#ifndef THREAD_POOL_H #define THREAD_POOL_H #include #include #include #include #include #include #include #include #include class ThreadPool { public: ThreadPool(size_t); template auto enqueue(F&& f, Args&&... args) -> std::future::type>; ~ThreadPool(); private: // need to keep track of threads so we can join them std::vector< std::thread > workers; // the task queue std::queue< std::function > tasks; // synchronization std::mutex queue_mutex; std::condition_variable condition; bool stop; }; // the constructor just launches some amount of workers inline ThreadPool::ThreadPool(size_t threads) : stop(false) { for(size_t i = 0;i task; { std::unique_lock lock(this->queue_mutex); this->condition.wait(lock, [this]{ return this->stop || !this->tasks.empty(); }); if(this->stop && this->tasks.empty()) return; task = std::move(this->tasks.front()); this->tasks.pop(); } task(); } } ); } // add new work item to the pool template auto ThreadPool::enqueue(F&& f, Args&&... args) -> std::future::type> { using return_type = typename std::result_of::type; auto task = std::make_shared< std::packaged_task >( std::bind(std::forward(f), std::forward(args)...) ); std::future res = task->get_future(); { std::unique_lock lock(queue_mutex); // don't allow enqueueing after stopping the pool if(stop) throw std::runtime_error("enqueue on stopped ThreadPool"); tasks.emplace([task](){ (*task)(); }); } condition.notify_one(); return res; } // the destructor joins all threads inline ThreadPool::~ThreadPool() { { std::unique_lock lock(queue_mutex); stop = true; } condition.notify_all(); for(std::thread &worker: workers) worker.join(); } #endif