Omega')) = \sum_{k=0}^{N} P(Failure(\Omega_k)) \cdot P(|\Omega'| = k)$$
(2)

$$\geq \sum_{k=0}^{N_{\omega}} P(Failure(\Omega_k)) \cdot P(|\Omega'| = k) \geq P(Failure(\Omega)) \sum_{k=0}^{N_{\omega}} P(|\Omega'| = k) \geq \frac{1}{2} P(Failure(\Omega)).$$
(3)

Duality and Optimization

How do we solve problems like bellow (OPL1)?

$$min||u||_{l_1} := \sum_{t \in \mathbb{Z}_N} |u_k|$$
, subject to $(\mathcal{F}u)_k = (\mathcal{F}x)_k$, for $k \in \Omega$

Take a derivative, set it to zero, find solution.

But $||.||_{l_1}$ is not smooth, it has special points when one of the coordinates is zero. What to do?

Apply convex analysis!

Definition (Subgradient)

For convex space X, and it's Y and function $f : X \to \mathbb{R}$, subgradient of f is defined as

$$\partial f(x_0) = \{y \in Y | f(x) - f(x_0) \ge (x - x_0, y)\}$$

If function f is differentiable, then ∂f coincides with gradient ∇f .

Theorem (Fermat's like theorem)

The point u is an extremal point of function f iff $0 \in \partial f(u)$

Duality and Optimization II

Example (Case of 1)

For $x \in \mathbb{C}^N$,

$$\partial(||.||_1)(x)_i = \begin{cases} sign(x_i) & \text{for } i \in supp(x), \\ [-1,1] & \text{for } i \notin supp(x). \end{cases}$$

Karush Kuhn Tucker Theorem with Slater conditions (Rockafellar, 1996; Nesterov, 2004; Boyd and Vandenberghe, 2004), see also (Fuchs, 2005) imply that

Observation

If $\mathcal{F}_{T,\Omega}$ is injective then u is unique solution of OPL1 iff

there exists **u**^{*} with

$$u_i^* = \left\{egin{array}{cc} sign(x_i) & ext{ for } i \in supp(x); \ |x_i| < 1 & ext{ for } i
ot \in supp(x). \end{array}
ight.$$

Stability and Robustness of recovery

To recover we can find support of the vector x by l_1 optimization (OPL1) and run regression to find coefficients.

Stability means small change in the conditions gives small change in the results.

Robustness means stability under noise.

Is regression stable?

Regression is given by formula:

$$\boldsymbol{x} = (\mathcal{F}_{T,\Omega}^* \mathcal{F}_{T,\Omega})^{-1} \mathcal{F}_{T,\Omega}^* \hat{\boldsymbol{x}}|_{\Omega}.$$

The proof of Reconstruction Theorem implies

 $\mathcal{F}_{T,\Omega}^* \mathcal{F}_{T,\Omega} \geq \delta \mathbb{I}$ (with $\delta > 1/2$) with high probability,

hence for $|\Omega| > C'_B \cdot |T| \cdot \log N$ stability has place.

To deal with robustness (signal + noise) we need some generalization.

Plan

- Signal restoration with random Fourier projection (Candès et al., 2006)
- Compressed Sensing (Donoho, 2006a; Candès, 2006; Candès and Tao, 2006b; Candès and Romberg, 2007; Donoho et al., 2006; Candès and Tao, 2006a)
- Back to Lasso (Knight and Fu, 2000; Zhao and Yu, 2006; Bickel et al., 2009; Meinshausen and Yu, 2009; Wainwright, 2009; Juditsky and Nemirovski, 2008))

Compressed/compressive sensing is a sampling based on 2 principles:

Sparsity is a low dimensionality in some sense,

Incoherence extends uncertainty principle.

Vector $x \in \mathbb{R}^N$ for the basis $\Psi = (\psi_1, \dots, \psi_N)$, and $x_i = (x, \psi_i)$. Vector x is S-sparse if $|supp(x)| \leq S$.

Definition (Coherence between orthonormal bases)

Given a pair of orthonormal bases Ψ, Φ ,

$$\mu(\Psi, \Phi) = \sqrt{N} \cdot \max_{1 \le k, j \le N} |(\phi_k, \psi_j)|.$$

Note that $1 \leq \mu(\Psi, \Phi) \leq \sqrt{N}$.

Fourier bases: for $\mathcal{F} = \Phi$: $\phi_k(\omega) = \sqrt{N}e^{i2\pi k\omega/N}$,¹ for $\mathcal{F}^* = \Psi$: $\psi_k(\omega) = \sqrt{N}e^{-i2\pi k\omega/N}$. In this case $\mu(\Psi, \Phi) = 1$ - maximal incoherence.

¹Different normalization

Under sampling and Sparse recovery

If we measure all N coefficients, but observe only $M \ll N$, can we reconstruct signal?

Theorem (Candès and Romberg (2007))

Fix $\delta > 0$ and $x \in \mathbb{R}^N$ and suppose that x is S-sparse. Choose Ω measurements uniformly at random. If

 $|\Omega| \geq C \cdot \mu^2(\Phi, \Psi) \cdot S \cdot \log N / \delta$

then solution of the convex optimization problem

 $\underset{\bar{x}\in\mathbb{R}^{N}}{\arg\min}||\bar{x}||_{l_{1}}:(x,\phi_{k})=(\phi_{k},\Psi\bar{x}),k\in\Omega \quad (OPL1B)$

recover x with probability at least $1 - \delta$.

"Take-home message"

To restore signal in the two orthonormal basis case, one needs sparsity times log correction times mutual coherence.

Unfortunately mutual coherence runs up to \sqrt{N} .

Robust signal recovery from noisy data

What happened if signal is nearly sparse and noisy? Consider now recovery $x \in \mathbb{R}^N$ with

y = Ax + z,

here A is $M \times N$ sensing matrix, z is small in some sense noise. In previous cases we had $A = (\Phi \Psi)|_{\Omega}$.

Restricted Isometry

Let $S \leq N$. Matrix A is S-restricted isometry (RI) if matrix A satisfies

 $(1 - \delta_S)||x||_{l_2} \le ||Ax||_{l_2} \le (1 + \delta_S)||x||_{l_2},$

for x with support |supp(x)| < S and some $0 < \delta_S < 1$.

Theorem (Robust recovery from noisy data, Candès et al. (2006))

Let y as above, and let matrix A is RI with $\delta_{2S} < \sqrt{2} - 1$. Then solution x^* of the

$$\underset{\bar{x}\in\mathbb{R}^{N}}{\arg\min}||\bar{x}||_{l_{1}} : ||Ax-y||_{l_{2}} \leq \varepsilon \quad (OPL1N)$$

satisfies

 $||x^*-x||_{l_2} \leq C_0 \cdot ||x-x_S||_{l_1}/\sqrt{S} + C_1 \cdot \varepsilon.$

Sources of RIP matrices Candès and Tao (2006c); Donoho (2006a); Rudelson and Vershynin (2006)

Matrices satisfying RIP are generated by randomization Baraniuk et al. (2008); Mendelson et al. (2008).

Tree main random constructions:

 Random matrices with i.i.d. entries. Candès and Tao (2006c); Donoho (2006b); Rudelson and Vershynin (2006)
 Let matrix A's entries are i.i.d. for a sub-gaussian distribution with μ = 0 and σ = 1. Then, Â = ¹/_{√M} A satisfies RIP with δ_S ≤ δ when M ≥ const(ε, δ) · S · log(2N/S) with probability p > 1 - ε.

Distribution examples: Gaussian, Bernoulli

- Fourier ensemble. Candès and Tao (2006c); Rudelson and Vershynin (2006) Let = ¹/_{√M} A with A being M randomly selected rows from an N × N DFT matrix. Then satisfies RIP with δ_S ≤ δ providing M ≥ const(ε, δ) · S · log⁴(2N). with probability p > 1 ε.
- General orthogonal ensembles. Candès and Tao (2006c) Let \hat{A} is M randomly selected rows from an $N \times N$ orthonormal matrix U with re-normalized columns. Then (OPL1B) *S*-sparse recover *x* with high probability when $M \ge const \cdot \mathcal{M}^2(U) \cdot S \cdot log^6 N$

Modeling: Dantzig Selector, consistency

Let y = Ax + z, x is parameters vector, A is design matrix, $z \sim N(0, \sigma^2 I_M)$. We are interested in estimating $||\hat{x}_D - x^*||_{I_2}$, where x^* is actual parameter, and \hat{x}_D is a solution of the Dantzig Selector:

 $\hat{x}_{D} = \underset{\overline{x} \in \mathbb{R}^{N}}{\arg\min(||\overline{x}||_{I_{1}} : ||A^{*}(y - A\overline{x})||_{I_{\infty}} \leq \lambda_{N} \cdot \sigma), \lambda_{N} := (1 + t^{-1})\sqrt{2\log N}.$

For the ideal case suppose A is identity matrix and $y \sim N(x, \sigma^2 \cdot I_M)$. Oracle knowing x^* , choses \hat{x} as x_i^* with $|x_i^*| > \sigma$ and σ otherwise. Then $E||x^* - \hat{x}||_{l_2}^2 = \sum_{i=1}^N \min^2(x_i^*, \sigma)$ is a MSE. Thresholding with level $\sqrt{2 \log N} \cdot \sigma$ achieves this with factor of log *N* (Donoho and Johnstone, 1994).

Theorem (DS estimate)

For S with $\delta_{2S} + \delta_{3S} < 1 - t$, DS estimator with high probability obeys

$$||\hat{x}_D - x^*||_{l_2}^2 \leq C_2 \lambda_N^2 (\sigma^2 + \sum_{i=1}^N \min^2(x_i^*, \sigma)),$$

DS is log factor far from oracle choice of parameter.

Plan

- Signal restoration with random Fourier projection (Candès et al., 2006)
 - Robustness and stability
- Compressed Sensing (Donoho, 2006a; Candès, 2006; Candès and Tao, 2006b; Candès and Romberg, 2007; Donoho et al., 2006; Candès and Tao, 2006a)
- Back to Lasso (Knight and Fu, 2000; Zhao and Yu, 2006; Bickel et al., 2009; Meinshausen and Yu, 2009; Wainwright, 2009; Juditsky and Nemirovski, 2008))

Back to LASSO: Lasso consistency

Remind: Lasso estimates

$$\hat{x}(\lambda) = \operatorname*{arg\,min}_{x \in \mathbb{R}^N} (||y - Ax||_2^2 + \lambda ||x||_1)$$

Types of LASSO consistency

Consistency Estimator converges to actual parameter in *p*- norm:

 $||\hat{x} - x||_p
ightarrow 0$

Model (Support) Signed Consistency Signed support of estimator converges to signed support of actual parameter

Back to LASSO: Irrepresentability, Support (Signed) Recovery

Let $y^{M} = A_{M}x^{M} + \varepsilon_{M}$, *M* is an *index of experiment*, A_{M} is an $M \times N$ design *matrix*, x^{M} is *vector of parameters* in *M*-th experiment, ε_{M} is *noise*, an i.i.d. random variables with $\mu = 0$ and $var = \sigma^{2}$. Remind: Lasso estimates $\hat{x}^{M}(\lambda) = \arg \min_{x \in \mathbb{R}^{N}} (||y^{M} - A_{M}x||_{2}^{2} + \lambda ||x||_{1})$ For fixed N: $\hat{x}^{M}(\lambda_{M}) \xrightarrow{p} x$ and estimates are asymptotically normal (for $\lambda_{M} = o(M)$) (Knight and Fu, 2000).

Definition (Strongly Sign consistency)

Lasso is **strongly sign consistent** if for some $\lambda_M = f(M)$ holds $\lim_{M\to\infty} P(\hat{x}^M(\lambda_M) =_s x^M) = 1$

Let $supp(x^M) \subset I \subset \mathbb{Z}_N$. Let $Q^M = (A^M)^* A^M$ be a scale of covariance matrix.

Definition (Strong Irrepresentable Condition (SIC))

Matrix *A* satisfies Strong Irrepresentable Condition if $|1/M(Q^M|_{I,I^c}(Q^M|_{I,I})^{-1}| \leq \mathbb{1}_{N-|I|} - \eta$, for some fixed positive vector η .

Theorem (Strongly Sign Consistency for Lasso, Zhao and Yu (2006))

Lasso is strongly sign consistent if A^M satisfies SIC and $1/M \cdot Q^M \to 0$.

Lasso is not model selection consistent (Fuchs, 2005; Lv and Fan, 2009).

Definition (Restricted eigenvalue assumption)

For integer $S \in \mathbb{Z}_N$ and positive c_0 , matrix A satisfies **restricted eigenvalue** assumption ($RE(S, c_0)$) if for $Q = A^*A$

$$k^{2}(S, c_{0}) := \min_{\substack{J_{0} \subset \mathbb{Z}_{N}, \\ |J_{0}| \leq S \\ ||x|_{J_{0}^{c}}||_{1} \leq c_{0}}} \min_{\substack{x \in \mathbb{R}^{N}, x \neq 0, \\ ||x|_{J_{0}}||_{1} \leq c_{0}}} \frac{(Qx, x)}{M \cdot (x|_{J_{0}}, x|_{J_{0}})} > 0.$$

Let $\phi_{max}(S) = \max_{x \in \mathbb{R}^N, |supp(x)| \leq S} \frac{(Qx, x)}{(x, x)}$.

Theorem (Lasso persistency, (Bickel et al., 2009))

Under general condition for DS, let for some integer $|supp(x^*)| \le S$ and assume RE(S,3) is satisfied. Let $\lambda = C\sigma \sqrt{\frac{\log N}{M}}$ and $C^2 > 8$. Then with probability at least $1 - N^{1-C^2/8}$

$$\begin{aligned} ||\hat{x}_{L} - x^{*}||_{l_{1}} &\leq \frac{16C}{k^{2}(S,3)}\sigma S\sqrt{\frac{\log N}{M}} \\ ||A(\hat{x}_{L} - x^{*})||_{l_{2}}^{2} &\leq \frac{16C}{k^{2}(S,3)}\sigma^{2}S\log N \\ |supp(\hat{x}_{L})| &\leq \frac{64\phi_{max}(S)}{k^{2}(S,3)}S. \end{aligned}$$
(6)

Definition (multi-Incoherent design)

Let m_M be a sequence with $m_M = o(M)$. Design matrix is incoherent for m_M if

$$\liminf_{M\to\infty}\phi_{\min}(m_M)>0, \text{ here }\phi_{\min}(m_M)=\min_{x\in\mathbb{R}^N,|supp(x)|\leq m_M}\frac{(Qx,x)}{(x,x)}.$$

We usually consider $S_M \log M$ -incoherent design (S_M is sparsity).

Theorem (Meinshausen and Yu (2009))

Suppose that design matrix satisfies m_M -Incoherent design for $m_M = S_M \log M$, $\lambda_M \approx \sigma m_M \sqrt{M \cdot \log N_M}$. Then

$$||x^* - \hat{x_L}(\lambda_M)||_{l_2}^2 \leq O_N(\frac{\log N_M}{M}\frac{m_{\lambda_M}}{\phi_{\min}^2(m_{\lambda_M})}) + O(\frac{S_M}{m_{\lambda_M}}).$$

Lasso consistence under Incoherent Design (Meinshausen and Yu, 2009)

Corollary (Lasso's consistency, (Meinshausen and Yu, 2009))

Under condition of the theorem, Lasso is l_2 consistent if

$$S_M \log N_M \cdot \frac{\log M}{M} \to 0$$
 when $M \to \infty$.

'Sharp' thresholds for Lasso support consistency Wainwright (2009)

Let S be a sparsity set.

Definition (Incoherence and Eigenvalues (I E))

Incoherence condition:

 $|||Q_{S,S^{c}}(Q_{S,S})^{-1}|||_{\infty,\infty} \leq (1-\nu) \text{ for some } 0 < \nu < 1 \ (Q = A^{*}A).$

Eigenvalues Condition:

$$\phi_{min}(1/M \cdot Q_{S,S}) \geq C_{min}, \ C_{min} > 0.$$

Theorem (Lasso support inconsistency, Wainwright (2009))

Probability of sign support equality is less than 1/2 if either

- expression in Incoherence condition $> 1 + \nu > 1$, or
- minimum non-zero value in |x*| less than right side of above inequality.

Theorem (Lasso's 🖕 consistency, Wainwright (2009))

Under general DS and I&E condition, let $\lambda_M > \frac{2}{\nu} \sqrt{\frac{2\sigma^2 \log N}{M}}$. Then for some $c_1 > 0$ with probability greater than $1 - 4e^{-c_1 M \lambda_M^2} \rightarrow 1$:

a) The lasso has a unique solution \hat{x} with $supp(\hat{x}) \subset supp(x^*)$ and satisfying I_{∞} bound:

$$||\hat{x}_L - x^*||_{\infty} \leq \lambda_M(||(A_S^*A_S/M||_{\infty} + \frac{4\sigma}{\sqrt{C_{min}}}).$$

b) If in addition minimum non-zero value in absolute value of x* greater than right side of above inequality, then x̂_L has proper signs. Mutual coherence property is easily verifiable.

RI type properties are complex to verify, since they include min over all subspaces of given dimensions.

The following papers apply either linear programming or semidefinite programming to extend RIP verification beyond Random matrices.

- (Juditsky and Nemirovski, 2008), (Juditsky et al., 2009)
- (D'Aspremont and Ghaoui, 2008)

Summary

- Signal restoration with random Fourier projection
- Compressed Sensing
- Lasso consistency
- Efficient restoration and consistency conditions

- Introduction
- Sparse Linear Regression: Lasso
- Sparse Signal Recovery and Lasso: Some Theory
- Sparse Modeling: Beyond Lasso
 - Consistency-improving extensions
 - Beyond I₁-regularization (I1/Iq, Elastic Net, fused Lasso)
 - Beyond linear model (GLMs, MRFs)
 - Sparse Matrix Factorizations
 - Beyond variable-selection: variable construction
- Summary and Open Issues

Model Selection Consistency of LASSO

- Let X_S be the columns of the nonzero variables in the true model (support), and let X_{S^C} be the remaining columns (complement)
- (Strong) Irrepresentability condition for model selection (Zhao and Yu, 2006a; Yuan and Lin, 2007b; Zou, 2006; Wainwright, 2009b)

$||(X_{\mathcal{S}}^{\mathsf{T}}X_{\mathcal{S}})^{-1}X_{\mathcal{S}}^{\mathsf{T}}X_{\mathcal{S}^{\mathsf{C}}}||_{\infty} \leq 1-\epsilon, \text{ for some } 0 < \epsilon \leq 1$

states that the least-squares regression coefficients (i.e., correlations) for the non-essential variables ($X_{S^{C}}$ columns) on support variables in X_{S} must not be large.

- Relaxing the consistency conditions via Lasso modifications:
- bootstrap Lasso (BOLASSO) Bach (2008a) and stability-selection (Meinshausen and Buehlmann, 2008) use bootstrap approach: learn multiple Lasso models on data subsets, and then include the intersection of nonzeros (Bach, 2008a) or only frequent-enough nonzeros (Meinshausen and Buehlmann, 2008). This gets rid of "unstable" variables and improves the model-selection consistency and stability to the choice of λ parameter.

Parameter-Estimation Consistency

- due to shrinkage, Lasso produces biases parameter estimation, and is in general inconsistent
- relaxed Lasso (Meinshausen, 2007) solves Lasso twice: first, to choose a subset of variables, and second (with less competition among the variables and thus smaller CV-selected λ) to fit the parameters; smaller λ ⇒ less shrinkage (less bias)
- alternative modifying Lasso penalty to shrink large coefficients less severely: SCAD penalty (Fan and Li, 2005); however, SCAD is non-convex

 adaptive Lasso (Zou, 2006) approximates SCAD using data-dependent weighted penalties, but retains convexity; results into consistent estimates

- Introduction
- Sparse Linear Regression: Lasso
- Sparse Signal Recovery and Lasso: Some Theory
- Sparse Modeling: Beyond Lasso
 - Consistency-improving extensions
 - Beyond I₁-regularization (I1/Iq, Elastic Net, fused Lasso)
 - Beyond linear model (GLMs, MRFs)
 - Sparse Matrix Factorizations
 - Beyond variable-selection: variable construction
 - Summary and Open Issues

Some Limitations of LASSO

- selects at most *n* variables when *p* > *n* (Osborne et al., 2000) (but what if more predictors are relevant?)
- does not group correlated variables (Zou and Hastie, 2005):
 - even if $X_i = X_j$, has many solutions with $\beta_i \neq \beta_j$
 - tends to select one variable out of a group of correlated ones

Elastic Net (Zou and Hastie, 2005)

- I_1 keeps singularities at vertices \Rightarrow sparsity
- *I*₂ enforces strictly convex edges ⇒ grouping effect
- I₂ removes the limitation on the number of selected variables

NOTE: to eliminate "double-shrinkage", Elastic Net computes a re-scaled version $(1 + \lambda_2)\hat{\beta}$ of the above *naive EN* estimate $\hat{\beta}$

Grouping Effect

- strictly convex penalty guarantees $\hat{\beta}_i = \hat{\beta}_j$ if $X_i = X_j$
- λ₂ controls grouping effect: highly correlated variables have similar coefficients (and thus are included/excluded together):

$$|\hat{\beta}_i - \hat{\beta}_j| \leq \frac{||\mathbf{y}||_1}{\lambda_2} \sqrt{1(1-\rho)}$$

where $\rho = X^{i} X_{j}$ is the sample correlation (we also assume same-sign coefficients $\hat{\beta}_{i} \hat{\beta}_{j} > 0$).

 When λ₂ → ∞, Elastic Net becomes equivalent to univariate soft thresholding:

$$\hat{eta}(\infty)_i = (|\mathbf{y}^T \mathbf{X}^i| - \frac{\lambda_1}{2})_+ \operatorname{sign}(\mathbf{y}^T \mathbf{X}^i), \quad i = 1, ..., p.$$

Example: Application to fMRI Analysis

Pittsburgh Brain Activity Interpretation Competition (PBAIC-07):

- subjects playing a videogame in a scanner
- 24 continuous response variables, e.g.
 - Annoyance
 - Sadness
 - Anxiety
 - Dog
 - Faces
 - Instructions
 - Correct hits

Goal: predict responses from fMRI data

Grouping Effect on PBAIC data

(Carroll, Cecchi, Rish, Garg, Rao 2009)

Predicting 'Instructions' (auditory stimulus)

Larger grouping effect: $\lambda_2 = 2.0$

 $\begin{array}{l} \text{Higher } \lambda_2 \rightarrow \text{ selection of more voxels from correlated clusters} \rightarrow \\ \textit{ larger, more spatially coherent clusters} \end{array}$
Grouping Tends to Improve Model Stability

Stability is measured here by average % overlap between models for 2 runs by same subject

Among almost equally predictive models, increasing λ_2 can significantly improve model stability

Another Application: Sparse Models of Pain Perception from fMRI

Predicting pain ratings from fMRI in presence of thermal pain stimulus (Rish, Cecchi, Baliki, Apkarian, BI-2010)

Including more correlated voxels (increasing λ_2) often improves the prediction accuracy as well

Fused Lasso (Tibshirani et al., 2005)

- EN smoothes coefficients uniformly
- But what if there is a natural ordering of the predictors?
- Fused Lasso encourages smoothness along such ordering (besides sparsity):

Image courtesy of [Tibshirani et al, 2005]

Group Lasso (Yuan and Lin, 2006)

- What if there is a natural group structure among the variables?
 - functional clusters of genes, or brain voxels
 - categorical variables encoded by groups of indicator variables
 - multi-task learning: parameters for same feature across all tasks

Block *I*₁-*I*₂ penalty selects groups of variables from *G* = ⋃^K_{i=1} *G*_i, a partition of {1, ..., p}:

 l_1 promotes sparsity between the groups, l_2 discourages sparsity within the groups:

$$\min_{\beta} ||\mathbf{y} - \mathbf{X}\beta||_2^2 + \lambda \sum_{i=1}^{K} ||\beta_{\mathbf{G}_i}||_2$$

Group Lasso: Examples

 Generalized additive models (Bakin, 1999): groups ⇔ basis expansion coefficients for each component function f_i:

$$g(E(Y)) = \sum_{i} f_i(X_i), \quad f_i(x) = \sum_{k} \alpha_{ik} h_k(x)$$

 Multiple kernel learning (Lanckriet et al., 2004; Bach et al., 2004): groups ⇔ kernels ⇔ weights of multi-dimensional features:

$$\begin{aligned} \mathcal{K}(\boldsymbol{x},\boldsymbol{x}') &= \sum_{i=1}^{m} \alpha_i \mathcal{K}_i(\boldsymbol{x},\boldsymbol{x}'), \quad \mathcal{K}_i(\boldsymbol{x},\boldsymbol{x}') = \Phi_i^T(\boldsymbol{x}) \Phi_i(\boldsymbol{x}'), \ \Phi_i(\boldsymbol{x}) \in \mathcal{R}^{n_i} \\ \text{predictor:} \ \sum_{i=1}^{m} w_i^T \Phi_i(\boldsymbol{x}), \ \text{ penalty:} \ \sum_{i=1}^{m} ||w_i||_2 \end{aligned}$$

 Sparse vector-autoregressive models: groups ⇔ time-lagged variables of the same time-series (Lozano et al., 2009a)

More on Group Lasso

- Extensions to logistic regression (Meier et al., 2008) and generalized linear models (Roth and Fischer, 2008)
- Extensions to overlapping groups (Jacob et al., 2009)
- Consistency analysis Bach (2008b)
- Algorithms:
 - block-coordinate descent (Yuan and Lin, 2006)
 - active set approach (Roth and Fischer, 2008; Obozinski et al., 2010)
 - Nesterov's method (Liu et al., 2009b)
 - greedy approach (group OMP) Lozano et al. (2009b)

Multi-Task (Simultaneous) Variable Selection

- Select a common subset of variables for k problems
- Example: joint feature selection for character-recognition problems for multiple writers (Obozinski et al., 2010); variables: pixels or strokes

The letter '*a*' written by 40 different people

Samples of the letters *s* and *g* for one writer

 Group-Lasso approach: groups ⇔ same-variable coefficients across tasks (Obozinski et al., 2010, 2009; Liu et al., 2009b)

Multi-Task (Simultaneous) Variable Selection

• Alternative: I_1 - I_{∞} penalty (Turlach et al., 2005; Tropp, 2006):

$$\min_{\beta} \sum_{j=1}^{k} L(y(j), X, \beta(j)) + \lambda \sum_{j=1}^{k} ||\beta(j)||_{\infty}$$

where $L(\cdot)$ is a loss function, y(j) and $\beta(j)$ are the response and parameters for the *j*-th subproblem, respectively, and $||\beta(j)||_{\infty} = \max\{\beta_1(j), ..., \beta_p(j)\}.$

- In general, composite penalties *I*₁-*I*_q, 1 ≤ q ≤ ∞, enforce more variable sharing among tasks as q ⇒ ∞: from none (q = 1) to full (q = ∞)
- Hierarchical variable selection with $l_1 l_q$ (Zhao et al., 2009)
- Efficient algorithms for *I*₁-*I*_∞: blockwise coordinate descent (Liu et al., 2009a), projected gradient (Quattoni et al., 2009)

- Introduction
- Sparse Linear Regression: Lasso
- Sparse Signal Recovery and Lasso: Some Theory
- Sparse Modeling: Beyond Lasso
 - Consistency-improving extensions
 - Beyond I₁-regularization (I1/Iq, Elastic Net, fused Lasso)
 - Beyond linear model (GLMs, MRFs)
 - Sparse Matrix Factorizations
 - Beyond variable-selection: variable construction
 - Summary and Open Issues

Beyond Lasso: General Log-likelihood Losses

$$Loss(\mathbf{x}) + \lambda ||\mathbf{x}||_{1}$$

$$-\log P(y|\mathbf{x}) + \lambda ||\mathbf{x}||_{1}$$

- 1. Gaussian ⇔ Lasso
- 2. Bernoulli ⇔ logistic regression
- Exponential-family ⇔ Generalized Linear Models (includes 1 and 2)
- 4. Multivariate Gaussian ⇔ Gaussian MRFs

I1-regularized M-estimators

Sparse Signal Recovery with M-estimators

- risk consistency of generalized linear models (Van de Geer, 2008)
- model-selection consistency of Gaussian MRFs (Ravikumar et al, 2008a)
- generalized linear models: recovery in l₂-norm (non-asymptotic regime) for exponential-family noise and standard RIP conditions on the design matrix (Rish and Grabarnik, 2009)
- Asymptotic consistency of general losses satisfying restricted strong convexity, with decomposable regularizers (Negahban et al., 2009)

 $\psi(\theta)$ is strictly convex and differentiable

 $\psi(\theta)$ uniquely determines the member distribution of the family

Examples: Gaussian, exponential, Bernoulli, multinomial, gamma, chi-square, beta, Weibull, Dirichlet, Poisson, etc.

$$E_{\rho_{\psi,\theta}}(\mathbf{y}) = f^{-1}(\mathbf{A}\mathbf{x})$$

 $E_{p_{\psi,\theta}}(\mathbf{y}) = \mu(\theta)$ - *expectation parameter* Corresponds to the natural parameter $\theta = \mathbf{A}\mathbf{x}$

 $f(\theta)$ - *link function*, where $f^{-1}(\theta) = \nabla \psi(\theta)$

1. Gaussian noise - *identity* function $f(\mu) = \mu$ (linear regression): $E(\mathbf{y}) = \mathbf{A}\mathbf{x}$

2. Bernoulli noise - *logit* function $f(\mu) = \log \frac{\mu}{1-\mu}$ (logistic regression)

$$\Xi(\mathbf{y}) = rac{1}{1 + e^{-\mathbf{A}\mathbf{x}}}$$

Summary: Exponential Family, GLMs, and Bregman Divergences

Bijection Theorem (Banerjee et al, 2005): $p_{\psi,\theta}(\mathbf{y}) = e^{-d_{\phi}(\mathbf{y},\mu(\theta))} f_{\phi}(\mathbf{y})$

Domain	Distribution	Divergence
R	1 <i>D</i> Gaussian	square loss
{0,1}	Bernoulli	logistic loss
R ₊₊	Exponential	Itakura-Saito distance
n-simplex	nD Multinomial	KL-divergence
\mathbb{R}^{n}	nD Sph. Gaussian	squared Euclidean distance
\mathbb{R}^{n}	<i>nD</i> Gaussian	Mahalanobis distance

Fitting GLM ⇔ maximizing exp-family likelihood ⇔ ⇔ minimizing Bregman divergence

Sparse Signal Recovery from Noisy Observations

Euclidean distance (Candes, Romberg and Tao, 2006):

lf

- small observation noise: $||y Ax^0||_{l_2} \le \epsilon$
- A satisfies the restricted isometry property (RIP)

Then the solution to the sparse linear regression problem

 $x^* = \arg\min_{\mathbf{y}} ||\mathbf{x}||_{l_1} \quad s.t. ||\mathbf{y} - \mathbf{A}\mathbf{x}||_{l_2} \le \epsilon$

is a good approximation of x^0 , i.e. $||x^* - x^0||_{l_2} \leq C_S \cdot \epsilon$.

Generalized Linear Models:

replace Euclidean distances $||y - Ax^0||_{l_2}$ and $||y - Ax||_{l_2}$ by the corresponding Bregman divergences $d(y, \mu(Ax^0))$ and $d(y, \mu(Ax))$.

Sparse Signal Recovery with Exponential-Family Noise

Can we recover a sparse signal from a small number of noisy observations?

Sufficient Conditions

Then the solution x^* to the sparse GLM regression problem $\min ||x||_1$ subject to $\sum_i d(y_i, \mu(A_ix)) \le \epsilon$ is a good approximation of x^0 , i.e. $||x^* - x^0||_{l_2} \le C_S \cdot \delta(\epsilon)$ $\delta(\epsilon)$ - continuous monotone increasing function, and $\delta(0) = 0$ (i.e. $\delta(\epsilon)$ is small when ϵ is small).

*otherwise, different proofs for some specific cases (e.g., Bernoulli, exponential, etc.)

Summary

- sparse signal recovery (Candes, Romberg & Tao, 2006) can be extended from linear to generalized linear models (*exponential-family* observation noise)
- signal recovery requires solving an I₁-regularized Generalized Linear Model (GLM) regression problem
- recovery conditions include, besides standard RIP for design matrix:

(1) small noise (Bregman divergence) $d_{\phi}(y_i, \mu(A_{i,:}x^0)) \leq \epsilon$

- (2) certain conditions on ϕ
- results also hold for compressible (rather than sparse) signals

Markov Networks (Markov Random Fields)

$$X = \{X_1, ..., X_p\}, G = (V, E)$$

$$P(\boldsymbol{X}) = rac{1}{\boldsymbol{Z}} \prod_{\mathcal{C} \in \textit{Cliques}} \Phi_{\mathcal{C}}(\boldsymbol{X}_{\mathcal{C}})$$

Lack of edge $(i, j) \rightarrow$ conditional independence $X_i \perp X_j | rest$

Gaussian Markov Networks (GMRFs):

- $P(\mathbf{x}) = (2\pi)^{-\frac{P}{2}} \operatorname{det}(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$
- Σ covariance matrix, Σ^{-1} precision (concentration) matrix
- Zeros in Σ: marginal independence
- Zeros in $\Sigma^{-1} \Leftrightarrow$ conditional independence \Leftrightarrow lack of edge (Lauritzen, 1996)
- Sparse $\Sigma^{-1} \Leftrightarrow$ sparse Markov network

Sparse Markov Networks in Practical Applications

Social Networks

 US senate voting data (Banerjee et al, 2008): democrats (blue) and republicans (red)

Genetic Networks

 Rosetta Inpharmatics Compendium of gene expression profiles (Banerjee et al, 2008)

- Brain Networks from fMRI
 - □ Monetary reward task (Honorio et al., 2009)
 - Drug addicts more connections in cerebellum (yellow) vs control subjects (more connections in prefrontal cortex – green)

(b) controls

Classifying Schizophrenia (Cecchi et al., 2009) Mental state prediction (sentence vs picture)*:

(Scheinberg and Rish, submitted)

MRF classifiers can often exploit informative interactions among variables and often outperform state-of-art linear classifiers (e.g., SVM)

*Data @ <u>www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/</u> from T. Mitchell et al., *Learning to Decode Cognitive States from Brain Images,* Machine Learning, 2004.

Network Properties as BioMarkers (Predictive Features)

Discriminative Network Models of Schizophrenia (Cecchi et al., 2009)

- Voxel degrees in *functional networks* (thresholded *covarianc*e matrices) are statistically significantly different in schizophrenic patients that appear to lack "hubs" in auditory/language areas

FDR-corrected Degree Maps

2-sample t-test performed for each voxel in degree maps, followed by FDR correction

Red/yellow: Normal subjects have *higher* values than Schizophrenics

Also, abnormal MRF connectivity observed in Alzheimer's patients (Huang 2009), in drug addicts (Honorio 2009), etc.

Sparse Inverse Covariance Selection Problem

- First introduced in (Dempster, 1972)
 - maximum-likelihood (MLE) with bounded number of $\Sigma_{ii}^{-1} \neq 0$
 - intractable for large p; also, MLE may not even exist for n > p
- Most recent approaches exploit *I*₁-regularization
 - tractable up to thousands of variables
 - handle *n* > *p* cases
 - enforce zeros in Σ^{-1} explicitly, while MLE does not
- Neighborhood selection via Lasso (Meinshausen and Buhlmann, 2006):
 - very simple and scalable approach
 - (1) fits Lasso to each X_i given the rest of the nodes; (2) includes link (i, j) if both X_i and X_j models include it (or, use OR-rule);
 - consistently estimates the *network structure* (zero-pattern of Σ^{-1})
 - but not the actual parameters! (may violate symmetry and posdef constraints on $\Sigma^{-1})$
 - can be viewed as an approximation to the *I*₁-regularized (joint) maximum-likelihood problem

Assume the data X are centered to have zero mean. Then:

$$\hat{\Sigma}^{-1} = \arg \max_{C \succ 0} \log p(C | \mathbf{X}) = \arg \max_{C \succ 0} \log p(\mathbf{X}, C) =$$

 $= \arg \max_{C \succ 0} \log \det(C) - \operatorname{tr}(SC)$

where $S = \frac{1}{N} \sum_{i=1}^{N} x_i^T x_i$ is the empirical covariance matrix (MLE of Σ)

Why not just use $\hat{\Sigma}^{-1} = S^{-1}$?

- in small-sample case (n < p), S may not be even invertible
- even if it is, S⁻¹ almost never contains exact zeros
- *I*₁-regularization takes care of both issues!

*I***₁-Regularized Maximum Likelihood Problem**

Primal:

$$\hat{\Sigma}^{-1} = \arg \max_{C \succ 0} \log \det(C) - \operatorname{tr}(SC) - \lambda ||C||_1 \quad (1)$$

Convex problem; unique optimum for any $\lambda > 0$ (Banerjee et al., 2008)

Dual:

$$\hat{\Sigma} = \{ \arg\max_{W} \log\det(W) : ||W - S||_{\infty} \le \lambda \}$$
(2)

The dual estimates the covariance $\hat{\Sigma}$, rather than its inverse The constraint $W \succ 0$ is implicit since $\log \det(W) = -\infty$ when $W \not\succeq 0$ Smooth and convex problem; can be solved by an interior-point method However, the complexity is $O(p^6 \log(1/\epsilon))$ (where ϵ is a solution accuracy) Not scalable for more than a few hundred nodes Initialize: $W \leftarrow S + \lambda I$

Iterate over columns of *W* until convergence:

1. swap the j - th column (row) with the last column (row) in W and S:

$$W = \begin{pmatrix} W_{11} & W_{12} \\ W_{12}^T & W_{22} \end{pmatrix} \qquad \qquad S = \begin{pmatrix} S_{11} & S_{12} \\ S_{12}^T & S_{22} \end{pmatrix}$$

2. Solve a box-constrained quadratic program (QP):

$$\hat{w}_{12} = \arg\min_{v} \{ y^T W_{11}^{-1} y : ||y - s_{12}||_{\infty} \le \lambda \}$$
(3)

3. Update *W* using the new estimate \hat{w}_{12}

COVSEL (Banerjee et al., 2006):

solves (3) using an interior-method approach; overall time is $O(Tp^4)$ where T is the number of sweeps through all columns

GLASSO (Friedman et al., 2007):

solves the dual of (3) (Lasso problem), using coordinate descent; about $O(Tp^3)$ complexity, much faster than COVSEL empirically

Projected Gradient on the Dual Problem

 $\min_{x} f(x)$ $x \in S$ (S is convex)

Iteratively update *x* until convergence:

1. $x \leftarrow x + \alpha \nabla f(x)$ (step of size α in the direction of gradient)

2. $x \leftarrow \prod_{S}(x) = \arg \min_{z} \{ ||x - z||_{2} : z \in S \}$ (project onto *S*)

(Duchi et al., 2008) applies the PG approach to the dual problem (2) S is defined by the box-constraint in (2)

 $O(p^3)$ complexity - similar to *glasso*, but twice as fast empirically

Alternatives: Solving Primal Problem Directly

- 1. Greedy coordinate ascent approach: SINCO (Scheinberg et al., 2009)
 - updates one diagonal or two (symmetric) off-diagonal elements of C at each step
 - evaluating each C_{ij} takes constant time (solving quadratic equation), thus each step takes O(p²) time and can be easily parallelized
 - naturally preserves the sparsity of a solution; can reduce false-positive error by not including "weak" edges not contributing much to the objective
 - Speedwise, comparable to glasso; outperforms glasso on large-scale problems

CPU time comparison: SINCO vs glasso on (a) random networks (N = 500, fixed range of λ) and (b) scale-free networks (density 21%, N and λ scaled by the same factor with p, N = 500 for p = 100).

2. (Honorio et al., 2009) also solve the primal problem:

- Optimize over each column (node) at a time
- Exploit "local constancy" structure adding a regularizer similar to fused Lasso

Additional Related Work

- (Yuan and Lin, 2007) solve the primal problem (1) using interior-point method for the maxdet problem (Vandenberghe et al., 1998)
- (Lee et al., 2007) learn MRFs using clique selection heuristic and approximate inference
- (Wainwright et al., 2007) extend the approach of (Meinshausen and Buhlmann, 2006) to binary MRFs Ising models, applying sparse logistic regression at each node, and derive asymptotic consistency results
- (Schmidt et al., 2007) apply *l*₁-regularization to structure learning in Bayesian networks
- (Huang et al., 2009) prove the monotone property of (1) under decreasing λ (i.e., connected nodes stay connected with decreasing sparsity levels)
- (Lin et al., 2009) propose an alternative approach based on ensemble-of-trees that is shown to sometimes outperform *I*₁-regularization approaches of (Banerjee et al., 2008) and (Wainwright et al., 2007)
- (Schmidt and Murphy, 2010) learn log-linear models with higher-order (beyond pairwise) potentials; use group-*I*₁ regularization with overlapping groups to enforce hierarchical structure over potentials

Selecting the Proper Regularization Parameter

"...the general issue of selecting a proper amount of regularization for getting a right-sized structure or model has largely remained a problem with unsatisfactory solutions" (Meinshausen and Buehlmann , 2008)

"asymptotic considerations give little advice on how to choose a specific penalty parameter for a given problem" (Meinshausen and Buehlmann , 2006)

Bayesian Approach (N.Bani Asadi, K. Scheinberg and I. Rish, 2009)

- □ Assume a Bayesian prior on the regularization parameter
- □ Find maximum a posteriory probability (MAP) solution

Result:

- □ more ``balanced'' solution (False Positive vs False Negative error) than
 - cross-validation too dense, and
 - theoretical (Meinshausen & Buehlmann 2006, Banerjee et al 2008) too sparse
- Does not require solving multiple optimization problems over data subsets as compared to the *stability selection* approach (Meinshausen and Buehlmann 2008)

Existing Approaches

- 1. Cross-validation based on predictive accuracy:
 - Aims at the prediction rather than the structure reconstruction accuracy!
 - CV-estimate approximates the prediction-oracle λ, that does not lead to consistent model-selection due to possible inclusion of noisy edges (Meinshausen and Buhlmann, 2006)
 - Indeed, empirically, CV-estimate yields too high false-positive rate
- 2. Theoretical approach (Banerjee et al., 2008):

guarantees consistent reconstruction of connected components for each node (i.e., rows in covariances matrix, rather than its inverse):

$$\lambda(\alpha) = (\max_{i>j} \sigma_i \sigma_j) \frac{t_{n-2}(\alpha/p^2)}{\sqrt{n-2} + t_{n-2}^2(\alpha/p^2)}$$

guarantees that

$$P(\exists k \in \{1, ..., p\} : \hat{C}_k^{\lambda} \nsubseteq C_k) \leq \alpha,$$

where \hat{C}_k^{λ} is an estimate of the connectivity component of node *k*, and *C_k* is its "true" component.

- Controls the false positive error in $\hat{\Sigma}$, rather than $\hat{\Sigma}^{-1}$
- Too conservative, empirically: misses many edges

Being Bayesian about λ

- λ as a random variable: learn its distribution
- Maximize the joint log likelihood

$$\Sigma^{-1}, \widehat{\lambda} = \max_{C \succ 0, \lambda} \ln p(\mathbf{X}, C, \lambda)$$

$$p(X, C, \lambda) = p(X|C)p(C|\lambda)p(\lambda)$$

• Thus, we need to solve:

$$\max_{\lambda,C\succ 0} \frac{N}{2} [\ln \det(C) - \operatorname{tr}(SC)] + P^2 \ln \frac{\lambda}{2} - \lambda ||C||_1 + \ln p(\lambda).$$

• The choice of $P(\lambda)$: flat? exponential? Gaussian? etc.

False Negatives: Missed Links

False Positives: 'Noisy' Links

- Cross-validation (green) overfits drastically, producing almost complete C matrix
- Theoretical (black) is too conservative: misses too many edges (near-diagonal C)
- Prior-based approaches (red and blue) are much more 'balanced': low FP and FN

The Bayesian λ

ROC Curve

- Introduction
- Sparse Linear Regression: Lasso
- Sparse Signal Recovery and Lasso: Some Theory
- Sparse Modeling: Beyond Lasso
 - Consistency-improving extensions
 - Beyond I₁-regularization (I1/Iq, Elastic Net, fused Lasso)
 - Beyond linear model (GLMs, MRFs)
 - Sparse Matrix Factorizations
 - Beyond variable-selection: variable construction
 - Summary and Open Issues

• Dictionary learning

(Elad and Aharon, 2006; Raina et al., 2007; Mairal et al., 2009):

sparse $U(i, :) \Leftrightarrow$ sparse representation in dictionary V

- Sparse PCA (Zou et al., 2006; d'Aspremont et al., 2007): sparse V(:, j) (loadings/coordinates of components) → interpretability
- other sparse matrix factorization methods: sparse CCA (Sriperumbudur et al., 2009; Hardoon and Shawe-Taylor, 2008), sparse NMF (Hoyer, 2004), with applications to blind-source separation and diagnosis (Chandalia and Rish, 2007)

- Introduction
- Sparse Linear Regression: Lasso
- Sparse Signal Recovery and Lasso: Some Theory
- Sparse Modeling: Beyond Lasso
 - Consistency-improving extensions
 - Beyond I₁-regularization (I1/Iq, Elastic Net, fused Lasso)
 - Beyond linear model (GLMs, MRFs)
 - Sparse Matrix Factorizations
 - Beyond variable-selection: variable construction
 - Summary and Open Issues

From Variable Selection to Variable Construction

Supervised Dimensionality Reduction (SDR):

 Assume there is an inherent low-dimensional structure in the data that is predictive about the target Y

Learn a predictor (mapping from U to Y) simultaneously with dimensionality reduction

 Idea: dimensionality reduction (DR) guided by the class label may result into better predictive features than the unsupervised DR

Particular Mappings $X \rightarrow U$ and $U \rightarrow Y$

- F. Pereira and G. Gordon. *The Support Vector Decomposition Machine*, ICML-06. Real-valued X, discrete Y (linear map from X to U, SVM for Y(U))
- 2. E. Xing, A. Ng, M. Jordan, and S. Russell. *Distance metric learning with application to clustering with side information*, NIPS-02.
- K. Weinberger, J. Blitzer and L. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classification, NIPS-05.
 Real-valued X, discrete Y (linear map from X to U, nearest-neighbor Y(U))
- 4. K. Weinberger and G. Tesauro. *Metric Learning for Kernel Regression*, AISTATS-07. Real-valued X, real-valued Y (linear map from X to U, kernel regression Y(U))
- 5. Sajama and A. Orlitsky. *Supervised Dimensionality Reduction using Mixture Models*, ICML-05. Multi-type X (exp.family), discrete Y (modeled as mixture of exp-family distributions)
- 6. M. Collins, S. Dasgupta and R. Schapire. A generalization of PCA to the exponential family, NIPS-01.
- 7. A. Schein, L. Saul and L. Ungar. *A generalized linear model for PCA of binary data, AISTATS-03* Unsupervised dimensionality reduction beyond Gaussian data (nonlinear GLM mappings)
- 8. I. Rish, G. Grabarnik, G. Cecchi, F. Pereira and G. Gordon. *Closed-form Supervised Dimensionality Reduction with Generalized Linear Models, ICML-08*

Example: SDR with Generalized Linear Models (Rish et al., 2008)

Generalized Linear Models (GLMs)

$$E(\mathbf{X}_d) = f_d^{-1}(\mathbf{U}\mathbf{V}_d)$$
$$E(\mathbf{Y}_k) = f_k^{-1}(\mathbf{U}\mathbf{W}_k)$$

E.g., in linear case, we have:

 $X \sim UV$ and $Y \sim UV$

Supervised DR Outperforms Unsupervised DR on Simulated Data

- Generate a separable 2-D dataset U
- Blow-up in D dimensional data X by adding exponential-family noise (e.g., Bernoulli)
- Compare SDR w/ different noise models (Gaussian, Bernoulli) vs. unsupervised DR (UDR) followed by SVM or logistic regression

- SDR outperforms unsupervised DR by 20-45%
- Using proper data model (e.g., Bernoulli-SDR for binary data) matters
- SDR ``gets'' the structure (0% error), SVM does not (20% error)

Real-valued data, Classification Task

Predict the type of word (tools or buildings) the subject is seeing 84 samples (words presented to a subject), 14043 dimensions (voxels)

Latent dimensionality L = 5, 10, 15, 20, 25

method ackslash L	5	10	15	20	25
Gaussian- SDR	0.21	0.26	0.23	0.20	0.23
Logistic-UDR	0.44	0.42	0.29	0.30	0.26
SVM- UDR	0.49	0.52	0.56	0.57	0.55
SVDM	0.32	0.25	0.21	0.23	0.23
SVM			0.21		

- Gaussian-SDR achieves overall best performance
- SDR matches SVM's performance using only 5 dimensions, while SVDM needs 15
- SDR greatly outperforms unsupervised DR followed by learning a classifier

- Introduction
- Sparse Linear Regression: Lasso
- Sparse Signal Recovery and Lasso: Some Theory
- Sparse Modeling: Beyond Lasso
 - Consistency-improving extensions
 - Beyond I₁-regularization (I1/Iq, Elastic Net, fused Lasso)
 - Beyond linear model (GLMs, MRFs)
 - Sparse Matrix Factorizations
 - Beyond variable-selection: variable construction
- Summary and Open Issues

Summary and Open Issues

- Common problem: small-sample, high-dimensional inference
- Feasible if the input is structured e.g. sparse in some basis
- Efficient recovery of sparse input via 11- relaxation
- Sparse modeling with <u>I1-regularization</u>: interpretability + prediction
- Beyond I1-regularization: adding more structure
- Beyond Lasso: M-estimators, dictionary learning, variable construction
 - Open issues, still:
 - □ choice of regularization parameter?
 - □ choice of proper dictionary?
 - \Box Is interpretability \Leftrightarrow sparsity? (NO!)

Interpretability: Much More than Sparsity?

- Bach, F., 2008a. Bolasso: model consistent lasso estimation through the bootstrap. In: ICML '08: Proceedings of the 25th international conference on Machine learning. ACM, New York, NY, USA, pp. 33–40.
- Bach, F., 2008b. Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning Research 9, 1179–1225.
- Bach, F. R., Lanckriet, G. R. G., Jordan, M. I., 2004. Multiple kernel learning, conic duality, and the smo algorithm. In: ICML '04: Proceedings of the twenty-first international conference on Machine learning. ACM, New York, NY, USA, p. 6.
- Bakin, S., 1999. Adaptive Regression and Model Selection in Data Mining Problems. Ph.D. thesis, Australian National University, Canberra, Australia.
- Banerjee, O., El Ghaoui, L., d'Aspremont, A., March 2008. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research 9, 485–516.
- Banerjee, O., Ghaoui, L. E., d'Aspremont, A., Natsoulis, G., 2006. Convex optimization techniques for fitting sparse Gaussian graphical models. In: ICML. pp. 89–96.
- Baraniuk, R., Davenport, M., DeVore, R., Wakin, M., 2008. A simple proof of the restricted isometry property for random matrices. Constructive Approximation 28 (3), 253–263.
- Beygelzimer, A., Kephart, J., Rish, I., 2007. Evaluation of optimization methods for network bottleneck diagnosis. In: In Proc. of International Conference on Autonomic Computing (ICAC-07).
- Bickel, P., Ritov, Y., Tsybakov, A., 2009. Simultaneous analysis of Lasso and Dantzig selector. The Annals of Statistics 37 (4), 1705–1732.
- Boyd, S., Vandenberghe, L., 2004. Convex optimization. Cambridge Univ Pr.
- Bunea, F., Tsybakov, A., , Wegkamp, M., 2007. Sparsity oracle inequalities for the lasso. Electron. J. Statist. 1, 169–194.
- Candès, E., 2006. Compressive sampling. In: Proceedings of the Int. Congress of Mathematics. pp. 1433–1452.
- Candès, E., Romberg, J., 2007. Sparsity and incoherence in compressive sampling. Inverse Problems 23(3), 969–985.

- Candès, E., Romberg, J., Tao, T., 2006. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509.
- Candès, E., Tao, T., 2006a. The dantzig selector: Statistical estimation when *p* is much larger than *n*. Annals of Statistics To appear.
- Candès, E., Tao, T., 2006b. Decoding by linear programming,. IEEE Trans. Inform. Theory 51, 4203–4215, j.
- Candès, E., Tao, T., 2006c. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425.
- Carroll, M., G.A.Cecchi, Rish, I., Garg, R., Rao, A., 2009. Prediction and Interpretation of Distributed Neural Activity with Sparse Models. Neuroimage (44(1)), 112–22.
- Cecchi, G., Rish, I., Thyreau, B., Thirion, B., Plaze, M., Paillere-Martinot, M., C. Martelli, J.L. Martinot, J. P., 2009. Discriminiative network models of schizophrenia. In: Proc. of NIPS-09.
- Chandalia, G., Rish, I., 2007. Blind Source Separation Approach to Performance Diagnosis and Dependency Discovery. In: In Proceedings of IMC-2007.
- Chen, S. S., Donoho, D. L., Saunders, M. A., 1999. Atomic Decomposition by Basis Pursuit. SIAM Journal on Scientific Computing (20), 33–61. URL http://ww~-stat.stanford.ed~~donoho~s/1995/30401
- d'Aspremont, A., Ghaoui, L., 2008. Testing the Nullspace Property using Semidefinite Programming. Arxiv preprint arXiv:0807.3520.
- d'Aspremont, A., Ghaoui, L. E., Jordan, M. I., Lanckriet, G. R. G., 2007. A direct formulation for sparse pca using semidefinite programming. SIAM Review 49 (3), 434Ű448.
- Daubechies, I., Defrise, M., De Mol, C., 2004. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 57, 1413–1457.
- Dempster, A. P., March 1972. Covariance selection. Biometrics 28 (1), 157–175.
- Donoho, D., July 2006a. For most large underdetermined systems of linear equations, the minimal ℓ_1 norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics 59 (7), 907–934.

- Donoho, D., June 2006b. For most large underdetermined systems of linear equations, the minimal ℓ_1 norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59 (6), 797–829.
- Donoho, D. L., 2006c. Compressed sensing. IEEE Trans. Inform. Theory. 52, n. 4, 1289–1306.
- Donoho, D. L., 2006d. For most large underdetermined systems of linear equations the minimal ℓ_1 -norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59, no. 6, 797–829, .
- Donoho, D. L., Elad, M., Temlyakov, V., 2006. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52, no. 1, 6–18.
- Donoho, D. L., Johnstone, I. M., 1994. Ideal denoising in an orthonormal basis chosen from a library of bases. C. R. Acad. Sci. Paris Sèr. I Math. 319, 1317–1322.
- Donoho, D. L., Stark, P. B., 1989. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931.
- Duchi, J., Gould, S., Koller, D., 2008. Projected subgradient methods for learning sparse gaussians. In: Proc. of UAI-08.
- Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., 2004. Least angle regression. Ann. Statist. 32 (1), 407–499.
- Elad, M., Aharon, M., 2006. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 15 (12), 3736Ű3745.
- Fan, J., Li, R., 2005. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348–1360.
- Frank, I., Friedman, J., 1993. A statistical view of some chemometrics regression tools. Technometrics 35 (2), 109–148.
- Friedman, J., Hastie, T., Hoefling, H., Tibshirani, R., 2007a. Pathwise coordinate optimization. Annals of Applied Statistics 2 (1), 302–332.
- Friedman, J., Hastie, T., Tibshirani, R., 2007b. Sparse inverse covariance estimation with the graphical lasso. Biostatistics.
- Fu, W., 1998. Penalized regressions: the bridge vs. the lasso. Journal of Computational and Graphical Statistics 7 (3).

- Fuchs, J., 2005. Sparsity and uniqueness for some specific underdetermined systems. In IEEE International Conference on Acoustics, Speech and Signal Processing.
- Garg, R., Khandekar, R., 2009. Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property. In: ICML. p. 43.
- Greenshtein, E., Ritov, Y., 2004. Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10 (6), 971–988.
- Hardoon, D. R., Shawe-Taylor, J., 2008. Sparse canonical correlation analysis. Sparsity and Inverse Problems in Statistical Theory and Econometrics.
- Hoerl, A., Kennard, R., 1988. Ridge regression. Encyclopedia of Statistical Sciences 8 (2), 129–136.
- Honorio, J., Ortiz, L., Samaras, D., Paragios, N., Goldstein, R., 2009. Sparse and locally constant gaussian graphical models. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta, A. (Eds.), Advances in Neural Information Processing Systems 22. pp. 745–753.
- Hoyer, P. O., 2004. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469.
- Huang, S., Li, J., Sun, L., Liu, J., Wu, T., Chen, K., Fleisher, A., Reiman, E., Ye, J., 2009. Learning brain connectivity of alzheimer's disease from neuroimaging data. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta, A. (Eds.), Advances in Neural Information Processing Systems 22. pp. 808–816.
- Jacob, L., Obozinski, G., Vert, J.-P., 2009. Group lasso with overlap and graph lasso. In: ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. ACM, New York, NY, USA, pp. 433–440.
- Jogdeo, K., Samuels, S., 1968. Monotone convergence of binomial probabilities and a generalization of Ramanujan's equation. The Annals of Mathematical Statistics 39 (4), 1191–1195.
- Juditsky, A., Karzan, F., Nemirovski, A., 2009. Verifiable conditions of I-recovery of sparse signals with sign restrictions. ArXiv.
- Juditsky, A., Nemirovski, A., 2008. On verifiable sufficient conditions for sparse signal recovery via I1 minimization. ArXiv 809.

- Knight, K., Fu, W., 2000a. Asymptotics for lasso-type estimators. Ann. Statist. 28 (5), 1356–1378.
- Knight, K., Fu, W., 2000b. Asymptotics for lasso-type estimators. Annals of Statistics 28 (5), 1356–1378.
- Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., Jordan, M. I., 2004. Learning the Kernel Matrix with Semidefinite Programming. J. Mach. Learn. Res. 5, 27–72.

Lauritzen, S., 1996. Graphical Models. Oxford University Press.

- Lee, S., Ganapathi, V., Koller, D., 2007. Efficient structure learning of Markov networks using ℓ_1 -regularization. In: NIPS 19.
- Lin, Y., Lee, D., Kim, Y., Taskar, B., 2009. Learning Markov Network Structure via Sparse Ensemble-of-Trees Models. In: AISTATS-09.
- Liu, H., Palatucci, M., Zhang, J., June 2009a. Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In: International Conference on Machine Learning (ICML09).
- Liu, J., Ji, S., Ye, J., 2009b. Multi-task feature learning via efficient $\ell_{2,1}$ -norm minimization. In: Uncertainty in Artificial Intelligence.
- Lozano, A., Abe, N., Liu, Y., Rosset, S., 2009a. Grouped graphical granger modeling methods for temporal causal modeling. In: KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York, NY, USA, pp. 577–586.
- Lozano, A., Swirszcz, G., Abe, N., 2009b. Grouped orthogonal matching pursuit for variable selection and prediction. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., Culotta, A. (Eds.), Advances in Neural Information Processing Systems 22. pp. 1150–1158.
- Lv, J., Fan, Y., 2009. A unified approach to model selection and sparse recovery using regularized least squares. The Annals of Statistics 37 (6A), 3498–3528.
- Mairal, J., Bach, F., Ponce, J., Sapiro, G., 2009. Online dictionary learning for sparse coding. In: ICML-09.
- Mallat, S., Zhang, Z., 1993. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41, 3397–3415.
- Meier, L., van de Geer, S., Bühlmann, P., 2008. The group lasso for logistic regression. J. Royal Statistical Society: Series B 70 (1), 53–71.

- Meinshausen, N., 2007. Lasso with relaxation. Computational Statistics and Data Analysis 52 (1), 374–293.
- Meinshausen, N., Buehlmann, P., 2008. Stability Selection.

URL http://www.citebase.org/abstract?id=oai:arXiv.org:0809%.2932

- Meinshausen, N., Buhlmann, P., 2006. High dimensional graphs and variable selection with the Lasso. Annals of Statistics 34(3), 1436–1462.
- Meinshausen, N., Yu, B., 2009. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics 37 (1), 246–270.
- Mendelson, S., Pajor, A., Tomczak-Jaegermann, N., 2008. Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constructive Approximation 28 (3), 277–289.
- Moghaddam, B., Weiss, Y., Avidan, S., 2007. Spectral bounds for sparse pca: Exact and greedy algorithms. In: Advances in Neural Information Processing Systems 19.
- Nesterov, Y., 2004. Introductory lectures on convex optimization: A basic course. Springer Netherlands.
- Obozinski, G., Taskar, B., Jordan, M. I., 2010. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing 20 (2), 231–252.
- Obozinski, G., Wainwright, M., Jordan, M., 2009. High-dimensional support union recovery in multivariate regression. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (Eds.), Advances in Neural Information Processing Systems 21. pp. 1217–1224.
- Osborne, M., Presnell, B., Turlach, B., 2000a. On the LASSO and its dual. Journal of Computational and Graphical Statistics 9 (2), 319–337.
- Osborne, M., Presnell, B., Turlach, B., 2000b. A new approach to variable selection in least squares problems. IMA Journal of Numerical Analysis 20 (3), 389–403.
- Quattoni, A., Carreras, X., Collins, M., Darrell, T., 2009. An efficient projection for ℓ_{1,∞} regularization. In: ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. ACM, New York, NY, USA, pp. 857–864.
- Raina, R., Battle, A., Lee, H., Packer, B., Ng, A., 2007. Self-taught learning: Transfer learning from unlabeled data. In: In Proc. ICML-07.
- Rish, I., Cecchi, G. A., Baliki, M. N., Apkarian, A. V., August 2010. Sparse Regression Models of Pain Perception. In: Proc. of Brain Informatics (BI-2010).

- Rish, I., Grabarnik, G., September 2009. Sparse signal recovery with exponential-family noise. In: Proc. of Allerton-09.
- Rish, I., Grabarnik, G., Cecchi, G., Pereira, F., Gordon, G., July 2008. Closed-form Supervised Dimensionality Reduction with Generalized Linear Models. In: Proc. of ICML-08.

Rockafellar, R., 1996. Convex analysis. Princeton Univ Pr.

- Roth, V., Fischer, B., 2008. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In: ICML '08: Proceedings of the 25th international conference on Machine learning. ACM, New York, NY, USA, pp. 848–855.
- Rudelson, M., Vershynin, R., 2006. Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements. In: Information Sciences and Systems, 2006 40th Annual Conference on. pp. 207–212.
- Scheinberg, K., Asadi, N. B., Rish, I., 2009. Sparse MRF Learning with Priors on Regularization Parameters. Tech. Rep. RC24812, IBM T.J. Watson Research Center.
- Schmidt, M., Murphy, K., 2010. Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials. In: Proc. of AISTATS-10.
- Schmidt, M., Niculescu-Mizil, A., Murphy, K., 2007. Learning graphical model structure using ℓ_1 -regularization paths. In: AAAI-2007.
- Sriperumbudur, B. K., Torres, D. A., Lanckriet, G. R. G., 2009. A d.c. programming approach to the sparse generalized eigenvalue problem. Tech. Rep. 0901.1504v2, ArXiv.
- Tao, T., 2005. An uncertainty principle for cyclic groups of prime order. Math. Res. Letters 12, 121–127.
- Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B 58 (1), 267–288.
- Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K., 2005. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society Series B, 91–108.
- Tropp, J., 2006. Algorithms for simultaneous sparse approximation, Part II: convex relaxation. Signal Proc. 86 (3), 589–602.
- Turlach, B., Venables, W., Wright, S., 2005. Simultaneous variable selection. Technometrics 47 (3), 349–363.

- Vandenberghe, L., Boyd, S., Wu, S., 1998. Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. (19), 499–533.
- Wainwright, M., 2009a. Sharp thresholds for high-dimensional and noisy sparsity recovery using I1-constrained quadratic programming (Lasso). IEEE Trans. Information Theory 55, 2183–2202.
- Wainwright, M., May 2009b. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ₁-constrained quadratic programming (lasso). IEEE Transactions on Information Theory 55, 2183–2202.
- Wainwright, M., Ravikumar, P., Lafferty, J., 2007. High-Dimensional Graphical Model Selection Using ℓ₁-Regularized Logistic Regression. In: NIPS 19. pp. 1465–1472.
- Wu, T., Lange, K., 2008. Coordinate descent procedures for lasso penalized regression. Annals of Applied Statistics 2 (1), 224–244.
- Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B 68, 49–67.
- Yuan, M., Lin, Y., 2007a. Model Selection and Estimation in the Gaussian Graphical Model. Biometrika 94(1), 19–35.
- Yuan, M., Lin, Y., 2007b. On the non-negative garrotte estimator. Journal of The Royal Statistical Society Series B 69 (2), 143–161.
- Zhao, P., Rocha, G., Yu, B., 2009. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics 37 (6A), 3468–3497.
- Zhao, P., Yu, B., November 2006a. On model selection consistency of lasso. J. Machine Learning Research (7), 2541–2567.
- Zhao, P., Yu, B., 2006b. On model selection consistency of Lasso. The Journal of Machine Learning Research 7, 2563.
- Zou, H., 2006. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101 (476), 1418–1429.
- Zou, H., Hastie, T., 2005. Regularization and variable selection via the Elastic Net. Journal of the Royal Statistical Society, Series B 67 (2), 301–320.
- Zou, H., Hastie, T., Tibshirani, R., 2006. Sparse principal component analysis. Journal of Computational and Graphical Statistics (15), 265–286.

Appendix A

Why Exponential Family Loss?

- Network Management Problem Diagnosis:
 - binary failures Bernoulli
 - □ non-negative delays exponential
- Collaborative prediction:
 - □ discrete rankings multinomial
- DNA microarray data analysis:
 - Real-valued expression level Gaussian
- fMRI data analysis
 - □ Real-valued voxel intensities, binary, nominal and continuous responses

Variety of data types: real-valued, binary, nominal, non-negative, etc.

Noise model: exponential-family

Bregman Divergences

Definition. Given a strictly convex function $\phi : S \to \mathbb{R}$ defined on a convex set $S \subseteq \mathbb{R}$, and differentiable on the interior of S, int(S), the Bregman divergence $d_{\phi} : S \times int(S) \to [0, \infty)$ is

 $d_{\phi}(\mathbf{x},\mathbf{y}) = \phi(\mathbf{x}) - h_{y}(\mathbf{x}),$

where $h_y(x) = \phi(\mathbf{y}) + \langle (\mathbf{x} - \mathbf{y}), \nabla \phi(\mathbf{y}) \rangle$ is the value of the first-order Taylor expansion of ϕ around \mathbf{y} evaluated at point \mathbf{x} .

Fig. 1. Relative entropy (KL-divergence)

Theorem [Banerjee et al., 2005]. There is a bijection between the exponential-family densities $p_{\psi,\theta}(\cdot)$ and Bregman divergences $d_{\phi}(\cdot, \mu)$:

 $p_{\psi,\theta}(\mathbf{y}) = exp(-d_{\phi}(\mathbf{y},\mu(\theta)))f_{\phi}(\mathbf{y}),$

- $\mu(heta) = E_{p_{\psi, heta}}(Y)$
- $\mu = \nabla \psi(heta), \ heta = \nabla \phi(\mu)$
- ϕ (strictly convex and differentiable) Legendre conjugate of ψ
- $f_{\phi}(\mathbf{y})$ a uniquely determined function

Legendre duality:

 $\psi(\theta) \Leftrightarrow \phi(\mu)$

Exponential-family distribution

Bregman divergence

Image courtesy of Arindam Banerjee

Appendix A

Lemma 1 Let y denote a random variable following an exponential-family distribution $p_{\theta}(y)$, with the natural parameter θ , and the corresponding mean parameters $\mu(\theta)$. Let $d_{\phi}(y, \mu(\theta))$ denote the Bregman divergence associated with this distribution. If If

 $\begin{aligned} d_{\phi}(\mathbf{y}, \mu^{0}(\theta^{0})) &\leq \epsilon \quad (small \ noise), \\ d_{\phi}(\mathbf{y}, \mu^{*}(\theta^{*})) &\leq \epsilon \quad (constraint \ in \ GLM \ problem), \quad and \end{aligned}$

 $\phi''(y)$ exists and is bounded on $[y_{min}, y_{max}]$, where $y_{min} = \min\{y, \mu^0, \mu^*\}$ and $y_{max} = \max\{y, \mu^0, \mu^*\}$,

then

$$|\theta^* - \theta^0| \leq \frac{2\sqrt{2\epsilon}}{\sqrt{\min_{\hat{y} \in [y_{\min}; y_{\max}]} \phi''(\hat{y})}} \max_{\hat{\mu} \in [\mu^*; \mu^0]} |\phi''(\hat{\mu})|.$$

However, in some specific cases when condition on $\phi(\mathbf{y})$ is not satisfied (e.g., logistic loss $\phi''(\mathbf{y}) = \frac{1}{\mathbf{y}(1-\mathbf{y})}$ and some others), similar result can still be shown, i.e. $|\theta^* - \theta^0| < \beta(\epsilon)$, where $\beta(\epsilon)$ is continuous monotone increasing function, and $\delta(0) = 0$, i.e. $\delta(\epsilon)$ is small when ϵ is small (Rish and Grabarnik, 2009).

Appendix B

Theorem 1. If

- x⁰ is s-sparse
- A obeys RIP with same constants as in [CR&T, 2006]
- observation noise in y_i follows exponential-family distributions $p_{\theta_i}(y_i)$, with the natural parameter $\theta_i = (A_{i,:}x^0)$
- the noise is sufficiently small, i.e. $\forall i, d_{\phi_i}(y_i, \mu(A_{i,:}x^0)) \leq \epsilon$, and
- ϕ_i satisfies certain conditions (specified below)

Then the solution to the sparse GLM regression problem

$$\min||x||_1$$
 subject to $\sum_i d(y_i, \mu(A_ix)) \le \epsilon$

is a good approximation of x^0 , i.e. $||x^* - x^0||_{l_2} \leq C_S \cdot \delta(\epsilon)$,

 $\delta(\epsilon)$ - continuous monotone increasing function, and $\delta(0) = 0$ (i.e. $\delta(\epsilon)$ is small when ϵ is small).

Proof Idea

- Follows the proof of Theorem 1 in [CR&T]
- Only have to prove condition 1 ("tube constraint"):

 $||\theta^* - \theta^0||_{l_2} = ||\mathbf{A}\mathbf{x}^* - \mathbf{A}\mathbf{x}^0||_{l_2} \le \delta(\epsilon)$

 $Ax = Ax_0$

 ℓ_1 ball

given that $\forall i, d(y_i, \mu(A_{i,:}x^0)) \leq \epsilon$ and $\forall i, d(y_i, \mu(A_{i,:}x^*)) \leq \epsilon$

For Gaussian noise (Euclidean distance), this follows easily from triangle inequality (given $||y - Ax^0||_{l_2} \le \epsilon$ and $||y - Ax^{\dagger}|_{l_2} \le \epsilon$), which does not hold for Bregman divergences, in general.

 Condition 2 ("cone constraint") remains intact: it does not depend on the particular form of the constraint in the *I*₁-minimization problem, and only makes use of the sparsity of x⁰ and *I*₁-optimality of x*.

Appendix B

Beyond LASSO

