
LaMachine: A meta-distribution for NLP software

Maarten van Gompel and Iris Hendrickx
Centre for Language and Speech Technology (CLST)

Radboud University, Nijmegen, the Netherlands
proycon@anaproy.nl, i.hendrickx@let.ru.nl

https://proycon.github.io/LaMachine

Abstract

We introduce LaMachine, a unified Natural Language Processing (NLP) open-source software
distribution to facilitate the installation and deployment of a large amount of software projects
that have been developed in the scope of the CLARIN-NL project and its current successor
CLARIAH. Special attention is paid to encouragement of good software development practices
and reuse of established infrastructure in the scientific and open-source software development
community. We illustrate the usage of LaMachine in an exploratory text mining project at the
Dutch Health Inspectorate where LaMachine was applied to create a research environment for
automatic text analysis for health care quality monitoring.

1 Introduction

Software is a key deliverable and a vital component for research in projects such as those under the
CLARIN umbrella. It is software that provides researchers the instruments to yield for their research; It
is CLARIN’s core mission to make digital language resources, including software, available to the wider
research community.

We see that NLP software often takes on complex forms such as processing pipelines invoking various
individual components, which in turn rely on various dependencies. Add dedicated web-interfaces on top
of that and you obtain a suite of interconnected software that is often non-trivial to install, configure, and
deploy. This is where LaMachine comes in.

LaMachine incorporates software providing different types of interfaces1 that typically address differ-
ent audiences. Whilst we attempt to accommodate both technical2 and less-technical audiences3, there
is a natural bias towards the former as lower-level interfaces are often a prerequisite to build higher-
level interfaces on. Depending on the flavour of LaMachine chosen, it makes a good virtual research
environment for a data scientist, whether on a personal computer or on a computing cluster, a good
development environment for a developer or a good deployment method for production servers in for ex-
ample CLARIN centres. We demonstrate how LaMachine can create a fully functioning and standalone
research environment for text mining and NLP for Dutch texts in a use case project at the Healthcare
Inspectorate.

2 Architecture

Being an open-source NLP software distribution, LaMachine is constrained to Unix-like platforms; this
primarily means Linux, but also BSD and, with some restrictions, macOS. Cygwin4 is not tested or
supported. However, virtualisation technology enables deployment on a wider range of platforms, in-
cluding Windows. The focus of the LaMachine distribution stands in contrast with mobile platforms
(Android/iOS/etc), native Windows/mac desktop software, or certain interface types in general such as
classical desktop GUI applications or mobile ‘apps’, all of which fall beyond our scope.

1Command line interfaces, programming interfaces, web-user interfaces, webservices.
2Data scientists, DevOps, system administrators, developers.
3The wider researcher community, particularly the Humanities; also educational settings.
4A unix environment on Windows

https://proycon.github.io/LaMachine


All software that is incorporated in LaMachine must 1) bear some relevance to NLP, 2) be under a
recognised open-source license, 3) be deposited in a public version controlled repository5 and 4) have a
release protocol (with semantic versioning) using the proper technology-specific channels.

LaMachine is a meta distribution as it can be installed in various contexts. At its core, LaMachine
consists of a set of machine-parsable instructions on how to obtain, build (e.g. compile from source),
install and configure software. These are implemented using Ansible6. This is notably different from the
more classical notion of Linux distributions, which generally provide their own repositories with (often
binary) software packages. LaMachine builds on this already established infrastructure by taking these
repositories as a given and only needs to know which repositories to use. Similarly, there are different
programming-language-specific ecosystems providing their own repositories, such as the Python Pack-
age Index for Python, CRAN for R, CPAN for Perl, Maven Central for Java. LaMachine again relies on
those to pull and install software from and never forks, archives, or modifies the software in any way. In
doing so, we compel participating software projects to adhere to well-established distribution standards
and ensure the software is more sustainable towards the future (van Gompel et al., 2016). Moreover, we
ensure that LaMachine never becomes a prerequisite for the software but merely a courtesy or conve-
nience.

LaMachine provides ample flexibility that allows it to be deployable in different contexts. First of all
there is flexibility with regard to the target platform, where we support several major GNU/Linux dis-
tributions (Debian, Ubuntu, CentOS, RedHat Enterprise Linux, Fedora, Arch Linux), as well as macOS
(although with more limitations). Second, there is flexibility with regard to the form, where we support
containerisation through Docker7, virtualisation through Vagrant and VirtualBox8, direct remote provi-
sioning through Ansible (for production servers), or an installation that is either global to the machine
or local in a custom directory for a specific user (using virtualenv). Pre-built docker containers and
virtual machine images with a limited selection of participating software are regularly uploaded to the
Docker Hub and Vagrant Cloud, respectively. The different flavours all offer a different degree of sepera-
tion from the host OS, where Virtual Machines are completely virtualised, Docker Containers still share
the kernel with the host OS, and the machine-specific installation flavour actually compiles against the
machine’s distribution itself and thus offers the least amount of overhead.

Installation of LaMachine begins with a single bootstrap command9. It can interactively query the
users for their software preferences (stored as the host configuration), e.g. the flavour of LaMachine,
as well as the set of software to install, the installation manifest. This set is never static but can be
customized by the user. The user may also opt for installing the latest releases, the more experimental
development versions of the software, or specific custom versions (to facilitate scientific reproducibility).
The bootstrap procedure detects and installs the necessary prerequisites automatically and eventually
invokes Ansible to perform the bulk of the work. Figure 1 provides a schematic view.

LaMachine also aims to harmonise the metadata of all installed software, by converting metadata
from upstream repositories, i.e. the repositories where tool providers deposit their software, to a com-
mon standard called CodeMeta 10 (Jones et al., 2016; Boettiger, 2017) where possible, or encouraging
software developers to provide their codemeta metadata inside their source code repositories and using
that directly. This in turn enables other tools to do proper service discovery and provenance logging.

Leveraging this metadata, LaMachine comes with a webserver that offers a portal website with access
and overview of all installed tools, including web services and web applications. It also comes with a
Jupyter Lab11 environment which provides a web-based Integrated Development Environment (IDE) for
scripting in Python and R, web-based terminal access, and so-called notebooks which mix text, code and
data output and have gained great popularity in data science community nowadays.

5e.g. Github, Gitlab, Bitbucket, provided the repository is public
6https://www.ansible.com
7https://www.docker.com
8https://vagrant.org, https://www.virtualbox.org
9See https://proycon.github.io/LaMachine

10https://codemeta.github.io/, described in JSON-LD
11https://jupyter.org/

https://www.ansible.com
https://www.docker.com
https://vagrant.org
https://www.virtualbox.org
https://proycon.github.io/LaMachine
https://codemeta.github.io/
https://jupyter.org/


Figure 1: A schematic representation of the LaMachine architecture

3 Software

LaMachine exists since May 2015 and has been used extensively ever since by numerous users, in 2018
version 2 was released which was a significant rewrite. LaMachine was initially conceived as the pri-
mary means of distribution of the software stack developed at CLST, Radboud University Nijmegen.
It therefore includes a lot of our software. A full list of included software goes beyond the scope of
this overview; we will merely mention some CLARIN-NL/CLARIAH-funded tools: ucto (a tokeniser),
Frog (an NLP suite for Dutch), FoLiA (Format for Linguistic Annotation, with assorted tools), FLAT (a
web-based linguistic Annotation tool), PICCL (an OCR and post-OCR correction pipeline) and CLAM.
However, this project is not limited to one research group and is open to participation by other software
providers, especially those also in CLARIAH and the upcoming CLARIAH PLUS project. We already
include some relevant software by other CLARIAH partners. Moreover, LaMachine incorporates a large
number of renowned tools by external international parties, offering most notably a mature Python en-
vironment with renowned scientific modules such as scipy, numpy, scikit-learn, matplotlib, nltk, spacy,
pytorch, keras, gensim, tensorflow, and many others, but also R, Java and tools such as Stanford CoreNLP
and Kaldi.

4 Case study

We participated in a small Dutch national project titled “Text mining for Inspection: an exploratory
study on automatic analysis of health care complaints” 12 led by IQhealthcare13, the scientific centre for
healthcare quality of RadboudUMC hospital. This project took place at the Dutch Health Inspectorate
and aimed to apply text mining techniques to health care complaints that have been registered at the
national contact point for health care (Landelijk Meldpunt Zorg14) We investigated the usefulness of
text mining to categorise and cluster complaints, to automatically determine the severity of incoming
complaints, to extract patterns and to identify risk cases. This project turned out to be a good test case of
the applicability and usefulness of LaMachine as a standalone research environment. As the complaint
data is highly sensitive, it could not leave the secure servers of the health inspectorate and was stored in
an environment without internet access. We needed to bring the software to the data via a shared folder.

12https://bit.ly/2N2AICS
13http://www.iqhealthcare.nl/nl/
14https://www.landelijkmeldpuntzorg.nl

https://bit.ly/2N2AICS
http://www.iqhealthcare.nl/nl/
https://www.landelijkmeldpuntzorg.nl


We used a virtual machine (VM) image of LaMachine and we ran this 64-bits Linux-based VM inside
another VM with Windows Server 2012, provided to us by the health inspectorate for this project, in
which we did have administrative rights but no internet access. In terms of hardware we ran on a ma-
chine with 8 cores and 32GB internal memory available. LaMachine provided a fully functional research
environment and we ran all our experiments within LaMachine. We interacted with LaMachine both
through the command line, which offers a standard shell and enables access to all lower-level tools and
programming languages; and through the (offline) webbrowser to use the Jupyter Notebook environment.

LaMachine comes with some simple data sharing facilities that allowed us to access the sensitive
complaint data via a single shared dataspace between host and the VM. Extensive data search and man-
agement functions are deliberately beyond the scope of LaMachine, and left to more high-level tooling.

We used many of the available tools in LaMachine within this project: Frog for linguistic annotation
of the textual content of the complaint and the scikit-learn Python package for classification, T-scan for
feature extraction in the form of text characteristics and colibri-core for n-gram analysis.

5 Conclusion & Future work

The recent release of LaMachine v2, which constituted a full rewrite, has opened up LaMachine to
outside contribution. Contributor documentation has been written, and at this stage, we greatly welcome
external participants to join in. Use cases as the example in section 4 contribute to thorough testing and
running of LaMachine in less ideal circumstances such as nested VM constructions and offline usage.

Aside from the incorporation of new relevant software, the main objectives for the future are to provide
greater interoperability between the included tools through better high-level interfaces for the researcher.
We see this as a bottom-up process and have now established a firm foundation to build upon. Note that
such proposed interfaces, including the current portal application in LaMachine, are always considered
separate independent software projects, which may be deployed by/in/for LaMachine, but also in other
contexts. LaMachine remains ‘just’ a software distribution at heart.

Development of LaMachine presently takes place in collaboration with the CLARIAH WP3 Virtual
Research Environment (VRE) project15, which has higher ambitions in accommodating the researcher
and connectivity of data and services, and transcends also those of the CLARIN Language Resource
Switchboard (Zinn, 2016). An important part of our future focus will therefore be on interoperability
with the higher-level tools emerging from the VRE efforts, but also with other parts of the CLARIN
infrastructure; single-sign on authentication being a notable example here.

Acknowledgement

This research was funded by NWO CLARIN-NL, CLARIAH and the ZonMw project Tekstmining in
het toezicht: een exploratieve studie naar de automatische verwerking van klachten ingediend bij het
Landelijk Meldpunt Zorg, project number 516004614. We thank all project partners: the Dutch Health
Inspectorate, IQhealthcare, and Tim Voets for their valuable contributions and help in the ZonMw project.

References
[Boettiger2017] C. Boettiger. 2017. Generating CodeMeta Metadata for R packages. The Journal of Open Source

Software, 2:454.

[Jones et al.2016] MB. Jones, C. Boettiger, A. Cabunoc Mayes, A. Smith, P. Slaughter, K. Niemeyer, Y. Gil, M. Fen-
ner, K. Nowak, M. Hahnel, et al. 2016. CodeMeta: an exchange schema for software metadata. KNB Data
Repository.

[van Gompel et al.2016] M. van Gompel, J. Noordzij, R. de Valk, and A. Scharnhorst. 2016. Guidelines for Soft-
ware Quality. CLARIAH Task 54.100.

[Zinn2016] C. Zinn. 2016. The CLARIN Language Resource Switchboard. Proceedings of the CLARIN Annual
Conference. CLARIN ERIC.

15https://github.com/meertensinstituut/clariah-wp3-vre

https://github.com/meertensinstituut/clariah-wp3-vre

	Introduction
	Architecture
	Software
	Case study
	Conclusion & Future work

